

1 **It is hard to be small: Inbreeding depression depends on the body
2 size in a threatened songbird**

3

4 Justyna Kubacka^{1*}, Larissa S. Arantes^{2,3}, Magdalena Herdegen-Radwan⁴, Tomasz S. Osiejuk⁴,
5 Sarah Sparmann^{2,5} and Camila J. Mazzoni^{2,3}

6 ¹ Museum and Institute of Zoology of the Polish Academy of Sciences, Twarda 51/55, 00-818
7 Warszawa, Poland

8 ² Berlin Center for Genomics in Biodiversity Research, Königin-Luise-Straße 6-8, 14195
9 Berlin, Germany

10 ³ Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin,
11 Germany

12 ⁴ Department of Behavioural Ecology, Faculty of Biology, Adam Mickiewicz University,
13 Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland

14 ⁵ Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587
15 Berlin Berlin, Germany

16 * corresponding author, e-mail: jkubacka@miiz.waw.pl

17

18

19

20 **Abstract**

21 While inbreeding is known to affect individual fitness and thus population extinction risk, studies
22 have under-represented non-model species of conservation concern, and rarely sought
23 conditionality of inbreeding depression. Here, using SNPs identified with RAD-seq, we determined
24 inbreeding depression in a threatened bird, the aquatic warbler *Acrocephalus paludicola*, and
25 whether its magnitude depends on phenotypic and environmental factors. We found that the
26 inbreeding coefficient (F) of adults with small tarsi was negatively associated with the seasonal
27 breeding success (in males) and clutch size (in females), with the respective decrease in fitness in the
28 most inbred relative to the least inbred individuals of ~89% and ~12%. In contrast, in adult males, for
29 the average tarsus, wing and mass, support was low for F to be related to the long-term return rate
30 to breeding grounds. For mean phenotypic covariates and male density, we also found low evidence
31 that F is associated with the annual breeding success. Likewise, there was little support that mother
32 F is related to egg hatch success and nestling survival, and – for average phenotypic traits, rainfall,
33 temperature and nest density, and accounting for breeding peak – to clutch and fledged brood sizes.
34 For nestlings, animal models showed that F is more negatively related to tarsus under higher
35 temperatures and its effect varies by study year. However, for average brood size, temperature,
36 rainfall and prey abundance, and when controlling for nestling sex, breeding peak and mother F ,
37 evidence for nestling F and tarsus association was weak. We conclude that (1) inbreeding depression
38 on fitness components is stronger in smaller-bodied individuals, (2) considering interaction with
39 phenotypic and environmental variables enables more accurate estimation of inbreeding
40 depression, and (3) the inbreeding depression estimates will inform extinction risk analysis and
41 conservation actions for the aquatic warbler.

42

43

44 **Introduction**

45 Inbreeding results from mating between kin, non-random mating or division of a population into
46 isolated groups (Keller & Waller 2002). It leads to increased genomic homozygosity and
47 accumulation of harmful mutations, which are typically recessive and thus more often expressed in
48 highly homozygous, inbred individuals. Consequently, more inbred individuals have compromised
49 fitness. Inbreeding depression is found across plant and animal taxa (Ralls *et al.* 1988, Keller & Waller
50 2002) and is especially strong in wild populations (Crnokrak & Roff 1999). Inbreeding negatively
51 affects key fitness components, such as sperm quality (Gage *et al.* 2006, Hinkson & Poo 2020),
52 embryo development (Noordwijk & Scharloo 1981, Kruuk *et al.* 2002, Hemmings *et al.* 2012a),
53 juvenile survival (Kruuk *et al.* 2002, Kennedy *et al.* 2014), annual reproductive success (Huisman *et*
54 *al.* 2016, Niskanen *et al.* 2020), and lifetime reproductive success (Grueber *et al.* 2010, Huisman *et*
55 *al.* 2016, Harrisson *et al.* 2019). Therefore, inbreeding depression decreases population viability and
56 contributes to extinction risk (Westemeier *et al.* 1998, Brook *et al.* 2002, O'Grady *et al.* 2006,
57 Nonaka *et al.* 2019), and evaluating its impact is of particular importance in populations of
58 conservation concern.

59 Inbreeding depression is expected to be more pronounced in harsher environments or
60 individuals of lower condition (Armbruster & Reed 2005). For example, low food availability and high
61 number of competitors enhance the inbreeding depression on survival in Darwin's finches (*Geospiza*
62 *sp.*) (Keller *et al.* 2002). A long-term study on the great tit (*Parus major*) found that inbreeding by
63 environment interactions, while generally weak, are stronger in adverse conditions more closely
64 related to fitness (Szulkin & Sheldon 2007). Laboratory experiments on insects showed that
65 inbreeding effects on offspring survival increase with mother age (Fox & Reed 2010) and
66 environmental toxicity (Nowak *et al.* 2007). However, evaluation of the conditionality of inbreeding
67 depression in wild populations has not been frequent, while determining its magnitude across
68 individual traits and environmental conditions would yield more accurate inbreeding depression
69 estimates, especially in threatened populations.

70 Here, we determine the strength of inbreeding depression on fitness-related traits in an
71 IUCN-threatened songbird, the aquatic warbler *Acrocephalus paludicola*, a habitat specialist
72 breeding in fen mires and a long-distance migrant (Le Nevé *et al.* 2018, Tanneberger *et al.* 2018b).
73 Following the gradual disappearance of fens, which accelerated especially over the past 100-200
74 years due to peat extraction, changes in hydrological regime, drainage, eutrophication and
75 succession, the extent of occurrence of the species shrank considerably (Tanneberger *et al.* 2018a).
76 This led to a steep decline in the population size, amounting to 95% only between 1950-80, and its
77 extinction from the western Europe by the end of the 20th century (Briedis & Keišs 2016, Flade *et al.*

78 2018). Today, the breeding range of the aquatic warbler is constrained to the east-central Europe,
79 which holds c. 98% of the global population estimated at 12200 singing males (Flade *et al.* 2018). A
80 recent study (Kubacka *et al.* 2024) demonstrated that genetic diversity in the species is low and
81 comparable to that of other threatened bird species (Evans & Sheldon 2008, Vitorino *et al.* 2019). As
82 it is habitat specialists that are more strongly affected by loss of genetic diversity (Matthews *et al.*
83 2014, Pflüger *et al.* 2019), it is crucial to determine the magnitude of inbreeding depression in the
84 aquatic warbler. In addition, alongside the depleted genetic diversity, the high asymmetry of the
85 male reproductive success (Dyrcz *et al.* 2002, 2005, Kubacka *et al.* 2025) and the promiscuous
86 mating system (Leisler & Schulze-Hagen 2011) are expected to increase variation in the inbreeding
87 rates, which facilitates detection of inbreeding depression (Balloux *et al.* 2004), thus making the
88 species a good study model. Finally, the aquatic warbler faces a broad range of environmental
89 conditions, as the breeding season strides the cool spring and the hot summer, water levels on the
90 fen are changeable, and nests are built on the ground and thus exposed to environmental factors, all
91 of which enable studying the conditionality of inbreeding depression.

92 Specifically, we aimed at 1) assessing the relationship of adult inbreeding rates with the
93 reproductive success and survival, and of nestling inbreeding rates with the body size; 2) evaluating
94 whether inbreeding depression is conditioned by phenotypic variables corresponding to individual
95 quality and by environmental variables that are expected to affect adult survival and fecundity, and
96 offspring body size; and 3) quantifying the inbreeding load and change in fitness associated with
97 inbreeding.

98

99 **Methods**

100 *Study area and sampling*

101 The study was conducted between May-August of 2017-2023, in the Biebrza Valley (Poland), which
102 holds about 25% of the global breeding population of the aquatic warbler. The breeding habitat is
103 permanently water-logged open fen mire and to a less extent wet meadows, all dominated by
104 sedges *Carex* spp. Three study areas were used, referred to as Ławki (N 53°17'11.4"E
105 22°33'49.2"N), Szorce (N 53°17'34.8"E, E 22°37'15.9"N) and Mścichy (53°25'41.7"E
106 22°30'17.0"N). Each study area consisted of two 10-20-hectare (ha) study plots, totalling 70 ha.

107 Between May-July of 2017-2019, adult individuals (past their 1st calendar year) were caught
108 with mist-nets and marked with unique metal and colour rings. They were blood-sampled through
109 puncture of the brachial vein with a sterile needle and collecting approx. 10-120 ul of blood with a
110 capillary. Each blood sample was immediately placed in a vial with an o-ring seal, containing 2 ml of

111 96% EtOH, and shaken to avoid formation of large clots. We measured tarsus length (from the notch
112 on the metatarsus to the top of the bone above the folded toes, with a calliper to the nearest 0.1
113 mm), wing length (with a ruler to the nearest mm) and body mass (with an electronic Kern CM 150-
114 1N balance to the nearest 0.1 g).

115 Nests were located by search and observation of alarming females, every 2-7 days in each
116 plot from late May to early June, and from late June until the end of July. We distinguished two
117 breeding peaks, which correspond to the first and second breeding attempts that are typically
118 separated by about 10 days when no nests are initiated (Kubacka *et al.* 2014). Nests were monitored
119 every 1-5 days. In nests found at the egg stage or on day 1 post-hatch (day 0 being the last day when
120 most offspring in the nest were still eggs), we determined the clutch size, hatched brood size and
121 nestling survival (number of chicks surviving from hatching to fledging). After day 1 the risk is higher
122 that a nestling dies and is removed by the female, which biases estimation of the above traits. In all
123 the nests, we recorded the fledged brood size as the number of nestlings seen on the last check
124 when the brood was still in the nest, as long as on the following check the nest did not bear any
125 traces of predation and was recorded empty not earlier than on day 12 post-hatch (i.e. 3 days before
126 the expected fledging).

127 In 2017-2018, the tarsus and body mass of chicks were measured, as above, on days 2, 5 and
128 9 post-hatch, which fall at the beginning, in one third and in two thirds of the nest stage,
129 respectively. Only nestlings from nests found at the egg stage or day 1-2 post-hatch were included in
130 the analysis. We used the nestling tarsus length as it is one of the proxies for structural body size in
131 birds (Rising & Somers 1989, Senar & Pascual 1997) and predicts survival to reproductive maturity
132 (Gebhardt-Henrich & Richner 1998). Chicks were blood-sampled (approx. 10-80 µl) on day 9 post-
133 hatch, as above.

134 Between May-July of 2018-2023, we searched the study plots and their surroundings up to
135 150 m off plot border for colour-ringed adults with the search effort of 0.2-3.9 person-hours per ha.
136 The colour-ring code was read with an 80-mm-lens and 20-60 magnification scope. The position of
137 each resighted individual was stored in a GPS receiver. We measured the long-term return rate by
138 the number of years during which a given adult individual was resighted or recaught in the study
139 plots, or in other breeding areas – as determined from the Polish Bird Ringing Database, over 4 years
140 following the first observation as adult.

141 We obtained the daily sum of rainfall in mm and average daily temperature from the Polish
142 Institute of Meteorology and Water Management (IMGW). To assess food abundance, in 2017-2018
143 we sampled arthropod prey within c. 30 m from the nest by sweep-netting (1 sweep per 1 second)

144 on 3 radially oriented transects between 3 m of the nest and 50 steps away from the nest. Collected
145 arthropods were placed in a plastic bag, frozen upon arrival from the field, determined to the order
146 and counted. We then quantified the amount of preferred prey as the total number of insects from
147 the taxonomic groups known to be selectively brought by females to nestlings: *Odonata*, *Aranea*,
148 *Lepidoptera* and *Orthoptera* (Schulze-Hagen *et al.* 1989). We estimated the male density with QGIS
149 3.10.7 (QGIS Development Team 2020) as the average number of ringed males observed within 100
150 m of each ringed male's position, and the nest density as the number of nests found per 10 ha of
151 study plot. Following our previous study (Kubacka *et al.* 2025), based on all the captures and resights
152 of the males, we determined the number of encounters of a male per plot in each breeding season,
153 to account for excess zeros in the male breeding success (see *Statistical analysis*). We suspected that
154 the low father-to-offspring assignment rate (see *Results*) could be caused mainly by late arrivals of
155 some males to the study areas. Individuals with a low number of encounters were first captured
156 during the second breeding attempt, or were rarely seen in the study plots.

157

158 **DNA extraction and molecular sex identification**

159 DNA was isolated with the Xpure™ Blood Mini kit (A&A Biotechnology, Poland). 200-300 µl of blood
160 suspended in 96% EtOH were used per individual and the proteinase K digestion time was 2-3 hours.
161 The remaining steps were performed according to the manufacturer's protocol. We analysed DNA of
162 175 adult males (1 was ringed as a chick), 320 chicks (2 were resighted as adult males) from 79 nests
163 and 105 adult females. DNA concentration was measured with a Picogreen (Invitrogen) or Qubit
164 (Thermo Fisher Scientific) instrument.

165 Sex of nestlings was determined by PCR amplification of sex-specific sequences in the CHD-
166 W (c. 370 bp, females only) and CHD-Z genes (c. 330 bp, both sexes) (Griffiths *et al.* 1998) with a PCR
167 kit (Eurx, Poland). Electrophoresis of PCR products ran for 90 mins at 100 V in a 3% agarose gel
168 stained with Simply Safe (Eurx, Poland) and the gel was photographed under UV light.

169

170 **Molecular marker identification and genotyping**

171 To determine inbreeding rates and assign paternity, we used single nucleotide polymorphisms
172 (SNPs), determined with 3-enzyme restriction site-associated sequencing (3RAD) (Bayona-Vásquez *et*
173 *al.* 2019, Glenn *et al.* 2019). Inbreeding estimated with genomic markers better predicts the identity
174 by descent and decrease in fitness, compared to inbreeding rates inferred from the pedigree
175 (Hemmings *et al.* 2012b, Kardos *et al.* 2015, Huisman *et al.* 2016). First, we constructed a reference

176 genomic library, i.e. a catalogue of reliable loci excluding potential paralogs and artefactual alleles,
177 according to the Reduced-Representation Single-Copy Orthologs (R2SCOs) method (Driller *et al.*
178 2021), with modifications. We sequenced 2x300 bp reads for three females to reconstruct the entire
179 locus by merging overlapping reads, using samples with high DNA concentration (75.9, 53.7 and 76.6
180 ng/μl), each representing a different study location. After normalising the samples to 20 ng/μl, we
181 split each into 5 digestion reactions (200 ng each), totalling 1 μg digested DNA. The enzymes XbaI,
182 EcoRI-HF and NheI were used for the digestion, which ran at 37°C for 2 hours. Each digestion
183 reaction was ligated with a unique XbaI and EcoRI adapter pair (i.e. double-indexed) and the 5
184 reactions were pooled and purified (0.8x PCRclean magnetic beads - GCbiotech). We performed a
185 PCR with P5 and P7 customised ligation check primers, to ensure that the digestion was successful.
186 Each pooled sample was size-selected (350-580 bp) on a BluePippin machine (Sage Science). Each
187 size selection product was then split into 4 reactions and in a single-cycle PCR we added an iTru5-8N
188 index (with 8 random nucleotides, to mark unique DNA template molecules and remove PCR
189 duplicates during the bioinformatic analysis) (Hoffberg *et al.* 2016). After purification (0.8x beads) an
190 additional PCR step (8 cycles) completed the Illumina adapters with a unique iTru7 P7 primer per
191 reaction and a P5 primer (which has a flow cell binding site sequence) common to all the reactions.
192 The 4 PCR replicates of each sample were then pooled, purified (0.8x beads) and quantified (Qubit –
193 Thermo Fisher Scientific). Finally, the pools were sequenced with the Illumina MiSeq V3 at 600
194 cycles, yielding a total of 3.6 M reads per sample.

195 Next, we constructed population libraries (Supplementary Online Resource 1), consisting of
196 the remaining 597 samples. DNA concentration was normalised to 20 ng/ul or less (at least 8.14
197 ng/μl). We followed the protocol described above (Bayona-Vásquez *et al.* 2019), with modifications,
198 and produced 9 population libraries, which were processed in 3 batches. The libraries were
199 sequenced with 2x150 bp on Illumina instruments; 15% of PhiX was used to increase sequence
200 diversity. The number of sequenced reads obtained from each library is presented in Table S1a.

201

202 ***Bioinformatic analysis***

203 We first constructed a reference locus catalogue using the R2SCOs method (Driller *et al.* 2021),
204 which allowed us to select a set of high-quality single-copy orthologous loci to be used as reference
205 for the population analysis. The R2SCOs pipeline included de-replication of the pre-processed and
206 size-selected sequences (range 250-370 bp, for which we obtained comparable and high coverage),
207 setting the minimum coverage per unique sequence to define a putative allele equal to 3; and
208 clustering and definition of putative loci using the intra-specific identity threshold of 90%. As a next

209 step, the pipeline applies a set of filters to remove loci that are prone to generate spurious results
210 due to issues of either biological or technical background. Aiming to avoid sex-biased genotypes that
211 might interfere with the population analyses (Faux *et al.* 2020), we removed all the R2SCOs loci that
212 mapped to the sex chromosomes of the Eurasian blackcap (*Sylvia atricapilla*) genome (GenBank
213 accession number GCA_009819655.1). The final reference contained 10997 loci.

214 The raw data from the population libraries was mapped against the PhiX genome to filter
215 any remaining read from the Illumina library control. Next, we performed adapter trimming using
216 the Cutadapt software (Martin 2011). Then, reads were attributed to individuals based on the in-line
217 barcodes using FLEXBAR (Dodd *et al.* 2012). In part of the libraries (Supplementary Online Resource
218 1), PCR duplicates were filtered out using the Python script Filter_PCR_duplicates.py
219 (<https://github.com/BeGenDiv/Arantes et al 2020>). The 4 replicates were then concatenated. The
220 forward and reverse reads were merged with overlapping regions of at least 30 bp and maximum
221 length of 249 using the software PEAR (Zhang *et al.* 2014). All the merged reads (<249 bp) were
222 considered short fragments that were out of the target range, and we continued analysing the
223 unassembled read pairs, which were filtered for minimum quality (Q>30) and trimmed to 142 bp
224 with a minimum length of 130 bp using Trimmomatic (Bolger *et al.* 2014). We checked the presence
225 of the XbaI and EcoRI restriction sites in the paired-read ends using the script
226 checkRestrictionSites.py (<https://github.com/BeGenDiv/Arantes et al 2020>) and filtering out any
227 fragment resulting from star activity or NheI digestion. Finally, reads containing the internal
228 restriction site of XbaI, EcoRI or NheI were removed using the Filter_Reads.py script
229 (<https://github.com/BeGenDiv/Arantes et al 2020>). The filtered reads were mapped against the
230 reference locus catalog constructed with the R2SCOs method, using Bowtie2 (Langmead *et al.* 2009)
231 with default parameters and the flags ‘-no-mixed’ and ‘-no-discordant’. In order to select a common
232 range of high-coverage loci for all individuals belonging to different libraries, we checked the length
233 distribution of the loci based on the .sam files, and extracted the range 250-310 bp with *samtools*
234 (Danecek *et al.* 2021) and a bash *awk* command.

235 We analysed the mapped reads with Stacks (Catchen *et al.* 2011, 2013), using the reference-
236 based pipeline. Genotypes were called and filtered with *ref_map.pl*, which uses the *gstacks* and
237 *populations* modules. In *gstacks*, the *var_alpha* (alpha threshold for discovering SNPs) was set to
238 0.01, and all the samples were assumed to belong to one population, because of the extensive gene
239 flow known in the aquatic warbler (Kubacka *et al.* 2024). Otherwise, default parameters were used.
240 In *populations*, we used: the minimum percentage of individuals in a population required to process
241 a locus $r=0.8$, to avoid high missingness; the minimum number of populations a locus must be
242 present in to be processed $p=1$; and the minimum minor allele frequency required to process a

243 nucleotide site at a locus min-maf= 0.005, which ensured that an allele is present in at least three
244 samples to be processed (Rochette & Catchen 2017). To obtain independent SNPs, we wrote only
245 the first SNP in a locus. The remaining parameters were retained at their defaults. After calling
246 genotypes, we generated mean depth per individual with Vcftools (Danecek *et al.* 2011), to inspect
247 coverage distribution. We removed 1 individual with mean depth <10 and repeated the SNP-calling
248 step. We obtained 6267 loci, of which 4179 variant sites (SNPs) were retained after the *populations*
249 filter, with mean \pm SE observed heterozygosity in variable positions of 0.141 ± 0.002 . We checked
250 whether individuals with the lowest coverage (mean depth of $\geq 10x$ and $< 30x$, N= 46) affect loci-
251 calling, by running *ref_map.pl* without them. The number of SNPs called without these individuals
252 was 4171 and the mean \pm SE observed heterozygosity was 0.143 ± 0.002 ; we therefore retained them
253 for further analysis.

254 We then used Vcftools for further SNP filtering (Table S1b). We removed genotypes with
255 mean depth per SNP $< 10x$ and loci with $> 20\%$ missing data. Next, we filtered out sites (N= 6) of mean
256 depth > 115 , which formed the tail of the depth distribution, to remove potential collapsed paralogs.
257 In the R environment (R Core Team 2024), with the *dartR* package (Gruber *et al.* 2018) we checked
258 whether the loci are in the Hardy-Weinberg equilibrium (HWE), applying the false discovery rate
259 correction and p-value of 0.05. Most loci not in HWE were heterozygote-deficient and we found a
260 positive correlation between the locus Fis and missingness ($r= 0.38$), which decreased to $r= 0.13$
261 after the HWE-violating loci were removed. As this is indicative of null alleles, which artefactually
262 lower heterozygosity (Waples 2015, De Meeûs 2018), we proceeded without the HWE-violating
263 SNPs. Finally, using VCFtools, we calculated loci-pairwise r^2 to inspect distribution of linkage
264 disequilibrium. The mean \pm SD of r^2 was 0.003 ± 0.012 . We excluded one randomly selected SNP from
265 each pair for which r^2 was > 0.3 , to remove the tail of r^2 distribution (Fig. S1). The final dataset
266 consisted of 2948 SNPs (Table S1b). The mean \pm SD read depth per locus and individual are provided
267 in Fig. S2.

268

269 **Paternity assignment**

270 We selected a set of informative SNPs to maximise the statistical power of parentage assignment
271 (Andrews *et al.* 2018, Thrasher *et al.* 2018). With Vcftools (Danecek *et al.* 2011), we filtered out SNPs
272 with minor allele frequency < 0.3 , as rare SNP variants are not informative in parentage assignment
273 (Huisman 2017), and missingness > 0.1 . The number of SNPs after filtering was 333 (Table S1b).
274 Typically, 100-200 SNPs suffice for parentage assignment (Huisman 2017, Flanagan & Jones 2019).
275 For 1 individual, which was RAD-sequenced twice, we removed the genotype with fewer loci typed.

276 The resulting genotypes dataset consisted of 320 offspring (316 with known mother) and 173
277 candidate fathers, with 1 mother typed in 88 SNPs and all the other individuals typed in >99 SNPs.
278 Paternity was then assigned with Cervus (Kalinowski *et al.* 2007), running the allele frequency
279 analysis, parentage analysis simulation and paternity analysis given known mother. The allele
280 frequency analysis showed the mean proportion of SNPs typed of 0.954. In the simulation, we
281 assumed: the allele frequencies generated in the previous step; 100000 offspring; 440 as the
282 average number of candidate fathers per offspring (based on the number of males assessed within
283 the study plots and 150 m around them, and summed over all the three study locations); 0.4 as the
284 proportion of candidate fathers sampled; 0.954 and 0.01 as the proportion of loci typed and
285 mistyped, respectively; 0.01 as the error rate in likelihood calculations; 88 as the minimum number
286 of typed loci; Delta as the statistic to determine confidence; and 99% and 95% as the strict and
287 relaxed confidence level, respectively. In the paternity analysis, we used the allele frequency and
288 simulation results generated in the previous steps. The offspring file contained candidate fathers,
289 and males known to not be sexually mature in the year when a given chick was born were excluded.
290 We ran the simulation and paternity analyses also for 95% and 80% strict and relaxed confidence
291 levels, respectively. In addition, we established paternity with Colony v. 2.0.7.1 (Jones & Wang
292 2010), providing information on known maternal sibships and excluded paternity, assuming
293 polygamy of both sexes, no inbreeding and default parameters otherwise. We quantified the male
294 seasonal breeding success as the number of offspring produced in the given year, as detected by
295 paternity assignment to the blood-sampled chicks.

296

297 ***Inbreeding rate and inbreeding load***

298 To assess inbreeding, we quantified the inbreeding coefficient F with a method of moments (Wang
299 2014) using the $-het$ option in VCFtools (Danecek *et al.* 2011). To explore how well F corresponded
300 to inbreeding, with the R package *inbreedR* (Stoffel *et al.* 2016), we calculated g_2 , an estimate of
301 identity disequilibrium which quantifies the covariance of heterozygosity at the studied loci
302 standardised by their average heterozygosity; hence, it corresponds to inbreeding variance in the
303 population (David *et al.* 2007). A correlation between a trait and heterozygosity will not arise when
304 $g_2 = 0$ (Szulkin *et al.* 2010). To avoid pseudoreplication, we used a dataset filtered to include all the
305 adult individuals and 1 nestling per nest. We used 1000 permutations over SNPs to evaluate whether
306 $g_2 > 0$ and 1000 bootstraps over individuals to determine its 95% confidence interval (CI).

307 To quantify the strength of inbreeding depression, we used the inbreeding load measured
308 with lethal equivalents (B) and percent change in fitness due to inbreeding (δ) (Morton & Crow

309 1956, Keller & Waller 2002). Assuming that mutations at different loci have independent effects on
310 fitness, the logarithm of a fitness-related trait is predicted to show a linear negative relationship with
311 the inbreeding coefficient. The inbreeding load is quantified as the negative of the slope describing
312 this relationship. To compare inbreeding load between populations and studies, the concept of
313 lethal equivalents was coined. The effect of a mutation on fitness can be lethal or have partial
314 detrimental effects. One lethal equivalent is the average number of alleles in a population which
315 cause death of the homozygous individual. The inbreeding load equals the average number of lethal
316 equivalents per haploid gamete found in the studied population. We calculated B using Equation II in
317 Box 3 from Keller & Waller (2002), predictions weighted-averaged across all the models and
318 categorical levels (see *Statistical analysis*), and fitness values for the maximum and minimum
319 inbreeding rates in our dataset. For the survival traits, we used Poisson models with the logarithm
320 link function, which yield unbiased estimates of inbreeding load for binomial traits (Nietlisbach *et al.*
321 2019). The δ refers to the change in a fitness-related trait in inbred individuals compared to outbred
322 individuals (Keller & Waller 2002). We calculated δ for the most inbred compared to the least inbred
323 individuals in the dataset (Harrisson *et al.* 2019, Sin *et al.* 2021).

324

325 ***Statistical analysis***

326 We ran the analysis in the R environment 4.4.2 (R Core Team 2024) and applied the information-
327 theoretic approach, in which an a priori set of biologically plausible candidate models is built and
328 each model in the set obtains a relative rank indicating how well it explains the data (Burnham &
329 Anderson 2002). To rank models within a candidate set, we used the Akaike information criterion
330 corrected for small sample size (AICc) and – in animal models (see below) – the deviance information
331 criterion (DIC). In addition, we generated the following quantitative measures of relative support for
332 each model: model likelihood (relative likelihood of the model in the candidate set, given the data),
333 Akaike/DIC weight ($\omega_{\text{AICc}}/\omega_{\text{DIC}}$; probability that the given model is the best approximating model in
334 the candidate set), evidence ratio (showing the probability of the best model relative to other
335 models in the set) and cumulative AICc/DIC (sum of AICc/DIC weights of a given model and all the
336 higher-ranking models) (Symonds & Moussalli 2011).

337 Each candidate set included a null model assuming that the response variable is constant, or
338 that it varies with a variable strongly affecting the response that was common to all the models. All
339 the models in the set except the null model included F . For selected candidate sets, we restricted the
340 number of variables in a model to allow 10-15 data points per each non-intercept estimate and
341 reduce the risk of over-parametrisation; for models using the binomial distribution, we ensured that

342 there are 10-15 data points of the less probable event per estimate (Harrell 2015). To account for
343 model uncertainty, the estimates of regression coefficients and their confidence intervals were
344 weighted-averaged (by the $\omega\text{AICc}/\omega\text{DIC}$) across all the models in a set that contained the given term
345 (i.e. natural model-averaging), as we expected small effects (Grueber *et al.* 2011, Symonds &
346 Moussalli 2011). Model selection and averaging were carried out with package *AICmodavg*
347 (Mazerolle 2023). All the input numerical explanatory variables were standardised to the mean of
348 zero and SD of 1 (i.e. z-score standardisation). The weather variables, nest density and prey
349 abundance were z-score standardised within the year and breeding peak; in the chick tarsus analysis,
350 the weather variables were also standardised within the day. Sum contrasts were used (i.e. with the
351 intercept being the corrected mean), to enable comparison of effects of categorical and numerical
352 variables. For visualising interactions, predictions were calculated using packages *AICmodavg*
353 (Mazerolle 2023) and *MuMIn* (Bartoń 2019) for the model containing the term, on the link scale and
354 back-transformed. We visualised results with package *ggplot2* (Wickham 2016) and custom code.

355 We evaluated the relationship between F as an explanatory variable and the fitness-related
356 (male long-term return rate, male breeding success, clutch size, hatch success, nestling survival and
357 fledged brood size) and condition-related traits (chick tarsus on days 2, 5 and 9 post-hatch) as
358 response. We also determined whether the F effect is conditioned by phenotypic (tarsus, wing and
359 body mass in adults; sex in offspring) or environmental variables (male density, nest density, rainfall,
360 temperature, breeding peak, prey abundance and brood size). Candidate sets were built as follows:

361 (1) *Male inbreeding and long-term return rate.* We did not consider the female return rate due to
362 only 8 recoveries, which did not ensure a reliable regression analysis (Harrell 2015). The male 4-
363 year-return rate showed a right-skewed distribution. In order to select an appropriate count
364 model, following the recommendations by Zuur & Ieno (2021), we ran an intercept-only GLM
365 Poisson (P) model with log-link with the return rate as response, and calculated its
366 overdispersion and zero-inflation using package *DHARMa* (Hartig 2022). The P model showed
367 overdispersion (dispersion statistic 1.44, $P<0.001$) but no zero-inflation (ratio of observed to
368 simulated zeros 1.09, $P=0.194$). We then ran an intercept-only negative-binomial (NB) model
369 using package *MASS* (Venables & Ripley 2002), which showed no overdispersion (1.00, $P=0.997$)
370 and no zero-inflation (1.00, $P=1.000$). Therefore, we continued with the NB distribution to
371 construct a candidate model set. We included the following terms: body mass, tarsus and wing
372 length, ringing area and year, their interaction with F , F squared, body mass squared, tarsus
373 squared, and wing squared (Table S2a).

374 (2) *Male inbreeding and seasonal breeding success.* The male breeding success had a large number
375 of zeros and, corresponding to previous observations (Dyrcz *et al.* 2002, 2005, Kubacka *et al.*

376 2025), was right-skewed. We proceeded as in point (1) and constructed a null GLM P log-link
377 model with the number of encounters and ringing year as explanatory variables. The P model
378 was overdispersed (dispersion statistic 4.31, $P<0.001$) and zero-inflated (ratio of observed to
379 simulated zeros 1.70, $P<0.001$). We then fitted a NB model with the same terms, which was not
380 overdispersed (0.99, $P= 0.965$) and not zero-inflated (1.02, $P= 0.786$). Hence, we proceeded with
381 the NB distribution. While 24/145 males bred both in 2017 and 2018, we treated these breeding
382 events as independent after ascertaining that the residuals within these males were
383 uncorrelated in a null GLM NB model (Zuur *et al.* 2009, 2013). The covariates included were body
384 mass, tarsus and wing length, local male density, study area and ringing year, their interactions
385 with F , and F , mass, wing and tarsus square effects. All the models included the number of
386 encounters and ringing year (Table S2b).

387 (3) *Female inbreeding and clutch size.* This candidate set was constructed using linear models. As
388 covariates, we included the mother body mass, tarsus and wing length, and their quadratic
389 effects, breeding peak (present in each model as it strongly predicts the clutch size), sum of
390 rainfall during and mean daily temperature averaged for 15 days prior to start of incubation,
391 study area and year, and the interactions of all the covariates with mother F . We restricted the
392 number of non-intercept estimates in a model to 6 (Table S4a).

393 (4) *Female inbreeding and egg hatching success.* The hatching success was coded as 1 for eggs that
394 hatched and 0 otherwise, with the egg being the subject. The candidate set was built using
395 generalized linear mixed models (GLMMs) with package *lme4* (Bates *et al.* 2015) and the
396 binomial distribution with logit link. Nest ID was entered as a random factor. As covariates, we
397 included the breeding peak, sum of rainfall and mean average daily temperature during
398 incubation, clutch size, study area and year. Due to the low number of unhatched eggs ($N= 23$),
399 we limited the number of non-intercept estimates in a model to 2 and did not consider
400 interactions (Table S4b).

401 (5) *Female inbreeding and nestling survival.* The nestling survival was coded as 1 for nestlings that
402 survived until fledging and 0 otherwise, with the nestling being the subject. The candidate set
403 was constructed with GLMMs, as above. As covariates, we included the mother body mass, wing
404 and tarsus length, breeding peak, sum of rainfall and mean average daily temperature from
405 hatching to fledging, hatched brood size, study area and year. Due to the low number of nestling
406 deaths ($N= 22$), we limited the number of non-intercept estimates in a model to 2 and did not
407 consider interactions (Table S4c).

408 (6) *Female inbreeding and fledged brood size.* We considered only successful nests (i.e. those that
409 fledged at least 1 chick), as nests fail completely for reasons that are mostly independent of the

410 female (e.g. predation). The candidate set was built using linear models. As covariates, we
411 included the mother body mass, wing and tarsus length and their quadratic effects, breeding
412 peak, sum of rainfall and mean average daily temperature from hatching to fledging, study area
413 and year. We also considered interactions of the covariates with F . The number of non-intercept
414 estimates in a model was <8 (Table S4d).

415 (7) *Nestling inbreeding and tarsus length on days 2, 5 and 9 post-hatch.* In natural populations,
416 phenotype-associated inbreeding can occur, e.g. if the wing length of a parent is correlated with
417 its relatedness to the mate. This creates a bias on the inbreeding depression especially in
418 morphological traits, as part of variation in the trait results from genetic covariance with the
419 relatedness between parents. Therefore, as recommended by Becker *et al.* (2016), we applied
420 the animal model. We used package *MCMCglmm* (Hadfield 2010), with the random effects being
421 the breeding value ('animal'), chick ID, nest ID and father ID (from the Colony results). We
422 calculated the genomic relatedness matrix using package *AGHmatrix* (Amadeu *et al.* 2023) and
423 the Van Raden matrix. We applied an uninformative prior and set the number of MCMC
424 iterations to 1.2 million, burnin to 10000 and thinning to 100. The candidate set considered the
425 following covariates: measurement day (present in all models), chick sex, brood size, breeding
426 peak, sum of rainfall during the previous 14 days, mean average daily temperature over the
427 previous 4 days, prey abundance, area and year, and their interaction with chick F ; and mother
428 F , to account for an effect of maternal inbreeding on brood provisioning and parent-offspring
429 correlation in F (Nietlisbach *et al.* 2016) (Table S6).

430

431 **Results**

432 *Parentage assignment and inbreeding statistics*

433 Of the 320 assignments, in further analysis we used 223 that were of $\geq 99\%$ confidence in both the
434 father-offspring pair and trio (i.e. father-mother-offspring), and 2 that were of $\geq 99\%$ confidence in
435 father-offspring pair, but their mother was not sampled and trio confidence could not be
436 determined. We excluded 1 assignment for which the trio confidence was 99%, but the pair
437 confidence was <95%. Of the 173 candidate fathers, 58 were assigned paternity with confidence as
438 above. The range and median number of mismatches were: 0-3 and 0 for mother-chick; 0-5 and 1 for
439 the 225 trios with the most likely father; and 0-49 and 39 for the 225 trios with the second most
440 likely father. We obtained same assignments with the strict and relaxed confidence of 80% and 95%,
441 respectively. All the Colony paternity assignments matched the 225 Cervus assignments and had the
442 probability of 1.

443 The mean \pm SD F was 0.005 ± 0.043 , median 0.002 and range -0.077 to 0.138 for adult
444 females; and mean \pm SD 0.028 ± 0.048 , median 0.030 and range -0.101 to 0.168 for adult males (Fig.
445 S3). Two nestlings with unusually low inbreeding coefficients were removed from the tarsus analysis
446 as outliers. The mean \pm SD offspring F , excluding these outliers, was 0.007 ± 0.046 , median 0.006 and
447 range -0.096 to 0.175 . The $g2$ was estimated at 0.0009 (95% confidence interval 0.0002 to 0.0015)
448 (Fig. S4). There was a moderate positive correlation between the mother F and the mean within-
449 mother chick F (Pearson $r = 0.30$, 95% CI 0.05 to 0.52).

450

451 *Inbreeding depression on fitness components in adults*

452 In adult males, the return rate was predicted neither by the male F nor by the F by phenotype
453 interactions, as the interaction models received weak support, and the CIs of these terms
454 overlapped zero (Fig. 2, Tables 2a & 3a). The F and tarsus squared model obtained top support
455 (ω AICc=0.28), was 8.8 times more likely than the F and tarsus model, and 3.5 times more likely than
456 the null model. The F squared models were also well supported (sum of ω AICc= 0.47) but only
457 weakly more probable compared to the null model (Table S2a). The inverse quadratic relationships
458 with the tarsus and F indicated that return rates are the highest for males with average tarsi and F
459 values, respectively.

460 While the male F was not a good predictor of the breeding success for average phenotypes
461 and male densities (Fig. 2, Table S3b), the F by tarsus interaction model scored the highest
462 (ω AICc=0.47), was 4.9 times more probable than the null model and 16.7 times more probable than
463 the F and tarsus model (Table S2b). The remaining interaction effects obtained low support. In males
464 with small tarsi, the F estimate was negative, and in males with exceptionally large tarsi it was
465 positive, however, the latter result was based on very few observations and thus uncertain (Fig. 3).

466 For average covariates, the female F relationship with the clutch size was unsupported (Fig.
467 4, Table S5a). However, the F by tarsus interaction model obtained top support (ω AICc=0.52), was
468 4.3 times more probable than the F and tarsus model, and clearly more parsimonious than the null
469 model (Table S4a). The remaining interaction effects were unsupported. In females with small tarsi,
470 the F effect on the clutch size was negative, while in those with the largest tarsi it appeared positive;
471 however, the latter result was based on very few observations and thus uncertain (Fig. 5). The tarsus
472 models ranked the highest (sum of ω AICc 0.99), pointing to the tarsus as the strongest and positive
473 predictor of the clutch size (Fig. 4, Tables S4a&S5a).

474 Mother *F* showed no clear relationship with the hatching success and nestling survival (Fig.
475 4, Tables S5b-c). For the hatching success, the null model scored the highest ($\omega_{AICc}=0.21$) and
476 support was spread between several models (Table S4b). For the nestling survival, the *F* and body
477 mass model obtained clear support from the data ($\omega_{AICc}=0.70$) (Table S4c), showing that mother
478 body mass was a strong negative correlate of nestling survival (Fig. 4, Table S5c).

479 Similarly, the relationship between the mother *F* and fledged brood size was not supported
480 for average phenotypic and environmental covariates (Fig. 4, Table S5d). The null model ranked the
481 second and the *F* by body mass interaction model was 4.4 times more probable than the *F* and body
482 mass model, however, it was nearly as parsimonious as the null model, indicating very low support
483 (Table S4d). The remaining interaction effects were not supported. The breeding peak was a
484 relatively strong predictor of the fledged brood size (Fig. 4, Table S5d).

485

486 *Inbreeding depression on nestling tarsus*

487 The 95% credible interval of the model-averaged chick *F* effect spanned zero, indicating no support
488 for an association between *F* and tarsus for average covariates (Table S7). Evidence was spread
489 between several animal models (Table S6). The *F* by rainfall and *F* by temperature interaction models
490 scored best ($\omega_{DIC}=0.12$ and 0.11, respectively). The *F* by temperature interaction estimate was
491 negative, suggesting that the *F* effect becomes more negative with increasing temperatures and
492 varies by year. We obtained low evidence for the remaining interactions (Tables S6 & S7).

493

494 *Inbreeding load and change in fitness*

495 For average phenotypic traits, the inbreeding load on male return rates was moderate, with nearly
496 half the number of years returned to the breeding grounds in the most inbred males, compared to
497 the least inbred ones, and the inbreeding load on the male breeding success was high (Table 1).
498 However, as the 95% CIs of the male *F* effects spanned zero, these inbreeding load estimates bear
499 high uncertainty. The males with average small tarsi incurred strong inbreeding load, with almost
500 90% reduction in the number of young for the most inbred males, compared to the least inbred
501 ones. In contrast, in males with average large tarsi the inbreeding load was negligible (Table 1).

502 The female inbreeding load on the clutch size was low for the average covariates. However,
503 mothers with average small tarsi bore higher, although moderate inbreeding load, with about 10%
504 reduction in the clutch size for the most inbred relative to the least inbred females, while in mothers

505 with average large tarsi the inbreeding load was very low (Table 1). The mother inbreeding load on
506 the hatching success, nestling survival and fledged brood size was also low. The overall decrease in
507 fitness between laying a clutch and brood fledging totalled 0.6 haploid lethal equivalents (Table 1).

508

509 **Discussion**

510 *Weak inbreeding depression for average phenotypic and environmental variables*

511 For the mean value of the phenotypic traits and male density in the case of the breeding success,
512 inbreeding depression on the long-term return rates and seasonal breeding success of adult males
513 obtained low support from the data. Male aquatic warblers show high post-breeding annual return
514 rates (Dyrcz & Zdunek 1993, Bellebaum 2018), which are comparable to survival rates of other
515 migratory passerines in the central European latitude (Scholer *et al.* 2020). Hence, the 4-year return
516 rate is a strong predictor for the lifespan survival. Given the median return rate of 1 year among the
517 surviving males, most males reproduce over 1 breeding season, indicating that the seasonal
518 breeding success is a proxy for the lifetime reproductive success. Therefore, our results do not
519 suggest that the inbreeding rate in adult males is associated with their adult lifespan nor the lifetime
520 reproductive success.

521 Avian studies on the inbreeding depression on adult survival have been scarce and showed
522 weak, e.g. $B= 1.7$ (Keller 1998), moderate, e.g. $\delta= 49\%$ (Harrisson *et al.* 2019) or strong effects of
523 inbreeding, e.g. up to $B= 7$ in the house sparrow (*Passer domesticus*) (Niskanen *et al.* 2020). Evidence
524 for male inbreeding effects on the annual reproductive success has also been variable, ranging from
525 weak support (Sin *et al.* 2021), through moderate effects, e.g. $\delta= 42\%$ (Harrisson *et al.* 2019) to
526 clearly negative inbreeding depression in the house sparrow, $B= 6$ (Niskanen *et al.* 2020). The $B= 4.9$
527 and $\delta= 69\%$ that we obtained for aquatic warbler males appear to be high inbreeding load on the
528 annual reproductive success, however, these estimates bear high uncertainty.

529 Similarly to males, for the mean value of the phenotypic and environmental covariates, we
530 found weak support for the relationship between an adult female's inbreeding rate and her short-
531 term fitness components. These results do not support mother inbreeding depression on offspring
532 production from clutch laying until fledging in the aquatic warbler. However, it is the earliest
533 developmental stages that could respond more negatively to inbreeding (Noordwijk & Scharloo
534 1981, Hemmings *et al.* 2012b), and it is inbreeding of the offspring that could affect its survival more
535 strongly.

536 Previous studies on birds found the parental inbreeding to be little related to egg production
537 (Keller 1998, Szulkin *et al.* 2007, Harrisson *et al.* 2019). In the takahe (*Porphyrio hochstetteri*),
538 parental inbreeding was unassociated with hatching rates ($B = -0.7$) and fledgling success ($B = 3.3$)
539 (Grueber *et al.* 2010), but in another study the latter decreased by 30% in mothers with the pedigree
540 $f > 0$ (Jamieson *et al.* 2003). Negative effects of maternal inbreeding were demonstrated in two
541 studies on passerine birds for the hatching success ($\delta = 20\text{--}36\%$) and fledgling production ($\delta = 26\%$)
542 (Keller 1998, Harrisson *et al.* 2019). In our study, although the clutch size manifested the highest
543 inbreeding load of the female fitness components studied, it was relatively low, and so was the
544 inbreeding load from clutch laying to brood fledging.

545 Neither did we find unambiguous evidence that, for average values of the phenotypic and
546 environmental covariates, and while accounting for mother inbreeding, the offspring inbreeding rate
547 is associated with the tarsus length, and this association remained constant across the three nestling
548 ages. This does not support inbreeding depression on the skeletal body size in aquatic warbler
549 nestlings, for typical individuals and conditions. In contrast, in the collared flycatcher (*Ficedula*
550 *albicollis*), inbred fledglings had smaller tarsi compared to outbred ones (Kruuk *et al.* 2002), but no
551 such relationship was found in another species (Sin *et al.* 2021).

552

553 *Effects of inbreeding depend on body size in adults and on weather in offspring*

554 We demonstrated that inbreeding depression on the male seasonal breeding success and clutch size
555 is conditional on the tarsus length of males and females, respectively. In birds, tarsus length is a
556 proxy for the structural body size (Rising & Somers 1989, Senar & Pascual 1997), implying that the
557 inbreeding costs on these fitness-related traits increase in small-bodied individuals, relative to large-
558 bodied individuals. In some passerines, the tarsus or a body size index is positively associated with
559 the clutch size in females (Alatalo & Lundberg 1986, Sedinger *et al.* 1995, Garamszegi *et al.* 2004, this
560 study) and with sperm quality and functionality traits and testis size in males (Brown & Brown 2003,
561 Forstmeier *et al.* 2017), which translates into sperm production (Parker & Pizzari 2010, Hayward &
562 Gillooly 2011). Therefore, it could be more difficult for small inbred individuals to compensate for
563 their lower fecundity traits, than it is for large inbred ones.

564 The inbreeding depression on the breeding success in the small-bodied males appears
565 strong. For example, the B of 9 and $\sim 89\%$ decrease in the male annual reproductive success are
566 comparable to the high inbreeding depression in the house sparrow (Niskanen *et al.* 2020). In small-
567 bodied females, the inbreeding load on clutch sizes ($B = 2.8$) and the decrease in the clutch size
568 produced ($\sim 11\%$) were moderate and did not translate to decreased fledgling production. Our

569 finding of inbreeding depression on the clutch size in small females stands in contrast with previous
570 studies (Keller 1998, Szulkin *et al.* 2007, Harrisson *et al.* 2019).

571 We did not obtain firm support for environmental dependence of the chick inbreeding
572 effects on tarsus, except for a weak interaction with the average daily temperature. This interaction
573 suggests that chick F was more negatively associated with the tarsus in higher temperatures in the
574 preceding days. As temperature was standardised within year, breeding peak and day, its effect was
575 independent of these factors. Elevated temperatures could correlate with lower abundance or
576 availability of prey, and thus more inbred chicks could cope worse with being fed less during warmer
577 days. As the effect of nestling F varied between the two study years, the magnitude and direction of
578 inbreeding effects on nestling body size could differ between breeding seasons.

579

580 *Conclusions and conservation implications*

581 We sought to determine the magnitude of the inbreeding depression on fitness components and
582 nestling growth in a threatened passerine, the aquatic warbler, and to inspect whether the
583 inbreeding effects on these traits are modulated by the phenotype and environment. We
584 demonstrated, to our knowledge for the first time, that in birds, inbreeding depression on adult
585 fitness components could depend on the body size, with smaller individuals paying higher costs of
586 inbreeding. This suggests that birds raised in poor environmental conditions, which negatively affect
587 the adult body size (De Kogel 1997, Searcy *et al.* 2004, Cleasby *et al.* 2011) could have lower fitness if
588 they are inbred. Our study also points out that accounting for the body size (and possibly other
589 phenotypic and environmental variables) allows to determine inbreeding depression more precisely.
590 This is of considerable importance especially in the case of species of conservation concern, where
591 nuanced knowledge on inbreeding depression will be informative for adequate estimation of
592 extinction risk. Finally, our observation that nestling inbreeding association with tarsus is
593 conditioned by the temperature and year partly corroborates that unfavourable environmental
594 conditions could exacerbate inbreeding depression. It also implies that survival to reproductive
595 maturity, of which the chick tarsus length is a proxy, could be negatively affected for nestlings
596 growing in excessively warm ambient temperatures.

597 For the aquatic warbler, our study shows that for average phenotypic and environmental
598 covariates, inbreeding effects on the studied fitness traits are weakly supported. However, we were
599 able to estimate inbreeding depression on fitness traits only in adults. Weakly negative inbreeding
600 effects on short-term fitness components can accumulate to high inbreeding load over the complete

601 life history continuum (Szulkin *et al.* 2007, Grueber *et al.* 2010, Harrisson *et al.* 2019, Niskanen *et al.*
602 2020). Future studies on the inbreeding depression in the aquatic warbler should include the missing
603 fitness components, e.g. survival from viable egg to sexual maturity, juvenile survival and adult
604 female survival. Notwithstanding, our results will be informative for a population viability analysis
605 accounting for inbreeding depression (O'Grady *et al.* 2006, Nonaka *et al.* 2019) and for conservation
606 actions such as translocation.

607

608 **Acknowledgements**

609 Grzegorz Kiljan, Pedro Costa, Piotr Guzik, Marta Celej, Julien Foucher, Beata Głębocka, Aneta
610 Gołębiewska, Maciej Kamiński, Agnieszka Kuczyńska, Romuald Mikusek, Łukasz Mucha, Felix
611 Närmann, Edyta Podmokła, Aneta Rybińska, Paulina Siejka, Michał Walesiak and Laura Zani
612 assisted in the field. Gugny Field Station of the Białystok University provided
613 accommodation and workspace during fieldwork. Susan Mbedi, Ismael Reyes and Katarzyna
614 Dudek supported the preparation and sequencing of RAD libraries, and Wiesław Babik
615 provided lab space and equipment. The labwork and bioinformatic analysis were partially
616 funded by the German Federal Ministry of Education and Research (BMBF,
617 Förderkennzeichen 033W034A). The sequencing was performed in cooperation with the
618 Competence Center for Genome Analysis at the Christian-Albrechts-University in Kiel and at
619 the Berlin Center for Genomics in Biodiversity Research. The study was funded by the Polish
620 National Science Centre's grant no. 2016/20/S/NZ8/00434 awarded to Justyna Kubacka.

621

622 **References**

623 **Alatalo, R. V & Lundberg, A.** 1986. Heritability and selection on tarsus length in the pied flycatcher
624 (*Ficedula hypoleuca*). *Evolution* **40**: 574–583.

625 **Amadeu, R.R., Garcia, A.A.F., Munoz, P.R. & Ferrão, L.F. V.** 2023. AGHmatrix: genetic relationship
626 matrices in R. *Bioinformatics* **39**: btad445.

627 **Andrews, K.R., Adams, J.R., Cassirer, E.F., Plowright, R.K., Gardner, C., Dwire, M., Hohenlohe, P.A.**
628 & **Waits, L.P.** 2018. A bioinformatic pipeline for identifying informative SNP panels for
629 parentage assignment from RADseq data. *Mol. Ecol. Resour.* **18**: 1263–1281.

630 **Armbruster, P. & Reed, D.H.** 2005. Inbreeding depression in benign and stressful environments.

631 *Heredity* **95**: 235–242.

632 **Balloux, F., Amos, W. & Coulson, T.** 2004. Does heterozygosity estimate inbreeding in real
633 populations? *Mol. Ecol.* **13**: 3021–3031.

634 **Bartoń, K.** 2019. MuMIn: Multi-Model Inference. R package version 1.43.6.

635 **Bates, D., Mächler, M., Bolker, B. & Walker, S.** 2015. Fitting linear mixed-effects models using lme4.
636 *J. Stat. Softw.* **67**: 1–48.

637 **Bayona-Vásquez, N.J., Glenn, T.C., Kieran, T.J., Pierson, T.W., Hoffberg, S.L., Scott, P.A., Bentley, K.E., Finger, J.W., Louha, S., Troendle, N., Diaz-Jaimes, P., Mauricio, R. & Faircloth, B.C.** 2019. Adapterama III: Quadruple-indexed, double/triple-enzyme RADseq libraries (2RAD/3RAD).
639 *PeerJ* **7**: e7724.

640 **Becker, P.J.J., Hegelbach, J., Keller, L.F. & Postma, E.** 2016. Phenotype-associated inbreeding biases
641 estimates of inbreeding depression in a wild bird population. *J. Evol. Biol.* **29**: 35–46.

642 **Bellebaum, J.** 2018. Population dynamics. In: *The Aquatic Warbler conservation handbook* (F. Tanneberger & J. Kubacka, eds), pp. 68–71. Brandenburg State Office for Environment (LfU), Potsdam, Germany.

643 **Bolger, A.M., Lohse, M. & Usadel, B.** 2014. Trimmomatic: a flexible trimmer for Illumina sequence
644 data. *Bioinformatics* **30**: 2114–2120.

645 **Briedis, M. & Keišs, O.** 2016. Extracting historical population trends using archival ringing data - an
646 example: the globally threatened Aquatic Warbler. *J. Ornithol.* **157**: 419–425.

647 **Brook, B.W., Tonkyn, D.W., O’Grady, J.J. & Frankham, R.** 2002. Contribution of inbreeding to
648 extinction risk in threatened species. *Ecol. Soc.* **6**: 16.

649 **Brown, C.R. & Brown, M.B.** 2003. Testis size increases with colony size in cliff swallows. *Behav. Ecol.*
650 **14**: 569–575.

651 **Burnham, K.P. & Anderson, D.R.** 2002. *Model selection and multimodel inference: A practical
652 information-theoretic approach*, 2nd ed. Springer-Verlag, New York, USA.

653 **Catchen, J., Hohenlohe, P.A., Bassham, S., Amores, A. & Cresko, W.A.** 2013. Stacks: An analysis tool
654 set for population genomics. *Mol. Ecol.* **22**: 3124–3140.

655 **Catchen, J.M., Amores, A., Hohenlohe, P., Cresko, W. & Postlethwait, J.H.** 2011. Stacks: Building
656 and genotyping loci de novo from short-read sequences. *G3 Genes/Genomes/Genetics* **1**: 171–

660 182.

661 **Cleasby, I.R., Burke, T., Schroeder, J. & Nakagawa, S.** 2011. Food supplements increase adult tarsus
662 length, but not growth rate, in an island population of house sparrows (*Passer domesticus*).
663 *BMC Res. Notes* **4**: 431.

664 **Crnokrak, P. & Roff, D.A.** 1999. Inbreeding depression in the wild. *Heredity* **83**: 260–270.

665 **Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E.,
666 Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R. & Group, 1000 Genomes Project
667 Analysis.** 2011. The variant call format and VCFtools. *Bioinformatics* **27**: 2156–2158.

668 **Danecek, P., Bonfield, J.K., Liddle, J., Marshall, J., Ohan, V., Pollard, M.O., Whitwham, A., Keane,
669 McCarthy, S.A., Davies, R.M. & Li, H.** 2021. Twelve years of SAMtools and BCFtools.
670 *Gigascience* **10**: giab008.

671 **David, P., Pujol, B., Viard, F., Castella, V. & Goudet, J.** 2007. Reliable selfing rate estimates from
672 imperfect population genetic data. *Mol. Ecol.* **16**: 2474–2487.

673 **De Kogel, C.H.** 1997. Long-Term Effects of Brood Size Manipulation on Morphological Development
674 and Sex-Specific Mortality of Offspring. *J. Anim. Ecol.* **66**: 167–178.

675 **De Meeûs, T.** 2018. Revisiting FIS, FST, Wahlund Effects, and Null Alleles. *J. Hered.* **109**: 446–456.

676 **Dodt, M., Roehr, J.T., Ahmed, R. & Dieterich, C.** 2012. FLEXBAR-Flexible Barcode and Adapter
677 Processing for Next-Generation Sequencing Platforms. *Biology (Basel)*. **1**: 895–905.

678 **Driller, M., Arantes, L.S., Vilaça, S.T., Carrasco-Valenzuela, T., Heeger, F., Mbedi, S., Chevallier, D.,
679 De Thoisy, B. & Mazzoni, C.J.** 2021. Achieving high-quality ddRAD-like reference catalogs for
680 non-model species: the power of overlapping paired-end reads. *bioRxiv* 2020.04.03.024331.

681 **Dyrcz, A., Wink, M., Backhaus, A., Zdunek, W., Leisler, B. & Schulze-Hagen, K.** 2002. Correlates of
682 multiple paternity in the Aquatic Warbler (*Acrocephalus paludicola*). *J. Ornithol.* **143**: 430–439.

683 **Dyrcz, A., Wink, M., Kruszewicz, A. & Leisler, B.** 2005. Male reproductive success is correlated with
684 blood parasite levels and body condition in the promiscuous Aquatic Warbler (*Acrocephalus
685 paludicola*). *Auk* **122**: 558–565.

686 **Dyrcz, A. & Zdunek, W.** 1993. Breeding ecology of the Aquatic Warbler *Acrocephalus paludicola* on
687 the Biebrza marshes, northeast Poland. *Ibis* **135**: 181–189.

688 **Evans, S.R. & Sheldon, B.C.** 2008. Interspecific patterns of genetic diversity in birds: correlations with

689 extinction risk. *Conserv. Biol.* **22**: 1016–1025.

690 **Faux, P., Oliveira, J.C.P., Campos, D.P., Dantas, G.P.M., Maia, T.A., Dergan, C.G., Cassemiro, P.M.,**
691 **Hajdu, G.L., Santos-Júnior, J.E. & Santos, F.R.** 2020. Fast genomic analysis of aquatic bird
692 populations from short single-end reads considering sex-related pitfalls. *Ecol. Inform.* **56**:
693 101058.

694 **Flade, M., Malashevich, U., Krogulec, J., Poluda, A., Preiksa, Z., Végvári, Z. & Lachmann, L.** 2018.
695 World distribution, population, and trends. In: *The Aquatic Warbler conservation handbook* (F.
696 Tanneberger & J. Kubacka, eds), pp. 22–35. Brandenburg State Office for Environment (LfU),
697 Potsdam, Germany.

698 **Flanagan, S.P. & Jones, A.G.** 2019. The future of parentage analysis: From microsatellites to SNPs
699 and beyond. *Mol. Ecol.* **28**: 544–567.

700 **Forstmeier, W., Ihle, M., Opatová, P., Martin, K., Krief, U., Albrechtová, J., Albrecht, T. &**
701 **Kempenaers, B.** 2017. Testing the phenotype-linked fertility hypothesis in the presence and
702 absence of inbreeding. *J. Evol. Biol.* **30**: 968–976.

703 **Fox, C.W. & Reed, D.** 2010. Inbreeding depression increases with maternal age in a seed-feeding
704 beetle. *Evol. Ecol. Res.* **12**: 961–972.

705 **Gage, M.J.G., Surridge, A.K., Tomkins, J.L., Green, E., Wiskin, L., Bell, D.J. & Hewitt, G.M.** 2006.
706 Reduced heterozygosity depresses sperm quality in wild rabbits, *Oryctolagus cuniculus*. *Curr.*
707 *Biol.* **16**: 612–617.

708 **Garamszegi, L.Z., Török, J., Tóth, L. & Michl, G.** 2004. Effect of timing and female quality on clutch
709 size in the Collared Flycatcher *Ficedula albicollis*. *Bird Study* **51**: 270–277.

710 **Gebhardt-Henrich, S. & Richner, H.** 1998. Causes of Growth Variation and Its Consequences for
711 Fitness.

712 **Glenn, T.C., Nilsen, R.A., Kieran, T.J., Sanders, J.G., Bayona-Vásquez, N.J., Finger, J.W., Pierson,**
713 **T.W., Bentley, K.E., Hoffberg, S.L., Louha, S., Garcia-De Leon, F.J., Del Rio Portilla, M.A., Reed,**
714 **K.D., Anderson, J.L., Meece, J.K., Aggrey, S.E., Rekaya, R., Alabady, M., Belanger, M., Winker,**
715 **K. & Faircloth, B.C.** 2019. Adapterama I: universal stubs and primers for 384 unique dual-
716 indexed or 147,456 combinatorially-indexed Illumina libraries (iTru & iNext). *PeerJ* **7**: e7755.

717 **Gruber, B., Unmack, P.J., Berry, O.F. & Georges, A.** 2018. dartR: An R package to facilitate analysis of
718 SNP data generated from reduced representation genome sequencing. *Mol. Ecol. Resour.* **18**:
719 691–699.

720 **Grueber, C.E., Laws, R.J., Nakagawa, S. & Jamieson, I.G.** 2010. Inbreeding depression accumulation
721 across life-history stages of the endangered takahe. *Conserv. Biol.* **24**: 1617–1625.

722 **Grueber, C.E., Nakagawa, S., Laws, R.J. & Jamieson, I.G.** 2011. Multimodel inference in ecology and
723 evolution: challenges and solutions. *J. Evol. Biol.* **24**: 699–711.

724 **Hadfield, J.D.** 2010. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The
725 {MCMCglmm} {R} Package. *J. Stat. Softw.* **33**: 1–22.

726 **Harrell, F.E.** 2015. Multivariable Modeling Strategies BT - Regression Modeling Strategies: With
727 Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. In: (J.
728 Harrell Frank E., ed), pp. 63–102. Springer International Publishing, Cham.

729 **Harrisson, K.A., Magrath, M.J.L., Yen, J.D.L., Pavlova, A., Murray, N., Quin, B., Menkhorst, P.,**
730 **Miller, K.A., Cartwright, K. & Sunnucks, P.** 2019. Lifetime Fitness Costs of Inbreeding and Being
731 Inbred in a Critically Endangered Bird. *Curr. Biol.* **29**: 2711-2717.e4.

732 **Hartig, F.** 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression
733 Models.

734 **Hayward, A. & Gillooly, J.F.** 2011. The Cost of Sex: Quantifying Energetic Investment in Gamete
735 Production by Males and Females. *PLoS One* **6**: e16557.

736 **Hemmings, N., West, M. & Birkhead, T.R.** 2012a. Causes of hatching failure in endangered birds.
737 *Biol. Lett.* **8**: 964–967.

738 **Hemmings, N.L., Slate, J. & Birkhead, T.R.** 2012b. Inbreeding causes early death in a passerine bird.
739 *Nat. Commun.* **3**: 863.

740 **Hinkson, K.M. & Poo, S.** 2020. Inbreeding depression in sperm quality in a critically endangered
741 amphibian. *Zoo Biol.* **39**: 197–204.

742 **Hoffberg, S.L., Kieran, T.J., Catchen, J.M., Devault, A., Faircloth, B.C., Mauricio, R. & Glenn, T.C.**
743 2016. RADcap: sequence capture of dual-digest RADseq libraries with identifiable duplicates
744 and reduced missing data. *Mol. Ecol. Resour.* **16**: 1264–1278.

745 **Huisman, J.** 2017. Pedigree reconstruction from SNP data: parentage assignment, sibship clustering
746 and beyond. *Mol. Ecol. Resour.* **17**: 1009–1024.

747 **Huisman, J., Kruuk, L.E.B., Ellis, P.A., Clutton-Brock, T. & Pemberton, J.M.** 2016. Inbreeding
748 depression across the lifespan in a wild mammal population. *Proc. Natl. Acad. Sci.* **113**: 3585–
749 3590.

750 **Jamieson, I.G., Roy, M.S. & Lettink, M.** 2003. Sex-Specific Consequences of Recent Inbreeding in an
751 Ancestrally Inbred Population of New Zealand Takahe. *Conserv. Biol.* **17**: 708–716.

752 **Jones, O.R. & Wang, J.** 2010. COLONY: a program for parentage and sibship inference from
753 multilocus genotype data. *Mol. Ecol. Resour.* **10**: 551–555.

754 **Kalinowski, S.T., Taper, M.L. & Marshall, T.C.** 2007. Revising how the computer program Cervus
755 accommodates genotyping error increases success in paternity assignment. *Mol. Ecol.* **16**:
756 1099–1106.

757 **Kardos, M., Luikart, G. & Allendorf, F.W.** 2015. Measuring individual inbreeding in the age of
758 genomics: marker-based measures are better than pedigrees. *Heredity* **115**: 63–72.

759 **Keller, L.F.** 1998. Inbreeding and Its Fitness Effects in an Insular Population of Song Sparrows
760 (*Melospiza melodia*). *Evolution* **52**: 240–250.

761 **Keller, L.F., Grant, P.R., Grant, B.R. & Petren, K.** 2002. Environmental conditions affect the
762 magnitude of inbreeding depression in survival of Darwin's finches. *Evolution* **56**: 1229–1239.

763 **Keller, L.F. & Waller, D.M.** 2002. Inbreeding effects in wild populations. *Trends Ecol. Evol.* **17**: 230–
764 241.

765 **Kennedy, E.S., Grueber, C.E., Duncan, R.P. & Jamieson, I.G.** 2014. SEVERE INBREEDING DEPRESSION
766 AND NO EVIDENCE OF PURGING IN AN EXTREMELY INBRED WILD SPECIES—THE CHATHAM
767 ISLAND BLACK ROBIN. *Evolution* **68**: 987–995.

768 **Kruuk, L.E.B., Sheldon, B.C. & Merilä, J.** 2002. Severe inbreeding depression in collared flycatchers
769 (*Ficedula albicollis*). *Proceedings. Biol. Sci.* **269**: 1581–1589.

770 **Kubacka, J., Dubiec, A., Korb, J., Salewski, V., Dyracz, A., Foucher, J., Giessing, B., Leisler, B., Schulze-
771 Hagen, K., Wink, M. & Panagiotopoulou, H.** 2024. Low genetic diversity and high gene flow in
772 the Aquatic Warbler (*Acrocephalus paludicola*), a threatened marshland songbird with a
773 fragmented breeding range. *Ibis* **166**: 232–251.

774 **Kubacka, J., Dubiec, A., Souza Arantes, L., Herdegen-Radwan, M., Mazzoni, C.J., Sparmann, S. &
775 Osiejuk, T.S.** 2025. Agonistic song rate positively correlates with male breeding success and
776 avian malaria infection in *Acrocephalus paludicola* (Aquatic Warbler), a promiscuous songbird
777 with female-only parental care. *Ornithology* **142**: ukae045.

778 **Kubacka, J., Oppel, S., Dyracz, A., Lachmann, L., Barros Da Costa, J.P.D., Kail, U. & Zdunek, W.** 2014.
779 Effect of mowing on productivity in the endangered Aquatic Warbler *Acrocephalus paludicola*.

780 *Bird Conserv. Int.* **24**: 45–58.

781 **Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L.** 2009. Ultrafast and memory-efficient alignment
782 of short DNA sequences to the human genome. *Genome Biol.* **10**: R25.

783 **Le Nevé, A., Blaize, C., Dehorter, O., Dugué, H., Hemery, D., Jiguet, F., Musseau, R., Neto, J.M.,**
784 **Rguibi Idrissi, H., Zumalacárregui Martínez, C. & Roothaert, N.** 2018. Migration. In: *The*
785 *Aquatic Warbler conservation handbook* (F. Tanneberger & J. Kubacka, eds), pp. 72–89.
786 Brandenburg State Office for Environment (LfU), Potsdam, Germany.

787 **Leisler, B. & Schulze-Hagen, K.** 2011. Reed warblers reproduced. In: *The Reed Warblers. Diversity in*
788 *a uniform family*, pp. 138–159. KNNV Publishing, Zeist, the Netherlands.

789 **Martin, M.** 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
790 *EMBnet.journal; Vol 17, No 1 Next Gener. Seq. Data Anal.*, doi: 10.14806/ej.17.1.200.

791 **Matthews, T.J., Cottee-Jones, H.E. & Whittaker, R.J.** 2014. Habitat fragmentation and the species–
792 area relationship: a focus on total species richness obscures the impact of habitat loss on
793 habitat specialists. *Divers. Distrib.* **20**: 1136–1146.

794 **Mazerolle, M.J.** 2023. AICmodavg: Model selection and multimodel inference based on (Q)AIC(c).

795 **Morton, N.E. & Crow, J.F.** 1956. An Estimate of the Mutational Damage in Man from Data on
796 Consanguineous Marriages. *Proc. Natl. Acad. Sci. U. S. A.* **42**: 855–863.

797 **Nietlisbach, P., Keller, L.F. & Postma, E.** 2016. Genetic variance components and heritability of
798 multiallelic heterozygosity under inbreeding. *Heredity* **116**: 1–11.

799 **Nietlisbach, P., Muff, S., Reid, J.M., Whitlock, M.C. & Keller, L.F.** 2019. Nonequivalent lethal
800 equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load. *Evol.*
801 *Appl.* **12**: 266–279.

802 **Niskanen, A.K., Billing, A.M., Holand, H., Hagen, I.J., Araya-Ajoy, Y.G., Husby, A., Rønning, B.,**
803 **Myhre, A.M., Ranke, P.S., Kvalnes, T., Pärn, H., Ringsby, T.H., Lien, S., Sæther, B.-E., Muff, S. &**
804 **Jensen, H.** 2020. Consistent scaling of inbreeding depression in space and time in a house
805 sparrow metapopulation. *Proc. Natl. Acad. Sci.* **117**: 14584–14592.

806 **Nonaka, E., Sirén, J., Somervuo, P., Ruokolainen, L., Ovaskainen, O. & Hanski, I.** 2019. Scaling up
807 the effects of inbreeding depression from individuals to metapopulations. *J. Anim. Ecol.* **88**:
808 1202–1214.

809 **Noordwijk, A.J. Van & Scharloo, W.** 1981. Inbreeding in an Island Population of the Great Tit.

810 *Evolution* **35**: 674–688.

811 **Nowak, C., Jost, D., Vogt, C., Oetken, M., Schwenk, K. & Oehlmann, J.** 2007. Consequences of
812 inbreeding and reduced genetic variation on tolerance to cadmium stress in the midge
813 *Chironomus riparius*. *Aquat. Toxicol.* **85**: 278–284.

814 **O'Grady, J.J., Brook, B.W., Reed, D.H., Ballou, J.D., Tonkyn, D.W. & Frankham, R.** 2006. Realistic
815 levels of inbreeding depression strongly affect extinction risk in wild populations. *Biol. Conserv.*
816 **133**: 42–51.

817 **Parker, G.A. & Pizzari, T.** 2010. Sperm competition and ejaculate economics. *Biol. Rev.* **85**: 897–934.

818 **Pflüger, F.J., Signer, J. & Balkenhol, N.** 2019. Habitat loss causes non-linear genetic erosion in
819 specialist species. *Glob. Ecol. Conserv.* **17**: e00507.

820 **QGIS Development Team.** 2020. QGIS Geographic Information System. Open Source Geospatial
821 Foundation Project.

822 **R Core Team.** 2024. R: A Language and Environment for Statistical Computing.

823 **Ralls, K., Ballou, J.D. & Templeton, A.** 1988. Estimates of Lethal Equivalents and the Cost of
824 Inbreeding in Mammals. *Conserv. Biol.* **2**: 185–193.

825 **Rising, J.D. & Somers, K.M.** 1989. The Measurement of Overall Body Size in Birds. *Auk* **106**: 666–674.

826 **Rochette, N.C. & Catchen, J.M.** 2017. Deriving genotypes from RAD-seq short-read data using
827 Stacks. *Nat. Protoc.* **12**: 2640–2659.

828 **Scholer, M.N., Strimas-Mackey, M. & Jankowski, J.E.** 2020. A meta-analysis of global avian survival
829 across species and latitude. *Ecol. Lett.* **23**: 1537–1549.

830 **Schulze-Hagen, K., Flinks, H. & Dyracz, A.** 1989. Brutzeitliche Beutewahl beim Seggenrohrsänger
831 *Acrocephalus paludicola*. *J. Ornithol.* **130**: 251–255.

832 **Searcy, W.A., Peters, S. & Nowicki, S.** 2004. Effects of early nutrition on growth rate and adult size in
833 song sparrows *Melospiza melodia*. *J. Avian Biol.* **35**: 269–279.

834 **Sedinger, J.S., Flint, P.L. & Lindberg, M.S.** 1995. Environmental Influence on Life-History Traits:
835 Growth, Survival, and Fecundity in Black Brant (*Branta bernicla*). *Ecology* **76**: 2404–2414.

836 **Senar, J.C. & Pascual, J.** 1997. Keel and tarsus length may provide a good predictor of avian body
837 size. *Ardea* **85**.

838 **Sin, S.Y.W., Hoover, B.A., Nevitt, G.A. & Edwards, S. V.** 2021. Demographic History, Not Mating

839 System, Explains Signatures of Inbreeding and Inbreeding Depression in a Large Outbred
840 Population. *Am. Nat.* **197**: 658–676.

841 **Stoffel, M.A., Esser, M., Kardos, M., Humble, E., Nichols, H., David, P. & Hoffman, J.I.** 2016.
842 inbreedR: an R package for the analysis of inbreeding based on genetic markers. *Methods Ecol.*
843 *Evol.* **7**: 1331–1339.

844 **Symonds, M.R.E. & Moussalli, A.** 2011. A brief guide to model selection, multimodel inference and
845 model averaging in behavioural ecology using Akaike's information criterion. *Behav. Ecol.*
846 *Sociobiol.* **65**: 13–21.

847 **Szulkin, M., Bierne, N. & David, P.** 2010. Heterozygosity-fitness correlations: a time for reappraisal.
848 *Evolution* **64**: 1202–1217.

849 **Szulkin, M., Garant, D., McCleery, R.H. & Sheldon, B.C.** 2007. Inbreeding depression along a life-
850 history continuum in the great tit. *J. Evol. Biol.* **20**: 1531–1543.

851 **Szulkin, M. & Sheldon, B.C.** 2007. The Environmental Dependence of Inbreeding Depression in a
852 Wild Bird Population. *PLoS One* **2**: e1027.

853 **Tanneberger, F., Alexander, K., Poluda, A., Bellebaum, J., Lachmann, L. & Flade, M.** 2018a. Threats
854 and limiting factors. In: *The Aquatic Warbler conservation handbook* (F. Tanneberger & J.
855 Kubacka, eds), pp. 106–121. Brandenburg State Office for Environment (LfU), Potsdam,
856 Germany.

857 **Tanneberger, F., Kłoskowski, J., Knöfler, V., Kozulin, A., Marczakiewicz, Piotr Morkvénas, Ž.,
858 Poluda, A., Végvári, Z., Vergeichik, L. & Flade, M.** 2018b. Breeding habitat requirements. In:
859 *The Aquatic Warbler conservation handbook* (F. Tanneberger & J. Kubacka, eds), pp. 34–45.
860 Brandenburg State Office for Environment (LfU), Potsdam, Germany.

861 **Thrasher, D.J., Butcher, B.G., Campagna, L., Webster, M.S. & Lovette, I.J.** 2018. Double-digest RAD
862 sequencing outperforms microsatellite loci at assigning paternity and estimating relatedness: A
863 proof of concept in a highly promiscuous bird. *Mol. Ecol. Resour.* **18**: 953– 965.

864 **Venables, W.N. & Ripley, B.D.** 2002. *Modern Applied Statistics with S*, Fourth. Springer, New York.

865 **Vitorino, L.C., Borges Souza, U.J., Jardim, T.P.F.A. & Ballesteros-mejia, L.** 2019. Towards inclusion
866 of genetic diversity measures into IUCN assessments: a case study on birds. *Anim. Biodivers.*
867 *Conserv.* **42.2**: 317–335.

868 **Wang, J.** 2014. Marker-based estimates of relatedness and inbreeding coefficients: an assessment of

869 current methods. *J. Evol. Biol.* **27**: 518–530.

870 **Waples, R.S.** 2015. Testing for Hardy–Weinberg Proportions: Have We Lost the Plot? *J. Hered.* **106**:
871 1–19.

872 **Westemeier, R.L., Brawn, J.D., Simpson, S.A., Esker, T.L., Jansen, R.W., Walk, J.W., Kershner, E.L.,**
873 **Bouzat, J.L. & Paige, K.N.** 1998. Tracking the long-term decline and recovery of an isolated
874 population. *Science* **282**: 1695–1698.

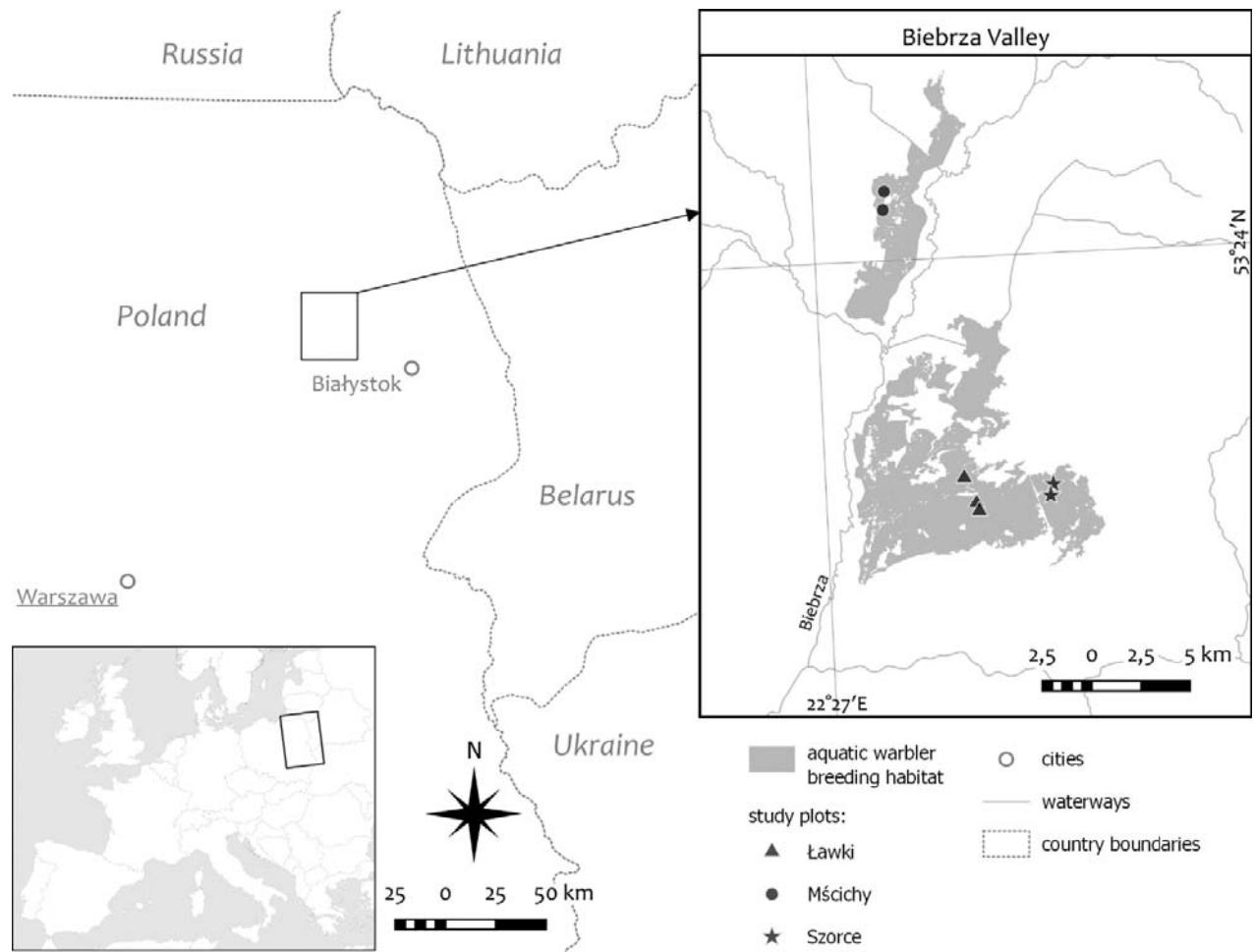
875 **Wickham, H.** 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York.

876 **Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A.** 2014. PEAR: a fast and accurate Illumina Paired-End
877 reAd mergeR. *Bioinformatics* **30**: 614–620.

878 **Zuur, A.F., Hilbe, J.M. & Ieno, E.N.** 2013. *A Beginner’s Guide to GLM and GLMM with R*. Highland
879 Statistics Ltd., Newburgh, United Kingdom.

880 **Zuur, A.F. & Ieno, E.N.** 2021. *The World of Zero-Inflated Models. Volume 1: Using GLM*. Highland
881 Statistics Ltd., Newburgh, United Kingdom.

882 **Zuur, A.F., Ieno, E.N., Walker, N., Saveliev, A.A. & Smith, G.M.** 2009. *Mixed Effects Models and*
883 *Extensions in Ecology with R*, 1st ed. Springer New York, New York, USA.

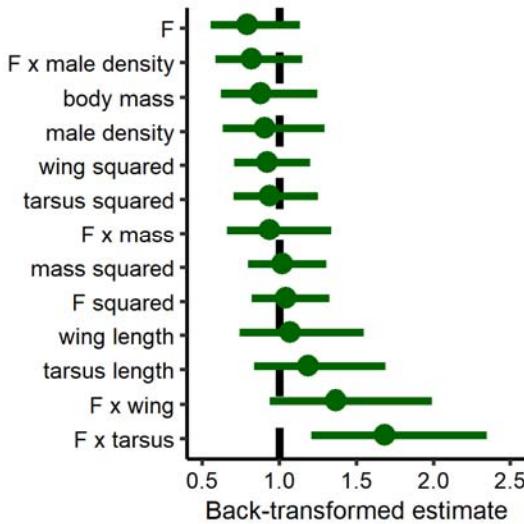

884

885

886 **Figures and tables**

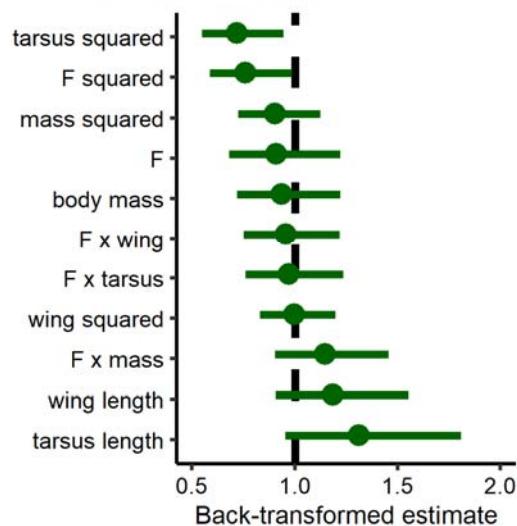
887

888



889

890 **Fig. 1** Map of the study area.


891

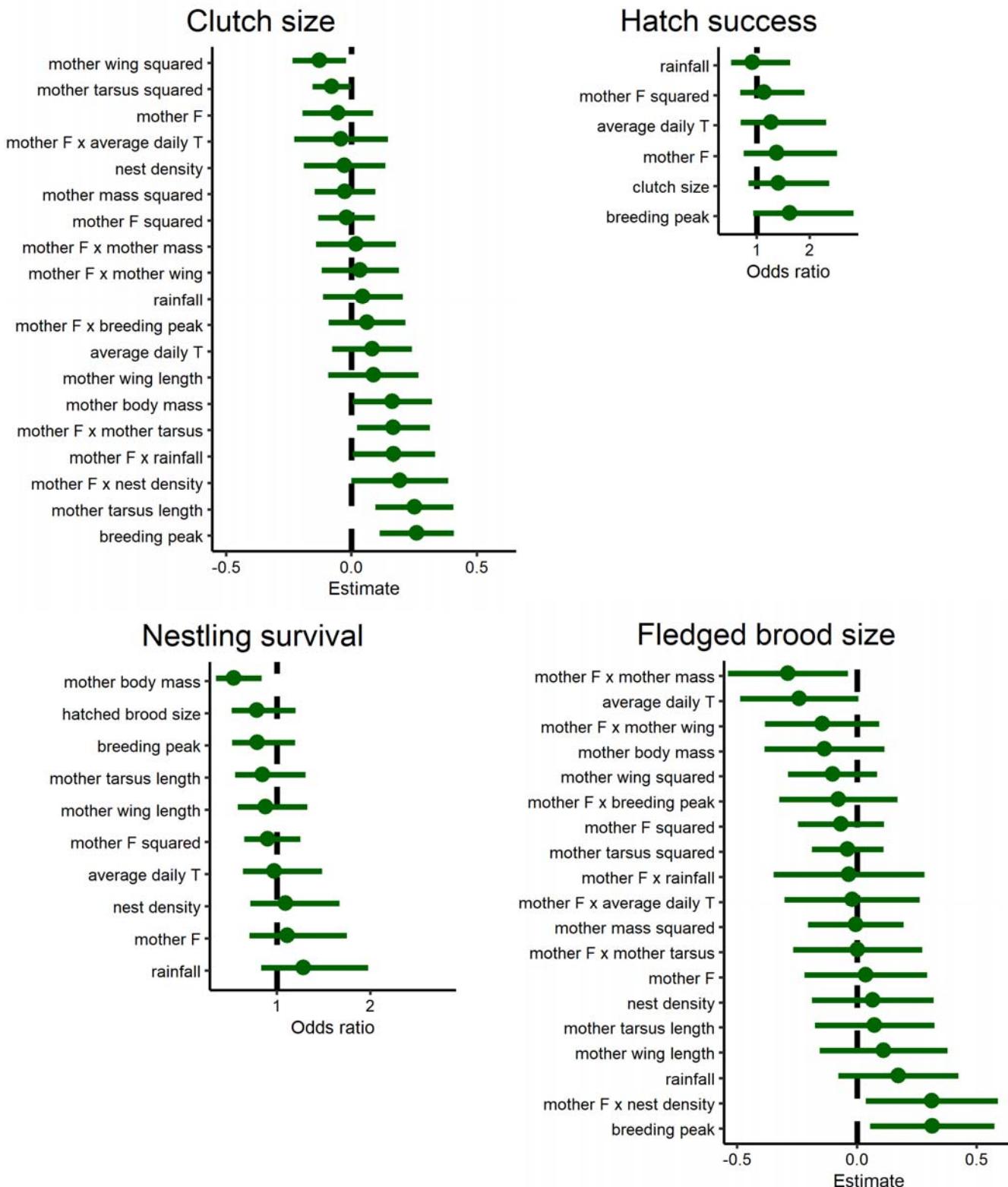
Male breeding success

892

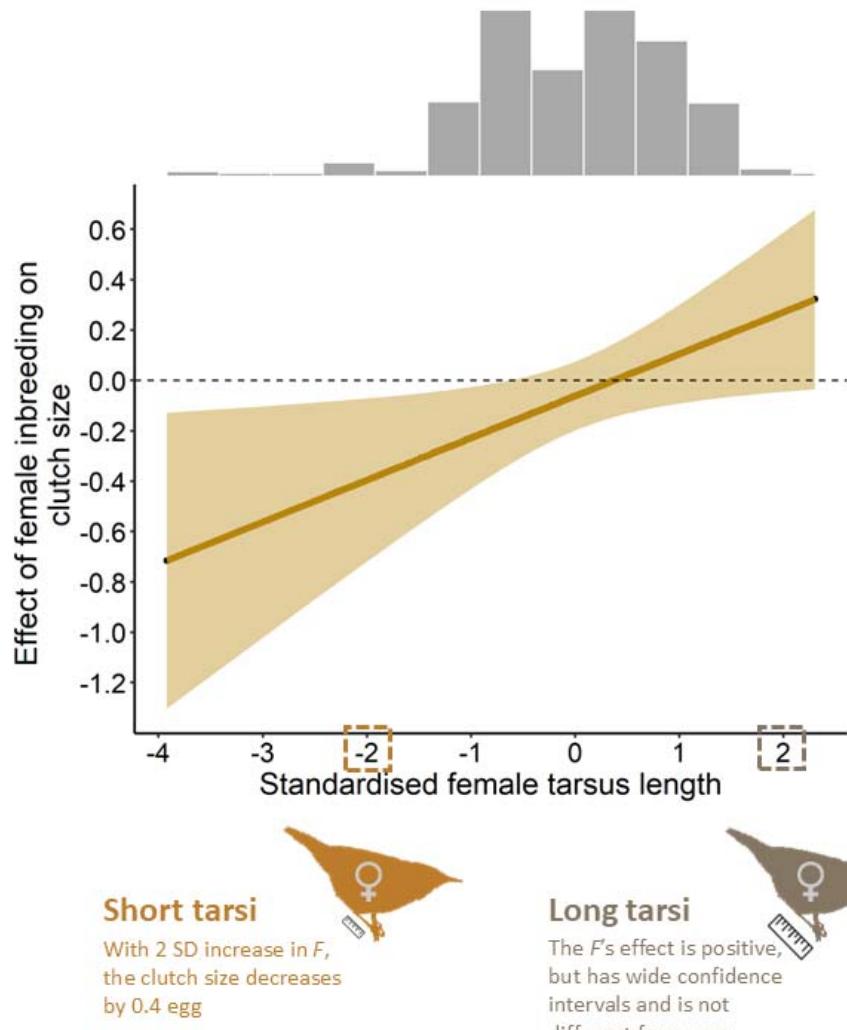
Male return rate

893

894 **Fig. 2** The estimates (denoted by circles) of effects of the male inbreeding coefficient F , phenotypic
895 variables and their interaction with F on male fitness components: 4-year return rate to breeding
896 grounds (left) and seasonal breeding success (right). The whiskers represent 95% confidence
897 intervals and the vertical dashed line refers to no effect. See Table S3 for the summary of the
898 estimates.


899

900


901 **Fig. 3** The effect of interaction between the male tarsus length and inbreeding coefficient F on the
902 seasonal breeding success. The graph shows how the back-transformed statistical effect of F changes
903 against standardised tarsus lengths, and the bands show the 95% confidence interval of the effect.
904 The aquatic warbler pictograms at $-1SD$ and $+1SD$ present examples of how to interpret the graph.
905 The horizontal dashed line corresponds to no effect. The histogram shows frequency of tarsus
906 lengths.

907

908 **Fig. 4** The estimates (denoted by circles) of effects of the mother inbreeding coefficient F ,
909 phenotypic variables and environmental variables and their interaction with F on female fitness
910 components. The whiskers represent 95% confidence intervals and the vertical dashed line refers to
911 no effect. See Table S5 for the summary of the estimates.

913 **Fig. 5.** The effect of interaction between the mother tarsus length and inbreeding coefficient F on
914 the clutch size. The graph illustrates how the statistical effect of the mother F changes along the
915 value of the tarsus. The aquatic warbler pictograms at -2 SD and $+2$ SD present examples of how to
916 interpret the graph. The bands show the 95% confidence interval of the effect, the horizontal dashed
917 line corresponds to no effect, and the histogram shows the frequency of tarsus lengths.

918

919

920 **Table 1.** Inbreeding load (B) and change in the fitness components due to inbreeding (δ).

Fitness component	Inbreeding determined in:		Standardised B	Native scale B	Change in trait $-\delta$
Male long-term survival	adult male		0.11 ¹	2.45 ¹	-48.3% ¹
Male seasonal breeding success	adult male		0.21 ¹	4.87 ¹	-69.3% ¹
Average small males	adult male		0.40 ¹	9.27 ¹	-89.4% ¹
Average large males	adult male		0.01 ¹	0.21 ¹	-5.0% ¹
Clutch size	adult female		0.06	1.26	-5.0%
Average small females	adult female		0.12	2.83	-11.5%
Average large females	adult female		-0.01	-0.28	+1.1%
Hatch failure	adult female		-0.01 ²	-0.17 ²	+3.5% ²
Nestling mortality	adult female		0.01 ²	0.15 ²	-2.9% ²
Fledged brood size in successful nests	adult female		-0.03	-0.66	+3.4%

921 The B is expressed in lethal haploid equivalents and was calculated from weighted-averaged
922 predictions (Keller & Waller 2002, Box 3, Eqn II) of respective candidate model sets (Tables S2, S4 &
923 S6) on the link scale, which were then weighted-averaged between the study areas, years and
924 breeding peaks (if applicable). The native scale B was calculated by back-standardisation. The δ is
925 reported as the change in fitness of the most inbred relative to the least inbred individuals in the
926 dataset, and was calculated as above, with the final predictions back-transformed to the response
927 scale. For clarity, $-\delta$ is given, i.e. the minus in front of the δ means a decrease in the trait value,
928 while the plus indicates an increase.

929

930 ¹ negative binomial distribution with log-link used

931 ² poisson distribution with log-link used

932

933

934

935