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Hidden Markov models (HMMs) for biomolecules suffer from various forms of parameter non-
identifiability. This poses severe challenges to both maximum likelihood and Bayesian inference.
However, Bayesian inference offers effective means of overcoming these pathologies. We study the role
of prior distributions in the face of practical parameter non-identifiability in Bayesian inference applied
to prototypical patch clamp data of ligand-gated ion channels. We advocate the use of minimally
informative priors, as they increase the accuracy and decrease the uncertainty of the inference. For
complex HMMs, stronger prior assumptions are needed to render the posterior sufficiently proper.
This can be achieved by confining the parameter space to physically motivated limits. Another
beneficial assumption is finite cooperativity of ligand-binding and unbinding events, which introduces
a bias towards non-cooperativity but still allows for a non-vanishing degree of cooperativity that is
inferred from the data. Despite its vagueness, our prior renders the posterior sufficiently proper for
all datasets that we considered without imposing the assumption of non-cooperativity. Combining
all prior factors allows for meaningful inferences with a dataset of a thousand times lower quality.

I. INTRODUCTION

Time series data of various processes can be explained
by continuous-time Markov Models (MM) [1]. In a bio-
physical context, the data could probe, e.g., the function
of different proteins [2–9] or RNA folding kinetics [10, 11].
Assuming a well-mixed environment, these systems can be
modeled by discrete states that interconvert via stochastic
transitions, thereby defining a chemical reaction network
(CRN). For example, states of a ligand-gated ion channel
can be classified by conductance, dwell time, or the num-
ber of bound ligands [11–14].
Biophysical experiments typically only observe partial
and noisy data such that states with similar signal proper-
ties, e.g., conductance, are aggregated into signal classes.
Therefore, hidden Markov models (HMMs) must be used
to describe the data [15, 16]. A common use case is the
analysis of single-molecule ion channel data [17–23] but
HMMs are also applied to other experiments [7–11, 24–
29].
Often, the mean signal observed in single-molecule and
ensemble data is a linear projection of the full Marko-
vian dynamics onto a lower dimensional observable. This
can cause the data to be insensitive to the rates of spe-
cific subprocesses within the CRN, which complicates
their biophysical interpretation. We argue that the di-
mensionality reduction and aggregation of states, in gen-
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eral, induces a varying degree of practical parameter non-
identifiability even for simple CRNs. Experimental noise
and limited signal bandwidth only increase the severity
of non-identifiability issues. Even worse, the HMM might
become structurally non-identifiable [30–34].
Structural non-identifiability refers to models whose pa-
rameters cannot be inferred uniquely, even with an infinite
amount of data [34]. For example, it might only be pos-
sible to infer algebraic combinations of parameters but
not the parameters themselves. Instead practical non-
identifiability is encountered when there is still a unique
optimal parameter set, but it is impossible to collect
enough data to reach a sufficiently low parameter uncer-
tainty [33, 35, 36].
Whether a model is structurally or practically non-
identifiable depends on the likelihood function, which
can be derived from the chemical master equation (CME)
in the case of MMs [37]. Here, we study a Bayesian filter
[38] based on the Fokker-Planck approximation (FPa) of
the CME [39], which preserves the crucial Markov prop-
erty in a macroscopic signal [38]. The Bayesian filter
extends the ideas of Moffat [40] to define a more general
and realistic likelihood for ensemble patch clamp (PC)
data. A complete HMM inference consists of both pa-
rameter estimation and model selection. In some cases,
model selection for HMMs can be automated by infer-
ring an infinite HMM [41–43]. However, to the best of
our knowledge, the infinite HMM [41–43] only applies to
single-molecule data analyzed by discrete-time HMMs but
cannot be extended to ensemble data or continuous-time
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HMMs. Therefore, we assume a fixed CRN topology dur-
ing parameter inference. Notably, the hidden variable of
an HMM does not have to be discrete but can also be
continuous [44, 45]. For example, Kalman filters [46, 47]
can be used to approximate discrete HMMs [38, 40, 48–
51] and define a valid HMM [44, 45].
Parameter estimation via maximum likelihood (ML)
[52, 53], profile likelihood [33, 35], maximum a posteri-
ori (MAP), and Bayesian inference [54] suffer in different
ways from practical non-identifiability. Limitations in the
amount and quality of data (relative to the complexity
of the investigated CRN) severely impair or even pro-
hibit ML and MAP inferences [55]. The profile likelihood
technique has better uncertainty quantification than ML
[33, 35], but still assumes an asymptotic amount of data.
A full Bayesian inference [20, 21, 23, 41, 56–59] does
not refer to an asymptotic limit in the amount of data
and thus has a unique way to deal with parameter non-
identifiability. In Bayesian statistics, unknown quantities
are treated similarly to random variables [60, 61] in that
probabilities express their uncertainty. The prior distribu-
tion encodes their uncertainty before analyzing the data.
The result of a Bayesian analysis, the posterior distribu-
tion, represents the uncertainty of the unknowns in the
light of the combined information encoded in the prior
and the likelihood. Nevertheless, structural and practical
non-identifiability also poses a challenge to Bayesian in-
ference because these pathologies can result in improper
posteriors [35, 62].
Our work focuses on the benefits and limitations of min-
imally informative and vaguely informative priors moti-
vated by physical considerations in the presence of prac-
tical non-identifiability. We show that practical non-
identifiability can be severely harmful when using uni-
form priors on the rate matrix of HMMs. In contrast,
we suggest using a minimally informative prior [63–66]
inspired by Jeffreys [63] and Jaynes [67]. Minimally infor-
mative priors are designed to make posteriors as sensitive
to the data as possible. We observe that the minimally
informative prior increases the accuracy and surprisingly
decreases the uncertainty of parameter inferences. No-
tably, the minimally informative prior will significantly
impact the posterior for any plausible amount of data. We
explain the origin of these observations by the presence
of practical non-identifiability.
Further, we demonstrate that the uniform and minimally
informative priors lead to improper posteriors that cannot
be normalized due to the practical non-identifiability (in
an infinite parameter space [35]). Thus, the minimally
informative prior only alleviates the challenges arising
from practical non-identifiability of HMMs by making the
posterior sufficiently proper but does not fully resolve
them. A definition of what a sufficiently proper poste-
rior means will be given below. We show that rendering
the posterior sufficiently proper is the best that can be
achieved in HMM inference when using minimally rather
than vaguely informative priors. Notably, the same holds
for ML inference. Furthermore, the minimally informa-

tive prior drastically improves the convergence [68] of the
Hamiltonian Monte Carlo sampler [69–73]. Our results
show that the limitations of the posterior observed in [35]
are due to the use of a uniform prior.
Moving on to more complex HMMs, we show that elim-
inating the bias from a uniform prior does not solve
non-identifiability issues. More information is needed,
even if the HMM is structurally identifiable [62], for suffi-
ciently proper posteriors. We present two techniques to
achieve this. The first option is to enforce theoretically
derived upper bounds, such as diffusion limits for binding
rates. These restrict the regions in parameter space that
contribute to a diverging normalization integral. This
often renders the posterior sufficiently proper. However,
hard theoretical limits are rarely available and might not
apply to all parameters that suffer from non-identifiability.
As an alternative or as an additional restraint, we sug-
gest coupling each pair of binding rates and unbinding
rates softly. These coupling terms bias the CRN towards
non-cooperativity without enforcing it. Introducing these
vaguely informative priors is more flexible than the com-
mon approach of setting parameters equal, which assumes
strict non-cooperativity. The vaguely informative prior
only defines the scale of plausible positive or negative log-
arithmic ratios, i.e., cooperativity in homomeric proteins.
Hence, our approach infers how likely different degrees of
cooperativity are compared to a non-cooperativity bias,
which functions as Occam’s razor. The most precise and
accurate inferences are obtained if the minimally informa-
tive prior is combined with both additional prior assump-
tions. This combination of prior information allows for
meaningful inferences with a thousand times poorer data
quality for the most complex HMM that we studied. No-
tably, this reduction in the data quality that is necessary
for meaningful HMM inference is crucial for CRNs of this
complexity in the analysis of real-world PC data sets.

II. PARAMETER NON-IDENTIFIABILITY IN
SIMPLE REACTION NETWORKS

Given time series data YT = {y1, . . . , yT } of length
T , and a probabilistic model in the form of a likelihood
p(YT |θ) := Pr(YT | θ), the ML approach [74] infers the
unknown parameters θtrue by maximizing p(YT |θ) over
the parameter space Θ. For models with structurally
identifiable parameters, θML converges in distribution to
θtrue. The quantification of the uncertainty of the ML
estimate θML for models that satisfy certain regularity
conditions is discussed in Sec. II B. Unfortunately, HMMs
do not satisfy these regularity conditions [75]. They are
singular instead of regular statistical models. We indicate
the possible consequences of singular models by the rate
equation (RE) solutions of two toy kinetic models.
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B Practical parameter non-identifiabilty 3

A. Structural parameter non-identifiability

In general, structurally non-identifiable models are char-
acterized by submanifolds in Θ in which the likelihood
is constant, even with infinitely many data [30, 62]. For
the sake of argument, we only look at the RE solution
from which an approximate likelihood can be derived.
An example of a structurally non-identifiable model is a
linear birth-death process characterized only by the mean
number of bacteria E[nbakt(t)] in a well-stirred petri dish:

E[nbakt(t)] = n0 exp(ξt) = n0 exp((kbirth−kdeath) t) . (1)

Parameter pairs θ = (kbirth, kdeath)
⊤ with constant

difference ξ(kbirth, kdeath) = kbirth − kdeath result in
the same E[nbakt(t)]. This model is structurally non-
identifiable, because one cannot disentangle kbirth and
kdeath based on E[nbakt(t)] alone. A likelihood de-
rived only from E[nbakt(t)] would show the symmetry
p(YT |θ) = p(YT | ξ). This implies that the likelihood
is flat, p(YT |θ) = const, along straight lines in Θ with
intercept ξ. Hence, the ML estimator cannot converge to
a normal distribution centered at θtrue. However, there
is independent information in the higher-order statistical
moments that renders the linear birth-death model struc-
turally identifiable. By incorporating the information
contained in var[nbakt(t)], which can be derived from the
CME [76], one obtains a structurally identifiable model.
Thus, structural non-identifiability can be caused by ig-
noring higher statistical moments of the data-generating
process. Similarily, ignoring the Markov property of equi-
librium fluctuations leads to structural non-identifiability
in HMM inference as shown in [40].

B. Practical parameter non-identifiabilty

Structural identifiability is necessary, but not sufficient
for successful ML inferences. For a finite amount of data,
the HMM must also be practically identifiable, or, as
we prefer to argue, it must be sufficiently practically
identifiable. Let us clarify what we mean by this. The
literature offers different definitions of practical identifia-
bility vs. practical non-identifiability. Here, we follow the
definitions of [33]. Likelihoods suffering from practical
non-identifiability do not decay to zero (Fig. 1, blue curve
for θ > θmax), but stretch out infinitely in regions of Θ (in
one or multiple dimensions) for any finite amount of data
[33]. This happens already in simple, partially observed
CRNs.
Let us assume that we can record the occupation number
nO(t) of state O at any frequency and without any mea-
surement noise such that, for the sake of argument, the ad-
ditional complications arising from noisy data are avoided.
As an example for a practically non-identifiable likelihood
consider a CRN with a rate kBA ·L that depends on ligand
concentration L (or any other stimulus-dependent rate):

A
kBA·L−−−−→ B

kOB−−→ O (2)

for a finite number of channels. Assuming that the initial
condition is n(t0) = (nA, 0, 0) and that the experimental
readout is y(t) ∝ E[nO(t)], the part of the general solution
of the RE that is experimentally accessible is

E[nO(t)] =
kOB

(kBA · L− kOB)
nA exp(−kBA · L · t)

− kBA · L
(kBA · L− kOB)

nA exp(−kOBt) + nA.
(3)

Note that the solution of the CME for the initial condition
n(t = 0) = (nA, 0, 0) is a multinomial distribution. To
understand this, consider the case that only one molecule
is in state A at t = 0. For all t > 0, the molecule has
probability pO(t) to be in O, pB(t) to be in B and pA(t)
to remain in A. If, instead, one has nA independent and
identical molecules in state A at t = 0, then each of them
individually has the same probability pO(t), pB(t) and
pA(t) at t > 0. Hence, the distribution over all states is a
multinomial distribution [77] that evolves over time. If
only state O is observed, one can reduce the problem to

nO(t) ∼ binomial(pO(t), nA) with pO(t) =
E[nO(t)]

nA
.

(4)

If none of the rates could be changed externally by vary-
ing L such that kBA(L) = const, then we would also
face structural non-identifiability. For a ligand-dependent
rate kBA · L, we can run the experiments at different
ligand concentrations L and thereby overcome structural
non-identifiability. However, if we measure at two concen-
trations L1, L2 such that kBA · L1 and kBA · L2 and kOB

are all different, but similar in magnitude, then we can
still face a practical non-identifiability problem.
Practical parameter non-identifiability originates from

the following phenomenon: Any combination of values for
kBA · Lj and kOB that satisfies

kBA · Lj ≫ kOB or kOB ≫ kBA · Lj (5)

will push the amplitude of one of the two exponential
decays (Eq. 3) to zero. Even if experiments were run at
many different ligand concentrations Lj , we could still
find combinations of kBA and kOB that satisfy one of the
conditions in Eq. 5 for all Lj . In regions of Θ where one
of the conditions (Eq. 5) holds for all Lj , minor changes
in kBA or kOB will hardly affect E[nO(t)]. Note that the
correct solution of the CME is a multinomial distribution
given the initial conditions. Adding information about
the entire distribution of nO(t) such as variance or skew-
ness, etc. will not resolve the practical non-identifiability
problem caused by the vanishing amplitude of one of
the exponential decays. However, the multinomial model
would improve the accuracy and quality of the uncertainty
quantification.
This example is reminiscent of the common scenario
for coupled CRNs in which only kj can be inferred if
ki,true ≫ kj,true. However, here we do not consider a
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FIG. 1. The severity of practical parameter non-
identifiability depends on the relative height of the
peak compared to the non-vanishing tails. We sketch a
one dimensional inference problem, e.g., a unknown chemical
rate k. The red dashed line shows the ML inference or Laplace
approximation of the posterior based on a uniform prior. Note
that the ML inference (using the curvature) typically under-
scores the uncertainty (quicker decay of the red dashed line
than the blue solid line), particularly for k > kML. Note that
a prediction of the uncertainty based on the curvature at kML

cannot detect these shortcomings, because any function can
be approximated with a second-order Taylor expansion around
extreme values.

scenario in which the signal of the data-generating pro-
cess is rate-limited. Instead, we assume that at least
three different rates are at play, kBA(L1), kBA(L2), and
kOB that have similar magnitude but non-identical val-
ues. Therefore, rate-limiting contributions do not exist
at least for one combination of kBA(Li) and kOB in the
data-generating process. Nevertheless there are regions
in parameter space Θ, far away from the true parameter
values θtrue, in which one or the other rate is rate-limiting
for the predictions of the model. The structure of the
CRN together with the fact that the signal is generated
by a linear projection have the potential to be rate-limited
somewhere in Θ, independent of the true parameters of
the data-generating process θtrue. Thus, for models such
as nO(t) ∼ binomial(pO(t), nA(0)), the likelihood will
approach a non-vanishing constant due to rate-limiting
effects in regions where ki ≫ kj and hence become prac-
tically non-identifiable. See App. A for a discussion on
the effects if states A, B are observed in isolation or
simultaneously.
Structural identifiability is a binary property (a model
is either structural identifiable or not), whereas practical
identifiability is gradual (continuous) [78]. The likeli-
hood function (Fig. 1 blue curve) which is proportional
to the posterior p(k | YT ) (for a uniform prior) indicates
the continuous nature of practical non-identifiability. The
maximum value of p(YT | k) relative to the constant value

in the tails specifies the degree of parameter identifiability.
However, to classify models into practically identifiable
or practically non-identifiable, one uses the confidence
interval CI based on confidence level ζα:

CI = {θ ∈ Θ | log(p(YT |θML)/p(YT |θ)) < ζα} . (6)

One defines the model as practical identifiabile if the con-
fidence interval CI is a compact set. This holds if the
subjectively defined threshold ζα (Fig. 1) [76] is larger
than the asymptotic value of the likelihood p(YT |θflat)
(Fig. 1, black dashed line). For multi-parametric models,
there will be multiple asymptotic values for the differ-
ent directions in Θ. The interval [kmin, kmax] where the
dashed black lines cross the likelihood profile (blue lines)
(Fig. 1) is the largest asymmetric confidence interval that
can be deduced by using the profile likelihood technique
[33]. The data contain no information to distinguish
values of k larger than kmax. However, the data are in-
formative for values k < kmax and even k < kmin. Often,
the profile of p(YT |θ) might approach a non-vanishing
constant value only asymptotically. Subjectively defining
a threshold relative to the maximum value of the likeli-
hood [33] is equivalent to choosing a significance level [].
Note that ML does not infer the shape of p(YT |θ) glob-
ally (Fig. 1 red dashed curve). ML estimates the shape
based on the curvature of the likelihood at θML using the
Fréchet-Darmois-Cramér-Rao bound theorem. Therefore,
standard ML does not detect practical non-identifiability
(Fig. 1 red dashed curve). The degree to which practical
non-identifiability affects the parameter inference depends
on, as discussed, the intrinsic properties of the MM (i.e.
the number of states and their connectivity) and on the
specifics of the experimental data such as the rank of the
linear projection, the signal-to-noise ratio and the signal
bandwidth.
Due to the challenges indicated by the two toy exam-
ples, HMM inference based on ML has several draw-
backs compared to sampling from the posterior p(θ | YT ).
First, one must take extra precautions against patholo-
gies of p(YT |θ) resulting in structual or practical non-
identifiability, because ML does not reveal them [33].
Second, even if the model is structurally identifiable and
sufficiently practically identifiable, the quality and quan-
tity of the data are often insufficient to meet the implicit
assumption that p(θML) can be approximated by a nor-
mal distribution, which is a requirement to justify the
use of ML. For a comment on strategies to detect param-
eter non-identifiability see App. 1. Fortunately, Bayesian
statistics can deal with these pathologies of the likelihood.
Nevertheless structural and practical non-identifiability
pose a challenge. They create regions in Θ where the
prior dominates entirely the likelihood.
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III. BAYESIAN INFERENCE IN A NUTSHELL

The Bayesian posterior

p(θ | YT ) := Pr(θ | YT ) =
p(YT |θ) p(θ)∫
p(YT |θ) p(θ) dθ

(7)

is a probability distribution on Θ and combines the in-
formation encoded in the prior p(θ) := Pr(θ) and the
likelihood to quantify the uncertainty of θ. The posterior
is called "proper", if it can be normalized, which means
the denominator in (Eq. 7) satisfies∫

p(YT |θ) p(θ) dθ <∞ . (8)

We introduce the terminology sufficiently proper to clarify
the notion of practical parameter non-identifiability. Prac-
tical non-identifiability in combination with minimally
informative priors, which are often improper, may result
in posteriors that are improper in a strict sense. The blue
curve in Fig. 1 illustrates this for a one-dimensional case
and an improper uniform prior. The essential information
making the posterior proper (Fig. 1) are the inconspicuous
cutoff values of the uniform prior.
The higher the posterior the less sensitive is the inference
to actual values of the cutoff. Thus, we define the ratio
of the height of the posterior (based on a uniform prior)
at the MAP estimate and its non-vanishing asymptotic
value as

ψ := sup
∥θ∥→∞

p(θ | YT )

p(θMAP | YT )
= sup

∥θ∥→∞

p(YT |θ)
p(YT |θMAP)

< 1 .

(9)
One could subjectively define the posterior to be suffi-
ciently proper, if ψ ≤ 10−3, say, meaning that the peak
of the posterior/likelihood towers at least by three orders
of magnitude over the flat parts of the likelihood (in all
unbounded directions in Θ). For ψ = 0, the posterior is
sufficiently proper and might even be strictly proper. For
non-uniform priors and one-dimensional inferences, flat
parts of the likelihood reveal themselves by a posterior
that is proportional to the prior in that area.
In multi-parameter inference problems with non-uniform
priors the situation is in general more complicated. The
likelihood could approach a non-vanishing constant value
on some unbounded subset Θflat ⊂ Θ of any shape. How-
ever, we will encounter the simpler case, that marginal
posteriors are proportional to the prior in certain areas.
This can be explained by assuming that the likelihood is
flat for an unbounded set in the direction of parameter
θi. Let us denote the parameters without θi by θ\i and
also assume that the prior factorizes: p(θ) = p(θ\i) p(θi).
Then

p(θi | YT ) ∝
∫
Θflat

p(YT |θ) p(θ) dθ\i

∝ p(θi)

∫
Θflat

p(YT |θ\i) p(θ\i) dθ\i

∝ p(θi) (10)

holds for the marginal posterior locally. So changes in the
posterior are proportional to changes in the prior along
θi in that region of the parameter space. If Θflat is more
complicated (any differentiable curve or hyperplane), then
one need to check if changes in the posterior are propor-
tional to changes in the prior, when moving within Θflat.
From a practical perspective, we call a posterior to be
sufficiently proper, if ψ (for a posterior based on a uni-
form prior) is small enough such that sampling from the
posterior of interest (based on the minimally informative
prior) is insensitive to moderate changes in the limits of
the sampling box. Only if these limits are increased by
orders of magnitude, then the posterior is going to be
affected in its lower-order statistical moments. We will see
that minimally informative priors, while sensitizing the
posterior to the data, desensitize the resulting posterior
to the exact limits of the sampling box and thereby render
posterior sampling more robust. That way, it will become
possible to analyze a dataset with, i.e., ψ = 0.05, if we use
a minimally informative prior. We will also demonstrate
that parameter inference can be improved further if we
include additional information via the prior.
We will also use a simpler definition of sufficiently proper
based on posterior samples, namely if the posterior mode
carries most of the probability mass such that samples
from the tail region hardly reach the limits of the sam-
pling box. This indicates that probability mass in the
tail regions is negligible relative to the probability mass
under the posterior mode. Note that the density is only
well-defined because we refer to a finite volume in the
parameter space, otherwise the posterior is improper.
We refer to an inference as fully Bayesian if Eq. 7 is
calculated or sampled

θ ∼ p(θ | YT ) ∝ p(YT |θ) p(θ) . (11)

We use Hamiltonian Monte Carlo (HMC) [69, 70, 73]
as provided by the Stan software [71, 72] to generate
samples from p(θ | YT ). In addition to the covariance
matrix of the parameters, p(θ | YT ) allows the calculation
of the credibility volume in order to assess parameter
uncertainty. The smallest volume VP that encloses a
probability mass P ∈ [0, 1]

P =

∫
VP

p(θ | YT ) dθ (12)

is called the Highest Density Credibility Volume (HDCV).
Assuming that the model sufficiently captures the data
generating process, the true parameter values θtrue will
lie in the HDCV with a probability P as soon as the
likelihood dominates the prior.
Bayesian inference is conditional on the assumed prior
and likelihood [79]. Altering p(YT |θ) or p(θ) changes
p(θ | YT ). The prior becomes irrelevant only in the infinite
data limit (and only for regular models), meaning that ML
and Bayesian inference become equivalent [54]. In case
of practically non-identifiable models, Bayesian inference
has at least two advantages over ML. First, by scrutiniz-
ing p(θ | YT ) in detail, issues with structural or practical
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non-identifiability are revealed. Second, the introduction
of priors can alleviate non-identifiability problems.
If little is known a priori about reasonable parameter val-
ues and the data constrain some parameters only vaguely,
the use of a minimally informative prior is essential. It
attempts to make p(θ | YT ) as sensitive to the data as pos-
sible. Typically, a minimally informative prior maximizes
the variance of the posterior p(θ | YT ). In contrast, we
show that the minimally informative priors introduced
below help confine p(θ | YT ) within reasonable boundaries.
Thus they reduce the variance of the posterior, if com-
pared to uniform priors. However, minimally informative
priors themselves are often improper, which might also
render p(θ | YT ) improper if p(YT |θ) is practically or
even structurally non-identifiable. Thus, the posterior
p(θ | YT ) will be dominated by the prior p(θ) in regions
of Θ where data fail to inform us about the parameters.
Fortunately, Bayesian statistics provides us with tools to
render p(θ | YT ) sufficiently proper such as theoretically
derived upper limits on parameters or vaguely informa-
tive assumptions about cooperativity incorporated in p(θ).
The benefits and limits of combinations of minimally and
vaguely informative priors in the presence of practical non-
identifiability will be discussed for two CRNs (Fig. 2).

IV. PARAMETRIZATION OF THE RATE
MATRIX

In the following, we will analyze patch-clamp data that
are simulated with MMs involving only mono-molecular
or pseudo-monomolecular chemical reactions such as con-
formation dynamics of a protein or binding/unbinding
transitions at excess ligand. If the CRN describes a single
molecule, it can only be in one of M Markov states at
time t:

S := {(1, 0, . . . , 0)⊤, . . . , (0, . . . , 0, 1)⊤}. (13)

where we use a one-hot encoding of states. If s(t) =
ei where {ei}Mi=1 denotes the standard basis, then the
channel is in state i at time t. State-to-state transitions
are governed by a transition matrix T in discrete time,

Tij := Pr(s(t+∆t) = ei | s(t) = ej) = [exp(∆tK)]ij
(14)

with time increment ∆t, or with a rate matrix K in
continuous time:

K =



−
∑

i ̸=1 ki1 k12 · · · k1M

k21 −
∑

i ̸=2 ki2 · · · k2M

...
...

. . .
...

kM1 kM2 · · · −
∑

i ̸=M kiM

 (15)

where kij ≥ 0 for i ̸= j. By definition, each column of K
sums to zero reflecting the assumption that the CRN is
closed. The dwell times to remain in the i-th state are

exponentially distributed with mean τi = (
∑

j ̸=i kji)
−1.

To facilitate the definition of a minimally informative prior
in the next section, we use an alternative parameterization
of K that does not involve the chemical rates kij :

K =



−1/τ1 ϵ12/τ2 · · · ϵ1M/τM
ϵ21/τ1 −1/τ2 · · · ϵ2M/τM

...
...

. . .
...

ϵM1/τ1 ϵM2/τ2 · · · −1/τM

 . (16)

The parameters ϵij denote the probability of transition-
ing from state j to state i after the random dwell time
has passed. Thus, each chemical rate kji = τ−1

i ϵji is
the product of a probability with the inverse mean dwell
time. The parameters ϵji have no units, unless the statis-
tical weight corresponds to a ligand-dependent kji. Since∑

j ϵji = 1, both parameterizations of K have the same
number of free parameters. For each column, we sepa-
rated the inverse time-like scale parameters τ−1

i from the
probabilities ϵji, which are shape parameters. Because
transition probabilities are constrained to 0 ≤ ϵji ≤ 1,
the likelihood remains finite for all ϵji and p(K | YT ) will
be proper in these parameters (as long as Haldane-like
priors beta(0, 0) are excluded for ϵij). Then, only the
dwell time parameters τi can render the HMM practically
non-identifiable.
Figure 2 shows the time traces of plausible CRNs of
two ligand-gated ion channels that have two binding
pockets. These can be simulated with QuB [80] or
an inhouse algorithm https://cloudhsm.it-dlz.de/s/
QB2pQQ7ycMXEitE. The assumptions made to define a
likelihood for these data are detailed in [38]. In App. B,
we discuss the global sensitivity of the solution of the
RE for CRN1 (Fig. 2 a) and demonstrate practical non-
identifiability of the likelihood (App. B 3) even for over-
optimistic data and strong prior knowledge (only a single
rate constant is unknown).

V. DEFINING AND BENCHMARKING THE
MINIMALLY INFORMATIVE PRIOR

The following section benchmarks the performance of
the Bayesian filter for different combinations of minimally
informative priors and physically motivated vaguely in-
formative priors, for cases where the information content
of the data is low relative to the number of parameters
of the CRN. We first compare a uniform prior on the
rate matrix p(K) with a minimally informative prior de-
fined below (Eq. 20), which promises to be less biased
(less misinformed). The reason is that the practical non-
identifiability of the likelihood (App. B 1) is aggravated
when using a uniform p(K). In an unfortunate combina-
tion, a uniform prior p(K) places the probability mass
where the likelihood becomes less and less pronounced
and reaches a constant finite value (App. B 1). With a
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FIG. 2. Chemical reaction networks of ligand-gated ion channels and their simulated patch-clamp data. a, c The
MMs (one MM per column) consist of three or five closed states "Cj" and one open state "Oj". Binding steps (red arrows) have
concentration-dependent rates. The CRNs are specified by the absolute rate constants kij , and L, the ligand concentration.
Rates are given per subunit. Stoichiometry factors account for the number of subunits able to undergo the respective transitions.
The units of the rates are in a. u. To calculate their SI units s−1 and µM−1s−1, one needs to multiply their value by 6/7
(Sec. VC4). The open states Oj conduct a mean single-channel current i = 1, and the closed states Cj conduct a current of
i = 0. The synthetic data were simulated with the Gillespie algorithm at a sampling rate of 10 ka.u. The Bayesian filter analysis
frequency fana is 2 to 5 ka.u. Since the units are in a. u., the ratios of rates or inverse dwell times determine the CRN. Further
their ratio to the sampling frequencies determines how detailed the kinetics are recorded. Similarly, the relative magnitude
of i compared with σop and σex should be used to relate simulations to experimental conditions. b, d Open probability time
traces calculated from normalized currents Po(t) =

yI
Nchi

of simulated relaxation experiments of ligand concentration jumps
with Nch = 103 channels. For demonstration purposes, no experimental noise is added in this figure such that all fluctuations
originate from Markov state transitions. However, when inferring the posteriors, additional experimental noise is added. The
black lines are the theoretical open probabilities Po(t) of the model. Typically, we used the set {0.0625, 0.125, 0.25, 0.5, 1, 2, 4,
8, 16, 64} µM of 10 ligand concentrations.

minimally informative prior, however, one can drastically
reduce the severity of this problem. But one should be
aware of the limitations of both priors. See App. C 1
for a brief biophysical example for the problem of dif-
ferent parametrizations of statistical models and prior
distributions, which gave rise to the following Eq. 17.

A. Definition of minimally informative (MI) priors
by approximating Jeffreys’s rule

We will use a revised version of Jeffreys’s rule [64]
to define the minimally informative prior, which treats
location, scale and shape parameters independently:

p(θ) = p(µ, τ , ϵ) ∝
√
det[F(ϵ)]

∏
i

1

τi
. (17)

The location parameters, µ, such as the mean value of the
normal distribution, are assigned uniform priors. Each
scaling parameter, τ , has a log-uniform prior. Only the

shape parameters ϵ are treated conjointly by evaluating
the Fisher matrix,

Fij(ϵ) = −E[
∂2

∂ϵi∂ϵj
ln p(Y|θ)], (18)

according to Jeffreys’s rule [64]. The separated treatment
of location, scale and shape parameters can be applied
to the used parametrization (Eq. 16) of K. For a brief
introduction of Eq. 17, see App. C 2. In addition, we
simplify Eq.17 by assuming that

√
det[F(ϵ)] can be ap-

plied to each column of K (Eq. 16) independently. In
that way, we obtain closed-form solutions of

√
det[F(ϵ)]

derived from simpler statistical models for the remaining
ϵ of each column of K.

B. Minimally informative prior for the rate matrix
inspired by Jeffreys’s rule

We use a simplification of Eq. 17 that is common prac-
tice [11] for complex multi-parameter MMs. The priors
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B Minimally informative prior for the rate matrix inspired by Jeffreys’s rule 8

used to infer MMs from MD simulations are constructed
by applying Jeffreys’s rule to simpler statistical models
[11] instead of applying it to the entire model. Bayesian
estimation of T (Eq. 14) from MD simulations [81] often
uses one Dirichlet prior per column Ti,: of the transition
matrix:

dir(Ti,:) =
1

B(α)

M∏
j=1

Tαi−1
ij . (19)

However, the Jeffreys prior for T is not a product of
Dirichlet distributions [82, 83]. Also, for HMMs of single-
molecule force spectroscopy data [10], products of Dirich-
let priors are used for T.
Here, we do not sample T but K (Eq. 14) because, in
contrast to sampling T, it is trivial to incorporate infor-
mation about the scaling of the binding rates at different
ligand concentrations in a direct parameterization of K.
The same applies to additional prior information on max-
imal binding rates. Note that with one exception, we
use the parameterization of Eq. 16 to define p(K). The
exception will be discussed later when we add the infor-
mation about theoretical upper diffusion limits on binding
rates k21 and k32 (CRN1 and CRN2) and k45 (CRN2).
One can mix in the parameterization any kji, τi and ϵji
equivalently as long as the pior remains equivalent, i.e.,
that p(θ̂)dθ̂ = p(θ)dθ holds, with θ̂ indicating a differ-
ent parameterization. As the mean dwell times τi are
scaling parameters, we use a log-uniform prior following
the arguments above. We use the Dirichlet prior for the
probabilities ϵji, which is the default prior for probability
vectors. These probabilities should not be confused with
the transition probabilities stored in T. Applying Eq. C3
to a multinomial likelihood, results in a Dirichlet prior
with αj = 0.5 for all j ∈ [1, · · · ,Wi] parameters. The
value of Wi is the number of Markov transitions leaving
the i-th state. For a physically meaningful CRN, K tends
to be sparse, e.g., ligand binding and channel gating does
not occur at the exact same instant of time. Thus for the
i-th Markov state, the number of allowed transitions will
usually satisfy Wi < M where M is the total number of
states. The set Ωi ⊆ {1, . . . ,M}\{i} contains the indices
of all states that can be reached by one Markov transition,
leaving the i-th state. Then, using Eq. 17 and evaluating
the

√
det[F(ϵ)] factor for each column of K individually,

we obtain

p(K) =
M∏
i

log-uni(τ−1
i ) diri(ϵi|α)

=

M∏
i

1

τ−1
i log[bi/ai]

1

B(αi)

∏
j∈Ωi

ϵ
αji−1
ji , (20)

where α is the vector of concentration parameters and
B(α) is the beta function at α. The set of ai and bi for
the log uniform distributions are the upper and lower
limits of τi. The topology of the CRN is controlled by
the Dirichlet distribution. See App. D for an illustration
of p(K) for a state with two or three leaving transitions.

C. Advantages and limitations of the minimally
informative prior in the presence of practical

non-identifiability

Using the Bayesian filter, we study the impact of three
different priors on the performance of p(K | YT ), focusing
on weakly informative patch-clamp data. The data are
sampled from a 4-states-1-conducting-state HMM (CRN1
Fig. 2a). Our findings are presented in Fig. 3.

1. The scaling of the RMSE

We define the Euclidean distance or root-mean-square
error (RMSE) between Ktrue and the posterior mean of
all chemical rates in log-space as

Error (logE[k]) =
√∑

l

(log(E[kl]/kl,true))2. (21)

Appendix E discusses why we use the logarithm of the
chemical rates. In Fig. 3a, the RMSE of the inferred
p(K | YT ) is plotted against the number of ion channels
per time trace Nch. We use Nch as a proxy for the quality
or information content of the data. A regular statistical
model is expected to show a 1/

√
Nch-scaling of the RMSE,

but the Bayesian filter is singular. This becomes apparent
for the uniform prior: Below a critical value Nch,crit ≈
2 · 103 the RMSE deviates visually from the behavior of
the other two priors. Above Nch,crit the Bayesian filter
behaves like a regular statistical model.

In the biased regime, Nch < Nch,crit, the uniform prior
causes the RMSE to deviate from the 1/

√
Nch-scaling,

whereas the log-uniform prior scales as 1/
√
Nch to far

smaller Nch, because it imposes a penalty on larger values
of τ−1

i . Deviations from 1/
√
Nch-scaling of the RMSE to

smaller values also occur if upper bounds are enforced on
some kij . The log transformation eliminates the lower
limits (App. E), but the upper bounds derived from the
diffusion limit (Sec. V C 4) are still active. In contrast to
the equivalence of the minimally informative and uniform
prior aboveNch,crit the parameter limits reduce the RMSE
even at Nch that are two orders of magnitude larger than
Nch,crit. Note that the RMSE is dominated by the error
in τ−1

1 whose uncertainty is reduced most strongly by
the constraints (Fig. 14). The impact of the other upper
limits is discussed below.

2. The likelihood dominates the posterior only in a small
region of the parameter space

Next we explore the impact of the prior in more detail
for a dataset in the critical regime (Nch = 103). The
symbol θ̃ denotes a parameter divided by its true value
such that log θ̃ should ideally be zero. Figure 3b shows
the marginal posteriors of log10(τ̃

−1
i ). With a uniform

prior, the posterior of log10(τ̃
−1
1 ) concentrates between
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FIG. 3. Prior sensitivity analysis showing that the uniform prior aggravates problems caused by practical
non-identifiability. The figure contrasts the posteriors resulting from three different priors: uniform prior (green), minimally
informative prior (black), and minimally informative prior with physical limits on the binding rates (blue). The rates are
transformed to inverse dwell times and transition probabilities. a, RMSE of the mean of the marginal distribution vs. Nch

based on the uniform prior (green), the minimally informative prior(black) and minimally informative prior with imposed
imposed diffusion limits (blue) . The cyan dashed curve is a fit based on f(Nch) = a/

√
Nch. A standard deviation of each data

point which follows ∝
√
Nch is assumed. All data sets were generated with σ2 = 1 and σ2

op = 0.2. b, Posterior distributions of
the dwell times τi and transition probabilities ϵji for Nch = 103. On the diagonal, 1D marginal posteriors are plotted. The
off-diagonal plots show the 2D marginal distributions of the posterior. All samples of the parameters were normalized to their
true values θ̃ = θ/θtrue. The blue lines indicate the true parameters. The insets on the diagonal show the same histogram only
plotted on the logarithmic scale to display the flatness of the posterior if a uniform prior is used. The (red) vertical bar indicates
ϵ12 = 1, which corresponds to ϵ̃12 = 4 due to the normalization by the true values. The posterior is plotted based on samples
with a Gelman-Rubin statistic of R̂ = 1.0.
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C Advantages and limitations of the minimally informative prior in the presence of practical non-identifiability 10

102 and 103 and would deviate even more strongly from
zero, if the sampling box was larger. The insets in the
diagonal panels provide an overview of the marginal pos-
teriors of τ̃1 and τ̃2 over the full sampling box. To indi-
cate the relative probability masses, the posterior ratios
R(τ̃−1

i | YT ) := p(τ̃−1
i | YT )/p(τ̃

−1
i,max | YT ) with i = 1, 2

are plotted. The flat right tail of the marginal posterior
obtained with the uniform prior (Fig. 3b, green curve)
causes the observed deviations of the RMSE (Fig. 3a,
green curve and Fig. 13). Furthermore, a flat prior-
dominated part of p(τ̃−1

2 | YT ) creates an exponentially
growing part in p(log10(τ̃

−1
2 ) | YT ). The ratios R(τ̃−1

1 | YT )
and R(τ̃−1

2 | YT ) drop from their peak values to their right
tails only by ≈ 1/10 before they reach a non-vanishing
plateau. It takes τ̃−1

2 two orders and τ̃−1
1 three order of

magnitude to do so. Hence, the posteriors p(log10(τ̃1) | YT )
and p(log10(τ̃2) | YT ), are dominated by the uniform prior.
It is plausible that this also holds for the entire p(K | YT ).

Given that the sampling box covers multiple orders of
magnitude for τ−1

1 and τ−1
2 , the flat part of the marginal

posterior (where the data provide no information about
these parameters) contributes a non-negligible probability
mass to the posterior. Thus, posterior statistics such
as mean, median, variance and derived quantities such
as the RMSE become sensitive to the probability mass
residing in the flat part. That should raise one’s concern,
because the inference will depend on the very limits of
the sampling box. A larger sampling box would move
probability mass from the peak into the flat area. Hence,
when using a uniform prior in the critical regime, the
limits of the sampling box for τ−1

1 and τ−1
2 act as highly

informative user settings, even though they are often cho-
sen arbitrarily and lack a physical justification. If instead
R(τ̃−1

1 | YT ) were to drop to 10−4, say, before the marginal
posterior flattens out, changes in the limits would not
affect p(K | YT ), unless one increased the sampling box
by many orders of magnitude. Because the posterior of
τi is improper, we cannot define meaningful HDCVs to
quantify their uncertainty, if τi is defined on the entire real
axis. More information is needed, which unfortunately
happens often by setting the sampling box limits more or
less arbitrarily. Alternatively, vaguely informative priors
can be defined by using physical justified information that
penalize the tails of p(K | YT ) as demonstrated below.

3. The minimally informative prior (partially) alleviates
practical non-identifiability

A comparison of the posteriors obtained with a uniform
and the minimally informative prior exemplifies the harm
induced by the uniform prior (Fig. 3, black vs. green
curve). The minimally informative prior (Eq. 20) pe-
nalizes large τi and decorrelates p(log10(τ

−1
2 ), ϵ12 | YT ).

Note that τ−1
2 and ϵ12 belong to the same column in

K describing transitions leaving state C2. This accumu-
lates probability mass at the true parameter values in
p(τ1 | YT ), p(τ−1

2 | YT ) and p(ϵ12 | YT ). Consistently, the

choice of prior has a stronger impact on τ1, τ2 and ϵ12
(which are much less determined by the data) than on
τ−1
3 , ϵ23 and τ−1

4 . Overall, the minimally informative
prior concentrates p(K | YT ) closer to Ktrue.
Thus, when looking at the RMSE as a function of Nch, the
minimally informative prior reduces the RMSE drastically
below N = 2 · 103 (Fig. 3a) such that the 1/

√
Nch regime

expands. The 1/
√
Nch scaling is unfortunate if one tries

to increase the inference quality by measuring additional
data. However, the 1/

√
Nch scaling is desirable in the re-

verse direction in which Nch decreases, because it prevents
inferences from becoming to quickly meaningless. Despite
its heuristic definition, the prolonged 1/

√
Nch-regime in-

dicates that with this minimally informative prior one is
less biased than with the uniform prior. Below Nch,crit

one only sees the prior and hardly any effect of the data
when using the uniform prior. The area around the true
values has essentially no probability mass. However, the
minimally informative prior concentrates the probability
mass much closer to Ktrue. Nevertheless, if the likeli-
hood is flat in τ−1

1 and τ−1
2 at some distance to the peak,

it follows that p(τ−1
1 | YT ) and p(τ−1

2 | YT ) are improper.
This does not change for the minimally informative prior,
because the log-uniform prior cannot be normalized when
defined over the entire positive real axis. It diverges at
τi → 0 and decays too slowly to zero for τi → ∞. We
return to this observation in sec. V D.
Cutting Θ with a sampling box into regions that are acces-
sible and inaccessible to the sampler is not always a prob-
lem. Without knowing about practical non-identifiability
problems, we showed in [38] that the HDCVs and thus the
estimator have a frequentist interpretation as long as the
peak of the posterior is towering highly enough over the
flat parts. Thus, one finds Ktrue inside a volume with a
certain probability mass with a frequency approximately
equal to that probability [38].

4. Adding information from physically motivated upper
limits for binding rates

So far, we have shown that using a minimally infor-
mative prior robustifies the inference below Nch,crit. To
alleviate the problem that the posterior could still be
improper or vague in some parameters, we can add more
physically motivated information, such as the diffusion
limit for the binding rates (Fig. 2, red arrows). Typically,
the random collision rate is used as a upper limit for
binding rates [84]. Here we use a more realistic estimate
for the binding of small ligands [85]. To the best of our
knowledge, only Bayesian statistics can rigorously take
full advantage of limits on the parameters, because the
introduction of parameter limits will impair the validity
of the normal approximation of the sampling distribution
of θML. To implement the diffusion limit consistently
in a minimally informative way, we need to change the
definition of the prior Eq. 20. The rate holds k32 = ϵ32/τ2
such that we can also draw k32 ∼ log-uniform. So, the
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log-uniform prior is still used to set the time scale for all
transitions leaving state C2. Then, we draw the statisti-
cal weights from the Dirichlet distribution for the second
column of K such that τ−1

2 = k32/ϵ32. The other rates
can be defined by kj2 = τ−1

2 · ϵj2. Whether we impose a
log-uniform prior on τ−1

2 or some kj2 is irrelevant as long
as this prior is introduced once for each column of K.
We simulated the first binding rate (Model 1) with
k21 = 2 ·600 µM−1 s−1 which is the diffusion limit derived
in [85] for ligand binding. The stoichiometric factor of
2 incorporates the structural information that two bind-
ing pockets are available. Of course the binding rate of
a real process will be slower than the upper limit from
[85]. To incorporate this aspect we take advantage of
the fact that in our simulation of data and inference
k21 = 2 · 600 µM−1 s−1 is an arbitrary definition. In
fact, we simulated k21 = 2 · 600 a.u. and defined this
value to represent the value in SI units. We can also
apply a different mapping of the arbitrary units to SI
units. We may decide that 700 a.u. is supposed to repre-
sent the diffusion limit [85] in SI units. Thus we defined
700 a.u. = 600 µM−1 s−1. In that way we avoid the un-
realistic and extreme scenario that k21,true is identical to
the sampling box limit (which would still be for Bayesian
inference a valid use case). All other ”time-like” param-
eters such as sampling rates, dwell times and chemical
rates need to rescaled by 6/7µM−1 s−1

a.u. .
The impact of the upper limits is shown in Fig. 3a-
b and Fig. 4 (blue curves). The upper limits on the
parameters k21,max and k32,max are now much smaller
than the limits that we used previously. This solves
the non-normalizability problem in the crucial parameter
τ−1
1 = k21 and reduces the chance that τ−1

2 = k32/(1−ϵ32)
is non-normalizable. Still, τ−1

2 could diverge, if the
marginal posterior of ϵ32 → 1 diverges. The parame-
ters τ−1

1 and k32 are now bounded from above and below
by mathematically and physically motivated limits.
The diffusion limits k21 < 2 · 700 a.u. and k32 < 700 a.u.
restrict the RMSE (Fig. 3a, blue lines) to smaller values
such that it drops below the 1/

√
Nch regime for Nch <

Nch,crit. However, even for data sets with Nch ∈ [104, 105],
the constraint adds information and decreases the ED.
Constraining the two binding rates τ−1

1 and k32 also influ-
ences via the likelihood the marginal posteriors of other
parameters, particularly p(ϵ21 | YT ) (Fig. 3b). The con-
straints shape p(ϵ21 | YT ) into a more pronounced distri-
bution which covers the true value.

5. The uniform prior increases posterior uncertainty

The constraint only adds information to p(K | YT ) as
long as the data YT themselves do not restrict the HDCV
within the prior’s upper limits. To study the impact of
the constraint it does not suffice to consider the RMSE.
Notably, Error(logE[k]) is not any quantity possible to
report after an inference of real experimental data either.
Ultimately, one judges the inference by its credibility

102 103 104 105

Nch

10 1

100

ij
2 lo

g(
k)

,ij

1/ Nch

minimally inf. with dif. limit (K)
minimally inf. (K)
uniform (K)

FIG. 4. The uniform prior increases the posterior
uncertainty. We define a multivariate analog of the standard
deviation (Frobenius norm of the covariance matrix of the
posterior) vs. Nch. The colors encode the prior assumptions.
The larger the Frobenius norm, the more uncertainty remains
after the inference. Plot is based on the same data used in
Fig. 3.

intervals/regions (or confidence intervals/regions in an
ML context) of the inferred parameters. Thus, only the
posterior’s shape in general (the median/mean/peak, co-
variance, and higher order statistical moments describing
the tails) are at the modeler’s disposal to assess the qual-
ity of the inference.
Therefore, we define a quantitative measure of the spread
of p(K | YT ), which is the Frobenius norm

||Σlog(k)|| =

√√√√Nparams∑
i,j

Σ2
log(k),ij , (22)

of the covariance matrix of the samples of p(K | YT ) on
the log space of the chemical rates. The observed transi-
tion around Nch,crit (Fig. 3a), that the location posterior
derived from the uniform prior becomes equivalent to the
posterior derived from Jeffreys prior without diffusion
limit at Nch = 2 · 103, as judged by the RMSE, is only
to some degree present in ||Σlog(k)|| (Fig. 4, black and
green lines), which as noted measures the posterior’s
spread not location. The spread of p(K | YT ) based on
the uniform prior (green curve) does not converge to
the spread of the minimally informative prior (black
curve). It shrinks instead parallel given the Nch range
that is investigated. This effect becomes more prominent
for the more complex CRN2. Further, the larger the
size of the sampling box the larger ||Σlog(k)|| due to the
practical non-identifiability problem. The Frobenius
norm of the covariance of p(K | YT ) based on the Jeffreys
prior, including the diffusion limit (blue curve), has
prolonged smaller values than without the diffusion limit
but finally converges towards the Frobenius norm of
p(K | YT ) derived from the prior without upper limits
(black curve). Hence, the information from the added
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C Advantages and limitations of the minimally informative prior in the presence of practical non-identifiability 12

diffusion limit is made use of, even up to Nch = 3 · 104.
Above Nch,crit the RMSE (Fig. 3a) is still a much more
fluctuating parameter to benchmark the behavior of
p(K | YT ) than the rather non-fluctuating ||Σlog(k)||.
||Σlog(k)|| follows almost a straight 1/

√
Nch-scaling

(Fig. 4). In other words, repeating the experiment
under identical conditions will leave ||Σlog(k)|| almost
unchanged, but the posterior’s location will be randomly
translocated from data set to data set within the soft
constraints of Σlog(k). Larger simulation boxes increase
the value of the green curve the most, followed by a
minor effect on the black curve. This is an elegant result
because, ultimately, with real experimental data, the
inference quality is judged by uncertainty quantification
and not by the RMSE.

D. The minimally informative prior still generates
an improper posterior making it difficult to decide

which point estimate has the smallest error.

To confirm that p(K | YT ) is still improper (Eq. 8)
and where in the parameter space p(K) dominates
p(K | YT ), the most worrying R(τ̃−1

1 | YT ) and R(k32 | YT )
are plotted for Nch < 2 · 103 and sampled in larger
sampling boxes (Fig. 5). The PC data originates from
the 4-states-1-open-state CRN (Fig. 2 a). Note that
τ−1
1 = k21 because only one Markov transition leaves

state C1.
As a guide to the eye, functions f(τ−1) ∝ (τ−1)−ϕ

(dashed lines, Fig. 5a-b,d) that have a power law scaling
are plotted, including the log-uniform prior. The right
tails of R(τ̃−1

1 | YT ) are well approximated by different
power laws until the limit, 103τ1,true, of the sampling box
(Fig. 5a). The slopes of the tails are heavily influenced
by the log uniform prior f(τ−1) ∝ (τ−1

1 )−1 but also the
likelihood contributes some additional slope (in other
words information) till approximately τ−1

1,true10
3. For

the smallest sampling box, for all values of Nch the
R(τ̃−1

1 | YT ) seem to be proper but only vaguely identified.
The exponent ϕ gradually increases with Nch indicating
the increase of information about τ−1

1 . However, using a
two-orders of-magnitude larger sampling box (Fig. 5b)
demonstrates that for even larger τ−1

1 , ϕ = 1 holds. I.e.
the prior complete dominates p(K | YT ) in this region of
Θ in the direction of τ−1

1 . Hence, p(K | YT ) indicates
a practical non-identifiability problem of the HMM as
only the prior (Eq. 10) and not the likelihood contributes
to the posterior locally. For at least Nch ≤ 600 the
data do not contribute information for τ̃−1

1 > 103. The
limited influence of some chemical rates or dwell times
in some parts of Θ on the signal is a general feature
of partially observed CRNs (App. B). In the inset of
Fig. 5b, the mean (blue), the median (orange), and
the peak (green) of p(τ−1

1 | YT ) vs. Nch for the smaller
sampling box (solid) and larger simulation boxes (dashed)
are plotted. Mean values or higher statistical moments

do not exist for distributions with power law tails with
exponents ϕ < 2, thus the peak should be reported
for the barely identified τ−1

1 . Consistently, the peak of
R(τ̃−1

1 | YT ) (green curve inset Fig. 5 b) has maximally
a relative error of a factor of 2 and seems unbiased and
not diverging with increasing sampling box size, given
the tested data and minimally informative prior. For the
same data, the residuals of the mean (blue curve inset
Fig. 5 b) of R(τ̃−1

1 | YT ) are heavily biased, sensitive to
the sampling box limits and orders of magnitude away
from τ̃−1,true

1 . The median (orange curve inset Fig. 5
b) is more robust against different sampling box sizes.
However, it is still biased towards too large values of
τ−1
1 , which is unsurprising as it is not defined on the

full support (0,∞) if the shape of the log uniform prior
[86] eventually dominates p(τ−1

1 | YT ) for large τ−1
1 . This

potentially indicates for parameters with strong practical
non-identifiability degree (the magnitude of the posterior
peak does not decay by multiple decades before reaching
the area where the prior dominates the posterior) that
it is better to report MAP values. In Fig. 5c we
plot p(τ̃1, k̃23 | YT ) and in the inset p(τ̃−1

1 , τ̃−1
2 | YT ) to

demonstrate that the practical non-identifiability of τ−1
1

leads to bias of k32 however the bias is much reduced for
τ−1
2 . The bias of the corresponding p(k32 | YT ) is also

present for different data sets (inset of Fig. 5d).
The tails of R(k32 | YT ) given the sampling box, seem to
be less heavy tailed (Fig. 5d) than those of R(τ̃−1

1 | YT ).
For Nch =∈ {100, 200, 300}, R(k32 | YT ) appears to follow
a power law, hence, R(k32 | YT ) ∼ k−ϕ

32 with ϕ = 3.5. The
quicker decaying power-law tails of R(k32 | YT ) still create
a skewed distribution. The skewed tail of R(k32 | YT )
compensates partially for the bias of the peak region of
R(k32 | YT ) (Fig. 5d). Hence, E[k32] (blue curve, inset,
Fig. 5d) is the least biased point estimator towards too
small k32 values until the data are strong enough. In
contrast to τ−1

1 , the standard Bayesian point estimate,
E[k32] performs best for k32. Besides our observation,
mathematics dictates that reporting θMAP for parameters
whose posterior has a powerlaw tail with small ϕ ≤ 2
is more robust because mean values and eventually
medians for ϕ ≤ 1 do not exist. However, it is unclear
whether reporting the mean value for parameters with
large ϕ because of their smallest bias (inset of Fig. 5d).
generalizes to other CRNs. Note that from the bias of the
peak of R(k32 | YT ) to too small values, it is clear that
small HDCIs around the peak will not include the Ktrue

with the frequency equal to the probability mass they
claim to have. Thus, posteriors which fullfill decently the
asymptotic behaviour of the Berstein-von-Mises theorem
need larger Nch or a second observable [38].
In summary, the minimally informative prior, partic-
ularly, its convex log uniform distribution for τi’s or
kij ’s has the desirable feature of concentrating p(K | YT )
much closer to Ktrue, but it still produces improper
p(K | YT ) if no further upper limits can be justified. The
minimally informative prior alleviates the improperness
of p(K | YT ) by making the posterior less sensitive to the
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D The minimally informative prior still generates an improper posterior making it difficult to decide which point estimate has the smallest error. 13

FIG. 5. The minimally informative prior without diffusion limit generates still improper posteriors for CRN1 The
relative marginal posteriors R(τ̃−1

1 | YT ) and R(k̃32 | YT ) are plotted for different Nch and different sampling boxes. The tilde over
the parameters indicates that each parameter is normalized to its true value. a R(τ̃−1

1 | YT ) displays power law-like behavior, but
appears proper given the limits of the sampling box. b, However, the same R(τ̃−1

1 | YT ) sampled from a two magnitudes larger
sampling box displays an area for large τ̃−1

1 where the prior entirely dominates R(τ̃−1
1 | YT ). The inset shows the mean, median,

and peak for τ−1
1 vs. Nch for the smaller sampling box (solid line) and larger sampling box (dotted) line. c, p(τ̃−1

1 , k32 | YT ) for
Nch ∈ {100, 200} (blue, red densities) displays a non-local correlation structure leading to a bias of R(k32 | YT ). The inset is
based on the same data Nch ∈ {100, 200} but k32 is transformed to τ̃2 = k32/(ϵ32). d, For R(k32 | YT ) the heavy tails are much
less a concern. The power law exponent for the smallest Nch is ϕ ≈ 3.5. The insets of the panels display the mean (blue), the
median (orange), and the peak (green) of the marginal posterior.

often nonphysical and arbitrary limits of the sampling
box, but the practical non-identifiability problem will
become relevant when increasing the sampling boxes
at some point for all data sets. Further, the higher the
data quality, the less sensitive is the inference to the
sampling boxes limits. Hence, the degree of the practical
non-identifiability problem has to be judged based on
how much the peak of R(τ−1

1 | YT ) decays before the
slope of R(τ−1

1 | YT ) is essentially the slope of the prior.

E. Solving the practical non-identifiability problem
with vague additional information on cooperativity

We exemplify how to robustify an improper p(K | YT )
by physically justified vaguely informative prior distribu-
tions. For CRN1, we enforce a soft physical constraint
on the one hand on the binding rates k21 and k32 and
on the other hand on the unbinding rates k12 and k23
by a regularizing prior, plausible for homomeric proteins.
Physical common sense dictates that one should be skep-
tical a priori, if binding rates or unbinding rates for the
same/similar binding sites have values differing by orders
of magnitude. One modeling assumption encoding this
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E Solving the practical non-identifiability problem with vague additional information on cooperativity 14

skepticism could be

pcop (log10 (k21/k32)) = normal (0, σcop) (23)

for binding and for unbinding

pcop (log10 (k23/k12)) = normal (0, σcop) (24)

with some finite standard deviation σcop (Fig. 6). Note
that this corresponds to the classical definition of
cooperativity: The ratio of K32 to K21: If the affinity
Kij = kij/kji increases with the number of occupied
binding sites, this is called positive cooperativity. I.e.
if the microscopic binding rates(the binding rates per
binding site) are constant, e.g. diffusion limited, the
ratio r = K32/K21 = k12/k23 can be used as measure
of cooperativity with = 1 equals no cooperativity, > 1
is positive, < 1 negative cooperativity. The vaguely
informative prior is a much less radical prior (assumption)
than assuming identical microscopic rates (which is the
non-cooperative assumption, σcop = 0, for the binding
and unbinding), as frequently done for ligand gated
[87, 88] and more excessively for voltage gated ion
channels [89–92] to alleviate structurally non-identifiable
or practical non-identifiability problems in HMM
inferences. The CRN of the shaker channel [90] is a
good example of how the structural prior information
of having four subunits within the shaker channel
implies a necessary complexity of the CRN to allow it
to explain the data and to be physically interpretable.
This CRN has that many voltage dependent rates that
setting certain subsets of rates equal is used to avoid
non-identifiable problems. However, this assumption
might be incorrect for the ion channel at hand. Thus
one gains identifiably of the parameters by loosing
potentially the ability of the model to express the true
process. Instead, assuming that cooperativity cannot
change the chemical rates beyond some reasonable scale
is physically plausible and restricts the model much less.
One might debate the prior’s variance and the prior’s
shape. Note that adding this additional regularizing
prior solves the improperness problem of p(τ−1

1 , k32 | YT )
originating from a flat likelihood for high values of
τ−1
1 , k32 no matter what finite σcop is used because

of the quickly decaying tails of normal distributions.
Notably, almost any additional prior that adds at least
a tiny amount of decay till infinity to the otherwise log
uniform dominated posterior would also render p(K | YT )
proper. The normal distribution on the logspace has,
by definition, desirable properties: It is symmetrical on
the order of magnitude, and defines an area, within one
standard deviation, with little impact on p(K | YT ) and
an area of increasing penalty for values away by multiple
standard deviations. In that way extreme conclusions
from the data, expressing strong cooperativity effects in
the data-generating process, have to be more and more
supported by the data to be represented with a relevant
magnitude in p(K | YT ). Using the larger sampling box
(Fig. 6) makes the regularization more urgent. In Fig. 6
panel a,b, we demonstrate how applying the additional

prior renders p(τ−1
1 , k32 | YT ) proper even for Nch = 102

and σcop = 1. Notably, in this case ±σcop covers 2 oders
of magitude. The bias (inset, Fig, 6a) of p(k32 | YT ) is
drastically reduced with a finite σ compared to the pure
minimally informative prior, and decreasing σ further
improves the inference (Fig. 6b) in terms of bias and
variance. Notably, the prior nudges the posterior to
concentrate its mass between τ−1

1,true and k32,true. Thus, at
some point, the smaller σcop of Eq. 23 and 24, the more
is the variance of the posterior decreased but also the
bias of p(log10 (k23/k12)) starts to dominate the posterior
more and more. The traditional non-cooperativity
assumption trades variance of p(K | YT ) for a maximum
of bias and thus should only be applied if there is strong
a priori evidence that non-cooperativity is true in the
data-generating process.

F. Minimal informative prior to ward off the curse
of complexity and dimensionality

Next, we investigate the challenges arising when the
complexity of K is increased. CRN2 additionally con-
tains two flip states (Fig. 2 d). We enforce microscopic
reversibility, which reduces the number of to-be-inferred
parameters by one. For a comment on how the mini-
mally informative prior improves the convergence of the
sampler to the true posterior (Ap. F 1) and alleviates
the curse of dimensionality.In Fig. 7 a the pathological
dimensions of p(K | YT ) derived from the uniform p(K)
(green) against the same dimensions of p(K | YT ) (black)
derived from the minimally informative p(K) are com-
pared. The less pathological dimensions, in the sense that
they deliver roughly Gaussian marginal posteriors, are
plotted in Fig. 7 b1-6. Even for Nch = 105, the posterior
based on the uniform prior clearly demonstrates the prac-
tical non-identifiability feature of the likelihood in τ−1

2

and τ−1
3 . The ridge-like correlation of p(τ−1

2 , τ−1
3 ) (panel

a3) with a slow decay along the ridge demonstrates the
practical non-identifiability problem. Notably, the ridge
is strongly constraint for values smaller than τ2,true and
τ2,true (panel a1-2) but above it seems to extend to infin-
ity. The strong correlation between τ−1

2 , τ−1
3 produces a

paradoxical challenge of the minimally informative prior
which turns out problematic for smaller Nch. The result of
the strong correlation is that the sample value for τ−1

2 can
be predicted by a affine linear function τ−1

2 = mτ−1
3 + n

(panel a3 dashed line). Ignoring the affine part of the
function, the slope of loguniform prior on τ−1

3 will be
mapped by the linear function to p(τ−1

2 | YT ). Addition-
ally, τ−1

2 has its own log uniform prior. The same applies
to both parameters the other way around. Hence, both
one-dimensional priors together with the practical non-
identifiability ridge, contribute to the posterior a scaling
of τ−2

i for both parameters, creating bias towards too
small values (see, the corresponding p(τ−1

2 , τ−1
3 | YT ) in
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FIG. 6. A vaguely regularizing prior on the cooperativity factor renders the posterior proper even for the lowest
quality data. We demonstrate for the previously used data sets of CRN1 (Fig. 2a) with Nch = 102 the effects of the value
of σcop using the larger sampling box. Note that τ−1

1 = k21 holds. The black continuous lines indicate the value of τ−1
i,true

and k32,true on the x-axis. The black dashed lines indicate the corresponding τ−1
i,true and k32,true in units of the true value of

x-coordinate to visualize the bias of the regularizing prior, constraining the posterior more and more between the dashed and
solid black line with decreasing σcop. a, p(τ−1

1 | YT ) for either no or a series of increasingly strong regularization. The inset
compares the effect of the vague regularization (orange) on the mean (solid curve) and median (dashed curve) vs. Nch with no
regularization (blue). b, p(k32 | YT ) for the same series of increasing regularization. The inset compares the effect of the vague
regularization (orange) on the mean (solid curve) and median (dashed curve) vs. Nch with no regularization (blue). c, The effect
of the regularization on p(τ−1

1 , k32 | YT ), with no regularization (blue) and the most vague regularization prior (σ= 1, green).

Fig. 8 a). Based on the corresponding 2d marginal dis-
tributions (Fig. 7 a), the Markov transition probabilities
ϵ12, ϵ32 and ϵ23 appear to have a more and more diverg-
ing posterior the larger the sampling box for τ−1

2 , τ−1
3

gets. These parameters should be considered unidentified,
based on the herein-employed heuristic and visual crite-
rion (see discussion around Eq. 9) to asses the degree of
practical non-identifiability p(K | YT ). Surprisingly, τ−1

1

is for CRN2 not as unidentified as for CRN1 (Fig. 3 b).
We employed a smaller sampling box for the uniform prior
(because of an often not converging sampler, likely caused
by the practical non-identifiability problem and the curse
of dimensionality.Using a smaller sampling box for the
uniform prior also disadvantages the minimally informa-
tive prior in comparison because less of the part of the
parameter space where the likelihood is flat is possible for
the sampler to reach. In the App. Fig. 15 we demonstrate
that sufficiently proper posteriors are achieved, for the
minimally informative prior at the experimentally possi-
ble, but certainly challenging data set of Nch = 5 · 103.
However, with the uniform prior one needs an impossible
data quality of Nch = 2.5 · 105. Hence, the minimally
informative p(K) increases the range of acceptable data
for this CRN roughly a 50-fold. Using only the mini-
mally informative prior (black posterior) produces for k32
and k45 visually-visible improper marginal posteriors for
Nch < 5 · 103 (see Fig. 7 and 8).

G. Effects of combining the theoretical diffusion
limit with vague non-cooperativity assumptions

In Fig. 8 a we display p(K | YT ) for the smallest tested
data quality Nch = 102 with the minimally informative
prior and with the additional (vague and hard) constrains
discussed below. Using only the minimally informative
prior (black posterior) produces for k32 and k45 not
sufficiently proper marginal posteriors. The first visually
proper p(K | YT ) appears with Nch = 5 ·103 (App. Fig. 15
a). From the discussion before, it is clear that the
likelihood for Nch = 5 · 103 is only sufficiently practical
identifiable that the improperness of p(K | YT ) is not
detected visually even though there is no reason to
assume that it is not there if one would sample from much
larger simulation boxes. Due to the complexity of the
inference problem we employ the additional assumptions.

1. The vague no-cooperativity assumption increases the
accuracy and decreases the uncertainty of the inference.

If one applies strict upper diffusion limits for k21, k32
and k45 (Fig. 8, blue posterior and curves) one gains
a proper p(K | YT ) for Nch = 102 in the correspond-
ing dimensions and also the other dimensions become
sufficiently proper. Adding further vague prior assump-
tions log10(k21/k32) ∼ normal(0, 0.5), log10(k12/k23) ∼
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FIG. 7. For the more complex CRN2 the minimally informative prior is necessary even for data sets of of
unrealistic high quality such as Nch = 105. a, Posteriors based on uniform (green) and minimally informative priors (black)
are compared. The clearly non-Gaussian-shaped marginal posteriors plus those concerning τ−1

1 are plotted in a, all other, rather
Gaussian marginal posteriors, are shown in b. The insets a1, a2 visualize the posterior without the log transformation. The
black posterior is equipped with the minimally informative p(K). The green posterior is based on the uniform p(K). The flat
(green) posterior for τ−1

2 and τ−1
3 , creates what appears to be a exponential increase for p(log τ−1

2 | YT ) and p(log τ−1
3 | YT ). a3,

demonstrates the positive linear correlation contained in p(τ−1
2 , τ−1

3 | YT ). Deviations of both parameters from the corresponding
true value can be compensated to some extent by the other parameter. Note that the sampling box for the posterior samples of
τ−1
2 ∈ [10−2, 106.5] updated from the minimal information is more than an order of magnitude larger than the range of the

simulation box used when the uniform p(K) is used. This disadvantages the posterior based on the minimally informative prior
but demonstrates the larger robustness of the minimally informative prior. The posteriors derived from the uniform p(K) are
sampled by kij and then mapped to the (τ , ϵ)−space.
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G Effects of combining the theoretical diffusion limit with vague non-cooperativity assumptions 17

normal(0, 0.5), log10(k45/k32) ∼ cauchy(0, 1) and
log10(k54/k23) ∼ cauchy(0, 1), which regularizes p(K | YT )
gently towards a non-cooperative CRN (Fig 8 red poste-
rior), reduces the mean-distance between p(K | YT ) and
Ktrue and reduces the uncertainty (Fig. 8 c). Note, that a
less-vague no-cooperativity assumption log10(k21/k32) ∼
normal(0, 0.1), log10(k12/k23) ∼ normal(0, 0.1) reduces
the Frobenius norm and RMSE further (see 8 b-c).The
RMSE (Fig. 8 b) shows that at Nch ≈ 5 · 104 the
RMSE transitions to ∝ 1/

√
Nch asymptote while for

Nch < 5 · 104 the practical non-identifiability problem
combined with prior assumptions influence the posterior.
Above Nch = 5 · 104, the posteriors equipped with priors
with diffusion limit produce similar RMSEs, unless the
less vague cooperativity assumptions (Fig. 8 b magenta
curves and posterior) are used. For the less vague prior
the RMSE converges onto the curves of the other two
prior assumptions (blue and red curve) around Nch = 106.
In contrast, the pure minimally informative prior has
different RMSEs (Fig. 8 b black curve) for each data set.
This shows that the vague no-cooperativity assumptions
lost their influence on the RMSE, while the diffusion still
influences the RMSE.
The Frobenius norm of the covariance matrix of p(K | YT )
shows (Fig. 8 c) that enforced upper diffusion limits (blue,
red, and magenta curve) still add information and reduce
the uncertainty of p(K | YT ). Hence, even for data quali-
ties of Nch > 106, an ML inference would ignore relevant
information to reduce the uncertainty of the inference.
The Frobenius norm of the posteriors based on the pure
minimally informative prior without additional assump-
tions transitions at Nch = 105 to the N−0.5

ch -scaling.
To summarize, with minimally informative prior with dif-
fusion limits (Fig. 8), one can make inferences with more
than 103 times smaller Nch per time trace compared to
Bayesian inferences with the uniform prior (Fig. 7) or
ML/MAP inferences. Note that theoretical data qualities
of Nch > 104 are beyond experimentally achievable data
qualities. The added vague non-cooperativity prior con-
tribute information to the posterior approximately until
Nch = 105 as judged by the RMSE and Frobenius norm.
For the less vague prior the gain of relevant information
lasts for values even higher than Nch = 106 as judged by
the Frobenius norm, but the RMSE are roughly the same.

2. To what extent can channel properties be assessed against
the bias of the no-cooperativity prior?

We test for the different no-cooperativity priors,
what typical data quantity is needed such that
p(K | YT ) supports positive cooperativity (defined as
r = k12,true/(k54,true) > 1 Sec. VE). One could also ask
at what point becomes the bias of the additional soft cou-
pling by the prior towards no-cooperativity detrimental
to the inference because the DGP (Fig. 2) is cooperative
with k12,true/k54,true = 5/2. There are essentially two cat-
egories (negative k12/k54 < 1 and positive k12/k54 > 1)

and the infinitesimal thin (green) line in between with
no−cooperativity k12/k54 = 1. Let r = k12/k54 be our
measure of coorperativity. If∫ ∞

r=1

p(r | YT )dr > 0.5 (25)

the data supports positive cooperativity Notably, if∫∞
r=1

p(r | YT )dr ≈ 0.5, also a negative cooperativity
model is plausible just as positive cooperativity. Following
the Bayesian paradigm, we are not looking for any binary
significant test result, but embrace the continuous aspect
of the question at hand. The inequality 25 is fullfilled if
the posterior median (solid lines) holds medpost(r) > 1.
We contrast the median with HDCIs that tell what is
the smallest most probable interval. For skewed posteriors
(because of uninformative data), HDCIs might indicate
a different cooperativity model than the median. Note
that for small Nch we work in a regime where frequentist
testing would likely not produce significant results.
For the pure minimally informative prior (Fig. 9 a), and
Nch ∈ [5 · 103, 2 · 104] the posterior flucuates between a
weak indication based on the median (solid line) that
there is positive cooperativity and that both models are
equally plausible. In particular, the median is biased
towards too small values of r. The 0.5-HDCI (lower limit
dashed black lines) is almost entirely smaller than r = 1.
To have a unbiased median and a 0.5-HDCI that addi-
tionally supports qualitatively positive cooperativity one
needs at least Nch > 5 · 104. In contrast, working with
the uniform requires Nch = 2.5 · 105.
One may ask where the bias towards too small r values
for Nch ∈ [103, 4 · 104] comes from. The normal approxi-
mations used to derive the likelihood [38] is justified given
the scale of Nch. Thus, we suspect the bias to originate
from correlations and a strong practical non-identifiability
problem in the likelihood/posterior. Imagine a strong pos-
itive correlation after the inference between, e.g., τ1 and
τ2 such that one can predict very accurately from τ1 the
scale of τ2. The limiting extreme case of such a correla-
tion between two parameters is realized in the structurally
non-identifiable problem of the linear birth-death model
(Eq. 1). Giving kbirth a log-uniform prior would result
in kdeath having a log-uniform prior. Supplying to both
parameters log-uniform priors results – after the inference
– in an effect of the combined prior on the posterior as
k−2
death and equivalently k−2

birth. An anticorrelation between
the parameters would eliminate the effect of the prior.
Adding the diffusion limit to the posterior (Fig. 9b) ex-
tends the region of a visually sufficiently proper posterior
(Fig. 8) at least to Nch = 102 and decreases uncertainty
(difference between black and blue dashed line). But an
effect of the capabilities of the median to predict qual-
itatively positive cooperativity is small or not existent.
While not necessarily indicating a wrong model, the me-
dian is typically undecided and thus biased to too small
r values. Hence, adding the diffusion limit reduces un-
certainty of p(r | YT ) but does not help to answer the
fine-grained question of cooperativity, unless one works
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FIG. 8. For CRN2, the minimally informative prior enables inference for about two orders of magnitude lower
data quality. Adding information by diffusion limits and vague bias towards non-cooperativity allows us to work
with three orders of magnitude lower data quality. The data sets simulated from CRN2 (Fig. 2) are analyzed The color
black refers in all plots to p(K | YT ) based on the minimal informative prior. Blue corresponds to assuming diffusion-limited
binding. Red an additional assumed vague prior on the cooperativity of the binding and unbinding rates. Magenta less vague
no-cooperativity assumption. a, The true values of K are indicated by the blue lines. Posterior for Nch = 102 for the minimally
informative prior, minimally informative with upper limits and with an added vague no-cooperativity assumption. For visual
clarity, we suppress τ−1

6 , ϵ54, ϵ25 in the main plot but add sub panels which display the corresponding posteriors. Note that
these parameters are only slightly influenced by the priors, and even without the priors, the posterior is peaking Gaussian-like
with some skewness. b, The RMSE of the log space of the chemical rates is plotted vs. Nch for the median (solid curve) and the
marginal peak (dashed curve) for different prior assumptions. c, The Frobenius norm of all kijs of the covariance matrix of the
samples of K
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with unrealistic data qualities (see uncertainty Fig. 9b
above Nch > 105).
This changes when adding the vague no-cooperativity
prior (Fig. 9 c), which by its definition biases p(r | YT )
more around the green line. The median and the HDCIs
(see, Fig. 9 c the difference between red and blue lines)
are shifted towards rtrue against the bias of the Cauchy
prior acting on r. The median now always indicates pos-
itive cooperativity. The 0.5-HDCI is, roughly speaking,
undecided but much less biased without the vague regu-
larization.
We show in Fig. 9d the effect of decreasing the variance
of the prior for the ratios (increasing the bias towards non-
cooperatively of the binding and unbinding rates) on the
one hand between k12 and k23 and on the other hand be-
tween k21 and k32, while the cooperativity priors for ok45
and k32 and k54 and k23, remain the same. This structure
vaguely incorporates the prior knowledge that the verti-
cal Markov transitions (Fig. 2 c) in the CRN represent
changes in the protein, which might alter the binding and
unbinding rates to some amount. A further shift of the
lower limit of the 0.5-HDCI (dashed lines) and the me-
dian (dotted lines) can be observed. For realistic PC data
quality assumptions Nch < 104 the prior combining diffu-
sion limits with less vague non-cooperativity assumptions
performs the strongest but also supposes the most. Only
for high and unrealistic data quality Nch > 105 the pos-
teriors without the vague non-cooperativity assumptions
(black) seem to have a smaller bias to smaller negative
cooperativity.

VI. CONCLUSION

Bayesian inference offers efficacious remedies for
practical non-identifiability problems in HMM inference
thereby allowing parameter uncertainty quantification for
finite data. Nevertheless, pathologies of the likelihood
also pose challenges for Bayesian inference.
If little about the actual values of some parameters is
known a priori, we show that minimally informative
priors are crucial to expand the range of acceptable data
quality. They attempt to make posteriors as sensitive to
the data as possible, thereby also alleviating practical
non-identifiability pathologies in HMMs. The suggested
minimally informative prior increases accuracy and
decreases uncertainty compared to a uniform prior.
Any prior dominates the posterior in the regions of a con-
stant likelihood value (the essence of non-identifiability).
The bias of the uniform prior to larger inverse dwell times
or chemical rates combines in an unfortunate way with
the practical non-identifiability problem of the likelihood
itself. In contrast, the log-uniform part of the minimally
informative prior puts equal statistical weight on each
decade and thus alleviates this problem. It would also
alleviate the problems mentioned in [35].
Notably, we show that the usually arbitrarily chosen
simulation box limits determine the posterior on a

relevant scale as soon as the simulation box is large
enough given that one uses improper prior distributions.
The minimally informative prior desensitizes the posterior
concerning the sampling box limits. Only under rare
conditions if the posterior has a peak close to the true
values, that is multiple orders of magnitude higher than
the purely prior-dominated parts, then this problem
vanishes. This would make it possible to ignore the
strictly prior-dominated parts. However, often, the
peak will be less dominant. Importantly, if one uses the
minimally informative prior for complex CRNs with a
high dimensional parameter space, it is much simpler
for the adaptive HMC sampler to produce well-mixing
(converging) parameter chains, i.e., the samples indicate
that the typical set [93] of the posterior was sampled.
We show that, unfortunately, for typical data qualities
and quantities and realistic CRNs, further objective
or subjective assumptions are necessary to obtain an
interpretable and sufficiently proper posterior to overcome
the challenges from the practical non-identifiability.
A solution to make the posterior proper is to apply
meaningful limits to the relevant parameter subset of the
sampling box, thereby reducing the uncertainty. The
solution is objective if the limits can be theoretically
derived (or are rooted in the physical properties of the
molecules). Herein, it is shown that this information
fusion from data and prior knowledge creates meaningful
inferences with the lowest tested data quality, even for
the most complex tested CRN. Nevertheless, derived
theoretical limits might only sometimes be at hand, or
even after their application, practical non-identifiability
problems might remain in parameter dimensions where
the upper limits do not apply. Herein, an additional
vaguely informative prior on the ratio of some rates -a
hyperparameter corresponding to the cooperativity of
ligand binding and respective unbinding - is applied.
Combing these objective and common sense (biochemical)
prior assumptions deliver the best inferences in terms of
RMSE and uncertainty of the posterior. This additional
prior biases the CRN gently towards CRNs where
ligand binding and unbinding of the different channel
subunits occur independently but still allow for positive
and negative cooperativity over orders of magnitude
(depending on the choice of hyperparameters). Hence
it is a much less radical assumption compared to the
commonly used non-cooperativity assumption [87, 88].
Not using such a prior would mean that one is willing to
accept a priori any order of magnitude of cooperativity
effects to occur, which is against commonbiochemical
experience - i.e. experience-based priors. Thus, extreme
effects are only considered if the data is very certain
about them. Thus, this prior is an Occam’s razor.
Using this prior, even without the physically motivated
upper sampling box limits, renders the posterior always
proper at least in the relevant dimensions of the
parameter space since the prior itself is proper. Notably,
using these prior assumptions, one can learn from the
HMM inference about negative cooperativity within the
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FIG. 9. The prediction of positive cooperativity (accelerated unbinding) of the unbinding of the second ligand
gains certainty with vaguely informative prior assumptions with a bias towards no-cooperativity. On the
x-axis we plot Nch as a proxy for the information content in the data originating from CRN2. The dashed lines indicate
the lower limit of the 0.5-HDCI, and the solid lines are the medians. The color corresponds to the prior assumptions
with more information added from left to right. The set of three [0.99,0.5,0.3]-HDCIs is plotted in each panel. As a
guide to the eye to discern the gain of certainty that there is negative cooperativity and the reduction of bias, we replot
the median and lower limit of the 0.5-HDCI from the previous panel. For visual clearity we supress the black lines in
panel d. a, minimally informative prior. b With an additional diffusion limit assumption. c With additional vague no-
cooperativity assumption log10(k21/k32) ∼ normal(0, 0.5), log10(k12/k23) ∼ normal(0, 0.5), log10(k45/k32) ∼ cauchy(0, 1) and
log10(k54/k23) ∼ cauchy(0, 1). d With an additional less vague no-cooperativity assumption log10(k21/k32) ∼ normal(0, 0.1),
log10(k12/k23) ∼ normal(0, 0.1). A standard deviation of these priors corresponds approximately to 3.1 relative deviation of the
corresponding parameters. Further, log10(k45/k32) ∼ cauchy(0, 1) and log10(k54/k23) ∼ cauchy(0, 1).

CRN with at least 103 times smaller data sets than with
plain uniform prior assumptions or ML inferences. The
allowed reduction of the data quality by a thousandfold
is a prerequisite for inferring HMMs of this complexity
scale with real world data.
One could also apply this technique to heteromeric
proteins or across homomeric proteins containing mutated
binding sites [94–96] if the scale of the differences between
binding pockets can be coarsely estimated a priori. The
more coarse the a priori estimate is the heavier should
the tails of the regularization prior be. A Cauchy prior on
the logspace provides a heavier tail but is still a proper
prior. A detailed study of the different possibilities is out
of the scope of this paper.
In a summary, Bayesian inferences provides flexible
tools to accommodate for the shortcomings of ML
inferences due to omnipresent practical non-identifiability
problems of the likelihood. Careful prior elicitation by
being minimally informative where one has absolutely
no information on the scale of parameters, but being
vaguely informative where there is some physical common
sense knowledge about some parameters and very

informative when there is objective information such as a
theoretical upper bound is key get the most of biophysical
meaningful HMMs. Using this prior elicitation approach,
we where able to obtain meaningful biological insight
with a thousand fold lower data quality.
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1. Detecting structurally non-identifiable Problem
by the smallest eigen value of the Hessian matrix

A heuristic to numerically test for potential struc-
turally non-identifiable likelihoods is to check for the
smallest eigenvalue of the Hessian matrix (curvature) of
p(YT |θML) [97]. If the smallest eigenvalue is effectively
zero, then the likelihood is structurally non-identifiable (or
almost structurally non-identifiable). Unfortunately, this
is only a local criterion for structural identifiable that does
not go beyond properties at θML and its neighborhood.
It indicates based on local information the least confined
direction in parameter space. However, the global shape
of the likelihood might be more complex [34, 98].
In contrast, strategies such as profile likelihood [33]
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aim to detect (structurally non-identifiable/practical non-
identifiability ) pathologies. If p(YT |θ) is structural
identifiable and has only a small degree of practical non-
identifiability , the profile likelihood method can construct
asymmetric confidence intervals extending the reliability
compared to standard ML. Nevertheless, this practice still
relies on the assumption of asymptotically large amount
and quality of data.

Appendix A: The practical non-identifiability
problem with other states being observed.

If a second orthogonal observable is added, such as
y2(t) ∝ E[nB(t)], this intrinsic practical non-identifiability
problem for k1 disappears for this CRN but not for k2
because for the general solution

E[nB(t)] = nA · ( k1·L
k1·L−k2

· exp(−k2 · t)

− k1·L
k1·L−k2

· exp(−k1 · L · t)) (A1)

including the mentioned initial conditions assuming
k1 · L ≫ k2 produces E[nB(t)] = nA · (exp(−k2 · t) −
exp(−k1 · L · t)). Hense, both exponential decays are pre-
served. However assuming k2 ≫ k1 ·L for all L eliminates
both amplitudes, which is an intuative result because
B is hardly populated. Observing only E[nB(t)] has no
practical identifiability problem in the large k1 direction
but still in the large k2 direction. Having two signals
y1(t) ∝ E[nO(t)] and y2(t) ∝ E[nA(t)] resolves the prac-
tical non-identifiability for k1 but does not resolve it for
k2, since

E[nA(t)] = nA · exp(−k1 · t) (A2)

holds. Note, that Eq. A2 has no dependency concerning
the rates in the amplitude.
To eliminate the pathologies of the likelihood where
k2 ≫ k1 holds in θ, one needs to observe data from
a mixed population n(t0) = (nA, nB , 0) and a signal that
contains two orthogonal observables y1 ∝ E[nA(t)] and
y2 ∝ E[nB(t)] or alone y ∝ E[nO(t)] because E[nO(t)]
contains with these initial conditions, in this case, both
time scales. Note that because of the initial conditions,
the solution of the CME is not a multinomial distribution
anymore but a convolution of two multinomials. In other
words, the group of ion channels starting in A have a
different pO(t) compared to the group of ion channels
starting in B.

Appendix B: Sensitivity analysis of the solution of
the RE and the

In chemical physics, it is a well-known phenomenon
that often the overall rate of a process in a CRN relies
heavily on the slowest chemical reaction, called the rate-
limiting step. Rate limitations in inverse modeling become
a relevant problem due to the aggregation of Markov

states in the signal. Ideally, the mean of an observable
of a Markov system would not be aggregated, which
means it would report the entire p(K, t) = E[n(t)]/Nch

the population probability vector of all Markov states.
In that case, rate limitation would be a minor problem
because the kinetics of each state alone allow one to
dissect better the contributions of each chemical rate.
Only the bandwidth of the data, the signal-to-noise ratio,
and the quantity of data would limit the precision of the
inference, given a correctly specified likelihood. However,
one faces Po(K, t) = H̃p(K, t) as the observable in PC
data, with H̃ = (0, 0, 0, 1) given CRN1 (Fig. 2). Due to
the projection, H̃, Po(K, t) can be locally insensitive to
changes in some kij . That means that

∂Po(K, t)

∂kij
= 0 (B1)

for all t.
Instead of locally, the global 1d sensitivity is scanned
(Fig. 10) by scaling in each panel one of the kij by
[101, 102, 103] and observing the changes of Po(K, t) for
all t while leaving the other parameters unchanged. Addi-
tionally, some finite experimental time is assumed. Note
that multi-dimensionality must be accounted for in a
full sensitivity analysis. However, for intuition, it seems
sufficient to consider one-dimensional scalings. The de-
terministic Po(K, t) of CRN1 (Fig. 2) can be calculated
by the RE approach [99]. Qualitatively, the larger the
changes of Po(K, t) compared with Po(Ktrue, t) of the
CRN (Fig. 10, solid lines), that was used to simulate the
data; the smaller can be the data quality to infer that
parameter with a satisfactorily small uncertainty, given
a correctly specified likelihood. Note that in the follow-
ing, a likelihood will be constructed [99] for unrealistic
best-case data scenarios, whose essential parameter to
predict data is Po(K, t). Thus, differences in Po(K, t) for
each scaling of the kij , at least for some t, are crucial
that the model does not have some degree of practical
non-identifiability . Even in that best-case scenario, one
encounters a practical non-identifiability problem.
Po(K, t) is very sensitive (Fig. 10 a,c) to the two gat-
ing rates k43 and k34, given CRN1. Firstly, because
Po(K, t = ∞) of both of them can be scaled from 0 to 1
by scaling them from zero to infinity, respectively. Note
that for visual clarity (Fig. 10 a,c) only scaling to larger
values is considered. Secondly, both are rate-limiting in
the time trace’s respective activation and deactivation
parts. However, the experiment’s finite time resolution
and duration add global sensitivity limits caused by rate-
limiting effects. This can be seen for the smaller ligand
concentration L = 0.125µM, the scaling of k43 (Fig. 10
a, blue curves) leads to four visually different kinetics,
indicating high sensitivity. However, adding a fourth
scaling 106 (blue crosses), the third and the fourth are
visually identical, although they are different by three
orders of magnitude. For at least the applied 103 scal-
ing ∂Po(K,t)

∂k43
|k23≥103k43,true

≈ 0. That means the scaled
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FIG. 10. Scaling the chemical rate constants of CRN1 shows that the influence on the mean signal fades,
particularly when scaling the ligand-binding rate. In each panel, one chemical rate constant kij is scaled by [101, 102, 103]
to display the sensitivity of the mean kinetic time evolution of Po(K, t) to that parameter scaling. Modeling Po(K, t) by a
deterministic RE is identical to experimenting with a noise-free experimental setup that probes an infinite number of ion
channels. Two different ligand concentrations [0.125, 1]µM are encoded in blue and green, respectively. The different lines
indicate the different scaling. In panel a, a 106 scaling (blue crosses) for the lower ligand concentration is included. It overlaps
with 103 scaling. Indicating that the sensitivity of kinetics ultimately also fades for k43.

k43 is instantaneous relative to the other involved transi-
tions. Any higher scaling has little effect on the kinetics
of the observable in the given amount of experimental
time. However, changes would be detectable in the for-
ward model for an infinite amount of relaxation time
because Po(K, t = ∞) changes with each scaling. Thus,
predictions of the model, Po(K, t), are rate-limited by the
other kij when k43 > 103 · k43,true. Despite, being locally,
around k43,true Po(K, t), highly sensitive, the global sensi-
tivity is constrained. From the experimental perspective,
that sounds paradoxically because k43 and k34 are around
k43,true = 50 and k34,true = 10 locally the rate-limiting
steps themselves for the activation and deactivation time
series (unless L is very small in the activation data).
These rate-limitations are practically irrelevant for k43
and k34 because they are roughly of the order 103 away
from their true value, k43,true and k34,true. However, in
principle, they exist even for kij , which are locally around
kij,true the rate-limiting step, or at least for a set of time
traces very influential on Po(K, t).
The global sensitivity of Po(K, t) changes are visually
distinguishable in two ways when the scaling is applied on
the ligand binding rate k21 (Fig. 10 c). Firstly the sensi-
tivity of Po(K, t), is reduced (without any effects from the
boundary at Po = 1) for two reasons For Po(K, t = ∞),
the scaling reduces the probability to be in C1 more and
more, but the ratios between the other states C2, C3, and
O4 remain the same; hence, the sensitivity of amplitude
of the current is constrained from above to smaller values
than Po(K, t = ∞) = 1. Also, Po(K, t) loses its sensitivity
due to rate-limitations; however in this case by the actual
transition k43, which is, from the experimental perspec-

tive, the rate-limiting step of the activation. Secondly, for
the higher ligand concentration (Fig. 10 c, green curves),
one can only distinguish 100 and 101 but not the other
scalings. For the lower ligand concentration (Fig. 10 c,
blue curves) one can at least distinguish 100 and 101 and
102 visibly. In contrast to the scaling of k43 (where the
larger L has a higher global sensitivity), the smaller L
reveals a higher global sensitivity of Po(K, t) for scaling
k21. The smaller L, the larger L · k21 can be scaled with-
out being instantaneous relative to the other kij in the
kinetic scheme. Note that scaling k21 to smaller values
would have no global sensitivity limit as Po(K, t = ∞)
would approach 0. Further at some point k21 would be
the rate-limiting step in the activation for any L but this
time in contrast to k43 up the finite limit of the used
relaxation time is not even theoretically relevant.
One of the advantages of fitting multiple concentrations
(Fig. 10 a, green curves) of ligands (or, depending on
the molecule, other series of stimuli) that the limiting
values for kij , above which rate-limitations eliminate all
effects of altering kij on the likelihood can be tweaked by
changing the magnitude of the stimulus. Hence, the local
and global sensitivity of Po(K, t) to altering some kij is
changed.
Similarly, Po(K, t) has a high sensitivity for scaling up the
ligand-unbinding rate k23 (Fig. 10 d) because the scaling
pushes Po(K, t) → 0 for all t.
Summing up, there is a global sensitivity limit of the mean
kinetics and equilibrium to scaling up k21 and similar k32.
However, for scaling k43 up, the global sensitivity limit
also requires a finite relaxation time in the experiment.
However, a global sensitivity limit for scaling up k34, k23,
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and k12 does not exist. And similarly, scaling one of the
down k21, k32 and k43 will decelerate the coupled reaction
more and more and Po(K, t = ∞) will approach 0 such
that the sensitivity of Po(k, t) ≈ 0 to scaling these rate
constants to smaller values is high. These asymmetries in
the sensitivity will produce highly asymmetric likelihood
profiles (Fig. 11). If one had one independent observable
for each Markov state, meaning that the full mean p(K, t)
is an observable (i.e., no aggregation of states in the ficti-
tious signal); the limitations due to partial observability
would be alleviated. In this optimal case, only the signal-
to-noise ratio and the bandwidth would induce practical
non-identifiability structure in the likelihood. Adding
orthogonal signals fluorescent signals such as done with
cPCF [100] is the attempt to expose more of p(K, t) than
Po(K, t) does.

1. HMMs, even under unrealistic optimal data and
prior knowledge scenarios, have a degree of a

practical non-identifiability problem.

The following section scrutinizes the likelihood of PC
data of the 4-states-1-open-state model for unrealistic
optimistic data and prior knowledge scenarios. It is
demonstrated that in these best-case scenarios, the
likelihood has a degree of a practical non-identifiability
problem, which indicates that HMM inference has, in
general, a practical non-identifiability problem.
A practical non-identifiability problem exists due to
an infinite area in θ where the likelihood is insensitive
to changes of some kij ’s or τ−1

i ’s. The reasons for the
non-sensitivity are further investigated in App. B by
comparing the deterministic mean kinetics, Po(K, t), for
different K. The combination of rate-limitations with
the limited influence of some kij on the equilibrium open
probability, Po(K, t = ∞), causes Po(K, t) to lose its
sensitivity towards changes of the chemical rates in an
infinite volume in θ. One might consider it as intrinsic
inferential limits of the protein’s model likelihood.
Inferring some of the kij ’s with a low uncertainty defines
for the other more uncertain kij ’s where the likelihood
becomes completely insensitive in θ for the value of
these kij ’s. where in θ the likelihood becomes completely
insensitive for these kij ’s. Ultimately, this causes the
likelihood of partially observed CRNs to have a degree
of practical non-identifiability even for completely
experimental noise-free data.

2. The fading sensitivity of some chemical rates on
the observed kinetics induces practical

non-identifiability.

When modeling experimental data, the intrinsic inferen-
tial limits interact with the data’s bandwidth, experiment
duration, and signal-to-noise ratio. Nevertheless, it is

shown herein that the intrinsic inferential limits of a CRN
might become the bottleneck for the degree of practi-
cal non-identifiability for many kij ’s or τ−1

i ’s the entire
model.
In the ML context, it is one prerequisite for entire practical
identifiability in contrast to practical non-identifiability
[35] that the parameter values of likelihood surfaces of
constant value form compact sets. In a 1D setting, one
could formalize this prerequisite to that

lim
kij→∞

log(p(y | kij)) = −∞ (B2)

holds. Similarly, lim
kij→0

log(p(y | kij)) = −∞. In other

words, the model’s predicted statistics, given the set of
parameters, have to be further and further away from the
true statistics of the data if some parameters are more
and more diverging. When sampling a posterior, given
a minimal informative prior, with a finite sampling box,
one assumes that Eq. B2 is sufficiently fulfilled at the
limits of the sampling box.
The discussion of the forward model (App. B) indicates
that the likelihood of macroscopic HMM data beyond
trivial examples has the opposite of Eq. B2 as a general
feature: If the global sensitivity of Po(K, t) for some scal-
ing magnitude is vanishing, then the derivative of the
log-likelihood must approach 0.
In the following, a simulated best-case data and prior
knowledge scenario shows that practical non-identifiability
features arise in a likelihood which is an exact representa-
tion of the statistics of the simulated data. The practical
non-identifiability problem becomes essential for maxi-
mum likelihood estimation or Bayesian statistics at poor
data quality. Nevertheless, it is always present in principle.
Again, this does not mean there is no optimal parameter
set in the posterior or likelihood, but the corresponding
uncertainty quantification faces severe problems (Fig. 1).
Suppose the likelihood of the model used for the inference
has a unique global optimum but becomes flat in some
directions. In that case, the inference quality must be
judged by how high the likelihood’s maximum is relative
to its flat area. In the case of Bayesian statistics with the
applied Jeffreys prior, one can transform this criterion
into how much the posterior decays (5 a,b) before its
slope is approximately the slope of the log-uniform prior.
Corresponding to the profile likelihood technique [33], one
may define that, for example, R(τ−1

i ) needs to be decayed
to 10−2 relative to the value of the posterior’s peak before
its slope drops to 1.05 of the log uniform prior slope to
call the parameter identified. Then Nch = 102 (5 a) would
be by definition not be considered identified, even if the
posterior has some interval which is clearly distinguished
from the flat rest of θ. In contrast, if we define that the
posterior needs to decay at least to 10−1 before its slope
drops to 1.05, then it would be considered as identified.
One needs this definition based on how high is the peak
of the posterior relative to the prior dominated area to
justify the limits of the sampling box after one has done
the sampling. That is because outside of the sampling
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box is always an infinite amount of probability mass due
to the practical non-identifiability problem, given that an
improper prior (Eq. 8) is used.

3. The profile likelihood reveals flat parts even in a
best-case scenario.

We generate idealized model data sets from CRN1
(Fig. 2) and then add in a step-wise manner intrinsic
fluctuations of the ensemble and instrumental noise to
the synthetic signal. We calculate for each time point the
open probability Po(K, t) of the model and derive from it
the mean signal

E[y(t)] = NchiPo(t) (B3)

and its variance

var[y(t)] = σ2
intrin = Nchi

2Po(t)(1− Po(t)) (B4)

utilizing the multinomial approximation of the distribu-
tion of stochastic gating and binding of ion channels in
macroscopic patches [99]. The initial preparation of the
relaxation experiment assumes that all channels are at C1

because the ligand concentration holds L = 0. Further,
only one data point per time trace is used per activation
and relaxation experiment With these conditions, the
multinomial assumption used in [99] precisely describes
the data’s statistics. Otherwise, the actual likelihood,
given the Markov assumption, must be based upon a
convolution of multinomial distributions [38, 77].
As asymptotically ideal data, we use the true model’s
mean current signal (Eq. B3) without any intrinsic
or extrinsic noise (Fig. 11, black dashed curves).
Then, we additionally sample the stochastic time
evolution by drawing from a binomial distribution
n(t) ∼ binomial(Nch, Po(k, t)) current data for each time
step (Fig. 11, blue and green curves) and finally add
some experimental white noise with constant variance
(Fig. 11, orange curves). In that way, we generate data
sets that match the white noise assumption of the RE
approach [99], which differs from simulating data by
the Gillespie algorithm. In contrast to the Markov
property (i.e., included in the Gillespie algorithm) of
actual experimental time series data, we switch the MM
property off. The MM property lowers the information
content of a time trace (see, [99] Fig. 10). Hence, the used
data sets contain more information than actual HMM
data with the same sampling frequency. Consequently,
the following analysis is a best-case data scenario
corresponding to a massive bootstrapping of the data:
one data point per time series (see, [99] Fig. 10).
These data sets are analyzed by assuming different
likelihoods. For the perfect data set (Fig. 11, black
dashed curves), we use a normal log-likelihood which
inherits its mean signal and variance from the above-
stated multinomial assumption of the RE approach [99].
The blue curve represents the log-likelihood value for

binomial data analyzed with a normal log-likelihood and,
correspondingly, analyzed with a binomial log-likelihood
(green curve). We fix all parameters but one to their
true values and plot the profile log-likelihood vs. the
scaled k̃ij = kij/kij,true parameter. This way, a very
informed prior knowledge of the rate matrix is assumed,
as every other relevant parameter except the scaled
one is precisely known. Our inverse modeling scenario
corresponds to the forward modeling scenario discussed
in (Fig. 10). In contrast to [33, 36, 101], the other
parameters are not optimized such that the profile
likelihood herein displays the contour along a straight
line in θ while their procedure searches for the slowest
decay of the likelihood given one fixed parameter as a
constraint, which is not necessarily a straight line; it is
some lower dimensional, potentially curved submanifold
in θ. However, the approach used herein seems sufficient
for displaying pathologies of the 1D likelihood. Note
that the profile of the log-likelihood is identical to the
profile of a 1D log posterior derived from a uniform prior
distribution. Nevertheless, if more chemical rates are
unknown, likelihood profiles are generally not identical to
the 1D marginalized posterior.
In the first column (Fig. 11 a,b) we investigate k43 and
k34 the opening and closing rates of the channel, respec-
tively. Even if it is not displayed, there exist inevitably
an upper limit of − log(p(y | kij)) for scaling k43 because
of the observed loss of sensitivity of Po(K, t) “occurring”
above scalings of 103 (Fig. 10 a). That is because the
normal likelihood uses only the mean signal and its
variance as parameters, which are functions of Po(K, t).
Ultimately, Po(K, t) becomes insensitive even to changes
of large k43 and k34 (Fig. 10 b, green curves). Hence
− log(p(y | kij)) cannot go to infinity. Correspondingly to
the large interval, in which Po(K, t) is sensitive (Fig. 10
a) the limiting behavior of − log(p(y | kij)) is beyond the
limits of panel Fig. 11 a.
Note that the more accurate binomial log-likelihood re-
veals a slower increase of its negative log-likelihood values
(Fig. 11 a-d). This means that the normal approximation
rules out large deviations from the true value more
strictly than the true likelihood. The difference between
the binomial and normal log-likelihood is reminiscent
of the breakdown of the normal approximation to the
binomial distribution when Po(K, t) is close to 1 or 0. The
vanishing sensitivity of Po(K, t) of other rate constants
for k34 and k43 are (Fig. 11 a,b), in the considered case,
not the bottleneck as additional experimental noise
(Fig. 11 a orange curves) strongly affects the depth of
the minimum. If we add some noise with σexp, the total
variance of the signal will be var[y] = σ2

intr + σ2
exp. With

a small amount of extra experimental noise (Fig. 11) a,b,
orange dashed curves), the likelihood profile for k34 and
k43 becomes flat, giving each of the parameters a more
noticeable degree of practical non-identifiability . As
expected, a larger magnitude of the noise (orange, solid
curves) makes the minimum more shallow.
Of course, the resort in practice is that the minimum
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FIG. 11. Likelihood Profiles of four different parametersof CRN1 reveal varying degrees of practical non-
identifiability even with instrumental noise-free data Here, we show likelihood profiles, given different data settings and
corresponding likelihoods for different kij . a-d, The black dashed curve indicates the value of a normal log-likelihood analyzing
the perfect data (no experimental and intrinsic noise). The perfect data are the result of calculating the deterministic solution of
the RE. The blue line represents binomial data analyzed with a normal likelihood. Green represents the binomial data analyzed
with binomial likelihood. We add white normal distributed noise to the binomial data (orange curves) with σ = 1 (dashed curve)
σ = 10 (solid curve).

negative log-likelihood is deep enough. It is still almost
an order of magnitude deep, and the minimum is of the
order of 104 such that in the space of exp(log(p(y | kij)))
where one evaluates parameter non-identifiability,
the corresponding relative height of the likelihood’s
maximum is even higher above the flat parts. That
enables almost arbitrary high-confidence thresholds [33]
in the probability space. The word ’almost’ seems not
even worth a technical note, given that the data used
to calculate the log-likelihood profile creates such a low
minimum in panels a and b. Still, it is impossible to
choose an arbitrarily high confidence threshold (Fig. 1,
black dashed lines) in the maximum likelihood framework
that delivers a finite confidence region for the parameter
k43. Bayesian analysis with a Jeffreys prior would
technically have the same practical non-identifiability
feature, leading to an improper posterior on k43 ∈ (0,∞).
The practical non-identifiability aspect, induced by the
rate limitations due to other finite chemical rates, of
the HMM becomes relevant when considering k32 and
k21 = τ−1

1 (Fig. 11 c,d), respectively under identical
experimental conditions. The right-hand side of the
likelihood is flat even under the perfect data assumption
because Po(K, t) reached its global sensitivity limit
(Fig. 10, b). In other words, it is more suited for
inverse modeling if there is a global sensitivity limit,
the likelihood based on a rate matrix with an infinitely
scaled k32 or k21 = τ−1

1 does not become an infinitely
bad predictor of the data, but that is what the Eq. B2
requires in order that the model has no degree of practical
non-identifiability . Still, if the data quality is enough,
the minimum of the negative log-likelihood might be

deep enough.
If one extrapolates these observations, one can conclude
the following: On the one hand, the more unknown
parameters the rate matrix has, the more flexibility might
the likelihood have to repeal the effect of one misplaced
parameter in the signal by tweaking other parameters;
hence, more or higher-dimensional submanifolds might
emerge in θ on which the likelihood profile (surface) is flat.
If one needs to learn the full rate matrix, the kmn, which
influences the data the most, given the tested conditions,
will have the sharpest marginal posterior. That defines
where the marginal posteriors of the other kij become
flat. Because at some value of kij , the likelihood will have
lost all sensitivity to the exact value of kij . This does not
mean that these kij do not have a peak somewhere else.
On the other hand, it is straightforward to construct
with more unknown chemical rates a direction in the
higher dimensional θ where the rate limitation of a single
chemical constant by other chemical rate constants is
repealed by scaling others, too. Assuming a scaling acting
simultaneously on k21, k32, and k43 and that the other
chemical rates are fixed at their true value, The scaling
means moving the chemical rates along a diagonal in θ.
Moving along this direction the likelihood has the desired
limk21→∞ limk32→∞ limk43→∞ p(y | k21, k32, k43) = 0 for
data, which is uncorrupted from experimental noise.
In this limit, the kinetics become a step function from
Po(t = 0) = 0 to Po(t = ∆t) = 1. Given the finite
bandwidth of real experimental data, this happens
already for finite k21,k32, and k43. In contrast, for each
direction along the parameter axis k12, k23, or k34 alone
limkij→∞ p(y | θ)) = 0. So, we can deduce from the
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model structure by the forward model at least four trivial
directions in θ for which the likelihood behaves rather
PI-like, given ideal data without any experimental noise.
The existence of some PI-like directions in the parameter
space is, of course, not sufficient to make the model
entirely PI.
In conclusion, in a Bayesian framework, the posterior
sampled in a sufficiently large sample box with enough
samples would always be dominated by the prior in the
right tails of the inverse dwell times. Thus, if we try to
be uninformative by equipping the time scales with a
log-uniform prior and setting the sampling box limits to
huge values, we end up with a posterior, which depends
accidentally on the nonphysical limits of the sampling
box. Strictly speaking, this is true for all parameters.
The depth of the log-likelihood minimum around the
actual value ensures that this is unnoticed in most data
scenarios. That said, posteriors derived from the minimal
informative prior still have a peak (Fig. 5a-b around the
true value and cover the true value within a considerable
part of their peak; thus, we still gained information.
Notably, in the strong data, case [38], without knowing
that the likelihood becomes flat in the inverse time-like
parameters and without any elaborated prior selection,
we showed in [38] that the HDCVs have the expected
coverage frequency over the true values. In other words,
the calculated Bayesian uncertainty of the parameters
matches the frequency of finding the parameters within
a volume to a high degree if the algorithm correctly
maps the first-order Markov property of the data. Thus,
cutting away infinite "probability mass" at some data
strength is just fine because the rest behaves as if the
posterior is well-defined. In contrast, in the weak data
case where the posterior drops only a limited ratio before
it is "flat," the limits of the samples are more critical.
One could define thresholds that sort out samples in
the flat likelihood area and define the posterior from
the remaining, equivalent to sampling it with a smaller
sampling box. It is beyond the scope of this article to
investigate the necessary numerical criterion, what is flat
enough that one should consider the part of the posterior
as dominated from the prior. The performance of such
an approach is also out of the scope of this article.

Appendix C: Definition of minimally informative
(MI) priors by Jeffreys’s rule

1. Nonlinear coordinate transformations alter the
functional form of a prior.

To demonstrate potential problems of uniform priors in
combination with weakly informative data and to contrast
them against the benefits of a minimally informative prior,
a definition of how to construct a minimally informative
prior, p(K), is required. We want the posterior to be
as sensitive to the data as possible when little is known

about some parameters. At first glance, a uniform prior
seems to be the least biased choice. However, uniformity
of a distribution is not invariant under non-linear param-
eter transformations. Therefore, a uniform prior is not in
general MI, it often induces biases [63]. For example, one
can parameterize a model of a monomolecular chemical
reaction in terms of either the rate constant k or the
activation energy EA. Their relationship is often approx-
imated by Arrhenius’s law k = A(T ) · exp(−EA

RT ), where
R is the gas constant, T the temperature and A some
temperature-dependent proportionality constant. Let us
define kmax,box as the upper limit of the sampling box.
What shape has the prior pEA

(EA) in the parameteriza-
tion of EA, if we assume pk(k) = uni(0, kmax,box) in the k
parameterization and A(T ) and T to be known? It turns
out that EA would be exponentially distributed. However,
if one assumes a log-uniform distribution pk(k) ∼ 1

k , then
EA would be uniformly distributed.

2. Different parameters need to have different
minimally informative priors

Parameters of many probability distributions can be
classified into location, scale and shape parameters based
on their behavior under transformation groups. The
probability density ps of a scaling parameter s obeys
ps(y) = p(y/s)/s. Typical examples of scaling parameters
are the standard deviation σ of a normal distribution or
the mean dwell time τ to remain in a specific Markov
state. Note that dwell times tdwell ∼ 1/τ exp(−tdwell/τ)
are exponentially distributed. Various notions of "minimal
information" have been proposed [67], which can result in
different priors. For example, Jaynes [67] and Jeffreys [64]
argued for a log-uniform prior for a scaling parameter:

p(τ) ∝ 1

τ
. (C1)

Jeffreys’s arguments are mainly based on a specific non-
linear coordinate transformation. He argues that the
log-uniform prior is invariant under power transforma-
tions, meaning that any u = τ ξ with arbitrary exponent
ξ ̸= 0 has the same functional form

p(u) ∝ 1

u
. (C2)

For example, a minimally informative statement about σ
should be also minimally informative for the variance σ2.
Applied to the parameters of CRNs, the power transforma-
tion k = τ−1 also identifies a chemical rate constant as a
rate parameter. Note that here the term "rate parameter"
should be understood in a statistical sense which defines
a "rate parameter" as the inverse of a scaling parame-
ter. Thus, the functional form of a minimally informative
prior for k remains a log-uniform distribution. Jaynes’s
arguments [67] are based on transformation groups and
lead to Eq. C1, whereas Jeffreys’s original rule yields a
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different result. In his original formulation [63], Jeffreys
defines the prior by

p(θ) ∝
√
det[F(θ)] (C3)

where Fij(θ) = −E
[

∂2

∂θi∂θj
log p(y |θ)

]
is the Fisher in-

formation matrix. Jeffreys’s prior creates a posterior
that transforms covariantly under reparameterizations
of the model, meaning that the same probability will
be assigned to identical volumes in parameter space in-
dependent of the parametrization. Despite its success
in single-parameter problems, Jeffreys’s rule (Eq. C3) is
challenged by multiple inconveniences in multi-parameter
inferences [102, 103]. For example, Jeffreys’s rule (Eq. C3)
applied to a Normal distribution model with unknown
mean µ and variance σ2 results in a prior p(µ, σ) ∝ σ−2,
contradicting Eq. C1 of [67] but also the revised version
of Eq. C3 [64]. If, on the other hand, each parameter is
treated independently, p(θi) ∝

√
|Fii(θ)|, assuming that

the others are known, then we obtain the log-uniform
prior p(µ, σ) ∝ σ−1. Thus, we will use a revised version
Eq. C3 in the following, which treats location, scale and
shape parameters independently, as suggested by Jeffreys
himself [64] and consistent with [67]:

p(θ) = p(µ, τ , ϵ) ∝
√
det[F(ϵ)]

∏
i

1

τi
. (C4)

The location parameters, µ, such as the mean value of the
normal distribution, are assigned uniform priors. Each
scaling parameter, τ , has a log-uniform prior. Only the
shape parameters ϵ are treated conjointly according to
Jeffreys’s rule [64]. In addition, we simplify Eq.C4 by
assuming that

√
det[F(ϵ)] can be applied to each column

of K (Eq. 16) independently. In that way, we obtain
closed-form solutions of

√
det[F(ϵ)] derived from simpler

statistical models for the remaining ϵ of each column of
K.

Appendix D: Illustration of the prior for a column of
the rate matrix with two Markov transitions leaving

the state

Here, we discus the shape of the minimally informative
prior corresponding to one column of K for two different
scenarios. If the CRN assumes, e.g., two existing Markov
transitions, Wi = 2, leaving the i-th state, the correspond-
ing prior needs to be a beta distribution (2d Dirichlet
distribution, red, inset of Fig. 12a). The probability
drawn from the beta distribution is ϵji, and because
there is only one alternative transition, the corresponding
probability of that transition equates to 1 − ϵji. Three
assumed Markov transitions, Wi = 3, require a 3d
Dirichlet distribution (Fig. 12a); four connections are
distributed by a 4d Dirichlet distribution, et cetera. The
only exception is a Markov state at some CRN’s end.
This Markov state is only connected by one transition to

the network. In that case, kji = τ−1
i such that there is

only the log-uniform distribution (Fig. 12b) present for
this column of K. To understand the difference in the
assumptions between a log-uniform distribution for τ−1

i
(Fig. 12b, blue curve) and a uniform prior on τi (green
curve) consider the following. A uniform prior states that
one has ten times more probability in [101 − 102] than in
[100 − 101] that the actual value is in that decade. This
relationship continues for each decade. In contrast, if one
assumes a log-uniform prior such that the exponent is
uniformly distributed, it means that each decade has the
same probability. Notably, both distributions, uniform
and log-uniform, are improper (Eq. 8), which causes
the posterior to be improper if the likelihood is too flat.
Similar to the uniform distribution, the log-uniform
distribution is only a distribution if restricted to some
interval [a, b] ⊂ (0,∞) with 0 > a > b < ∞. That
has potential risks for any statistical inference. Below,
App. B 1, indicates that it is a general feature of HMMs
that the likelihood is flat in a space of infinite volume and
only in a finite volume around Ktrue is the likelihood, not
flat. That means using improper priors should lead to
an improper posterior, which we can reproduce (Fig. 5).
So, careful checking of the posterior’s tails is needed to
understand how sensitive the results of the inference are
to the typically subjective limits of the sampling box.

Appendix E: Some considerations when the RMSE
should be evaluated on the logarithm of the

parameters

To calculate the RMSE of p(K | YT ), the samples are
reparametrized back to kij ’s for the following reason. The
probability, ϵji, which Markov transition is chosen, ex-
ists on a probability simplex.Relative errors from Ktrue

cannot be unambiguously merged into the RMSE as long
as the boundaries are close. Nevertheless, similar prob-
lems arise with chemical rate constants at kij = 0. A 10
times larger parameter value contributes with a relative
error of 9 according the definition in [38] while a 10 times
smaller parameter value contributes only with 0.9 rela-
tive error. However, it is reasonable to care more for the
multiplicative deviation E[kij/kij,true] because kij ’s are,
in the statistical sense, inverse scaling parameters. When
the information in the data is weak, one expects large
multiplicative deviations from Ktrue and correspondingly
a diffuse p(K | YT ), which are influenced by the math-
ematical constraints. p(K | YT ), will be far away from
multinomial distributions. Hence, a redefinition (Eq. 21)
compared to the definition of the RMSE of [38], seems
obligatory. The boundaries at zero are eliminated by log
transformation. The mean value is the standard point
estimator in Bayesian statistics. It converges towards the
peak of p(K | YT ) if the distribution becomes monomodal
and symmetrical. Nevertheless, it is shown (inset, Fig. 5)
that reporting the peak of the marginal distributions due
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FIG. 12. MI prior for a Markov state with supposed three transitions that exit the state. a A 3d Dirichlet prior
dir(0.5, 0.5, 0.5) (black) for a supposed state which has three Markov transitions leaving the state such as state C4 in CRN2
(Fig. 2). For a supposed state with two exiting Markov transitions, the corresponding dir(0.5, 0.5) = beta(0.5, 0.5) (red) is
displayed in the first two columns. Usually, the beta distribution is only considered as the distribution of success probabilities.
Nevertheless, each draw from a beta distribution is a draw from a probability simplex by Psuccess and Pfail = 1− Psuccess. The
constraints

∑
i ϵi = 1 and 0 ≤ ϵi ≤ 1 of the probability simplex in 2d create a 1d submanifold, simply a straight line (red).

However, the constraints define a 2D submanifold embedded in 3D when three outcomes exist. b, shows the possible alternatives
for the prior on τi or one kji of column the i-th state which sets the time scales of the Markov transitions leaving the state.
The panel contrasts the log-uniform prior (blue) against the uniform prior (green) and the a gamma prior (yellow) which
would have regularising effect if small but finite parameters are used. A simple way to draw from a log-uniform distribution is
τ ′ ∼ uniform(a, b) followed by τ = 10τ

′
. This way of drawing log-uniform random numbers shows that each decade is equally

probable.

to the practical non-identifiability problem makes sense.
Note that for small multiplicative deviations (i.e.,
E[kl]/kl,true ≈ 1) and using a Taylor series expansion,
one can show that

Error(logE[k]) =
√∑

l(log(E[kl]/kl,true))2

≈
√∑

l(E[kl]/kl,true − 1)2

= Error(E[k]), (E1)

holds. Hence, the redefinition becomes equivalent to
the of the RMSE in [38]. In aid of illustration, we use
the PC data (Fig. 2) and compare Error(E[k]) of the
definition in [38] with the new definition. As previously
done, Nch is used as a measure for the PC data quality
(Fig. 13); thus, also as a proxy for the information
contained in the data for a given model. The transition
(Fig. 13) that both definitions become equivalent occurs
roughly at Nch < 2 · 103 = Nch,crit. Below Nch,crit, the
RMSE of the logspace is compared to the error on
chemical rate space 1 − 2 orders of magnitude smaller.
Only minor differences can be distinguished aboveNch,crit.

a. The learning of the model on the non-log parameter space

The influence of the Jeffreys rule inspired prior with
diffusion limit on the single parameter level (Fig. 14)
is visualized by HDCIs (Eq. 12) vs. Nch. For clarity,
we plot for the uniform prior (green dashed lines) and
for the Jeffreys prior (gray area) only the 0.95-HDCI.
However, a series of HDCIs is plotted for the diffusion
limit prior (blue area). The log-space is not used; instead,
a log-log scaling is applied to indicate the skewness of the
marginal posteriors. Due to the skewness of the marginal
posterior distributions, the HDCIs differ from quantiles.
The posterior of τ̃−1

1 , which is also identical to p(k̃12 | YT )
(blue posterior), since τ−1

1 = k21 is cut by the diffusion
limit unless the data quality is very high. The additional
information allows confining the samples to a much more
restricted space producing decent inferences even atNch =
102. The bias towards too large τ−1

1 of p(τ−1
1 | YT ) using

the minimally informative prior now turns into a bias
to too small τ−1

1 . The applied constraints on k32 have
also for p(τ−1

2 | YT ), to which the second binding rate k32
contributes by τ2 = k32 + k12, a regularizing influence.
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FIG. 13. Comparing the two RMSE definitions based
on the previously used CRN1 PC data. The solid line
corresponds to the RMSE on the log space. The posterior was
sampled using a uniform prior. The two RMSE definitions
are equivalent for Nch ≥ 2 · 103. The two definitions deliver
indistinguishable results at Nch,crit.

That is true even though it cuts only through the far
tail p(k32 | YT ) (not shown here). In the regime Nch ∈
[102, 103], the constraint makes a very vague p(τ1 | YT )
where the 0.95-HDCI covers up to two orders of magnitude,
including a potential practical non-identifiability problem,
to a decent p(τ1 | YT ). The 0.95-HDCI spans [0.4, 1.16] in
units of τ̃1. The highly skewed distributions justify the
redefinition of the Euclidean error, the log space.

Appendix F: More data sets for CRN2 showing the
gain of robustness by the minimally informative prior

We continue investigating the benefits and challenges
of the minimally informative prior (continuing the
discussion of Fig. 7) arising when the complexity of the
CRN increases. In Fig. 15 a the pathological dimensions
of p(K | YT ) derived from the uniform p(K) (colored)
against the same dimensions of p(K | YT ) (black) derived
from the minimally informative p(K) are compared.
The less pathological dimensions in the sense that they
deliver roughly Gaussian marginal posteriors are plotted
in Fig. 15 b1-6. We reduce the data quality for the
minimally informative prior (to create a more challenging
scenario), showing the overall gain in the robustness
of the inference by the minimally informative prior.
We further have to work with smaller sampling boxes
(which still contains Ktrue) for the uniform prior (because
of an often not converging sampler). Using a smaller
sampling box for the uniform prior also disadvantages
the minimally informative prior, see Arguments in
Sec VF. Thus, the sufficiently proper posterior for
Nch = 5 · 105 using the minimally informative prior,
shows the overall robustness gain due to the minimally
informative prior. For p(K | YT ) based on a uniform p(K)
we use a set of data sets with practically impossible to

achieve data quality Nch = [7.5 · 104, 105, 2.5 · 105] for
PC experiments.
For the uniform prior, p(log10(τ

−1
2 ), log10(τ

−1
3 ) | YT ),

derived from Nch = 105 per patch, still displays the
practical non-identifiability problem visually. Hence, τ−1

2

and τ−1
3 should be considered unidentified, based on

the herein-employed heuristic criterium (see, discussion
around Eq. 9) to define p(K | YT ) as sufficiently proper
and the parameter identified if the existing practical
non-identifiability pathologies are not detected visually.
However, p(log10(τ

−1
2 ), log10(τ3) | YT ) of the data set

with 20 times smaller Nch and based on the mini-
mally informative p(K) does not display the practical
non-identifiability problem. In contrast, for the next
smaller data set (not shown here), with Nch = 2 · 103
also p(log10(τ

−1
2 ), log10(τ

−1
3 ) | YT ) derived from the

minimally informative p(K) starts to display the practical
non-identifiability problems visually on a linear scale.
For Nch = 2.5 · 105, p(log10(k32), log10(τ3) | YT ) updated
from the uniform p(K) does not display the practical
non-identifiability problem visually anymore. Hence,
the minimally informative p(K) increases the range
of acceptable data for this CRN at roughly a 50 (at
least a 20) fold, likely more for this data-generating
process. Note that τ−1

1 is little influenced by the
practical non-identifiability problem in τ−1

2 and τ−1
3 .

Just as naively expected, the uniform prior based
p(log10(τ

−1
1 ) | YT ) are more narrow and closer to τ−1

1,true

as these posteriors originate from higher quality data.
Note that k21 = τ−1

1 holds because only one Markov
transition leaves C1 (CRN2, Fig. 2 d)

1. Finding a needle in an almost infinite space: The
minimally informative prior helps the sampler to

converge.

To have a decently converging HMC sampler, we
used for the sampling of p(K | YT ) based on uniform
p(K) an about ten times smaller sampling box in the
direction of k32 and τ3. It is plausible that ridges with
a bimodal structure, p(log10(k32), log10(τ3) | YT ) (green
and magenta Fig. 15), cause the convergence problems.
The larger the simulation box in the directions of k32
and τ3 the more would the peak around the true value
and the ridge between the peaks lose its probability mass
until an independently started chain [104–106] typically
explores only one concentration of probability mass or
the other but not both. At some size of the sampling box,
the peak of the posterior around the true K will be like a
needle in the vast constant parts of p(K | YT ) and not be
found by the sampler, unless one changes from uniform to
a minimally informative prior, giving the constant parts
of the posterior the slope of the minimally informative
prior. Inevitably, the second peak exists due to the log10
transformation of the flat posterior in the linear space to
the posterior on the log space. The marginal posterior
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FIG. 14. The marginal posterior quantiles of CRN1 vs. Nch displays an influential diffusion limit even for high
Nch. The red horizontal bars indicate the physical diffusion limit applied in sampling the blue posterior. The black horizontal
bars indicate the true values. The orange horizontal bars indicate the mathematical limit that probabilities hold < 1. Due to
the scaling to each true parameter, this limit is ̸= 1. The green marginal is a 0.95 HDCI with a uniform prior over K. The
gray area indicates the 0.95-HDCIs using the minimally informative prior with no diffusion limit applied. The set of posterior
[0.95, 0.9, 0.8, 0.6, 0.4, 0.2, 0.1]-HDCIs using the minimally informative prior with enforced diffusion limit is shown in blue. Due
to the structure of the CRN (only one transition leaves C1), t−1

1 = k21 holds. Hence, the diffusion limit is identical on both
parameters. For the second ligand binding k32, k32 ∼ log-uniform(k32) is modeled, and the diffusion limit is enforced on this
parameter. As τ2 =

∑
j kj2 is shown, a probability mass above the red bar is possible.

on this part of θ without the logarithmic transformation
is flat (Fig. 15 c.1, c.2). Note that a comparison with
a larger sampling box would disfavor the uniform prior
even more because of the practical non-identifiability
problem. The relative positive effect on the range of
acceptable data quality of the minimally informative
prior grows with the use of larger sampling boxes.
As mentioned above, the limits for a proper enough
p(K | YT ) based on the uniform prior is somewhere
between Nch = 105 and Nch = 2.5 · 105. Unfortunately,
using the visual criterium based on the uniform prior
requires placing the sampling box limits with a lot of luck
around the peak of p(K | YT ), which might be possible if
before a θML is performed. However, this is not helpful
when inferencing HMMs from actual experiments with
the typical data amount typically much below Nch = 104

and data imperfections.
We made this compromise of sampling the posterior based
on the uniform prior in a smaller sampling box to be able
to get a reasonably converging HMC sampler in the sense

that four independently started sampling chains result
in the same p(K | YT ), as judged by the Gelman-Rubin
[104, 107] statistic R̂. For Nch = 2 · 104 and the uniform
p(K) the sample traces (green posterior) have the
desired R̂ = 1 calculated over the four independently
started sampling chains for all parameters. However for
Nch = 105 and Nch = 2.5 · 105 one chain out of 4 chains
starts to show a different sample trace. In principle,
calculating the posterior from only one independent
chain would be enough if one would know that this
chain represents the typical set of the posterior [73] and
has a large enough effective sample size [106]. If we
only calculate the posteriors from the three seemingly
convergent chains, the posteriors (magenta and red
posterior) are well within the predicted probability mass
of the posterior (Nch = 2 · 104, green). That is the
expected behavior of the posterior of a much larger
amount of data. Calculating R̂ from the three similar
chains R̂, we obtain the demanded R̂ = 1. The minimally
informative prior alleviates these challenges. Note, that
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FIG. 15. The minimally informative prior increases the data range for a proper posterior for CRN2 by a factor
of more than 20. a, Four posteriors are compared to show the overall advantage in practical identifiability (sufficiently proper
posteriors) gained by the minimally informative prior. Note that the colored posteriors are all using higher Nch and smaller
simulation boxes, which makes it, in principle, easier for these posteriors to hide their practical non-identifiability pathology,
resulting in an improper posterior. We suppress all marginal posteriors of somewhat boring parameters. Boring in the sense
that they deliver more or less Gaussian-shaped marginal posteriors under all tested conditions. The black posterior derived from
Nch = 5 · 103 is equipped with the minimally informative p(K). The colored posteriors use a uniform p(K). They used data sets
with Nch = [2 · 104 (green), 105 (magenta), 2.5 · 105 (red)] equipped with the uniform p(K). The flat likelihood for k32 and τ3
creates an exponential increase for the posterior of p(log10(k32) | YT ) and p(log10(τ3) | YT ). Note that the simulation box for the
posterior samples of τ2 ∈ [10−2, 106.5] updated from the minimal information is more than an order of magnitude larger than the
range of the simulation box used when the uniform p(K) is employed. The posteriors derived from the uniform p(K) are sampled
by kij and then mapped to the (τ , ϵ)-space b, prior that is used to allow only for minimally violated microscopic reversibility.
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because for the simulated data we know the ground truth
of the parameters such that we have a third independent

criterion judging the remaining sampling chains. Does
the posterior derived from them cover the true values.
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