

1 **Glycogen phase separation drives macromolecular rearrangement and**
2 **asymmetric division in *Escherichia coli***

3 Yashna Thappeta^{1,2,†}, Silvia J. Cañas-Duarte^{1,4,†}, Haozhen Wang^{1,4}, Till Kallem⁵, Alessio
4 Fragasso^{1,2}, Yingjie Xiang⁶, William Gray⁶, Cheyenne Lee^{6††}, Georgeos Hardo^{7,§}, Lynette
5 Cegelski⁵, Christine Jacobs-Wagner^{1,2,3,4*}

6

7 [†]These authors contributed equally to this work

8 ¹Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford
9 University, Stanford, CA, USA

10 ²Department of Biology, Stanford University, Stanford, CA, USA

11 ³Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA

12 ⁴Howard Hughes Medical Institute, Stanford University, Stanford, USA

13 ⁵Department of Chemistry, Stanford University, Stanford, CA, USA

14 ⁶Mechanical Engineering and Materials Science, Yale University, New Haven, CT, USA

15 ⁷ Department of Engineering, University of Cambridge, Cambridge, Cambridgeshire, UK

16

17 *For correspondence: jacobs-wagner@stanford.edu

18 Present address:

19 ^{††}Department of Molecular Genetics and Microbiology, Duke University, Durham, NC,
20 USA

21 [§]Department of Biology, United Arab Emirates University, Al Ain, Abu Dhabi, UAE

22 **ABSTRACT**

23 Bacteria often experience nutrient limitation. While the exponential and stationary growth
24 phases have been characterized in the model bacterium *Escherichia coli*, little is known
25 about what transpires inside individual cells during the transition between these two
26 phases. Through quantitative cell imaging, we found that the positions of nucleoids and
27 cell division sites become increasingly asymmetric during transition phase. These
28 asymmetries were coupled with asymmetric reorganization of protein, ribosome, and RNA
29 probes in the cytoplasm. Results from live-cell imaging experiments, complemented with
30 genetic and ¹³C whole-cell nuclear magnetic resonance spectroscopy studies, show that
31 preferential accumulation of the storage polymer glycogen at the old cell pole leads to the
32 observed rearrangements and asymmetric divisions. Live-cell atomic force microscopy
33 analysis, combined with in vitro biochemical experiments, suggests that these
34 phenotypes are due to the propensity of glycogen to phase separate into soft
35 condensates in the crowded cytoplasm. Glycogen-associated differences in cell sizes
36 between strains and future daughter cells suggest that glycogen phase separation allows
37 cells to store large glucose reserves without counting them as cytoplasmic space.

38

39 **KEYWORDS**

40 Asymmetric division/ bacteria/ glycogen/ nutrient limitation/ phase separation

41 INTRODUCTION

42 Spatial order is an inherent feature of living cells across the tree of life. In eukaryotic cells,
43 this is exemplified by the presence of membrane-bound organelles. These cells also
44 display extensive membrane-less organization, including that mediated by phase
45 separation between various cellular components (Alberti & Hyman, 2021; Banani *et al*,
46 2017; Boeynaems *et al*, 2018; Hyman *et al*, 2014; Rostam *et al*, 2023). Although bacteria
47 typically lack membrane-bound organelles in their cytoplasm, they exhibit spatial
48 organization at multiple levels (Surovtsev & Jacobs-Wagner, 2018), in the form of protein
49 localization, chromosome structure, and phase-separated condensates involving proteins
50 and/or nucleic acids, to name a few (Azaldegui *et al*, 2021; Bakshi *et al*, 2012; Cohan &
51 Pappu, 2020; Landgraf *et al*, 2012). While subcellular organization is particularly evident
52 in bacteria that undergo developmental programs and/or have dimorphic life cycles (e.g.,
53 sporulating bacteria, asymmetrically dividing α -proteobacteria), even bacteria with
54 comparatively simpler life cycles, such as *Escherichia coli* display spatial organization.
55 For example, *E. coli* divides precisely in the middle of the cell through two separate
56 mechanisms. The time-average pole-to-pole oscillation of Min proteins positions the FtsZ
57 cytokinetic ring at mid-cell (Lutkenhaus, 2008; Shih & Zheng, 2013), while nucleoid
58 occlusion prevents cell constriction over nucleoid regions (Woldringh *et al*, 1990).
59 Furthermore, *E. coli* spatially organizes two of its most important cytoplasmic components:
60 the chromosome and polysomes (mRNAs in complex with ribosomes engaged in
61 translation). The chromosome, which compacts into a meshwork structure known as the
62 nucleoid, is spatially positioned inside cells, either near the cell center prior to DNA
63 replication or near the $\frac{1}{4}$ and $\frac{3}{4}$ cell positions after DNA replication and segregation

64 (Badrinarayanan *et al*, 2012; Bates & Kleckner, 2005; Sherratt, 2003). Polysomes adopt
65 a near-opposite localization profile. They are depleted in the nucleoid and enriched in
66 nucleoid-free regions (Azam *et al*, 2000; Bakshi *et al*, 2012; Chai *et al*, 2014). This
67 anticorrelated pattern is thought to be mediated at least in part by the steric exclusion of
68 polysomes from the nucleoid mesh (Mondal *et al*, 2011; Papagiannakis *et al*, 2025;
69 Castellana *et al*, 2016). In contrast, smaller components such as free ribosomal subunits
70 and cytoplasmic proteins can diffuse throughout the nucleoid unimpeded (Amselem *et al*,
71 2023; Bakshi *et al*, 2012; Sanamrad *et al*, 2014), resulting in homogeneous distribution
72 throughout the cytoplasm. This archetypical macromolecular organization is reproduced
73 every generation.

74 The bulk of our knowledge of *E. coli* (and other well-studied bacteria) has largely
75 been derived from exponentially growing cultures. In their natural environments, *E. coli*
76 and other bacteria often experience nutrient deprivation to which they must adapt
77 (Dworkin & Harwood, 2022). In the laboratory, nutrient deprivation occurs in batch
78 cultures when cells exit exponential growth and transition to stationary phase due to the
79 limitation of an essential nutrient. Growth arrest, however, is not immediate. As nutrient
80 availability decreases, cell growth slows progressively until the cell density reaches
81 saturation, marking the onset of stationary phase (Dworkin & Harwood, 2022). During this
82 transition, cells are thought to block new rounds of DNA replication before they stop
83 dividing, ultimately entering stationary phase with a smaller size and lower chromosome
84 content on average relative to their exponential phase counterparts (Åkerlund *et al*, 1995).
85 Yet, the transition between exponential growth and stationary phase remains under-

86 characterized, especially at the single-cell and subcellular organizational levels. This
87 study sets out to fill this gap in knowledge.

88

89 **RESULTS**

90 **Population characteristics change along the culture growth curve.**

91 We first used microscopy and DNA staining with 4',6-diamidino-2-phenylindole (DAPI) to
92 quantify various cellular characteristics (cell area, nucleoid area, number of nucleoids per
93 cell, fraction of dividing cells, intracellular positioning of the division site and of the
94 nucleoid, etc.) along the growth curve of liquid cultures of *E. coli* at 30°C in M9 medium
95 containing 0.2% glucose, casamino acids and thiamine (M9gluCAAT). Under our
96 experimental conditions, cultures exhibited exponential growth up to an optical density
97 (OD) at 600 nm of about 1.0, after which population growth slowed down gradually until
98 reaching saturating ODs around 3.0 (Fig 1A). While the culture might experience a diauxic
99 shift in this medium when transitioning between exponential and stationary phases, we
100 will hereafter refer to this period of sub-exponential growth (between ODs ~1 and ~3) as
101 “transition phase” for simplicity (Fig 1A). This phase is more readily discernible in a
102 logarithmic scale than a linear one (Fig 1A, inset), as it better highlights the deviation from
103 exponential growth.

104 Imaging live cells from the same liquid culture at a high sampling resolution along
105 the growth curve was technically impractical with our setup. Therefore, we imaged DAPI-
106 stained cells (Fig 1B) from independent cultures at multiple ODs on different days and
107 examined how various cellular characteristics may change as a function of the OD. As
108 expected (Buchanan, 1918; Morita, 1990; Bakshi *et al*, 2021), we found that the average

109 cell area decreased with increasing OD (Fig 1C). The mean nucleoid area also decreased
110 as cells entered transition phase (Fig 1D), as did the mean number of nucleoids per cell
111 (Fig 1E). As a result, the fraction of cells with a single nucleoid increased in transition
112 phase, reaching a plateau at OD \sim 1.5, before the cell density saturated (Fig 1F).
113 Meanwhile, the fraction of cells undergoing constriction at the division site gradually
114 decreased around the onset of transition phase (OD \sim 1) and continued to decrease until
115 the culture reached stationary phase (Fig 1G). These results are consistent with cells
116 undergoing one or more so-called ‘reductive divisions’ after DNA replication initiation has
117 stopped (Nyström, 2004; Nyström & Kjelleberg, 1989). This uncoupling between DNA
118 replication and cell division explains the reduction in chromosome copy number per cell
119 by the time the culture enters stationary phase (Åkerlund *et al*, 1995).

120 To our surprise, while the position of the cell constriction site was symmetric across
121 cell populations sampled during exponential phase (OD $<$ 1), it became increasingly
122 asymmetric during sub-exponential growth in the transition phase (OD $>$ 1) (Fig 1H).
123 Transition phase cells with asymmetric constriction sites also displayed asymmetrically
124 positioned nucleoids, creating larger DNA-free space at one pole than the other (Fig 1B,
125 inset where the magenta arrowheads indicate the cell constriction sites). To quantify this
126 asymmetric feature, we calculated the absolute distance between the nucleoid mid-point
127 and the cell center, normalized by cell length. For cells with two nucleoids, we averaged
128 their relative mid-points such that when the center of each nucleoid was positioned at the
129 quarter cell positions, the mean mid-point was located at the cell center (see schematic
130 in Fig 1I). In exponentially growing populations, the mean nucleoid mid-point was
131 maintained close to cell center (Fig 1I, grey curves). In stationary phase, the nucleoid

132 position was more variable (Fig 1I, blue curves), as qualitatively noted before (Chai *et al*,
133 2014). The most striking phenotype was observed in transition phase when populations
134 often displayed a bimodal distribution of nucleoid mid-points (Fig 1I, red curves). This
135 result implies that the nucleoid mid-point tends to be closer to a pole than the cell center,
136 confirming visual inspection (Fig 1B, inset).

137

138 **Cells exhibit asymmetric intracellular distributions of ribosomes, RNAs, and**
139 **cytosolic protein probes in transition phase.**

140 Given the common offset in division site and nucleoid positioning in transition-phase cells,
141 we wondered whether the intracellular organization of other macromolecules also
142 changes when cells exit exponential phase. First, we examined the localization of
143 mCherry-tagged ribosomal protein RplA and freely diffusing msfGFP in the cytoplasm. As
144 expected, in exponential phase, msfGFP was distributed homogeneously throughout the
145 cytoplasm while the RplA-mCherry signal was enriched outside the DAPI-stained
146 nucleoid regions (Fig 2A). The latter is consistent with most ribosomes forming polysomes
147 (Phillips *et al*, 1969; Mohapatra & Weisshaar, 2018) and polysomes being partially
148 excluded from the nucleoid (Azam *et al*, 2000; Bakshi *et al*, 2012; Chai *et al*, 2014). In
149 contrast, in transition phase, both msfGFP and RplA-mCherry signals were depleted from
150 the cell pole farthest away from the asymmetrically localized nucleoid labeled with DAPI
151 (Fig 2A). This depletion was confirmed quantitatively across the population ($n > 488$ cells)
152 by calculating the normalized pole signal difference, which is the fluorescence signal at
153 one (randomly selected) pole subtracted from the corresponding signal at the other pole,
154 and divided by the average fluorescence in the cell. The distributions of normalized pole

155 signal differences were narrow and close to 0 in exponential phase for both msfGFP and
156 RplA-mCherry (Fig 2B), consistent with near-equal concentrations of fluorescent markers
157 between cell poles. In contrast, the distributions of the normalized pole differences were
158 broader and bimodal in transition-phase cells (Fig 2B). In these cells, signal pole
159 differences that were negative (positive) for msfGFP were also negative (positive) for
160 RplA-mCherry (Fig 2B). This correlation (Spearman's correlation $p = 0.67$) indicates that
161 the ribosomes and protein probes are preferentially depleted from the same pole in
162 transition-phase cells. We observed the same intracellular reorganization in transition
163 phase using other ribosomal protein fusions (RplA-msfGFP, RplA-mCherry, or RpsB-
164 msfGFP) and another cytoplasmic protein probe (mScarlet-I) (Fig EV1A-B). Furthermore,
165 GFP derivatives with surface net charges varying between -30 and +15, which reflect
166 most of the range of net surface charges in the *E. coli* proteome (Schavemaker *et al*,
167 2017), were similarly enriched in the nucleoid region during transition phase (Fig EV1C).
168 The comparable localization phenotype across cytoplasmic protein probes of different
169 charges and genetic origins (Fig 2A, Fig EV1B-C) suggests that this subcellular
170 reorganization is likely common among cytoplasmic proteins during transition phase.

171 To determine whether this change in localization pattern extends beyond
172 ribosomes and cytoplasmic protein probes, we also assessed RNA localization in two
173 ways. First, we used a cytosolic mutant variant of RNase E, RNase E Δ MTS, fused to
174 mCherry (Strahl *et al*, 2015), based on the assumption that its localization would, at least
175 in part, reflect that of its RNA substrates. RNase E, which is involved in the degradation
176 of mRNAs and the processing of rRNAs (Strahl *et al*, 2015), is normally membrane-
177 associated via a short membrane-targeting sequence (MTS) (Khemici *et al*, 2008).

178 Deletion of the MTS sequence releases the protein into the cytoplasm (Khemici *et al*,
179 2008). We found that in exponentially growing cells, a mCherry fusion to Δ MTS RNase E
180 mutant exhibited various degrees of accumulation in nucleoid-free regions (Fig 2C). This
181 localization pattern changed during transition phase, with RNase E Δ MTS-mCherry
182 primarily colocalizing with the asymmetrically localized nucleoid, resulting in a marked
183 depletion of the RNase E Δ MTS-mCherry marker at the pole most distal to the nucleoid
184 (Fig 2C). This switch was confirmed at the population level by the drastic change in the
185 distribution of the normalized pole signal differences between phases ($n \geq 3110$ cells, Fig
186 2D). The values in signal pole difference centered around 0 in exponential phase,
187 indicating a near-equal distribution of probe signal between the cell poles. In contrast, the
188 distribution became bimodal with peak values deviating from 0 (Fig 2D), indicative of pole
189 depletion (Fig 2D), as observed for the ribosomes and protein markers (Fig 2B). Second,
190 we imaged cells incubated with SYTO RNASelect, a membrane-permeable fluorogenic
191 RNA dye that has been validated in *E. coli* (Bakshi *et al*, 2014). We found that the
192 RNASelect signal, which was relatively homogeneously distributed in exponential-phase
193 cells, exhibited depletion at a cell pole during transition phase (Fig EV1D).

194 So far, for our analyses of signal depletion at the cell poles, we used snapshot
195 images where the pole identity was unknown and thus randomly assigned. To examine
196 whether the pole selection is stochastic or deterministic, we carried out timelapse
197 microscopy on transition-phase cells carrying RplA-GFP and a DNA-binding protein HupA
198 fused to mCherry to visualize the nucleoid and ribosomes, respectively. These
199 experiments revealed that the HupA-mCherry-labeled nucleoids of cells in transition
200 phase remained closer to the new pole generated at division (Fig 2E, Video EV1). The

201 ribosome signal largely followed the nucleoid, resulting in ribosome depletion
202 preferentially at the old pole (Fig 2E, Video EV1). This pattern was observed in 88.6% of
203 all observed division events (695 out of 784), consistent with a deterministic pole selection.

204

205 **The cytoplasmic reorganization in transition phase cannot be explained by
206 membrane retraction or nucleoid association.**

207 It was recently reported that, in stationary phase or upon acute starvation, the inner
208 membrane of *E. coli* cells often retracts due to the sudden loss of cytoplasmic water and
209 atrophy of the cytoplasmic volume (Shi *et al*, 2021). Therefore, we wondered whether a
210 membrane collapse may explain both the observed nucleoid position asymmetry and the
211 enrichment of cytoplasmic components in the nucleoid space in transition phase. Based
212 on phase-contrast images and cell staining with MitoTracker Green, a fluorescent dye
213 that labels the inner membrane (Shi *et al*, 2021), we found no evidence of membrane
214 retraction driving fluorescent signal depletion at the poles during transition phase (Fig
215 EV2A). In fact, membrane retraction was rare during this phase and observed in only 2
216 cells out of 3035.

217 Interestingly, when we generated filamentous polyploid cells in transition phase
218 using the cell division inhibitor cephalexin (Hedge & Spratt, 1985; Pogliano *et al*, 1997;
219 Rolinson, 1980), we observed that the ribosome (RplA-mCherry) and protein (msfGFP)
220 probes colocalize with the nucleoids and are depleted in nucleoid-free spaces, including
221 between nucleoids (Fig 2F). We confirmed this localization pattern for msfGFP using an
222 FtsZ depletion strain as an orthogonal method to block cell division (Fig EV2B). Given the
223 colocalization with the nucleoid, we questioned whether the observed rearrangement of

224 cytoplasmic components may be driven by direct or indirect association with the nucleoid.
225 Two lines of evidence suggest otherwise. First, in filamentous polynucleoid cells, we
226 occasionally observed a sharp accumulation of fluorescently labeled ribosomes and
227 msfGFP in nucleoid-free space (Fig 2G, purple arrowhead and bracket area, respectively).
228 Second, we noted that the intensity profiles of the msfGFP signal extend beyond that of
229 the DAPI signal (Fig 2A). This was not due to the lower excitation wavelength of DAPI
230 relative to that of the fluorescent protein probes, as the msfGFP signal also extended
231 beyond the nucleoid signal labeled with HupA-mCherry (Fig 2H), which emits at a higher
232 wavelength than msfGFP. Thus, the intracellular rearrangement of ribosomes and
233 proteins in transition phase is not driven by an association with the nucleoid. Instead, it
234 suggests that these cytoplasmic components are excluded by a cytosolic element that
235 accumulates in nucleoid-free space during transition phase, particularly at the old pole
236 when cells are allowed to divide.

237

238 **Glycogen accumulation contributes to the transition-phase phenotypes.**

239 In our search for the cytosolic element driving the observed intracellular reorganization in
240 transition phase, we used whole-cell ^{13}C cross-polarization magic-angle spinning
241 (CPMAS) solid-state NMR to compare the carbon composition of cells between
242 exponential and transition phases. We found that in comparison to exponential-phase
243 samples, transition-phase samples showed a large increase in carbon intensities in the
244 ^{13}C CPMAS NMR spectra between 110 and 55 ppm (Fig 3A, top spectra), characteristic
245 of polysaccharide contributions. We speculated that these carbon intensity increases
246 might correspond to an accumulation of glycogen, a glucose polymer that *E. coli* cells can

247 accumulate under limitation of a nutrient such as nitrogen, sulfur, or phosphate (Preiss,
248 1984; Wilson *et al*, 2010; Preiss & Romeo, 1994; Zevenhuizen, 1966; Mulder *et al*, 1962;
249 Sigal *et al*, 1964; Madsen, 1963). Furthermore, glycogen has been reported to
250 accumulate at cell poles (Shively, 1974; Preiss, 1984; Liu *et al*, 2021b; Alonso-Casajús
251 *et al*, 2006; Preiss & Romeo, 1994). Consistent with our speculation, the ^{13}C CPMAS
252 NMR spectra of bovine and mussel-derived glycogen were consistent with the spectral
253 changes observed in transition phase samples (Fig 3A, middle spectra). We then
254 generated a glycogen-deficient strain ($\Delta\text{glgBXCAP}$) by deleting the glycogen metabolic
255 operon from the chromosome. The ^{13}C CPMAS NMR spectrum of transition-phase
256 samples from this glycogen-deficient strain lacked the large carbon intensity increase
257 observed in the wild-type (WT) strain (Fig 3A, bottom spectra), confirming that this peak
258 corresponds to glycogen.

259 Next, we examined whether the accumulation of glycogen in transition phase
260 drives the phenotypes we observed in that phase, starting with the asymmetries in cell
261 constriction and nucleoid positioning. Since the extent of these asymmetries changes with
262 the OD during transition phase (Fig 1H-I), we co-cultured WT and $\Delta\text{glgBXCAP}$ strains to
263 compare their phenotypes at precisely the same OD. Cells from each strain carried a
264 different fluorescent protein, either mVenus or mSCFP3, to allow their differentiation by
265 fluorescence microscopy (Fig 3B). These strains also expressed HupA-mCherry for
266 nucleoid visualization (Fig 3B). We found that the offset of cell constriction and nucleoid
267 positions from the cell center was minimal for both glycogen-free ($\Delta\text{glgBXCAP}$) and
268 glycogen-producing (WT) cells in exponential phase (Fig. 3C-D, Mix 1). While the offsets
269 considerably increased in transition phase for the WT cells, they did not for the mutant

270 cells (Fig 3C-D, Mix 1). We obtained similar results across biological replicates (Fig EV4,
271 Fig EV5) or when the strain-identifying proteins mVenus and mSCFP3 were swapped
272 between the WT and $\Delta g/gBXCAP$ backgrounds (Fig 3C-D, Mix 2). The findings are
273 consistent with glycogen production in transition phase driving the observed nucleoid and
274 cell constriction asymmetries.

275 Deletion of the glycogen biosynthesis operon also abrogated the intracellular
276 rearrangement of ribosomes (RplA-mCherry) and protein probes (msfGFP) in transition
277 phase (Fig 3E to compare with WT data in Fig 2B). This was also true for the RNase E
278 ΔMTS -mCherry marker (Fig 3F to compare with WT data in Fig 2D).

279 We reasoned that if the physical presence of glycogen at cell poles drives the
280 transition-phase phenotypes, the severity of the phenotypes should correlate with the
281 extent of glycogen accumulation across cells. To visualize glycogen in live cells, we built
282 a glycogen biosensor and placed its synthesis under the control of the isopropyl β -D-1-
283 thiogalactopyranoside (IPTG)-inducible promoter P_{tac} inserted on the chromosome.
284 Inspired by a previous eukaryotic study (Skurat *et al*, 2017), we generated a translational
285 mGFPmut3 fusion to the N-terminus of the starch/glycogen binding domain (CBM20) of
286 the human protein Stbd1. We found that the basal expression from the P_{tac} promoter (i.e.,
287 without IPTG addition) was sufficient to visualize the glycogen sensor when cells reach
288 transition phase, likely due to metabolic regulation (Bren *et al*, 2013; Grossman *et al*,
289 1998). In the absence of glycogen production, the distribution of the glycogen sensor
290 remained diffuse throughout the cytoplasm of $\Delta g/gBXCAP$ cells, similar to a free
291 fluorescent protein such as mScarlet-I (Fig 3G). In contrast, glycogen accumulation in WT
292 cells during transition phase resulted in the accumulation of the glycogen sensor in

293 nucleoid-free space, with its highest concentrations observed in regions from where
294 mScarlet-I was depleted (Fig 3G). The anti-correlation of the fluorescent glycogen
295 biosensor with both the nucleoid marker (DAPI) and the cytoplasmic protein probe
296 (mScarlet-I) across cells ($n = 3,591$) was evident by their markedly negative values for
297 the signal correlation factor (SCF) (Fig 3H), a metric that assesses the correlation
298 between two signals at pixel resolution within individual cells (Gray *et al*, 2019).
299 Furthermore, the glycogen sensor tended to accumulate more at one pole than the other
300 and this asymmetric enrichment correlated strongly with the nucleoid offset from midcell
301 (Fig 3I, $n = 5794$ cells, Spearman's correlation $\rho = 0.75$), consistent with glycogen
302 accumulation effectively “pushing” the nucleoid closer to the opposite pole.

303 Another line of support for the physical presence of glycogen driving the transition-
304 phase phenotypes was provided by observations of cephalexin-treated cells expressing
305 the glycogen sensor and fluorescently labeled ribosomes. Whenever we observed a band
306 of ribosome enrichment in nucleoid-free space (as first illustrated in Fig 2G), this region
307 was flanked by glycogen accumulations (Fig 3J). This observation was independently
308 corroborated using 2-NBDG (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-
309 deoxyglucose) (Yoshioka *et al*, 1996b), a glucose analog that is taken up by *E. coli*
310 (Yoshioka *et al*, 1996b, 1996a) where it can be incorporated into the glycogen polymer
311 (Zhu *et al*, 2020). Upon uptake, the analog is modified to a non-fluorescent form, resulting
312 in a loss of fluorescence signal (Yoshioka *et al*, 1996a) and leading to a low signal-to-
313 noise ratio. Nevertheless, the signal intensity was sufficient to reveal 2-NBDG
314 accumulations flanking ribosome enrichment in nucleoid-free space of cephalexin-treated
315 cells producing glycogen during transition phase (Fig EV3).

316

317 **Preferential glycogen accumulation at the old cell pole through inheritance**
318 **contributes to cellular asymmetries.**

319 We hypothesize that the preferential accumulation of glycogen at the old pole through
320 inheritance over divisions (Boehm *et al*, 2016) causes the cellular asymmetries observed
321 during transition phase. To test this hypothesis, we performed microfluidic experiments
322 on a mother machine-like device in which we visualized the localization of both the
323 glycogen sensor and the nucleoids (HupA-mCherry) in single cells. For the analysis, we
324 focused only on the “mother” cells (i.e., those located at the closed end of the trenches,
325 see Fig 4A), as they can be tracked over many generations (Wang *et al*, 2010). By
326 connecting the microfluidic device to a liquid batch culture, the cells inside the trenches
327 experienced the same changes in nutrient levels during the exponential-to-stationary
328 phase transition as those in the batch culture (Fig 4A) (Bakshi *et al*, 2021). At the start of
329 imaging, exponentially growing mother cells already had a small, but detectable glycogen
330 sensor signal at the old pole (Fig 4B), presumably because these cells inherited the old
331 pole and its content at each division over many generations, resulting in a gradual build-
332 up. *E. coli* is indeed known to synthesize glycogen at a low (basal) rate under exponential
333 growing conditions (Wang *et al*, 2020) . Under our experimental conditions, mother cells
334 transitioned between exponential and stationary phases after 3 to 4 generations based
335 on cell growth measurements (Fig EV6). We found that mother cells increased the area
336 of glycogen sensor signal at the old pole at each generation (Fig 4C), consistent with a
337 progressive accumulation of glycogen due to inheritance at division combined with de
338 novo synthesis.

339 Furthermore, the nucleoid offset from midcell correlated with the area of glycogen
340 sensor signal at the old pole, with both variables increasing over time (Fig 4D). This is in
341 agreement with the preferential accumulation of glycogen at the old pole effectively
342 “pushing” the nucleoid toward the new pole by mutual exclusion. As glycogen
343 accumulation at the old pole increased at each generation (Fig 4C), so did the nucleoid
344 position offset (Fig 4E). In contrast, the nucleoid position offset did not increase in the
345 glycogen-devoid $\Delta glgBXCAP$ mother cells experiencing the same conditions in separate
346 channels (Fig 4E). These observations are consistent with a causal relationship between
347 glycogen accumulation and nucleoid position asymmetry. Consumption of glycogen
348 during stationary phase (Fung *et al*, 2013; Wang *et al*, 2021, 2020) explains the gradual
349 decline in nucleoid position asymmetry observed with prolonged time in this phase (Fig
350 1I, Fig EV5).

351

352 **Nucleoid position asymmetry correlates with division asymmetry across cells**

353 What promotes asymmetric division in cells in transition phase? We considered two
354 possibilities. First, large accumulations of glycogen at the old pole may interfere with the
355 pole-to-pole oscillatory behavior of MinD, which, through its binding partner MinC, is
356 known to affect the position of the FtsZ cytokinetic ring on time average (Shih & Zheng,
357 2013; Lutkenhaus, 2008). Second, by effectively pushing the nucleoid toward the new
358 pole, the accumulation of glycogen at the old pole may shift the division site toward the
359 new pole through nucleoid occlusion, a fail-safe mechanism that prevents cell constriction
360 over nucleoid regions, thereby avoiding chromosome scissoring events (Woldringh *et al*,
361 1990). We found the first possibility unlikely as MinD-GFP continued to oscillate from the

362 edge of one pole to the other in transition-phase cells even when nucleoid asymmetry
363 was evident (Video EV2). The apparent lack of interference is presumably due to
364 glycogen accumulations not adhering to the cytoplasmic membrane, allowing MinD-GFP
365 to diffuse around them and interact with the membrane at the poles. To test the nucleoid
366 occlusion hypothesis, we measured the positions of nucleoids (labeled with HupA-
367 mCherry) and cell constriction sites relative to the cell center from snapshot images of
368 transition-phase cells (where the pole identity is unknown and thus randomly assigned).
369 We found these two variables to be highly correlated across the cell populations (Fig 5A),
370 with a Spearman's correlation of $\rho > 0.58$ across replicates ($n = 6$ with $n > 278$ cells for
371 each replicate), consistent with a mechanism in which the preferential enrichment of
372 glycogen at the old pole promotes asymmetric division primarily by offsetting nucleoid
373 positioning.

374

375 **Glycogen accumulation leads to a corresponding cell size increase.**

376 The preferential accumulation of glycogen at the old pole also affects the cytoplasmic
377 organization of the cell by partially excluding ribosomes, proteins, and RNAs (Fig 3). If
378 division were symmetric and produced two daughter cells of equal size, the daughter cell
379 that inherits the glycogen-richer pole would therefore receive less cytoplasmic content
380 than its sibling. However, analysis of constricting cells in transition phase revealed that
381 the future daughter cells with more glycogen tended to be bigger than their future siblings
382 with less glycogen (Fig 5B), with a Spearman's correlation $\rho = 0.54$ (P value = 0 $n = 365$
383 cells). While there was considerable noise in our measurements, a linear fit across the
384 data suggested a near direct proportionality (i.e., slope ~ 1) between the difference in

385 glycogen amount and the difference in cell size between future daughter cells (Fig 5B).
386 This cell size difference is unlikely to be due solely to a growth benefit associated with
387 glycogen metabolism since it is generated in the mother cell before cell constriction is
388 complete, i.e., when the cytoplasm (and thus, the metabolism) of the two future daughter
389 cells is still shared (Fig 5B). Thus, cells do not appear to “count” glycogen accumulations
390 as cytoplasmic space and effectively create extra (i.e., bonus) space to accommodate the
391 large amount of glycogen produced in transition phase.

392 This bonus-space hypothesis predicts that glycogen-deficient cells should, on
393 average, be smaller than WT cells producing glycogen. To test this prediction, we
394 compared the size of glycogen-producing (WT) and glycogen-deficient ($\Delta g/gBXCAP$)
395 cells grown in co-cultures (Fig 3B). Consistent with our hypothesis, co-cultures of
396 mVenus-expressing WT and mSCFP3-expressing $\Delta g/gBXCAP$ cells revealed that
397 glycogen-deficient cells were smaller than glycogen-producing cells in transition phase
398 (Fig 5C, Mix 1). We obtained similar results when the fluorophores were swapped
399 between the WT and $\Delta g/gBXCAP$ backgrounds (Fig 5C, Mix 2), indicating that the cell
400 size difference was independent of the type of fluorescent protein used to identify cells.
401 Smaller but statistically significant differences in cell area were also found between WT
402 and $\Delta g/gBXCAP$ cells in exponential phase (Fig 5C), which is consistent with basal
403 glycogen accumulation during this growth phase (Wang *et al*, 2020).

404 We also found that the nucleoid signal occupies a considerably smaller fraction of
405 the cytoplasm in glycogen-producing (WT) cells compared to the glycogen-deficient
406 ($\Delta g/gBXCAP$) mutant, particularly in transition-phase cells. This notable difference is
407 evident in single-cell images (Fig 3B, single-cell images) and is further demonstrated at

408 the population level by the lower nucleocytoplasmic (NC) ratios (defined by the nucleoid
409 area divided by the cell area) in WT cells relative to $\Delta g/gBXCAP$ cells (Fig 5D). This
410 disparity was primarily attributable to the differences in cell size between the two strains
411 during the transition phase (Fig 5C), as the nucleoid areas themselves were
412 comparatively more similar (Fig. 5E).

413

414 **Glycogen condensates exclude fluorescent proteins in vitro.**

415 In the bacteriology literature, glycogen accumulations are often described as “granules”
416 due to their round or oval shapes when visualized by electron microscopy (Preiss, 1984;
417 Liu *et al*, 2021b; Alonso-Casajús *et al*, 2006; Preiss & Romeo, 1994). This term can give
418 the impression of a solid. However, recent work in mammalian liver cells has reported
419 that glycogen can undergo liquid-liquid phase separation in the cytosol (Liu *et al*, 2021a).
420 Glycogen extracted from mouse livers has also been shown to undergo concentration-
421 dependent phase separation in vitro when exposed to a crowding agent (Liu *et al*, 2021a).
422 Given these results, we asked the following questions: Does glycogen form liquid
423 condensates under in vitro conditions that mimic the *E. coli* cytoplasm? If so, can these
424 glycogen condensates exclude proteins as they appear to do inside *E. coli* cells?

425 For our in vitro conditions, we focused on three aspects of the *E. coli* cytoplasm:
426 glycogen concentration, ionic strength, and crowder concentration. Given that glycogen
427 represents 0.75-1.2% of the cell’s wet weight in stationary phase after growth in lysogeny
428 broth (Wang *et al*, 2019a; Neidhardt & Curtiss, 1996), we assumed the glycogen
429 concentration range to be between 8 and 13 g/L based on a cell density of 1.1 g/mL
430 (Baldwin *et al*, 1995) (see Table EV1). We elected to use glycogen from mussels because

431 of its commercial availability at a high (>99%) purity. We used a potassium phosphate
432 buffer (pH = 7.0) that includes 85 mM NaCl, 250 mM KCl, 2.5 mM MgCl₂ and 0.1 mM
433 CaCl₂ to reflect the ionic strength of the *E. coli* cytoplasm (Schultz *et al*, 1962; Alatossava
434 *et al*, 1985; Gangola & Rosen, 1987; Szatmári *et al*, 2020). Hereafter, we refer to this
435 solution as the “intracellular salt (IS) buffer”. As a stand-in for cytoplasmic
436 macromolecules, we used the synthetic biocompatible nonionic polymer polyethylene
437 glycol (abbreviated to PEG or PEO depending on its molecular weight). PEG/PEO
438 polymers are available in a broad range of molecular weights. Since size, rather than
439 molecular weight, is the relevant variable for a crowding agent (Asakura & Oosawa, 1954,
440 1958; Sharp, 2015), we used dynamic light scattering to measure the hydrodynamic
441 (Stokes) diameter of PEG and PEO polymers of different molecular weights in the IS
442 buffer (Fig 6A). Our results agree well with an empirical relationship determined in
443 deionized water (pH = 5.5) (Devanand & Selser, 1991) (Fig 6A, line), despite the
444 differences in pH and ion concentrations of the solvents used.

445 We first chose 3 kDa PEG (~3 nm of diameter) to mimic proteins, which are the
446 most abundant macromolecular crowders in the *E. coli* cytoplasm (Neidhardt & Curtiss,
447 1996) with diameters ranging between 2 and 6 nm (Erickson, 2009; Hink *et al*, 2000;
448 Lukatsky & Shakhnovich, 2008). We found that glycogen (10 g/L), visualized by
449 fluorescence microscopy using ConA-FITC labeling (Lvov *et al*, 1996; Becker *et al*, 1976),
450 transitioned from a homogeneously mixed state in the solution to forming droplets as the
451 concentration of 3 kDa PEG increased from 9 to 20 mM (Fig 6B). Consistent with the liver
452 study (Liu *et al*, 2021a), these droplets exhibited liquid-like behaviors, demonstrating
453 fusion events on the minute time scale (Fig 6C, Video EV3). These fusion events resulted

454 in the coalescence of small condensates into larger ones at longer time scales (e.g., 30
455 min, Fig 6D), which is consistent with a liquid-liquid phase separation. Note that these
456 images were captured near the glass surface to keep droplets in focus and facilitate their
457 visualization. In this context, some fusion events resulted in the formation of oval-shaped
458 droplets that did not immediately become spherical. This phenomenon is likely due to the
459 interaction between the droplets and the glass surface, as the droplets within the liquid
460 column remained spherical after fusion and only became less spherical after they settled
461 on the glass surface (Video EV4). We also found that at higher 3 kDa PEG concentrations,
462 glycogen underwent a second phase transition, in which the droplets collapsed into
463 amorphous aggregates (Fig 6B). Timelapse imaging of these aggregates showed no
464 evidence of fusion upon collision (e.g., Video EV5), consistent with a more solid-like form.

465 In addition, we confirmed that the phase separation of glycogen is dependent on
466 its concentration. As shown in a phase diagram (Fig 6E), higher concentrations of
467 glycogen required a lower concentration of crowder to form liquid droplets. By using
468 PEG/PEO of higher molecular weights, we also demonstrated that the formation of
469 glycogen droplets is sensitive to the size of the crowder (Fig 6F). For instance, at least 19
470 mM of 3 kDa PEG was required for liquid droplets to form, while the same could be
471 achieved with only 150 μ M of 100 kDa PEO or 10 μ M of 1 MDa PEO. The two larger
472 crowders (100 kDa and 1 MDa) were chosen based on their estimated diameters, which
473 are \sim 30 nm and \sim 70 nm, respectively (Fig. 6A). These sizes closely resemble those of
474 ribosomes in their free and polysome forms (Brandt *et al*, 2009; Nilsson *et al*, 1997).

475 As both proteins and ribosomes (mostly assembled into polysomes) are excluded
476 from glycogen *in vivo* (Fig 3G-J), we hypothesized that the combined effect of their cellular

477 concentrations could lead to the phase separation of glycogen into droplets. Consistent
478 with this hypothesis, combining the stand-in crowders (10 mM of 3 kDa PEG, 25 μ M of
479 100 kDa PEO, and 5 μ M of 1 MDa PEO) at biologically relevant concentrations for
480 proteins, ribosomes, and polysomes (see Tables S1 and S2) induced the formation of
481 glycogen droplets in vitro. In contrast, none of these crowders alone triggered droplet
482 formation at the same concentrations (Fig 6G). Note that, for the 1 MDa PEO crowder,
483 the concentrations required to drive droplet formation are above its “overlap”
484 concentration (self-crowding) (see Materials and Methods) and thus our estimated
485 diameter for this crowder (Fig 6A) is likely overestimated. Regardless of the crowder size
486 used, glycogen condensation into droplets was found to be reversible: diluting the
487 crowders after the droplets formed led to their rapid (< 1 min) disappearance (Fig 6H).

488 To test whether glycogen condensation into droplets could account for the
489 exclusion of proteins observed in vivo, we added GFP to the solutions and analyzed the
490 spatial distribution of fluorescence intensity relative to the phase-contrast signal of the
491 glycogen droplets. We found that glycogen condensates at the glass surface partially
492 excluded the fluorescent proteins (Fig 6I). This was also observed by performing z-stack
493 imaging of the glycogen condensates suspended in the liquid column, in which protein
494 exclusion remains observable despite the added background from the contribution of GFP
495 molecules in surrounding focal planes (Video EV6). This protein exclusion was observed
496 in all tested combinations of PEG/PEO crowder sizes (2.7–74 nm) and concentrations
497 that led to glycogen condensate formation (Table EV3).

498

499 **Glycogen condensates inside cells are as soft as the rest of the cytoplasm, unlike**
500 **protein aggregates.**

501 Our in vitro data, together with estimates of intracellular macromolecule concentration
502 (Tables S1-2) and the shape of so-called glycogen “granules” in electron micrographs
503 (Preiss, 1984; Alonso-Casajús *et al*, 2006), are more consistent with glycogen forming
504 droplets (liquid-like condensates) over solid aggregates inside cells. Testing this
505 hypothesis is, however, not trivial. The small size of bacterial cells makes it impractical to
506 examine liquid-like behaviors such as droplet fusions *in vivo*, as is often done in eukaryotic
507 cells (Alberti *et al*, 2018, 2019; Hoang *et al*, 2023; Liu *et al*, 2021a). Assays based on
508 fluorescence recovery after photobleaching (FRAP) and single-molecule tracking have
509 been implemented to probe the liquid-like properties of condensate-forming proteins
510 inside live bacterial cells (Alberti *et al*, 2019; Wang *et al*, 2019b). However, while proteins
511 can easily be covalently tagged to a fluorophore through genetic engineering, this is not
512 the case for a polysaccharide such as glycogen. FRAP experiments using the glycogen
513 sensor showed that the fluorescence of the labeled glycogen region recovered from
514 photobleaching (Fig EV7A-B), with half-maximum recovery times of 11.6 ± 2.3 s (mean \pm
515 standard deviation, $n = 70$ cells, Fig EV7C). These values are consistent with FRAP
516 analyses of liquid glycogen condensates in mammalian liver cells (Liu *et al*, 2021a).
517 However, our FRAP measurements are inconclusive due to the non-covalent nature of
518 the interaction between the fluorescent biosensor and glycogen. The observed FRAP
519 dynamics may reflect not only the motion of labeled glycogen molecules but also the
520 (unknown) binding/unbinding kinetics of the fluorescent biosensor to/from glycogen. The
521 use of the fluorescent glucose analog 2-NBDG, which covalently incorporates into

522 glycogen (Fig EV3), is unfortunately not suitable for FRAP experiments. This analog is
523 modified to a non-fluorescent form upon cell uptake (Yoshioka *et al*, 1996b, 1996a),
524 leading to a low intracellular signal-to-noise ratio (Fig EV3).

525 Given these caveats, we turned to atomic force microscopy (AFM) to determine
526 the material properties of glycogen condensates inside *E. coli* cells at the nanometric
527 scale. Our first approach leveraged AFM-based subsurface imaging, which has been
528 used to visualize nuclei and cytoskeletal structures in eukaryotic cells (Guerrero *et al*,
529 2019; Roduit *et al*, 2009). In this technique, the AFM tip indents the cell without puncturing
530 the membranes, and the indentation is deep enough to detect subsurface structures or
531 organelles through variations in their mechanical resistance to the deformation. We
532 adapted this method to bacterial cells to generate two-dimensional (2D) depth-resolved
533 stiffness maps of transition-phase cells (CJW7605) with glycogen condensates labeled
534 with our green fluorescent glycogen sensor (Fig 7A). For comparison, we imaged two
535 other strains, a glycogen-free ($\Delta glgBXCAP$) strain (CJW7668) expressing the yellow
536 fluorescent protein mVenus and a strain (CJW7798) overproducing a blue fluorescence
537 protein, which results in the formation of protein aggregates. The location of these protein
538 aggregates could be easily identified in fluorescence images by the region depleted in
539 mTagBFP2 signal (white arrow, Fig 7B), as previously shown (Papagiannakis *et al*, 2025).
540 All three strains were grown in co-culture to ensure that they experienced the same
541 environment during transition phase, as cell density increases when cultures exit
542 exponential growth (Shi *et al*, 2021). We used correlated fluorescence microscopy to
543 distinguish between cell types (Fig 7B) and to identify the location of glycogen
544 condensates and protein aggregates within cells (arrows, Fig 7B). For all analyzed cells,

545 the preservation of membrane integrity (i.e., no abrupt change in AFM cantilever
546 deformations) was confirmed by examining the force-distance curves (see examples in
547 Fig EV8), using a previously validated method (Janel *et al*, 2019). The 2D stiffness maps
548 revealed that protein aggregates are stiffer than the rest of the cytoplasm (black arrow,
549 Fig 7B). In contrast, the stiffness values were uniformly low across the 2D maps of cells
550 with glycogen condensates, similar to glycogen-free cells (Fig 7B).

551 In addition, we performed an analysis known as “stiffness tomography”, which
552 spatially maps changes in stiffness along the indentation depth (Roduit *et al*, 2009).
553 Comparative stiffness tomography revealed that intracellular regions with protein
554 aggregates became increasingly stiffer with indentation depth, unlike surrounding areas.
555 This indicates that protein aggregates are relatively stiff, consistent with a solid-like state.
556 In contrast, the same type of measurements for regions with glycogen condensates
557 showed a relatively uniform stiffness distribution along the indentation depth, comparable
558 to glycogen-free regions (Fig 7C).

559 Under these conditions, the average cell height across strains ranged from 600 to
560 700 nm (Fig EV9A), as determined by measuring the distance between the glass surface
561 and the AFM tip’s contact point with the cell surface. With subsurface imaging, our
562 measurements were limited to a depth down to 400 nm below the cell surface (Fig EV8A-
563 C). To examine the material properties of glycogen condensates and protein aggregates
564 in a more direct way, we used a sharper AFM tip to penetrate through the cell membranes
565 and directly interact with the intracellular content (Fig 7D). Such an AFM-based approach
566 has been used to measure the stiffness of nuclei inside eukaryotic cells (Liu *et al*, 2014;
567 Oak *et al*, 2025). Here again, we used correlated fluorescence microscopy to position the

568 AFM tip on and off the target sites (Fig 7D). First, we confirmed successful membrane
569 penetrations indicated by an abrupt change in AFM cantilever deformations (see curve
570 examples in Fig EV10), as prior studies have demonstrated (Penedo *et al*, 2021; Del Valle
571 *et al*, 2020). For these cell puncturing experiments, we used a force of 10 nN as a setpoint,
572 which resulted in an average penetration depth of about 500 nm (i.e., $\sim\frac{3}{4}$ of the cell depth)
573 across intracellular regions with or without glycogen condensates (Fig EV9B). In areas
574 containing protein aggregates, the penetration depth was reduced to \sim 400 nm due to the
575 stiffness of these intracellular structures, which resist deformation more than the
576 surrounding cytoplasm (Fig EV9B). To calculate the stiffness of each intracellular region,
577 we determined the slope of the force-distance curves after the membrane puncture point
578 and plotted the median stiffness values from multiple puncture events ($n = 64$) in the
579 target regions (“On”) or control regions (“Off”) (Fig EV10, see also Materials and Methods).
580 This analysis demonstrated that intracellular regions with protein aggregates (“On”) are
581 considerably stiffer than other areas of the cytoplasm (“Off”) (Fig 7E). In contrast, regions
582 with (“On”) or without (“Off”) glycogen condensates within the same cells exhibited
583 similarly low stiffness values (Fig 7E). Collectively, our results suggest that the stiffness
584 of glycogen condensates is considerably lower than that of protein aggregates and is
585 comparable to that of other cytoplasmic regions, supporting a liquid-like rather than solid-
586 like state.

587

588 **DISCUSSION**

589 Our quantitative analysis of transition phase at the subcellular and single-cell level reveals
590 a picture of *E. coli* cell biology that departs from the textbook view in several ways.

591 The first difference relates to division. Asymmetric divisions are typically thought
592 of as exceptions in the bacterial world, restricted to a small subset of bacteria that undergo
593 developmental programs that produce either two functionally divergent daughter cells at
594 each cell cycle (e.g., *Caulobacter crescentus*) or an endospore in response to starvation
595 (e.g., *Bacillus subtilis*). In fact, *E. coli* is often used as the quintessential example of a
596 symmetrically dividing bacterium. However, its division has primarily been examined
597 during exponential growth. Our study shows that asymmetric division and production of
598 daughter cells of unequal sizes become common in *E. coli* when the population exists
599 exponential phase and enters transition phase under our experimental conditions (Fig 1H,
600 Fig 3C, Fig 5A-B), likely contributing to the documented increase in cell size variability in
601 stationary phase (Bakshi *et al*, 2021).

602 We propose that these asymmetric divisions occur because of the propensity of
603 glycogen to spontaneously phase separate into condensates in crowded environments
604 (Fig 6) (Liu *et al*, 2021a). In vitro, glycogen condensates can grow to very large sizes
605 through fusion (Fig 6). Inside cells, their sizes are likely restricted by spatial constraints
606 (cellular and nucleoid boundaries) and out-of-equilibrium thermodynamics (glycogen
607 synthesis/degradation, cell growth/division). In principle, the accumulation of large
608 glycogen condensates could occur in any DNA-free regions, as observed in polyploid
609 filamentous (cell division-arrested) cells (Fig 3J). However, in untreated cells, cell division
610 results in the inheritance of glycogen condensates, which, together with de novo
611 synthesis, results in a gradual accumulation of glycogen at the old cell pole, effectively
612 “pushing” the nucleoids closer to the new pole (Fig 4). In fact, such nucleoid pushing
613 effect can be artificially exacerbated in exponential phase through mutation of the carbon

614 storage regulator gene *csrA*, which results in massive glycogen overproduction (Boehm
615 *et al*, 2016). We propose that the nucleoid position offset generated by glycogen
616 condensates promotes off-center division through nucleoid occlusion (Fig 5A). In
617 stationary phase, this cellular asymmetry decreases and nucleoid positioning becomes
618 more variable (Fig 1I, Fig EV5) due to glycogen consumption (Fung *et al*, 2013; Wang *et*
619 *al*, 2021, 2020), allowing the nucleoid to diffuse more freely through the cytoplasm.

620 Cells in transition phase also diverge from the traditional picture with respect to
621 their spatial organization of ribosomes/polysomes, proteins, and RNAs. In transition
622 phase, these cytoplasmic components adopt a more asymmetric distribution (Fig 2, Fig
623 EV1), which is largely caused by glycogen production (Fig 3-5). Our in vitro experiments
624 suggest that glycogen does not have to assemble into a solid (i.e., a granule) to exclude
625 protein probes, as liquid condensates achieve similar results in vitro (Fig 6I). In fact, based
626 on our calculations (Tables S1-2) and in vitro experiments (Fig 6E-G), the physiological
627 range of intracellular concentrations of proteins, ribosomes, and polysomes is compatible
628 with the combined PEG/PEO concentrations needed for glycogen to phase separate into
629 liquid condensates, but not to collapse into a solid state. Collapsing glycogen into
630 aggregates requires crowder concentrations that well exceed the macromolecular
631 concentration expected inside cells (Fig 6E, Tables S1-2). Furthermore, unlike the
632 amorphous glycogen aggregates, the liquid condensates formed in vitro are
633 morphologically consistent with the round and oval shapes of glycogen bodies observed
634 in electron micrographs of starved cells (Alonso-Casajús *et al*, 2006). Consistent with our
635 results, a preprinted study has shown that concentrating macromolecules in frog egg
636 extracts by ≥ 1.4 -fold demixes the cytoplasm into two liquid phases: a glycogen-enriched

637 phase and a ribosome-enriched phase (Pelletier *et al*, 2021). In *E. coli*, and presumably
638 other glycogen-producing bacteria, this cytoplasmic demixing may be even more likely,
639 as the bacterial cytoplasm is thought to be more crowded than the eukaryotic cytosol
640 based on fluorescent protein diffusion measurements (Elowitz *et al*, 1999; Swaminathan
641 *et al*, 1997; Potma *et al*, 2001; Konopka *et al*, 2009). Furthermore, our AFM
642 measurements suggest that the mechanical properties of glycogen accumulations within
643 cells align more closely with (liquid-like) cytoplasmic material than with solid aggregates.

644 Glycogen is well-known to provide a way for cells to store a large amount of
645 glucose without dramatically increasing the osmolarity of their cytoplasm, as a branched
646 glycogen polymer contains thousands of glucose residues (Bezborodkina *et al*, 2018).
647 Whether its phase separation into condensates is associated with beneficial or
648 detrimental implications for the cell is an interesting question that warrants further
649 exploration. For instance, since glycogen has viscoelastic properties (Persson *et al*, 2020),
650 compartmentalization into condensates might prevent high levels of glycogen from
651 increasing the cytoplasmic viscosity, which could decrease macromolecular diffusion to
652 deleterious levels. Furthermore, if glycogen did not phase separate (i.e., remained soluble
653 and homogeneously distributed in the cytoplasm), the distribution of glucose reserves
654 between daughter cells would be equal. In contrast, our data suggest that phase
655 separation leads to an asymmetric distribution that increases with each division through
656 additive glycogen accumulation at the old pole (Fig 4). This unequal distribution endows
657 a fraction of the cell population with larger energy reserves, which may increase the
658 survival probability of the species under prolonged periods of duress. Glycogen has
659 indeed been reported to facilitate the adaptation of environmental, phototrophic, and

660 pathogenic bacteria to starvation and other stresses (Sekar *et al*, 2020; Bourassa &
661 Camilli, 2009; Klotz *et al*, 2016; Klotz & Forchhammer, 2017; Gründel *et al*, 2012; Wang
662 *et al*, 2020). As for the partitioning of other macromolecules, their exclusion from glycogen
663 condensates does not appear to affect their distribution between daughter cells. This is
664 because division becomes asymmetric in the presence of glycogen condensates; the
665 larger the glycogen accumulation, the more asymmetric the division (Fig 5B), minimizing
666 any potential detrimental disparity in cytoplasm partitioning between daughter cells. In
667 effect, the cells appear not to “count” the space occupied by the glycogen condensates
668 (Fig 5B).

669 The relevance of our work may extend beyond *E. coli*, as glycogen metabolism is
670 widespread across bacteria (Almagro *et al*, 2015; Henrissat *et al*, 2002; Preiss & Romeo,
671 1990; Wang *et al*, 2019a; Wang & Wise, 2011). Induction of glycogen synthesis is a
672 common response when a nutritional element such as nitrogen, sulfur, or phosphate
673 becomes limiting (Holme *et al*, 1956, 1957; Strange *et al*, 1961; Mulder *et al*, 1962; Sigal
674 *et al*, 1964; Madsen, 1963; Zevenhuizen, 1966). Given that bacteria often live in nutrient-
675 fluctuating environments, our findings suggest that the cellular asymmetries in division
676 and macromolecule distribution may be more prevalent in the bacterial world than
677 currently appreciated. In addition, phase separation may be relevant to other bacterial
678 storage polymers besides glycogen. Polyphosphate, an energy-rich anionic polymer, is a
679 good candidate. It accumulates into intracellular bodies, often referred to as ‘granules’, in
680 various bacteria (Albi & Serrano, 2016). Timelapse experiments on starved
681 *Pseudomonas aeruginosa* cells have shown that these so-called granules decrease in
682 number while increasing in size during de novo biogenesis, consistent with fusion events

683 and liquid behavior (Racki *et al*, 2017). Future exploration may shed light on the
684 prevalence, role, and implications of phase separation across storage polymers in
685 different bacteria.

686

687

688 MATERIALS AND METHODS

689 Reagents and tools table

Reagent/resource	Reference/source	Identifier or catalog number
Bacterial Strains		
F-lambda- ilvG- rfb-50 rph-1	(Jensen, 1993)	MG1655
MG1655 <i>rplA::rplA-gfp</i>	(Gray <i>et al</i> , 2019)	CJW4677
MG1655 <i>rne::rneΔMTS-mcherry</i>	This work	CJW5685
MG1655/pEB2-mScarlet-I	AddGene; deposited by Dr. Philippe Cluzel	104007
MG1655 <i>rplA::rplA-msfGFP</i>	(Gray <i>et al</i> , 2019)	CJW7020
MG1655 <i>rpsB::rpsB-msfGFP</i>	(Gray <i>et al</i> , 2019)	CJW7021
MG1655 <i>attB::PproC-msfGFP-FRT-kan-FRT</i>	This work	CJW7083
MG1655 <i>attB::PproC-msfGFP</i>	This work	CJW7275
MG1655 <i>rplA::rplA-mCherry</i>	(Gray <i>et al</i> , 2019)	CJW7324
MG1655 <i>rplA::rplA-mCherry attB::PproC-msfGFP</i>	This work	CJW7325
MG1655 <i>attB::PproC-msfGFP hupA::hupA-mCherry</i>	This work	CJW7326
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(-30)</i>	This work	CJW7485
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(-7)</i>	This work	CJW7486
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(0)</i>	This work	CJW7487
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(+7)</i>	This work	CJW7488

MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(+11a)</i>	This work	CJW7489
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(+11b)</i>	This work	CJW7490
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(+15)</i>	This work	CJW7491
MG1655 <i>rplA::rplA-mcherry/pBAD-GFP(+25)</i>	This work	CJW7492
MG1655 <i>ΔglgBXCAP-FRT-kan-FRT</i>	This work	CJW7537
MG1655 <i>ΔglgBXCAP</i>	This work	CJW7587
MG1655 <i>lacY(A177C) araFGH::spec ΔlacI ΔaraE araBAD::dCas9 galM <PBBa-J23119-sgRNA(ftsZ)-(S. pyogenes terminator)-(rrnB terminator) > gmpA attB::PproC-msfGFP</i>	This work	CJW7588
MG1655 <i>Tn7::Ptac-GFPmut3-CBM20 FRT-cat-FRT</i>	This work	CJW7601
MG1655 <i>ΔglgBXCAP Tn7::Ptac-GFPmut3-CBM20-FRT-cat-FRT</i>	This work	CJW7604
MG1655 <i>Tn7::Ptac-GFPmut3-CBM20 FRT-cat-FRT hupA::hupA-mCherry FRT-kan-FRT</i>	This work	CJW7605
MG1655 <i>Tn7:: Ptac -GFPmut3-CBM20-FRT-cat-FRT</i>	This work	CJW7606
MG1655 <i>ΔglgBXCAP Tn7::Ptac-GFPmut3-CBM20 FRT-cat -FRT</i>	This work	CJW7607
MG1655 <i>hupA::hupA-mcherry</i>	This work	CJW7660
MG1655 <i>ΔglgBXCAP hupA::hupA-mCherry</i>	This work	CJW7661
MG1655 <i>hupA::hupA-mCherry Tn7:: PRpsL-mSCFP3-FRT-kan-FRT</i>	This work	CJW7665
MG1655 <i>hupA::hupA-mCherry Tn7:: PRpsL-mVenus-FRT-kan-FRT</i>	This work	CJW7666
MG1655 <i>ΔglgBXCAP hupA::hupA-mCherry Tn7::PRps-mSCFP3-FRT-kan-FRT</i>	This work	CJW7667
MG1655 <i>ΔglgBXCAP hupA::hupA-mCherry Tn7:: PRps-mVenus-FRT-kan-FRT</i>	This work	CJW7668
MG1655 <i>ΔglgBXCAP /pEB2-mscarlet-I</i>	This work	CJW7718

MG1655 $\Delta minD$ $minE::sfgfp-minD$ $minE::frt$ $kanR$ frt	This work	CJW7872
MG1655 $\Delta glgBXCAP$ $rne::rne\Delta MTS-mCherry$	This work	CJW7877
MG1655 $\Delta glgBXCAP$ $rplA::rplA-mCherry$ $attB::P_{proc-msfGFP}$	This work	CJW7878
MG1655 (DE3) $hupA::hupA-mcherry$ $rplA::rplA-msfGfp-frt-kanR-frt/$ pET28:mTagBFP2-CmR	This work	CJW7798
MG1655 Tn7:: $PRpsL-mSCFP3-FRT-kan-FRT$	Gift from Johan Paulsson	JP1456
MG1655 Tn7:: $PRpsL-mvenus-FRT-kan-FRT$	Gift from Johan Paulsson	JP1457
MG1655 $lacY(A177C)$ $araFGH::spec$ $\Delta lacI$ $\Delta araE$ $araBAD::dCas9$ $galM$ <PBa-J23119-sgRNA($ftsZ$)-(S. pyogenes terminator)-($rrnB$ terminator)> $gmpA$	(Li <i>et al</i> , 2016)	SJ_XTL229
Recombinant DNA		
pBAD-GFP (-30)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (-7)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (0)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (+7)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (+11a)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (+11b)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (+15)	(Schavemaker <i>et al</i> , 2017)	
pBAD-GFP (+25)	(Schavemaker <i>et al</i> , 2017)	
pEB2-mScarlet-I	AddGene	104007
pkD13-msfGFP	(Gray <i>et al</i> , 2019)	
pET28:mTagBFP2-CmR	(Papagiannakis <i>et al</i> , 2025)	
Oligonucleotides		
pNDL-1-Ptac-GFPmut3-CBM20 FRT-CmR-FRT	Integrated DNA Technologies	See Table EV5
Primers for strain construction	Integrated DNA Technologies	See Table EV6

Chemical, Enzymes and other reagents		
P1 phage	ATCC	25404-B1
Ampicillin	Fisher Scientific	BP1760-25
Kanamycin	Sigma-Aldrich	K1377-25G
Chloramphenicol	Sigma-Aldrich	C0378-25G
4',6-diamidino-2-phenylindole (DAPI)	ThermoFisher	D1306
2-NBDG	Cayman Chemical Company	11046
MitoTracker Green	ThermoFisher	M7514
SYTO RNASelect	ThermoFisher	S32703
Cephalexin	Sigma-Aldrich	C4895
PEG1500	Sigma-Aldrich	81210-500G
PEG3000	Sigma-Aldrich	8190151000
PEG4000	Hampton Research	HR2-605
PEG6000	Sigma-Aldrich	81253-250G
PEG8000	Sigma-Aldrich	89510-250G-F
PEG10000	Sigma-Aldrich	81280-1KG
PEG20000	ThermoFisher	A17925.0B
PEG35000	Sigma-Aldrich	81310-1KG
PEO100000	Sigma-Aldrich	181986-250G
PEG1000000	Sigma-Aldrich	372781-250G
Glycogen	Millipore Sigma	361507-1ML
FITC-ConA	(Sigma-Aldrich	C7642-2MG
Pluronic® F-108	Sigma-Aldrich	542342-250G
GFP	ThermoFisher	A42613
mCherry	Abcam	AB199750
Software		
Oufti	(Paintdakhi <i>et al</i> , 2016)	https://oufti.org/
MATLAB R2024b	MathWorks	https://www.mathworks.com/products/matlab.html
ImageJ	National Institute of Health	https://fiji.sc/
Python 3	Phyton Software Foundation	https://www.python.org/
SyMBac	(Hardo <i>et al</i> , 2022)	https://symbac.readthedocs.io/en/latest/intro.html

Other		
Custom-made functions and scripts	This study	https://github.com/JacobsWagnerLab/published/tree/master/Thappeta_Canas-Duarte et al 2025

690

691

692

693

694 **Methods and protocols**

695 ***Bacterial strains and growth conditions***

696 Bacterial strains and descriptions of their constructions can be found in Tables S4 and 5.

697 P1 transductions were performed as previously described (Thomason *et al*, 2007) with

698 the exception that donor strains were grown without glucose supplementation. A lysate

699 of P1 phages was obtained from ATCC (25404-B1). Oligomers used for polymerase chain

700 reactions (PCR) are listed in Table EV6. Lambda red recombination was performed as

701 previously described using the pKD46 (Datsenko & Wanner, 2000) or pSIM6 plasmids

702 (Diner *et al*, 2011). Unless otherwise indicated, cells were grown at 30°C in M9 medium

703 (26.11 mM Na₂HPO₄, 22 mM KH₂PO₄, 8.55 mM NaCl, 18.7 mM NH₄Cl, 2 mM MgSO₄ and

704 0.1 mM CaCl₂) supplemented with 0.2% glucose, 0.1% casamino acids, and 1 µg/ml

705 thiamine (M9gluCAAT). Cells were first inoculated in the appropriate growth medium and

706 grown to stationary phase in culture tubes. They were then re-inoculated into fresh media

707 by diluting at least 10,000-fold and grown until they reached the indicated optical density

708 (OD) at 600 nm. When appropriate, ampicillin (100 µg/mL), kanamycin (50 µg/mL), or

709 chloramphenicol (30 µg/mL) was added to the media for selection.

710 Strains expressing green fluorescent proteins with different net charges
711 (Schavemaker *et al*, 2017) were grown in M9gluCAAT, and fluorescent protein
712 expression was induced with 0.4% arabinose upon re-inoculation of stationary phase
713 cultures. Given the richer medium condition from the addition of arabinose, the transition
714 phase OD ranged from 2.9 to 3.5 instead of 1.2 to 2.7.

715 FtsZ depletion experiments were conducted using strain CJW7588 in the presence
716 of 0.2% arabinose. For exponentially growing cultures, arabinose was added for the
717 equivalent of 2-3 doublings. For transition-phase cultures, arabinose was added in late
718 exponential phase (~OD 0.4-0.5) and imaged ~5 h later when cultures reached transition
719 phase ODs (the equivalent of 2-3 doublings) on an agarose pad made of spent medium.

720

721 **Dyes and labels**

722 To label the nucleoid, cells were incubated with 1 μ g/ml 4',6-diamidino-2-phenylindole
723 (DAPI) for 10 min prior to imaging. To visualize intracellular 2-NBDG localization, cells
724 were grown in M9CAAT supplemented with 0.2% L-arabinose to the desired OD and
725 incubated with 10 μ M 2-NBDG for 10 min, then washed twice in prewarmed spent medium
726 filtered with a 0.22 μ m filter. For the following dyes, concentrations were increased when
727 used on transition-phase cells as cell permeability seemed to decrease with increasing
728 ODs, consistent with a previous report (Bakshi *et al*, 2014). To visualize the inner
729 membrane of *E. coli* cells, MitoTracker Green (Shi *et al*, 2021) was added to the cell
730 culture at a final concentration of 100 nM (exponential phase) or 1 μ M (transition phase)
731 and incubated for 30 min prior to imaging. To label RNA, SYTO RNASelect was used at

732 a final concentration of 500 nM (exponential phase) or 2.5 μ M (transition phase) for 10
733 min and washed twice in filtered spent medium (Bakshi *et al*, 2014) prior to imaging.

734

735 ***Cephalexin treatment***

736 For cephalexin treatment of exponentially growing cultures, the antibiotic (50 μ g/mL) was
737 added for the equivalent of 2-3 doublings. For transition phase samples in M9gluCAAT,
738 cells were incubated with cephalexin (50 μ g/mL) in late exponential phase (~OD 0.4-0.5)
739 and imaged ~5 h later when cultures reached transition phase (the equivalent of 2-3
740 doublings) on agarose pads made of spent medium containing cephalexin.

741

742 ***Co-cultures***

743 For co-cultures experiments related to Fig 3B-D, Fig 5 A, C, D, and E, and Fig EV4 and
744 EV5, cells of four strains (CJW7665-7668), each expressing a different fluorescent protein
745 in either the WT or Δ glgBXCAP background, were inoculated in 2 mL of M9gluCAAT and
746 grown overnight at 30°C with shaking (220 rpm). Each culture was then diluted 1:10,000
747 into fresh 2 mL cultures and returned to the shaker until they reached an OD of ~0.1.
748 Samples of WT and glycogen-devoid strains were mixed proportionally to their ODs to
749 create a ~50:50 mixture. For these experiments, two types of mixtures were used: one
750 included WT cells expressing mSCFP3 and mutant cells expressing mVenus, while the
751 other included WT cells expressing mVenus and mutant cells expressing mSCFP3.
752 Mixtures were made independently in three biological replicates. Each mixture was then
753 diluted 1:10,000 into 50 mL of medium in a 250 mL flask and returned to the shaker.

754 Samples were taken at OD of ~2.6 for transition phase. Samples were prepared for
755 imaging on agarose pads as described above.

756 For the AFM experiments related to Fig 7, WT cells expressing the glycogen
757 sensor (CJW7605), *ΔglgBXCAP* cells expressing the glycogen sensor (CJW7604) or
758 mVenus (CJW7668), and cells overexpressing mTagBFP2 (CJW7798) were inoculated
759 separately in 2 mL of M9gluCAAT medium and grown overnight at 30°C with shaking
760 (220 rpm). Mixtures of the three cell types were made and diluted 1:100,000 into 50 mL
761 of medium in a 250-mL flask and returned to the shaker. When the mixtures reached an
762 OD of ~0.5, IPTG was added to a final concentration of 100 mM to induce the
763 overexpression of mTagBFP2. Cultures were returned to the shaker and allowed to reach
764 a final OD of ~1.6. Samples were imaged in agarose pads containing filtered spent
765 medium (OD600 ~ 1.7) to verify the presence of protein aggregates in cells with
766 mTagBFP2 fluorescence.

767

768 **Microscopy**

769 Unless otherwise indicated, cells were imaged on 1.5% agarose pads made with the
770 appropriate spent growth medium. For samples with high cell density in late transition or
771 stationary phase, cells were diluted in warm filtered spent medium prior to spotting on an
772 agarose pad for ease of cell segmentation.

773 Microscopy was performed using Nikon inverted microscope set-ups controlled by
774 the NIS-Elements AR software, with the following specifications. One of the set-ups
775 consisted of a Nikon Ti2-E inverted microscope equipped with a Perfect Focus System
776 (PFS), a motorized stage, a 100x Plan Apo 1.45NA Ph3 oil objective, a Photometrics

777 Prime BSI back-illuminated sCMOS camera, a Lumencor Spectra III LED light engine
778 excitation source, a polychroic mirror (FF-409/493/596-Di02 by Shemrock) combined
779 with a triple-pass emitter (FF-1-432/523/702-25 by Shemrock) for GFP/DAPI/mCherry,
780 and a polychroic mirror (FF-459/526/596-Di01 by Shemrock) combined with a triple-pass
781 emitter (FF01-475/543/702-25 by Shemrock) for CFP/YFP/mCherry. The temperature
782 was set and maintained at the indicated value using a temperature chamber (Okolabs).
783 The second microscope set-up consisted of a Nikon Eclipse Ti microscope equipped with
784 a Hamamatsu ORCA-Flash 4.0 camera, a 100X objective (Nikon, OFN Ph3 DM, N.A.
785 1.45) and a Spectra X light engine (Lumencor). The following Chroma filter sets were
786 used to acquire fluorescence images: DAPI (excitation ET350/50x, dichroic T400lp,
787 emission ET460/50 m), GFP (excitation ET470/40x, dichroic T425lpxr, emission
788 ET525/50 m) and mCherry/TexasRed (excitation ET560/40x, dichroic T585lpxr, emission
789 ET630/75 m). The temperature was maintained at 30°C using a customized enclosure
790 and temperature controller (Air-Therm SWT, World Precision Instrument) for timelapse
791 imaging. The temperature was also maintained for snapshots, but it did not affect
792 transition-phase phenotypes in the time window required for imaging (under 12 min).
793

794 ***Image processing and analysis***

795 For sample images with cell contours on agarose pads, cells were detected from phase
796 contrast images using the open-source software package Oufti (Paintdakhi *et al*, 2016).
797 For the images shown in the figures, fluorescent image background subtraction was done
798 using Fiji (Schindelin *et al*, 2012) and a sliding paraboloid with a rolling ball radius of 50

799 pixels. Cell signal intensity profiles were generated using Oufti's signal output divided by
800 the total signal intensity to calculate relative signal, which was plotted for individual cells.

801 For all experiments on agarose pads, cells were segmented from phase contrast
802 images using the SuperSegger-Omnipose software (<https://github.com/tlo-bot/supersegger-omnipose>) (Stylianidou *et al*, 2016; Cutler *et al*, 2022). The software's
803 pre-trained *bact_phase_omni* model (Cutler *et al*, 2022; Stylianidou *et al*, 2016) was
804 retrained in-house prior to usage due to its tendency to split cells prematurely before cell
805 division was completed, as determined based on visual inspection. Model retraining was
806 carried out in two steps. First, images of CJW7606 cells (OD = 2.83) grown in M9gluCAAT
807 at 30°C were collected on agarose pads containing M9gluCAAT. Cells from 11 fields of
808 view (each of 2048x2048 pixels, ~100-250 cells per field of view) were segmented using
809 the pre-trained model *bact_phase_omni*. The obtained masks were visually inspected,
810 and when the pre-trained model was splitting cells too early, the cell masks were merged
811 back into one single mask using a custom MATLAB code
812 (`LabelsMerge_ConstrictingCells.m`). The corrected 2044x2048-pixel images (both phase
813 contrast images and cell masks) were then divided into smaller 510x512-pixel images.
814 The dataset was further augmented by performing image rotations (90°, 180°, and 270°),
815 resulting in 704 images. This initial training dataset was then used to retrain Omnipose
816 from scratch (with parameters: `n_epochs = 4000`; `txy = 224,224`; `batch_size = 16`;
817 `learning_rate = 0.1`, see details in <https://omnipose.readthedocs.io>) to generate a
818 preliminary model. In the second step, the retrained model was used to re-segment the
819 publicly available *bact_phase* training dataset (<https://osf.io/xmury/>) that was originally

821 used to train *bact_phase.omni*, including additional images of cells with extreme
822 phenotypes (e.g., with bright intracellular regions in phase contrast images).

823 This generated a larger dataset with a broad spectrum of cell morphologies. The
824 obtained segmented images were then manually curated to eliminate poorly segmented
825 cells. Finally, both training datasets (the first one created in-house and the one re-
826 segmented from *bact_phase*) were used to retrain Omnipose from scratch (n = 1249
827 images, with parameters: n_epochs = 4000; tyx = 224,224 ; batch_size = 16;
828 learning_rate = 0.1). The resultant model (*merge_model.omni*) and the Python code
829 used for curating (screening_good_bad.py) and generating the training datasets
830 (generate_training_dataset.py) are available on GitHub
831 (https://github.com/JacobsWagnerLab/published/tree/master/Thappeta_Canas-Duarte_et_al_2025).

833 Unless specified otherwise, *merge_model.omni* was used to segment cells across
834 experiments. After segmentation, the resulting cell.mat files and the generated labels
835 (masks.png) were imported to MATLAB, organized into structures, and further analyzed
836 using custom scripts. Morphological features including cell length, cell area, cell width,
837 and circularity were extracted from the cell labels using MATLAB's function *regionprops()*
838 and used to filter out incorrect segmentations. For each experiment, histograms were
839 generated for each of the above-mentioned features, and the appropriate thresholds used
840 for filtering were modified accordingly.

841 The mid-cell axis of each cell was calculated using a bivariate fit to the distance
842 matrix of the cell mask and used to identify the location of the cell centroid. For all cells,
843 the distance between the mid-cell axis and the mask outline of each vertical half of the

844 cell was computed, smoothed, inverted, and used to identify peaks (function `findpeaks()`),
845 with parameters `MinPeakProminence = 0.1` and `MinPeakDistance = 15`). For constricting
846 cells, the division plane (constriction site) was then localized using the location of
847 identified peaks on each cell half. Constriction offset was then determined by measuring
848 the absolute distance between the constriction site and the cell centroid, followed by a
849 normalization by the cell length.

850 Nucleoids were initially segmented using Otsu, after which nucleoid objects were
851 refined by calculating the distance transform (function `bwdist()`) of the preliminary nucleoid
852 mask and applying the watershed transformation (function `watershed()`), using
853 `connectivity = 4`) on the inverse of the calculated distance transform. Binary opening,
854 closing, and fill operations were applied on the nucleoid mask. For cells with multiple
855 nucleoids, the nucleoid centroid was defined as the mid-point between the pair of the
856 most distal nucleoid objects. Nucleoid asymmetry was then determined by measuring the
857 absolute distance of the nucleoid mid-point to the cell's centroid, which was then
858 normalized by the cell length. The analysis described above was performed using the
859 custom MATLAB script `PostSGO_AgarPad_FigureOne_AlIODs.m`.

860 To quantify the signal distribution of the different reporters used in this study, we
861 estimated both the signal correlation function (SCF) (Gray *et al*, 2019) and the normalized
862 signal difference between the two cell poles. To calculate the SCF, the centerline was
863 used to define a rectangular mask with a width of 4 pixels and a length equal to the cell
864 length minus 5 pixels from each cell pole. The SCF mask was then used to extract the
865 signal intensity from the fluorescence images. The correlation coefficient was then
866 calculated between the corresponding signals using the function `corrcoef()`. Likewise, the

867 normalized pole difference was calculated by defining two masks, each encompassing
868 the region between the cell pole and the cell centroid that corresponds to 30% of the cell
869 length. To avoid boundary effects, the pole masks were eroded by 2 pixels. As described
870 above, the masks were used to extract the signal intensity of the corresponding
871 fluorescence images. The normalized pole signal difference was then calculated by
872 subtracting the average intensity between the poles and dividing it by the average signal
873 intensity for the whole cell. These analyses were performed using a custom MATLAB
874 script PostSGO_PoleRatio_SCF_AllCells_20250615.m. The Spearman correlation
875 coefficient between the normalized signal intensities of free msfGFP and RplA-mCherry
876 was calculated using the corr() function, and the contour plot was obtained using a
877 MATLAB script (ContourPlot_20250311.m).

878 Time-lapse agarose pad data were analyzed as described above, with added
879 lineage/cell polarity tracking. Tracking was performed by first identifying lineages
880 (microcolonies) through spatial clustering using the MATLAB DBSCAN (Density-Based
881 Spatial Clustering of Applications with Noise) algorithm (epsilon = 45 and minpts = 4) and
882 then using the built-in genealogy information calculated by Supersegger within each
883 lineage. To track the polarity (old vs new pole) of the cells, cells were oriented vertically,
884 and the top-most pole was assigned as pole 1 and the bottom-most pole as pole 2. Cells
885 present at the beginning of the time-lapse sequence were labeled as generation zero,
886 and each of their daughters was labeled as generation one, and so forth. A total of three
887 divisions were analyzed, and polarity was assigned accordingly. Normalized pole signal
888 differences were calculated as described previously. This analysis was performed using
889 the custom MATLAB script PostSGO_AgarPAD_TL_20250613.

890 The degrees of both constriction position and nucleoid mid-point asymmetry in the
891 WT strain were analyzed for each co-culture (Mix 1 and Mix 2) in transition phase using
892 a MATLAB code (PostSGO_MixesConstriction_20240312.m). For this analysis,
893 constricting cells were identified as described above using the centerline to determine the
894 constriction position and the cell centroid. The HupA-mCherry signal in each constricting
895 cell was used to segment the nucleoid and calculate its centroid. The offsets between the
896 constriction position and the cell centroid, and between the nucleoid mid-point and the
897 cell center were calculated and normalized by the length of each constricting cell. The
898 Spearman correlation coefficient and the isocontours were then calculated between the
899 relevant variables as described above.

900 For the microfluidic experiments, cell segmentation was performed using
901 Omnipose. For this purpose, we retrained Omnipose using a two-step approach. First, a
902 set of synthetic micrographs of bacteria in a mother machine-like system was generated
903 using SyMBac (Hardo *et al*, 2022). The image simulation parameters were set to match
904 that of the optical system previously described. Individual mother machine images were
905 then tiled, along with their corresponding ground truth masks to produce a training dataset
906 of simulated micrographs ($n = 150$). These synthetic micrographs were then used to
907 retrain Omnipose from scratch. This first model was then used to segment real (non-
908 synthetic) phase-contrast images of cells in our mother machine microfluidics system.
909 The obtained segmentation results were then manually curated
910 (screening_good_bad_trenches.py), augmented by mirroring individual trenches along
911 their y-axis to double the size of the training data, and tiled back together in images
912 containing five trenches (create_training_dataset_trenches.py), to produce an image

913 dataset of 237 images. Both empty and cell-filled trenches were included in this final
914 dataset. Finally, Omnipose was retrained from scratch using both the original synthetic
915 images, as well as the curated and augmented real images, to generate the final
916 Omnipose model (MM_model_omni; n = 423 images, with parameters: tx = 224,224;
917 batch_size = 16; learning_rate = 0.1).

918 To improve the accuracy of segmentation, fields of view were cropped and aligned
919 using the pre-segmentation modules of Supersegger. After segmentation, the mother-cell
920 lineages were extracted and analyzed using a custom MATLAB script
921 (PostSGOMM_GC.m). Briefly, lineages were initially identified using the MATLAB
922 DBSCAN function (epsilon = 25 and minpts = 10). From there, mother cells were identified
923 in each lineage and tracked throughout all acquired time points. Only lineages with
924 successfully segmented mother cells and tracking across all (84) frames (84) were
925 considered for the analysis. Instantaneous growth rates were calculated using a linear fit
926 to the log-transformed cell lengths. The normalized nucleoid offset and glycogen area
927 were calculated as described above.

928 The correlation between polar glycogen accumulations and the nucleoid offset was
929 analyzed from snapshot images of CJW7606 cells (OD 2.83) that were segmented using
930 a combination of SuperSegger-Omnipose and a MATLAB script
931 (PostSGO_GlycogenSensorAllCells_20240312.m), in which the centerline of each cell
932 was calculated as described above. Fluorescent signals from the glycogen sensor and
933 HupA-mCherry were used to segment the areas of glycogen accumulations and the
934 nucleoids, respectively. The difference between the glycogen sensor area for each cell
935 pole was then calculated. Nucleoid offset was determined from the distance between the

936 nucleoid mid-point and the cell center. The Spearman correlation coefficient between the
937 two variables was calculated and the contour plot was plotted using a MATLAB script
938 (ContourPlot_20240312.m).

939 To examine the correlation between polar glycogen accumulations and
940 asymmetric division, constricting cells in transition phase were identified, curated, and
941 analyzed using a custom MATLAB code
942 (PostSGO_GlycogenSensorConstriction_20240312.m). In short, the centerline of each
943 cell was calculated as described above and was used to identify the location of the cell
944 constriction plane. Fluorescence signal was extracted from each cell area flanking the
945 division side (i.e., the future daughter cells) and used to create a mask for the glycogen
946 sensor signal. The differences between each future daughter cell's area and between the
947 glycogen sensor signal areas at each pole were used to calculate the Spearman
948 correlation coefficient. Principal components regression was used to calculate the linear
949 regression shown in Fig 6B.

950

951 ***Whole-cell NMR sample preparation and solid-state NMR measurements***

952 Overnight cultures of each bacterial strain were prepared and diluted at least 10,000-fold
953 into 300 mL of the appropriate fresh medium in a 1-L flask. To achieve similar final
954 quantities of biomass, two flasks were prepared identically for exponential-phase cultures
955 and one flask was prepared for the higher cell density transition-phase samples. Cells
956 were pelleted by centrifugation at 10,000 g at 4°C for 10 min and washed twice in cold
957 phosphate-buffered saline (PBS). Each final sample cell pellet was collected in a 50 mL

958 tube, stored at -80°C, and subsequently lyophilized and packed into a magic-angle
959 spinning NMR rotor.

960 Solid-state ^{13}C CPMAS NMR (Schaefer & Stejskal, 1976) experiments were
961 performed using an 89-mm bore 11.7 T magnet (Agilent Technologies) with an Agilent
962 triple resonance BioMAS probe and DD2 console (Agilent Technologies). Samples were
963 spun at 7143 ± 3 Hz at room temperature in thin-walled (36 μL capacity) 3.2-mm outer
964 diameter zirconia rotors. Cross polarization (CP) was performed with a ^{13}C field strength
965 of 50 kHz and a ^1H field strength centered at 57 kHz with a 10% ramp for the contact time
966 of 1.5 ms. ^1H decoupling was performed with two-pulse phase-modulated (TPPM)
967 (Bennett *et al*, 1995) decoupling at 83 kHz. All CPMAS experiments were obtained using
968 a recycle delay of 2 s. Free induction decays were processed using 80 Hz exponential
969 line broadening prior to Fourier transformation. Spectrometer chemical shift referencing
970 was performed by setting the high-frequency adamantane peak to 38.5 ppm (Morcombe
971 & Zilm, 2003).

972

973 ***Intracellular salts buffer***

974 To mimic the ionic strength of the *E. coli* cytoplasm, a potassium phosphate buffer (PPB)
975 was prepared and supplemented with the appropriate concentrations of intracellular salts.
976 For this, 200 mL of 1 M stock PPB (pH = 7.5) was prepared by mixing 25.63 g of K_2HPO_4
977 and 7.2 g of KH_2PO_4 in MilliQ water. For the intracellular salts buffer (referred to also as
978 IS buffer), a 5X stock was prepared by mixing the 1 M PPB stock to a final 200 mM
979 concentration with 0.425 M NaCl , 1.25 M KCl , 12.5 mM MgCl_2 and 0.5 mM CaCl_2
980 (Alatossava *et al*, 1985; Gangola & Rosen, 1987; Schultz *et al*, 1962; Szatmári *et al*, 2020).

981

982 ***Dynamic light scattering measurements***

983 The hydrodynamic diameter of purified mussel glycogen (Sigma-Aldrich 361507-1ML)
984 and commercially available PEG/PEO particles with varying molecular weights was
985 measured using a NanoBrook Omni device. Stock solutions of PEG1500 (Sigma-Aldrich
986 81210-500G), PEG3000 (Sigma-Aldrich 8190151000), PEG4000 (Hampton Research
987 HR2-605), PEG6000 (Sigma-Aldrich 81253-250G), PEG8000 (Sigma-Aldrich 89510-
988 250G-F), PEG10000 (Sigma-Aldrich 81280-1KG), PEG20000 (ThermoFisher
989 A17925.0B), and PEG35000 (Sigma-Aldrich 81310-1KG) (30% w/v) were prepared in
990 MilliQ water. Stock solutions 5% and 2.5% w/v were made of PEO100000 (Sigma-Aldrich
991 181986-250G) (5% w/v) and PEG1000000 (Sigma-Aldrich 372781-250G) (2.5% w/v).
992 When needed, solutions were incubated at 42°C for 1 h to help homogenization.

993 For measurements, samples were diluted to a final volume of 10 mL to generate a
994 final concentration of 6% (1.5 kDa PEG and 3 kDa PEG), 3% (4 kDa PEG), 1.5% (6 kDa
995 PEG, 8 kDa PEG, 10 kDa PEG, 20 kDa PEG and 35 kDa PEG), 0.25% (PEO 100 kDa)
996 or 0.025% PEO 1MDa in either MilliQ water (pH = 6.5) or in the 1X IS buffer (pH = 7.0).
997 Dilutions of the samples were made to ensure that measurements with each PEG/PEO
998 crowder were done with concentrations below their overlap concentrations to avoid self-
999 crowding artifacts in our measurements (de Gennes & Witten, 1980; Julius *et al*, 2019;
1000 Smith *et al*, 2023). The hydrodynamic diameter of glycogen was measured in the same
1001 IS buffer at a concentration of 2 g/L. To remove dust or other particles that could affect
1002 the measurements, all samples were double-filtered, first with a 0.22 µm filter followed by
1003 a 0.1 µm filter. Each sample (1 mL) was loaded into a cuvette and sealed with a lid.

1004 Samples were measured in triplicate for 300 ms at 25°C using a 90-degree angle for the
1005 detector.

1006

1007 ***Preparation of the microfluidic chips***

1008 The microfluidic device used in this study was cast from an epoxy mold kindly shared by
1009 the Paulsson lab (Bakshi *et al*, 2021). In this device, the feeding channel has a width of
1010 350 μ m and a height of 25 μ m. Cell trenches have a width of 1.3 μ m, a length of 25 μ m,
1011 and a height of 1.25 μ m. Polydimethylsiloxane (PDMS), a silicone elastomer
1012 composed of dimethylsiloxane monomers, was prepared by mixing the base polymer with
1013 its curing agent in a 10:1 weight ratio. The mixture was degassed and poured onto the
1014 epoxy mold and then cured at 65°C for 4 h. The cured PDMS was then carefully cut out
1015 and peeled off the mold. Individual mother-machine chips were cut out of the PDMS, and
1016 holes for the inlets and outlets were created using a biopsy puncher (0.75 mm diameter).
1017 The mother machine-like chips were cleaned with isopropanol, blow-dried with a nitrogen
1018 gun, and then cleaned with Scotch tape before bonding. Glass bottom dishes (40 mm
1019 diameter, 14026-20, from Ted Pella Inc., California, USA) were cleaned with isopropanol
1020 and blow-dried with a nitrogen gun. Finally, the PDMS chip and glass dish were plasma-
1021 treated (for 20 s at 60 W), immediately bonded, and baked at 65°C for 4 h. Chips were
1022 bonded the day before being used in the experiment.

1023

1024 ***Microfluidic setup***

1025 A simplified version of a previously described growth curve platform (Bakshi *et al*, 2021)
1026 was built using a peristaltic pump (T60-S2&WX10-14-H, Langer Instrument, USA) and an

1027 in-house-built bubble trap. Platinum-cured silicon tubing (Masterflex™ L/S™ Platinum-
1028 Cured Silicone Precision Tubing, Tubing size 13, Fisher Scientific) was used to create the
1029 flow path. Blunt-end needles (1-1/2" Gauge 20, McMaster-Carr) were bent to create
1030 stable connections to the microfluidic chip. Before the experiment, the flow path was
1031 cleaned sequentially with 20% bleach, 20% ethanol, and Milli-Q water, each for 20 min.
1032 After cleaning, fresh M9gluCAAT medium supplemented with 0.8% Pluronic® F-108 was
1033 flown through the path for 10 min before connecting the loaded chip.

1034

1035 ***Microfluidics experiment and analysis***

1036 CJW7605 and CJW7668 strains were separately inoculated in 2 mL of M9gluCAAT
1037 medium supplemented with 0.08 % Pluronic® F-108 and grown overnight at 30°C with
1038 shaking at 220 rpm. An aliquot of the liquid cultures was then diluted 1:10,000 into 50 mL
1039 of M9gluCAAT medium in a 250-mL flask and returned to the shaker until reaching an
1040 OD of ~0.4. Three milliliters of each culture were spun at 6785 rcf and concentrated into
1041 500 µL. The two cultures were mixed at this point and spun again at 6785 rcf to
1042 concentrate them to a final volume of ~30 µL. Cells were loaded into the microfluidic chip
1043 using gel-loading tips (Fisherbrand™ Gel-Loading Tips, 1-200µL, Fisher Scientific). The
1044 loaded chip was then spun at 500 g for 3 min using a modified version of the holder
1045 designed and shared by the Paulsson laboratory. The loaded chip was then connected
1046 to the flow path and placed inside the microscope incubator for 1 h to allow time for
1047 equilibration. After this time, fields of view were selected, and the batch culture of strain
1048 CJW2168 was inoculated using a 1:100000 dilution. Imaging was started immediately

1049 following the inoculation of the culture, with a frame rate of 10 min for all the acquired
1050 channels.

1051

1052 ***In vitro phase separation experiments***

1053 To generate the presented phase diagram (Fig 6E), phase separation was assessed
1054 using varying concentrations of both glycogen (2.5 to 10 g/L) and 3 kDa PEG (8 to 30
1055 mM). Samples were prepared in the IS buffer to a final volume of 50 μ L in 200- μ L
1056 Eppendorf tubes. For visualization, 0.05 μ g/ μ L of FITC-ConA (Sigma-Aldrich C7642-2MG)
1057 was added to the appropriate glycogen volume prior to the addition of other components
1058 of the mixture. The appropriate volume of 3 kDa PEG was added last, and a 12- μ L aliquot
1059 was immediately transferred to a 50 x 7mm glass bottom dish (PELCO) for imaging at
1060 25°C.

1061 To determine the minimal concentration of PEG/PEO that promotes glycogen
1062 phase separation, samples were prepared as described above with 9 g/L of glycogen.
1063 Increasing concentrations of each PEG (1.5 to 35 kDa) or PEO (100 kDa and 1 MDa)
1064 were tested in 50 μ L mixtures. Each sample (12 μ L) was imaged by phase contrast
1065 microscopy (100x Ph3 objective) to visually assess if glycogen condensates appeared.
1066 The smallest concentration at which the solutions transitioned from one phase to another
1067 was assigned as the minimal concentration. For PEO 1Mda, the minimal concentration
1068 required to drive phase separation was found to be above the overlap concentration (0.5%
1069 w/v) reported for this polymer (Smith *et al*, 2023), which marks the onset of “self-crowding”.
1070 Therefore, the hydrodynamic diameter of the polymer above this concentration could not

1071 be determined using dynamic light scattering. Unless otherwise indicated, all experiments
1072 and imaging were conducted at 25°C.

1073 For the fluorescent protein exclusion assay, glass-bottom dishes were cleaned
1074 using 1mL of 100% isopropanol, then washed twice with 90% ethanol, and allowed to dry
1075 completely. Dishes were then treated with Pluronic® F-108 (Sigma-Aldrich 542342-250G)
1076 to minimize fluorescent protein binding to the glass. Briefly, 200 μ L of IS buffer
1077 supplemented with 0.1% w/v Pluronic® F-108 was pipetted into the dish and allowed to
1078 incubate for 1 h, followed by two washes with 200 μ L of IS buffer. All remaining liquid was
1079 removed, and the dish was allowed to air dry completely. Mixtures were made to final
1080 concentrations of 10 g/L of glycogen, 1X IS buffer, 15 μ M GFP (ThermoFisher A42613)
1081 or mCherry (Abcam AB199750), and 20 mM 3 kDa PEG as described above. Samples
1082 (12 μ L) were imaged at 25°C, 30°C, and 37°C. For imaging, the focal plane was set on
1083 the surface of the glass to minimize background signal from the column of liquid around
1084 the condensates (Fig 5I), except for the images shown in Video EV6 for which images
1085 were taken as a z-stack (with 0.125 μ m steps) above the glass surface. For the images
1086 shown in the figures, fluorescent image background subtraction was done using Fiji
1087 (Schindelin *et al*, 2012) and a sliding paraboloid with a rolling ball radius of 50 pixels.

1088

1089 ***MinD-GFP experiments***

1090 The CJW7872 strain was inoculated in 2 mL of M9gluCAAT medium and grown overnight
1091 at 30°C with shaking at 220 rpm. An aliquot of the culture was then diluted 1:10,000 into
1092 50 mL of medium in a 250 mL flask and returned to the shaker. Samples were taken at
1093 OD 1.7, stained with DAPI as described above, and spotted onto agarose pads containing

1094 transition-phase spent medium. Snapshots were acquired at time zero in the phase-
1095 contrast, DAPI, and FITC channels before the acquisition of a FITC time series (every 5
1096 s for 95 s) to observe the MinD-GFP oscillations. A final snapshot series in all three
1097 channels was performed to correct for cell movement during the time series.

1098

1099 ***Fluorescence recovery after photobleaching***

1100 CJW7605 cells were inoculated in a 2-mL solution of M9gluCAAT and grown overnight at
1101 30°C with shaking (220 rpm). An aliquot of the culture was then diluted 1:10,000 into 50
1102 mL of medium in a 250-mL flask and returned to the shaker. Samples were taken at OD
1103 1.7 and spotted onto agarose pads containing conditioned medium. Snapshots were
1104 taken before bleaching. For each field of view, an average of four cells were selected for
1105 FRAP analysis out of over 200 control cells. A disk (diameter = 5 pixels) was used to
1106 specify the region of interest for photobleaching and positioned at one of the cell poles,
1107 covering fully or partially the glycogen accumulation area. The regions of interest were
1108 bleached with a 405 nm laser at 25% power for 30 ms. Images were then acquired every
1109 50 ms for 30 s following the bleaching.

1110 Photobleaching correction was performed globally for each field of view using a
1111 custom Fiji macro (PhotoBleachCorrection.ijm). Briefly, the average fluorescence
1112 intensity across all control (non-bleached) cells was calculated for each time point and
1113 used to calculate a correction value centered on the fluorescence intensity at $t = 0$ (before
1114 photobleaching). The calculated correction factor for each time point was then applied to
1115 all pixels in the field of view. For each field of view, the photobleached cells and a
1116 randomly selected control cell were further analyzed.

1117 After correction for photobleaching, FRAP analysis was performed using a custom
1118 MATLAB script (FRAP_Analysis.m). In brief, intensity profiles were extracted from the
1119 photobleached and non-photobleached regions using a circular region of interest of 5-
1120 pixels in diameter. Signal profiles were background-subtracted and normalized such that
1121 the first frame after photobleaching was zero and the maximum intensity after recovery
1122 was one. Each profile was then fitted by an exponential function to determine the half-
1123 time to maximal recovery. A total of 70 photobleached cells were analyzed.

1124

1125 ***Atomic force microscopy experiments***

1126 *E. coli* cells were immobilized on poly-L-lysine-coated glass-bottom Petri dishes. Fifty
1127 microliters of 0.01% poly-L-lysine were dropped on the glass-bottom Petri dish, air-dried
1128 for an hour, rinsed with Milli-Q water, and then dried with a nitrogen flow. A diluted cell
1129 suspension (500 μ L) was dropped on the coated dishes and incubated at room
1130 temperature for 30 min before being rinsed with PBS five times to remove loose cells.
1131 Then, 2 mL of PBS were added to the dishes before AFM imaging. All AFM experiments
1132 were performed with a JPK NanoWizard V instrument (Bruker, USA) mounted on the
1133 inverted optical microscope Axio Observer (Zeiss, Germany). Depth-resolved stiffness
1134 map and stiffness tomography data were collected using the Quantitative Imaging (QI)
1135 mode with a force setpoint of 20 nN. SCANASYST-FLUID cantilevers (Bruker, USA) with
1136 a nominal spring constant of 0.35 N/m and a nominal tip radius of 20 nm were used in
1137 depth-resolved stiffness map and stiffness tomography experiments.

1138 SCANASYST-FLUID+ cantilevers (Bruker, USA) with a nominal spring constant of
1139 0.35 N/m and a nominal tip radius of 2 nm were used for stiffness measurements of the

1140 intracellular content. AFM height images were first collected in QI mode with a minimal
1141 force setpoint (0.5 nN). Then, multiple force spectroscopies were collected on the
1142 designated area using the Contact mode. The force setpoint, the ramp size, and the tip
1143 velocity were set to 10 nN, 2 μ m, and 2 μ m/s, respectively. For each position, 8x8 force
1144 curves were recorded on a 50x50-nm² area. The spring constant and deflection sensitivity
1145 were calibrated prior to each experiment using the thermal noise method.

1146

1147 ***Atomic force microscopy data analysis***

1148 The depth-resolved stiffness map data were analyzed using the JPK NanoWizard V data
1149 processing software (Bruker, USA). The slope fit function in JPK NanoWizard V data
1150 processing software was applied. The fit range was 100% to 80% of the y channel (vertical
1151 deflection), which corresponds to 40-nm indentation depth from the end point of the curve.
1152 The stiffness tomography was generated using a customized Python code
1153 (AFM_stiffness_tomography_analysis.py), in which every 20-nm indentation segment
1154 after the contact point was analyzed for all force-distance curves along the cellular medial
1155 axis. The medial axis was extracted using code (Bivariate_medial_axis_estimation.py)
1156 from a previous study (Papagiannakis *et al*, 2025). The intracellular stiffness data were
1157 analyzed using a customized Python code (AFM_penetration_experiment_analysis.py),
1158 in which membrane rupture events were identified, and the slopes of the force-distance
1159 curves (the approach curves) were fitted after the rupture points. Only force-distance
1160 curves with membrane rupture events were analyzed.

1161

1162

1163 **DATA AVAILABILITY**

1164 Image analysis code and the newly trained segmentation models for images of *E. coli*
1165 cells on agarose pads and in the microfluidic device are available on the Jacobs-Wagner
1166 lab Github repository, along with the curation and training data generation code,
1167 ([https://github.com/JacobsWagnerLab/published/tree/master/Thappeta_Canas-](https://github.com/JacobsWagnerLab/published/tree/master/Thappeta_Canas-Duarte_et_al_2025)
1168 [Duarte et al 2025](#)). Images are available on Biostudies S-BIAD2088.

1169

1170 **AUTHOR CONTRIBUTIONS**

1171 Y.T., S.J.C.-D., and C.J.-W. prepared the manuscript and conceptualized the study. W.G.
1172 and C.L. collected preliminary observations and data. YT, S.J.C.-D. and C.J.-W. designed
1173 in vivo experiments. Y.T. and S.J.C.-D performed in vivo experiments. S.J.C.-D. and C.J.-
1174 W. designed in vitro experiments. S.J.C.-D. performed in vitro experiments and
1175 constructed the glycogen biosensor. S.J.C.-D. and Y.X. developed the analysis pipeline
1176 for the light microscopy experiments. G.H. produced the synthetic micrograph training
1177 data for the microfluidic experiments. S.J.C.-D performed and analyzed the microfluidic
1178 experiments. H.W. performed the AFM experiments and analyses. S.J.C.-D. and A.F.
1179 optimized the Omnipose segmentation model for analysis. S.J.C.-D. and Y.T. analyzed
1180 data. T.K. and L.C. performed and analyzed whole-cell NMR experiments. C.J.-W and
1181 L.C. provided supervision and funding acquisition. C.J.-W. provided project administration.

1182

1183 **ACKNOWLEDGMENTS**

1184 We are grateful to Dr. Johan Paulsson for sharing unpublished strains, the epoxy cast of
1185 the microfluidic device, and the microfluidic centrifuge holder design used in this study.

1186 We are also thankful to Dr. Somenath Bakshi for supervising Georgeos Hardo in
1187 generating the simulated bacterial images used to retrain Omnipose. We thank Drs.
1188 Suckjoon Jun and KC Huang for sharing published strains, and Dr. Sangjin Kim for
1189 generating a P1 transduction that generated strain CJW5685. We are thankful to Drs.
1190 Onn Brandman, KC Huang, and Jonas Cremer for valuable discussion. Finally, we
1191 express our gratitude to the Jacobs-Wagner laboratory for support, discussion, and
1192 critical reading of the manuscript. Part of this work was performed at the Stanford Nano
1193 Shared Facilities (SNSF), supported by the National Science Foundation under award
1194 ECCS-2026822. AFM experiments were performed at the Stanford University Cell
1195 Sciences Imaging Core Facility (RRID:SCR_017787). This research was supported in
1196 part by the Netherlands Organization for Scientific Research (NWO), Rubicon 2022-2
1197 Science programme, 019.222EN.001 (to A.F.), the Biotechnology and Biological
1198 Sciences Research Council (BB/M011194/1 to G.H.), the Strategic Seed Fund from the
1199 School of Technology at the University of Cambridge (to G.H.), and the National Institutes
1200 of Health grant R01GM117278 (to L.C.). C.J.-W. is an investigator of the Howard Hughes
1201 Medical Institute.

1202

1203 **DISCLOSURE AND COMPETING INTERESTS STATEMENT**

1204 The authors declare no competing interests.

1205 **REFERENCES**

- 1206 Åkerlund T, Nordström K, Nordström N & Bernander R (1995) Analysis of Cell Size and
1207 DNA Content in Exponentially Growing and Stationary-Phase Batch Cultures of
1208 *Escherichia coli*. *J Bacteriol* 177: 6791–6797
- 1209 Alatossava T, Jütte H, Kuhn A & Kellenberger E (1985) Manipulation of intracellular
1210 magnesium content in polymyxin B nonapeptide-sensitized *Escherichia coli* by
1211 ionophore A23187. *J Bacteriol* 162: 413–419
- 1212 Alberti S, Gladfelter A & Mittag T (2019) Considerations and Challenges in Studying
1213 Liquid-Liquid Phase Separation and Biomolecular Condensates. *Cell* 176: 419–434
1214 doi:10.1016/j.cell.2018.12.035 [PREPRINT]
- 1215 Alberti S & Hyman AA (2021) Biomolecular condensates at the nexus of cellular stress,
1216 protein aggregation disease and ageing. *Nat Rev Mol Cell Biol* 22: 196–213
- 1217 Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J & Hyman AA (2018) A User's
1218 Guide for Phase Separation Assays with Purified Proteins. *J Mol Biol* 430: 4806–
1219 4820
- 1220 Albi T & Serrano A (2016) Inorganic polyphosphate in the microbial world. Emerging roles
1221 for a multifaceted biopolymer. *World J Microbiol Biotechnol* 32: 27
- 1222 Almagro G, Viale AM, Montero M, Rahimpour M, Muñoz FJ, Baroja-Fernández E, Bahaji
1223 A, Zúñiga M, González-Candelas F & Pozueta-Romero J (2015) Comparative
1224 genomic and phylogenetic analyses of gammaproteobacterial glg genes traced the
1225 origin of the *Escherichia coli* glycogen glgBXCAP operon to the last common
1226 ancestor of the sister orders Enterobacterales and Pasteurellales. *PLoS One* 10
- 1227 Alonso-Casajús N, Dauvillée D, Viale AM, Muñoz FJ, Baroja-Fernández E, Morán-
1228 Zorzano MT, Eydallin G, Ball S & Pozueta-Romero J (2006) Glycogen phosphorylase,

- 1229 the product of the *glgP* gene, catalyzes glycogen breakdown by removing glucose
1230 units from the nonreducing ends in *Escherichia coli*. *J Bacteriol* 188: 5266–5272
- 1231 Amselem E, Broadwater B, Hävermark T, Johansson M & Elf J (2023) Real-time single-
1232 molecule 3D tracking in *E. coli* based on cross-entropy minimization. *Nat Commun*
1233 14: 1–11
- 1234 Asakura S & Oosawa F (1954) On Interaction between Two Bodies Immersed in a
1235 Solution of Macromolecules. *J Chem Phys* 22: 1255–1256
- 1236 Asakura S & Oosawa F (1958) Interaction between particles suspended in solutions of
1237 macromolecules. *Journal of Polymer Science* 33: 183–192
- 1238 Azaldegui CA, Vecchiarelli AG & Biteen JS (2021) The emergence of phase separation
1239 as an organizing principle in bacteria. *Biophys J* 120: 1123–1138
- 1240 Azam TA, Hiraga S & Ishihama A (2000) Two types of localization of the DNA-binding
1241 proteins within the *Escherichia coli* nucleoid. *Genes to Cells* 5: 613–626
- 1242 Badrinarayanan A, Lesterlin C, Reyes-Lamothe R & Sherratt D (2012) The *Escherichia*
1243 *coli* SMC Complex, MukBEF, Shapes Nucleoid Organization Independently of DNA
1244 Replication. *J Bacteriol* 194: 4669–4676
- 1245 Bakshi S, Choi H, Mondal J & Weisshaar JC (2014) Time-dependent effects of
1246 transcription- and translation-halting drugs on the spatial distributions of the *E*
1247 *scherichia coli* chromosome and ribosomes. *Mol Microbiol* 94: 871–887
- 1248 Bakshi S, Leoncini E, Baker C, Cañas-Duarte SJ, Okumus B & Paulsson J (2021)
1249 Tracking bacterial lineages in complex and dynamic environments with applications
1250 for growth control and persistence. *Nature Microbiology* 2021 6:6 6: 783–791

- 1251 Bakshi S, Siryaporn A, Goulian M & Weisshaar JC (2012) Superresolution imaging of
1252 ribosomes and RNA polymerase in live *Escherichia coli* cells. *Mol Microbiol* 85: 21–
1253 38
- 1254 Baldwin WW, Myer R, Powell N, Anderson E & Koch AL (1995) Buoyant density of
1255 *Escherichia coli* is determined solely by the osmolarity of the culture medium. *Arch*
1256 *Microbiol* 164: 155–7
- 1257 Balleza E, Kim JM & Cluzel P (2018) Systematic characterization of maturation time of
1258 fluorescent proteins in living cells. *Nat Methods* 15: 47–51
- 1259 Banani SF, Lee HO, Hyman AA & Rosen MK (2017) Biomolecular condensates:
1260 Organizers of cellular biochemistry. *Nat Rev Mol Cell Biol* 18: 285–298
- 1261 Bates D & Kleckner N (2005) Chromosome and replisome dynamics in *E. coli*: Loss of
1262 sister cohesion triggers global chromosome movement and mediates chromosome
1263 segregation. *Cell* 121: 899–911
- 1264 Becker JW, Reeke GN, Cunningham BA & Edelman GM (1976) New evidence on the
1265 location of the saccharide-binding site of concanavalin A. *Nature* 259: 406–409
- 1266 Bennett AE, Rienstra CM, Auger M, Lakshmi K V. & Griffin RG (1995) Heteronuclear
1267 decoupling in rotating solids. *J Chem Phys* 103: 6951–6958
- 1268 Bezborodkina NN, Chestnova AY, Vorobev ML & Kudryavtsev BN (2018) Spatial
1269 Structure of Glycogen Molecules in Cells. *Biochemistry (Moscow)* 83: 467–482
- 1270 Boehm A, Arnoldini M, Bergmiller T, Röösli T, Bigosch C & Ackermann M (2016) Genetic
1271 Manipulation of Glycogen Allocation Affects Replicative Lifespan in *E. coli*. *PLoS*
1272 *Genet* 12

- 1273 Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz
- 1274 J, Shorter J, Wolozin B, Van Den Bosch L, *et al* (2018) Protein Phase Separation: A
- 1275 New Phase in Cell Biology. *Trends Cell Biol* 28: 420–435
- 1276 Bourassa L & Camilli A (2009) Glycogen contributes to the environmental persistence
- 1277 and transmission of *Vibrio cholerae*. *Mol Microbiol* 72: 124–38
- 1278 Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU & Baumeister W (2009) The Native
- 1279 3D Organization of Bacterial Polysomes. *Cell* 136: 261–271
- 1280 Bremer H & Dennis PP (2008) Modulation of Chemical Composition and Other
- 1281 Parameters of the Cell at Different Exponential Growth Rates. *EcoSal Plus* 3
- 1282 Bren A, Hart Y, Dekel E, Koster D & Alon U (2013) The last generation of bacterial growth
- 1283 in limiting nutrient. *BMC Syst Biol* 7: 27
- 1284 Buchanan RE (1918) Life Phases in a Bacterial Culture
- 1285 Castellana M, Hsin-Jung Li S & Wingreen NS (2016) Spatial organization of bacterial
- 1286 transcription and translation. *Proceedings of the National Academy of Sciences* 113:
- 1287 9286–9291
- 1288 Chai Q, Singh B, Peisker K, Metzendorf N, Ge X, Dasgupta S & Sanyal S (2014)
- 1289 Organization of Ribosomes and Nucleoids in *Escherichia coli* Cells during Growth
- 1290 and in Quiescence. *Journal of Biological Chemistry* 289: 11342–11352
- 1291 Chen YJ, Liu P, Nielsen AAK, Brophy JAN, Clancy K, Peterson T & Voigt CA (2013)
- 1292 Characterization of 582 natural and synthetic terminators and quantification of their
- 1293 design constraints. *Nature Methods* 2013 10:7 10: 659–664

- 1294 Cherepanov PP & Wackernagel W (1995) Gene disruption in *Escherichia coli*: TcR and
1295 KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance
1296 determinant. *Gene* 158: 9–14
- 1297 Cohan MC & Pappu R V. (2020) Making the Case for Disordered Proteins and
1298 Biomolecular Condensates in Bacteria. *Trends Biochem Sci* 45: 668–680
- 1299 Cutler KJ, Stringer C, Lo TW, Rappez L, Stroustrup N, Brook Peterson S, Wiggins PA &
1300 Mougous JD (2022) Omnipose: a high-precision morphology-independent solution
1301 for bacterial cell segmentation. *Nat Methods* 19: 1438–1448
- 1302 Datsenko KA & Wanner BL (2000) One-step inactivation of chromosomal genes in
1303 *Escherichia coli* K-12 using PCR products. *Proc Natl Acad Sci U S A* 97: 6640–5
- 1304 Devanand K & Selser JC (1991) Asymptotic behavior and long-range interactions in
1305 aqueous solutions of poly(ethylene oxide). *Macromolecules* 24: 5943–5947
- 1306 Diner EJ, Garza-Sánchez F & Hayes CS (2011) Genome Engineering Using Targeted
1307 Oligonucleotide Libraries and Functional Selection. In *Bone*, Williams JA (ed) pp 71–
1308 82. Totowa, NJ: Humana Press
- 1309 Dworkin J & Harwood CS (2022) Metabolic Reprogramming and Longevity in Quiescence.
1310 *Annu Rev Microbiol* 76: 91–111
- 1311 Elowitz MB, Surette MG, Wolf P-E, Stock JB & Leibler S (1999) Protein Mobility in the
1312 Cytoplasm of *Escherichia coli*. *J Bacteriol* 181: 197–203
- 1313 Erickson HP (2009) Size and shape of protein molecules at the nanometer level
1314 determined by sedimentation, gel filtration, and electron microscopy. *Biol Proced
1315 Online* 11: 32–51 doi:10.1007/s12575-009-9008-x [PREPRINT]

- 1316 Feijó Delgado F, Cermak N, Hecht VC, Son S, Li Y, Knudsen SM, Olcum S, Higgins JM,
1317 Chen J, Grover WH, *et al* (2013) Intracellular Water Exchange for Measuring the Dry
1318 Mass, Water Mass and Changes in Chemical Composition of Living Cells. *PLoS One*
1319 8: e67590
- 1320 Floc'h K, Lacroix F, Servant P, Wong Y-S, Kleman J-P, Bourgeois D & Timmins J (2019)
1321 Cell morphology and nucleoid dynamics in dividing *Deinococcus radiodurans*. *Nat
1322 Commun* 10: 3815
- 1323 Fung T, Kwong N, Van Der Zwan T & Wu M (2013) Residual Glycogen Metabolism in
1324 *Escherichia coli* is Specific to the Limiting Macronutrient and Varies During Stationary
1325 Phase
- 1326 Gangola P & Rosen BP (1987) Maintenance of intracellular calcium in *Escherichia coli*.
1327 *Journal of Biological Chemistry* 262: 12570–12574
- 1328 de Gennes PG & Witten TA (1980) *Scaling Concepts in Polymer Physics*. *Phys Today*
1329 33: 51–54
- 1330 Govons S, Vinopal R, Ingraham J & Preiss J (1969) Isolation of mutants of *Escherichia*
1331 *coli* B altered in their ability to synthesize glycogen. *J Bacteriol* 97: 970–972
- 1332 Gray WT, Govers SK, Xiang Y, Parry BR, Campos M, Kim S & Jacobs-Wagner C (2019)
1333 Nucleoid Size Scaling and Intracellular Organization of Translation across Bacteria.
1334 *Cell* 177: 1632-1648.e20
- 1335 Grossman TH, Kawasaki ES, Punreddy SR & Osburne MS (1998) Spontaneous cAMP-
1336 dependent derepression of gene expression in stationary phase plays a role in
1337 recombinant expression instability. *Gene* 209: 95–103

- 1338 Gründel M, Scheunemann R, Lockau W & Zilliges Y (2012) Impaired glycogen synthesis
1339 causes metabolic overflow reactions and affects stress responses in the
1340 cyanobacterium *Synechocystis* sp. PCC 6803. *Microbiology (United Kingdom)* 158:
1341 3032–3043
- 1342 Guerrero CR, Garcia PD & Garcia R (2019) Subsurface Imaging of Cell Organelles by
1343 Force Microscopy. *ACS Nano* 13: 9629–9637
- 1344 Hardo G, Noka M & Bakshi S (2022) Synthetic Micrographs of Bacteria (SyMBac) allows
1345 accurate segmentation of bacterial cells using deep neural networks. *BMC Biol* 20
- 1346 Hedge PJ & Spratt BG (1985) Resistance to β -lactam antibiotics by re-modelling the
1347 active site of an *E. coli* penicillin-binding protein. *Nature* 1985 318:6045 318: 478–
1348 480
- 1349 Henrissat B, Deleury E & Coutinho PM (2002) Glycogen metabolism loss: a common
1350 marker of parasitic behaviour in bacteria? *Trends in Genetics* 18: 437–440
- 1351 Hink MA, Griep RA, Borst JW, van Hoek A, Eppink MHM, Schots A & Visser AJWG (2000)
1352 Structural Dynamics of Green Fluorescent Protein Alone and Fused with a Single
1353 Chain Fv Protein. *Journal of Biological Chemistry* 275: 17556–17560
- 1354 Hoang AY, Azaldegui CA, Ghalmi M, Biteen JS & Vecchiarelli AG (2023) An experimental
1355 framework to assess biomolecular condensates in bacteria.
- 1356 Holme T, Laurent T, Palmstierna H, Magnéli A, Magnéli A, Pestmalis H & Åsbrink S (1957)
1357 On the Glycogen in *Escherichia coli* B; Variations in Molecular Weight during Growth.
1358 I. *Acta Chem Scand* 11: 757–762
- 1359 Holme T, Palmstierna H, Ulfvarson U, Stenhammar E & Thorell B (1956) Changes in
1360 Glycogen and Nitrogen-containing Compounds in *Escherichia coli* B during Growth

- 1361 in Deficient Media. I. Nitrogen and Carbon Starvation. *Acta Chem Scand* 10: 578–
1362 586
- 1363 Hyman AA, Weber CA & Jülicher F (2014) Liquid-liquid phase separation in biology. *Annu
1364 Rev Cell Dev Biol* 30: 39–58 doi:10.1146/annurev-cellbio-100913-013325
1365 [PREPRINT]
- 1366 Ingraham JL, Maaløe O & Neidhardt FC (1983) Growth of the bacterial cell Sunderland
1367 (Mass.): Sinauer associates
- 1368 Janel S, Popoff M, Barois N, Werkmeister E, Divoux S, Perez F & Lafont F (2019)
1369 Stiffness tomography of eukaryotic intracellular compartments by atomic force
1370 microscopy. *Nanoscale* 11: 10320–10328
- 1371 Jensen KF (1993) The *Escherichia coli* K-12 ‘wild types’ W3110 and MG1655 have an
1372 rph frameshift mutation that leads to pyrimidine starvation due to low *pyrE* expression
1373 levels. *J Bacteriol* 175: 3401–3407
- 1374 Julius K, Weine J, Gao M, Latarius J, Elbers M, Paulus M, Tolan M & Winter R (2019)
1375 Impact of Macromolecular Crowding and Compression on Protein-Protein
1376 Interactions and Liquid-Liquid Phase Separation Phenomena. *Macromolecules* 52:
1377 1772–1784
- 1378 Khemici V, Poljak L, Luisi BF & Carpousis AJ (2008) The RNase E of *Escherichia coli* is
1379 a membrane-binding protein. *Mol Microbiol* 70: 799–813
- 1380 Klotz A & Forchhammer K (2017) Glycogen, a major player for bacterial survival and
1381 awakening from dormancy. *Future Microbiol* 12: 101–104
- 1382 Klotz A, Georg J, Bučinská L, Watanabe S, Reimann V, Januszewski W, Sobotka R,
1383 Jendrossek D, Hess WR & Forchhammer K (2016) Awakening of a Dormant

- 1384 Cyanobacterium from Nitrogen Chlorosis Reveals a Genetically Determined
1385 Program. *Current Biology* 26: 2862–2872
- 1386 Konopka MC, Sochacki KA, Bratton BP, Shkel IA, Record MT & Weisshaar JC (2009)
1387 Cytoplasmic Protein Mobility in Osmotically Stressed *Escherichia coli*. *J Bacteriol* 191:
1388 231–237
- 1389 Kubitschek HE, Baldwin WW & Graetzer R (1983) Buoyant density constancy during the
1390 cell cycle of *Escherichia coli*. *J Bacteriol* 155: 1027–1032
- 1391 Kubitschek HE & Friske JA (1986) Determination of bacterial cell volume with the Coulter
1392 Counter. *J Bacteriol* 168: 1466–1467
- 1393 Landgraf D, Okumus B, Chien P, Baker TA & Paulsson J (2012) Segregation of molecules
1394 at cell division reveals native protein localization. *Nat Methods* 9: 480–482
- 1395 Li XT, Jun Y, Erickstad MJ, Brown SD, Parks A, Court DL & Jun S (2016) tCRISPRi:
1396 tunable and reversible, one-step control of gene expression. *Scientific Reports* 2016
1397 6:1 6: 1–12
- 1398 Liu H, Wen J, Xiao Y, Liu J, Hopyan S, Radisic M, Simmons CA & Sun Y (2014) In situ
1399 mechanical characterization of the cell nucleus by atomic force microscopy. *ACS*
1400 *Nano* 8: 3821–8
- 1401 Liu Q, Li J, Zhang W, Xiao C, Zhang S, Nian C, Li J, Su D, Chen L, Zhao Q, *et al* (2021a)
1402 Glycogen accumulation and phase separation drives liver tumor initiation. *Cell* 184:
1403 5559-5576.e19
- 1404 Liu Q-H, Tang J-W, Wen P-B, Wang M-M, Zhang X & Wang L (2021b) From Prokaryotes
1405 to Eukaryotes: Insights Into the Molecular Structure of Glycogen Particles. *Front Mol*
1406 *Biosci* 8: 1–15

- 1407 Loferer-Krössbacher M, Klima J & Psenner R (1998) Determination of bacterial cell dry
1408 mass by transmission electron microscopy and densitometric image analysis. *Appl
1409 Environ Microbiol* 64: 688–94
- 1410 Lukatsky DB & Shakhnovich EI (2008) Statistically enhanced promiscuity of structurally
1411 correlated patterns. *Phys Rev E* 77: 020901
- 1412 Lutkenhaus J (2008) Min oscillation in bacteria. *Adv Exp Med Biol* 641: 49–61
- 1413 Lvov Y, Ariga K, Ichinose I & Kunitake T (1996) Molecular film assembly via layer-by-
1414 layer adsorption of oppositely charged macromolecules (linear polymer, protein and
1415 clay) and concanavalin A and glycogen. *Thin Solid Films* 284–285: 797–801
- 1416 Madsen NB (1963) The biological control of glycogen metabolism in *Agrobacterium
1417 tumefaciens*. *Can J Biochem Physiol* 41: 561–571
- 1418 Milo R (2013) What is the total number of protein molecules per cell volume? A call to
1419 rethink some published values. *BioEssays* 35: 1050–1055
- 1420 Mohapatra S & Weisshaar JC (2018) Functional mapping of the *E. coli* translational
1421 machinery using single-molecule tracking. *Mol Microbiol* 110: 262–282
- 1422 Mondal J, Bratton BP, Li Y, Yethiraj A & Weisshaar JC (2011) Entropy-based mechanism
1423 of ribosome-nucleoid segregation in *E. coli* Cells. *Biophys J* 100: 2605–2613
- 1424 Morcombe CR & Zilm KW (2003) Chemical shift referencing in MAS solid state NMR.
1425 *Journal of Magnetic Resonance* 162: 479–486
- 1426 Morita RY (1990) The starvation-survival state of microorganisms in nature and its
1427 relationship to the bioavailable energy. *Experientia* 46: 813–817

- 1428 Mulder EG, Deinema MH, van Veen WL & Zevenhuizen LPTM (1962) Polysaccharides,
1429 lipids and poly- β -hydroxybutyrate in microorganisms. *Recueil des Travaux*
1430 *Chimiques des Pays-Bas* 81: 797–809
- 1431 Neidhardt FC & Curtiss R (1996) *Escherichia coli and Salmonella* : cellular and molecular
1432 biology
- 1433 Nilsson M, Bülow L & Wahlund K-G (1997) Use of flow field-flow fractionation for the rapid
1434 quantitation of ribosome and ribosomal subunits in *Escherichia coli* at different protein
1435 production conditions. *Biotechnol Bioeng* 54: 461–467
- 1436 Nyström T (2004) Stationary-Phase Physiology. *Annu Rev Microbiol* 58: 161–181
- 1437 Nyström T & Kjelleberg S (1989) Role of Protein Synthesis in the Cell Division and
1438 Starvation Induced Resistance to Autolysis of a Marine *Vibrio* during the Initial Phase
1439 of Starvation. *Microbiology (N Y)* 135: 1599–1606
- 1440 Oak ASW, Bagchi A, Brukman MJ, Toth J, Ford J, Zheng Y, Nace A, Yang R, Hsieh J-C,
1441 Hayden JE, *et al* (2025) Wnt signaling modulates mechanotransduction in the
1442 epidermis to drive hair follicle regeneration. *Sci Adv* 11: eadq0638
- 1443 Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I & Jacobs-Wagner C (2016)
1444 Oufti: an integrated software package for high-accuracy, high-throughput quantitative
1445 microscopy analysis. *Mol Microbiol* 99: 767–77
- 1446 Papagiannakis A, Yu Q, Govers SK, Lin W-H, Wingreen NS & Jacobs-Wagner C (2025)
1447 Nonequilibrium polysome dynamics promote chromosome segregation and its
1448 coupling to cell growth in *Escherichia coli*. *Elife*

- 1449 Pelletier JF, Field CM, Coughlin M, Ryazanova L, Sonnett M, Wühr M & Mitchison TJ
1450 (2021) Glycogen-dependent demixing of frog egg cytoplasm at increased crowding.
1451 1–21
- 1452 Penedo M, Miyazawa K, Okano N, Furusho H, Ichikawa T, Alam MS, Miyata K, Nakamura
1453 C & Fukuma T (2021) Visualizing intracellular nanostructures of living cells by
1454 nanoendoscopy-AFM. *Sci Adv* 7: eabj4990
- 1455 Persson LB, Ambati VS & Brandman O (2020) Cellular Control of Viscosity Counters
1456 Changes in Temperature and Energy Availability. *Cell* 183: 1572–1585.e16
- 1457 Phillips LA, Hotham-Iglewski B & Franklin RM (1969) Polyribosomes of *Escherichia coli*:
1458 II. Experiments to determine the *in vivo* distribution of polysomes, ribosomes and
1459 ribosomal subunits. *J Mol Biol* 45: 23–38
- 1460 Pogliano J, Pogliano K, Weiss DS, Losick R & Beckwith J (1997) Inactivation of FtsI
1461 inhibits constriction of the FtsZ cytokinetic ring and delays the assembly of FtsZ rings
1462 at potential division sites
- 1463 Potma EO, De Boeij WP, Bosgraaf L, Roelofs J, Van Haastert PJM & Wiersma DA (2001)
1464 Reduced Protein Diffusion Rate by Cytoskeleton in Vegetative and Polarized
1465 Dictyostelium Cells. *Biophys J* 81: 2010–2019
- 1466 Preiss J (1984) Bacterial glycogen synthesis and its regulation. *Annu Rev Microbiol* 38:
1467 419–58
- 1468 Preiss J & Romeo T (1990) Physiology, Biochemistry and Genetics of Bacterial Glycogen
1469 Synthesis. In pp 183–238.
- 1470 Preiss J & Romeo T (1994) Molecular biology and regulatory aspects of glycogen
1471 biosynthesis in bacteria. *Prog Nucleic Acid Res Mol Biol* 47: 299–329

- 1472 Racki LR, Tocheva EI, Dieterle MG, Sullivan MC, Jensen GJ & Newman DK (2017)
- 1473 Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit
- 1474 during starvation in *Pseudomonas aeruginosa*. *Proc Natl Acad Sci U S A* 114:
- 1475 E2440–E2449
- 1476 Roduit C, Sekatski S, Dietler G, Catsicas S, Lafont F & Kasas S (2009) Stiffness
- 1477 tomography by atomic force microscopy. *Biophys J* 97: 674–7
- 1478 Rolinson GN (1980) Effect of beta-lactam antibiotics on bacterial cell growth rate. *J Gen*
- 1479 *Microbiol* 120: 317–323
- 1480 Rostam N, Ghosh S, Chow CFW, Hadarovich A, Landerer C, Ghosh R, Moon HK,
- 1481 Hersemann L, Mitrea DM, Klein IA, *et al* (2023) CD-CODE: crowdsourcing
- 1482 condensate database and encyclopedia. *Nat Methods* 20: 673–676
- 1483 Sanamrad A, Persson F, Lundius EG, Fange D, Gynnå AH & Elf J (2014) Single-particle
- 1484 tracking reveals that free ribosomal subunits are not excluded from the *Escherichia*
- 1485 *coli* nucleoid. *Proc Natl Acad Sci U S A* 111: 11413–11418
- 1486 Schaefer J & Stejskal EO (1976) Carbon-13 Nuclear Magnetic Resonance of Polymers
- 1487 Spinning at the Magic Angle. *J Am Chem Soc* 98: 1031–1032
- 1488 Schavemaker PE, Śmigiel WM & Poolman B (2017) Ribosome surface properties may
- 1489 impose limits on the nature of the cytoplasmic proteome. *Elife* 6: 1–28
- 1490 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S,
- 1491 Rueden C, Saalfeld S, Schmid B, *et al* (2012) Fiji: An open-source platform for
- 1492 biological-image analysis. *Nat Methods* 9: 676–682
- 1493 Schultz SG, Wilson NL & Epstein W (1962) Cation Transport in *Escherichia coli*. *Journal*
- 1494 *of General Physiology* 46: 159–166

- 1495 Sekar K, Linker SM, Nguyen J, Grünhagen A, Stocker R & Sauer U (2020) Bacterial
1496 Glycogen Provides Short-Term Benefits in Changing Environments. *Appl Environ*
1497 *Microbiol* 86
- 1498 Sharp KA (2015) Analysis of the size dependence of macromolecular crowding shows
1499 that smaller is better. *Proc Natl Acad Sci U S A* 112: 7990–7995
- 1500 Sherratt DJ (2003) Bacterial chromosome dynamics. *Science (1979)* 301: 780–785
- 1501 Shi H, Westfall CS, Kao J, Odermatt PD, Anderson SE, Cesar S, Sievert M, Moore J,
1502 Gonzalez CG, Zhang L, *et al* (2021) Starvation induces shrinkage of the bacterial
1503 cytoplasm. *Proc Natl Acad Sci U S A* 118: 2104686118
- 1504 Shih YL & Zheng M (2013) Spatial control of the cell division site by the Min system in
1505 *Escherichia coli*. *Environ Microbiol* 15: 3229–3239
- 1506 Shively JM (1974) Inclusion Bodies of Prokaryotes. *Annu Rev Microbiol* 28: 167–188
- 1507 Sigal N, Cattaneo J & Segel IH (1964) Glycogen accumulation by wild-type and uridine
1508 diphosphate glucose pyrophosphorylase-negative strains of *Escherichia coli*. *Arch*
1509 *Biochem Biophys* 108: 440–451
- 1510 Skurat A V., Segvich DM, Depaoli-Roach AA & Roach PJ (2017) Novel method for
1511 detection of glycogen in cells. *Glycobiology* 27: 416–424
- 1512 Smith WC, Qu H, Zheng K, Baek JH, Gao Y, Buehler PW, Feng X & Xu X (2023)
1513 Determining critical overlap concentration of polyethylene oxide to support excipient
1514 safety assessment of opioid products. *Int J Pharm* 632
- 1515 Strahl H, Turlan C, Khalid S, Bond PJ, Kebalo J-M, Peyron P, Poljak L, Bouvier M,
1516 Hamoen L, Luisi BF, *et al* (2015) Membrane Recognition and Dynamics of the RNA
1517 Degradosome. *PLoS Genet* 11: e1004961

- 1518 Strange RE, Dark FA & Ness AG (1961) The Survival of Stationary Phase Aerobacter
1519 aerogenes Stored in Aqueous Suspension. *J Gen Microbiol* 25: 61–76
- 1520 Stylianidou S, Brennan C, Nissen SB, Kuwada NJ & Wiggins PA (2016) SuperSegger:
1521 robust image segmentation, analysis and lineage tracking of bacterial cells. *Mol*
1522 *Microbiol* 102: 690–700
- 1523 Surovtsev I V. & Jacobs-Wagner C (2018) Subcellular Organization: A Critical Feature of
1524 Bacterial Cell Replication. *Cell* 172: 1271–1293
- 1525 Swaminathan R, Hoang CP & Verkman AS (1997) Photobleaching recovery and
1526 anisotropy decay of green fluorescent protein GFP-S65T in solution and cells:
1527 cytoplasmic viscosity probed by green fluorescent protein translational and rotational
1528 diffusion. *Biophys J* 72: 1900–1907
- 1529 Szatmári D, Sárkány P, Kocsis B, Nagy T, Miseta A, Barkó S, Longauer B, Robinson RC
1530 & Nyitrai M (2020) Intracellular ion concentrations and cation-dependent remodelling
1531 of bacterial MreB assemblies. *Sci Rep* 10: 12002
- 1532 Thomason LC, Costantino N & Court DL (2007) E. coli Genome Manipulation by P1
1533 Transduction. *Curr Protoc Mol Biol* 79
- 1534 Del Valle A, Torra J, Bondia P, Tone CM, Pedraz P, Vadillo-Rodriguez V & Flors C (2020)
1535 Mechanically Induced Bacterial Death Imaged in Real Time: A Simultaneous
1536 Nanoindentation and Fluorescence Microscopy Study. *ACS Appl Mater Interfaces* 12:
1537 31235–31241
- 1538 Wang L, Liu Q, Tan X, Wang Z, Wang M, Wise MJ, Li C, Ma C, Li E, Deng B, et al (2019a)
1539 Molecular Structure of Glycogen in Escherichia coli. *Biomacromolecules* 20: 2821–
1540 2829

- 1541 Wang L & Wise MJ (2011) Glycogen with short average chain length enhances bacterial
1542 durability. *Naturwissenschaften* 98: 719–729
- 1543 Wang M, Liu Q, Kang X, Zhu Z, Yang H, Xi X, Zhang X, Du Y, Guo M, Tang D, *et al* (2020)
1544 Glycogen Metabolism Impairment via Single Gene Mutation in the glgBXCAP Operon
1545 Alters the Survival Rate of *Escherichia coli* Under Various Environmental Stresses.
1546 *Front Microbiol* 11: 1–13
- 1547 Wang M, Liu Q, Li F, Tang J, Xiong X, Yang Y, Ju P, Wang Z, Gilbert RG & Wang L (2021)
1548 The dynamic changes of glycogen molecular structure in *Escherichia coli* BL21(DE3).
1549 *Carbohydr Polym* 259: 117773
- 1550 Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A & Jun S (2010) Robust
1551 Growth of *Escherichia coli*. *Current Biology* 20: 1099–1103
- 1552 Wang Z, Zhang G & Zhang H (2019b) Protocol for analyzing protein liquid–liquid phase
1553 separation. *Biophys Rep* 5: 1–9
- 1554 Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM
1555 & Pozueta-Romero J (2010) Regulation of glycogen metabolism in yeast and
1556 bacteria. *FEMS Microbiol Rev* 34: 952–985
- 1557 Woldringh CL, Mulder E, Valkenburg JAC, Wientjes FB, Zaritsky A & Nanninga N (1990)
1558 Role of the nucleoid in the toporegulation of division. *Res Microbiol* 141: 39–49
- 1559 Wu F, van Schie BGC, Keymer JE & Dekker C (2015) Symmetry and scale orient Min
1560 protein patterns in shaped bacterial sculptures. *Nat Nanotechnol* 10: 719–726
- 1561 Yoshioka K, Saito M, Oh K-B, Nemoto Y, Matsuoka H, Natsume M & Abe H (1996a)
1562 Intracellular Fate of 2-NBDG, a Fluorescent Probe for Glucose Uptake Activity, in
1563 *Escherichia coli* Cells. *Biosci Biotechnol Biochem* 60: 1899–1901

- 1564 Yoshioka K, Takahashi H, Homma T, Saito M, Oh K-B, Nemoto Y & Matsuoka H (1996b)
- 1565 A novel fluorescent derivative of glucose applicable to the assessment of glucose
- 1566 uptake activity of *Escherichia coli*. *Biochimica et Biophysica Acta (BBA) - General*
- 1567 *Subjects* 1289: 5–9
- 1568 Zevenhuizen LPTM (1966) Formation and function of the glycogen-like polysaccharide
- 1569 of *Arthrobacter*. *Antonie Van Leeuwenhoek* 32: 356–372
- 1570 Zhu Y, Fan Z, Wang R, Xie R, Guo H, Zhang M, Guo B, Sun T, Zhang H, Zhuo L, et al
- 1571 (2020) Single-Cell Analysis for Glycogen Localization and Metabolism in Cultured
- 1572 Astrocytes. *Cell Mol Neurobiol* 40: 801–812
- 1573
- 1574

1575 **FIGURE LEGENDS**

1576 **Fig 1: Cellular features change as the cell density of the culture increases.** **A** Growth
1577 curves of two independent cultures of strain CJW4677. The datapoints for the same
1578 culture have the same shape (spherical vs square). OD measurements were manually
1579 collected by spectrophotometry over time.

1580 **B** Representative phase contrast images of DAPI-labeled cells in exponential (OD = 0.5),
1581 transition (OD = 2.0) and stationary phase (OD = 3.25). The magenta arrowhead indicates
1582 the site of cell constriction. The inset shows a zoomed of two cells in transition phase
1583 displaying cellular asymmetries in nucleoid and/or constriction positioning. The scale bars
1584 in the inset and larger field of view are 1 and 5 μm , respectively.

1585 **C** Scatter plot of OD vs. mean cell area. Samples of different cultures of strain CJW4677
1586 were collected at 35 different ODs ($n > 500$ cells for each OD) for cell imaging. The binned
1587 data for the indicated OD ranges are shown, with the mean describing the averaged mean
1588 value for cell samples from three OD values and error bars indicating the standard
1589 deviation. Grey, red, and blue shades indicate exponential, transition, and stationary
1590 phases, respectively.

1591 **D** Same as panel C but for OD vs. mean nucleoid area.

1592 **E** Same as panel C but for OD vs. mean number of nucleoids per cell.

1593 **F** Same as panel C but for OD vs. fraction of cells with one nucleoid.

1594 **G** Same as panel C but for OD vs. the fraction of constricting cells in the population.

1595 **H** Same as panel C but for OD vs. mean division asymmetry, calculated by dividing the
1596 absolute distance of the division position from the cell center by cell length and averaging

1597 across cells. This was done for cultures at ODs at which the fraction of dividing cells in
1598 the population was greater than 0.05.

1599 **I** Kernel density plots of the relative nucleoid positioning for cells in exponential, transition,
1600 or stationary phases, determined by calculating the absolute distance between the
1601 nucleoid mid-point and cell center, normalized for cell length. Note that for cells with two
1602 nucleoids, their relative mid-points were averaged such that when the center of each
1603 nucleoid was positioned at the relative quarter cell positions, the mean mid-point was at
1604 the cell center (see schematic).

1605

1606 **Fig 2: The localization pattern of cytoplasmic components changes in transition**
1607 **phase.**

1608 **A** Representative phase contrast and fluorescence images of DAPI-labeled CJW7325
1609 cells expressing RplA-mCherry and msfGFP, along with corresponding cell signal
1610 intensity profiles. Cultures were in exponential phase (OD 0.14) or transition phase (OD
1611 1.83), as indicated. Fluorescence intensity is indicated in arbitrary units (a.u.). Scale bar:
1612 2 μ m.

1613 **B** Contour plots showing the normalized pole difference of msfGFP and RplA-mCherry
1614 signals in cells in exponential (top, n = 448) or transition (bottom, n = 2785) phase. The
1615 normalized pole difference of a fluorescent signal corresponds to the difference in this
1616 signal between pole regions divided by the average signal intensity across the cell. The
1617 contour lines represent the 0.167, 0.33, 0.5, 0.66, 0.83, and 1 kernel density envelopes
1618 of the data.

1619 **C** Representative images of DAPI-stained CJW5685 cells expressing RNase E Δ MTS
1620 tagged with mCherry in exponential (OD = 0.1) or transition (OD = 1.3) phase, along with
1621 signal intensity profiles for the indicated (*) cell. Scale bar: 2 μ m.

1622 **D** Histograms of normalized pole difference of RNase E Δ MTS-mCherry in CJW5685 cells
1623 in exponential (OD = 0.1, n = 4732) or transition (OD = 1.7, n = 3110) phase.

1624 **E** Timelapse sequence of a cell (CJW5159) expressing RplA-GFP and HupA-mCherry,
1625 with “N” and “O” indicating the new and old poles, respectively. Cells in exponential phase
1626 at OD \sim 0.5 were washed in spent medium from a transition-phase culture (OD = 2.63)
1627 and spotted on an agarose pad containing the same spent medium. The RplA-GFP
1628 images were scaled to reflect the 5-95% range of signal intensity for each image. The
1629 signal intensity profile is provided by the cell marked by an asterisk. Scale bar: 2 μ m.

1630 **F** Representative phase contrast and fluorescence images of a cephalexin-treated and
1631 DAPI-labeled CJW7325 cell carrying RplA-mCherry and msfGFP in transition phase, with
1632 the corresponding signal intensity profiles shown below. Fluorescence intensities are
1633 indicated in arbitrary units (a.u.). Scale bar: 5 μ m.

1634 **G** Same as panel F but highlighting a band of enriched msfGFP signal (purple arrowhead)
1635 in the region lacking DAPI staining (grey bracket). Scale bar: 5 μ m.

1636 **H** Phase contrast and fluorescence images of a CJW7326 cell carrying HupA-mCherry
1637 and msfGFP, along with the corresponding signal intensity profile. Scale bar: 1 μ m.

1638

1639 **Fig 3: Glycogen accumulation in transition phase drives intracellular**
1640 **rearrangement.**

1641 **A** Representative relative whole-cell ^{13}C CPMAS spectral overlays of WT cell extracts
1642 (strain CJW2168) from cultures in exponential vs. transition phase (top), purified bovine
1643 and mussel glycogen (middle), and WT vs. $\Delta\text{glgBXCAP}$ (CJW7537) cell extracts from
1644 transition-phase cultures (bottom). The dashed rectangle indicates the sugar carbon
1645 region of the spectrum.

1646 **B** Representative fields of view of fluorescence images showing cells from co-cultures in
1647 transition phase. The top two fields of view show glycogen-producing cells (CJW7666)
1648 expressing mVenus and HupA-mCherry mixed with glycogen-devoid cells (CJW7667)
1649 expressing mSCFP3 and HupA-mCherry (Mix 1). The bottom fields of view illustrate
1650 glycogen-producing cells (CJW7665) expressing mSCFP3 and HupA-mCherry mixed
1651 with glycogen-devoid cells (CJW7668) expressing mVenus and HupA-mCherry (Mix 2).
1652 Scale bar: 10 μm . On the right side of the fields of view, the images of single cells
1653 (indicated by the single or double asterisks) show examples of the localization of mVenus
1654 (yellow), mSCFP3 (cyan), and HupA-mCherry (purple) for the relevant strain. Scale bar:
1655 1 μm .

1656 **C** Box plots showing the normalized (norm.) offset of the cell constriction site of the co-
1657 cultured WT and $\Delta\text{glgBXCAP}$ cells carrying either mVenus or mSCFP3 in exponential and
1658 transition phases. The horizontal lines and whiskers correspond to the median and the
1659 1.5x interquartile range, respectively. The results shown correspond to the first replicate
1660 for Mix 1 and Mix 2. The results for two other biological replicates of each mix are shown
1661 in Fig EV4. The indicated P values were obtained using a two-sided Wilcoxon rank sum
1662 test.

1663 **D** Same as panel C but for the normalized nucleoid position offset. The second and third
1664 biological replicates of Mix 1 and Mix 2 are shown in Fig EV5.

1665 **E** Contour plots showing the normalized (Norm.) pole differences of msfGFP vs. the
1666 normalized pole differences of RplA-mCherry for exponential (top, OD = 0.065, n = 498)
1667 and transition-phase (bottom, OD = 1.2, n = 2807) cells of the glycogen-deficient strain
1668 $\Delta g/gBXCAP$ (CJW7878). The normalized pole difference of a fluorescent signal
1669 corresponds to the difference in this signal between pole regions divided by the average
1670 signal intensity across the cell. The contour lines represent the 0.167, 0.33, 0.5, 0.66,
1671 0.83, and 1 kernel density envelopes of the data.

1672 **F** Histograms of the normalized pole difference of RNase E ΔMTS -mCherry for cells
1673 (strain CJW7877) in exponential (OD = 0.07, n = 2479) or transition (OD = 0.82, n = 3339)
1674 phase.

1675 **G** Representative images of WT (CJW7606) and $\Delta g/gBXCAP$ (CJW7607) cells in
1676 transition phase (OD 2.7) labeled with DAPI and expressing mScarlet-I and the glycogen
1677 sensor, along with the signal intensity profiles for the indicated (*) cells. Fluorescence
1678 intensities are indicated in arbitrary units (a.u.). Scale bar: 2 μ m.

1679 **H** Distributions of SCF values of the glycogen sensor vs. DAPI or mScarlet-I for glycogen-
1680 producing cells (n = 3591, CJW7606 in transition phase).

1681 **I** Density contour plot showing the area difference of the glycogen sensor signal between
1682 the cell poles normalized by the cell area vs. the nucleoid position asymmetry in CJW7606
1683 cells (n = 5794). The latter was calculated by determining the offset of the nucleoid mid-
1684 point from the cell center normalized to the cell length. The contour lines represent the

1685 0.10, 0.2, 0.3, 0.4, 0.50, 0.6, 0.7, 0.8, and 0.9 probability envelopes of the data. Spearman
1686 correlation coefficient (ρ) is 0.748 (P-value = 0).

1687 **J** Example phase contrast and fluorescence images of a DAPI-labeled CJW7606 cell
1688 carrying RplA-mCherry and the glycogen sensor. The cell was from a culture in transition
1689 phase following cephalexin treatment. Grey bracket indicates DNA-free region where
1690 glycogen accumulation (orange arrowheads) sandwiches a band of RplA-mCherry
1691 enrichment (purple arrowhead). Scale bar: 2 μ m.

1692

1693 **Fig 4. Preferential glycogen accumulation at the old cell pole through inheritance**
1694 **contributes to the asymmetry in nucleoid positioning.**

1695 **A** Schematic of the setup used in the microfluidic experiment. A waterbath shaker is used
1696 to grow a batch culture with controlled temperature (30°C) and shaking (200 rpm). Culture
1697 is first passed through a custom-built bubble trap and then through the microfluidics chip
1698 (mother machine) using a peristaltic pump. The large inset (dotted lines) shows a
1699 zoomed-in depiction of the microfluidic chip, with the culture flowing through the feeding
1700 channels and cells growing in the narrow trenches. The smaller inset shows an
1701 enlargement of the mother cell.

1702 **B** Montage of a representative lineage of CJW7605 showing the overlay between the
1703 HupA-mCherry and glycogen sensor signals. Scale bar 2 μ m.

1704 **C** Plot showing the normalized glycogen sensor pole area over all observed generations.
1705 The solid line represents the mean across all tracked cell lineages ($n = 130$), while the
1706 shaded area indicates the 95% confidence interval.

1707 **D** Scatter plot of the correlation between the normalized nucleoid offset and the
1708 normalized glycogen sensor pole area for all tracked lineages ($n = 130$) across all
1709 analyzed time points (color bar). Spearman correlation coefficient (ρ) is 0.826 (P value =
1710 0).

1711 **E** Plot showing the normalized nucleoid offset as a function of cell generations for the
1712 glycogen WT strain (CJW7605, $n = 130$ lineages) and the glycogen-deficient ($\Delta glgBXCAP$)
1713 strain (CJW7668, $n = 35$ lineages). The solid lines represent the means across all tracked
1714 cell lineages, while the shaded areas indicate the 95% confidence interval.

1715

1716 **Fig 5: Asymmetry in glycogen accumulation creates cell size differences and**
1717 **asymmetric cell divisions.**

1718 **A** Density contour plot of the relative division position as a function of the nucleoid centroid
1719 position in dividing cells for transition-phase cells (strain CJW7666, $n = 525$). The values
1720 +0.5 and -0.5 represent the cell poles, while 0 corresponds to the cell center. Spearman
1721 correlation coefficient (ρ) for WT cells is 0.89 (P value = 0).

1722 **B** Scatter plot showing the difference in cell area and the difference in the area occupied
1723 by the glycogen sensor between future daughter cells (strain CJW7606). Constricting
1724 cells ($n = 365$) were computationally divided into two future daughter cells based on the
1725 cell constriction position (illustrated in the inset). Spearman correlation coefficient (ρ) is
1726 0.54 (P value = 1.28×10^{-27}).

1727 **C.** Boxplots showing the area of exponential and transition-phase cells from WT
1728 (CJW7665 and CJW7666) and $\Delta glgBXCAP$ (CJW7667 and CJW7668) cultures carrying
1729 either mVenus (yellow) or mSCFP3 (cyan).

1730 **D** Same as panel C but for the NC ratio.

1731 **E** Same as panel C but for the total nucleoid area.

1732

1733 **Fig 6. Mimicking intracellular conditions of crowding and ionic strength induces**
1734 **phase transition of glycogen into liquid condensates that partially exclude GFP.**

1735 **A** Plot showing dynamic light scattering (DLS) measurements of the particle diameter size
1736 for PEG and PEO polymers of different molecular weights in IS buffer. Samples were
1737 measured in triplicate for 300 s at 25°C with a 90-degree detection angle. The line
1738 indicates the empirical relation (hydrodynamic diameter ($\sigma_{\text{PEG/PEO}}$) =
1739 $0.029 * \text{MW}_{\text{PEG/PEO}}^{(0.571 \pm 0.009)}$) determined by Devanand and Selser (1991).

1740 **B** Phase contrast and ConA-FITC fluorescence images of representative fields of view
1741 showing a homogeneous distribution of glycogen (left), glycogen droplets (center), and
1742 collapsed glycogen aggregates (right) obtained with the indicated concentrations of 3 kDa
1743 PEG. All samples were made using the IS buffer and contained 9 g/L of glycogen. Scale
1744 bar: 10 μm .

1745 **C** Example montages of glycogen condensates labeled with ConA-FITC undergoing
1746 fusion events over time. Scale bar: 3 μm .

1747 **D** Fluorescence images of ConA-FITC-labeled glycogen condensates imaged at $t \sim 3$ min
1748 and $t \sim 30$ min after the addition of 3 kDa PEG. Scale bar: 10 μm

1749 **E** Phase diagram of glycogen phases as a function of glycogen and 3 kDa PEG
1750 concentrations.

1751 **F** Plot showing the minimal concentration required to drive droplet formation as a function
1752 of the average Stokes diameters for all tested PEG/PEO crowders. Phase separation was

1753 determined by assessing the formation of droplets using phase contrast imaging. The
1754 average diameter for each PEG/PEO crowder corresponds to the measurements shown
1755 in (A).

1756 **G** Phase contrast images of representative fields of view of glycogen (10 g/L) in IS buffer
1757 mixed with the indicated concentration and molecular weight of PEG or PEO (separately
1758 or combined). Scale bar: 10 μ m.

1759 **H** Phase contrast images of glycogen (10 g/L) and 3 kDa PEG (20 mM) mixtures in IS
1760 buffer before and after a two-fold dilution. For both conditions, imaging was performed
1761 within 1 min after mixing. Scale bar: 10 μ m

1762 **I** Phase contrast and GFP images of a representative field of view of glycogen (10g/L) in
1763 IS buffer mixed with GFP (15 μ M) and 3 kDa PEG (20 mM). Scale bar: 10 μ m.

1764

1765 **Fig 7: Intracellular regions containing glycogen condensates are softer than those**
1766 **with protein aggregates and are comparable in stiffness to other cytoplasmic**
1767 **regions.**

1768 AFM experiments were performed on cells from three strains co-cultured to transition
1769 phase (ODs ranging between 1.5 and 1.7): CJW7798 overexpressing mTagBFP2 and
1770 accumulating protein aggregates at a cell pole, CJW7605 expressing the glycogen sensor
1771 to visualize glycogen condensates, and CJW7668 (Δ g/gBXCAP) carrying free mVenus.

1772 **A** Schematic of indentation-based subsurface AFM imaging with a cell containing a
1773 protein aggregate or a glycogen condensate.

1774 **B** Two-dimensional depth-resolved stiffness maps (right) with the correlated fluorescence
1775 images (left) showing stiffness distributions for a representative cell with a protein

1776 aggregate, a cell with accumulations of the fluorescent glycogen sensor (white arrows),
1777 or a cell without glycogen. Scale bar: 500 nm.

1778 **C** Stiffness tomography showing the distribution of stiffness deviations along the
1779 indentation depth of cells with either a protein aggregate, glycogen condensates, or
1780 without glycogen. The stiffness deviation is the difference in stiffness between the
1781 stiffness value at each location and the median stiffness value across the cell length at
1782 the same indentation depth. Grey means no deviation.

1783 **D** Schematic illustrating penetration-based stiffness measurements at targeted regions
1784 containing protein aggregates or glycogen condensates (labeled “On”) and at regions
1785 away from them (labeled “Off”).

1786 **E** Plot showing the median stiffness of “On” and “Off” intracellular regions of either cells
1787 ($n = 15$) containing protein aggregates or cells ($n = 16$) with glycogen condensates,
1788 compared to cytoplasmic regions of glycogen-free cells ($n = 13$). Each dot represents the
1789 median stiffness of an individual cell obtained from 64 puncturing events (technical
1790 replicates). Data were collected over three independent experiments (biological replicates)
1791 with an average of ~ 5 cells per replicate.

1792

1793

1794 **SUPPLEMENTARY TABLES**

1795 **Table EV1. Calculated concentrations of glycogen and proteins in *E. coli* under**
1796 **different growth conditions.**

Glycogen			
Reported (mg/g dry weight)	Conversion (g/L)	Conditions	References
13	1.43	Exponential phase, 1% glucose in enriched medium (with yeast extract) at 37°C	(Govons <i>et al</i> , 1969; Preiss & Romeo, 1994)

2.5	8.25	Exponential phase, glucose minimal media at 37°C, 40 min division rate	(Ingraham <i>et al</i> , 1983)
2.8-4.4	9.24-14.52	Stationary phase, LB at 37°C	(Wang <i>et al</i> , 2019a)
19	20.9	Stationary phase, 1% glucose in enriched medium (with yeast extract) at 37°C	(Preiss & Romeo, 1994; Govons <i>et al</i> , 1969)
Proteins			
Reported	Conversion (mM)	Conditions	References
2.35x10 ⁶ proteins per cell	4.48	Exponential phase, glucose minimal medium at 37°C, 40 min division rate	(Neidhardt & Curtiss, 1996)
0.24 g/mL	9.6-12	Calculated for proteins between 20 and 25 kDa	(Ingraham <i>et al</i> , 1983)

1797

1798 Glycogen and protein concentrations used in our study were derived from reported
 1799 values for *E. coli* cells growing under different conditions. Glycogen concentrations from
 1800 dry weight measurements (mg/g cells) were converted to wet weight values using a
 1801 water content value of 70% (Bremer & Dennis, 2008; Feijó Delgado *et al*, 2013). To
 1802 obtain the concentrations in g/L, we used a cell density of 1.1 g/mL (Kubitschek *et al*,
 1803 1983; Loferer-Krössbacher *et al*, 1998). To calculate the protein concentrations in mM
 1804 from proteins per cell, we used a cell volume of 0.86 μm³ (Kubitschek & Friske, 1986;
 1805 Milo, 2013). To obtain the mM concentrations from g/mL, we used the indicated
 1806 molecular weight range.

1807

1808 **Table EV2. Calculated concentrations of ribosomes and polysomes used in this**
 1809 **study.**

Ribosomes per cell	Conditions	Cell volume (μm ³)	Estimated ribosome concentration (μM)	Estimated polysome concentration (μM)	References
3500	Stationary phase, LB at 37°C	1	5.8	1.16	(Nilsson <i>et al</i> , 1997)

15000	Exponential phase, M9gly at 37°C, 60 min doubling time	1	24.9	4.98	(Bremer & Dennis, 2008)
61000	Exponential phase, M9gluCAA at 37°C, 24 min doubling time	3.5	28.9	5.79	(Bremer & Dennis, 2008)

1810

1811 Concentrations were determined from the reported numbers of ribosomes per cell using
1812 the Avogadro constant to calculate the number of moles per cell, then dividing by the
1813 reported cell volume values indicated (Floc'h *et al*, 2019; Kubitschek & Friske, 1986). For
1814 polysomes, an active fraction of 0.8 percent was used (Bremer & Dennis, 2008) and a
1815 polysome was assumed to consist of four ribosomes (Brandt *et al*, 2009).

1816 **Table EV3. Conditions that resulted in fluorescent protein exclusion from glycogen**
1817 **droplets in vitro.**

PEG/PEO (MW)	PEG/PEO concentration	Temperature (°C)	FP	Buffer	FP exclusion
1.5 kDa	60 mM	30	GFP	IS	Yes
3 kDa	20 mM	25	GFP	IS	Yes
3 kDa	20 mM	30	GFP	IS	Yes
3 kDa	20 mM	37	GFP	IS	Yes
3 kDa	20 mM	25	GFP	IS without MgCl ₂	Yes
3 kDa	20 mM	25	mCherry	IS	Yes
4 kDa	15 mM	25	GFP	IS	Yes
4 kDa	15 mM	30	GFP	IS	Yes
4 kDa	15 mM	37	GFP	IS	Yes
8 kDa	3 mM	25	GFP	IS	Yes
8 kDa	3 mM	30	GFP	IS	Yes
20 kDa	750 μM	30	GFP	IS	Yes
100 kDa	20 μM	25	GFP	IS	Yes
1 MDa	10 μM	25	GFP	IS	Yes

1818
1819 Summary of the assays performed for testing the exclusion of fluorescent proteins (FPs)
1820 by glycogen liquid condensates. FP exclusion was detected by phase contrast and
1821 fluorescence imaging. For all assays, 10 g/L of glycogen and 15 μM of the FP (GFP or
1822 mCherry) were used.

1823 **Table EV4: Strain construction table**

Identifier	Genotype	Source or construction method
CJW5685	MG1655 <i>rne::rneΔMTS-mcherry</i>	<i>rne::rne-mCherry-FRT-cat-FRT</i> from parent strain of Kti162 (Strahl <i>et al</i> , 2015) was moved into MG1655 by P1 transduction. Colonies were screened for chloramphenicol resistance and mCherry fluorescence. The resistance cassette was excised by transiently equipping this strain with plasmid pCP20 expressing the Flp site-specific recombinase (Cherepanov & Wackernagel, 1995).
CJW7083	MG1655 <i>attB::P_{proc}-msfGFP-FRT-kan-FRT</i>	pKD13 was amplified from plasmid pKD13-msfGFP (Gray <i>et al</i> , 2019) using primers YP32 and YP33, with YP32 encoding a transcriptional terminator sequence. <i>msfGFP</i> was also amplified from this plasmid using YP34 and YP35. Constitutive synthetic promoter <i>P_{proc}</i> was amplified from CJW7006 using primers YP36 and YP37, with YP37 also encoding the ribosome binding site L3S1P13 (Chen <i>et al</i> , 2013), linker sequence and start codon. These pieces were assembled using Gibson assembly. The construct was then integrated into the chromosome of MG1655 at the <i>attB</i> site using lambda red recombination.
CJW7275	MG1655 <i>attB::P_{proc}-msfGFP</i>	The kanamycin resistance cassette of CJW7083 was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site specific recombinase (Cherepanov & Wackernagel, 1995).
CJW7325	MG1655 <i>rplA::rplA-mCherry attB::P_{proc}-msfGFP</i>	<i>attB::P_{proc}-msfGFP - KAN</i> from CJW7083 was moved into CJW7324 by P1 transduction. Colonies were screened for kanamycin resistance and GFP fluorescence. The kanamycin resistance cassette was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site specific recombinase (Cherepanov & Wackernagel, 1995).

CJW7326	MG1655 <i>attB::P_{proc}-msfGFP hupA::hupA-mCherry</i>	<i>hupA-mCherry-FRT-kan-FRT</i> from CJW5158 (Gray <i>et al</i> , 2019) was moved into CJW7275 by P1 transduction. Colonies were screened for kanamycin resistance and mCherry fluorescence. The kanamycin resistance cassette was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site specific recombinase (Cherepanov & Wackernagel, 1995).
CJW7485	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(-30)</i>	CJW7324 was transformed with plasmid pBAD-GFP(-30).
CJW7486	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(-7)</i>	CJW7324 was transformed with plasmid pBAD-GFP(-7).
CJW7487	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(0)</i>	CJW7324 was transformed with plasmid pBAD-GFP(0).
CJW7488	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(+7)</i>	CJW7324 was transformed with plasmid pBAD-GFP(+7).
CJW7489	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(+11a)</i>	CJW7324 was transformed with plasmid pBAD-GFP(+11a).
CJW7490	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(+11b)</i>	CJW7324 was transformed with plasmid pBAD-GFP(+11b).
CJW7491	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(+15)</i>	CJW7324 was transformed with plasmid pBAD-GFP(+15).
CJW7492	MG1655 <i>rplA::rplA-mCherry/pBAD-GFP(+25)</i>	CJW7324 was transformed with plasmid pBAD-GFP(+25).
CJW7537	MG1655 <i>ΔglgBXCAP-FRT-kan-FRT</i>	The glycogen operon was replaced with a kanamycin cassette using lambda red from the plasmid pSIM6 (Diner <i>et al</i> , 2011) using gene block gb_1. Candidate colonies were confirmed by PCR.
CJW7587	MG1655 <i>ΔglgBXCAP</i>	The kanamycin resistance cassette from CJW7537 was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site specific recombinase (Cherepanov & Wackernagel, 1995).

CJW7588	MG1655 <i>lacY(A177C)</i> <i>araFGH::spec</i> Δ <i>lacI</i> Δ <i>araE araBAD::dCas9</i> <i>gaiM</i> < <i>PBba-J23119</i> - <i>sgRNA(ftsZ)-(S.</i> <i>pyogenes</i> terminator)- (<i>rrnB</i> terminator)> <i>gmpA</i> <i>attB::P_{proC}-msfGFP</i>	<i>attB::P_{proC}-msfGFP-FRT-kan-</i> FRT from CJW7083 was moved into SJ_XTL229 by P1 transduction. Colonies were screened for kanamycin resistance and GFP fluorescence. The kanamycin resistance cassette was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site specific recombinase (Cherepanov & Wackernagel, 1995).
CJW7601	MG1655 Tn7:: <i>P_{tac}-GFPmut3-CBM20</i> FRT- <i>cat</i> -FRT	Plasmid pNDL-1- <i>P_{tac}-GFPmut3-CBM20</i> FRT-CmR-FRT was transformed into MG1655. Colonies were screened for ampicillin resistance at 30°C. Integration was then carried out by incubating at 37°C and selecting for chloramphenicol resistance
CJW7604	MG1655 Δ <i>gIgBXCAP</i> Tn7:: <i>P_{tac}-GFPmut3-CBM20</i> -FRT- <i>cat</i> -FRT	Plasmid pNDL-1- <i>P_{tac}-GFPmut3-CBM20</i> FRT-CmR-FRT was transformed into CJW7587. Colonies were screened for ampicillin resistance at 30°C. Integration was then carried out by incubating at 37°C and selecting for chloramphenicol resistance
CJW7605	MG1655 Tn7:: <i>P_{tac}-GFPmut3-CBM20</i> FRT- <i>cat</i> -FRT <i>hupA::hupA-mCherry</i> FRT-kan-FRT	<i>hupA-mCherry-FRT-kan-FRT</i> from CJW5158 (Gray <i>et al</i> , 2019) was moved into CJW7601 by P1 transduction
CJW7606	MG1655 Tn7:: <i>P_{tac}-GFPmut3-CBM20</i> -FRT- <i>cat</i> -FRT	CJW7601 was transformed with pEB2-mScarlet-I.
CJW7607	MG1655 Δ <i>gIgBXCAP</i> Tn7:: <i>P_{tac}-GFPmut3-CBM20</i> FRT- <i>cat</i> -FRT	CJW7604 was transformed with pEB2-mScarlet-I.
CJW7660	MG1655 <i>hupA::hupA-mCherry</i>	<i>hupA-mCherry-FRT-kan-FRT</i> from CJW5158 (Gray <i>et al</i> , 2019) was moved into MG1655 by P1 transduction. Colonies were screened for kanamycin resistance and mCherry fluorescence. The kanamycin resistance cassette was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site-specific recombinase (Cherepanov & Wackernagel, 1995).

CJW7661	MG1655 Δ glgBXCAP <i>hupA</i> :: <i>hupA-mCherry</i>	<i>hupA-mCherry-FRT-kan-FRT</i> from CJW5158 (Gray <i>et al</i> , 2019) was moved into CJW7587 by P1 transduction. Colonies were screened for kanamycin resistance and mCherry fluorescence. The kanamycin resistance cassette was excised by transiently equipping this strain with plasmid pCP20, expressing the Flp site specific recombinase (Cherepanov & Wackernagel, 1995).
CJW7665	MG1655 <i>hupA</i> :: <i>hupA-mCherry</i> Tn7:: <i>P_{RpsL}-mSCFP3-FRT-kan-FRT</i>	Tn7:: <i>P_{RpsL}-mSCFP3-FRT-kan-FRT</i> from JP1456 was moved into CJW7660 by P1 transduction. Colonies were screened for kanamycin resistance and CFP fluorescence.
CJW7666	MG1655 <i>hupA</i> :: <i>hupA-mCherry</i> Tn7:: <i>P_{RpsL}-mVenus-FRT-kan-FRT</i>	Tn7:: <i>P_{RpsL}-mVenus-FRT-kan-FRT</i> from JP1457 was moved into CJW7660 by P1 transduction. Colonies were screened for kanamycin resistance and YFP fluorescence.
CJW7667	MG1655 Δ glgBXCAP <i>hupA</i> :: <i>hupA-mCherry</i> Tn7:: <i>P_{Rps}-mSCFP3-FRT-kan-FRT</i>	Tn7:: <i>P_{Rps}-mSCFP3-FRT-kan-FRT</i> from JP1456 was moved into CJW7661 by P1 transduction. Colonies were screened for kanamycin resistance and CFP fluorescence.
CJW7668	MG1655 Δ glgBXCAP <i>hupA</i> :: <i>hupA-mCherry</i> Tn7:: <i>P_{Rps}-mVenus-FRT-kan-FRT</i>	Tn7:: <i>P_{Rps}-mVenus-FRT-kan-FRT</i> from JP1457 was moved into CJW7661 by P1 transduction. Colonies were screened for kanamycin resistance and YFP fluorescence.
CJW7718	MG1655 Δ glgBXCAP /pEB2-mScarlet-I	CJW7587 was transformed with plasmid pEB2-mScarlet-I from AddGene #104007 (Balleza <i>et al</i> , 2018)
CJW7872	MG1655 Δ minD <i>minE</i> :: <i>sfgfp-minD</i> <i>minE</i> :: <i>frt kanR frt</i>	Δ minD <i>minE</i> :: <i>sfgfp-minD</i> <i>minE</i> :: <i>frt kanR frt</i> was moved into MG1655 by P1 transduction from FW1537 (Wu <i>et al</i> , 2015)
CJW7877	MG1655 Δ glgBXCAP <i>rne</i> :: <i>rneΔMTS-mCherry</i>	Δ glgBXCAP-FRT-kan-FRT was moved into CJW5685 by P1 transduction from CJW7537
CJW7878	MG1655 Δ glgBXCAP <i>rplA</i> :: <i>rplA-mCherry</i> <i>attB</i> :: <i>P_{proC}-msfGFP</i>	Δ glgBXCAP-FRT-kan-FRT was moved into CJW7325 by P1 transduction from CJW7537

1825 **Table EV6. Oligos used in this study.**

Identifier	Sequence (5' to 3')
gb_1	TCAATAATACCGGCAAGTCCGACACCCAGCATGGCAATAACCACCGCCAAA AATTGCGCCAGTATGGGATGCCGAAAAAAGTCATTACCAAGCGAGGTCAAA ATCCATTCTGTTGCATTATTCTTCCATTCTTTGAATGGTAAATTAT ACTCCCCGAGTCCCCTGCCCCCTCTGGACACTTTCCGAAATGATGGCGG AAAAAAACGGGACCCCTTGGCCCCGTTCTATTATTGGTAAACGTGTAGGC TGGAGCTGCTCGAAGTTCCTATACTTCTAGAGAATAGGAACCTCGGAATA GGAACTTCAAGATCCCCTATTAGAAGAACCTCGTCAAGAAGGCGATAGAAG GCGATGCGCTCGAATCGGGAGCGCGATACCGTAAAGCACGAGGAAGC GGTCAGCCATTGCCGCCAAGCTCTCAGCAATATCACGGTAGCCAAC GCTATGTCCTGATAGCGGTCCGCCACACCCAGCCGCCACAGTCGATGAA TCCAGAAAAGCGGCCATTTCCACCATGATATTCCGCAAGCAGGCATGCC ATGGGTACGACGAGATCCTCGCCGTCGGCATGCGCGCCTGAGCCTG GCGAACAGTCGGCTGGCGAGGCCCTGATGCTCTCGTCCAGATCATC CTGATCGACAAGACCGGCTTCCATCCGAGTACGTGCTCGCTCGATGCGAT GTTTCGCTTGGTGGTCGAATGGCAGGTAGCCGGATCAAGCGTATGCAGC CGCCGCATTGCATGCCATGATGGACTTTCTCGGCAGGAGCAAGGTG AGATGACAGGAGATCCTGCCCGGCACTCGCCAATAGCAGCCAGTCCC TTCCCGCTTCAGTACAACGTCGAGCACAGCTGCGCAAGGAACGCCGTC GTGGCCAGCCACGATAGCCGCGCTGCCTCGTCAGTTCATTAGGGC ACCGGACAGGTGGCTTGACAAAAAGAACCGGGCGCCCTGCGCTGACA GCCGGAACACGGCGGCATCAGAGCAGCCGATTGTCTGTTGCCAGTCA TAGCCGAATAGCCTCTCCACCCAAAGCGGGCGAGAACCTCGTGCAATCC ATCTTGTCAATCATGCGAAACGATCCTCATCCTGTCCTGATCAGATCTT GATCCCCTGCGCCATCAGATCCTGGCGCAAGAAAGCCATCCAGTTACT TTGCAGGGCTTCCAACCTTACCAAGAGGGCGCCAGCTGGCAATTCCGG TTCGCTTGCTGTCCATAAAACGCCAGTCTAGCTATGCCATGTAAGCCC ACTGCAAGCTACCTGCTTCTCTTGCCTGCGTTCCCTGTCAGATA GCCCAGTAGCTGACATTCCGGGGTCAGCACCGTTCTCGGGACTGGC TTTCTACGTGTTCCGCTTCTAGCAGCCCTGCGCCCTGAGTGTGCG GCAGCGTGAGCTCAAAAGCGCTCTGAAGTTCCTATACTTCTAGAGAATA GGAACCTCGGCTTGTCTCCTGTTTATTGTGTCACCCCATCCAATTGGATT TTTGACTTCTGGTTGTGACATTTTTGACCTGAACGGCGCAGCACTCTGTG CATCCTCTCGCGTCGCTCCTCACTCAGGTAAGGCTGTGAATACTCATGTA TTCAGCCACCCCTAAAGAACAGCAATGCTCTATTAACTCCGGTAAATCA TGAAACATCTGCGCTTACTCCTGTATTACGCACTAACAGGGCGGCATCGC GCCCGAGATTAATGAATAAAGATTACGCCAGTT
gb_2	CACCGAATTCCCCGGGGGACAAGTTGTACAAAAAAGCAGGCTTACGA CATCATAACGGTTCTGGCAAATATTCTGAAATGAGCTGTTGACAATTATCA TCGGCTCGTATAATGTGTTGGAATTGTGAGCGGATAACAATTACACAGGA AACAGAATATGAGTAAAGGAGAAGAACCTTCACTGGAGTTGTCCCAATTCT TGTTGAATTAGATGGTGTGTTAATGGGACAAATTCTGTCAGTGGAGA GGGTGAAGGTGATGCAACATACGGAAAACCTACCCCTAAATTATTGCACT ACTGGAAAACCTACCTGTTCCATGGCCAACACTTGTCACTACTTCGGTTATG GTGTTCAATGCTTGCAGATAACCCAGATCATATGAAACAGCATGACTTTT

	CAAGAGTGCATGCCGAAGGTTATGTACAGGAAAGAACTATTTTCAA AGATGACGGAACTACAAGACACGTGCTGAAGTCAAGTTGAAGGTGATAC CCTTGTAAATAGAACGAGTAAAGGTATTGATTTAAAGAAGATGGAAAC ATTCTGGACACAAATTGGAATACAACACTACACACAATGTATACATCA TGGCAGACAAACAAAAGAATGGAATCAAAGTTAACCTCAAAATTAGACACAA CATTGAAGATGGAAGCGTTCAACTAGCAGACCATTATCAACAAAATCTCCA ATTGGCGATGCCCTGTCTTTACCGAGACAACCATTACCTGTCCACACAA TCTAAGCTTCGAAAGATCCAAACGAAAAGAGAGACCACATGGTCCTTCTT GAGTTGTAACAGCTGCTGGGATTACACATGGCATGGATGAACATACAAA AGCGATTCATGCCTGCCGGTCTCAACAGGTTAGCGTCGTTTCAGGTA CACTACGTCACTCCACCGACGTTCAAGTTATTGCAGTGACCGGGCATCAC GAGTGCCTGGGCCGCTGGAACACGTACATCCCTGCACACTACAACAAAGA CGGTTCTGGTCCCACAGCATCTTCTGCCGGGATACCGTTGGAGT GGAAATTGTTCTGGTTGAAACGGTGGCGTTACCGCTGGAGGAATGTT CCAACCGTTCCCTGGAAACCGGTACGAAGATAAGGTAGTCACCGTGG TGGGGTATCCATTAAATGTCCAGACCTGCAGGCATGCAAGCTTAGTTGGA TTCTCACCAATAAAACGCCCGGCAACCGAGCGTTCTGAACAAATCC AGATGGAGTTCTGAGGTCAATTACTGGATCTATCAACAGGAGTCCAAGCGAG CGAATTCTGCAGGTGTTAATTCAAGGAGCATTGTTATCAGACCAAATATGTGT AGGCTGGAGCTGCTCGAAGTCCCTATACTTCTAGAGAATAGGAACCTCG GAATAGGAACCTTTATCAAAAGGATCTCACCTAGATCCTTAAATTAAA AATGAAGTTTAAATCAATCTAAAGTATATGAGTAAACTTGGTCTGACAG CTCGAGGCCTCGATATCAAATTACGCCCGCCCTGCCACTCATCGCAGT ACTGTTGTAATTCAATTAAAGCATTCTGCCGACATGGAAGCCATCACAAACGG CATGATGAACCTGAATGCCAGCGGCATCAGCACCTGTCGCCCTGCGTAT AATATTGCCATGGTAAAAACGGGGCGAAGAAGTTGTCATATTGCCA CGTTAAATCAAACCTGGTGAACACTCACCCAGGGATTGGCTGAGACGAAA ACATATTCTCAATAAAACCCTTAGGGAAATAGGCCAGGTTTCACCGTAACA GCCACATCTGCGAATATGTGAGAAACTGCCGGAAATGTCGTGGTA TTCACTCCAGAGCGATGAAAACGTTCAAGTTGCTCATGGAAAACGGTGT ACAAGGGTGAACACTATCCCATATCACCAGCTACCGTCTTCATTGCCAT ACGAAATTCCGGATGAGCATTCATCAGGGGGCAAGAATGTGAATAAAGG CCGGATAAAACTTGTGCTTATTCTTACGGTCTTAAAAAGGCCGTAAT ATCCAGCTGAACGGTCTGGTTAGGTACATTGAGCAACTGACTGAAATGC CTCAAAATGTTCTTACGATGCCATTGGATATATCACCGTGGTATATCCA GTGATTTCTCCATTAGCTTCTAGCTCCTAGCTCGTAAATCTCGATAACTC AAAAAAACGCCCGGTAGTGATCTTATTGAGTAAAGTTGGAACCT CTTACGTGCCGATCAACTCGAGTGCCACCTGACGTCTAAGAAACCAATTAT TATCATGACATTAAACCTATAAAATAGGCGTACCGAGGCAGAATTCA TAAAAAAATCCTTAGCTTCGCTAAGGATGATTCTGGAAGCGCTCTGAAG TTCCTATACTTCTAGAGAATAGGAACCTCGTACCCAGCTTCTGTACAAA GTGGTCCCCAAGCTCTGCAGAGCT
YP32	TAATAGAGGACGAACAATAAGGCCTCCCTAACGGGGGCCTTTTATTGA TAACAAAAGTGTAGGCTGGAGCTGCTTCG
YP33	AATCGCTCAAGACGTGTAATGCTGCAATC
YP34	TCAAAAGGCGAAGAACTTTACCG

YP35	TAGGGAGGCCTATTGTCGTCCTCTAGTATTATTATAACAATTCATCCATT CATGAGTGA
YP36	CCAGTGCCAAGCTTGCATGCAGATTGCAGCATTACACGTCTTGAGCGATT ACAGCTAACACCCACGTCG
YP37	TACACCGGTAAAAAGTTCTCGCCTTTGACATCTAGTATTCTCCTCTTCT CTAGTAAAAGTTAACAAAATTATTTGTAGAGGGAAAC

1826

1827

1828 **EXPANDED VIEW FIGURE LEGENDS**

1829 **Fig EV1: Localization of various cytoplasmic probes in cells in transition phase.**

1830 **A** Representative fluorescence images of DAPI-stained *E. coli* cells expressing different
1831 ribosomal protein fusions in transition phase: RplA-GFP (CJW4677), RplA-msfGFP
1832 (CJW7020), and RpsB-msfGFP (CJW7021). Arrowheads indicate cell areas of ribosome
1833 signal depletion. Scale bar: 2 μ m.

1834 **B** Representative fluorescence image of DAPI-stained *E. coli* cells (CJW7006) expressing
1835 mScarlet-I in transition phase. Arrowheads indicate cell areas of mScarlet-I depletion.
1836 Scale bar: 2 μ m.

1837 **C** Representative fluorescence images of DAPI-stained *E. coli* expressing RplA-mCherry
1838 as well as free fluorescent GFP variants with the following net surface charges (strain
1839 name): -30 (CJW7485), -7 (CJW7486), 0 (CJW7487), +7 (CJW7488), +11a (CJW7489),
1840 +11b (CJW7490), +15 (CJW7491), and +25 (CJW7492). For GFP with a net surface
1841 charge +11, 'a' and 'b' refer to variations in the distribution of the charge on the protein
1842 surface (Schavemaker *et al*, 2017). Cells were grown in M9gluCAAT and supplemented
1843 with 0.4% arabinose to induce GFP expression. Arrowheads indicate cell areas depleted
1844 of the GFP variant. Scale bar: 2 μ m.

1845 **D** Fluorescence images of representative DAPI- and RNASelect-labeled *E. coli* cells
1846 (CJW7324) in exponential (OD 0.30) and transition (OD 1.72) phase. Also shown are the
1847 corresponding fluorescence signal profiles for the indicated (*) cells. Arrowheads indicate
1848 areas depleted of RNASelect signal. Scale bar: 2 μ m.

1849

1850 **Fig EV2: Assessment of the potential effects of membrane retraction and cell
1851 division on the localization of cytoplasmic probes in transition-phase cells**

1852 **A** Microscopy images of MitoTracker Green-labeled cells (CJW7324) expressing RplA-
1853 mCherry. Samples were obtained from cultures in either exponential or transition phase.
1854 Fluorescence intensities are indicated in arbitrary units (a.u.). Signal intensity profiles are
1855 provided for the cells indicated by asterisks. White arrowheads show the depletion of
1856 RplA-mCherry signal at a cell pole.

1857 **B** Representative microscopy images of DAPI-stained FtsZ-depleted cells (CJW7588)
1858 expressing cytoplasmic msfGFP in transition phase in M9gluCAAT supplemented with
1859 0.4% arabinose to induce the CRISPRi system, thereby blocking the expression of *ftsZ*.
1860 The corresponding signal intensity profile is shown below. Scale bar: 5 μ m.

1861

1862 **Fig EV3: Representative image of 2-NBDG incorporation in a filamentous
1863 polynucleoid cell in transition phase.**

1864 Microscopy images of a cephalexin-treated cell (CJW7324) expressing RplA-mCherry in
1865 transition phase (OD 2.0). Yellow arrowheads indicate accumulations of 2-NBDG that
1866 sandwich an accumulation of RplA-mCherry signal. Below is the cell signal intensity
1867 profile, with the grey shade highlighting the region of interest. Scale bar: 5 μ m.

1868

1869 **Fig EV4: Normalized constriction offset measurements for the WT and $\Delta gIgBXCAP$
1870 cells from co-culture experiments.** Boxplots of the normalized constriction offset in
1871 exponential and transition phases for the biological replicates of the co-culture
1872 experiments shown in Fig 3C.

1873 **Fig EV5: Normalized nucleoid offset measurements for the WT and $\Delta gIgBXCAP$**
1874 **cells from the co-culture experiments across different growth phases.** Boxplots of
1875 the normalized nucleoid offset in exponential, transition, early stationary (24 h), and late
1876 stationary phase (72 h) for all the biological replicates of the co-culture experiments.
1877 Exponential and transition phase data points for Replica 1 of both mixes are shown in Fig
1878 3D.

1879

1880 **Fig EV6: Growth rate measurements in the microfluidic device.** Plot of the calculated
1881 log growth rate as a function of cell generations for the strain CJW7605 (n = 130 lineages).
1882 The solid line and shaded region correspond to the average and the 95% confidence
1883 interval, respectively.

1884

1885 **Fig EV7: FRAP measurements of the fluorescent glycogen sensor dynamics in**
1886 **glycogen-producing cells in transition phase.**

1887 **A** Timelapse images of a glycogen-producing cell in transition phase before and after
1888 photobleaching a region of the cell pole with the larger glycogen sensor accumulation.
1889 The first image on the left shows the time frame before photobleaching, while the
1890 subsequent images represent frames captured after photobleaching at the indicated time.
1891 The schematic shows the region that was photobleached. Scale bar: 1 μ m.

1892 **B** Plot showing the evolution of the normalized fluorescence intensity of the glycogen
1893 sensor for the unbleached region and the photobleached region of the cell shown in A
1894 before and after photobleaching. The inset shows the data before and during
1895 photobleaching.

1896 **C** Histogram of the half-max fluorescence recovery times calculated for 70 cells in which
1897 FRAP measurements were obtained.

1898

1899 **Fig EV8: Force-distance curve examples of indentation-based AFM experiments.**

1900 The experimental conditions and strains are the same as in Fig 7A-C.

1901 **A** Representative force-distance curves of a cell at regions “On” and “Off” the protein
1902 aggregates.

1903 **B** Same as panel A but for a cell with glycogen condensates.

1904 **C** Same as panel A but for a glycogen-free cell.

1905 **D** Representative force-distance curve on the glass substrate is shown as a control.

1906

1907 **Fig EV9: Cell height and indentation measurements by AFM microscopy.**

1908 The experimental conditions and strains are the same as in Fig 7A-C.

1909 **A** Plot showing cell height measurements of 21 cells with protein aggregates, 7 cells with
1910 glycogen condensates, and 7 cells without glycogen. The cell height information was
1911 analyzed from AFM height images collected from more than three biological replicates.

1912 Displayed here are the mean values \pm the standard deviations. Statistical comparisons
1913 were performed using an unpaired two-tailed Student’s t-test.

1914 **B** Plot showing the indentation depth distributions of 15 cells with protein aggregates, 16
1915 cells with glycogen condensates, and 13 cells without glycogen. Shown are the mean
1916 values \pm the standard deviations for the total number of indentation events (technical
1917 replicates) indicated by the n value. The indentation events were collected from more
1918 than three biological replicates.

1919 **Fig EV10: Force-distance curve examples of penetration-based experiments**

1920 The experimental conditions and strains are the same as in Fig 7D-E. Representative
1921 force-distance curves showing membrane puncture events (indicated by the arrow) in the
1922 figure inset.

1923 **A** Representative force-distance curves of a cell at regions “On” and “Off” the protein
1924 aggregates.

1925 **B** Same as panel A but for a cell with glycogen condensates.

1926 **C** Same as panel A but for a glycogen-free cell.

1927

1928 **EXPANDED VIEW VIDEO LEGENDS**

1929 **Video EV1: Timelapse sequence showing that nucleoids and ribosomes remain
1930 closer to the new pole upon division during transition phase.**

1931 Montage video showing phase and fluorescence overlays of a representative cell
1932 expressing RplA-msGFP and HupA-mCherry (CJW5159) growing and dividing in
1933 transition phase. Cells from a culture in late exponential phase (OD = 0.5) were washed
1934 in transition phase medium, spotted on an agarose pad containing transition phase
1935 medium (OD = 2.63), and imaged every 2 min. Time stamp shows h:min:s.

1936

1937 **Video EV2: Timelapse of the MinD-GFP oscillations.**

1938 Video of CJW7872 cells in transition phase. *Left*, Overlay between phase contrast and
1939 DAPI at time zero. *Right*, Timelapse of the MinD-GFP fluorescence channel (frame rate
1940 = 5 seconds). Scale bar: 1 μ m. Time stamp shows min:s.

1941

1942 **Video EV3: Timelapse sequence showing glycogen condensate fusions in vitro.**

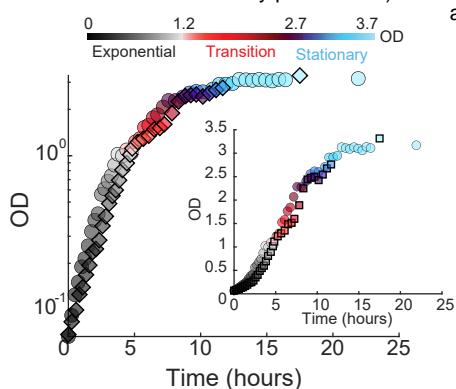
1943 Timelapse sequence of glycogen droplets labeled with ConA-FITC as they fuse. The
1944 sample was made with 10 g/L of glycogen and 20 mM of 3 kDa PEG in IS buffer. Phase
1945 contrast (left) and FITC (right) images were acquired every 10 s at 25°C. Time stamp
1946 shows h:min:s.

1947

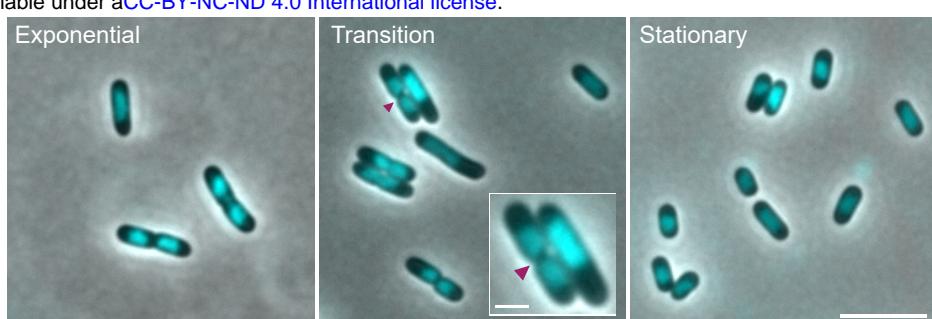
1948 **Video EV4: Timelapse sequence of glycogen droplets.**

1949 Timelapse sequence showing the phase-separated glycogen droplets undergoing fusion
1950 events and exhibiting surface wetting. The sample was made with 10 g/L of glycogen and
1951 750 µM of 20kDa PEG in the IS buffer. Phase-contrast images were acquired every 30 s
1952 at 25°C. Time stamp shows min:s.

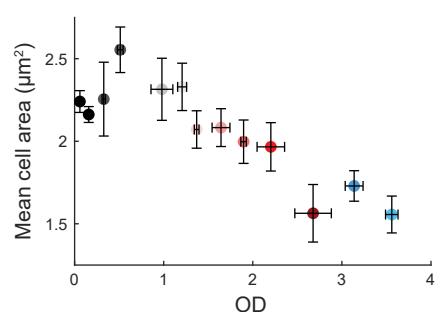
1953

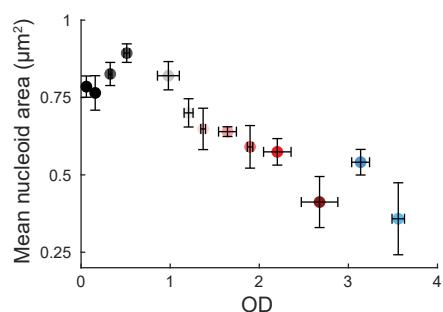

1954 **Video EV5: Timelapse sequence of “collapsed” glycogen aggregates.**

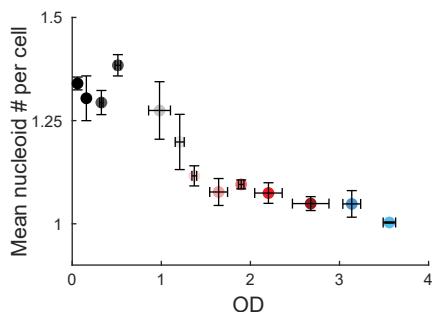
1955 Timelapse sequence showing the “collapsed” phase-separated glycogen undergoing
1956 collisions that do not result in fusion events. The sample was made with 10 g/L of
1957 glycogen and 30 mM of 3kDa PEG in the IS buffer. Phase-contrast images were acquired
1958 every 10 s at 25°C. Time stamp shows h:min:s.

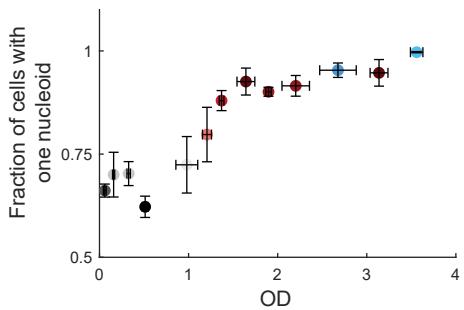

1959

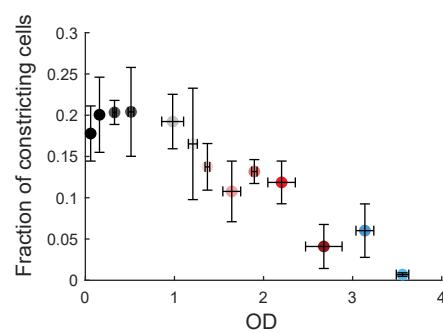
1960 **Video EV6: Z-stack sequence of glycogen condensates excluding GFP.** Z-stacks of
1961 both phase contrast and GFP of glycogen droplets floating in the sample. Each frame
1962 corresponds to a step of 0.125 µm, starting from a point 1.75 µm above the glass surface
1963 (z = 0 nm). The sample was prepared with glycogen (10 g/L) in IS buffer mixed with GFP
1964 (15 µM) and 100 kDa PEG (200 µM). The imaging was performed at 30°C.

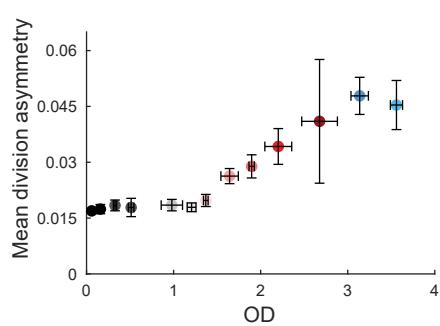

A


B


C


D

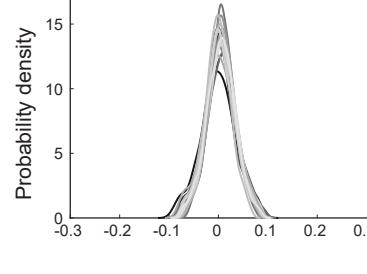
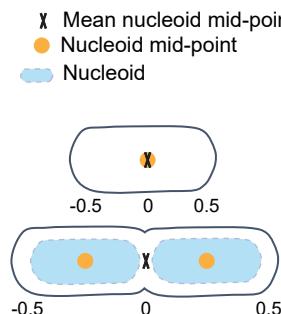
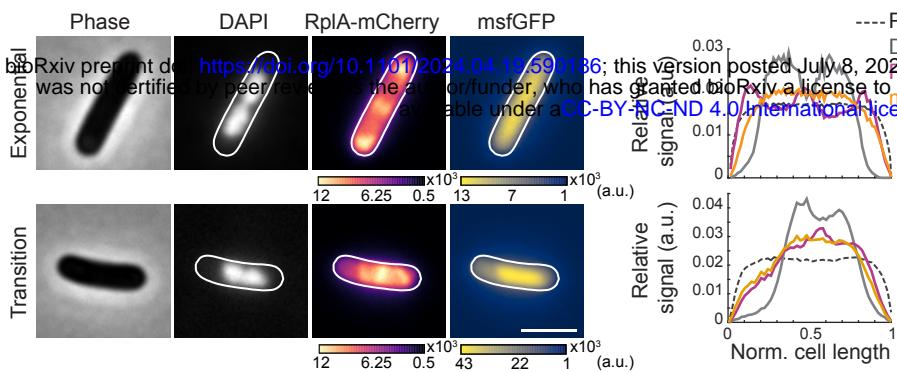
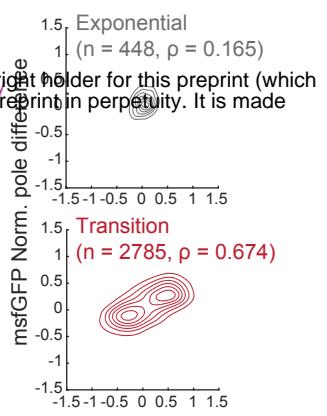
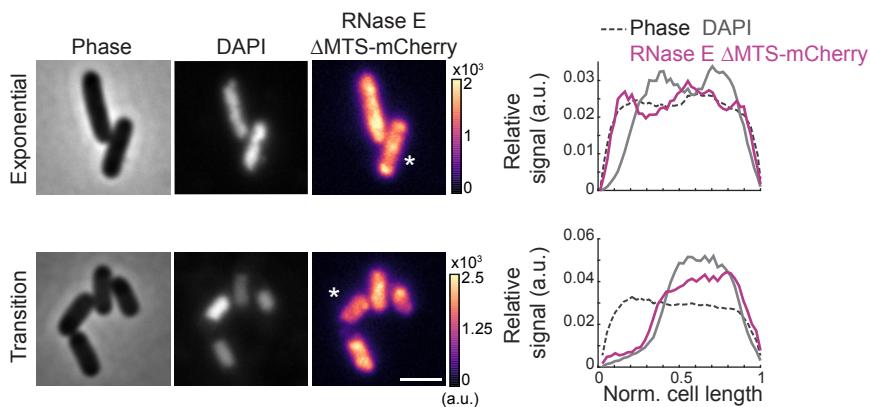
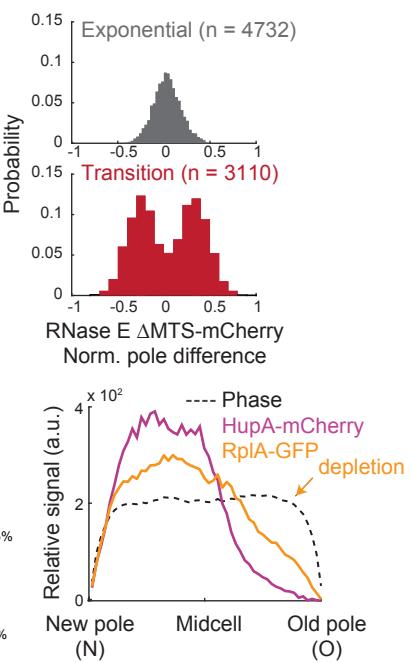
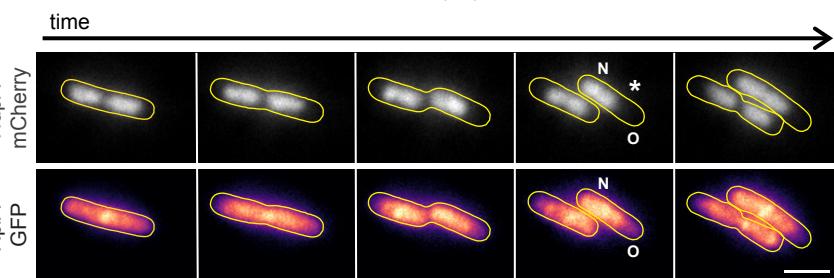
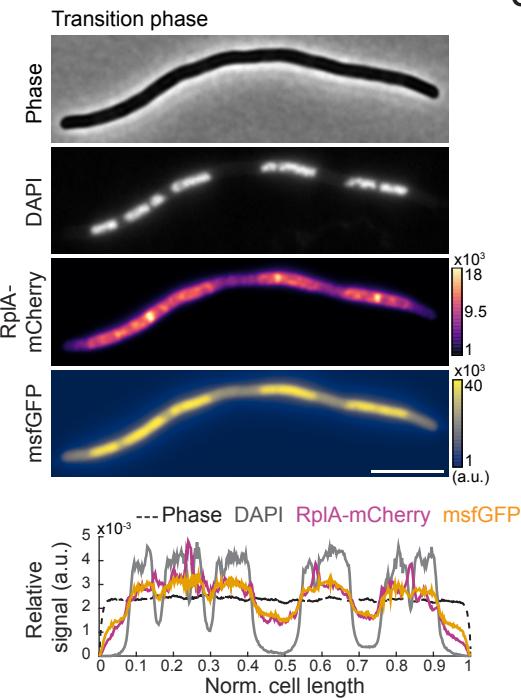
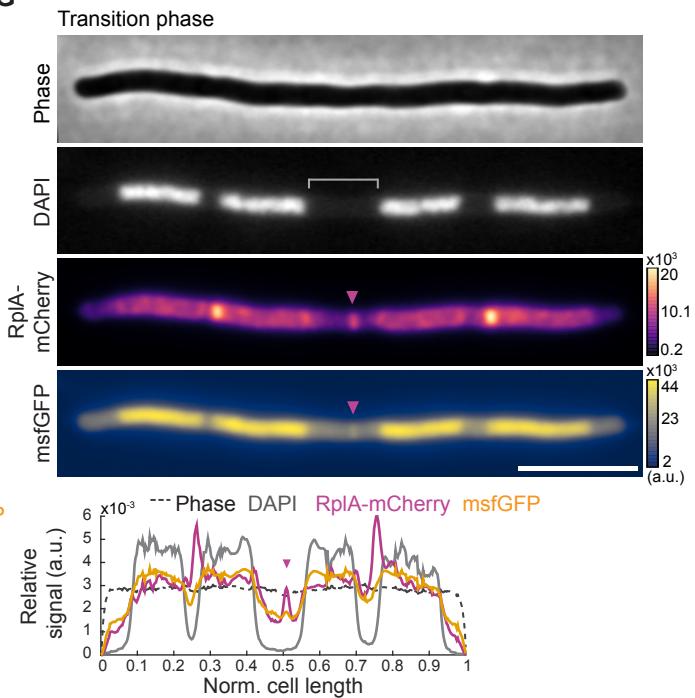
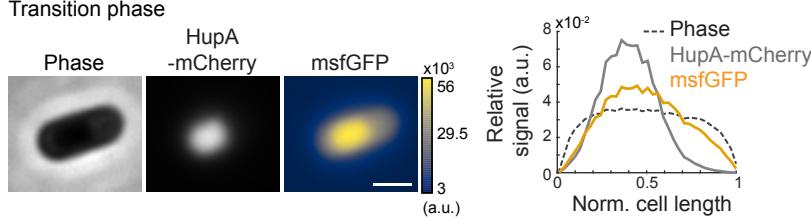
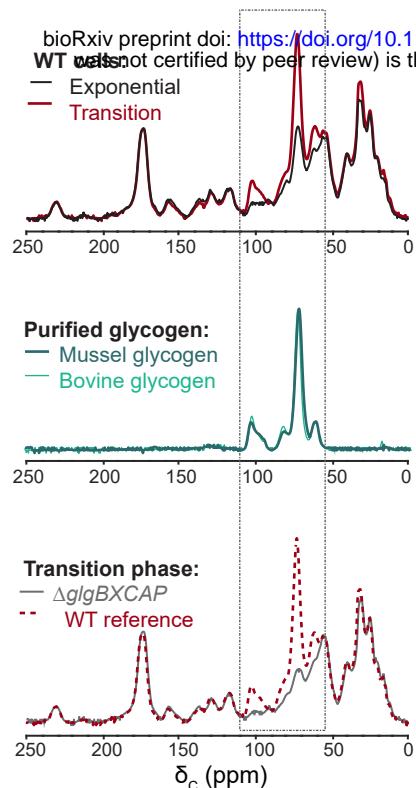
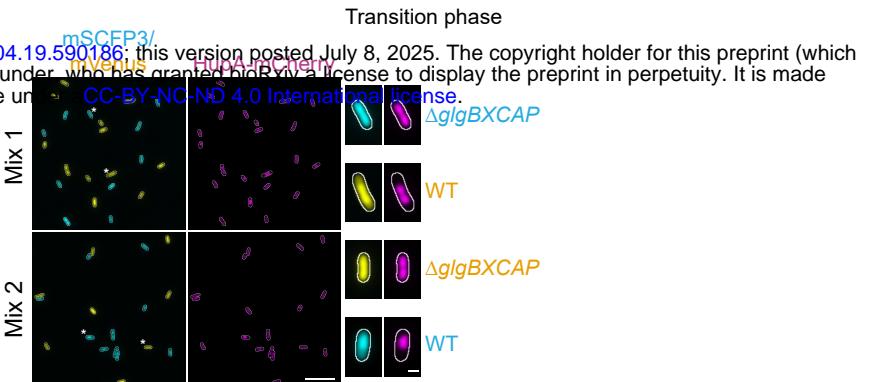
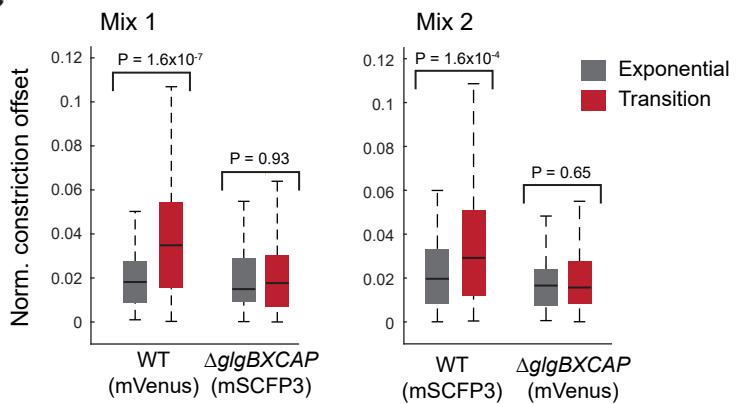
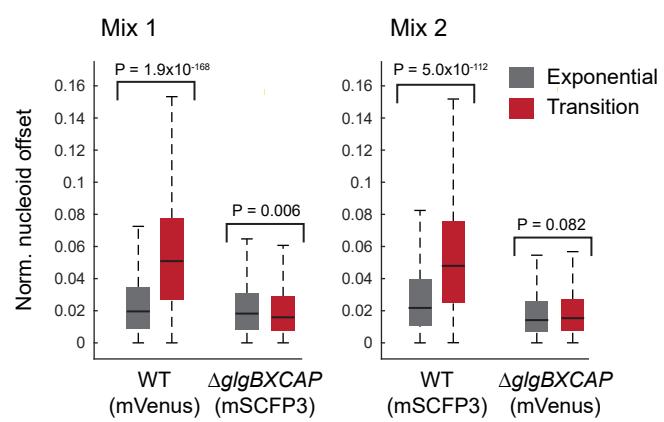
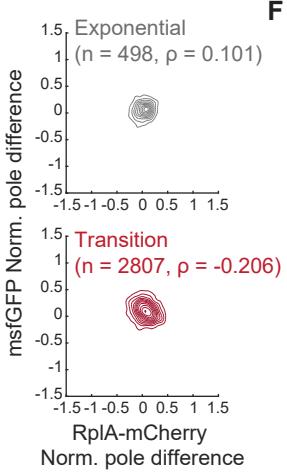
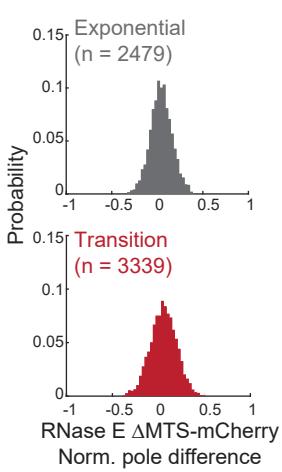

E

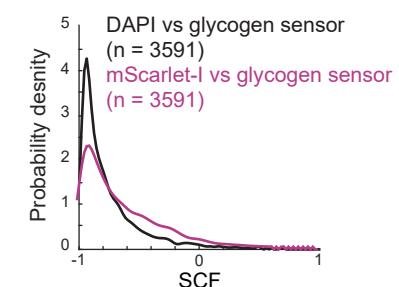
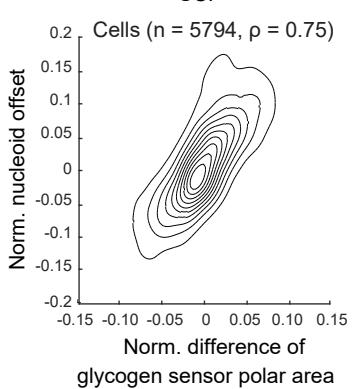
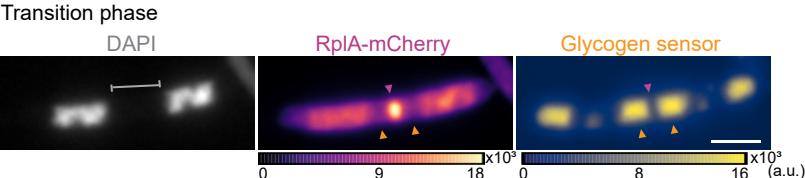

F

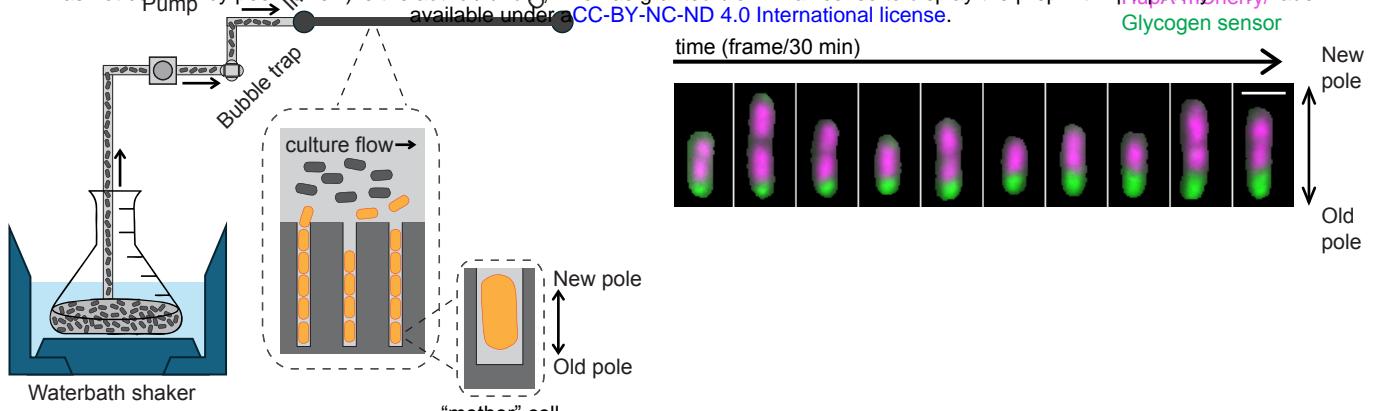
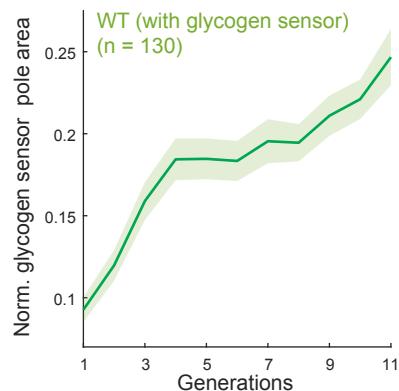
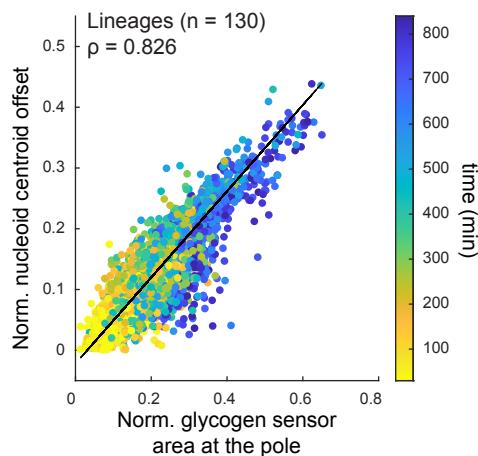
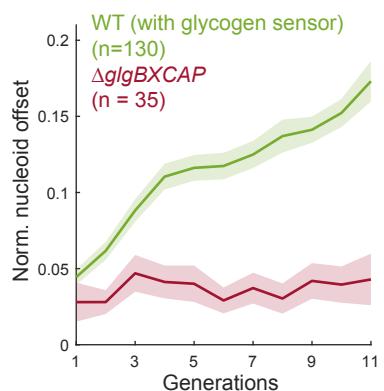
G

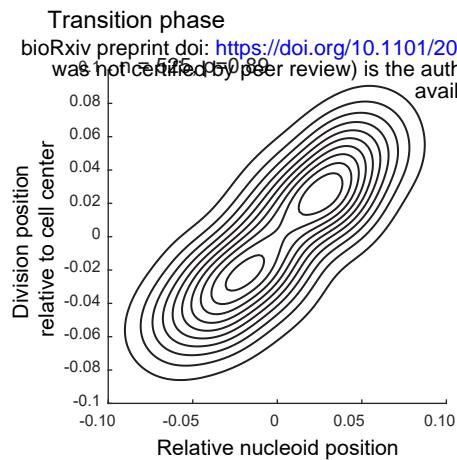
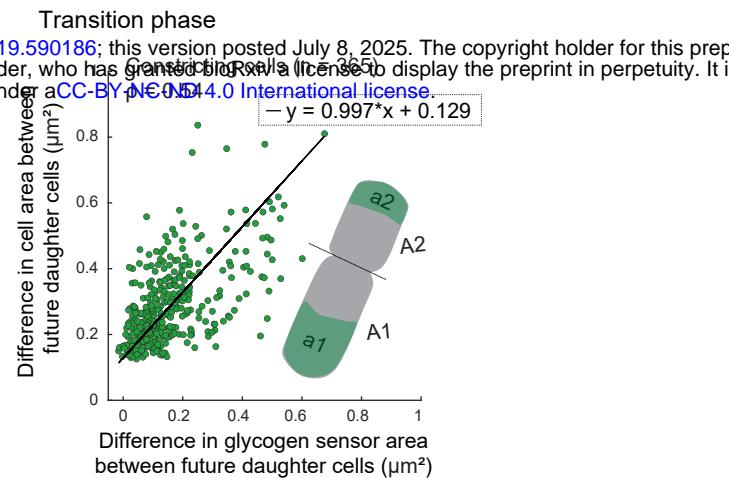
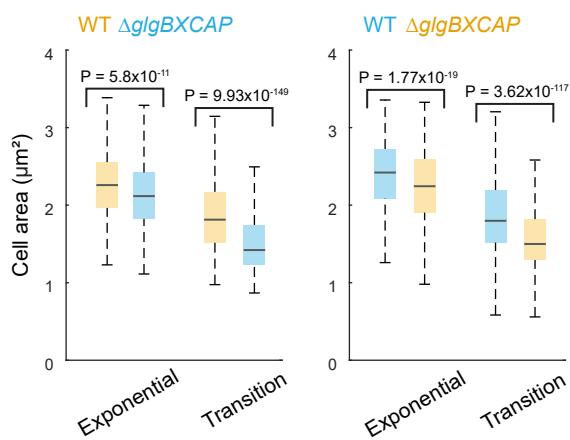
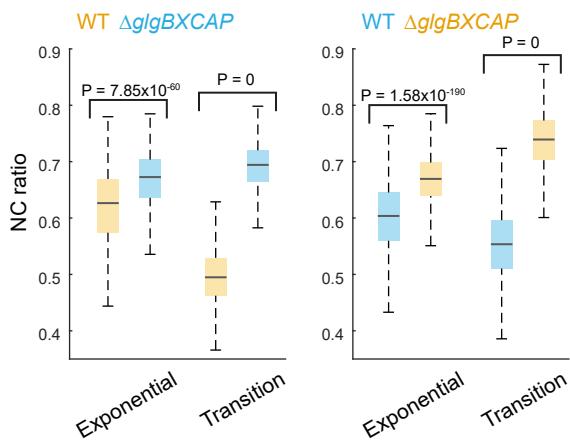
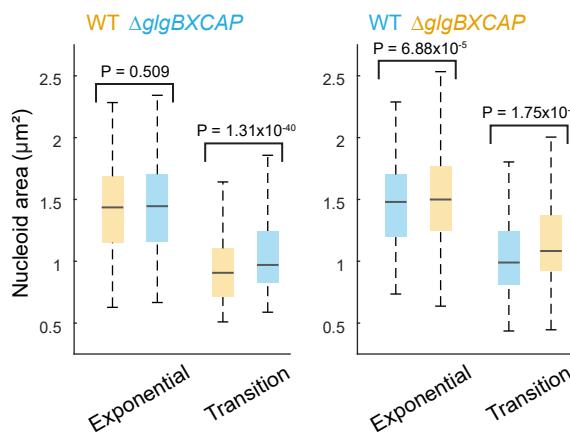
H

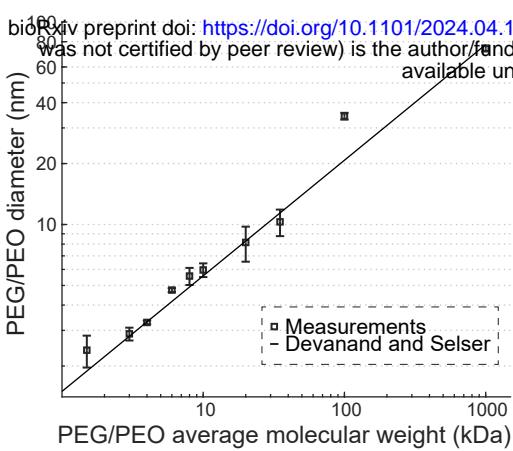
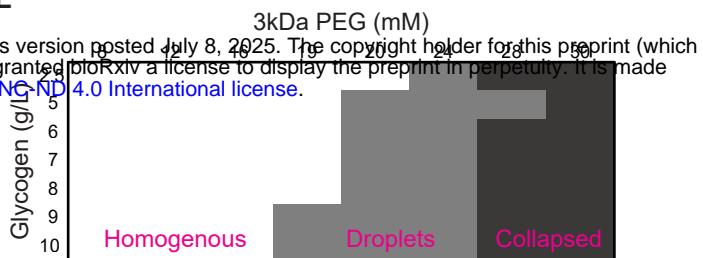
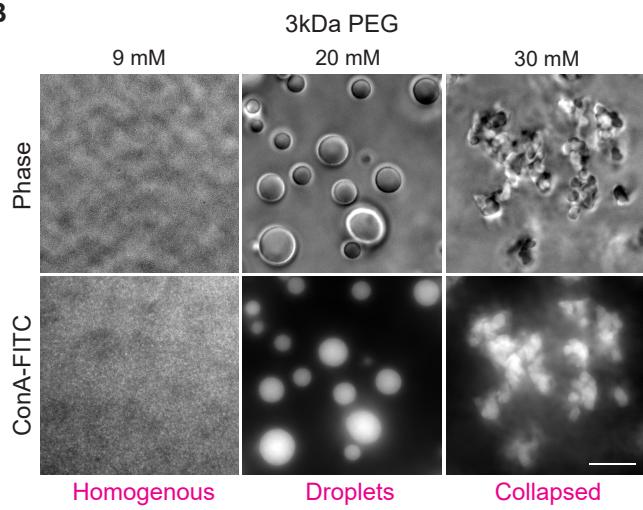
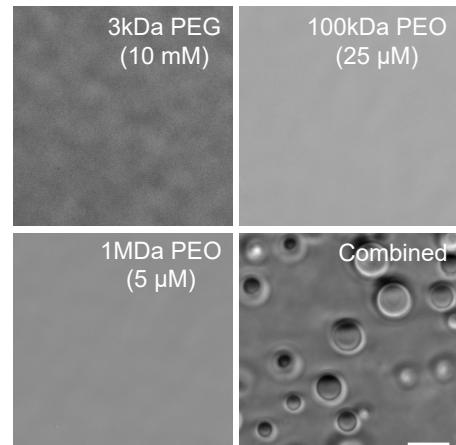
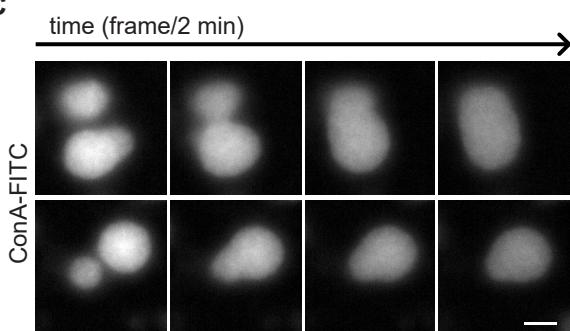
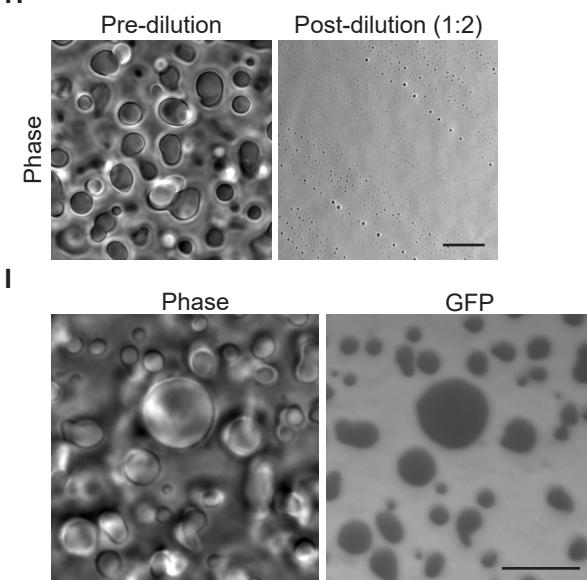
I

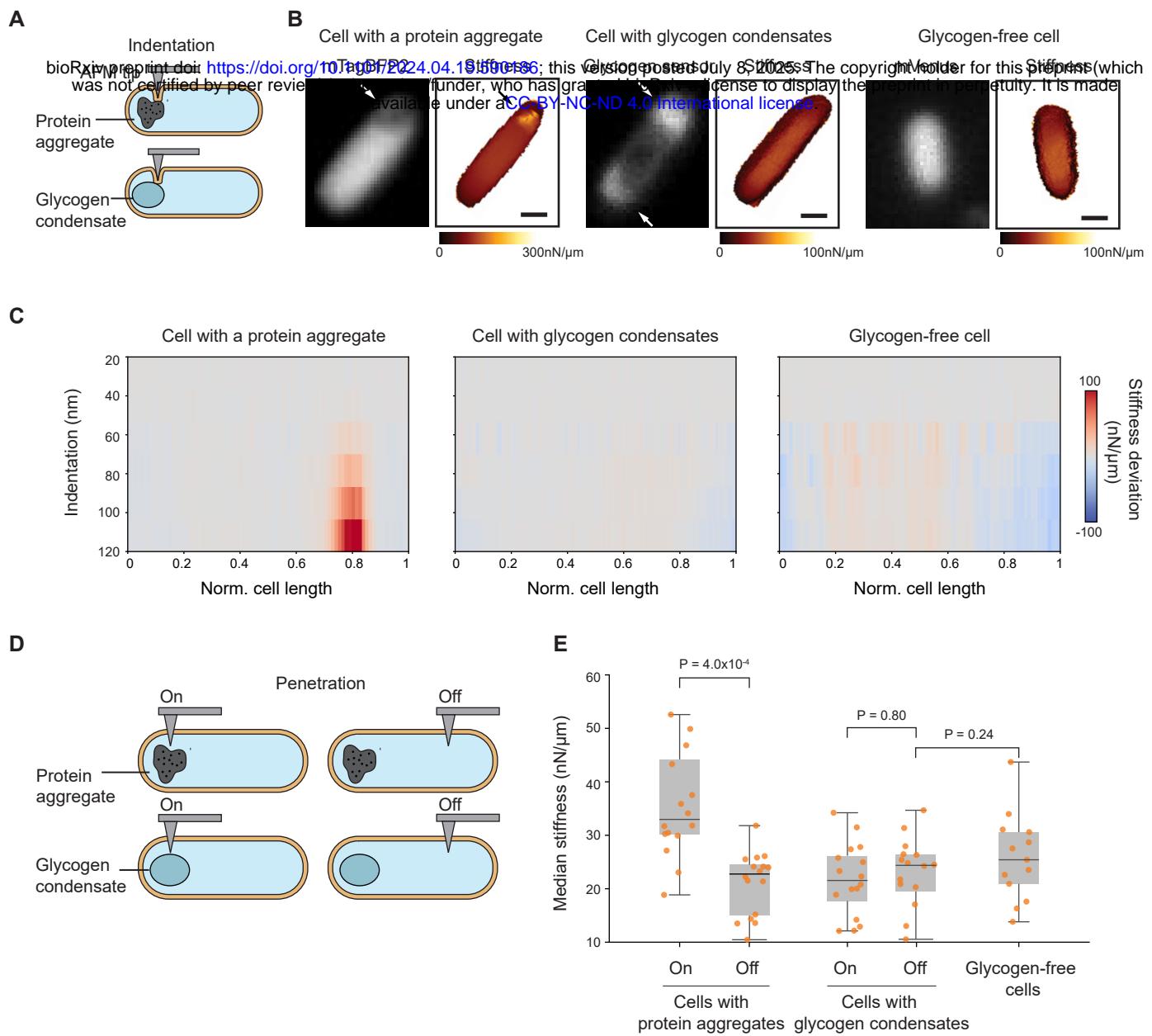





















Fig 1






A**B****C****D****E****F****G****H****Fig 2**







A**B****C****D****E****F****G****H****I****J****Fig 3**


A

bioRxiv preprint doi: <https://doi.org/10.1101/2024.04.19.599186>; this version posted July 8, 2025. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C**D****E****Fig 4**

A**B****C****D****E**

A**E****B****G****C****H****Fig 6**

Fig 7