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21  Abstract

22 5-Methylcytosine (m>C) is one of the post-transcriptional modifications in mRNA and is
23  involved in the pathogenesis of various diseases. However, the capacity of existing assays for
24 accurately and comprehensively transcriptome-wide m>C mapping still needs improvement. Here,
25  we develop a detection method named DRAM (deaminase and reader protein assisted RNA
26 methylation analysis), in which deaminases (APOBEC1 and TadA-8e) are fused with m°C reader
27  proteins (ALYREF and YBX1) to identify the m>C sites through deamination events neighboring
28  the methylation sites. This antibody-free and bisulfite-free approach provides transcriptome-wide
29  editing regions which are highly overlapped with the publicly available BS-seq datasets and allows
30  for amore stable and comprehensive identification of the m>C loci. In addition, DRAM system even
31  supports ultra-low input RNA (10ng). We anticipate that the DRAM system could pave the way for
32 uncovering further biological functions of m’C modifications.
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37 Introduction

38 Epigenetics refers to stable inheritance without changing the basic sequence of DNA, involving
39  various forms such as DNA methylation, histone modification and RNA modification. In recent
40  years, RNA sequencing technology has boosted research on RNA epigenetics. More than 170 RNA
41  modifications have been identified, mainly including m°A, m>C, m'A, m’G and others 2. Notably,
42  RNA m’C methylation represents a crucial post-transcriptional modification observed across
43 different RNA types, such as tRNA, mRNA, rRNA, vault RNA, microRNA, long non-coding RNA
44 and enhancer RNA3-. Numerous studies have revealed multiple molecular functions of m’C in
45  numerous key stages of RNA metabolism, such as mRNA stability, translation, and nuclear export>*-
46 13, The dynamic alterations of m°C play integral roles in many physiological and pathological
47  processes, such as early embryonic development'4, neurodevelopmental disorder'>!'® and
48  multifarious tumorigenesis and migration'”-2°. Moreover, this modification significantly contributes
49  to the regulation of gene expression>®!3!7, Therefore, the detection of m>C sites appears to be
50  essential for understanding their underlying effects on cellular function and disease states.

51 With the recent advances in sequencing techniques, several high-throughput assays have been
52  developed for qualitative or quantitative analysis of m>C. To date, bisulfite-sequencing (BS-seq) has
53  been proven to be the gold standard method for RNA m’C methylation analysis>!-?2. This approach
54  chemically deaminates unmethylated cytosine to uracil, while keeping methylated cytosine
55  unchanged. The m°C methylation sites can be identified by subsequent library construction and
56  sequencing. However, bisulfite treatment of BS-seq is extremely detrimental to RNA, thus resulting
57  in unstable detection of m°C in low abundance RNA or highly structured RNA, which directly
58 affects the confidence of results’>?*, Another major type of global m°’C analysis depends on
59  antibody-assisted immunoprecipitation of m°’C methylated RNAs, such as m°>C-RIP-seq?>%’, AZA-
60  IP-seq®® or miCLIP-seq’. These methods are unable to recognize methylation on mRNAs with low
61  abundance and secondary structure. Moreover, these methods are highly dependent on antibody
62  specificity, which usually leads to unspecific binding of RNA and a low amount of m>C-modified
63  regions. Moreover, TAWO-seq, originally developed for the identification of hm>C, is also capable
64  of m°C analysis, but it highly depends on the oxidation efficiency of perovskite, which usually
65  causes false positives and unstable conversion 23, Furthermore, the emerging third-generation
66  sequencing, such as Nanopore-seq, can directly map m3C by tracking the characteristic changes of
67  Dbases, but it still faces challenges of a high error rate!-33. These together largely hamper its wide
68  application on transcriptome profiling of m>C (Supplementary Table 1). Hence, there is an urgent
69  need for a simple, efficient, sensitive, and antibody-independent method for global m>C detection.
70 The RNA-binding protein ALYREF is the initially recognized nuclear m>C reader that binds
71 directly to m°C sites in mRNA and plays key roles in promoting mRNA nuclear export or tumor
72 progression’. Another well-known m3C reader, YBX1, can also recognize mC-modified mRNA
73 through its cold-shock domain and participates in a variety of RNA-dependent events such as
74  mRNA packaging, mRNA stabilization and translational regulation®'. RNA affinity
75  chromatography and mass spectrometry analyses using biotin-labelled oligonucleotides with or
76 without m°C were performed in previous reports, which indicated that ALYREF and YBX1 had a
77  more prominent binding ability to m°C-modified oligonucleotides>!8. YBX1 can preferentially
78  recognize mRNAs with m3C modifications via key amino acids W65-N70 (WFNVRN)'®, while
79 K171 is essential for the specific binding of ALYREF to m°C sites °. Previous studies have shown
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80  that mutations in key amino acids responsible for recognising m>C binding in ALYREF and YBX1
81  lead to a significant reduction in their binding levels to m°C-containing oligonucleotides®'3. Nucleic
82  acid deaminases, primarily categorized as cytosine deaminases and adenine deaminases, are zinc-
83  dependent enzymes which facilitate the deamination of cytosine or adenine within DNA or RNA
84  substrates’*. APOBECI, an evolutionarily conserved family member of APOBEC proteins, can
85  specifically catalyze the deamination of cytosine in single-stranded RNA (ssRNA) or DNA (ssDNA)
86  to uracil®*37. TadA8e is an adenine deaminase optimized through re-engineering of TadA and it
87  induces conversion of adenine to inosine (eventually read as guanine by transcriptases) in sSSRNA
88  or ssDNA%3° APOBECI and TadAS8e, with their prominent deamination efficiency, have been
89  employed for the development of precise and efficient base editors such as CBE and ABES8e, which
90 find widespread application in studies related to genome editing3”-3%.

91 Here we aim to establish a deaminase and m>C reader-assisted RNA methylation sequencing
92  approach (DRAM-seq), which identifies the m>C sites through reader-mediated recognitions and
93  deaminase-mediated point mutations neighboring the m3C methylation sites. This bisulfite-free and
94  antibody-free method is anticipated to provide more comprehensive and cost-effective
95 transcriptome-wide detection of m°C methylation, which may better assist on exploring its further
96  regulatory mechanisms.

97

98  Results

99  Development of DRAM system for m3C detection

100 Our sequencing platform is inspired by the concept of the m®A DART-seq assay, in which C
101  near the m°A site is converted into U without affecting sequences near non-m6A sites*’. Therefore,
102  we hypothesized that, by utilizing the targeted binding of m°C readers, deaminase can be recruited
103  to achieve deamination of cytosine or adenine in the vicinity of the m’C sites on single-stranded
104  RNA, thereby facilitating the detection of the m°C site. This approach was named DRAM
105  (deaminase and m°C reader-assisted RNA methylation sequencing). As RNA-binding proteins,
106  ALYREF and YBXI1 also could bind to RNAs without m*C modification>!®. To exclude the false-
107  positive detection of DRAM due to the non-m°C specific binding of ALYREF and YBX1, knockout
108  of W65-N70 (WENVRN) amino acids in YBX1and K171A mutation in ALYREF were introduced
109  seperately, resulting in the DRAM™* system (Fig. S1A-S1D). Subsequently, we verified the affinity
110  ability of YBX1 and ALYREF for m°*C-modified RNAs by RNA pull-down experiments. Consistent
111 with previous reports>!8, those two m°C readers preferentially bound RNAs containing m>C
112 modifications. Furthermore, mutating key amino acids involved in their interaction with m>C
113 significantly reduced their binding ability, indicating that ALYREF and YBX1 exhibit specificity
114 for m°C-methylated mRNAs. (Fig. SIE-S1H). To confirm the recognition of m>C site by DRAM
115  system, DRAM, DRAM™" and Deaminase system were transfected into the human HEK293T cells,
116  respectively. Finally, we considered the presence of m°C modification in the vicinity only if the
117  deamination changes produced under DRAM induction were significantly different from those
118  produced under DRAM™" or Deaminase induction (Fig. 1A).

119 Previous studies have indicated that there is no uniform intrinsic signature motif sequence that
120  can characterize all m3C sites>?¢#142, To comprehensively detect the m3C loci, the readers of m3C
121 (ALYREF and YBX1) were separately fused to the C-terminus of the deaminases (APOBECI1 and
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122  TadA-8e), namely DRAM-ABE and DRAM-CBE system (Fig.1B).

123
124  DRAM detection system is assayed in an m3C-dependent form
125 To confirm the recognition of m°C site by DRAM system, DRAM, DRAM™and Deaminase

126  were transfected into the human HEK293T cells, respectively. To evaluate candidate DRAM
127  constructs within a cellular environment, we performed fluorescence microscopy to analyze the
128  expression of DRAM. The results showed that DRAM-ABE and DRAM-CBE were properly
129  expressed in HEK293T cells (Fig. S2A-S2B). In addition, flow cytometry displayed ~60% of cells
130  were GFP-positive (Fig. S2C). Two previously reported m°C sites in RPSA and AP5Z1 were
131  selected for the analysis >?!, and their methylation status was verified by bisulfite sequencing PCR.
132 The deep sequencing results showed that the m>C fraction of RPSA and SZRD1 was 75.5% and
133 27.25%, respectively (Fig.2A and B). Sanger sequencing following RT-PCR was then performed to
134  determine the editing of neighbouring m°C sites by DRAM system in these two mRNA. Notably,
135  adenine close to the m°C site in RPSA mRNA was mutated into guanine, resulting in an A-to-G
136  editing rate of 14.7% by DRAM-ABE, whereas this was rarely observed with TadA-8¢ or
137 DRAM™ABE (Fig.2C). DRAM-CBE induced C to U editing in the vicinity of the m>C site in
138  AP5Z1 mRNA, with 13.6% C-to-U editing, while this effect was significantly reduced with
139  APOBECI1 or DRAM™'-CBE (Fig.2D). Subsequently, in order to investigate whether the DRAM
140  system can detect other types of RNA, such as tRNA, 28S rRNA, or others, we performed PCR
141  amplification of the flanking sequences of the m>C sites 3782 and 4447 on 28S rRNA and several
142 m°C sites on tRNA, such as the m°C48 and m°C49 sites of tRNAY! the m°>C48 and m°C49 sites of
143  tRNAA, and the m°C48 site of tRNADS. But Sanger sequencing showed that there was no valid A-
144 to-G/C-to-U mutation detected, which is most likely due to the fact that ALYTEF and YBX1 are
145  mainly responsible for the mRNA m>C binding proteins, and thus the DRAM system is more
146  suitable for the mRNA m>C detection (Fig. S3). Taken together, the fusion of m3C reader and
147  deaminase can effectively and selectively deaminate cytosine/adenine in the vicinity of the mRNA
148  m°C sites.

149 NSUN2% and NSUN6*, two family members of NOL1/NSUN protein, were both identified
150  as m°C methyltransferase of mRNA®. To verify that the detection of DRAM occurs in the presence
151  of m°C, we performed knockdown experiments of NSUN2 and NSUNG6 in HEK293T cells by base
152  deletion, resulting in frameshift mutations that led to reduced expression of NSUN2 and NSUNG6.
153  These cells were then transfected with DRAM. The knockout efficiency has been confirmed by
154  western blotting (Fig.2E, 2F and Fig. S4A,4B). It has been previously demonstrated that m>C
155  methylation of AP5Z1 and RPSA is catalyzed by NSUN2 and NSUNG, respectively?'*6. In line with
156  this, sanger sequencing following RT-PCT showed a significant reduction in C-to-U or A-to-G
157  mutations near the m°C sites in methyltransferase-deficient cells compared with WT cells (Fig. 2G
158  and H). Overall, these findings suggest that the DRAM detection system is assayed in an m>C-
159  dependent form.

160 DRAM enables transcriptome-wide analysis of m>C methylation

161 Subsequently, we performed RNA-seq analysis after DRAM transfection by detecting C-to-
162  U/A-to-G editing events to accomplish transcriptome-wide detection of m>C (Fig.3A). To serve as
163  positive controls, two previously published BS-seq datasets were also integrated>2!. Mutations were
164  detected near the m°C site in RPSA as A-to-G by DRAM-ABE (Fig.3B), and DRAM-CBE detected
165  the presence of C-to-U mutations near the AP5Z1 m°C site (Fig.3C). However, the DRAM™* and
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166  Deaminase systems induced few effective mutations close to these sites. Examination of multiple
167  reported high-confidence RNA m’C sites showed that DRAM-seq editing events were also enriched
168 in the vicinity of the BS-seq sites (Fig.3B, 3C and Fig. S5).

169 DRAM-seq analysis further confirmed that mutations in AP5Z1 and RPSA mRNA were
170  reduced in methyltransferase knockout cells compared to wild-type cells (Fig. 3D, 3E). Moreover,
171 the knockout cells exhibited overall rare DRAM-seq editing events close to m>C sites in other
172 mRNAs (Fig. S6). These indicated that DRAM-seq analysis was detected in an m’C-dependent
173 manner. Unfortunately, motif analysis failed to identify any sequence preferences or consensus
174  motifs associated with DRAM-edited sites mediated by loci associated with NSUN2 or NSUNG6.
175  (Fig. S4D).

176 A comparison of three biological replicates from each experimental group revealed a strong
177  reproducibility of A-to-G/C-to-U mutations in HEK293T cells expressing DRAM-ABE and
178 DRAM-CBE (Fig. S7). Moreover, the DRAM-edited mRNAs revealed a high degree of overlap
179  across the three biological replicates (Fig. S4C). And a recent study by Wang et al. showed that
180  ALYREF deletion affects the expression of 94 mRNAs*, and only 55.32% of these ALYREF-
181  regulated mRNAs can be detected by the DRAM system (Fig. S4E). These findings suggest that
182  DRAM selectively targets specific RNAs for editing, exhibiting a high degree of consistency across
183  samples.

184 To obtain information on a set of high-confidence DRAM-seq data, we filtered the list of sites
185  transfected with deaminase alone and screened the sequencing results with methyltransferase
186  depleted, pooled editing events occurring in at least 10% of reads across multiple samples to obtain
187  a set of high-confidence editing sites (Fig. 3F and Supplementary Table 2), and integrated genes
188  with editing sites occurring in DRAM-ABE and DRAM-CBE (Fig. 3F and Supplementary Table 3).
189 Previous studies have indicated that mC sites are predominantly distributed in the coding
190  sequences (CDS) and notably enriched near the initiation codon>232643-30_ To further delineate the
191  characteristics of the DRAM-seq data, we compared the distribution of DRAM-seq editing sites
192  within the gene structure, specifically examining their occurrences in the 5’untranslated region
193  (5’UTR), 3’ untranslated region (3°’UTR), CDS and Intergenic/Intron region. Our analysis revealed
194  that DRAM-seq editing events in cells expressing DRAM-ABE and DRAM-CBE were primarily
195  located in the CDS and 3’UTR, indicating a non-random distribution of m°C (Fig.3G, Fig. S8A and
196  8B). Moreover, plotting the distribution of DRAM-seq editing sites in mRNA segments (5’UTR,
197  CDS, and 3’UTR) highlighted a significant enrichment in the CDS (Fig.3H). In contrast, cells
198  expressing the deaminase exhibited a distinct distribution pattern of editing sites, characterized by
199  aprevalence throughout the 3’UTR (Fig.3H). This finding reaffirms that the specific editing pattern
200  observed in DRAM-seq across the transcriptome depends on its capacity to bind m>C.

201 Comparative analysis of the DRAM-seq editing sites with the previously published BS-seq
202  m°C sites indicated that the likelihood of editing was notably higher in closer proximity to the m3C
203  sites (Fig.31). Furthermore, the editing window of DRAM exhibited enrichment approximately 20bp
204  before and after the m°C site (Fig.31). Investigation into the sequences surrounding the editing
205  window revealed that AC motifs were the most significantly enriched in DRAM-CBE, whereas
206  (U/C) A motifs were most notably enriched in DRAM-ABE. In contrast, the APOBEC1 and TadA-
207  8e samples displayed no significantly enriched motifs, with mutations being more randomly
208  orientated (Fig.3J, 3K).

209
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210 DRAM-seq provides stable and comprehensive identification of m3C loci

211 Subsequently, we then evaluated the ability of DRAM-seq to detect m>C across the entire
212 transcriptome and compared its performance to that of the previously reported BS-seq. Although
213  both previous studies employed bisulfite treatment, the resulting data obtained significant
214 discrepancies due to variations in their treatment and analysis methodologies. We first complied the
215  overall distribution of mutant regions identified by DRAM-seq, presenting both the mutant sites
216  detected by the DRAM system and those reported in previous studies™'® across each chromosome
217  (Fig.4A). Our results indicated that DRAM-seq identified the presence of m>C modifications
218  covering 79.6% of the genes detected by Yang et al.’> and 91.9% of the genes detected by Zhang et
219  al.?! (Fig.4B and D). Remarkably, certain pivotal regulators with diverse biological functions, such
220  as ATG16L1(coordinats autophagy pathway)’' and ARHGEF25 (plays an important role in actin
221  cytoskeleton reorganisation)®?, were identified by Zhang et al. and DRAM-seq, but not by Yang et
222  al. (Fig.4C). Conversely, FANCD2 (Maintains chromosome stability)>* and RPL15(components of
223 the large ribosomal subunit)’**3°, were discovered by Yang et al. and DRAM-seq, but not by Zhang
224 etal. (Fig.4E). Hence, DRAM-seq appears to offer a more stable and comprehensive identification
225  of the m°C loci.

226 To provide functional insights into m>C RNA-modified genes in HEK293T cells, we conducted
227  Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. These
228  results highlighted the involvement of these genes in the regulation of diverse key biological
229  processes, such as cell division, cell cycle, mRNA splicing, protein processing in the endoplasmic
230  reticulum, nucleocytoplasmic transport, translation, DNA repair and others (Fig.4F, 4G, Fig. S8C
231  and S8D).

232
233  DRAM enables low-input m3C profiling
234 A significant challenge in m>C detection lies in the specificity of antibodies and the substantial

235 amount of input RNA required for sequencing. RNA is susceptible to degradation during
236  denaturation, sodium bisulfite treatment and desulfurization steps in the BS-seq assay.
237  Immunoprecipitation-based m>C assays and LC-MS/MS also impose high demand for sample
238  input’?57, Several experiments have highlighted the requirement of 100-500 ng of RNA for m3C-
239  RIP-seq, while BS-seq necessitates an even more demanding 750-1000 ng of RNA2!:2538 To assess
240  the detection limits of DRAM-Sanger, we attempted to amplify two representative m>C-containing
241  sites in the RPSA and AP5Z1 transcripts from diluted RNA samples.

242 Remarkably, we successfully generated PCR products of these two mRNAs from cDNAs
243  corresponding to 250 ng, 50 ng, and 10 ng of total RNA. Quantitative analysis by Sanger sequencing
244  demonstrated nearly identical Sanger traces across these dilutions (Fig.5A and B). This finding
245  underscores that the specificity of DRAM editing depended on its ability to bind m°C, and DRAM
246 s proficient in low-input m°C analyses. Furthermore, cell viability was determined by CCKS assay
247  on HEK293T cells transfected with DRAM (Fig.5C). Importantly, there was no significant
248  difference in the relative proliferative capacity of the cells compared to untransfected cells (NC),
249 indicating that DRAM expression did not adversely affect cell viability (Fig.5D).

250 Transfection of the DRAM system in cells results in the transient overexpression of fusion
251  proteins. To investigate how varying expression levels of these proteins influence A-to-G and C-to-
252 U editing within the same m°C region, we conducted a gradient transfection using plasmid
253  concentrations of 1500 ng, 1000 ng and 500 ng. This approach allowed us to progressively reduce
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254  the expression levels of the fusion proteins (Fig. SE and 5F). Sanger sequencing revealed that the
255  editing efficiency of A-to-G and C-to-U within the m>C region significantly decreased as fusion
256  protein expression diminished (Fig. 5G and 5H). These findings suggest that the transfection
257  efficiency of the DRAM system is concentration-dependent and that the ratio of editing efficiency
258  to transfection efficiency may assist in the quantitative analysis of m>C using the DRAM system.
259

260

261 Discussion

262 In recent years, m’C methylation modifications have received increasing attention, with
263  multiple reports detailing the distribution of RNA m’>C methylation modifications across various
264  species and tissues, elucidating their characteristics. Despite the relatively low abundance of m’C,
265 its highly dynamic changes hold significant implications for the regulation of physiological and
266  pathological processes®?'**. However, due to the limitations of sequencing methods and the
267  variability of data processing, there remains ample room for progress in the study of m°C detection
268  methods.

269 In this study, we developed a site-specific, depth-sequencing-free m>C detection method using
270  DRAM-Sanger. This workflow relies on conventional molecular biology assays such as RT-PCR
271  and Sanger sequencing, eliminating the need for specialized techniques and thereby simplifying the
272  process of m>C detection.

273 DRAM-seq introduces a novel strategy for transcriptome-wide m>C detection, overcoming
274  inherent limitations in existing methods. Notably, DRAM-seq covered around 80% of the high-
275  confidence m’C-modified genes detected by BS-seq and identified more potential m°C sites. This
276  can be attributed to the avoidance of bisulfite treatment by DRAM-seq, preventing RNA damage
277  and ensuring a more comprehensive representation of RNA samples. This feature also likely
278  contributes to the observed stability of DRAM-seq in comparison to BS-seq. Additionally, DRAM-
279  seq is not limited by antibody specificity and is resistant to chemical-induced damage.

280 A prominent challenge in existing m>C profiling methods is their reliance on substantial
281  amounts of input RNA samples. In contrast, DRAM operates through the deamination activity of
282  deamination activity of deaminase, preserving RNA integrity and preventing degradation. The
283  notable advantage of DRAM lies in its capacity for low-input m°C detection. Our analysis
284  demonstrates that DRAM requires as low as 10ng of total RNA for m’C detection. While DRAM is
285  currently well-suited for detecting m3C on a transcriptome-wide scale, the potential for future
286  applications involving third-generation sequencing could extend its utility to individual mRNAs,
287  particularly m°C heterogeneity on mRNA splicing variants. In addition, the DRAM system depends
288  on the specific recognition of m>C modifications on ssRNA by the reader protein, theoretically
289  avoiding the false-positive effects of 5-hydroxymethylation modifications in other assays, such as
290  BS-seq?!'*?. This potential feature could enhance the accuracy of the DRAM assay, albeit it still
291  requires careful validation.

292 In our study, m°C detection was performed following the transient transfection of the DRAM
293  detection system into mammalian cells, which might result in a lower mutation rate at the
294  corresponding site. Therefore, employing lentiviral-mediated transfection into cell lines of interest
295  could potentially enhance the efficiency of m>C detection. Our results confirm that YBX1 and
296  ALYREF exhibit specificity as m°C readers, binding preferentially to RNAs with m3C modifications,
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297  thereby validating the reliability of the DRAM detection system. However, mutations in the key
298  amino acids responsible for m>C binding reduced their affinity while retaining some binding
299  capacity. DRAM-seq analysis identified a substantial number of m>C sites. However, we cannot
300 exclude the potential existence of false positive sites resulting from non-specific binding of the m°C
301  reader. Further elucidation of the key amino acids directing ALYREF and YBX1’s binding to m°C
302  methylation sites should enable more accurate and sensitive m°C detection by DRAM-seq. Due to
303  the lack of a fixed base composition for characterizing all m>C modification sites, DRAM has an
304  apparent limitation in achieving single-base resolution for detecting m3C. This technical constraint
305 may explain the absence of identifiable sequence specificity in our analysis of m>C sites catalyzed
306 by NSUN2 and NSUNG6, despite previous reports associating these methyltransferases with "G"-
307  rich sequences and the "CUCCA" motif>®. However, our present study proved that the measuring
308  resolution of DRAM is around 40nt, which facilitates higher precision than that of m>C-RIP-seq
309  (~100nt). In the future, with more in-depth analyses of m°C reader structures and the identification
310  of new potential m3C readers, we expect to achieve more precise m°C localization and more
311 comprehensive m>C modification detection. Moreover, the substitution of deaminases, such as A3A
312  and A3G (the family members of APOBEC), could also potentially enhance the efficiency of the
313  DRAM detection %62,

314 Although the m’C assay can be performed using the DRAM system alone, comparing it with
315  the DRAM™ and deaminase controls could enhance the accuracy of m>C detection in specific
316  regions. Given that the expression of DRAM fusion proteins significantly influences m>C detection,
317  itis advisable to transfect the same batch of cells during the assay to ensure consistent transfection
318 efficiency across experimental groups and thus can better standardize the detection.

319 One future direction of endeavour is the purification of DRAM fusion proteins to facilitate in
320  vitro detection of RNA m>C methylation, which could extend the scope of DRAM-seq to diverse
321  sample types. Another potential application for DRAM-seq could be the expression of drug-
322  inducible DRAM systems in vivo using various animal models for m>C analysis. These will together
323  provide novel insights into m*C modifications for biological and clinical research.

324 Conclusions

325 In summary, we developed a novel deaminase and reader protein-assisted RNA m’>C
326  methylation approach that detects the m>C region by deaminating As or Cs in close proximity to the
327 m°C sites, which does not rely on antibodies or bisulfite, thus leading to unprecedently
328  comprehensive transcriptome-wide RNA m>C methylation profiling. We anticipated that this system
329  could pave the way for uncovering further biological functions of m3C modifications and facilitate
330  the development of therapeutic interventions for associated diseases.

331

332  Materials and methods

333  Plasmid construction

334 ALYREF and YBXI1 expression plasmids were purchased from MIAOLING BIOLOGY
335  (http://www.miaolingbio.com/), and the ALYREF and YBX1 fractions were then amplified using
336  specific primer. The ALYREF and YBX1 portions were amplified using pCMV-APOBEC1-YTH
337  (Addgene plasmid no. 131636; https://www.addgene.org/131636/) and ABE8e (Addgene plasmid
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338  no. 138489; https://www.addgene.org/ 138489/) to amplify the deaminase portion and the essential
339  plasmid construct proxies, and finally the fragments were recombined by the ClonExpress Ultra
340  One Step Cloning Kit to complete the plasmid vector construction. Both DRAM™-ABE and
341 DRAM™-CBE related vectors were obtained by introducing the corresponding key amino acid
342  mutations using Fast Site-Directed Mutagenesis Kit (TIANGEN Biotech). The primer sequences
343  used are listed in Supplementary Table 4.

344 Cell culture and plasmid transfection

345 HEK293T cell line (ATCC) was cultured in Dulbecco’s Modified Eagle Medium (DMEM)
346  supplemented with 10% fetal bovine serum (CLARK BIOSCIENCE) and 1% penicillin (100 U/ml)-
347  streptomycin (100pg/ml). The cells were seeded in 12-well plates and transfected using Hieff
348  Trans™ Liposomal Transfection Reagent (Yeasen).

349 NSUN2-depleted cell lines were generated by cloning NSUN2-targeting single guide RNA
350  sequences into the pSpCas9(BB)—2A-Puro (PX459) V2.0 plasmid (Addgene plasmid no. 62988;
351  http://n2t.net/addgene:62988). Plasmids were then transfected into HEK293T cells and Puromycin
352  (Meilunbio) was added at a final concentration of 3 pg/ml to enrich the positively transfected cells
353 24 h after transfection. After 72 h, the cells were collected and used for genotyping by Sanger
354  sequencing. NSUNG6-depleted cell lines were generated in the same way. The primers used for
355  genotyping and single guide RNA sequences are listed in Supplemental Table 4.

356  Cell viability measurements

357 HEK293T cells were transfected with DRAM plasmid and cultured at 37°C for 24 h.
358  Subsequently, 1000 cells were seeded in 96-well plates. After waiting for the cells to attach to the
359  wall, the cell activity was detected by Cell Counting Kit-8 (Meilunbio). Cell Counting Kit-8
360  contains WST-8, which in the presence of the electronically coupled reagent 1-Methoxy PMS can
361  be reduced by mitochondrial dehydrogenase to the orange-colored metazan product Formazan, the
362  absorbance of which is measured at 450 nm to analyze cellular activity.

363  Western blotting

364 For protein blotting, samples were lysed in RIPA Lysis Buffer (Meilunbio) with
365  Phenylmethanesulfonyl fluoride (PMSF) and the BCA protein assay kit (Beyotime Biotechnology)
366  was used to Protein concentration was measured. Total protein extracts were separated by SDS-
367  PAGE on a 10% gel and then transferred to 0.22 nm polyvinylidene fluoride membranes (Boster).
368  Subsequently, the proteins were probed with specific antibodies after the blot was blocked with 5%
369  non-fat milk (Boster). Images were quantified using ImagelJ software and all data are expressed as
370  mean + SEM.

371 The following antibodies and concentrations were used: NSUN2 Polyclonal antibody
372 (Proteintech; Cat No0.20854-1-AP; 1:7500), NSUNG6 Polyclonal antibody (Proteintech; Cat No.
373 17240-1-AP; 1:2000), RabbitAnti-GAPDH antibody (Bioss; bs-41373R; 1:2000), Alpha Tubulin
374 Polyclonal antibody (Proteintech; Cat No. 11224-1-AP; 1:2000), HRP-labeled Goat Anti-Rabbit
375  IgG(H+L) (Beyotime Biotechnology; A0208; 1:2000).

376  cDNA synthesis and Sanger sequencing

377 Total cellular RNA was extracted with TRIzol reagent (TTANGEN Biotech) and cDNA was
378  synthesized using PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara Bio) according to the
379  manufacturer's recommendations. PCR was then performed using 2 X Taqg PCR MasterMix II
380 (TIANGEN Biotech) and primers flanking m°C target sites, and the purified PCR products were
381  directly sequenced by Sanger sequencing. The Sanger sequencing results were analyzed using EditR
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382 1.0.10 to calculate the mutation frequency®. The primers used in this study are shown in
383  Supplemental Table 4.

384  Real-time quantitative PCR

385 cDNA was synthesized using FastKing RT kit (with gDNase) (TTANGEN Biotech) according
386  to the manufacturer's recommendations. RT-qPCR assay was performed using SuperReal PreMix
387  Plus (SYBR Green) (TIANGEN Biotech). GAPDH was used as an endogenous control, and the
388  expression levels were normalized to the control and calculated by the 2-22¢ formula. All samples
389  were analyzed in triplicate and each mRNA quantification represents the average of at least three
390  measurements. All data are expressed as mean £ SEM. The primers used in this study are shown in
391  Supplemental Table 4.

392  Protein structure modelling

393 Protein structure simulations were performed using the SWISS-MODEL online website
394  (https://swissmodel.expasy.org/interactive)®*. The SWISS-MODEL database is able to provide up-
395  to-date annotated 3D protein models, which are generated from automated homology modelling of
396  related model organisms and experimental structural information for all sequences in UniProtKB,
397  with reliable structural information, and subsequently protein structure observations were
398  performed using PyMOLS®.

399  Bisulfite sequencing PCR

400 We referenced bisulfite sequencing PCR, an assay established by Matthias Schaefer et al. We
401  chemically deaminated cytosine in RNA using the EZ RNA methylation kit (50) (ZYMO
402 RESEARCH) and then quantified m°C methylation levels based on PCR amplification of cDNA
403  combined with deep sequencing??.

404 RNA Conversion Reagent was premixed with prepared RNA samples, and the RNA was
405  denatured at 70°C for 5 minutes, followed by a reaction period of 45 minutes at 54°C. Finally, the
406  purified RNA samples were recovered after desulfurization by RNA Desulphonation Buffe. cDNA
407  was synthesized using PrimeScript™ II 1st Strand cDNA Synthesis Kit (Takara Bio) according to
408  the manufacturer's recommendations. PCR was then performed using 2x EpiArt HS Taq Master Mix
409  (Dye Plus) (Vazyme) and m°C target site-specific Bisulfite Primer (primer sequences were designed
410  at https://zymoresearch.eu/pages/bisulfite-primer- seeker), the products were purified by TIANgel
411  Midi Purification Kit (TIANGEN Biotech), and the connectors for second-generation sequencing
412  were attached at both ends of the products for sequencing. Finally, deep sequencing was performed
413 by HiTOM analysis to detect the methylation level (The number of reads >1000 in deep sequencing)
414 %% The primers used in this study are shown in Supplemental Table 4.

415  Library construction and next-generation sequencing

416 1ug of total cellular RNA was used for sequencing library generation by NEBNext Ultra RNA
417  Library Prep Kit for Illumina (NEB, USA, Catalog #: E7530L) following manufacturer’s
418  recommendations and index codes were added to attribute sequences to each sample. Briefly, mRNA
419  was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was
420  carried out using divalent cations under elevated temperature in NEB Next First Strand Synthesis
421  Reaction Buffer(5X). First-strand cDNA was synthesized using random hexamer primer and M-
422  MuLV Reverse Transcriptase (RNase H). Second-strand cDNA synthesis was subsequently
423  performed using DNA Polymerase I and RNase H. Remaining overhangs was converted into blunt
424  ends via exonuclease/polymerase activities. After adenylation of 3* ends of DNA fragments, NEB
425  Next Adaptor with hairpin loop structure was ligated to prepare for hybridization. To select cDNA
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426  fragments of preferentially 370~420 bp in length, the library fragments were purified with AMPure
427  XP system (Beverly, USA). Then 3 uL USER Enzyme (NEB, USA) was used with size selected,
428  adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95 °C before PCR. Then PCR was
429  performed with Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X)
430  Primer. At last, PCR products were purified (AMPure XP system) and library quality was assessed
431  on the Agilent 5400 system(Agilent, USA)and quantified by QPCR (library concentration = 1.5
432  nM). The qualified libraries were pooled and sequenced on Illumina platforms with PE150 strategy
433  in Novogene Bioinformatics Technology Co., Ltd (Beijing, China), according to effective library
434  concentration and data amount required.

435 DRAM-seq analysis and calling of edited sites

436 The raw fastq sequencing data were cleaned by trimming the adapter sequences using Fastp
437  (v0.23.1) and were aligned to the human genome (hg19) using STAR (v2.7.7) in paired-end mode.
438  The aligned BAM files were sorted and PCR duplicates were removed using Samtools (v1.12). The
439  cite calling pf DRAM-seq was performed using Bullseye, a previously customized pipeline to look
440  for C-to-U or A-to-G edited sites throughout the transcriptome®. Briefly, the sorted and
441  deduplicated BAM files were initially parsed by parseBAM.pl script.

442 Then, Find edit_site.pl script was employed to find C-to-U or A-to-G editing events by
443  DRAM-seq with at least 10 reads of coverage, an edit ratio of 5%-95%, an edit ratio at least 1.5-
444 fold higher than NSUN2 or NSUNG6-knockout samples, and at least 2 editing events at a given site.
445  Sites that were only found in one replicate of each DRAM protein variant were removed. Editing
446  events appeared in cells expressing merely APOBEC1 or TadA8e were also removed. For high
447  confidence filtering, we further adjusted the Find edit_site.pl parameters to the edit ratio of 10%-
448  60%, an edit ratio of control samples at least 2-fold higher than NSUN2 or NSUN6-knockout
449  samples, and at least 4 editing events at a given site.

450  Metagene and motif analyses

451 Metagene analysis was performed using hgl19 annotations according to previously reported
452  tool, MetaplotR®’. For motif analysis, the 20bp flanking sequence of each DRAM-seq editing site
453  was extracted by Bedtools (v2.30.0)%. The motif logos were then plotted by WebLogo (v3.7.12)%°.
454  Replicates analysis

455 Independent biological replicates of DRAM-ABE or DRAM-CBE in DRAM-seq analysis were
456  separately compared by computing the Pearson correlation coefficient between the number of C-to-
457 U mutations per mRNA between any two replicate experiments.

458 GO and KEGG analysis

459 GO and KEGG analysis of DRAM-seq edited mRNAs was performed using the DAVID
460  bioinformatic database 7°. GO terms with a P value of less than 0.05 were considered statistically
461  significant.

462  RNA pulldown assay

463 The biotin-labeled RNA oligonucleotides with (Oligo-m>C) or without m°’C (Oligo-C) were
464  prepared in advance: 5’-biotin-GAGGUAUGAAXUGUAAGTT-3' (X = C or m°C, used in the
465  ALYREF and ALYREF™ group) and 5'-biotin-GAAAGGAGAUXGCCAUUAUCC-3' (X =C or
466  m>C, used in the YBX1 and YBXI1™" group). Protein lysates were then isolated from HEK293T
467 cells transfected with DRAM-YBXI1, DRAM-YBXI1™ DRAM-ALYREF or DRAM-
468  ALYREF™ for 24 h using lysis buffer. RNA pull-down assays were performed with the Pierce™
469  Magnetic RNA-Protein Pull-Down Kit (Thermo) following the manufacturer’s instructions, and the
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470  results were finally analyzed by Western blotting.

471  Statistical analysis

472 All data are expressed as mean = S.E.M of three independent determinations. Data were
473  analyzed through a two-tailed t-test. A probability of P < 0.05 was considered statistically significant;
474 %, P<0.05, %%, P<0.01, *, P <0.05, ** P <0.01, *** P <0.001 and **** P < 0.0001 denote the

475  significance thresholds; ns denotes not significant.

476

477 Data and Materials Availability

478 The data supporting the findings of this study are available within the article and its
479  Supplementary Information. Other data and reagents are available from the corresponding authors
480  upon reasonable request.
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695  Fig.1: Development of DRAM system for m°C detection.
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696  (A) Schematic diagram of the DRAM assay. DRAM, DRAM™" and Deaminase system were
697  transfected into HEK293T cells separately. After DRAM transfection, the deaminase was directed
698 by m’C reader to the vicinity of the m°C site and induce C-to-U/A-to-G mutations, whereas

699 transfection of the DRAM™" or Deaminase system failed to effectively induce similar mutations

700  due to the absence of the m’C-recognition-binding domain.

701  (B) The overall design of DRAM, DRAM™" and Deaminase system.


https://doi.org/10.1101/2024.04.17.589933
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.17.589933; this version posted February 20, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

A RPSA75.5% C e
rr—
e RPSA T TATATCmCTCC AGG A 2
* * 15
80 <
g YATAYA [ /\/\ ,'(‘\ /\\ N /\/\ H 10
£60 DRAM-ABE LUV VANVVVVVY . g
§ 40 A : A «% 5
& TadA-se LLVVV \/\M ﬂ_z\[\ )
E 20 , T T
ANNAANAN p [ & °
: owwsse AMMMANNRAL 7%
¥
TATCGTCGA &
B AP5Z1 27.25% D -
P
100 AP521 AGACACGMCGGGGCTG 2B
.80 * g 20
g £ s
5 , s
g 60 DRAM-CBE A [ A g,
[$)
© ; L
< 40 | \ /\ E s
S APOBEC1 ‘ ,
£ 20 0
& N %
AN &
. DRAM™CBE / &
CACGGCGGG G 9
E 25— -k
WT  NSUN2* AP5Z1 AGACACGMCGGGGCTG 3 201
o £
S 15
/ A N 7]
NSUN2 — WT £ 101
s hE 5
a-Tubulin - - NSUN2- N\ A\ J\ o -
& o
&
k%
F H RPSA T TATATCmCTCC AGG A = A
WT  NSUN6* & W g
AAAN /\ W, | A /J\ %10—
AVAYAYA [\ ’r“ | 8
NSUNG | P ATATAVATAVAVAYAVATAWAY - £
capoH | S | S AATAVAVAYAVAVA N\ A o
JUVVVVVVY \ \ P
6\,‘{"
&

702

703  Fig.2: DRAM detection system was assayed in an m5C -dependent form.

704 (A, B) Two m°C sites from RPSA (A) and AP5Z1 (B) mRNA detected by deep sequencing of
705  bisulfite sequencing PCR in HEK293T cells. The m3C sites are highlighted by red color. The m*C
706  fraction of RPSA and AP5Z1 were 75.5% and 27.25% (The number of reads is greater than 1000).
707  (C, D) Sanger sequencing following RT-PCR verified two m>C sites from RPSA (C) and AP5Z1 (D)
708 mRNAs in DRAM-transfected HEK293T cells, respectively. HEK293T cells only expressing
709 DRAM™ or Deaminase were served as negative controls. The left panel illustrates the location of
710  DRAM induced mutation sites, which is highlighted in red asterisk. The right panel shows the
711  corresponding quantification of sanger sequencing.

712  (E, F) The knockout efficiency of NSUN2 (E) and NSUNG6 (F) in HEK293T cell lines verified by
713  Western blotting. The protein level of a-Tubulin and GAPDH were served as loading controls,
714 separately.
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(G, H) DRAM induced mutations close to m°>C sites in AP5Z1 (G) and RPSA (H) mRNAs after
NSUN2 and NSUNG6 knockout in HEK293T cells. The left panel illustrates the location of DRAM
induced mutation sites, which is highlighted in red asterisk. The right panel shows the corresponding
quantification of sanger sequencing.
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721  Fig.3: DRAM enables transcriptome-wide analysis of m3C methylation.

722 (A) Schematic of the DRAM-seq method.

723 (B, C) Integrative genomics viewer (IGV) browser traces of DRAM-seq data expressing the
724  indicated constructs in RPSA (B, left panel), TARBP2 (B, right panel), AP5Z1(C, left panel), and
725  TRAF7 (C, left panel) mRNAs. C-to-U or A-to-G mutations found in at least 10% of reads are
726  indicated by coloring. The previously published RNA BS-seq datasets from two individual studies
727  were displayed as panel “Yang et al.” and “Zhang et al.”. (n(DRAM)=3 independent samples,
728  n(Deaminase)=2 independent samples, and n(DRAM™"=1 independent sample.)

729 (D, E) Integrative genomics viewer (IGV) browser traces of DRAM-seq data in wildtype and
730  methyltranferases knockout cells in AP5Z1 (D) and RPSA (E) mRNAs. C-to-U or A-to-G mutations
731  were found in at least 10% of reads are indicated by coloring. The previously published RNA BS-
732 seq datasets from two individual studies were displayed as panel “Yang et al.” and “Zhang et al.”.
733  n=3 independent samples.

734 (F) Screening process for DRAM-seq assays and principles for screening high-confidence genes.
735  (G) The pie chart shows the distribution of editing sites in different transcript region in cells
736  expressing DRAM (n=3 independent samples).

737  (H) The density map showing the distribution of editing events across the mRNA transcripts
738  detected by DRAM-seq.

739 (D) The frequency plot shows the distribution of the distances of edit events in DRAM-seq relative
740  to the m3C sites from the published BS-seq datasets. The position of each m°C site of BS-seq is
741 determined as 0, and the relative distance of each site to the nearest edit event in DRAM-seq is
742  calculated and plotted. The plots are presented separately based on the cutoff of upstream and
743  downstream 3000bp (above) and 80bp (below) windows.
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744  (J, K) Motif analysis discovered within the £20nt region around the C-to-U or A-to-G editing site
745  in cells expressing DRAM-CBE (J), APOBEC1(J), DRAM-ABE (K) and TadA-8e (K).
746
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749  Fig.4: Stable and comprehensive cellular identification of m*C loci by DRAM-seq.

750  (A) Comparison of the overall distribution of genes with m°>C modifications detected by DRAM-
751  seq, Yang et al. and Zhang et al. on chromosomes. The mutation sites detected by DRAM-seq on
752  each gene are categorized into dual-colored short lines, with positive strand mutations shown in
753  orange and negative strand mutations in dark green. The line graph and kernel density plot in the
754  inner ring represent the locations and distributions of overlapping genes detected by DRAM-seq
755  (red), Yang et al. (blue) and Zhang et al. (light green).

756  (B) Venn diagram showing the overlap between DRAM-seq and Yang et al.'s edited genes.

757 (D) Venn diagram showing the overlap between DRAM-seq and Zhang et al.'s edited genes.

758  (C, E) Integrative genomics viewer (IGV) browser traces of DRAM-seq data expressing the
759  indicated constructs in the ATG16L1(B), ARHGEF25(B), FANCD2(D), and RPL15(D) mRNAs. C-
760  to-U/A-to-G mutations found in at least 10% of reads are indicated by coloring, and the m>C site
761  found by BS-seq is also labelled.

762  (F) Genes with DRAM-seq editing events were analyzed for KEGG bioprocess enrichment.

763  (G) GO biological processes enrichment analysis of genes with DRAM-seq editing events.
764  Statistical analyses were performed using the DAVID tool.
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767  Fig.5: Low-input m3C detection and transfection efficiency of DRAM system.

768 (A, B) DRAM analysis of RPSA (A) and AP5Z1 (B) mRNAs with 250 ng, 50 ng, and 10 ng of input
769  RNA. Representative Sanger sequencing plots are shown on the left panel, with mutation sites
770  marked with asterisks. The mutation rates are quantified on the right panel.

771 (C) Flowchart illustrating Cell viability analysis by CCK8 reagent after DRAM transfection in
772  HEK293T cells.

773 (D) Quantitative comparison of the relative proliferative capacity of DRAM-expressing and
774  untransfected cells.

775 (E, F) The expression levels of DRAM-CBE (E) and DRAM-ABE (F) systems different plasmid
776  transfection concentrations were verified by Western blotting.

777 (G, H) Editing of RPSA (G) and AP5Z1 (H) mRNA at varying concentrations of DRAM protein
778  expression. The left panels indicate Sanger sequencing results following RT-PCR, while the
779  corresponding quantifications of DRAM-induced mutations are shown in the right panels.
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