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ABSTRACT 

We present raw and processed multimodal empirical data as well as simulation results from a study with 
The Virtual Brain (TVB).  

Simultaneous electroencephalography (EEG) - functional magnetic resonance imaging (fMRI) resting-
state data, diffusion-weighted MRI, and structural MRI were acquired for 50 healthy adult subjects (18 - 
80 years of age) at the Charité University Medicine, Berlin, Germany.  

We constructed personalized models from this multimodal data with TVB by optimizing parameters on 
an individual basis that predict multiple empirical features in fMRI and EEG, e.g. dynamic functional 
connectivity and bimodality in the alpha band power.  

We annotated this large comprehensive empirical and simulated dataset according to the openMINDS 
metadata framework and structured it following Brain Imaging Data Structure (BIDS) standards for EEG 
and MRI as well as the BIDS Extension Proposal for computational modeling data.  

This dataset provides ready-to-use data for future research at various levels of processing including the 
thereof inferred brain simulation results for a large dataset of healthy subjects with a wide age range. 
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BACKGROUND AND SUMMARY 

Data origin 

A description of the dataset and applied methods can be found in1. Please refer to this publication when 

re-using the simulated data. The acquisition and processing of the empirical data is described in our 

previous publications2–4, please cite these articles when using the presented raw and processed data. 

Study participants joined voluntarily and experienced no cognitive, neurological or psychiatric conditions 
prior to this study based on self-reporting. All participants provided informed consent prior to entering 
the study. The research was performed in accordance with the Code of Ethics of the World Medical 
Association Declaration of Helsinki and after its approval by the local ethics committee at Charité 
University Berlin (application number EA1/041/13).  
 
The presented dataset includes demographic (Table 1), imaging, electrophysiological as well as brain 
simulation data for N=50 subjects. More specifically, for each subject, we have diffusion-weighted 
magnetic resonance imaging (dwMRI), structural MRI, fieldmaps for distortion correction and 
simultaneous 22-minute resting-state electroencephalography (EEG)-functional MRI (fMRI) data as well 
as derivatives thereof. The derivatives are empirical structural and functional connectivity matrices, and 
BOLD time series aggregated according to the Desikan-Killiany parcellation and brain simulation data. 
More details can be found in Table 2.  
 
Table 1. Subject overview. Subject identifier alongside age in years and sex are listed for all 50 subjects. 

subject ID age (in years) sex subject ID age (in years) sex 

sub-01 30 F sub-26 42 F 

sub-02 59 F sub-27 63 F 

sub-03 60 M sub-28 27 M 

sub-04 18 F sub-29 24 M 

sub-05 27 M sub-30 47 F 

sub-06 68 F sub-31 56 F 

sub-07 43 F sub-32 77 F 

sub-08 72 M sub-33 72 F 

sub-09 30 F sub-34 64 F 

sub-10 39 M sub-35 28 M 

sub-11 33 F sub-36 25 M 

sub-12 28 F sub-37 23 M 

sub-13 24 M sub-38 30 M 

sub-14 25 F sub-39 25 M 

sub-15 54 F sub-40 30 M 

sub-16 27 M sub-41 57 F 

sub-17 67 F sub-42 51 M 

sub-18 23 F sub-43 31 F 
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sub-19 55 F sub-44 23 F 

sub-20 20 M sub-45 30 F 

sub-21 40 F sub-46 19 F 

sub-22 62 F sub-47 23 F 

sub-23 80 F sub-48 21 M 

sub-24 65 F sub-49 25 F 

sub-25 49 M sub-50 51 M 

F=female, M=male 
 
Table 2. Data overview. [number of subjects N for which this measurement data is available]  

Data Details 

Demographics age [N=50], sex [N=50]: 18 - 80 years of age, mean 41.24±18.33; 
31 females, 19 males; weight (for all subjects) and size (for 7 
subjects) 

Modality 
MRI sequences 

diffusion-weighted MR echo-

planar measurements [N=50] 

TR=7500ms, TE=86ms, FoV=220mm, 96 matrix, voxel size 
=2.3×2.3×2.3mm, no. of transversal slices=61 with thickness 
=2mm; 64 diffusion gradient directions with b-values 
=1000s/mm2 

T1-weighted imaging [N=50] MPRAGE sequence with 1x1x1mm T1-weighted imaging (TR = 
1900ms, TE = 2.25ms, FA = 98, field of view (FoV) = 256mm, 256 
matrix, no. of sagittal slices = 192 with thickness = 1mm) 

EPI T2* [N=50] 666 volumes, TR= 1940ms, TE=30ms, FA=788, FoV=192, 64 
matrix, voxel size =3×3×3mm3, no. of transversal slices = 32 with 
thickness =3mm 

functional MRI (fMRI) data 
[N=50] 

22min, resting state, simultaneous with EEG data 

EEG data 
electroencephalography (EEG) 
data [N=50] 

22 min, resting state, simultaneous with fMRI data 

Derivatives 
Structural connectivity [N=50] distance and weight matrices (dimension: 68x68) and regional 

center coordinates for Desikan-Killiany atlas5 

Empirical functional connectivity 
[N=50] 

in Desikan-Killiany atlas parcellation5, based on empirical BOLD 

data; dimension: 68x68 

Empirical BOLD time series in Desikan-Killiany atlas parcellation5  

Brain simulation data  

simulated BOLD and neural time 
series [N=50] 

alpha parameter set: G=0.025:0.0001:0.04 and speed=10:10:100 
simulated for 5 min; delta parameter set: G=0.05:0.01:0.25 and 
speed=20:20:100 simulated for 3 min 

simulated BOLD FC [N=50] Both for alpha and delta parameter set 
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Overview of previously published articles using this data 

The data was acquired in the lab of Petra Ritter at Charité University Medicine Berlin. As the earliest 

publication using this dataset, Ritter et al.2 introduced the used brain modeling software, The Virtual 

Brain (TVB, thevirtualbrain.org), and used an initial subset of the presented data, namely nine subjects 

(mean age 24.6 years, five men), to provide a proof-of-principle for TVB. A different parcellation was 

used, the monkey brain surface6 brought into MNI space7,8. All subjects were fitted with the Stefanescu-

Jirsa three-dimensional model (SJ3D) model to their empirical EEG and blood oxygen level dependent 

(BOLD) signal data. 

Schirner et al.3 presented the used processing pipeline and applied it to 49 subjects (age range 18–80 

years, 30 females, 19 males). Zimmermann et al.9 analyzed structural connectivity (SC) - functional 

connectivity (FC) couplings of 47 subjects (age range 18-80, mean age ± SD= 41.49 ± 18.36; 19 male/28 

female) using their BOLD data and individual connectomes. They found an age effect of decreasing FC 

and SC in most brain areas and SC-FC coupling on the level of regions predicts age superior to single FC 

or SC. Deco and coauthors10 constructed individual whole-brain models by fitting FC and functional 

connectivity dynamics (FCD) out of 24 subjects (age range 18 – 33 years, mean age 25.7, 12 females, 12 

males) using a normal form of a supercritical Hopf bifurcation and showed that the models recreate 

resting-state activity best when exhibiting maximum metastability and revealed a dynamical core that 

the activity of the whole brain. The authors of Glomb et al.11 analyzed the FCD of 24 subjects (age range 

18-35 years, mean age = 25.7 years, 11 females, 13 males) by applying tensor decomposition and 

identified communities that resemble resting-state networks. These resting-state networks also emerge 

from simulated data with the reduced Wong-Wang model12. Schirner et al.4 used a subset of 15 subjects 

(age range: 18–31 years, 8 females) for their analysis. They selected the youngest 15 subjects from the 

larger dataset of 49 subjects used in3 to ensure highest quality for EEG recordings after applying the MR 

artefact corrections. All subjects were fitted with the reduced Wong-Wang model12,13 to their individual 

regional time series based on BOLD fMRI. The fitted model was then driven with individual empirical 

EEG source activity instead of noise and yielded various known empirical phenomena from literature. In 

Zimmermann et al.14, using a subset of 48 subjects (age range 18-80 years, mean age ± standard 

deviation (SD) = 41.9 ± 18.47), the authors showed that there is a correlation between group-averaged 

SC and FC but at the individual level all subject’s SCs correlated significantly with all FCs. Further an age 

effect in the FC but not in the SC was shown. The authors in Battaglia et al.15 analyzed the dynamic FC in 

the subset of N=49 subjects and demonstrated that it becomes more reandom and less complex with 

aging. On the same subset, another study constructed virtual connectomes based on whole-brain 

network modeling using stochastic linear models and reduced Wong-Wang models13,16 and showed their 

suitability for replacing empirical data in distinguishing age classes17. Moreover, Goldman et al.18 used 

the subject sub-09 for the underlying connectome, simulated the Adaptive-Exponential Integrate-and-

Fire (AdEx) model for wakefulness and slow-wave sleep and performed state-dependent virtual 

transcranial magnetic stimulation (TMS). In a follow-up study, Goldman et al.19 used the subject sub-36 

to test the AdEx mean-field model on its connectome. Tesler et al.20 used the data of the sub-36 to test a 

newly proposed method of local field potential (LFP) and magnetoencephalography (MEG) signal 

forward modeling based on mean-field models. They also used the AdEx model as in19.  
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Data use and sharing conditions 

Use and access of the dataset is governed by the permissions, rules and obligations set out in the 

accompanying 

• Data Processing Agreement (DPA, please see below) 

• Creative Commons License 

We provide a pre-filled DPA for the dataset (EU Standard Contractual Clauses, 
https://commission.europa.eu/law/law-topic/data-protection/international-dimension-data-
protection/standard-contractual-clauses-scc_en , 
https://wiki.ebrains.eu/bin/view/Collabs/simultaneous-eeg-fmri/). 

The agreement is made between controllers and processors of the dataset, mutually assuring compliance 
with the General Data Protection Regulation. 

The data is shared via the Virtual Research Environment (VRE, https://vre.charite.de) at Charité – 
Universitätsmedizin Berlin, a node of EBRAINS Health Data Cloud. Prospective processors fill the pre-filled 
DPA as described below and send it to the controller to form a data processing agreement as legal basis 
for processing under GDPR. 

Prospective Processors fill the pre-filled DPA in the Drive of this Collab with their information. Specifically, 
they enter  

o Annex I: 

▪ Names and Addresses of all Prospective Processors 

▪ Contact information of the responsible institutional Data Protection Officer 

▪ Signature (either by printing and scanning or with a valid digital signature) 

o Annex II: Duration of the processing 

o Annex III: Prospective Processors add to the list of technical and organizational measures 
carried out to ensure the security of the data, particularly regarding the safety of the 
processing after downloading and decrypting the data. 

Prospective Processors send the signed document to the controller (petra.ritter@bih-charite.de) which 
will evaluate and sign the agreement and arrange the transmission of the data. 

We explicitly grant re-use of the overall dataset under the Creative Commons License Attribution-
ShareAlike 4.0 International. The license explicitly grants reuse of all non-personal aspects of the dataset. 
Importantly, the personal data contained within this dataset is governed by the EU General Data 
Protection Regulation. As a consequence, the license only applies to non-personal aspects of the dataset, 
for example, relating to the structure and organization of the dataset or the way the dataset was 
produced, but not to the personal information contained within the dataset. 

Data and code sharing will be possible only after journal acceptance. 
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METHODS 

These methods are expanded versions of descriptions in our related works1–4.  

Data acquisition 

Scanning was performed on a Siemens Tim Trio MR scanner (12-channel Siemens head coil). First, 

anatomical and dwMRI sequences were run and then participants had their EEG cap set up outside of 

the scanner. Subsequently, the simultaneous EEG-fMRI measurements were performed with a total 

length of 22 min. Instructions during this time were to close their eyes, relax but not fall asleep, which 

are denoted as resting-state scans.  

An MPRAGE sequence with 1x1x1mm T1-weighted imaging was performed (repetition time (TR) = 

1900ms, echo time (TE) = 2.25ms, flip angle (FA) = 98, field of view (FoV) = 256mm, 256 matrix, no. of 

sagittal slices = 192 with thickness = 1mm). Moreover, an echo planar imaging (EPI) T2* sequence was 

run (666 volumes, TR= 1940ms, TE=30ms, FA=788, FoV=192, 64 matrix, voxel size =3×3×3mm3, no. of 

transversal slices = 32 with thickness =3mm). The details of the diffusion-weighted MR echo-planar 

measurements were TR=7500ms, TE=86ms, FoV=220mm, 96 matrix, voxel size =2.3×2.3×2.3mm, no. of 

transversal slices=61 with thickness =2mm; 64 diffusion gradient directions with b-values =1000s/mm2. 

We removed the first five images of the BOLD fMRI scan due to saturation effects. 

Preprocessing 

Our pipeline for preprocessing connectomes3 was used. For the T1-weighted images, we performed 

motion correction, intensity normalization, extraction of non-brain tissue, brain mask generation, and 

segmentation of cortical and subcortical grey matter. The Desikan-Killiany Atlas5 from FREESURFER was 

used as parcellation resulting in 68 regions. In addition, we carried out a manual quality check of the 

parcellation for individual high-resolution T1-weighted scans. 

As steps to preprocess the dwMRI data, we implemented motion and eddy current correction as well as 

linearly registered the b0 image to the individual T1-weighted image. The parcellation was brought to 

individual diffusion space before probabilistic tractography was applied. To constrain tractography, 

spherical deconvolution was conducted with MRTrix streaming method being able to identify crossing 

fibers (fractional anisotropy threshold =0.1)21. We meticulously sampled the gray matter – white matter 

interface and streamlined up to 200,000 times from each voxel (radius of curvature =1mm, maximum 

length =300mm). As a result of the tractography, the SC (68x68) matrix was computed for each region 

pair. The region labels can be found in Table 3. All subjects have the complete file collection listed in the 

Data Records section below. 
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Table 3: Region labels. Labels for the 68 regions, using the same order as in the connectome. The 

prefixes “lh_...” and “rh_...” specify left and right hemisphere, respectively. Table taken from1 

(Supplementary Table 1 there). 

Number Region label Number Region label 

1 lh_bankssts 35 rh_bankssts 

2 lh_caudalanteriorcingulate 36 rh_caudalanteriorcingulate 

3 lh_caudalmiddlefrontal 37 rh_caudalmiddlefrontal 

4 lh_cuneus 38 rh_cuneus 

5 lh_entorhinal 39 rh_entorhinal 

6 lh_fusiform 40 rh_fusiform 

7 lh_inferiorparietal 41 rh_inferiorparietal 

8 lh_inferiortemporal 42 rh_inferiortemporal 

9 lh_isthmuscingulate 43 rh_isthmuscingulate 

10 lh_lateraloccipital 44 rh_lateraloccipital 

11 lh_lateralorbitofrontal 45 rh_lateralorbitofrontal 

12 lh_lingual 46 rh_lingual 

13 lh_medialorbitofrontal 47 rh_medialorbitofrontal 

14 lh_middletemporal 48 rh_middletemporal 

15 lh_parahippocampal 49 rh_parahippocampal 

16 lh_paracentral 50 rh_paracentral 

17 lh_parsopercularis 51 rh_parsopercularis 

18 lh_parsorbitalis 52 rh_parsorbitalis 

19 lh_parstriangularis 53 rh_parstriangularis 

20 lh_pericalcarine 54 rh_pericalcarine 

21 lh_postcentral 55 rh_postcentral 

22 lh_posteriorcingulate 56 rh_posteriorcingulate 

23 lh_precentral 57 rh_precentral 

24 lh_precuneus 58 rh_precuneus 

25 lh_rostralanteriorcingulate 59 rh_rostralanteriorcingulate 

26 lh_rostralmiddlefrontal 60 rh_rostralmiddlefrontal 

27 lh_superiorfrontal 61 rh_superiorfrontal 

28 lh_superiorparietal 62 rh_superiorparietal 

29 lh_superiortemporal 63 rh_superiortemporal 

30 lh_supramarginal 64 rh_supramarginal 

31 lh_frontalpole 65 rh_frontalpole 

32 lh_temporalpole 66 rh_temporalpole 

33 lh_transversetemporal 67 rh_transversetemporal 

34 lh_insula 68 rh_insula 
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If a region pair had at least one track between them, then the number of voxel pairs between those two 

regions was denoted as their link weight and put into the weight matrix. The weight matrix was further 

transformed by taking the common logarithm and normalizing the entries between 0 and 1, i.e. dividing 

by its maximum value. The distance matrix represents the measured average track length of the fibers 

(in mm) between all region pairs with respect to their centers. 

One of our previous articles explains the details of preprocessing simultaneous EEG-fMRI data22. The 

BOLD data went through the following preprocessing steps: motion correction, brain extraction, high-

pass filter (100s), registration to individual T1-weighted scans, application of high-resolution parcellation 

mask. Temporal signal-to-noise maps23 were used to monitor BOLD signal quality. For each region, we 

averaged across voxel to obtain the regional BOLD signal. The functional connectivity matrix consists of 

pairwise Pearson's correlation coefficients between BOLD data. 

The EEG recording system was an MR-compatible 64-channel system (BrainAmp MR Plus; Brain 

Products) together with an MR-compatible EEG cap (Easy Cap) including ring-type sintered silver 

chloride electrodes with iron-free copper leads. We arranged 61 scalp electrodes following the 

International 10-20 System with impedance of all electrodes < 15k and each electrode had an 

impedance of 10k to avoid heating due to magnetic field switches. Reference electrode was FCz and 

we recorded also two electrocardiograms and one electrooculography (EOG) channel. EEG amplifier 

recorded at a range of ±16.38 MV, resolution 0.5 μV and 5 kHz sampling rate. In addition, a hardware 

embedded low-pass filter of 250 Hz was applied. A synchronization between EEG sampling clock and 

gradient-switching clock of the MR scanner was performed prior to recording24. EEG preprocessing 

included image-acquisition artifact and ballistrocardiogram correction and was described in3,4,24–29. 

Brain Simulation 

All computational modeling data can be re-generated by following the processing steps described in 

Methods and in1. Inside TVB, the neural mass model of Stefanescu-Jirsa 3D was chosen to represent 

regional activity. Simulations were run for generating both the alpha and the delta frequency rhythm 

with different local parameters, alpha and delta parameter set, respectively. Brain regions were coupled 

with global coupling factor G and conduction speed v. Depending on the alpha or delta parameter set, 

different ranges of G and v were tested and simulated (alpha parameter set: G=0.025:0.0001:0.04 and 

speed=10:10:100, thus 150x10=1,500 parameter combinations, simulated for 5 min; delta parameter 

set: G=0.05:0.01:0.25 and speed=20:20:100, thus 20x5=100 parameter combinations, simulated for 3 

min). These simulations were resulting in two types of generated time series, the simulated BOLD and 

neural time series. Outside TVB, the regional BOLD time series were analyzed with respect to their 

pairwise correlations and a simulated FC matrix was obtained. This simulated FC matrix was compared 

with the empirical counterpart, which was generated based on empirical regional BOLD time series. 

Optimal global parameters of G and v were chosen based on the optimal fit between empirical and 

simulated FC. This data flow process was the same for all N=50 subjects. All statistical tests used for the 

analysis of empirical and simulated data are listed in the previous publication1. 
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Data standardization into BIDS format 

We transformed all different kinds of collected and generated data into the Brain Imaging Data 

Structure (BIDS) format30. Thereby, we followed the BIDS standard for MRI data30, for functional MRI 

derivatives (BIDS extension proposal (BEP) 012, https://github.com/bids-standard/bids-

specification/pull/519) to convert the empirical BOLD time series, for EEG data31, and for computational 

modeling data recently proposed by (Schirner & Ritter, 2023, https://zenodo.org/record/7962032). For 

the standardization of empirical data, we used existing BIDS converters. The DICOM MRI data was 

transformed to NIfTI format and saved according to BIDS specifications using bidscoin 

(https://github.com/Donders-Institute/bidscoin)32. In the prepared data records, we also share the code 

in the form of the corresponding .yaml file that was used for conversion, which will be made public after 

publication. 

For the conversion of EEG data to BIDS, we used the package MNE-BIDS33. All of the empirical BIDS-

formatted data was validated with the BIDS validator (https://github.com/bids-standard/bids-validator) 

(Blair et al., 2022, https://zenodo.org/record/6391626). The used code is shared in the code subfolder of 

the EEG data folder in the form of a Jupyter notebook and will be published after journal acceptance. 

We wrote semi-customized scripts in Matlab and Python for conversions of the computational modeling 

data into the BIDS format as suggested by the BEP for computational modeling data (Schirner & Ritter, 

2023, https://zenodo.org/record/7962032), which are also shared in the code folder of our data 

structure (and will be published after journal acceptance). The conversion involved creating the folder 

structure, creating the json sidecar files and filling them with all available metadata, the conversion of 

existing .mat files into .tsv files, renaming of all files and folders and compression of .tsv files. In 

addition, we created an .xml file in LEMS format for the SJ3D model. We are currently developing an app 

called sim2bids (https://github.com/BrainModes/sim2bids/) for automatic conversion of computational 

modeling data to BIDS, generalizing these conversion scripts in a convenient GUI format to multiple data 

storage formats (.h5 files, .mat files, .pkl files etc.). 

For the openMINDS metadata annotation, we used the EBRAINS Metadata Wizard (https://metadata-

wizard.apps.ebrains.eu/) and made the data available in the EBRAINS Knowledge Graph in three 

different formats (derived (Meier et al., 2025a, https://doi.org/10.25493/6CKF-MJS), simulated (Meier 

et al., 2025b, https://doi.org/10.25493/R7DJ-3NQ) and raw data (Meier et al., 2025c, 

https://doi.org/10.25493/RSFP-PS6). 

DATA RECORDS 
Data_descriptor.pdf   [this document] 
dataset_description.json  [description of the dataset] 
participants.tsv    [contains subject ids]  
participants.json   [description of participant information]  
README.txt    [readme file] 

rawdata/  
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mri/  

    dataset_description.json  [description of the dataset] 
    participants.tsv    [contains subject ids]  
    participants.json   [description of participant information]  
    README.txt    [readme file] 

  code/bidscoin/ [code how the dataset was transformed from DICOM files with bidscoin] 

  sub-{ID}/ [subject folder containing all MRI data for this subject] 

   sub-{ID}_scans.tsv  [list of all scans for this subject] 

   anat/   [T1 and PD-T2 scans in BIDS format] 

    sub-{ID}_T1w.nii.gz [anatomical T1 weighted image] 
    sub-{ID}_T1w.json [corresponding metadata] 
    sub-{ID}_PDT2.nii.gz [anatomical PD-T2 image] 
    sub-{ID}_PDT2.json [corresponding metadata] 

   func/   [NIfTI files of resting-state fMRI BOLD] 

    sub-{ID}_task-rest_bold.nii.gz [functional image] 
    sub-{ID}_task-rest_bold.json [corresponding metadata] 

   fmap/   [fieldmaps in BIDS format] 

    sub-{ID}_magnitude1.nii.gz [magnitude image] 
    sub-{ID}_magnitude1.json [corresponding metadata] 
    sub-{ID}_magnitude2.nii.gz [magnitude image] 
    sub-{ID}_magnitude2.json [corresponding metadata] 
    sub-{ID}_phasediff.nii.gz [phase image] 
    sub-{ID}_phasediff.json  [corresponding metadata] 

   dwi/    [DTI scans in BIDS format] 

    sub-{ID}_bval.bval [B value file for DWI] 
    sub-{ID}_bvec.bvec [B vector file for DWI] 
    sub-{ID}_dwi.nii.gz [diffusion weighted image] 
    sub-{ID}_dwi.json [corresponding metadata] 

eeg/ 

    dataset_description.json  [description of the dataset] 
    participants.tsv    [contains subject ids]  
    participants.json   [description of participant information]  
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    README.txt    [readme file] 

  code/ [code for transforming EEG data into BIDS with mne-bids] 

  sub-{ID}/ [subject folder containing all EEG data for this subject] 

   sub-{ID}_scans.tsv   [list of EEG acquisitions for this subject] 
   sub-{ID}_task-rest_channels.tsv [information on EEG channels] 
   sub-{ID}_task-rest_eeg.eeg  [raw EEG data file] 
   sub-{ID}_task-rest_eeg.vhdr [header EEG file] 
   sub-{ID}_task-rest_eeg.vmrk [marker EEG file] 
   sub-{ID}_task-rest_eeg.json [corresponding metadata] 

comp/ 

 CHANGES.txt  [description of changes to the dataset] 
 README.txt [description of the dataset] 

 code/  [contains the code to generate the simulation results and the json metadata  

     files as well as the software] 

 coord/   [contains subject-unspecific input data to TVB] 

  labels.tsv     [labels of brain regions] 

  labels.json     [corresponding metadata] 

  nodes.tsv    [3D coordinate centers of all brain regions] 

  nodes.json     [corresponding metadata] 

  alpha-22min-bold_times.tsv  [time steps of the BOLD monitor for 22-minute  

       simulation] 

  alpha-22min-bold_times.json   [corresponding metadata] 

  alpha-22min-subsample_times.tsv [time steps of the subsampling monitor for 22- 

       minute simulation] 

  alpha-22min-subsample_times.json  [corresponding metadata] 

  {alpha/delta}-bold_times.tsv  [time steps of the BOLD monitor] 
  {alpha/delta}-bold_times.json   [corresponding metadata] 

  {alpha/delta}-subsample_times.tsv [time steps of the subsampling monitor] 

  {alpha/delta}-subsample_times.json  [corresponding metadata] 

 eq/  [contains the equations of the simulated model in LEMS format]  

  eq.xml [equations of the Stefanescu-Jirsa 3D model] 

  eq.json [corresponding metadata] 

 param/  [contains the different parameter files that were explored] 
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{alpha/delta}-speed{speed}-G{G}_param.xml [parameter values of the neural mass  

      model] 

  {alpha/delta}-speed{speed}-G{G}_param.json [corresponding metadata] 

 sub-{ID}/  [subject folder containing all simulation data for this subject] 

  net/  [input files to TVB] 

   sub-{ID}_distances.tsv [matrix of tract lengths between regions]  
   sub-{ID}_distances.json [corresponding metadata]  
   sub-{ID}_weights.tsv [matrix of link weights in the structural connectome] 
   sub-{ID}_weights.json [corresponding metadata]  

  spatial/  [empirical and simulated FC matrices] 

   sub-{ID}_{alpha/delta}-speed{speed}-G{G}sim_fc.tsv [simulated FC matrix] 
   sub-{ID}_{alpha/delta}-speed{speed}-G{G}sim_fc.json  [corresponding meta  
          data] 
   sub-{ID}_emp_fc.tsv     [empirical FC matrix] 
   sub-{ID}_emp_fc.json     [corresponding meta  
          data] 

  ts/   [simulated time series for different parameter combinations] 

   sub-{ID}_{alpha/delta}-speed{speed}-G{G}-{subsample/bold}_ts.tsv [simulated  
   time series of either BOLD or subsample monitor] 

   sub-{ID}_{alpha/delta}-speed{speed}-G{G}-{subsample/bold}_ts.json  
   [corresponding metadata] 

  param/  [optimal global parameter settings for this subject] 

 {alpha/delta}-speed{speed}-G{G}_optimal-fit_param.xml [parameter  

 values of the neural mass model] 

   {alpha/delta}-speed{speed}-G{G}_optimal-fit _param.json [corresponding  

   metadata] 

 
derivatives/mri/sub-{ID}/func/ 

 sub-{ID}_task-rest_atlas-DKplusFreesurfer_bold_timeseries.tsv [empirical BOLD time series] 
 sub-{ID}_task-rest_atlas-DKplusFreesurfer_bold_timeseries.json [corresponding metadata] 
 
Additionally, files can be labelled with “acquisition” or “run” label for multiple files of MRI or EEG data. 
Complemenary to these data records, we generated an interactive html file, providing a preview of all of 
the prepared filenames in an interactive file tree (Supplementary Information). Moreover, we prepared 
the data of one example subject (sub-01) to be publicly shared (after acceptance) by deleting all 
identifiable files and selecting only a subset of simulated metadata files. 
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Table 4. List of all file formats. Together with an explanation which software created the respective files.  

Format Extension Software used / file specification 

Tab-Separated Value tsv Generated by semi-customized Matlab script 
/comp/code/data_compmodel_into_BIDS.m for /comp 
files, by bidscoin (https://github.com/Donders-
Institute/bidscoin)32 for /mri files and by MNE-BIDS33 for 
/eeg files 

JavaScript Object 
Notation 

json Generated by semi-customized Python script 
/comp/code/create_jsons_for_BIDS-
EP_comp_model_data.ipynb for /comp files, by bidscoin 
(https://github.com/Donders-Institute/bidscoin)32 for /mri 
files and by MNE-BIDS 33 for /eeg files 

NIfTI file nii.gz bidscoin (https://github.com/Donders-Institute/bidscoin)32 

B value file bval raw data from MRI scanner 

B vector file bvec raw data from MRI scanner 

Raw EEG data file eeg BrainVision Recorder software 

Header EEG file vhdr BrainVision Recorder software 

Marker EEG file vmrk BrainVision Recorder software 

Extensible Markup 
Language 

xml Self-made in LEMS format generated by semi-customized 
Python script /comp/code/create_jsons_for_BIDS-
EP_comp_model_data.ipynb  

 

TECHNICAL VALIDATION 
Technical validation for this dataset was presented in a previous study3. We here present a short 
summary of these results.  

It is important to have a robust pipeline for generating the individual connectomes, therefore Schirner 
et al.3 tested for intra- and inter-subject variability. For this purpose, three of the fifty subjects were 
scanned three times with their anatomical and diffusion weighted scans. The first two scans were 
acquired directly following each other (no break) and the third scan was after being shortly moved 
outside the scanner to modify the subject’s head position. Figure 1 displays boxplots of correlation 
coefficients when comparing strength and distance matrices among and within the three subjects. All of 
the different computations of the weight matrices had high correlation coefficients (raw counts (0.97–
0.99, 0.98 ± 0.007), distinct connections (0.97–0.99, 0.98 ± 0.006), and weighted distinct connections 
(0.96–0.98, 0.98 ± 0.007)). The similarity between subjects was significantly lower (raw counts (0.87–
0.93, 0.9 ± 0.02), distinct connections (0.87–0.92, 0.89 ± 0.02), and weighted distinct connections (0.86–
0.91, 0.89 ± 0. 01)) than the one within subjects. Matrices filled with distances exhibited lower 
similarities (0.84–0.92, 0.88 ± 0.03) than strength matrices but still had a higher intra- than inter-subject 
similarity (0.68–0.77, 0.72 ± 0.03). 
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Figure 1. Intra- compared with inter-subject variability. Characterized by boxplots of all correlation 
coefficients (CC) between all pairs of strengths matrices of three subjects and three scans. Boxes labeled 
with ‘IA’ denote intra-subject CC, while ‘IE’ denotes inter-subject CC. DC = distinct connections, WDC = 
weighted distinct connections, C = raw counts, and DIS = distance. Figure adapted from Figure 4 in3. 

In addition to correlations, the intra-class-coefficients (ICC)34,35 were analyzed for the three datasets 
from the three subjects to quantify the consistency among multiple scans (Table 5). More specifically, 
ICC(3,1) = (MCR – MSE)/(MSR + (k-1)MSE) was used, where MCR is the mean square for rows of 
observables (i.e. strengths/distances between nodes and node degrees), MSE the mean squared error 
and 1 denotes a perfect similarity between scans. The variable k denotes the number of observables. 
The ICC(3,1) was computed for all connectivity matrices and for node strengths, which is defined as the 
sum of all link weights connected to a node. Table 5 displays that we have an almost perfect agreement 
among the three scans within the same subjects. In the same line of analysis, a different version of ICC 

was used to determine whether we have a higher variability between than within subjects, ICC = 2
bs / 

(2
bs + 2

ws), where 2
bs describes the variance between subjects and 2

ws the pooled one within the 
same subject. If this version of the ICC yields a higher ration than 0.5, it indicates that there is more 
variability between subjects than within the same subject. For each node, we computed the ICC 
providing an average ICC of for distinct connections of 0.77±0.16, for raw counts 0.8±0.13 and weighted 
distinct connections 0.76±0.15. These high values confirm that there is more variance between subjects 

than within the same subject. Moreover, the coefficient of variation (CV), which is defined as 2
ws 

divided by the overall measurement mean36, was calculated to analyze the variability between scans and 
subjects of node strengths. If CV < 1, the variability is determined as low, for CV > 1 it is considered as 
high. In our case, the CV was low for node strengths, 0.07 ± 0.05 (distinct connections), 0.06 ± 0.03 
(weighted distinct connections) and 0.05 ± 0.03 (raw counts), indicating robust computation of node 
strengths (Table 6).  

To sum up, for this small sample of three subjects, the test-retest reliability of structural connectome 
estimation was very high and in general, the intra-subject variability was smaller than the inter-subject 
variability. Compared to previous literature, the reproducibility of our connectomes was higher or 
similar (as in e.g.37). While we reported an average intra-subject correlation over all weighting schemes 
of r=0.98 and an ICC(3,1)>0.97, other studies obtained similar results: r=0.78 in38, r=0.89 and r=0.84 for 
different weight calculations in39, ICC(3,1) = 0.76 for global network strength and ICC(3,1)=0.62 for node 
strength in40. 
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Table 5. Test–retest analysis for pipeline generated SC matrices. Table taken from3. 

Subject RC DC WDC DIS NS(RC) NS(DC) NS(WDC) NS(DIS) 

1 0.98 0.98 0.97 0.88 1 1 0.99 0.98 

2 0.98 0.98 0.97 0.86 1 0.99 0.99 0.97 

3 0.98 0.98 0.98 0.89 1 0.99 0.99 0.98 

Summary of test–retest analysis for the three capacities metric and the distance estimation. ICC(3,1) 
values were computed over full networks with matrices being thresholded at fixed values (thresholds: 
4000 for DC, 4500 for RC, 100 for WDC). RC = raw counts, DC = distinct connections, WDC = weighted 
distinct connections, DIS = distances, and NS = node strength. 

As both SC and FC matrices are computed for each individual subject, we compared both modalities for 
the group-averaged matrices for different weight computations and different tracking algorithms (Table 
6).  

 

Table 6. Correlation between SC and FC using different tracking methods. Table taken from3. 

  Deterministic tracking Probabilistic tracking 

Average Raw counts 0.2192 0.2401 

Distinct connection counts 0.2263 0.2404 

Weighted distinct connection counts 0.2356 0.2503 

Averaged matrices Raw counts 0.3257 0.3395 

Distinct connection counts 0.3390 0.3410 

Weighted distinct connection counts 0.3416 0.3497 

Note: For the row “averaged matrices”, the average matrices over all 49 subjects where computed and 
correlated to the average FC of those subjects. Hence this is not the average over all the values in the 
single columns. 

USAGE NOTES 

Software Re-Use  

For data preprocessing:  
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- FreeSurfer (http://surfer.nmr.mgh.harvard.edu/) 

- FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) 

- MRTrix (http://www.brain.org.au/software/ ) 

- GNU Octave (http://www.gnu.org/software/octave/ ) 

- NIAK (Neuroimaging Analysis Kit; MATLAB toolbox) (https://www.nitrc.org/projects/niak/) 

The software to run the simulations can be found here: https://github.com/the-virtual-brain   

For data standardization: 

- MNE-BIDS (https://mne.tools/mne-bids/dev/auto_examples/convert_eeg_to_bids.html) 

- Bidscoin (https://github.com/Donders-Institute/bidscoin) 

- BIDS validator (https://github.com/bids-standard/bids-validator) 

CODE AVAILABILITY 
Image preprocessing and processing: 

https://github.com/BrainModes/TVB-empirical-data-pipeline and 
https://search.kg.ebrains.eu/instances/Software/71265c9f-5fe3-40e3-a7e4-b2bb45b5ea6e  for cloud 
computing. 

We included all used code for simulations and BIDS conversions in the prepared data structure. We plan 

to publish this code after publication. 
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