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Abstract

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the
cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccCAFv2)
using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2
classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-
like GO state (Neural GO), and it incorporates a tunable parameter to filter out less certain
classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-
art methods even while classifying more cell cycle states, including GO. We demonstrate that
the ccAFv2 classifier effectively generalizes the S, S/G2, G2/M, and M/Early G1 states across
cell types derived from all three germ layers. While the GO, G1, and Late G1 states perform well
in neuroepithelial cell types, their accuracy is lower in other cell types. However,
misclassifications are confined to the GO, G1, and Late G1 states. We showcased the versatility
of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in
humans and mice, using various normalization methods and gene identifiers. We provide
methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover
underlying biological signals. The classifier can be used either as an R package integrated with
Seurat or a PyPI package integrated with SCANPY. We proved that ccAFv2 has enhanced
accuracy, flexibility, and adaptability across various experimental conditions, establishing
ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular
heterogeneity, and deciphering the molecular mechanisms by which proliferation and
quiescence affect cellular processes.
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Introduction

Single-cell RNA sequencing (scRNA-seq) is a robust method for dissecting the transcriptional
states of individual cells obtained from specific conditions. These cellular transcriptional states
are influenced by various biological signals, including cell type and the phase of the cell cycle.
The cell cycle is a tightly regulated and intricately coordinated biological process that
orchestrates the division of a cell into two daughter cells. Adult stem cell populations often
reside in a quiescent GO state outside of the cell cycle, reactivating only upon receiving
appropriate signals to divide (Doetsch 2003; Obernier et al. 2018). Current state of the art
methods to predict cell cycle states based on scRNA-seq transcriptome profiles lump GO cells
with G1 cells (Hao et al. 2021; Zheng et al. 2022; Schwabe et al. 2020; Liu et al. 2017; Hsiao et
al. 2020; Scialdone et al. 2015). The grouping of GO with G1 fails to recognize the clear
differences in expression patterns and quiescent phenotype displayed by GO cells, making them
readily distinguishable from G1 cells (O’Connor et al. 2021). The aim of this research is to
develop a cell cycle classifier capable of identifying the GO state in neuroepithelial cells and to
determine whether this state can be generalized to other cell types.

Developing cell cycle classifiers from scRNA-seq transcriptional profiles is challenging due to
the scarcity of datasets with experimentally validated ground truth cell cycle labels. Training a
classifier requires having example transcriptome profiles labeled with cell cycle states. Previous
studies have used Hoechst (DNA stain; (Buettner et al. 2015) or FUCCI (Leng et al. 2015) to
sort embryonic stem cells into G1, S, and G2M subpopulations. However, there are some
caveats to these studies. Firstly, these cells were not fixed, meaning they could continue to
cycle after sorting and may not be transcriptionally in the same state as they were when they
were sorted. Secondly, the markers used for sorting focused on DNA, protein, and post-
translational modification abundances, which may not accurately reflect the transcriptional state
of the cells. Thirdly, it has been established that embryonic stem cells do not have well-defined
G1 or GO cell cycle states as they quickly transition through cell cycles to produce many cells in
the embryo (Ballabeni et al. 2011; White and Dalton 2005). In preliminary analyses it was found
that the cell cycle labels were significantly out of alignment (error rates > 0.7) with the
transcription states of the cells as determined by ccSeurat (Supplemental Table S1), which is
the de facto standard in the field.

Previously, we used scRNA-seq of U5 human Neural Stem Cells (U5-hNSCs; Davis and
Temple 1994; Johe et al. 1996) grown in vitro to discern seven cell cycle states including a
quiescent-like GO state (O’Connor et al. 2021). An Artificial Neural Network (ANN) (Ma and
Pellegrini 2020) classifier named the cell cycle ASU/Fred Hutch (ccAF) was trained to predict
these seven cell cycle states in cells from new datasets (O’Connor et al. 2021). In those studies,
the ccAF classifier was applied to a host of neuroepithelial derived cells characterized by
scRNA-seq, including glioblastoma patient tumor cells. The underlying software packages for
constructing ANNs (TensorFlow and Keras) have been significantly improved and we
hypothesized that reimplementation of the ccAF classifier would significantly improve classifier
performance and provide likelihoods for each classification, a feature not available in the original
CcCAF implementation.

In addition to the advancements in ANN methodology, numerous new scRNA-seq studies have
been conducted that include actively dividing cells. Particularly valuable for assessing the
guality and generalizability of the classifier is an atlas of 245,906 cells from 15 different cell
types, spanning all three germ layers, derived from human fetal tissue 3 to 12 weeks post-
conception (Zeng et al. 2023). A second atlas of developing human spinal cord (Zhang et al.
2021) will be used to evaluate whether the classifier can be applied to both single cell and single
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88 nuclei RNA-seq (scRNA-seq and snRNA-seq). An atlas of adult neurogenesis in the ventricular-
89  subventricular zone (V-SVZ) (Cebrian-Silla et al. 2021) will be used to demonstrate that the
90 classifier can be applied to mouse cells. It will also allow comparisons to be made between the
91 cell cycle proportions of cell types from adult mouse neurogenesis in the V-SVZ (Cebrian-Silla
92 etal. 2021) and the developing human telencephalon (Nowakowski et al. 2017). Two studies of
93  quiescent neural stem cells will be crucial for demonstrating the identity of the GO cell state
94  (Llorens-Bobadilla et al. 2015; Dulken et al. 2017). Additionally, we collected scRNA-seq for two
95 IDH mutant low-grade glioma (LGG) cell lines in conditions with and without growth factors. This
96  will allow us to gain insights into the performance of the classifier when confronted with a higher
97  proportion of non-cycling cells. We will also apply the classifier to in vivo glioblastoma tumor
98 cells and in vitro glioblastoma tumor derived cancer stem cells that were not included in the
99  previous ccAF classifier studies (Couturier et al. 2020). Finally, application of the classifier to a
100 high-resolution spatial-transcriptomics (ST-seq) study of a mouse embryo at 15.5 weeks post-
101  conception (E15.5) will allow us to resolve canonical biological and morphological phenomena
102  for the developmental stage. These datasets offer a robust foundation for rigorously testing and
103 validating the improved ccAF version 2 (ccAFv2) classifier, showcasing its versatility across
104  species, single cells and nuclei, and generalizability across cell types from all germ layers.
105
106  The goal of this research is to develop an improved cell cycle classifier using current state of the
107  art machine learning technology. We aim to demonstrate that the classifier outperforms existing
108 models and generalizes well across various cell types, library preparation methods (scRNA-seq,
109 snRNA-seq, ST-seq), gene annotations, and normalization techniques. Lastly, we aim to
110 provide a classifier with a more user-friendly interface to facilitate its application in future
111  studies.
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112 Results

113  Implementation of neural network classifier for ccAFv2

114  We implemented the core algorithm of ccAFv2 to take advantage of significant improvements in
115  machine learning tools that should improve classifier performance and provide likelihoods for
116  each predicted cell cycle classification. The ccAFv2 core algorithm is broken up into two steps.
117  First, the input data is run through the artificial neural network (ANN) to compute likelihoods for
118 eachclass (i.e., Neural GO, G1, Late G1, S, S/G2, G2/M or M/Early G1; Figure 1A-B). The

119 underlying ANN for ccAFv2 starts with a dense input layer connected to two hidden layers that
120 connect to a softmax output layer (Figure 1A). Overfitting in the ANN is mitigated by dropout
121  regularization via two dropout layers. The first dropout layer is positioned between the first and
122 second hidden layers and the second dropout layer is between the second hidden layer and the
123 softmax output (Figure 1A; Xie et al. 2019). Second, the likelihoods calculated by the ANN for
124  each cell cycle state are used to determine which state should be assigned for each cell (Figure
125  1B). The cell cycle state with the maximum likelihood is identified and if the likelihood is greater
126 than or equal to the likelihood threshold then the state is returned. Otherwise, if the maximum
127  likelihood is less than the likelihood threshold a state of “Unknown” is returned. These

128 improvements to the core ANN of ccAFv2 will be rigorously tested in the subsequent sections.

129  Training the ccAFv2 classifier

130 The training data for ccAFv2 is comprised of SCRNA-seq from actively dividing U5 human neural
131  stem cells (U5-hNSCs) cultured in vitro (O’Connor et al. 2021). The U5-hNSCs were cultivated
132 from the telencephalon of a human fetus 8 weeks post-conception (Bressan et al. 2017). We
133 previously identified 7 transcriptional states in the U5-hNSCs that were mapped to cell cycle
134  states (i.e., Neural GO, G1, Late G1, S, S/G2, G2/M, and M/Early G1; O'Connor et al. 2021).
135 The U5-hNSC scRNA-seq data were reanalyzed using current quality control and normalization
136  methods which resulted in 2,962 good quality single-cell transcriptome profiles (Supplemental
137  Figure S1A). The U5-hNSC scRNA-seq profiles, along with the previously established cell cycle
138 labels (O’'Connor et al. 2021), represent the most meticulously curated training dataset available
139  for cell cycle classification.

140 We compared the newly implemented ccAFv2 classifier against four distinct classification

141  methods: support vector machine with rejection (SVMrej), random forest (RF), SCRNA-seq

142  optimized k-nearest neighbor (KNN), and ACTINN (Ma and Pellegrini 2020) which was used to
143 build ccAF (O’Connor et al. 2021). The training dataset for all classifiers consisted of the pre-
144  processed U5-hNSC scRNA-seq subset to the 861 genes upregulated in cell cycle states

145  (log,FC = 0.25, adjusted p-value < 0.05; Supplemental Table S2). We applied 10-fold cross-
146 validation (CV) for each classification method (Supplemental Figure S1A) and observed that
147  ccAFv2 exhibited significantly improved F1 scores for each cell cycle state compared to other
148  classification methods (p-values < 2.8 x 10°°; Figure 1C), establishing it as the most accurate
149  cell cycle classifier overall. A benefit of using the F1-score as the performance metric is that it
150 accounts for the imbalance in class label proportions within the training set. We evaluated the
151 impact of balancing label proportions in the training dataset, but this resulted in worse model
152  performance (Supplemental Figure S1B). The accuracy of ccAFv2 when applied to U5-hNSCs
153  was 88.4%, and the main difference when compared to ccAF was an improvement in Late G1
154  cell predictions (Supplemental Figure S1C-D). The overall error rate for ccAFv2 was 3.3%,
155  which is a considerable improvement from the 18.4% of ccAF (O’Connor et al. 2021). The

156 reimplementation of the ANN for the ccAFv2 classifier has significantly improved its

157  performance across all cell cycle states, providing a robust foundation for further optimization
158 and comprehensive characterization of its capabilities.
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159  Optimizing the number of neurons in hidden layers

160 A crucial factor in optimizing the parameters of the ccAFv2 ANN was determining the ideal

161 number of neurons in each hidden layer. We conducted a systematic comparison of 18 different
162  combinations for the number of neurons in the two hidden layers (first hidden layer: ranging

163  from 200 to 700 neurons, and second hidden layer: ranging from 100 to 400 neurons) across
164 U5-hNSCs (O’Connor et al. 2021), a low grade glioma stem cell line (LGG275), six glioma stem
165 cell lines (BT322, BT324, BT326, BT333, BT363, and BT368; Couturier et al. 2020), and two
166 glioma tumors (BT363 and BT368; Couturier et al. 2020). The optimal combination was

167 determined by having the highest average F1-score and Adjusted Mutual Information (AMI)

168  score using ccSeurat as the reference (Figure 1D; Supplemental Table S3). We chose to

169 employ the ccSeurat classifier (Butler et al. 2018) to predict the reference labels because true
170 cell cycle state labels do not exist for all datasets. The ccSeurat classifier was chosen for three
171 reasons: 1) itis the de facto standard method for cell cycle classification currently, 2) it performs
172 well when applied to many different datasets, and 3) it uses a totally different underlying

173  algorithm to classify cell cycle state than ccAFv2. We found that configuring the ccAFv2 ANN
174  with 600 neurons in the first hidden layer and 200 in the second hidden layer yielded the largest
175 average F1 score and second largest AMI score (Figure 1D). This specific parameterization has
176  been assigned for the hidden layers of the ccAFv2 ANN, and all prior and subsequent ccAFv2
177  classifications use this parameterization.

178 Most important features for classifying ccAFv2 states

179  After optimizing the training of the ccAFv2 ANN, it is sensible to determine which features are
180 most essential for classifying each of the seven states. We computed feature importance by
181  permuting one of the 861 genes in the U5-hNSCs dataset and asking what impact that had on
182  the likelihoods for each of the seven states. Randomizing the expression of an important feature
183  for classifying a ccAFv2 state would lead to reductions in the states likelihood for cells known to
184  be of this state. Thus, it is crucial that the dataset used for feature importance have cell cycle
185 labels, which is why the U5-hNSCs were used for feature importance analyses (Figure 1E). We
186 report the top 15 most important genes for each of seven ccAFv2 states (Figure 1F-L).

187  Eleven of the most important genes for classifying the Neural GO state (Figure 1F) were also
188  marker genes of Neural GO in the U5-hNSCs. The first most important gene for classifying the
189  G1 state (Figure 1G) was HMGNZ2, and in prior studies over-expression of HMGNZ2 in

190 osteosarcoma cells led to significantly higher number of cells in GO/G1 (Liang et al. 2015). The
191 top two most important genes for the classifying the Late G1 state (Figure 1H) include two
192 Immediate-Early Genes (IEGs) CCN1 and CCN2 which are known to be induced rapidly after
193 initiation of cell cycle progression by many factors (Tullai et al. 2007). The top four most

194  important genes for classifying the S state (Figure 1) include three genes required for DNA
195 replication during S phase (CLSPN, GINS2, and PCNA) and the cyclin associated with S phase
196 (CCNEZ2). The top four most important genes for classifying the S/G2 state (Figure 1J) are all
197 histones, specifically one H4 histone and multiple H1 histones isoforms that enable the

198 condensation of nucleosomes into chromatin. The top five most important genes for classifying
199 the G2/M state (Figure 1K) include a gene involved in keeping sister chromatids from

200 separating (PTTG1), and two genes involved in kinetochore and centromere maintenance and
201  function (CENPA, HMMR; Maxwell et al. 2005). Additionally, the ninth most important gene for
202  classifying G2/M is CCNBL1 the cyclin that peaks in mitosis, and MKI67 which is an established
203  marker of cell proliferation (Scholzen and Gerdes 2000). Finally, the top three most important
204  genes for classifying the M/Early G1 state (Figure 1L) are a microtubule component protein
205 TUBALB, a microtubule associated protein STMN1, and a component of the chromosome

206  passage protein complex (CPC) which is essential for sister chromatid alignment and

207  segregation during mitosis and cytokinesis (Vong et al. 2005). The functions of the key genes
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208 for classifying each state align well with the molecular processes of each cell cycle state,
209  supporting the conclusion that the identified classes in U5-hNSCs reflect the underlying biology
210  of the cell cycle.

211  Next, we evaluated the expression of important genes for each ccAFv2 state in an independent
212  dataset, the in vivo hNSCs collected from whole fetal brain at 9 weeks post-conception (PCW 9
213 R1; Zeng et al. 2023). This allows us to assess the generalizability of these genes as key

214  markers across novel datasets, providing insight into their broader applicability and robustness.
215 The expression of important genes for all ccAFv2 states were expressed strongly in the state
216 they marked, except for the important genes for the G1 state (Supplemental Figure S1E). In
217  our prior study it was difficult to identify markers for G1 phase cells, and so the lack of

218 translation for important genes for the G1 state is not surprising. The successful translation of
219 key genes to an independent dataset supports the hypothesis that ccAFv2 and the marker

220 genes identified in U5-hNSCs are broadly applicable to in vivo hNSCs.

221 Comparison with existing cell cycle classifiers

222  Animportant means to test the performance of cCAFv2 is to compare it to existing state-of-the-
223 art methods for cell cycle state classification. We evaluated the following methods: ccAF

224  (O'Connor et al. 2021), ccSeurat (Hao et al. 2021), tricycle (Zheng et al. 2022),

225 Revelio/SchwabeCC (Schwabe et al. 2020), reCAT (Liu et al. 2017), peco (Hsiao et al. 2020),
226  and cyclone (Scialdone et al. 2015). We also evaluated the incorporation of ccAFv2 marker
227  genes into the ccSeurat classification algorithm. However, it had significantly reduced

228 performance compared to ccSeurat and ccAFv2 (Supplemental Figure S2). Each tool predicts
229 adifferent subset of cell cycle phases, uses a different classification algorithm, was trained on
230 different data, and requires different input genes and data formats (Supplemental Table S4).
231  We applied ccAFv2 alongside the other state-of-the-art cell cycle classification methods to in
232 vivo hNSCs collected from whole human fetal brain at PCW 9 R1 (Figure 2A-B; Zeng et al.
233 2023). These cells represent an independent dataset for an unbiased comparison of the cell
234  cycle prediction algorithms. The hNSCs from Zeng et al., 2023 were also chosen for their

235  similarity to the U5-hNSCs and their added real-world relevance, as they were collected in vivo.
236 We chose to employ the ccSeurat classifier (Butler et al. 2018) to predict the reference labels for
237  classifier comparison for the reasons described above. The AMI score is impacted by the

238 number of cell cycle states in the reference (i.e., three cell cycle states in ccSeurat), and the
239  number of states predicted by each algorithm (e.g., seven cell cycle states in ccAFv2). We used
240 simulation studies to define the expected range of AMI scores that correspond to specific levels
241  of similarity to the reference given the number of cell cycle states in the reference and the

242  classifier being tested. The highest AMI was observed for tricycle, showing an 80% similarity to
243 the reference (Figure 2A). This result aligns with the UMAP colorization, indicating a strong
244  match within classifiers that predicted a comparable number of classes to ccSeurat (Figure 2B).
245  reCAT and ccAFv2, predicting six and seven cell cycle states, respectively, achieved the next
246  highest AMI scores, both demonstrating over 70% similarity to the reference (Figure 2A).

247  Notably, ccAFv2 identified an S/G2 cluster of cells positioned between the S and G2/M cells
248  classified by ccSeurat and tricycle, which is biologically plausible (Figure 2B). Additionally,

249  while Neural GO cells are intermixed with G1 and Late G1 cells within the proliferating cell

250 population on the left side of the UMAP, the right side reveals a distinct cluster of Neural GO
251  cells (Figure 2B). This suggests the presence of a quiescent population in these normal human
252  neural stem cells that is not detectable by the ccSeurat, tricycle, or reCAT classifiers.

253  We also applied ccAFv2 alongside the other cell cycle classification methods to cells derived
254  from a glioblastoma (GBM) patient tumor (BT322; Couturier et al. 2020; Figure 2C-D). GBM
255  patient tumors are characterized by both quiescent and proliferating subpopulations (Tejero et
256 al. 2019) making them ideal datasets for evaluating and comparing different cell cycle
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257  classification methods. We used the ccSeurat labels as the reference because true cell cycle
258 state labels do not exist for this dataset. Like the in vivo PCW 9 R1 hNSCs, the largest AMIs
259  were observed for tricycle, reCAT, and ccAFv2; all of which correspond to just below 90%

260  similarity to the reference (Figure 2C). These results demonstrate that ccAFv2 delivers at least
261  equivalent performance when compared to contemporary state-of-the-art cell cycle classifiers,
262  while providing the highest resolution of cell cycle state predictions including a quiescent-like GO
263  state (Figure 2D).

264 Invivo cyclin expression and marker genes validate ccAFv2 cell cycle states

265  We explored the distribution of cell cycle states in 94,297 hNSCs collected from human fetal
266  tissue at 3-12 weeks post-conception (Zeng et al. 2023; Figure 3). Application of ccAFv2 to the
267  invivo fetal ANSCs was found to differ by week stage (Figure 3B). The amount of Neural GO
268  cells from the in vitro U5-hNSCs, derived from fetal brain tissue at 8 weeks post-conception,
269  (Figure 3A) matches closely to the in vivo hNSCs at eight weeks post-conception (Figure 3B).
270  Moreover, the expression patterns of cyclins between the in vitro (O’Connor et al, 2021) and
271 5,575 in vivo hNSCs from PCW 9 R1 were similar (Figure 3C-G). In both hNSC populations,
272  CCNE2 exhibited its peak expression during the S phase, while CCNA2 showed highest

273  expression levels during the S/G2 and G2/M phases, and CCNBL1 displayed elevated

274  expression in G2/M phase cells (Figure 3G). Notably, the highest expression of the key

275  regulator of cell cycle progression, CCND1, was observed in the Late G1 state (Figure 3G).

276  Additionally, we identified ccAFv2 marker genes that corresponded to cell cycle state markers in
277 the PCW 9 R1 hNSCs. Differentially expressed genes for each cell cycle state were identified,
278 and only those overlapping with the ccAFv2 marker gene lists were reported (Figure 3H).

279  Genes important to the ccAFv2 classifier were enriched among the translatable marker genes
280 for PCW 9 R1 (Figure 3H). The expression patterns of these translatable marker genes were
281  consistent with those observed in O’Connor et al., 2021. The exclusive or semi-exclusive

282  expression of these markers in adjacent cell cycle states strongly supports the presence of high-
283  resolution ccAFVv2 clusters in hNSCs in vivo. Furthermore, the biological function of the

284  translatable marker genes for each ccAFv2 cell cycle state validates the biological basis of the
285  ccAFv2 clusters, providing further evidence of their relevance.

286 Defining an appropriate classification likelihood threshold

287  The improved ccAFv2 classifier calculates likelihoods for each cell cycle state which can be

288 used to determine the most likely state and to assess the quality of the classification. We

289  hypothesized that applying a likelihood threshold to ccAFv2 classifications would ensure

290 reliability and confidence in predicted cell cycle states by setting classifications for cells with less
291  certainty to an “Unknown” state. We explored the range of possible likelihood thresholds on the
292 94,297 hNSCs collected by Zeng et al., 2023.

293  We tested ccAFv2 likelihood thresholds ranging from 0.0 to 0.9 in increments of 0.1

294  (Supplemental Figure S3). The calculated cell cycle state likelihood was required to be greater
295 than or equal to the threshold, otherwise an “Unknown” state was returned (Figure 1B). Each
296 likelihood threshold was assessed using the percentage of cells predicted and an AMI score
297  with ccSeurat cell cycle states as a reference. As the likelihood threshold increases the number
298  of cells predicted decreases and the AMI scores increase (Figure 3l; Supplemental Figure S3;
299  Supplemental Table S5). In other words, the removal of less certain classifications improves
300 the accuracy of the overall classifications (Figure 3I). Next, we further demonstrated that the
301 increase in AMI resulted from the specific removal of cells which had low classification

302 likelihoods, by comparing it to the random removal of an equivalent number of cells

303 (representative analysis for 9 weeks post-conception is shown in Figure 3J). The randomly

304 removed cells do not increase the AMI (Figure 3J), only the selected removal of cells with low
305 likelihoods were able to increase the AMI. We found that the median AMI scores calculated with
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306 likelihood thresholds of 0.4 to 0.9 were significantly higher than the median AMI scores of the
307 randomly removed cells (Figure 3J; Supplemental Table S5), which indicates that the

308 likelihood cutoffs of greater than or equal to 0.4 improve classification accuracy. We selected
309 the likelihood threshold of greater than or equal to 0.5 because it signifies a minimum of 50%
310 certainty in the classified cell cycle state. Additionally, greater than 90% of in vivo hNSCs could
311  be assigned a cell cycle state with a likelihood threshold of 0.5 (Figure 3l). Thus, the threshold
312  of 0.5 was set as the default for ccAFv2 and used in subsequent analyses, except where noted.
313  We also provide users with the flexibility to adjust the likelihood threshold parameter in ccAFv2,
314  allowing them to adapt the classifier's operation to suit the unique characteristics of their

315 dataset.

316  Effect of missing gene expression values on ccAFv2

317 A known limitation of scRNA-seq is that dropouts are common. A dropout occurs when lowly to
318 moderately expressed transcripts are detected in one cell but are not detected in another cell of
319 the same cell type (Qiu 2020). Factors affecting dropouts include the number of sequencing
320 reads from each cell and the complexity of the cell's transcriptome. The ccAFv2 classifier uses
321 the expression of 861 genes to predict cell cycle states. We hypothesized that dropouts could
322 be simulated by randomly setting the expression of a defined percentage of genes to zero and
323  that this would provide a reasonable approximation of the influence of missing genes on the
324  accuracy of ccAFv2's cell cycle state classifications. We evaluated the consequences of these
325 simulated gene dropouts on the classifier error rate, AMI, and the number of cells predicted
326 (Supplemental Figure S4-5; Supplemental Table S6-7). As described earlier, the median
327  error rate of applying ccAFv2 to U5-hNSCs was 3.3% with 99% of the input genes (99% is used
328 to allow for cross-validation). Missing information for 20% of the ccAFv2 input genes yielded a
329 smaller median error rate (12.2%) than the original ccAF error rate with all the input genes

330 (18.4%), underscoring the improved performance of the new model. Introducing missing

331 information for 40% of ccAFv2 input genes led to a 29% median error rate, and 96% of cells
332  were predicted (Supplemental Table S6). The error rate was the most affected by the

333  introduction of missing information (Supplemental Figure S4A) and the median percentage of
334  cells predicted remained above 80% even when 70% of the input gene list was set to missing
335 (Supplemental Table S6). When breaking down the error rate by cell cycle state, we observed
336 that S and M/Early G1 had the highest error rates as missing information increased

337 (Supplemental Figure S4B; Supplemental Table S7). However, the number of cells predicted
338 remained relatively consistent across all states despite the increasing in missing data

339 (Supplemental Figure S4C; Supplemental Table S7). The increase in error rate without a
340 concomitant decrease in the number of cells predicted suggests that raising ccAFv2's likelihood
341 threshold (>0.5) might be required to ensure the quality of predictions for datasets with greater
342  than 20% missing ccAFv2 input genes. Indeed, the error rate for introducing 20% missing

343  information decreased from 12.2% median error rate at 0.5 likelihood threshold to 9.9% with a
344 0.7 likelihood threshold (Supplemental Figure S4D; Supplemental Table S6) and 6.2% with a
345 0.9 likelihood threshold (Supplemental Figure S4E; Supplemental Table S6). Thus,

346  introducing 20% missing information led to four times the error rate, and the increased error rate
347  can be mitigated in part by increasing the likelihood threshold. Increasing the likelihood

348 threshold decreases the error rate by removing classifications for cells where the missing

349 information has degraded the confidence in the prediction. By removing predictions with less
350 confidence, the error rate decreases, but the overall number of cells classified with cell cycle
351 states decreases. Testing the impact of increasing the likelihood threshold on the number of
352  predicted cells can be quite insightful for choosing an appropriate likelihood threshold

353 (Supplemental Figure S4F). Careful consideration of the balance between minimizing errors
354  and retaining enough cells for downstream studies is essential.
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355 Neural GO state is enriched in mesenchymal GO cells

356 We developed an experimental method to isolate fixed GO cells using fluorescence-activated
357 cell sorting (FACS) with established markers (Gookin et al. 2017). This approach ensures the
358 selected cells are diploid, non-replicating, and have unphosphorylated RB (pRB), all while
359 preserving RNA integrity. The experimental approach was applied to identify GO cells from
360  human skeletal muscle satellite cells (hRSkMSCs), which are derived from the mesodermal germ
361 layer (Figure 4A). Subsequent RNA-seq of the sorted GO cells captures the characteristic

362  expression pattern of the GO state for that cell type, enabling direct comparison with the

363  expression profiles of single cells from scRNA-seq data of unsorted cells. We characterized the
364 bulk RNA-seq signatures of 400,000 GO hSkMSCs for two biological replicates. These GO

365  signatures were mapped onto 6,921 asynchronous, unstained, and unsorted hSkKMSCs

366 collected using scRNA-seq. Next, the ccAFv2 cell cycle classifier was applied to the hSKMSC
367 scRNA-seq data. Cells in S, S/G2, G2/M and M/Early G1 states formed distinct clusters ordered
368 in the canonical cell cycle patterning, highlighting the generalizability of these ccAFv2 states to
369 invitro hSkMSCs (Figure 4B). The Late G1 cells did form a cluster that was positioned in front
370 of the S phase cells, however, additional Late G1 cells can be seen dispersed within the left half
371  of the cells. This dispersion may be partly attributed to the higher CCND1 expression in

372 hSkMSCs GO cells compared to hNSC Neural GO cells (Supplemental Figure S6. The cells
373 inside the dashed region contain almost exclusively Neural GO, G1, and Late G1 cells and do
374  not coalesce into defined clusters (Figure 4B-C), suggesting that the ccAFv2 classifier was
375  struggling to accurately discriminate between Neural GO, G1, and Late G1. Correlation of the
376  experimentally determined GO signature to the cells from the scRNA-seq revealed significant
377  enrichment within the ccAFv2-labeled Neural GO and G1 cells (Figure 4D-F). The majority of
378 GO cells were classified as Neural GO, while misclassified GO cells were predominantly labeled
379 G1 or Late G1, and very few were classified as the cycling states (S, S/G2, G2/M, M/Early G1,
380 Figure 4G). These findings confirm that ccAFv2 is having difficulty discriminating between the
381 Neural GO, G1, and Late G1 states in hSkMSCs derived from the mesoderm dermal layer.

382  However, the misclassifications are systematic rather than random, and a straightforward

383  solution of merging Neural GO, G1, and Late G1 classifications effectively resolves the

384  misclassifications. To accommodate this, we implemented a switch in the ccAFv2 classifier,
385 enabling users to choose whether to combine Neural GO, G1, and Late G1 or to keep them
386 separate. This feature provides a more cautious and flexible approach for classifying cell types
387 beyond neuroepithelial cells (Figure 4H). This provides users with the flexibility to use ccAFv2
388 higher resolution cell cycle classification for non-neuroepithelial cell types.

389

390 Additionally, it should be noted that while the Neural GO state does not accurately capture the
391 GO state of hSKMSCs the experimental data demonstrates that it is possible to identify a

392  subpopulation of GO cells. The marker genes discovered for the hSkMSC GO cells were

393 significantly overlapping with the Neural GO marker genes (n = 11; p-value = 4.4 x 10™*; FTL,
394  IFITM3, TIMP4, SAT1, Clorf21, CLU, VGLL4, SPRY1, COL9A3, NOVAL, NUDTA,; Figure 4,
395 Supplemental Table S8. Which strongly suggests that it may be possible to train a classifier
396 with a more generalizable GO state in future studies using our experimental approach to

397  characterize new training datasets.

398 ccAFv2 cell cycle states are generalizable across germ layers

399  Another key consideration when using ccAFv2 is its ability to accurately predict cell cycle states
400 (S, S/G2, G2/M, and M/Early G1) in cell types beyond neuroepithelial cells. In Zeng et al., 2023,
401 they profiled single cells from human fetal tissues, representing all three germ layers

402  (endoderm, mesoderm, and ectoderm; Figure 5A). We applied ccAFv2 to 245,906 cells from
403 the atlas first including Neural GO, G1 and Late G1 predictions (Figure 5B), and then by

404  collapsing these three predictions into a GO/G1 class (Figure 5C). These representations of the
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Zeng et al., 2023 dataset aggregate across time (PCW 3-12) and tissue collection strategies
(whole embryo, whole head, and brain). The proportions of cell cycle states across time for each
cell type show strong concordance (Supplemental Figure S7), highlighting the consistency of
ccAFv2 predictions across biologically similar independent scRNA-seq datasets. Next, we
analyzed cyclin expression patterns across the 15 distinct cell types and calculated the average
expression for each germ layer. Each germ layer exhibited the expected cyclin expression
pattern, with CCND1 driving entry into the cell cycle (Figure 5D), CCNE2 peaking during S
phase (Figure 5E), and CCNA2 (Figure 5F) and CCNB1 coordinating progression and
regulation of cell division (Figure 5G). These results provide strong evidence that the ccAFv2
predicted S, S/G2, G2/M, and M/Early G1 states are accurate across cell types derived from all
germ layers.

We also observed that ccAFv2 proportions align closely with expected developmental patterns.
For instance, during PCW 9-12, the fetal brain undergoes rapid development, marked by
significant cell division as major structures like the cerebrum, cerebellum, and brainstem
become more defined (Belmonte-Mateos and Pujades 2021; Martinez-Cerdefio et al. 2006). We
found that intermediate progenitor cells (IPCs) detected at PCW 9 and 12 in whole brains were
predominantly in the S, S/G2, and G2/M phases, consistent with the active proliferation
necessary for forming these brain structures (Figure 5; Supplemental Figure S7).
Furthermore, these PCW 9-12 IPCs exhibited high expression of EOMES, a critical factor that
drives the expansion of the IPC pool (Arnold et al. 2008). The much-reduced proportions of
Neural GO, G1, and Late G1 in IPCs validates that ccAFv2 predictions are consistent with
known biology. We also observed reduced Neural GO, G1, and Late G1 proportions in the non-
neuroepithelial proliferating mesoderm (Prolif. meso.; Figure 5) defined by high expression of
the proliferation marker MKI167 (log2(FC) > 1.24) and mesoderm marker CDH11 (log2(FC)
>2.27) (Hoffmann and Balling 1995). The reduced number of non-cycling cells in IPCs and
proliferating mesoderm cell types is well documented and demonstrates that while Neural GO,
G1 and Late G1 misclassifications may occur that the relative proportions of non-cycling cells to
cycling cells is accurately determined by ccAFv2.

Capturing the effect of growth factors on cellular proliferation

Growth factors are used to increase cellular proliferation in vitro, and we characterized the
transcriptomes of LGG cells (grade 2 astrocytoma and grade 3 oligodendroglioma) with and
without the application of growth factors (Supplemental Figure S8). For this analysis we tested
the impact of adjusting the ccAFv2 likelihood threshold across a range of values 0 to 0.9
(Supplemental Figure S9A-B). Increasing the likelihood threshold values from 0.4 to 0.9 led to
an increased proportion of “Unknown” classifications in the samples without growth factors,
which is consistent with the known effect of growth factors to stimulate proliferation and the cell
cycle. The increased proportion of “Unknown” cells may correspond to new growth factor
starvation state(s) not included in ccAFv2 classification states. Additionally, the S, S/G2, and
G2/M cell cycle states were disproportionately removed as the likelihood threshold increased
(Supplemental Figure S9A-B). We then set the likelihood threshold to 0.9 and observed that
the cells grown with growth factors form clusters of cell cycle state labels, outlining the expected
progression of cell cycle phases (G1 —» S — S/G2 — G2/M — M/Early G1; Supplemental
Figure S8A, C, D, & F). Conversely, cells grown without growth factors exhibit a more
dispersed distribution of cell cycle state labels (Supplemental Figure S8B, C, E, & F). The
ability to change the likelihood threshold of ccAFv2 allows us to observe the biological impact of
adding growth factors to LGG cells and demonstrates what to expect when the cell cycle is not
the main transcriptional signal in cells.

Removing cell cycle expression signatures
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455  The cell cycle generates a strong transcriptional signature that can obscure other less robust
456  transcriptional signatures of interest. Previous studies have shown that statistical methods can
457  effectively remove cell cycle transcriptional signatures, and that the residual transcriptional

458 variance can be used to study less robust transcriptional signatures of interest (Luecken and
459  Theis 2019). We showcase successful removal of the cell cycle transcriptional signatures for the
460 U5-hNSCs, and LGG cells. First, each cell cycle state's average expression of marker genes is
461 computed for every single cell or nuclei. Then, these average cell cycle expression patterns are
462  regressed out of the dataset during normalization. The ccSeurat regression method uses only
463 the S and G2/M cell cycle states, so we first tested regression with the S and G2/M cell cycle
464  states from ccAFv2. We found that the ccAFv2 marker gene derived average cell cycle

465  expression patterns could mitigate cell cycle transcriptional signatures as effectively as ccSeurat
466  (empirical p-value > 0.05, Supplemental Table S9; Supplemental Figure S10). Additionally,
467  we found that incorporating Late G1, S, S/G2, G2M, and M/Early G1 was also quite effective
468 and led to a more robust homogenization of the cell cycle states based on PCA plots

469  (Supplemental Table S9; Supplemental Figure S10). This approach enables researchers to
470 dissect complex gene expression patterns and uncover novel insights into cellular processes
471 beyond the cell cycle.

472

473  Classifying neuroepithelial-derived cells in humans and mice

474 It was crucial for ccAFv2 to be highly user-friendly, ensuring researchers can easily apply it

475  across a wide range of datasets. The model was designed to accept inputs for tissue source,
476  data type, and gene identifier, eliminating the need for manual data conversion (Figure 6A). In a
477  previous study (O’'Connor et al. 2021) we applied the ccAF classifier to cells from the developing
478  human telencephalon (Nowakowski et al. 2017). We applied ccAFv2 to these same cells and
479  compared the ccAF and ccAFv2 predicted cell cycle proportions. We observed that the Neural
480 GO state was less frequent in all cell types for ccAFv2 relative to ccAF (Figure 6B;

481  Supplemental Table S10). The Neural GO state was distinctly less frequent in the neuronal cell
482  types. For ccAF Neural GO made up most of the cell cycle states for EN-PFC and EN-V1, but in
483  ccAFv2 these two cell types classified primarily as G1 (Figure 6B). The glial cell types had the
484  largest Neural GO subpopulations (Figure 6B).

485  We also applied ccAFv2 to cells from the ventricular-subventricular zone (V-SVZ) of the adult
486  mouse brain (Cebrian-Silla et al. 2021), a location known to contain neural stem and precursor
487  cells in the adult brain (Lim and Alvarez-Buylla 2016). The adult mouse V-SVZ validates

488 observations from the developing human telencephalon (Figure 6C). In the V-SVZ the glial cells
489 tended to have larger Neural GO subpopulations, neuronal cell types tended to have less Neural
490 GO, and microglial had the smallest amount Neural GO (Figure 6C). The results are similar

491  given the differences between species, developmental state, and anatomical origins. These

492  findings illustrate that the ccAFv2 classifier can be applied to cells originating from both humans
493  and mice.

494  Classifying quiescent-like neural stem cells

495  Previously we validated the Neural GO state using two independent in vivo scRNA-seq profiling
496  studies of NSCs from adult neurogenesis in the subventricular zone (SVZ) that used

497  fluorescence activated cell sorting (FACS) to sort out quiescent and activated NSCs (Llorens-
498 Bobadilla et al. 2015; Dulken et al. 2017). We applied ccAFv2 to these same cells and

499  compared the ccAF and ccAFv2 predicted Neural GO subpopulations. Overall, the gNSCs are
500 enriched with quiescent-like Neural GO cells, and the aNSCs are at some stage of the cell cycle
501 (Figure 6D). The proportion of cells classified as Neural GO decreased for ccAFV2 in the

502 quiescent NSCs (QNSCs) and was replaced by more G1, S/G2, and a small amount of G2/M
503 (Figure 6D; Supplemental Figure S11). For Llorens-Bobadilla et al., 2015 the active NSCs 1
504 (aNSC1) were more highly enriched with S phase cells, and aNSC2 were enriched with S/G2
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505 and G2/M. A similar trend was observed for the Dulken et al., 2017 dataset. Additionally, we
506 used the GO arrest signature from Wiecek et al., 2023 to validate the Neural GO state in ccAFv2
507 (Wiecek et al. 2023). We found significant enrichment of the GO arrest signature (i.e., QuieScore
508  GO) within the U5-hNSC Neural GO and G1 states (Supplemental Figure S12). These results
509 continue to validate our assertion that Neural GO represents a quiescent-like cell state, and that
510 ccAFv2 can accurately classify this quiescent-like GO state.

511 Accurate classification of cells and nuclei

512  Tissues in single-cell studies can be processed into cells for scRNA-seq or nuclei for SnRNA-
513  seq. Both methods are commonly used and have advantages and limitations (Slyper et al.

514  2020). Thus, it is important to demonstrate whether ccAFv2, which is trained on cells, can

515 accurately classify cell cycle states for single nuclei. We employed the Zhang et al., 2021

516  dataset which characterized developing human spinal cord tissue from five developmental time
517  points using both scRNA-seq and snRNA-seq from the same experimental conditions (Zhang et
518 al. 2021). The proportions of cells in each cell cycle state are similar between scRNA-seq and
519 snRNA-seq from the same condition (Figure 6E), illustrating the versatility of the ccAFv2

520 classifier in effectively analyzing both scRNA-seq and snRNA-seq profiles.

521  Mapping proliferation onto tissue through spatial transcriptomics

522 scRNA-seq and snRNA-seq provide valuable information about the transcriptional states of cells
523  and nuclei, but without contextual information, relating these states with previously described
524  biology can be challenging. Spatial transcriptomics captures the transcriptional activity of a

525 single-cell or a region containing a small number of cells at a position within an intact tissue,
526  offering structural information that can be referenced to anatomical atlases and established

527 histology. We applied ccAFv2 to the highest resolution sequencing-based spatial transcriptomic
528 dataset currently available, derived from a slice of a mouse E15.5 embryo binned to 8um,

529 achieving near cellular resolution (Figure 7A-B). Despite rapid development at late prenatal
530 stages, Neural GO classified spots were highly prominent, particularly across the midbrain

531 region. The proliferation marker Mki67 was minimally expressed in these GO enriched areas
532 and, in the brain, highlighted the described stem cell niches of the lower, medial, and caudal
533  ganglionic eminences (LGE, MGE, CGE), along with the stem cell migratory paths from these
534  regions along the sub-ventricular zone (SVZ; Figure 7C; Kriegstein and Noctor 2004).

535 From E12.5 to E17.5 the mouse cortex develops in a well-defined layers (Figure 7D). Applying
536  ccAFv2 to the cortex captured the layered patterning of cell cycle states that fit with our current
537  model of cortical development (Figure 7E-Q). Histology showed an outer layer of dermis (skin)
538 marked by Krt5 expression (Supplemental Figure S13A-B), covering the developing skull

539 identified by Collal expression (Supplemental Figure S13C), followed by densely packed
540 cells of the brain (Figure 7D). Precursors of excitatory neurons migrate along and divide in the
541  SVZ with asymmetric division specifically occurring within the ventricular zone (VZ). A much
542  smaller population of inhibitory neuronal precursors migrate and divide along the intermediate
543  zone (1Z2) and medial zone (MZ) before invading the cortical plate (CP) and differentiating into
544  their neuronal sub-type. By E15.5, the CP is already well populated with post-mitotic neurons
545  that previously migrated from the SVZ from E12.5-E14.5 and will form layers IV-VI of the adult
546  cortex. Upon reaching the border of the CP and MZ, neural stem cells receive maturation

547  factors from glial cell types including Reln (Figure 7F), with canonically post-mitotic neurons
548 marked by Tbrl (Figure 7G; Englund et al. 2005). This post-mitotic region classifies as Neural
549 GO by ccAFv2 (Figure 7E & K). Similarly, Mki67 is sparse within the CP, but highly active in the
550 SVZand VZ (Figure 7J). Intermediate progenitor cells (IPCs) in the SVZ, marked by Eomes,
551 undergo symmetric division before radiating outward (Figure 7G). Within the VZ radial glia
552  migrate further inward before asymmetric division, with newly divided IPCs radiating back up to
553  the SVZ and outward to populate the cortex. These events are captured by ccAFv2 as a single
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554  enriched S and S/G2 band marking the SVZ (Figure 7N & O). We also observed two bands
555  containing G2/M classified spots, corresponding to regions of symmetric division in the SVZ and
556  asymmetric division in the VZ (Figure 7P). Cells committed to differentiation, immediately

557  migrate outward along and the few spots that classify as M/Early G1 were almost entirely in the
558 IZ and above (Figure 7Q). These results demonstrate that ccAFv2 can be effectively applied to
559  spatial transcriptomics of the developing cortex, accurately recapitulating known biological

560 insights into the spatial organization of proliferative activity.

14


https://doi.org/10.1101/2024.04.16.589816
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589816; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

561 Discussion

562  We designed ccAFv2 to use transcriptomic data to accurately classify cell cycle states and a
563  quiescent-like GO state for single cells or nuclei. The performance of the updated classifier was
564  superior to its predecessor and demonstrated comparable or better performance than other
565  state-of-the-art cell cycle classifiers. The ccAFv2 classifies cells into a broader range of cell
566 cycle states than the contemporary state-of-the-art cell cycle classifiers (Hao et al. 2021; Zheng
567 etal. 2022; Schwabe et al. 2020; Liu et al. 2017; Hsiao et al. 2020; Scialdone et al. 2015) and
568 includes a quiescent-like GO state. Moreover, ccAFv2 features a tunable parameter to filter out
569 less certain classifications. We showcased the versatility of ccCAFv2 by successfully applying it
570 to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various
571 normalization methods and gene identifiers. The classifier can be used either as an R package
572  integrated with Seurat (https://github.com/plaisier-lab/ccafv2_R) or a PyPI package integrated
573  with SCANPY (https://pypi.org/project/ccAF/). We proved that ccAFv2 has enhanced accuracy,
574  flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a
575  powerful tool for exploring cell cycle dynamics in diverse biological contexts.

576 A major limitation of developing cell cycle classifiers is a lack of SCRNA-seq datasets with

577  ground truth labels for each cell cycle state, including GO. Previous studies have used the DNA
578 stain Hoechst (Buettner et al. 2015) or FUCCI (Leng et al. 2015) to sort cells into G1, S, and
579 G2M subpopulations. However, the limitations of these studies render them unsuitable for

580 constructing a classifier. These limitations include the use of embryonic stem cells which lack
581  distinct G1 or GO phases as the model system (Ballabeni et al. 2011; White and Dalton 2005),
582  not of fixing the cells, and reliance on non-transcriptional markers. We demonstrated the ability
583 toisolate cells from specific cell cycle states, characterize them transcriptionally, and map their
584  signatures onto scRNA-seq data to identify the spatial distribution of those states. In future

585  studies, we aim to leverage this approach to create training datasets for developing more robust
586 and generalizable cell cycle classifiers.

587  Batch effects pose a significant challenge for single cell, nuclei, and spatial RNA-seq studies;
588 and we have addressed their impact on ccAFv2 in three ways. First, we strongly recommend
589  users apply ccAFv2 to each dataset separately prior to any integration or combining of datasets.
590 The ccAFv2 predictions in the metadata integrate very easily and preempt any issues caused by
591  batch effects between datasets. Second, we advise using SCTransform normalization to

592  standardize datasets to the Pearson residual scale, which mitigates differences in magnitude
593 and variance (Hafemeister and Satija 2019). The ccAFv2 R package is specifically

594  parameterized to reapply SCTransform, normalizing the expression of all genes, not just the
595  most variable ones, to maximize overlap with ccAFv2 marker genes, ensuring optimal

596 classification accuracy for each cell. Finally, ccAFv2 model incorporates expression of multiple
597  marker genes to predict a cell cycle state. This approach minimizes the influence of batch

598 effects, as a significant misclassification would require the simultaneous, directional alteration of
599  multiple marker genes, a highly improbable scenario for random batch effects. By adhering to
600 these recommendations and leveraging the design of ccAFv2, we provide effective strategies to
601  mitigate the impact of batch effects when using ccAFv2.

602  The ccAFv2 classifier will be most helpful in biological contexts where the cell cycle is active.
603  We utilized atlases of developing human and mouse embryos and fetuses because proliferation
604 is essential in developing organisms (Soufi and Dalton 2016; Pauklin and Vallier 2013).

605 Evidence is building to show that cell fate decisions are tightly coupled to cell cycle events and
606  machinery (Pauklin and Vallier 2013). In healthy adult organisms, proliferation plays critical roles
607 in several processes: maintenance of stem cell populations (Harada et al. 2021), clonal

608 expansion of both innate and adaptive immune cells (Adams et al. 2020), and germ cell meiosis,
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609 encompassing oogenesis (Bukovsky et al. 2005) and spermatogenesis (Guo et al. 2018). Our
610 recommendation is to aggregate Neural GO, G1, and Late G1 into GO/G1 when applying ccAFv2
611 to cell types that are not neuroepithelial. Defects in cell cycle machinery or regulation can lead
612  to runaway proliferation characteristic of cancer (Hanahan and Weinberg 2000), or the lack of
613  proliferation of crucial cell types can lead to neurodegenerative disorders (Joseph et al. 2020).
614  Cell cycle classification would benefit any in vitro, in vivo, or ex vivo studies of proliferating cells.
615 On the other hand, we provide methods to regress the cell cycle expression patterns out of

616  single cell or nuclei data to uncover underlying biological signals. Overall, incorporating cell

617  cycle states into single-cell and nuclei studies enhances our ability to dissect complex biological
618 systems, unravel cellular heterogeneity, and decipher the molecular mechanisms by which

619  proliferation affects cellular processes.

620 The studies reported here demonstrate that the quiescent-like GO state (Neural GO) in cCAFV2 is
621 detectable across all three germ layers in developing human fetal cells and provided a list of
622  putative marker genes that are common across cell types. This corroborates our previous

623 findings that Neural GO was an active transcriptional signature executed by a subpopulation of
624  U5-hNSCs (O’Connor et al. 2021). However, support for novel GO states was observed in the
625 growth factor deprived LGG cells, where an increased proportion of “Unknown” cells was

626  detected, hinting at novel quiescent-like state(s) missing from ccAFv2. Other studies have

627 identified multiple GO states in a single cell type that are invoked in response to different stimuli
628 (e.g., spontaneous loss of mitogenic factors, serum starvation, drug treatment, etc.) (Stallaert et
629 al. 2022). Thus, we find it very likely that additional GO states with distinct transcriptional

630 signatures will be identified. The ccAFv2 ANN and its associated training software are fully

631 equipped to integrate these additional GO states. Future studies that extend the cell cycle

632 classifier to include novel GO states holds immense potential for advancing our understanding of
633  quiescence in biological systems. By leveraging advanced computational methods, high-

634  throughput technologies, and interdisciplinary approaches, researchers can unravel the

635 complexities of cellular dormancy and pave the way for innovative strategies to manipulate

636 quiescent cell behavior to improve health and combat disease.

637
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638 Methods

639 Culture of LGG glioma neurospheres

640  For the “no growth factors” condition, cells from LGG glioma neurospheres (LGG275, BT237)
641  were dissociated, seeded into two poly-D-lysine and laminin coated T25 cm? flasks at a density
642  of 40,000 cells/cm?, and cultured for 4 days using medium without growth factors. For the “with
643  growth factors” condition, cells were cultured for 4 days as neurospheres with EGF and FGF2 at
644  10ug/L and heparin at 2mg/L in PolyHEMA coated flasks, and medium was replaced 1 day

645  before single cell sequencing.

646

647 scRNA-seq library preparation and sequencing of LGG glioma neurospheres

648  Cells were dissociated and single cell suspensions loaded onto the Chromium controller (10x
649  Genomics, Pleasanton, CA) to generate single-cell Gel Beads-in-Emulsion (GEMS). The single-
650 cell RNA-seq libraries were prepared using the Chromium Next GEM Single Cell 3’ Reagent
651 Kits V3.1 (Dual Index, P/N 1000268, 10x Genomics). Briefly, reverse transcription was

652 performed at 53°C for 45 min followed by incubation at 85°C for 5 min. GEMs were then broken
653 and the single-stranded cDNAs were cleaned up with DynaBeads MyOne Silane Beads

654  (Thermo Fisher Scientific; P/N 37002D). The cDNAs were PCR amplified, cleaned up with

655 SPRIselect beads (SPRI P/N B23318), fragmented, end-repaired, A-tailed, and size-selected
656  with SPRIselect beads. Indexed adapters were ligated and cleaned up with SPRIselect beads.
657  The resulting DNA fragments were PCR amplified and size selected with SPRIselect beads.
658 The size distribution of the resulting libraries was monitored using a Fragment Analyzer (Agilent
659  Technologies, Santa Clara, CA, USA) and the libraries were quantified using the KAPA Library
660 quantification kit (Roche, Basel, Switzerland). The libraries were denatured with NaOH,

661 neutralized with Tris-HCI, and diluted to 150 pM. Clustering and sequencing were performed on
662 a NovaSeq 6000 (lllumina, San Diego, CA, USA) using the paired-end 28-90 nt protocol on one
663 lane of an SP flow cell and on one lane of an S4 flow cell. Sequencing data can be accessed
664 from NCBI SRA. Both library preparation and sequencing were performed at the Montpellier
665  GenomiX facility (MGX) in Montpellier, France.

666

667 Data analysis

668 Image analyses and base calling were performed using the NovaSeq Control Software and the
669  Real-Time Analysis component (lllumina). Demultiplexing was performed using the 10x

670  Genomics software Cellranger mkfastq (v7.1.0), a wrapper of lllumina's bcl2fastq (v2.20). The
671 quality of the raw data was assessed using FastQC (v0.11.9) from the Babraham Institute and
672 the lllumina software SAV (Sequencing Analysis Viewer). FastqScreen (v0.15.1) was used to
673 identify potential contamination. Alignment, gene expression quantification and statistical

674  analysis were performed using Cell Ranger count with the human's transcriptome (GRCh38). To
675 discard ambient RNA falsely identified as cells, Cell Ranger count was run a second time with
676  the option --force-cells to force the number of cells to detect. Cell Ranger aggr was used to

677  combine each sample results into one single analysis. Cell Ranger output files can be accessed
678 from NCBI GEO at GSE263796.

679

680 scRNA-seq, snRNA-seq, and ST-seq neuroepithelial datasets
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681 Intotal 42 scRNA-seq, 11 snRNA-seq, and 8 ST-seq datasets were processed and employed in
682 the studies used to characterize the ccAFv2 classifier. Detailed descriptions of the source,

683  quality control, processing, normalization of each dataset can be found in the Supplemental
684  Material. Analyses were conducted in R (R Core Team 2025) using the specified packages.
685

686 Implementation of the ccAFv2 ANN model

687  The core algorithm of the ccAFv2 is a fully connected artificial neural network (ANN)

688 implemented using the Keras API (v2.12.0) that employs TensorFlow (v2.12.0) to construct

689  ANNSs. A fully connected ANN model was developed to classify the cell cycle state of single cells
690 (Figure 1A). The input for a single cell is expression for the 861 most highly variable genes

691 (logz(FC) > 0.25; p value adj < 0.05) from O’Connor et al., 2021. A dense input layer takes in the
692  expression of the 861 and is fully connected to the first hidden layer comprised of 600 neurons.
693  The first hidden layer is fully connected to the second hidden layer comprised of 200 neurons
694  which then connects to the output layer of seven neurons (one for each cell cycle class: Neural
695 GO, G, Late G1, S, S/IG2, G2/M, and M/Early G1). A SoftMax regression function in the output
696 layer is used to compute the likelihood for each class. Overfitting in the ANN is prevented

697  through the incorporation of two dropout layers using a dropout rate of 50%. The first dropout
698 layer is positioned between the first and second hidden layers and the second dropout layer is
699 between the second hidden layer and the output layer (Figure 1A, Xie et al. 2019). Neuron

700 activation functions were modeled using the Rectified Linear Unit (ReLU) function. The loss

701  function for the ccAFv2 ANN was categorial cross-entropy and Stochastic Gradient Descent
702  (SGD) was used to optimize the learning. The predicted class for a single cell is identified as the
703  highest likelihood exceeding the specified threshold (Figure 1B). By default, the threshold is set
704  at 0.5 and can be adjusted within the range of 0 to 1. If a cell's likelihood falls below the

705 threshold it is classified as "Unknown."

706

707  Training the ccAFv2 ANN classifier

708  The ccAFv2 ANN model was trained on the 2,692 cells and 861 genes from the U5-hNSCs

709 dataset (O’'Connor et al. 2021) using the labels from O’Connor et al., 2021. The training process
710 encompassed ten epochs repeated five times consecutively. In each epoch, the training data
711  was randomly partitioned into 80% for training and 20% for testing, with the testing subset held
712  outto assess training accuracy.

713

714  Comparing ccAFv2 to other classification methods

715  Classifiers were trained using the scRNA-seq gene expression of 2,962 cells with 861 genes
716  and cell cycle labels from the U5-hNSCs. The ccAFv2 classifier was tested against: (i) support
717  vector machine with reject option (SVMrej; classification cutoff = 0.7), a general-purpose

718 classifier from the Scikit-learn library; (ii) random forest (RF), another general-purpose classifier
719  from the Scikit-learn library; (iii) k-nearest neighbor (KNN) from the SCANPY ingest method

720 (Wolf et al., 2018); and (iv) neural network (NN) ACTINN (Ma & Pellegrini, 2020). Classifier

721  performance was determined using F1 scores computed for each cell cycle state. Ten-fold

722  cross-validation with an 80% training and 20% testing split was used to determine the variance
723  of F1 scores for each cell cycle state from each classifier. A Student’s t-test was used determine
724  if the mean of the F1 scores were significantly lower than ccAFv2.

18


https://doi.org/10.1101/2024.04.16.589816
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.16.589816; this version posted January 15, 2025. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768

available under aCC-BY 4.0 International license.

Optimizing the number of neurons in hidden layers

The configuration of neurons in the two hidden layers is designed to reduce the number of
neurons at each layer from the 861 input genes down to the 7 cell cycle states. In total, 18
ccAFv2 models were trained using the U5-hNSCs dataset to determine the optimal number of
neurons for these hidden layers. This involved testing at increments of 100 the number of
neurons in the first hidden layer within the range of 200 to 700 neurons and in the second
hidden layer within the range of 100 to 400 neurons. For comparisons the F1 scores were
computed for each cell cycle state. Each model was also tested on pre-processed scRNA-seq
data of glioma stem cells (BT322, BT324, BT326, BT333, BT363, BT368) and tumor cells
(BT363, BT368) from Couturier et al. 2022 (Supplemental Table S11), along with Grade 2
Astrocytoma (LGG275; AUGUSTUS et al. 2021) (Supplemental Table S12). For these
datasets, Adjusted Mutual Information (AMI) scores, with the reference labels derived from
ccSeurat calls, and the number of cells predicted were calculated using the AMI function from
the aricode package in R. Barcodes with an “Unknown” ccAFv2 label were removed before
metrics were calculated.

Computing feature importance

Feature importance for all 861 ccAFv2 features was determined by permuting each feature’s
expression, running ccAFv2 with the permuted expression matrix, and comparing the likelihoods
of all cells for a specific ccAFv2 state to the unpermuted likelihoods of the same cells. The
average difference in likelihood was computed for each feature in each ccAFv2 state. A
negative average difference in likelihood indicates that a feature was important, and the most
negative features are the most important.

Comparing ccAFv2 to existing cell cycle classifiers

The performance of ccAFv2 was compared with existing cell cycle state classifiers: ccAF (v1)
(O’Connor et al. 2021), Seurat (Hao et al. 2021), Tricycle (Zheng et al. 2022), SchwabeCC
(Schwabe et al. 2020; Zheng et al. 2022), reCAT (Liu et al. 2017), Peco (Hsiao et al. 2020) and
Cyclone (Scialdone et al. 2015). Each classifier was applied to the PCW 9 R1 (Zeng et al, 2023)
and BT322 (Couturier et al. 2020b) scRNA-seq datasets. Data was prepared as required to run
each classifier method. The quality of predicted cell cycle states for each classification method
was determined by computing the AMI score relative to reference cell cycle states. Ten-fold
cross-validation with a 20% hold-out testing set was used to determine the variance of AMI
scores for each cell cycle state from each classification method. For both datasets, the ccSeurat
predicted cell cycle states were used as the reference for computing AMI scores. Cells with
“Unknown” labels were excluded when computing AMI scores. The median AMI scores were
tabulated and plotted against the number of predicted states for each classifier. Representative
cell cycle state predictions for each classification method were also visualized as UMAPs.

Because each classifier predicts different numbers of cell cycle states (3 — 8 cell cycle states) it
was necessary to use simulated datasets to determine the range of AMI scores that correspond
to specific amounts of similarity to the reference. Predicted cell cycle states with 3 to 8 states
were simulated that contained specific 0 to 100% similarity to a simulated reference, at 10%
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769 increments. The average AMI from 100 simulated cell cycle classifications was computed for
770  each specific amount of similarity to a simulated reference and plotted as a guide to assess the
771  quality between classification methods with different numbers of cell cycle states.

772

773  Finding the optimal likelihood threshold

774 A neuroepithelial dataset of in vivo hNSCs from fetal tissue at 3 to 12 weeks post-conception
775 from Zeng et al., 2023, that was independent of the ccAFv2 training data, was used to

776  determine the optimal likelihood threshold. Random sub-sampling of 90% of cells for each

777  timepoint was used to determine the variance of the classifications and ccAFv2 was applied with
778 likelihood thresholds ranging from 0.0 to 0.9 by increments of 0.1. For each iteration metrics
779  were collected including the number of cells predicted, and an AMI score computed using

780  ccSeurat cell cycle states as the reference. Cells with “Unknown” labels were excluded when
781  computing AMI scores. Metrics were not computed when 20 or fewer cells were predicted.

782  Student’s t-tests were used to compare AMIs computed at each examined likelihood threshold
783  with those derived from a likelihood threshold of 0.0, which is equivalent to not using a likelihood
784  threshold, and a significant difference was considered a p-value < 0.05. A baseline for

785  comparison was provided by random removal of an equivalent percentage of cells that were
786 classified as “Unknown” for each likelihood threshold, and an AMI was computed with the

787  remaining cells. Student’s t-tests were used to compare AMIs of the likelihood thresholded and
788 random removal at each likelihood threshold, and a significant difference was considered a p-
789  value =0.05.

790

791  Cell cycle state validation using hNSCs (PCW 9 R1)

792  We used the hNSCs collected from whole fetal brain at nine weeks post-conception replicate 1
793 (PCW 9 R1) to validate the cell cycle states assigned by ccAFv2. After quality control

794  (Supplemental Table S13) and normalization with sctransform, 5575 cells were classified into
795  distinct cell cycle states using ccAFv2. We selected five key markers of cell cycle states:

796 CCND1 (Late G1), CCNE2 (S), CCNA2 (G2/M), CCNB1 (G2/M), and CDK1 (G2/M) to assess
797  the expression patterns associated with these phases. The average expression levels of the
798 genes were calculated and visualized using violin plots, which were grouped according to the
799 cell cycle states predicted by ccAFv2. In addition, we monitored the dynamic changes in the
800 average expression of each key marker as cells transitioned between different cell cycle states.
801  Student’s t-tests were used to determine if the marker expression was significantly different at
802 each cell cycle state compared to the G1 state. Finally, relative expression levels of top marker
803  genes for each cell cycle state were identified using FindAllMarkers() and visualized using a
804  heatmap, with cells grouped by cell cycle state.

805

806 Comparison of Neural GO state with GO arrest signature using QuieScore

807  We applied the QuieScore algorithm (https://github.com/dkornai/QuieScore) to the U5-hNSCs
808  using the cancer type parameter of “LGG”. The GO cells were identified by a q_score_raw of
809 greater than 3. We evaluated the similarity between the QuieScore-identified GO cells with the

810 ccAFv2-identified Neural GO cells using hypergeometric enrichment analysis.
811

812  Determining the sensitivity of cCAFv2 to missing genes
813  Sensitivity analysis was conducted on the U5-hNSC dataset by randomly setting a defined
814  percentage of classifier genes (1-90%) to zero and applying the ccAFv2 classifier. Each
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815 percentage of classifier genes was subsampled ten times and for each iteration the metrics
816  error rate and percentage of cells predicted were recorded.

817
818 Demonstrating the generalizability of ccAFv2
819 The 245,906 human fetal cells 3 to 12 weeks post conception (Zeng et al., 2023) encompassing

820 fifteen cell types that represent all three germ layers (Supplemental Table S14) were classified
821 by ccAFv2. Positive marker genes for the Neural GO cells were identified for each cell type

822  using the FindAllIMarkers function (log, fold change = 0.25; adjusted p-value < 0.05). The Neural
823 GO markers were tabulated among each dataset and across all datasets to identify common
824  Neural GO marker genes.

825

826 Regressing out cell cycle transcriptional signatures using ccAFv2 marker genes

827  The average expression from the marker genes for each cell cycle state (Supplemental Table
828  S9) was computed using the AddModuleScore function in Seurat. The S and G2/M or Late G1,
829 S, S/IG2, G2/M, M/Early G1 module scores were regressed out in the SCTransform function in
830 Seurat. The variance explained by the first principal component of the marker genes was used
831 as a metric for co-expression of the cell cycle transcriptional signatures. Empirical p-values were
832  calculated by comparing the observed variance explained to the variance explained of 1,000
833 randomly sampled gene sets of the same size. Significantly regressing out the cell cycle

834  transcriptional signhature was determined by a reduction in the variance explained that made the
835  empirical p-value non-significant (>0.05).

836

837 Application of ccAFv2 to neuroepithelial scRNA-seq and snRNA-seq profiling studies
838 To maximize overlap with the ccAFv2 input genes, we enabled the option to apply SCTransform
839  (do_sctransform) for SCTransformed datasets. The species (‘human' or 'mouse’) and gene ID
840 ('Ensembl' or 'symbol’) options were configured based on the specifications of each dataset.
841  Predicted cell cycle states were collected from each dataset and integrated with meta

842  information.

843

844  Application of ccAFv2 to ST-seq data

845  We downloaded the transcriptome profiles for a 5 um section of a male C57BL/6 mouse embryo
846 taken from an FFPE tissue block obtained from Charles River Laboratories that was made

847  public by 10x Genomics (https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-
848  expression-libraries-of-mouse-embryo). The 10x Visium HD Gene Expression Library

849  preparation kit afforded a resolution of 2 um? spots and details about sample preparation and
850 library performance and QC can be found on the 10x website linked above. In Seurat the 2 um?
851  spots were binned into 8 um? bins, the data log normalized, and ccAFv2 was applied to predict
852  cell cycle states for each spot. Expression of key genes was plotted using the normalized and
853  scaled values.

854

855 R and Python package for ccAFv2

856 The ccAFVv2 classifier has been implemented as an R package (https://github.com/plaisier-

857 lab/ccafv2_R) that can be installed and used as part of a Seurat workflow, and works for both
858  Seurat version 4 and 5 (Supplemental Figure S14). Due to differences in the Seurat v5
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859  SCTransform function it was necessary to set the vst.flavor equal to “v1” to make it equivalent to
860  Seuratv4.3.0.1, and leaving the vst.flavor as the default in v5 leads to only small differences
861 (Supplemental Figure S14). For the Seurat v5.0.2 the matrixStats package was required to be
862 v1.1.0. Additionally, the ccAFv2 classifier has been implemented as a Python PyPI installed

863  package (https://pypi.ora/project/ccAF/) that can be installed and used as part of a SCANPY
864  workflow. It should be noted that SCTransform normalization is the suggested method for

865  preparing data that will be classified by ccAFv2, and as of now there is no SCTransform option
866 in SCANPY.

867

868 Culture of human skeletal muscle satellite cells (hSkMSCs)

869 hSkMSCs were purchased from ScienCell Research Laboratories (P/N 3510, ScienCell) and
870  were grown in Skeletal Muscle Cell Medium (P/N 3501; ScienCell) on Nunclon Delta-treated cell
871  culture flasks and passaged according to vendor protocols. Cells were detached from their

872  plates using Trypsin/EDTA Solution (P/N 183; ScienCell) and collected with Trypsin Neutralizing
873  Solution (P/N 113; ScienCell).

874

875 scRNA-seq characterization of hSKMSCs

876 hSkMSCs were grown up to 80% confluency, washed with Molecular Biology Grade PBS (P/N
877  45001-130, VWR), dissociated with Trypsin/EDTA Solution, and collected in Trypsin

878  Neutralizing Solution. After centrifugation at 300 x g for 5 minutes, cells were resuspended in
879  Molecular Biology Grade PBS containing 0.04% BSA and counted using an automated cell

880  counter. Cells were then diluted to 1,000 cells/ul. scRNA-seq library preparation was performed
881 by the ASU Genomics Core facility. Samples were processed using the 10x Chromium Single
882  Cell 3' Gene Expression v3.1 kit into a single library (10x Genomics). The quality of the library
883  was determined using Agilent TapeStation automated electrophoresis. Samples were

884  sequenced at an average read depth of 100,000 reads per cell (lllumina, Novogene). The 10x
885  Genomics CellRanger v7.0.1 was used to align to the Human reference genome GRCh38-2020-
886 A (GRCh38), quantify, and provide basic quality control metrics for the scRNA-seq data. The
887  10x CellRanger outputs for 7,795 hSkMSCs was loaded into Seurat. Filtering and downstream
888  analyses was done using quality control and downstream processing code templates provided
889 in https://github.com/plaisier-lab/ccAFv2. Standard Seurat filters were applied requiring that the
890 cells had to have a least 200 features per cell, and transcripts need to be expressed in at least 3
891 cells. Then the cells were further filtered to 7,207 hSkMSCs by requiring the number of UMIs
892  per cell to fall within the range of 4,000 to 100,000, and the percentage of mitochondrial genes
893  expressed relative to total expression per cell was required to fall within the range of 0.9 to 10%.
894  The filtered cells were then normalized using SCTransform (Hafemeister and Satija 2019),

895  principal components were calculated, and a UMAP was generated.

896

897  Staining for quiescent-like GO cells

898  This staining protocol is based on a protocol developed by Gookin et al., 2017 (Gookin et al.
899  2017) to identify a GO/quiescent subpopulation and has been adapted for fluorescence-

900 activated cell sorting (FACS) and to preserve RNA integrity. Cells were expanded in Nunclon
901 Delta-treated cell culture flasks to achieve the desired cell count, accounting for a 50% loss

902  during staining preparation before downstream FACS.
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903

904 Replication stain: Replicating cells were labeled with a synthetic nucleotide

905 Tetramethylrhodamine-dUTP (P/N 17023, AAT Bioquest) transported into the cells using a

906 synthetic nucleotide triphosphate transporter (SNTT) the BioTracker NTP-Transporter Molecule
907 (P/N SCTO064, Millipore Sigma) (Zawada et al. 2018; Gookin et al. 2017). When cells reached
908 70% confluence, they were washed with tricine buffer, the SNTT and synthetic nucleotide were
909 diluted so each component was 20 uM in tricine buffer, added to cells, and incubated at 37°C
910 and 5% CO2 for 5 minutes to transport fluorescently labeled synthetic nucleotide into the cells.
911  The stain was then aspirated and replaced with complete culture medium, and the cells were
912 incubated at 37°C and 5% CO2 for 1 hour to allow time for replicating cells to incorporate the
913 fluorescently labeled synthetic nucleotides into their genome’s.

914

915  Viability stain: Cells were then washed with Molecular Biology Grade PBS, dissociated with
916  Trypsin/EDTA Solution, and collected in Trypsin Neutralizing Solution. After centrifugation at
917 300 x g for 5 minutes, cells were resuspended in Molecular Biology Grade PBS and counted
918 using an automated cell counter. Cells were centrifuged again, PBS was removed, resuspended
919 in 1:1000 LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (P/N L34975, ThermoFisher

920  Scientific) using manufacturer instructions, and incubated for 30 minutes at room temperature in
921  the dark.

922

923 Fixation and rehydration: Cells were washed with 0.5% Ultra-Pure BSA (P/N AM2616,

924  ThermoFisher Scientific) in Molecular Biology Grade PBS and centrifuged at 300 x g two times.
925  The cells were fixed by first resuspending them in ice-cold Molecular Biology Grade PBS at a
926  volume of 200 pl per 1 million cells. Then, ice-cold 100% methanol was added dropwise at a
927  volume of 800 pl per 1 million cells, with gentle shaking. Cells were then incubated for at least
928 30 minutes at -20°C. After fixation, cells were kept on ice. Cells were rehydrated with cold 3X
929  SSC Rehydration Cocktail (Chen et al. 2018), followed by centrifugation at 500 x g for 5

930 minutes. Cells were washed one more time with the SSC Rehydration Cocktail, and one time
931  with 0.5% Ultra-Pure BSA in Molecular Biology Grade PBS.

932

933  Phosphorylated RB (pRB) staining: Hypo-phosphorylation of pRB is an established indicator of
934  acell being in a quiescent GO state (Gookin et al. 2017). Primary antibody for pRB (Ser807/811)
935 (P/N 8516T, Cell Signaling Technologies) was added at a dilution of 1:200 in 0.5% Ultra-Pure
936 BSA in Molecular Biology Grade PBS and incubated overnight at 4°C. Cells were washed three
937  times with 0.5% Ultra-Pure BSA in Molecular Biology Grade PBS and then fluorescently labeled
938 secondary antibody (P/N 4412, Cell Signaling) was added at a dilution of 1:1000 dilution for 30
939  minutes. Samples were then washed two times with 0.5% Ultra-Pure BSA in Molecular Biology
940 Grade PBS.

941

942  DNA staining: The ploidy of cells was determined using Hoechst DNA stain (Gookin et al.

943  2017). Prior to FACS cells were stained with 2 ug/ml of Hoechst DNA stain (P/N 561908, BD)
944  diluted in Molecular Biology Grade PBS, without BSA.

945

946 Fluorescence-activated cell sorting of GO cells
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947  Cells were filtered using sterile CellTrics 30 um filters (P/N 04-004-2326, Sysmex) into sterile,
948 nuclease-free 5 ml polystyrene round-bottom tubes for sorting (P/N 352235, Corning) and kept
949  covered from light and on ice until sorting. Cells were stained using the following experimental
950 design to define gates and have adequate controls: 1) Hoechst only, 2) Live/Dead only, 3)
951 replication only, 4) pRB only, 5) replication fluorescence minus one (FMO), 6) pRB FMO, and 7)
952  all stains. Example of gating can be seen in Figure 4A. Cell sorting was performed using the
953 FACSymphony flow cytometer (BD). GO cells were defined as viable cells, that were diploid
954  (2N), with low pRB. FACS data analysis was performed using FlowJo (BD).

955

956 RNA-sequencing of GO cells

957 RNA was extracted from 400,000 sorted cells from two biological replicates using the Qiagen
958 RNeasy Micro Kit (P/N 74004, Qiagen). The concentration and quality of RNA was determined
959 by Nanodrop (Thermo Scientific) and High Sensitivity RNA TapeStation (Agilent). Both GO
960 samples had more than 300 ng of RNA and RIN scores of greater than 9. Samples were sent
961 for sequencing on the NovaSeq X Plus (lllumina, Novogene). A docker RNA-seq pipeline

962  (cplaisier/star_2_7_1a_grch38_p21; DOI = https://doi-

963  org.ezproxyl.lib.asu.edu/10.5281/zenodo.5519663) was employed to align reads from FASTQ
964 files to the genome using STAR v2.7.1a (Dobin et al. 2013) and GENCODE genome build

965 GRCh38 Release 31 (Frankish et al. 2023). Counts were tabulated using htseq-count (Putri et
966 al. 2022). DESeq2 (Love, Huber, and Anders 2014) was used for subsequent differential gene
967  expression analysis.

968

969 Correlating RNA-seq and scRNA-seq data

970 DESeqg2-normalized RNA-seq data and sctransform-normalized scRNA-seq data were loaded
971 into R. Marker genes were selected by identifying highly variable scRNA-seq genes with more
972  than 10 counts in the bulk GO subpopulations. Additionally, 861 ccAFv2 marker genes present
973 in the RNA-seq data were included. Both scRNA-seq and RNA-seq datasets were filtered to
974  include these 3,120 marker genes. The expression profiles of individual cells in the scRNA-seq
975  data were correlated with the GO RNA-seq profiles using the corr package in R (Makowski et al.,
976  2020), using the Spearman method.

977

978

979
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980 Data Access

981  All raw and processed sequencing data for the hSKMSC FACs sorted RNA-seq and scRNA-seq
982 generated in this study have been submitted to NCIB Gene Expression Omnibus (GEO;
983  https://www.ncbi.nim.nih.gov/geo/) under accession number GSE285220. All raw and
984  processed sequencing data for the four LGG scRNA-seq generated in this study have been
985  submitted to GEO under accession number GSE263796.
986
987  All other data used in our analyses are available on Zenodo
988  (https://zenodo.org/doi/10.5281/zenodo.10963136). We also provide all code on github.com
989  (https://github.com/plaisier-lab/ccAFv2) and Docker images on DockerHub that were used to run
990 all analyses (https://hub.docker.com/r/cplaisier/ccafv2_extra and
991  https://hub.docker.com/r/cplaisier/ccnn).
992
993 R package for ccAFv2
994  We have developed an R package that can be installed using devtools from github. The
995 instructions for installation and usage can be found on github: https://github.com/plaisier-
996 lab/ccafv2 R
997
998 Python package for ccAFv2
999 We have also developed a Python package that can be installed using pip from PyPi. The
1000 instructions for installation and usage can be found on PyPi and github:
1001  https://pypi.org/project/ccAFv2/ and https://github.com/plaisier-lab/ccAFv2_py
1002
1003  Docker images for ccAFv2
1004  We also provide Docker images that include all dependencies and ccAFv2 preinstalled to make
1005 the package more user friendly. Please see the github repositories for information about how to
1006  get, run, and use the Docker images.

1007 - R package:

1008 o Seurat v4: https://hub.docker.com/r/cplaisier/ccafv2_seurat4
1009 o Seurat v5: https://hub.docker.com/r/cplaisier/ccafv2_seuratb
1010 - Python package: https://hub.docker.com/r/cplaisier/ccafv2 py
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1189 Figure Legends

1190

1191 Figure 1. Implementing and testing the ccAFv2 classifier. A. The design of the Artificial Neural
1192  Network (ANN) implemented for the ccAFv2. Expr. = expression, ReLU = Rectified Linear Units.
1193  B. Method designed to determine the predicted class from the likelihoods generated by running
1194  expression data from a single cell through the ccAFv2 ANN. C. Comparison of five different
1195 classification methods using F1 scores (a metric that integrates precision and recall, and has a
1196 maximum value of 1), from the 10-fold cross validation analysis of training on the U5-hNSCs.
1197 The F1 scores are computed for each cell cycle state from each of the 10 testing datasets. D.
1198  Determining the optimal number of neurons in each hidden layer using average U5-hNSC F1
1199  score across cell cycle states on the x-axis, and the average AMI score across the remaining
1200 datasets (U5-hNSCs; glioma stem cells: BT322, BT324, BT326, BT333, BT363, BT368; tumor
1201 cells: BT363, BT368; and Grade 2 Astrocytoma: LGG275). Each combination of hidden layer
1202  neurons is labeled using: number of hidden layer one neurons / number of hidden layer two
1203  neurons. The chosen optimal configuration of 600 hidden layer 1 neurons and 200 hidden layer
1204 2 neurons (600 / 200) is denoted in red. E. UMAP of U5-hNSCs with cells colored by the labels
1205 from O’Connor et al., 2021. F-L. The top 15 most important features for the ccAFv2 classifier
1206  were identified based on the mean change (A) in likelihood after permuting each feature's

1207  expression. A negative mean change in likelihood indicates that the feature increased the

1208 likelihood of predicting a ccAFv2 state.

1209

1210 Figure 2. Comparing the performance of ccAFv2 to existing cell cycle state classifiers. A.

1211  Median AMI score for each cell cycle classifier's predictions of the hNSCs from a whole fetal
1212  brain at 9 weeks post conception (PCW 9 R1; Zeng et al., 2023) relative to the ccSeurat cell
1213  cycle states is plotted against the number of cell cycle states predicted by the classifier. The
1214  average similarity to the reference was computed, based on the number of cell cycle states in
1215 the reference and predicted by the classifier, and were plotted at 10 percent intervals to facilitate
1216  comparison between classifiers with differing numbers of predicted cell cycle states. B. Overlay
1217  of representative cell cycle state predictions on the hNSCs from a whole fetal brain at PCW 9
1218 R1. C. Median AMI score for each cell cycle classifier's predictions of the glioma stem cell line
1219 BT322 relative to the ccSeurat cell cycle states is plotted against the number of cell cycle states
1220  predicted by the classifier. Again, average similarity to the reference was computed based on
1221 the number of cell cycle states in the reference and predicted by the classifier and were plotted
1222  at 10 percent intervals to facilitate comparison between classifiers with differing numbers of
1223  predicted cell cycle states. D. Overlay of representative cell cycle state predictions on the tumor
1224  cells of BT322.

1225

1226  Figure 3. Application of ccAFv2 to in vivo hNSCs from fetal tissue 3 to 12 weeks post

1227  conception. A. Proportions of cell cycle states in U5-hNSCs which were grown in vitro and were
1228  derived from a human fetus at 8 PCW for both ccAFv2 and ccSeurat. B. Proportions of cell
1229  cycle states of hNSCs extracted from 3 to 12 PCW fetal tissue for both ccAFv2 and ccSeurat
1230 (Zeng et al, 2023). C-F. Distribution of cyclin expression in the in vivo hNSCs from a whole
1231  human fetal brain at PCW 9 R1 grouped by cell cycle phase. G. Mean expression of cyclins
1232 across the ccAFv2 cell cycle phases in cells from a whole human fetal brain at PCW 9 R1. Red
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1233  points denote the ccAFv2 cell cycle state with the highest average expression. Gene expression
1234  levels at each cell cycle state were compared to those in G1 cells using Student’s t-test (****
1235 indicates p £0.0001). H. Expression of ccAFv2 marker genes for each cell cycle state in hNSCs
1236 from a human whole fetal brain at PCW 9 R1. Important genes names are denoted in dark red.
1237 1. Testing different likelihood thresholds 0.0 to 0.9 using AMI score and percent of cells

1238  predicted as the metrics. Dashed red line indicates 90 percent of cells were predicted, and red
1239  dot indicates significantly improved AMI score due to applying threshold. J. Comparison of
1240 likelihood threshold application to random removal of the same number of cell predictions for in
1241  vivo hNSCs from a human whole fetal brain at PCW 9 R1. Metric used for assessment is the
1242  AMI score. Likelihood thresholds start at 0.3 on the x-axis because AMI values at likelihood
1243  thresholds 0 to 0.3 are the same. AMI scores at each likelihood threshold were compared using
1244  Student’s t-test (**** indicates p < 0.0001). Rep. = biological replicate.

1245

1246  Figure 4. Experimental enrichment of mesenchymal GO cells from hSKMSCs using FACs. A.
1247  Gating strategy for isolating mesenchymal GO cells from hSkKMSCs. First gated on single cells,
1248 then live cells, next diploid cells that are not replicating are selected, and finally cells with hypo-
1249  phosphorylation of RB are selected. B. ccAFv2 applied to unsorted hSKMSCs. The red dashed
1250 area encompasses the UMAP area containing the vast majority of Neural GO, G1, and Late G1
1251 cells, these three states do not exhibit consistent clustering. C. Neural GO cells are highlighted
1252  in color, while all other states are shown in gray. D-E. Cells are colored based on their

1253  Spearman correlation coefficient with the sScRNA-seq expression profiles and the RNA-seq
1254  profiles of flow-sorted mesenchymal GO cells (pRB-, diploid, non-replicating) from two biological
1255 replicates. F. Test of which ccAFv2 cell cycle states were significantly enriched with

1256 mesenchymal GO cells, and not mesenchymal GO cells. Mesenchymal GO cells are defined by a
1257  Spearman correlation = 0.1 in both replicates, while non-GO cells are defined by a correlation <
1258 0.1 in one or both replicates. Values are represented as the negative logarithm of the p-value.
1259  G. Percentage of ccAFv2 states in mesenchymal GO and not GO cells. H. Differential expression
1260 of genes between mesenchymal GO cells versus not GO cells. Each dot represents one gene (n
1261 =22,845). Dotted lines denote log2(fold change) and adjusted p-value cutoffs to identify

1262  significant marker genes (log2FC > 0.5; p-adj < 0.05). Red dots denote ccAFv2 Neural GO

1263  marker genes. Labeled genes are marker genes for hSkMSC GO cells that overlap with ccAFv2
1264  Neural GO marker genes.

1265

1266  Figure 5. Application of ccAFv2 to the transcriptomes of 245,906 single cells derived from

1267  human fetuses aged 3 to 12 PCW. A. The 15 different cell types included in the analysis

1268 encompass all three germ layers. For each cell type the number of cells is given. B. Percentage
1269 of each ccAFv2 predicted state for each cell type. C. Percentage of each ccAFv2 predicted state
1270 for each cell type when Neural GO, G1, and Late G1 are binned. D-G. Z-score normalized cyclin
1271  expression across 15 cell types. Thin lines represent individual cell types, while thick lines

1272  indicate the average Z-score normalized cyclin expression for each germ layer. Lines are color-
1273  coded according to their corresponding germ layer.

1274

1275  Figure 6. Application of ccAFv2 to single cells and nuclei from human and mice. A. Summary
1276  schematic of data ccAFv2 can be applied to and suggested data preparation. B. Proportion of
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1277  cells assigned to each cell cycle state for scRNA-seq data from the developing human

1278  telencephalon (Nowakowski et al, 2017). C. Proportions of cell cycle states from scRNA-seq
1279  from the ventricular (V)-SVZ of the adult mouse brain (Cebrian-Silla et al, 2021). Prog. =

1280  progenitors, Inh = inhibitor, Ex = excitatory, NSPCs = neural stem/progenitor cells, IntProg. =
1281  intermediate progenitor cells. D. Proportions of cell cycle states from scRNA-seq from GLAST
1282 and PROML1 flow-sorted cells from the subventricular zone (SVZ) of mice (Llorens-Bobadilla et
1283 al, 2015), and EGFR, GFAP, and PROML1 flow-sorted cells from the subventricular zone (SVZ2)
1284  of adult mice (Dulken et al, 2017). gNSC1 = dormant quiescent neural stem cell, gNSC2 =
1285  primed-quiescent neural stem cell, aNSC1 = active neural stem cell, aNSC2 = actively dividing
1286 neural stem cell. gNSC = quiescent neural stem cell, aNSC = active neural stem cell. E.

1287  Proportions of cell cycle states from scRNA-seq (C) and snRNA-seq (N) from spinal, cervical,
1288 Ilumbar, and thoracic regions from the developing human spinal cord at 8, 10, 11, 20, and 23
1289 PCW (Zhang et al, 2021).

1290

1291  Figure 7. Application of ccAFv2 to spatial transcriptomics data from a male C57BL/6 mouse
1292  embryo at E15.5. A. H&E staining for the whole embryo. B. Spatial overlay of the predicted
1293  ccAFv2 states onto the whole embryo. C. Spatial expression of the cell cycle marker gene
1294  Mki67 for the whole embryo. The black boxes in panels A through C indicate the region of the
1295  developing cortex that was magnified in panels D through Q. The developmental regions of the
1296 developing cortex are denoted on the side: Dermis = developing skin, Skull = developing skull,
1297  CP/MZ = cortical plate and marginal zone, I1Z = intermediate zone, SVZ = subventricular zone,
1298 VZ = ventricular zone. D. H&E staining for the developing embryo cortex. E. Spatial overlay of
1299 the predicted ccAFv2 states onto the developing embryo cortex. F-I1. Expression of key marker
1300 genes describing the developmental regions in the developing embryo cortex. J. Spatial

1301  expression of the cell cycle marker gene Mki67 in the developing embryo cortex. K-Q.

1302  Likelihoods for each of the cell cycle states spatially overlayed onto the developing embryo
1303 cortex. The magnitude of the likelihood indicates the probability that a cell with that cell cycle
1304 state underlies that spot of the spatial array.
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