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Abstract 17 

Single-cell transcriptomics has unveiled a vast landscape of cellular heterogeneity in which the 18 

cell cycle is a significant component. We trained a high-resolution cell cycle classifier (ccAFv2) 19 

using single cell RNA-seq (scRNA-seq) characterized human neural stem cells. The ccAFv2 20 

classifies six cell cycle states (G1, Late G1, S, S/G2, G2/M, and M/Early G1) and a quiescent-21 

like G0 state (Neural G0), and it incorporates a tunable parameter to filter out less certain 22 

classifications. The ccAFv2 classifier performed better than or equivalent to other state-of-the-23 

art methods even while classifying more cell cycle states, including G0. We demonstrate that 24 

the ccAFv2 classifier effectively generalizes the S, S/G2, G2/M, and M/Early G1 states across 25 

cell types derived from all three germ layers. While the G0, G1, and Late G1 states perform well 26 

in neuroepithelial cell types, their accuracy is lower in other cell types. However, 27 

misclassifications are confined to the G0, G1, and Late G1 states. We showcased the versatility 28 

of ccAFv2 by successfully applying it to classify cells, nuclei, and spatial transcriptomics data in 29 

humans and mice, using various normalization methods and gene identifiers. We provide 30 

methods to regress the cell cycle expression patterns out of single cell or nuclei data to uncover 31 

underlying biological signals. The classifier can be used either as an R package integrated with 32 

Seurat or a PyPI package integrated with SCANPY. We proved that ccAFv2 has enhanced 33 

accuracy, flexibility, and adaptability across various experimental conditions, establishing 34 

ccAFv2 as a powerful tool for dissecting complex biological systems, unraveling cellular 35 

heterogeneity, and deciphering the molecular mechanisms by which proliferation and 36 

quiescence affect cellular processes.  37 
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Introduction 38 

Single-cell RNA sequencing (scRNA-seq) is a robust method for dissecting the transcriptional 39 

states of individual cells obtained from specific conditions. These cellular transcriptional states 40 

are influenced by various biological signals, including cell type and the phase of the cell cycle. 41 

The cell cycle is a tightly regulated and intricately coordinated biological process that 42 

orchestrates the division of a cell into two daughter cells. Adult stem cell populations often 43 

reside in a quiescent G0 state outside of the cell cycle, reactivating only upon receiving 44 

appropriate signals to divide (Doetsch 2003; Obernier et al. 2018). Current state of the art 45 

methods to predict cell cycle states based on scRNA-seq transcriptome profiles lump G0 cells 46 

with G1 cells (Hao et al. 2021; Zheng et al. 2022; Schwabe et al. 2020; Liu et al. 2017; Hsiao et 47 

al. 2020; Scialdone et al. 2015). The grouping of G0 with G1 fails to recognize the clear 48 

differences in expression patterns and quiescent phenotype displayed by G0 cells, making them 49 

readily distinguishable from G1 cells (O’Connor et al. 2021). The aim of this research is to 50 

develop a cell cycle classifier capable of identifying the G0 state in neuroepithelial cells and to 51 

determine whether this state can be generalized to other cell types. 52 

 53 

Developing cell cycle classifiers from scRNA-seq transcriptional profiles is challenging due to 54 

the scarcity of datasets with experimentally validated ground truth cell cycle labels. Training a 55 

classifier requires having example transcriptome profiles labeled with cell cycle states. Previous 56 

studies have used Hoechst (DNA stain; (Buettner et al. 2015) or FUCCI (Leng et al. 2015) to 57 

sort embryonic stem cells into G1, S, and G2M subpopulations. However, there are some 58 

caveats to these studies. Firstly, these cells were not fixed, meaning they could continue to 59 

cycle after sorting and may not be transcriptionally in the same state as they were when they 60 

were sorted. Secondly, the markers used for sorting focused on DNA, protein, and post-61 

translational modification abundances, which may not accurately reflect the transcriptional state 62 

of the cells. Thirdly, it has been established that embryonic stem cells do not have well-defined 63 

G1 or G0 cell cycle states as they quickly transition through cell cycles to produce many cells in 64 

the embryo (Ballabeni et al. 2011; White and Dalton 2005). In preliminary analyses it was found 65 

that the cell cycle labels were significantly out of alignment (error rates ≥ 0.7) with the 66 

transcription states of the cells as determined by ccSeurat (Supplemental Table S1), which is 67 

the de facto standard in the field. 68 

 69 

Previously, we used scRNA-seq of U5 human Neural Stem Cells (U5-hNSCs; Davis and 70 

Temple 1994; Johe et al. 1996) grown in vitro to discern seven cell cycle states including a 71 

quiescent-like G0 state (O’Connor et al. 2021). An Artificial Neural Network (ANN) (Ma and 72 

Pellegrini 2020) classifier named the cell cycle ASU/Fred Hutch (ccAF) was trained to predict 73 

these seven cell cycle states in cells from new datasets (O’Connor et al. 2021). In those studies, 74 

the ccAF classifier was applied to a host of neuroepithelial derived cells characterized by 75 

scRNA-seq, including glioblastoma patient tumor cells. The underlying software packages for 76 

constructing ANNs (TensorFlow and Keras) have been significantly improved and we 77 

hypothesized that reimplementation of the ccAF classifier would significantly improve classifier 78 

performance and provide likelihoods for each classification, a feature not available in the original 79 

ccAF implementation. 80 

 81 

In addition to the advancements in ANN methodology, numerous new scRNA-seq studies have 82 

been conducted that include actively dividing cells. Particularly valuable for assessing the 83 

quality and generalizability of the classifier is an atlas of 245,906 cells from 15 different cell 84 

types, spanning all three germ layers, derived from human fetal tissue 3 to 12 weeks post-85 

conception (Zeng et al. 2023). A second atlas of developing human spinal cord (Zhang et al. 86 

2021) will be used to evaluate whether the classifier can be applied to both single cell and single 87 
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nuclei RNA-seq (scRNA-seq and snRNA-seq). An atlas of adult neurogenesis in the ventricular-88 

subventricular zone (V-SVZ) (Cebrian-Silla et al. 2021) will be used to demonstrate that the 89 

classifier can be applied to mouse cells. It will also allow comparisons to be made between the 90 

cell cycle proportions of cell types from adult mouse neurogenesis in the V-SVZ (Cebrian-Silla 91 

et al. 2021) and the developing human telencephalon (Nowakowski et al. 2017). Two studies of 92 

quiescent neural stem cells will be crucial for demonstrating the identity of the G0 cell state 93 

(Llorens-Bobadilla et al. 2015; Dulken et al. 2017). Additionally, we collected scRNA-seq for two 94 

IDH mutant low-grade glioma (LGG) cell lines in conditions with and without growth factors. This 95 

will allow us to gain insights into the performance of the classifier when confronted with a higher 96 

proportion of non-cycling cells. We will also apply the classifier to in vivo glioblastoma tumor 97 

cells and in vitro glioblastoma tumor derived cancer stem cells that were not included in the 98 

previous ccAF classifier studies (Couturier et al. 2020). Finally, application of the classifier to a 99 

high-resolution spatial-transcriptomics (ST-seq) study of a mouse embryo at 15.5 weeks post-100 

conception (E15.5) will allow us to resolve canonical biological and morphological phenomena 101 

for the developmental stage. These datasets offer a robust foundation for rigorously testing and 102 

validating the improved ccAF version 2 (ccAFv2) classifier, showcasing its versatility across 103 

species, single cells and nuclei, and generalizability across cell types from all germ layers. 104 

 105 

The goal of this research is to develop an improved cell cycle classifier using current state of the 106 

art machine learning technology. We aim to demonstrate that the classifier outperforms existing 107 

models and generalizes well across various cell types, library preparation methods (scRNA-seq, 108 

snRNA-seq, ST-seq), gene annotations, and normalization techniques. Lastly, we aim to 109 

provide a classifier with a more user-friendly interface to facilitate its application in future 110 

studies.   111 
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Results 112 

Implementation of neural network classifier for ccAFv2 113 

We implemented the core algorithm of ccAFv2 to take advantage of significant improvements in 114 

machine learning tools that should improve classifier performance and provide likelihoods for 115 

each predicted cell cycle classification. The ccAFv2 core algorithm is broken up into two steps. 116 

First, the input data is run through the artificial neural network (ANN) to compute likelihoods for 117 

each class (i.e., Neural G0, G1, Late G1, S, S/G2, G2/M or M/Early G1; Figure 1A-B). The 118 

underlying ANN for ccAFv2 starts with a dense input layer connected to two hidden layers that 119 

connect to a softmax output layer (Figure 1A). Overfitting in the ANN is mitigated by dropout 120 

regularization via two dropout layers. The first dropout layer is positioned between the first and 121 

second hidden layers and the second dropout layer is between the second hidden layer and the 122 

softmax output (Figure 1A; Xie et al. 2019). Second, the likelihoods calculated by the ANN for 123 

each cell cycle state are used to determine which state should be assigned for each cell (Figure 124 

1B). The cell cycle state with the maximum likelihood is identified and if the likelihood is greater 125 

than or equal to the likelihood threshold then the state is returned. Otherwise, if the maximum 126 

likelihood is less than the likelihood threshold a state of “Unknown” is returned. These 127 

improvements to the core ANN of ccAFv2 will be rigorously tested in the subsequent sections. 128 

Training the ccAFv2 classifier 129 

The training data for ccAFv2 is comprised of scRNA-seq from actively dividing U5 human neural 130 

stem cells (U5-hNSCs) cultured in vitro (O’Connor et al. 2021). The U5-hNSCs were cultivated 131 

from the telencephalon of a human fetus 8 weeks post-conception (Bressan et al. 2017). We 132 

previously identified 7 transcriptional states in the U5-hNSCs that were mapped to cell cycle 133 

states (i.e., Neural G0, G1, Late G1, S, S/G2, G2/M, and M/Early G1; O’Connor et al. 2021). 134 

The U5-hNSC scRNA-seq data were reanalyzed using current quality control and normalization 135 

methods which resulted in 2,962 good quality single-cell transcriptome profiles (Supplemental 136 

Figure S1A). The U5-hNSC scRNA-seq profiles, along with the previously established cell cycle 137 

labels (O’Connor et al. 2021), represent the most meticulously curated training dataset available 138 

for cell cycle classification. 139 

We compared the newly implemented ccAFv2 classifier against four distinct classification 140 

methods: support vector machine with rejection (SVMrej), random forest (RF), scRNA-seq 141 

optimized k-nearest neighbor (KNN), and ACTINN (Ma and Pellegrini 2020) which was used to 142 

build ccAF (O’Connor et al. 2021). The training dataset for all classifiers consisted of the pre-143 

processed U5-hNSC scRNA-seq subset to the 861 genes upregulated in cell cycle states 144 

(log2FC ≥ 0.25, adjusted p-value ≤ 0.05; Supplemental Table S2). We applied 10-fold cross-145 

validation (CV) for each classification method (Supplemental Figure S1A) and observed that 146 

ccAFv2 exhibited significantly improved F1 scores for each cell cycle state compared to other 147 

classification methods (p-values ≤ 2.8 x 10-6; Figure 1C), establishing it as the most accurate 148 

cell cycle classifier overall. A benefit of using the F1-score as the performance metric is that it 149 

accounts for the imbalance in class label proportions within the training set. We evaluated the 150 

impact of balancing label proportions in the training dataset, but this resulted in worse model 151 

performance (Supplemental Figure S1B). The accuracy of ccAFv2 when applied to U5-hNSCs 152 

was 88.4%, and the main difference when compared to ccAF was an improvement in Late G1 153 

cell predictions (Supplemental Figure S1C-D). The overall error rate for ccAFv2 was 3.3%, 154 

which is a considerable improvement from the 18.4% of ccAF (O’Connor et al. 2021). The 155 

reimplementation of the ANN for the ccAFv2 classifier has significantly improved its 156 

performance across all cell cycle states, providing a robust foundation for further optimization 157 

and comprehensive characterization of its capabilities. 158 
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Optimizing the number of neurons in hidden layers 159 

A crucial factor in optimizing the parameters of the ccAFv2 ANN was determining the ideal 160 

number of neurons in each hidden layer. We conducted a systematic comparison of 18 different 161 

combinations for the number of neurons in the two hidden layers (first hidden layer: ranging 162 

from 200 to 700 neurons, and second hidden layer: ranging from 100 to 400 neurons) across 163 

U5-hNSCs (O’Connor et al. 2021), a low grade glioma stem cell line (LGG275), six glioma stem 164 

cell lines (BT322, BT324, BT326, BT333, BT363, and BT368; Couturier et al. 2020), and two 165 

glioma tumors (BT363 and BT368; Couturier et al. 2020). The optimal combination was 166 

determined by having the highest average F1-score and Adjusted Mutual Information (AMI) 167 

score using ccSeurat as the reference (Figure 1D; Supplemental Table S3). We chose to 168 

employ the ccSeurat classifier (Butler et al. 2018) to predict the reference labels because true 169 

cell cycle state labels do not exist for all datasets. The ccSeurat classifier was chosen for three 170 

reasons: 1) it is the de facto standard method for cell cycle classification currently, 2) it performs 171 

well when applied to many different datasets, and 3) it uses a totally different underlying 172 

algorithm to classify cell cycle state than ccAFv2. We found that configuring the ccAFv2 ANN 173 

with 600 neurons in the first hidden layer and 200 in the second hidden layer yielded the largest 174 

average F1 score and second largest AMI score (Figure 1D). This specific parameterization has 175 

been assigned for the hidden layers of the ccAFv2 ANN, and all prior and subsequent ccAFv2 176 

classifications use this parameterization. 177 

Most important features for classifying ccAFv2 states 178 

After optimizing the training of the ccAFv2 ANN, it is sensible to determine which features are 179 

most essential for classifying each of the seven states. We computed feature importance by 180 

permuting one of the 861 genes in the U5-hNSCs dataset and asking what impact that had on 181 

the likelihoods for each of the seven states. Randomizing the expression of an important feature 182 

for classifying a ccAFv2 state would lead to reductions in the states likelihood for cells known to 183 

be of this state. Thus, it is crucial that the dataset used for feature importance have cell cycle 184 

labels, which is why the U5-hNSCs were used for feature importance analyses (Figure 1E). We 185 

report the top 15 most important genes for each of seven ccAFv2 states (Figure 1F-L). 186 

Eleven of the most important genes for classifying the Neural G0 state (Figure 1F) were also 187 

marker genes of Neural G0 in the U5-hNSCs. The first most important gene for classifying the 188 

G1 state (Figure 1G) was HMGN2, and in prior studies over-expression of HMGN2 in 189 

osteosarcoma cells led to significantly higher number of cells in G0/G1 (Liang et al. 2015). The 190 

top two most important genes for the classifying the Late G1 state (Figure 1H) include two 191 

Immediate-Early Genes (IEGs) CCN1 and CCN2 which are known to be induced rapidly after 192 

initiation of cell cycle progression by many factors (Tullai et al. 2007). The top four most 193 

important genes for classifying the S state (Figure 1I) include three genes required for DNA 194 

replication during S phase (CLSPN, GINS2, and PCNA) and the cyclin associated with S phase 195 

(CCNE2). The top four most important genes for classifying the S/G2 state (Figure 1J) are all 196 

histones, specifically one H4 histone and multiple H1 histones isoforms that enable the 197 

condensation of nucleosomes into chromatin. The top five most important genes for classifying 198 

the G2/M state (Figure 1K) include a gene involved in keeping sister chromatids from 199 

separating (PTTG1), and two genes involved in kinetochore and centromere maintenance and 200 

function (CENPA, HMMR; Maxwell et al. 2005). Additionally, the ninth most important gene for 201 

classifying G2/M is CCNB1 the cyclin that peaks in mitosis, and MKI67 which is an established 202 

marker of cell proliferation (Scholzen and Gerdes 2000). Finally, the top three most important 203 

genes for classifying the M/Early G1 state (Figure 1L) are a microtubule component protein 204 

TUBA1B, a microtubule associated protein STMN1, and a component of the chromosome 205 

passage protein complex (CPC) which is essential for sister chromatid alignment and 206 

segregation during mitosis and cytokinesis (Vong et al. 2005). The functions of the key genes 207 
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for classifying each state align well with the molecular processes of each cell cycle state, 208 

supporting the conclusion that the identified classes in U5-hNSCs reflect the underlying biology 209 

of the cell cycle.  210 

Next, we evaluated the expression of important genes for each ccAFv2 state in an independent 211 

dataset, the in vivo hNSCs collected from whole fetal brain at 9 weeks post-conception (PCW 9 212 

R1; Zeng et al. 2023). This allows us to assess the generalizability of these genes as key 213 

markers across novel datasets, providing insight into their broader applicability and robustness. 214 

The expression of important genes for all ccAFv2 states were expressed strongly in the state 215 

they marked, except for the important genes for the G1 state (Supplemental Figure S1E). In 216 

our prior study it was difficult to identify markers for G1 phase cells, and so the lack of 217 

translation for important genes for the G1 state is not surprising. The successful translation of 218 

key genes to an independent dataset supports the hypothesis that ccAFv2 and the marker 219 

genes identified in U5-hNSCs are broadly applicable to in vivo hNSCs. 220 

Comparison with existing cell cycle classifiers  221 

An important means to test the performance of ccAFv2 is to compare it to existing state-of-the-222 

art methods for cell cycle state classification. We evaluated the following methods: ccAF 223 

(O’Connor et al. 2021), ccSeurat (Hao et al. 2021), tricycle (Zheng et al. 2022), 224 

Revelio/SchwabeCC (Schwabe et al. 2020), reCAT (Liu et al. 2017), peco (Hsiao et al. 2020), 225 

and cyclone (Scialdone et al. 2015). We also evaluated the incorporation of ccAFv2 marker 226 

genes into the ccSeurat classification algorithm. However, it had significantly reduced 227 

performance compared to ccSeurat and ccAFv2 (Supplemental Figure S2). Each tool predicts 228 

a different subset of cell cycle phases, uses a different classification algorithm, was trained on 229 

different data, and requires different input genes and data formats (Supplemental Table S4). 230 

We applied ccAFv2 alongside the other state-of-the-art cell cycle classification methods to in 231 

vivo hNSCs collected from whole human fetal brain at PCW 9 R1 (Figure 2A-B; Zeng et al. 232 

2023). These cells represent an independent dataset for an unbiased comparison of the cell 233 

cycle prediction algorithms. The hNSCs from Zeng et al., 2023 were also chosen for their 234 

similarity to the U5-hNSCs and their added real-world relevance, as they were collected in vivo. 235 

We chose to employ the ccSeurat classifier (Butler et al. 2018) to predict the reference labels for 236 

classifier comparison for the reasons described above. The AMI score is impacted by the 237 

number of cell cycle states in the reference (i.e., three cell cycle states in ccSeurat), and the 238 

number of states predicted by each algorithm (e.g., seven cell cycle states in ccAFv2). We used 239 

simulation studies to define the expected range of AMI scores that correspond to specific levels 240 

of similarity to the reference given the number of cell cycle states in the reference and the 241 

classifier being tested. The highest AMI was observed for tricycle, showing an 80% similarity to 242 

the reference (Figure 2A). This result aligns with the UMAP colorization, indicating a strong 243 

match within classifiers that predicted a comparable number of classes to ccSeurat (Figure 2B). 244 

reCAT and ccAFv2, predicting six and seven cell cycle states, respectively, achieved the next 245 

highest AMI scores, both demonstrating over 70% similarity to the reference (Figure 2A). 246 

Notably, ccAFv2 identified an S/G2 cluster of cells positioned between the S and G2/M cells 247 

classified by ccSeurat and tricycle, which is biologically plausible (Figure 2B). Additionally, 248 

while Neural G0 cells are intermixed with G1 and Late G1 cells within the proliferating cell 249 

population on the left side of the UMAP, the right side reveals a distinct cluster of Neural G0 250 

cells (Figure 2B). This suggests the presence of a quiescent population in these normal human 251 

neural stem cells that is not detectable by the ccSeurat, tricycle, or reCAT classifiers. 252 

We also applied ccAFv2 alongside the other cell cycle classification methods to cells derived 253 

from a glioblastoma (GBM) patient tumor (BT322; Couturier et al. 2020; Figure 2C-D). GBM 254 

patient tumors are characterized by both quiescent and proliferating subpopulations (Tejero et 255 

al. 2019) making them ideal datasets for evaluating and comparing different cell cycle 256 
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classification methods. We used the ccSeurat labels as the reference because true cell cycle 257 

state labels do not exist for this dataset. Like the in vivo PCW 9 R1 hNSCs, the largest AMIs 258 

were observed for tricycle, reCAT, and ccAFv2; all of which correspond to just below 90% 259 

similarity to the reference (Figure 2C). These results demonstrate that ccAFv2 delivers at least 260 

equivalent performance when compared to contemporary state-of-the-art cell cycle classifiers, 261 

while providing the highest resolution of cell cycle state predictions including a quiescent-like G0 262 

state (Figure 2D). 263 

In vivo cyclin expression and marker genes validate ccAFv2 cell cycle states 264 

We explored the distribution of cell cycle states in 94,297 hNSCs collected from human fetal 265 

tissue at 3-12 weeks post-conception (Zeng et al. 2023; Figure 3). Application of ccAFv2 to the 266 

in vivo fetal hNSCs was found to differ by week stage (Figure 3B). The amount of Neural G0 267 

cells from the in vitro U5-hNSCs, derived from fetal brain tissue at 8 weeks post-conception, 268 

(Figure 3A) matches closely to the in vivo hNSCs at eight weeks post-conception (Figure 3B). 269 

Moreover, the expression patterns of cyclins between the in vitro (O’Connor et al, 2021) and 270 

5,575 in vivo hNSCs from PCW 9 R1 were similar (Figure 3C-G). In both hNSC populations, 271 

CCNE2 exhibited its peak expression during the S phase, while CCNA2 showed highest 272 

expression levels during the S/G2 and G2/M phases, and CCNB1 displayed elevated 273 

expression in G2/M phase cells (Figure 3G). Notably, the highest expression of the key 274 

regulator of cell cycle progression, CCND1, was observed in the Late G1 state (Figure 3G).  275 

Additionally, we identified ccAFv2 marker genes that corresponded to cell cycle state markers in 276 

the PCW 9 R1 hNSCs. Differentially expressed genes for each cell cycle state were identified, 277 

and only those overlapping with the ccAFv2 marker gene lists were reported (Figure 3H). 278 

Genes important to the ccAFv2 classifier were enriched among the translatable marker genes 279 

for PCW 9 R1 (Figure 3H). The expression patterns of these translatable marker genes were 280 

consistent with those observed in O’Connor et al., 2021. The exclusive or semi-exclusive 281 

expression of these markers in adjacent cell cycle states strongly supports the presence of high-282 

resolution ccAFv2 clusters in hNSCs in vivo. Furthermore, the biological function of the 283 

translatable marker genes for each ccAFv2 cell cycle state validates the biological basis of the 284 

ccAFv2 clusters, providing further evidence of their relevance.  285 

Defining an appropriate classification likelihood threshold 286 

The improved ccAFv2 classifier calculates likelihoods for each cell cycle state which can be 287 

used to determine the most likely state and to assess the quality of the classification. We 288 

hypothesized that applying a likelihood threshold to ccAFv2 classifications would ensure 289 

reliability and confidence in predicted cell cycle states by setting classifications for cells with less 290 

certainty to an “Unknown” state. We explored the range of possible likelihood thresholds on the 291 

94,297 hNSCs collected by Zeng et al., 2023.  292 

We tested ccAFv2 likelihood thresholds ranging from 0.0 to 0.9 in increments of 0.1 293 

(Supplemental Figure S3). The calculated cell cycle state likelihood was required to be greater 294 

than or equal to the threshold, otherwise an “Unknown” state was returned (Figure 1B). Each 295 

likelihood threshold was assessed using the percentage of cells predicted and an AMI score 296 

with ccSeurat cell cycle states as a reference. As the likelihood threshold increases the number 297 

of cells predicted decreases and the AMI scores increase (Figure 3I; Supplemental Figure S3; 298 

Supplemental Table S5). In other words, the removal of less certain classifications improves 299 

the accuracy of the overall classifications (Figure 3I). Next, we further demonstrated that the 300 

increase in AMI resulted from the specific removal of cells which had low classification 301 

likelihoods, by comparing it to the random removal of an equivalent number of cells 302 

(representative analysis for 9 weeks post-conception is shown in Figure 3J). The randomly 303 

removed cells do not increase the AMI (Figure 3J), only the selected removal of cells with low 304 

likelihoods were able to increase the AMI. We found that the median AMI scores calculated with 305 
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likelihood thresholds of 0.4 to 0.9 were significantly higher than the median AMI scores of the 306 

randomly removed cells (Figure 3J; Supplemental Table S5), which indicates that the 307 

likelihood cutoffs of greater than or equal to 0.4 improve classification accuracy. We selected 308 

the likelihood threshold of greater than or equal to 0.5 because it signifies a minimum of 50% 309 

certainty in the classified cell cycle state. Additionally, greater than 90% of in vivo hNSCs could 310 

be assigned a cell cycle state with a likelihood threshold of 0.5 (Figure 3I). Thus, the threshold 311 

of 0.5 was set as the default for ccAFv2 and used in subsequent analyses, except where noted. 312 

We also provide users with the flexibility to adjust the likelihood threshold parameter in ccAFv2, 313 

allowing them to adapt the classifier’s operation to suit the unique characteristics of their 314 

dataset. 315 

Effect of missing gene expression values on ccAFv2 316 

A known limitation of scRNA-seq is that dropouts are common. A dropout occurs when lowly to 317 

moderately expressed transcripts are detected in one cell but are not detected in another cell of 318 

the same cell type (Qiu 2020). Factors affecting dropouts include the number of sequencing 319 

reads from each cell and the complexity of the cell’s transcriptome. The ccAFv2 classifier uses 320 

the expression of 861 genes to predict cell cycle states. We hypothesized that dropouts could 321 

be simulated by randomly setting the expression of a defined percentage of genes to zero and 322 

that this would provide a reasonable approximation of the influence of missing genes on the 323 

accuracy of ccAFv2’s cell cycle state classifications. We evaluated the consequences of these 324 

simulated gene dropouts on the classifier error rate, AMI, and the number of cells predicted 325 

(Supplemental Figure S4-5; Supplemental Table S6-7). As described earlier, the median 326 

error rate of applying ccAFv2 to U5-hNSCs was 3.3% with 99% of the input genes (99% is used 327 

to allow for cross-validation). Missing information for 20% of the ccAFv2 input genes yielded a 328 

smaller median error rate (12.2%) than the original ccAF error rate with all the input genes 329 

(18.4%), underscoring the improved performance of the new model. Introducing missing 330 

information for 40% of ccAFv2 input genes led to a 29% median error rate, and 96% of cells 331 

were predicted (Supplemental Table S6). The error rate was the most affected by the 332 

introduction of missing information (Supplemental Figure S4A) and the median percentage of 333 

cells predicted remained above 80% even when 70% of the input gene list was set to missing 334 

(Supplemental Table S6). When breaking down the error rate by cell cycle state, we observed 335 

that S and M/Early G1 had the highest error rates as missing information increased 336 

(Supplemental Figure S4B; Supplemental Table S7). However, the number of cells predicted 337 

remained relatively consistent across all states despite the increasing in missing data 338 

(Supplemental Figure S4C; Supplemental Table S7). The increase in error rate without a 339 

concomitant decrease in the number of cells predicted suggests that raising ccAFv2's likelihood 340 

threshold (>0.5) might be required to ensure the quality of predictions for datasets with greater 341 

than 20% missing ccAFv2 input genes. Indeed, the error rate for introducing 20% missing 342 

information decreased from 12.2% median error rate at 0.5 likelihood threshold to 9.9% with a 343 

0.7 likelihood threshold (Supplemental Figure S4D; Supplemental Table S6) and 6.2% with a 344 

0.9 likelihood threshold (Supplemental Figure S4E; Supplemental Table S6). Thus, 345 

introducing 20% missing information led to four times the error rate, and the increased error rate 346 

can be mitigated in part by increasing the likelihood threshold. Increasing the likelihood 347 

threshold decreases the error rate by removing classifications for cells where the missing 348 

information has degraded the confidence in the prediction. By removing predictions with less 349 

confidence, the error rate decreases, but the overall number of cells classified with cell cycle 350 

states decreases. Testing the impact of increasing the likelihood threshold on the number of 351 

predicted cells can be quite insightful for choosing an appropriate likelihood threshold 352 

(Supplemental Figure S4F). Careful consideration of the balance between minimizing errors 353 

and retaining enough cells for downstream studies is essential. 354 
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Neural G0 state is enriched in mesenchymal G0 cells 355 

We developed an experimental method to isolate fixed G0 cells using fluorescence-activated 356 

cell sorting (FACS) with established markers (Gookin et al. 2017). This approach ensures the 357 

selected cells are diploid, non-replicating, and have unphosphorylated RB (pRB-), all while 358 

preserving RNA integrity. The experimental approach was applied to identify G0 cells from 359 

human skeletal muscle satellite cells (hSkMSCs), which are derived from the mesodermal germ 360 

layer (Figure 4A). Subsequent RNA-seq of the sorted G0 cells captures the characteristic 361 

expression pattern of the G0 state for that cell type, enabling direct comparison with the 362 

expression profiles of single cells from scRNA-seq data of unsorted cells. We characterized the 363 

bulk RNA-seq signatures of 400,000 G0 hSkMSCs for two biological replicates. These G0 364 

signatures were mapped onto 6,921 asynchronous, unstained, and unsorted hSkMSCs 365 

collected using scRNA-seq. Next, the ccAFv2 cell cycle classifier was applied to the hSkMSC 366 

scRNA-seq data. Cells in S, S/G2, G2/M and M/Early G1 states formed distinct clusters ordered 367 

in the canonical cell cycle patterning, highlighting the generalizability of these ccAFv2 states to 368 

in vitro hSkMSCs (Figure 4B). The Late G1 cells did form a cluster that was positioned in front 369 

of the S phase cells, however, additional Late G1 cells can be seen dispersed within the left half 370 

of the cells. This dispersion may be partly attributed to the higher CCND1 expression in 371 

hSkMSCs G0 cells compared to hNSC Neural G0 cells (Supplemental Figure S6. The cells 372 

inside the dashed region contain almost exclusively Neural G0, G1, and Late G1 cells and do 373 

not coalesce into defined clusters (Figure 4B-C), suggesting that the ccAFv2 classifier was 374 

struggling to accurately discriminate between Neural G0, G1, and Late G1. Correlation of the 375 

experimentally determined G0 signature to the cells from the scRNA-seq revealed significant 376 

enrichment within the ccAFv2-labeled Neural G0 and G1 cells (Figure 4D-F). The majority of 377 

G0 cells were classified as Neural G0, while misclassified G0 cells were predominantly labeled 378 

G1 or Late G1, and very few were classified as the cycling states (S, S/G2, G2/M, M/Early G1; 379 

Figure 4G). These findings confirm that ccAFv2 is having difficulty discriminating between the 380 

Neural G0, G1, and Late G1 states in hSkMSCs derived from the mesoderm dermal layer. 381 

However, the misclassifications are systematic rather than random, and a straightforward 382 

solution of merging Neural G0, G1, and Late G1 classifications effectively resolves the 383 

misclassifications. To accommodate this, we implemented a switch in the ccAFv2 classifier, 384 

enabling users to choose whether to combine Neural G0, G1, and Late G1 or to keep them 385 

separate. This feature provides a more cautious and flexible approach for classifying cell types 386 

beyond neuroepithelial cells (Figure 4H). This provides users with the flexibility to use ccAFv2 387 

higher resolution cell cycle classification for non-neuroepithelial cell types. 388 

 389 

Additionally, it should be noted that while the Neural G0 state does not accurately capture the 390 

G0 state of hSkMSCs the experimental data demonstrates that it is possible to identify a 391 

subpopulation of G0 cells. The marker genes discovered for the hSkMSC G0 cells were 392 

significantly overlapping with the Neural G0 marker genes (n = 11; p-value = 4.4 x 10-4; FTL, 393 

IFITM3, TIMP4, SAT1, C1orf21, CLU, VGLL4, SPRY1, COL9A3, NOVA1, NUDTA; Figure 4I; 394 

Supplemental Table S8. Which strongly suggests that it may be possible to train a classifier 395 

with a more generalizable G0 state in future studies using our experimental approach to 396 

characterize new training datasets.  397 

ccAFv2 cell cycle states are generalizable across germ layers 398 

Another key consideration when using ccAFv2 is its ability to accurately predict cell cycle states 399 

(S, S/G2, G2/M, and M/Early G1) in cell types beyond neuroepithelial cells. In Zeng et al., 2023, 400 

they profiled single cells from human fetal tissues, representing all three germ layers 401 

(endoderm, mesoderm, and ectoderm; Figure 5A). We applied ccAFv2 to 245,906 cells from 402 

the atlas first including Neural G0, G1 and Late G1 predictions (Figure 5B), and then by 403 

collapsing these three predictions into a G0/G1 class (Figure 5C). These representations of the 404 
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Zeng et al., 2023 dataset aggregate across time (PCW 3–12) and tissue collection strategies 405 

(whole embryo, whole head, and brain). The proportions of cell cycle states across time for each 406 

cell type show strong concordance (Supplemental Figure S7), highlighting the consistency of 407 

ccAFv2 predictions across biologically similar independent scRNA-seq datasets. Next, we 408 

analyzed cyclin expression patterns across the 15 distinct cell types and calculated the average 409 

expression for each germ layer. Each germ layer exhibited the expected cyclin expression 410 

pattern, with CCND1 driving entry into the cell cycle (Figure 5D), CCNE2 peaking during S 411 

phase (Figure 5E), and CCNA2 (Figure 5F) and CCNB1 coordinating progression and 412 

regulation of cell division (Figure 5G). These results provide strong evidence that the ccAFv2 413 

predicted S, S/G2, G2/M, and M/Early G1 states are accurate across cell types derived from all 414 

germ layers. 415 

 416 

We also observed that ccAFv2 proportions align closely with expected developmental patterns. 417 

For instance, during PCW 9–12, the fetal brain undergoes rapid development, marked by 418 

significant cell division as major structures like the cerebrum, cerebellum, and brainstem 419 

become more defined (Belmonte-Mateos and Pujades 2021; Martínez-Cerdeño et al. 2006). We 420 

found that intermediate progenitor cells (IPCs) detected at PCW 9 and 12 in whole brains were 421 

predominantly in the S, S/G2, and G2/M phases, consistent with the active proliferation 422 

necessary for forming these brain structures (Figure 5; Supplemental Figure S7). 423 

Furthermore, these PCW 9–12 IPCs exhibited high expression of EOMES, a critical factor that 424 

drives the expansion of the IPC pool (Arnold et al. 2008). The much-reduced proportions of 425 

Neural G0, G1, and Late G1 in IPCs validates that ccAFv2 predictions are consistent with 426 

known biology. We also observed reduced Neural G0, G1, and Late G1 proportions in the non-427 

neuroepithelial proliferating mesoderm (Prolif. meso.; Figure 5) defined by high expression of 428 

the proliferation marker MKI67 (log2(FC) ≥ 1.24) and mesoderm marker CDH11 (log2(FC) 429 

>2.27) (Hoffmann and Balling 1995). The reduced number of non-cycling cells in IPCs and 430 

proliferating mesoderm cell types is well documented and demonstrates that while Neural G0, 431 

G1 and Late G1 misclassifications may occur that the relative proportions of non-cycling cells to 432 

cycling cells is accurately determined by ccAFv2. 433 

Capturing the effect of growth factors on cellular proliferation 434 

Growth factors are used to increase cellular proliferation in vitro, and we characterized the 435 

transcriptomes of LGG cells (grade 2 astrocytoma and grade 3 oligodendroglioma) with and 436 

without the application of growth factors (Supplemental Figure S8). For this analysis we tested 437 

the impact of adjusting the ccAFv2 likelihood threshold across a range of values 0 to 0.9 438 

(Supplemental Figure S9A-B). Increasing the likelihood threshold values from 0.4 to 0.9 led to 439 

an increased proportion of “Unknown” classifications in the samples without growth factors, 440 

which is consistent with the known effect of growth factors to stimulate proliferation and the cell 441 

cycle. The increased proportion of “Unknown” cells may correspond to new growth factor 442 

starvation state(s) not included in ccAFv2 classification states. Additionally, the S, S/G2, and 443 

G2/M cell cycle states were disproportionately removed as the likelihood threshold increased 444 

(Supplemental Figure S9A-B). We then set the likelihood threshold to 0.9 and observed that 445 

the cells grown with growth factors form clusters of cell cycle state labels, outlining the expected 446 

progression of cell cycle phases (G1 → S → S/G2 → G2/M → M/Early G1; Supplemental 447 

Figure S8A, C, D, & F). Conversely, cells grown without growth factors exhibit a more 448 

dispersed distribution of cell cycle state labels (Supplemental Figure S8B, C, E, & F). The 449 

ability to change the likelihood threshold of ccAFv2 allows us to observe the biological impact of 450 

adding growth factors to LGG cells and demonstrates what to expect when the cell cycle is not 451 

the main transcriptional signal in cells. 452 

 453 

Removing cell cycle expression signatures 454 
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The cell cycle generates a strong transcriptional signature that can obscure other less robust 455 

transcriptional signatures of interest. Previous studies have shown that statistical methods can 456 

effectively remove cell cycle transcriptional signatures, and that the residual transcriptional 457 

variance can be used to study less robust transcriptional signatures of interest (Luecken and 458 

Theis 2019). We showcase successful removal of the cell cycle transcriptional signatures for the 459 

U5-hNSCs, and LGG cells. First, each cell cycle state's average expression of marker genes is 460 

computed for every single cell or nuclei. Then, these average cell cycle expression patterns are 461 

regressed out of the dataset during normalization. The ccSeurat regression method uses only 462 

the S and G2/M cell cycle states, so we first tested regression with the S and G2/M cell cycle 463 

states from ccAFv2. We found that the ccAFv2 marker gene derived average cell cycle 464 

expression patterns could mitigate cell cycle transcriptional signatures as effectively as ccSeurat 465 

(empirical p-value > 0.05, Supplemental Table S9; Supplemental Figure S10). Additionally, 466 

we found that incorporating Late G1, S, S/G2, G2M, and M/Early G1 was also quite effective 467 

and led to a more robust homogenization of the cell cycle states based on PCA plots 468 

(Supplemental Table S9; Supplemental Figure S10). This approach enables researchers to 469 

dissect complex gene expression patterns and uncover novel insights into cellular processes 470 

beyond the cell cycle. 471 

 472 

Classifying neuroepithelial-derived cells in humans and mice 473 

It was crucial for ccAFv2 to be highly user-friendly, ensuring researchers can easily apply it 474 

across a wide range of datasets. The model was designed to accept inputs for tissue source, 475 

data type, and gene identifier, eliminating the need for manual data conversion (Figure 6A). In a 476 

previous study (O’Connor et al. 2021) we applied the ccAF classifier to cells from the developing 477 

human telencephalon (Nowakowski et al. 2017). We applied ccAFv2 to these same cells and 478 

compared the ccAF and ccAFv2 predicted cell cycle proportions. We observed that the Neural 479 

G0 state was less frequent in all cell types for ccAFv2 relative to ccAF (Figure 6B; 480 

Supplemental Table S10). The Neural G0 state was distinctly less frequent in the neuronal cell 481 

types. For ccAF Neural G0 made up most of the cell cycle states for EN-PFC and EN-V1, but in 482 

ccAFv2 these two cell types classified primarily as G1 (Figure 6B). The glial cell types had the 483 

largest Neural G0 subpopulations (Figure 6B). 484 

We also applied ccAFv2 to cells from the ventricular-subventricular zone (V-SVZ) of the adult 485 

mouse brain (Cebrian-Silla et al. 2021), a location known to contain neural stem and precursor 486 

cells in the adult brain (Lim and Alvarez-Buylla 2016). The adult mouse V-SVZ validates 487 

observations from the developing human telencephalon (Figure 6C). In the V-SVZ the glial cells 488 

tended to have larger Neural G0 subpopulations, neuronal cell types tended to have less Neural 489 

G0, and microglial had the smallest amount Neural G0 (Figure 6C). The results are similar 490 

given the differences between species, developmental state, and anatomical origins. These 491 

findings illustrate that the ccAFv2 classifier can be applied to cells originating from both humans 492 

and mice. 493 

Classifying quiescent-like neural stem cells 494 

Previously we validated the Neural G0 state using two independent in vivo scRNA-seq profiling 495 

studies of NSCs from adult neurogenesis in the subventricular zone (SVZ) that used 496 

fluorescence activated cell sorting (FACS) to sort out quiescent and activated NSCs (Llorens-497 

Bobadilla et al. 2015; Dulken et al. 2017). We applied ccAFv2 to these same cells and 498 

compared the ccAF and ccAFv2 predicted Neural G0 subpopulations. Overall, the qNSCs are 499 

enriched with quiescent-like Neural G0 cells, and the aNSCs are at some stage of the cell cycle 500 

(Figure 6D). The proportion of cells classified as Neural G0 decreased for ccAFv2 in the 501 

quiescent NSCs (qNSCs) and was replaced by more G1, S/G2, and a small amount of G2/M 502 

(Figure 6D; Supplemental Figure S11). For Llorens-Bobadilla et al., 2015 the active NSCs 1 503 

(aNSC1) were more highly enriched with S phase cells, and aNSC2 were enriched with S/G2 504 
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and G2/M. A similar trend was observed for the Dulken et al., 2017 dataset. Additionally, we 505 

used the G0 arrest signature from Wiecek et al., 2023 to validate the Neural G0 state in ccAFv2 506 

(Wiecek et al. 2023). We found significant enrichment of the G0 arrest signature (i.e., QuieScore 507 

G0) within the U5-hNSC Neural G0 and G1 states (Supplemental Figure S12). These results 508 

continue to validate our assertion that Neural G0 represents a quiescent-like cell state, and that 509 

ccAFv2 can accurately classify this quiescent-like G0 state. 510 

Accurate classification of cells and nuclei 511 

Tissues in single-cell studies can be processed into cells for scRNA-seq or nuclei for snRNA-512 

seq. Both methods are commonly used and have advantages and limitations (Slyper et al. 513 

2020). Thus, it is important to demonstrate whether ccAFv2, which is trained on cells, can 514 

accurately classify cell cycle states for single nuclei. We employed the Zhang et al., 2021 515 

dataset which characterized developing human spinal cord tissue from five developmental time 516 

points using both scRNA-seq and snRNA-seq from the same experimental conditions (Zhang et 517 

al. 2021). The proportions of cells in each cell cycle state are similar between scRNA-seq and 518 

snRNA-seq from the same condition (Figure 6E), illustrating the versatility of the ccAFv2 519 

classifier in effectively analyzing both scRNA-seq and snRNA-seq profiles. 520 

Mapping proliferation onto tissue through spatial transcriptomics 521 

scRNA-seq and snRNA-seq provide valuable information about the transcriptional states of cells 522 

and nuclei, but without contextual information, relating these states with previously described 523 

biology can be challenging. Spatial transcriptomics captures the transcriptional activity of a 524 

single-cell or a region containing a small number of cells at a position within an intact tissue, 525 

offering structural information that can be referenced to anatomical atlases and established 526 

histology. We applied ccAFv2 to the highest resolution sequencing-based spatial transcriptomic 527 

dataset currently available, derived from a slice of a mouse E15.5 embryo binned to 8µm, 528 

achieving near cellular resolution (Figure 7A-B). Despite rapid development at late prenatal 529 

stages, Neural G0 classified spots were highly prominent, particularly across the midbrain 530 

region. The proliferation marker Mki67 was minimally expressed in these G0 enriched areas 531 

and, in the brain, highlighted the described stem cell niches of the lower, medial, and caudal 532 

ganglionic eminences (LGE, MGE, CGE), along with the stem cell migratory paths from these 533 

regions along the sub-ventricular zone (SVZ; Figure 7C; Kriegstein and Noctor 2004). 534 

From E12.5 to E17.5 the mouse cortex develops in a well-defined layers (Figure 7D). Applying 535 

ccAFv2 to the cortex captured the layered patterning of cell cycle states that fit with our current 536 

model of cortical development (Figure 7E-Q). Histology showed an outer layer of dermis (skin) 537 

marked by Krt5 expression (Supplemental Figure S13A-B), covering the developing skull 538 

identified by Col1a1 expression (Supplemental Figure S13C), followed by densely packed 539 

cells of the brain (Figure 7D). Precursors of excitatory neurons migrate along and divide in the 540 

SVZ with asymmetric division specifically occurring within the ventricular zone (VZ). A much 541 

smaller population of inhibitory neuronal precursors migrate and divide along the intermediate 542 

zone (IZ) and medial zone (MZ) before invading the cortical plate (CP) and differentiating into 543 

their neuronal sub-type. By E15.5, the CP is already well populated with post-mitotic neurons 544 

that previously migrated from the SVZ from E12.5-E14.5 and will form layers IV-VI of the adult 545 

cortex. Upon reaching the border of the CP and MZ, neural stem cells receive maturation 546 

factors from glial cell types including Reln (Figure 7F), with canonically post-mitotic neurons 547 

marked by Tbr1 (Figure 7G; Englund et al. 2005). This post-mitotic region classifies as Neural 548 

G0 by ccAFv2 (Figure 7E & K). Similarly, Mki67 is sparse within the CP, but highly active in the 549 

SVZ and VZ (Figure 7J). Intermediate progenitor cells (IPCs) in the SVZ, marked by Eomes, 550 

undergo symmetric division before radiating outward (Figure 7G). Within the VZ radial glia 551 

migrate further inward before asymmetric division, with newly divided IPCs radiating back up to 552 

the SVZ and outward to populate the cortex. These events are captured by ccAFv2 as a single 553 
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enriched S and S/G2 band marking the SVZ (Figure 7N & O). We also observed two bands 554 

containing G2/M classified spots, corresponding to regions of symmetric division in the SVZ and 555 

asymmetric division in the VZ (Figure 7P). Cells committed to differentiation, immediately 556 

migrate outward along and the few spots that classify as M/Early G1 were almost entirely in the 557 

IZ and above (Figure 7Q). These results demonstrate that ccAFv2 can be effectively applied to 558 

spatial transcriptomics of the developing cortex, accurately recapitulating known biological 559 

insights into the spatial organization of proliferative activity.560 
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Discussion 561 

We designed ccAFv2 to use transcriptomic data to accurately classify cell cycle states and a 562 

quiescent-like G0 state for single cells or nuclei. The performance of the updated classifier was 563 

superior to its predecessor and demonstrated comparable or better performance than other 564 

state-of-the-art cell cycle classifiers. The ccAFv2 classifies cells into a broader range of cell 565 

cycle states than the contemporary state-of-the-art cell cycle classifiers (Hao et al. 2021; Zheng 566 

et al. 2022; Schwabe et al. 2020; Liu et al. 2017; Hsiao et al. 2020; Scialdone et al. 2015) and 567 

includes a quiescent-like G0 state. Moreover, ccAFv2 features a tunable parameter to filter out 568 

less certain classifications. We showcased the versatility of ccAFv2 by successfully applying it 569 

to classify cells, nuclei, and spatial transcriptomics data in humans and mice, using various 570 

normalization methods and gene identifiers. The classifier can be used either as an R package 571 

integrated with Seurat (https://github.com/plaisier-lab/ccafv2_R) or a PyPI package integrated 572 

with SCANPY (https://pypi.org/project/ccAF/). We proved that ccAFv2 has enhanced accuracy, 573 

flexibility, and adaptability across various experimental conditions, establishing ccAFv2 as a 574 

powerful tool for exploring cell cycle dynamics in diverse biological contexts. 575 

A major limitation of developing cell cycle classifiers is a lack of scRNA-seq datasets with 576 

ground truth labels for each cell cycle state, including G0. Previous studies have used the DNA 577 

stain Hoechst (Buettner et al. 2015) or FUCCI (Leng et al. 2015) to sort cells into G1, S, and 578 

G2M subpopulations. However, the limitations of these studies render them unsuitable for 579 

constructing a classifier. These limitations include the use of embryonic stem cells which lack 580 

distinct G1 or G0 phases as the model system (Ballabeni et al. 2011; White and Dalton 2005), 581 

not of fixing the cells, and reliance on non-transcriptional markers. We demonstrated the ability 582 

to isolate cells from specific cell cycle states, characterize them transcriptionally, and map their 583 

signatures onto scRNA-seq data to identify the spatial distribution of those states. In future 584 

studies, we aim to leverage this approach to create training datasets for developing more robust 585 

and generalizable cell cycle classifiers. 586 

Batch effects pose a significant challenge for single cell, nuclei, and spatial RNA-seq studies; 587 

and we have addressed their impact on ccAFv2 in three ways. First, we strongly recommend 588 

users apply ccAFv2 to each dataset separately prior to any integration or combining of datasets. 589 

The ccAFv2 predictions in the metadata integrate very easily and preempt any issues caused by 590 

batch effects between datasets. Second, we advise using SCTransform normalization to 591 

standardize datasets to the Pearson residual scale, which mitigates differences in magnitude 592 

and variance (Hafemeister and Satija 2019). The ccAFv2 R package is specifically 593 

parameterized to reapply SCTransform, normalizing the expression of all genes, not just the 594 

most variable ones, to maximize overlap with ccAFv2 marker genes, ensuring optimal 595 

classification accuracy for each cell. Finally, ccAFv2 model incorporates expression of multiple 596 

marker genes to predict a cell cycle state. This approach minimizes the influence of batch 597 

effects, as a significant misclassification would require the simultaneous, directional alteration of 598 

multiple marker genes, a highly improbable scenario for random batch effects. By adhering to 599 

these recommendations and leveraging the design of ccAFv2, we provide effective strategies to 600 

mitigate the impact of batch effects when using ccAFv2. 601 

The ccAFv2 classifier will be most helpful in biological contexts where the cell cycle is active. 602 

We utilized atlases of developing human and mouse embryos and fetuses because proliferation 603 

is essential in developing organisms (Soufi and Dalton 2016; Pauklin and Vallier 2013). 604 

Evidence is building to show that cell fate decisions are tightly coupled to cell cycle events and 605 

machinery (Pauklin and Vallier 2013). In healthy adult organisms, proliferation plays critical roles 606 

in several processes:  maintenance of stem cell populations (Harada et al. 2021), clonal 607 

expansion of both innate and adaptive immune cells (Adams et al. 2020), and germ cell meiosis, 608 
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encompassing oogenesis (Bukovsky et al. 2005) and spermatogenesis (Guo et al. 2018). Our 609 

recommendation is to aggregate Neural G0, G1, and Late G1 into G0/G1 when applying ccAFv2 610 

to cell types that are not neuroepithelial. Defects in cell cycle machinery or regulation can lead 611 

to runaway proliferation characteristic of cancer (Hanahan and Weinberg 2000), or the lack of 612 

proliferation of crucial cell types can lead to neurodegenerative disorders (Joseph et al. 2020). 613 

Cell cycle classification would benefit any in vitro, in vivo, or ex vivo studies of proliferating cells. 614 

On the other hand, we provide methods to regress the cell cycle expression patterns out of 615 

single cell or nuclei data to uncover underlying biological signals. Overall, incorporating cell 616 

cycle states into single-cell and nuclei studies enhances our ability to dissect complex biological 617 

systems, unravel cellular heterogeneity, and decipher the molecular mechanisms by which 618 

proliferation affects cellular processes.  619 

The studies reported here demonstrate that the quiescent-like G0 state (Neural G0) in ccAFv2 is 620 

detectable across all three germ layers in developing human fetal cells and provided a list of 621 

putative marker genes that are common across cell types. This corroborates our previous 622 

findings that Neural G0 was an active transcriptional signature executed by a subpopulation of 623 

U5-hNSCs (O’Connor et al. 2021). However, support for novel G0 states was observed in the 624 

growth factor deprived LGG cells, where an increased proportion of “Unknown” cells was 625 

detected, hinting at novel quiescent-like state(s) missing from ccAFv2. Other studies have 626 

identified multiple G0 states in a single cell type that are invoked in response to different stimuli 627 

(e.g., spontaneous loss of mitogenic factors, serum starvation, drug treatment, etc.) (Stallaert et 628 

al. 2022). Thus, we find it very likely that additional G0 states with distinct transcriptional 629 

signatures will be identified. The ccAFv2 ANN and its associated training software are fully 630 

equipped to integrate these additional G0 states. Future studies that extend the cell cycle 631 

classifier to include novel G0 states holds immense potential for advancing our understanding of 632 

quiescence in biological systems. By leveraging advanced computational methods, high-633 

throughput technologies, and interdisciplinary approaches, researchers can unravel the 634 

complexities of cellular dormancy and pave the way for innovative strategies to manipulate 635 

quiescent cell behavior to improve health and combat disease. 636 

637 
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Methods 638 

Culture of LGG glioma neurospheres 639 

For the “no growth factors” condition, cells from LGG glioma neurospheres (LGG275, BT237) 640 

were dissociated, seeded into two poly-D-lysine and laminin coated T25 cm2 flasks at a density 641 

of 40,000 cells/cm2, and cultured for 4 days using medium without growth factors. For the “with 642 

growth factors” condition, cells were cultured for 4 days as neurospheres with EGF and FGF2 at 643 

10µg/L and heparin at 2mg/L in PolyHEMA coated flasks, and medium was replaced 1 day 644 

before single cell sequencing. 645 

 646 

scRNA-seq library preparation and sequencing of LGG glioma neurospheres 647 

Cells were dissociated and single cell suspensions loaded onto the Chromium controller (10x 648 

Genomics, Pleasanton, CA) to generate single-cell Gel Beads-in-Emulsion (GEMs). The single-649 

cell RNA-seq libraries were prepared using the Chromium Next GEM Single Cell 3’ Reagent 650 

Kits V3.1 (Dual Index, P/N 1000268, 10x Genomics). Briefly, reverse transcription was 651 

performed at 53°C for 45 min followed by incubation at 85°C for 5 min. GEMs were then broken 652 

and the single-stranded cDNAs were cleaned up with DynaBeads MyOne Silane Beads 653 

(Thermo Fisher Scientific; P/N 37002D). The cDNAs were PCR amplified, cleaned up with 654 

SPRIselect beads (SPRI P/N B23318), fragmented, end-repaired, A-tailed, and size-selected 655 

with SPRIselect beads. Indexed adapters were ligated and cleaned up with SPRIselect beads. 656 

The resulting DNA fragments were PCR amplified and size selected with SPRIselect beads. 657 

The size distribution of the resulting libraries was monitored using a Fragment Analyzer (Agilent 658 

Technologies, Santa Clara, CA, USA) and the libraries were quantified using the KAPA Library 659 

quantification kit (Roche, Basel, Switzerland). The libraries were denatured with NaOH, 660 

neutralized with Tris-HCl, and diluted to 150 pM. Clustering and sequencing were performed on 661 

a NovaSeq 6000 (Illumina, San Diego, CA, USA) using the paired-end 28-90 nt protocol on one 662 

lane of an SP flow cell and on one lane of an S4 flow cell. Sequencing data can be accessed 663 

from NCBI SRA. Both library preparation and sequencing were performed at the Montpellier 664 

GenomiX facility (MGX) in Montpellier, France.  665 

 666 

Data analysis 667 

Image analyses and base calling were performed using the NovaSeq Control Software and the 668 

Real-Time Analysis component (Illumina). Demultiplexing was performed using the 10x 669 

Genomics software Cellranger mkfastq (v7.1.0), a wrapper of Illumina's bcl2fastq (v2.20). The 670 

quality of the raw data was assessed using FastQC (v0.11.9) from the Babraham Institute and 671 

the Illumina software SAV (Sequencing Analysis Viewer). FastqScreen (v0.15.1) was used to 672 

identify potential contamination. Alignment, gene expression quantification and statistical 673 

analysis were performed using Cell Ranger count with the human's transcriptome (GRCh38). To 674 

discard ambient RNA falsely identified as cells, Cell Ranger count was run a second time with 675 

the option --force-cells to force the number of cells to detect. Cell Ranger aggr was used to 676 

combine each sample results into one single analysis. Cell Ranger output files can be accessed 677 

from NCBI GEO at GSE263796. 678 

 679 

scRNA-seq, snRNA-seq, and ST-seq neuroepithelial datasets 680 
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In total 42 scRNA-seq, 11 snRNA-seq, and 8 ST-seq datasets were processed and employed in 681 

the studies used to characterize the ccAFv2 classifier. Detailed descriptions of the source, 682 

quality control, processing, normalization of each dataset can be found in the Supplemental 683 

Material. Analyses were conducted in R (R Core Team 2025) using the specified packages. 684 

 685 

Implementation of the ccAFv2 ANN model 686 

The core algorithm of the ccAFv2 is a fully connected artificial neural network (ANN) 687 

implemented using the Keras API (v2.12.0) that employs TensorFlow (v2.12.0) to construct 688 

ANNs. A fully connected ANN model was developed to classify the cell cycle state of single cells 689 

(Figure 1A). The input for a single cell is expression for the 861 most highly variable genes 690 

(log2(FC) > 0.25; p value adj < 0.05) from O’Connor et al., 2021. A dense input layer takes in the 691 

expression of the 861 and is fully connected to the first hidden layer comprised of 600 neurons. 692 

The first hidden layer is fully connected to the second hidden layer comprised of 200 neurons 693 

which then connects to the output layer of seven neurons (one for each cell cycle class:  Neural 694 

G0, G1, Late G1, S, S/G2, G2/M, and M/Early G1). A SoftMax regression function in the output 695 

layer is used to compute the likelihood for each class. Overfitting in the ANN is prevented 696 

through the incorporation of two dropout layers using a dropout rate of 50%. The first dropout 697 

layer is positioned between the first and second hidden layers and the second dropout layer is 698 

between the second hidden layer and the output layer (Figure 1A, Xie et al. 2019). Neuron 699 

activation functions were modeled using the Rectified Linear Unit (ReLU) function. The loss 700 

function for the ccAFv2 ANN was categorial cross-entropy and Stochastic Gradient Descent 701 

(SGD) was used to optimize the learning. The predicted class for a single cell is identified as the 702 

highest likelihood exceeding the specified threshold (Figure 1B). By default, the threshold is set 703 

at 0.5 and can be adjusted within the range of 0 to 1. If a cell's likelihood falls below the 704 

threshold it is classified as "Unknown." 705 

 706 

Training the ccAFv2 ANN classifier 707 

The ccAFv2 ANN model was trained on the 2,692 cells and 861 genes from the U5-hNSCs 708 

dataset (O’Connor et al. 2021) using the labels from O’Connor et al., 2021. The training process 709 

encompassed ten epochs repeated five times consecutively. In each epoch, the training data 710 

was randomly partitioned into 80% for training and 20% for testing, with the testing subset held 711 

out to assess training accuracy. 712 

 713 

Comparing ccAFv2 to other classification methods 714 

Classifiers were trained using the scRNA-seq gene expression of 2,962 cells with 861 genes 715 

and cell cycle labels from the U5-hNSCs. The ccAFv2 classifier was tested against: (i) support 716 

vector machine with reject option (SVMrej; classification cutoff ≥ 0.7), a general-purpose 717 

classifier from the Scikit-learn library; (ii) random forest (RF), another general-purpose classifier 718 

from the Scikit-learn library; (iii) k-nearest neighbor (KNN) from the SCANPY ingest method 719 

(Wolf et al., 2018); and (iv) neural network (NN) ACTINN (Ma & Pellegrini, 2020). Classifier 720 

performance was determined using F1 scores computed for each cell cycle state. Ten-fold 721 

cross-validation with an 80% training and 20% testing split was used to determine the variance 722 

of F1 scores for each cell cycle state from each classifier. A Student’s t-test was used determine 723 

if the mean of the F1 scores were significantly lower than ccAFv2. 724 
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 725 

Optimizing the number of neurons in hidden layers 726 

The configuration of neurons in the two hidden layers is designed to reduce the number of 727 

neurons at each layer from the 861 input genes down to the 7 cell cycle states. In total, 18 728 

ccAFv2 models were trained using the U5-hNSCs dataset to determine the optimal number of 729 

neurons for these hidden layers. This involved testing at increments of 100 the number of 730 

neurons in the first hidden layer within the range of 200 to 700 neurons and in the second 731 

hidden layer within the range of 100 to 400 neurons. For comparisons the F1 scores were 732 

computed for each cell cycle state. Each model was also tested on pre-processed scRNA-seq 733 

data of glioma stem cells (BT322, BT324, BT326, BT333, BT363, BT368) and tumor cells 734 

(BT363, BT368) from Couturier et al. 2022 (Supplemental Table S11), along with Grade 2 735 

Astrocytoma (LGG275; AUGUSTUS et al. 2021) (Supplemental Table S12). For these 736 

datasets, Adjusted Mutual Information (AMI) scores, with the reference labels derived from 737 

ccSeurat calls, and the number of cells predicted were calculated using the AMI function from 738 

the aricode package in R. Barcodes with an “Unknown” ccAFv2 label were removed before 739 

metrics were calculated. 740 

 741 

Computing feature importance 742 

Feature importance for all 861 ccAFv2 features was determined by permuting each feature’s 743 

expression, running ccAFv2 with the permuted expression matrix, and comparing the likelihoods 744 

of all cells for a specific ccAFv2 state to the unpermuted likelihoods of the same cells. The 745 

average difference in likelihood was computed for each feature in each ccAFv2 state. A 746 

negative average difference in likelihood indicates that a feature was important, and the most 747 

negative features are the most important. 748 

 749 

Comparing ccAFv2 to existing cell cycle classifiers 750 

The performance of ccAFv2 was compared with existing cell cycle state classifiers: ccAF (v1) 751 

(O’Connor et al. 2021), Seurat (Hao et al. 2021), Tricycle (Zheng et al. 2022), SchwabeCC 752 

(Schwabe et al. 2020; Zheng et al. 2022), reCAT (Liu et al. 2017), Peco (Hsiao et al. 2020) and 753 

Cyclone (Scialdone et al. 2015). Each classifier was applied to the PCW 9 R1 (Zeng et al, 2023) 754 

and BT322 (Couturier et al. 2020b) scRNA-seq datasets. Data was prepared as required to run 755 

each classifier method. The quality of predicted cell cycle states for each classification method 756 

was determined by computing the AMI score relative to reference cell cycle states. Ten-fold 757 

cross-validation with a 20% hold-out testing set was used to determine the variance of AMI 758 

scores for each cell cycle state from each classification method. For both datasets, the ccSeurat 759 

predicted cell cycle states were used as the reference for computing AMI scores. Cells with 760 

“Unknown” labels were excluded when computing AMI scores. The median AMI scores were 761 

tabulated and plotted against the number of predicted states for each classifier. Representative 762 

cell cycle state predictions for each classification method were also visualized as UMAPs. 763 

 764 

Because each classifier predicts different numbers of cell cycle states (3 – 8 cell cycle states) it 765 

was necessary to use simulated datasets to determine the range of AMI scores that correspond 766 

to specific amounts of similarity to the reference. Predicted cell cycle states with 3 to 8 states 767 

were simulated that contained specific 0 to 100% similarity to a simulated reference, at 10% 768 
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increments. The average AMI from 100 simulated cell cycle classifications was computed for 769 

each specific amount of similarity to a simulated reference and plotted as a guide to assess the 770 

quality between classification methods with different numbers of cell cycle states. 771 

 772 

Finding the optimal likelihood threshold 773 

A neuroepithelial dataset of in vivo hNSCs from fetal tissue at 3 to 12 weeks post-conception 774 

from Zeng et al., 2023, that was independent of the ccAFv2 training data, was used to 775 

determine the optimal likelihood threshold. Random sub-sampling of 90% of cells for each 776 

timepoint was used to determine the variance of the classifications and ccAFv2 was applied with 777 

likelihood thresholds ranging from 0.0 to 0.9 by increments of 0.1. For each iteration metrics 778 

were collected including the number of cells predicted, and an AMI score computed using 779 

ccSeurat cell cycle states as the reference. Cells with “Unknown” labels were excluded when 780 

computing AMI scores. Metrics were not computed when 20 or fewer cells were predicted. 781 

Student’s t-tests were used to compare AMIs computed at each examined likelihood threshold 782 

with those derived from a likelihood threshold of 0.0, which is equivalent to not using a likelihood 783 

threshold, and a significant difference was considered a p-value ≤ 0.05. A baseline for 784 

comparison was provided by random removal of an equivalent percentage of cells that were 785 

classified as “Unknown” for each likelihood threshold, and an AMI was computed with the 786 

remaining cells. Student’s t-tests were used to compare AMIs of the likelihood thresholded and 787 

random removal at each likelihood threshold, and a significant difference was considered a p-788 

value ≤ 0.05. 789 

 790 

Cell cycle state validation using hNSCs (PCW 9 R1) 791 

We used the hNSCs collected from whole fetal brain at nine weeks post-conception replicate 1 792 

(PCW 9 R1) to validate the cell cycle states assigned by ccAFv2. After quality control 793 

(Supplemental Table S13) and normalization with sctransform, 5575 cells were classified into 794 

distinct cell cycle states using ccAFv2. We selected five key markers of cell cycle states: 795 

CCND1 (Late G1), CCNE2 (S), CCNA2 (G2/M), CCNB1 (G2/M), and CDK1 (G2/M) to assess 796 

the expression patterns associated with these phases. The average expression levels of the 797 

genes were calculated and visualized using violin plots, which were grouped according to the 798 

cell cycle states predicted by ccAFv2. In addition, we monitored the dynamic changes in the 799 

average expression of each key marker as cells transitioned between different cell cycle states. 800 

Student’s t-tests were used to determine if the marker expression was significantly different at 801 

each cell cycle state compared to the G1 state. Finally, relative expression levels of top marker 802 

genes for each cell cycle state were identified using FindAllMarkers() and visualized using a 803 

heatmap, with cells grouped by cell cycle state. 804 

 805 

Comparison of Neural G0 state with G0 arrest signature using QuieScore  806 

We applied the QuieScore algorithm (https://github.com/dkornai/QuieScore) to the U5-hNSCs 807 

using the cancer type parameter of “LGG”. The G0 cells were identified by a q_score_raw of 808 

greater than 3. We evaluated the similarity between the QuieScore-identified G0 cells with the 809 

ccAFv2-identified Neural G0 cells using hypergeometric enrichment analysis. 810 

 811 

Determining the sensitivity of ccAFv2 to missing genes 812 

Sensitivity analysis was conducted on the U5-hNSC dataset by randomly setting a defined 813 

percentage of classifier genes (1-90%) to zero and applying the ccAFv2 classifier. Each 814 
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percentage of classifier genes was subsampled ten times and for each iteration the metrics 815 

error rate and percentage of cells predicted were recorded. 816 

 817 

Demonstrating the generalizability of ccAFv2 818 

The 245,906 human fetal cells 3 to 12 weeks post conception (Zeng et al., 2023) encompassing 819 

fifteen cell types that represent all three germ layers (Supplemental Table S14) were classified 820 

by ccAFv2. Positive marker genes for the Neural G0 cells were identified for each cell type 821 

using the FindAllMarkers function (log2 fold change ≥ 0.25; adjusted p-value ≤ 0.05). The Neural 822 

G0 markers were tabulated among each dataset and across all datasets to identify common 823 

Neural G0 marker genes. 824 

 825 

Regressing out cell cycle transcriptional signatures using ccAFv2 marker genes 826 

The average expression from the marker genes for each cell cycle state (Supplemental Table 827 

S9) was computed using the AddModuleScore function in Seurat. The S and G2/M or Late G1, 828 

S, S/G2, G2/M, M/Early G1 module scores were regressed out in the SCTransform function in 829 

Seurat. The variance explained by the first principal component of the marker genes was used 830 

as a metric for co-expression of the cell cycle transcriptional signatures. Empirical p-values were 831 

calculated by comparing the observed variance explained to the variance explained of 1,000 832 

randomly sampled gene sets of the same size. Significantly regressing out the cell cycle 833 

transcriptional signature was determined by a reduction in the variance explained that made the 834 

empirical p-value non-significant (>0.05). 835 

 836 

Application of ccAFv2 to neuroepithelial scRNA‐seq and snRNA-seq profiling studies 837 

To maximize overlap with the ccAFv2 input genes, we enabled the option to apply SCTransform 838 

(do_sctransform) for SCTransformed datasets. The species ('human' or 'mouse') and gene ID 839 

('Ensembl' or 'symbol') options were configured based on the specifications of each dataset. 840 

Predicted cell cycle states were collected from each dataset and integrated with meta 841 

information. 842 

 843 

Application of ccAFv2 to ST-seq data 844 

We downloaded the transcriptome profiles for a 5 μm section of a male C57BL/6 mouse embryo 845 

taken from an FFPE tissue block obtained from Charles River Laboratories that was made 846 

public by 10x Genomics (https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-847 

expression-libraries-of-mouse-embryo). The 10x Visium HD Gene Expression Library 848 

preparation kit afforded a resolution of 2 μm2 spots and details about sample preparation and 849 

library performance and QC can be found on the 10x website linked above. In Seurat the 2 μm2 850 

spots were binned into 8 μm2 bins, the data log normalized, and ccAFv2 was applied to predict 851 

cell cycle states for each spot. Expression of key genes was plotted using the normalized and 852 

scaled values. 853 

 854 

R and Python package for ccAFv2 855 

The ccAFv2 classifier has been implemented as an R package (https://github.com/plaisier-856 

lab/ccafv2_R) that can be installed and used as part of a Seurat workflow, and works for both 857 

Seurat version 4 and 5 (Supplemental Figure S14). Due to differences in the Seurat v5 858 
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SCTransform function it was necessary to set the vst.flavor equal to “v1” to make it equivalent to 859 

Seurat v4.3.0.1, and leaving the vst.flavor as the default in v5 leads to only small differences 860 

(Supplemental Figure S14). For the Seurat v5.0.2 the matrixStats package was required to be 861 

v1.1.0. Additionally, the ccAFv2 classifier has been implemented as a Python PyPI installed 862 

package (https://pypi.org/project/ccAF/) that can be installed and used as part of a SCANPY 863 

workflow. It should be noted that SCTransform normalization is the suggested method for 864 

preparing data that will be classified by ccAFv2, and as of now there is no SCTransform option 865 

in SCANPY. 866 

 867 

Culture of human skeletal muscle satellite cells (hSkMSCs) 868 

hSkMSCs were purchased from ScienCell Research Laboratories (P/N 3510, ScienCell) and 869 

were grown in Skeletal Muscle Cell Medium (P/N 3501; ScienCell) on Nunclon Delta-treated cell 870 

culture flasks and passaged according to vendor protocols. Cells were detached from their 871 

plates using Trypsin/EDTA Solution (P/N 183; ScienCell) and collected with Trypsin Neutralizing 872 

Solution (P/N 113; ScienCell). 873 

 874 

scRNA-seq characterization of hSkMSCs 875 

hSkMSCs were grown up to 80% confluency, washed with Molecular Biology Grade PBS (P/N 876 

45001-130, VWR), dissociated with Trypsin/EDTA Solution, and collected in Trypsin 877 

Neutralizing Solution. After centrifugation at 300 x g for 5 minutes, cells were resuspended in 878 

Molecular Biology Grade PBS containing 0.04% BSA and counted using an automated cell 879 

counter. Cells were then diluted to 1,000 cells/μl. scRNA-seq library preparation was performed 880 

by the ASU Genomics Core facility. Samples were processed using the 10x Chromium Single 881 

Cell 3′ Gene Expression v3.1 kit into a single library (10x Genomics). The quality of the library 882 

was determined using Agilent TapeStation automated electrophoresis. Samples were 883 

sequenced at an average read depth of 100,000 reads per cell (Illumina, Novogene). The 10x 884 

Genomics CellRanger v7.0.1 was used to align to the Human reference genome GRCh38-2020-885 

A (GRCh38), quantify, and provide basic quality control metrics for the scRNA-seq data. The 886 

10x CellRanger outputs for 7,795 hSkMSCs was loaded into Seurat. Filtering and downstream 887 

analyses was done using quality control and downstream processing code templates provided 888 

in https://github.com/plaisier-lab/ccAFv2. Standard Seurat filters were applied requiring that the 889 

cells had to have a least 200 features per cell, and transcripts need to be expressed in at least 3 890 

cells. Then the cells were further filtered to 7,207 hSkMSCs by requiring the number of UMIs 891 

per cell to fall within the range of 4,000 to 100,000, and the percentage of mitochondrial genes 892 

expressed relative to total expression per cell was required to fall within the range of 0.9 to 10%. 893 

The filtered cells were then normalized using SCTransform (Hafemeister and Satija 2019), 894 

principal components were calculated, and a UMAP was generated. 895 

 896 

Staining for quiescent-like G0 cells 897 

This staining protocol is based on a protocol developed by Gookin et al., 2017 (Gookin et al. 898 

2017) to identify a G0/quiescent subpopulation and has been adapted for fluorescence-899 

activated cell sorting (FACS) and to preserve RNA integrity. Cells were expanded in Nunclon 900 

Delta-treated cell culture flasks to achieve the desired cell count, accounting for a 50% loss 901 

during staining preparation before downstream FACS.  902 
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 903 

Replication stain:  Replicating cells were labeled with a synthetic nucleotide 904 

Tetramethylrhodamine-dUTP (P/N 17023, AAT Bioquest) transported into the cells using a 905 

synthetic nucleotide triphosphate transporter (SNTT) the BioTracker NTP-Transporter Molecule 906 

(P/N SCT064, Millipore Sigma) (Zawada et al. 2018; Gookin et al. 2017). When cells reached 907 

70% confluence, they were washed with tricine buffer, the SNTT and synthetic nucleotide were 908 

diluted so each component was 20 µM in tricine buffer, added to cells, and incubated at 37°C 909 

and 5% CO2 for 5 minutes to transport fluorescently labeled synthetic nucleotide into the cells. 910 

The stain was then aspirated and replaced with complete culture medium, and the cells were 911 

incubated at 37°C and 5% CO2 for 1 hour to allow time for replicating cells to incorporate the 912 

fluorescently labeled synthetic nucleotides into their genome’s. 913 

 914 

Viability stain:  Cells were then washed with Molecular Biology Grade PBS, dissociated with 915 

Trypsin/EDTA Solution, and collected in Trypsin Neutralizing Solution. After centrifugation at 916 

300 x g for 5 minutes, cells were resuspended in Molecular Biology Grade PBS and counted 917 

using an automated cell counter. Cells were centrifuged again, PBS was removed, resuspended 918 

in 1:1000 LIVE/DEAD™ Fixable Near-IR Dead Cell Stain Kit (P/N L34975, ThermoFisher 919 

Scientific) using manufacturer instructions, and incubated for 30 minutes at room temperature in 920 

the dark.  921 

 922 

Fixation and rehydration:  Cells were washed with 0.5% Ultra-Pure BSA (P/N AM2616, 923 

ThermoFisher Scientific) in Molecular Biology Grade PBS and centrifuged at 300 x g two times. 924 

The cells were fixed by first resuspending them in ice-cold Molecular Biology Grade PBS at a 925 

volume of 200 µl per 1 million cells. Then, ice-cold 100% methanol was added dropwise at a 926 

volume of 800 µl per 1 million cells, with gentle shaking. Cells were then incubated for at least 927 

30 minutes at -20°C. After fixation, cells were kept on ice. Cells were rehydrated with cold 3X 928 

SSC Rehydration Cocktail (Chen et al. 2018), followed by centrifugation at 500 x g for 5 929 

minutes. Cells were washed one more time with the SSC Rehydration Cocktail, and one time 930 

with 0.5% Ultra-Pure BSA in Molecular Biology Grade PBS. 931 

 932 

Phosphorylated RB (pRB) staining: Hypo-phosphorylation of pRB is an established indicator of 933 

a cell being in a quiescent G0 state (Gookin et al. 2017). Primary antibody for pRB (Ser807/811) 934 

(P/N 8516T, Cell Signaling Technologies) was added at a dilution of 1:200 in 0.5% Ultra-Pure 935 

BSA in Molecular Biology Grade PBS and incubated overnight at 4°C. Cells were washed three 936 

times with 0.5% Ultra-Pure BSA in Molecular Biology Grade PBS and then fluorescently labeled 937 

secondary antibody (P/N 4412, Cell Signaling) was added at a dilution of 1:1000 dilution for 30 938 

minutes. Samples were then washed two times with 0.5% Ultra-Pure BSA in Molecular Biology 939 

Grade PBS. 940 

 941 

DNA staining:  The ploidy of cells was determined using Hoechst DNA stain (Gookin et al. 942 

2017). Prior to FACS cells were stained with 2 ug/ml of Hoechst DNA stain (P/N 561908, BD) 943 

diluted in Molecular Biology Grade PBS, without BSA.  944 

 945 

Fluorescence-activated cell sorting of G0 cells 946 
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Cells were filtered using sterile CellTrics 30 μm filters (P/N 04-004-2326, Sysmex) into sterile, 947 

nuclease-free 5 ml polystyrene round-bottom tubes for sorting (P/N 352235, Corning) and kept 948 

covered from light and on ice until sorting. Cells were stained using the following experimental 949 

design to define gates and have adequate controls:  1) Hoechst only, 2) Live/Dead only, 3) 950 

replication only, 4) pRB only, 5) replication fluorescence minus one (FMO), 6) pRB FMO, and 7) 951 

all stains. Example of gating can be seen in Figure 4A. Cell sorting was performed using the 952 

FACSymphony flow cytometer (BD). G0 cells were defined as viable cells, that were diploid 953 

(2N), with low pRB. FACS data analysis was performed using FlowJo (BD). 954 

 955 

RNA-sequencing of G0 cells 956 

RNA was extracted from 400,000 sorted cells from two biological replicates using the Qiagen 957 

RNeasy Micro Kit (P/N 74004, Qiagen). The concentration and quality of RNA was determined 958 

by Nanodrop (Thermo Scientific) and High Sensitivity RNA TapeStation (Agilent). Both G0 959 

samples had more than 300 ng of RNA and RIN scores of greater than 9. Samples were sent 960 

for sequencing on the NovaSeq X Plus (Illumina, Novogene). A docker RNA-seq pipeline 961 

(cplaisier/star_2_7_1a_grch38_p21; DOI = https://doi-962 

org.ezproxy1.lib.asu.edu/10.5281/zenodo.5519663) was employed to align reads from FASTQ 963 

files to the genome using STAR v2.7.1a (Dobin et al. 2013) and GENCODE genome build 964 

GRCh38 Release 31 (Frankish et al. 2023). Counts were tabulated using htseq-count (Putri et 965 

al. 2022). DESeq2 (Love, Huber, and Anders 2014) was used for subsequent differential gene 966 

expression analysis. 967 

  968 

Correlating RNA-seq and scRNA-seq data 969 

DESeq2-normalized RNA-seq data and sctransform-normalized scRNA-seq data were loaded 970 

into R. Marker genes were selected by identifying highly variable scRNA-seq genes with more 971 

than 10 counts in the bulk G0 subpopulations. Additionally, 861 ccAFv2 marker genes present 972 

in the RNA-seq data were included. Both scRNA-seq and RNA-seq datasets were filtered to 973 

include these 3,120 marker genes. The expression profiles of individual cells in the scRNA-seq 974 

data were correlated with the G0 RNA-seq profiles using the corr package in R (Makowski et al., 975 

2020), using the Spearman method.  976 

 977 

 978 

  979 
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Data Access  980 

All raw and processed sequencing data for the hSkMSC FACs sorted RNA-seq and scRNA-seq 981 

generated in this study have been submitted to NCIB Gene Expression Omnibus (GEO; 982 

https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE285220. All raw and 983 

processed sequencing data for the four LGG scRNA-seq generated in this study have been 984 

submitted to GEO under accession number GSE263796. 985 

 986 

All other data used in our analyses are available on Zenodo 987 

(https://zenodo.org/doi/10.5281/zenodo.10963136). We also provide all code on github.com 988 

(https://github.com/plaisier-lab/ccAFv2) and Docker images on DockerHub that were used to run 989 

all analyses (https://hub.docker.com/r/cplaisier/ccafv2_extra and 990 

https://hub.docker.com/r/cplaisier/ccnn). 991 

 992 

R package for ccAFv2 993 

We have developed an R package that can be installed using devtools from github. The 994 

instructions for installation and usage can be found on github:  https://github.com/plaisier-995 

lab/ccafv2_R  996 

 997 

Python package for ccAFv2 998 

We have also developed a Python package that can be installed using pip from PyPi. The 999 

instructions for installation and usage can be found on PyPi and github:  1000 

https://pypi.org/project/ccAFv2/ and https://github.com/plaisier-lab/ccAFv2_py 1001 

 1002 

Docker images for ccAFv2 1003 

We also provide Docker images that include all dependencies and ccAFv2 preinstalled to make 1004 

the package more user friendly. Please see the github repositories for information about how to 1005 

get, run, and use the Docker images. 1006 

- R package:   1007 

o Seurat v4:  https://hub.docker.com/r/cplaisier/ccafv2_seurat4 1008 

o Seurat v5:  https://hub.docker.com/r/cplaisier/ccafv2_seurat5 1009 

- Python package:  https://hub.docker.com/r/cplaisier/ccafv2_py  1010 
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Figure Legends 1189 

 1190 

Figure 1. Implementing and testing the ccAFv2 classifier. A. The design of the Artificial Neural 1191 

Network (ANN) implemented for the ccAFv2. Expr. = expression, ReLU = Rectified Linear Units. 1192 

B. Method designed to determine the predicted class from the likelihoods generated by running 1193 

expression data from a single cell through the ccAFv2 ANN. C. Comparison of five different 1194 

classification methods using F1 scores (a metric that integrates precision and recall, and has a 1195 

maximum value of 1), from the 10-fold cross validation analysis of training on the U5-hNSCs. 1196 

The F1 scores are computed for each cell cycle state from each of the 10 testing datasets. D. 1197 

Determining the optimal number of neurons in each hidden layer using average U5-hNSC F1 1198 

score across cell cycle states on the x-axis, and the average AMI score across the remaining 1199 

datasets (U5-hNSCs; glioma stem cells:  BT322, BT324, BT326, BT333, BT363, BT368; tumor 1200 

cells:  BT363, BT368; and Grade 2 Astrocytoma:  LGG275). Each combination of hidden layer 1201 

neurons is labeled using: number of hidden layer one neurons / number of hidden layer two 1202 

neurons. The chosen optimal configuration of 600 hidden layer 1 neurons and 200 hidden layer 1203 

2 neurons (600 / 200) is denoted in red. E. UMAP of U5-hNSCs with cells colored by the labels 1204 

from O’Connor et al., 2021. F-L. The top 15 most important features for the ccAFv2 classifier 1205 

were identified based on the mean change (Δ) in likelihood after permuting each feature's 1206 

expression. A negative mean change in likelihood indicates that the feature increased the 1207 

likelihood of predicting a ccAFv2 state. 1208 

 1209 

Figure 2. Comparing the performance of ccAFv2 to existing cell cycle state classifiers. A. 1210 

Median AMI score for each cell cycle classifier’s predictions of the hNSCs from a whole fetal 1211 

brain at 9 weeks post conception (PCW 9 R1; Zeng et al., 2023) relative to the ccSeurat cell 1212 

cycle states is plotted against the number of cell cycle states predicted by the classifier. The 1213 

average similarity to the reference was computed, based on the number of cell cycle states in 1214 

the reference and predicted by the classifier, and were plotted at 10 percent intervals to facilitate 1215 

comparison between classifiers with differing numbers of predicted cell cycle states. B. Overlay 1216 

of representative cell cycle state predictions on the hNSCs from a whole fetal brain at PCW 9 1217 

R1. C. Median AMI score for each cell cycle classifier’s predictions of the glioma stem cell line 1218 

BT322 relative to the ccSeurat cell cycle states is plotted against the number of cell cycle states 1219 

predicted by the classifier. Again, average similarity to the reference was computed based on 1220 

the number of cell cycle states in the reference and predicted by the classifier and were plotted 1221 

at 10 percent intervals to facilitate comparison between classifiers with differing numbers of 1222 

predicted cell cycle states. D. Overlay of representative cell cycle state predictions on the tumor 1223 

cells of BT322. 1224 

 1225 

Figure 3. Application of ccAFv2 to in vivo hNSCs from fetal tissue 3 to 12 weeks post 1226 

conception. A. Proportions of cell cycle states in U5-hNSCs which were grown in vitro and were 1227 

derived from a human fetus at 8 PCW for both ccAFv2 and ccSeurat. B. Proportions of cell 1228 

cycle states of hNSCs extracted from 3 to 12 PCW fetal tissue for both ccAFv2 and ccSeurat 1229 

(Zeng et al, 2023). C-F. Distribution of cyclin expression in the in vivo hNSCs from a whole 1230 

human fetal brain at PCW 9 R1 grouped by cell cycle phase. G. Mean expression of cyclins 1231 

across the ccAFv2 cell cycle phases in cells from a whole human fetal brain at PCW 9 R1. Red 1232 
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points denote the ccAFv2 cell cycle state with the highest average expression. Gene expression 1233 

levels at each cell cycle state were compared to those in G1 cells using Student’s t-test (**** 1234 

indicates p ≤ 0.0001). H. Expression of ccAFv2 marker genes for each cell cycle state in hNSCs 1235 

from a human whole fetal brain at PCW 9 R1. Important genes names are denoted in dark red. 1236 

I. Testing different likelihood thresholds 0.0 to 0.9 using AMI score and percent of cells 1237 

predicted as the metrics. Dashed red line indicates 90 percent of cells were predicted, and red 1238 

dot indicates significantly improved AMI score due to applying threshold. J. Comparison of 1239 

likelihood threshold application to random removal of the same number of cell predictions for in 1240 

vivo hNSCs from a human whole fetal brain at PCW 9 R1. Metric used for assessment is the 1241 

AMI score. Likelihood thresholds start at 0.3 on the x-axis because AMI values at likelihood 1242 

thresholds 0 to 0.3 are the same. AMI scores at each likelihood threshold were compared using 1243 

Student’s t-test (**** indicates p ≤ 0.0001). Rep. = biological replicate. 1244 

 1245 

Figure 4. Experimental enrichment of mesenchymal G0 cells from hSkMSCs using FACs. A. 1246 

Gating strategy for isolating mesenchymal G0 cells from hSkMSCs. First gated on single cells, 1247 

then live cells, next diploid cells that are not replicating are selected, and finally cells with hypo-1248 

phosphorylation of RB are selected. B. ccAFv2 applied to unsorted hSkMSCs. The red dashed 1249 

area encompasses the UMAP area containing the vast majority of Neural G0, G1, and Late G1 1250 

cells, these three states do not exhibit consistent clustering. C. Neural G0 cells are highlighted 1251 

in color, while all other states are shown in gray. D-E. Cells are colored based on their 1252 

Spearman correlation coefficient with the scRNA-seq expression profiles and the RNA-seq 1253 

profiles of flow-sorted mesenchymal G0 cells (pRB-, diploid, non-replicating) from two biological 1254 

replicates. F. Test of which ccAFv2 cell cycle states were significantly enriched with 1255 

mesenchymal G0 cells, and not mesenchymal G0 cells. Mesenchymal G0 cells are defined by a 1256 

Spearman correlation ≥ 0.1 in both replicates, while non-G0 cells are defined by a correlation ≤ 1257 

0.1 in one or both replicates. Values are represented as the negative logarithm of the p-value. 1258 

G. Percentage of ccAFv2 states in mesenchymal G0 and not G0 cells. H. Differential expression 1259 

of genes between mesenchymal G0 cells versus not G0 cells. Each dot represents one gene (n 1260 

= 22,845). Dotted lines denote log2(fold change) and adjusted p-value cutoffs to identify 1261 

significant marker genes (log2FC ≥ 0.5; p-adj ≤ 0.05). Red dots denote ccAFv2 Neural G0 1262 

marker genes. Labeled genes are marker genes for hSkMSC G0 cells that overlap with ccAFv2 1263 

Neural G0 marker genes.  1264 

 1265 

Figure 5. Application of ccAFv2 to the transcriptomes of 245,906 single cells derived from 1266 

human fetuses aged 3 to 12 PCW. A. The 15 different cell types included in the analysis 1267 

encompass all three germ layers. For each cell type the number of cells is given. B. Percentage 1268 

of each ccAFv2 predicted state for each cell type. C. Percentage of each ccAFv2 predicted state 1269 

for each cell type when Neural G0, G1, and Late G1 are binned. D-G. Z-score normalized cyclin 1270 

expression across 15 cell types. Thin lines represent individual cell types, while thick lines 1271 

indicate the average Z-score normalized cyclin expression for each germ layer. Lines are color-1272 

coded according to their corresponding germ layer. 1273 

 1274 

Figure 6. Application of ccAFv2 to single cells and nuclei from human and mice. A. Summary 1275 

schematic of data ccAFv2 can be applied to and suggested data preparation. B. Proportion of 1276 
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cells assigned to each cell cycle state for scRNA‐seq data from the developing human 1277 

telencephalon (Nowakowski et al, 2017). C. Proportions of cell cycle states from scRNA-seq 1278 

from the ventricular (V)-SVZ of the adult mouse brain (Cebrian-Silla et al, 2021). Prog. = 1279 

progenitors, Inh = inhibitor, Ex = excitatory, NSPCs = neural stem/progenitor cells, IntProg. = 1280 

intermediate progenitor cells. D. Proportions of cell cycle states from scRNA-seq from GLAST 1281 

and PROM1 flow‐sorted cells from the subventricular zone (SVZ) of mice (Llorens‐Bobadilla et 1282 

al, 2015), and EGFR, GFAP, and PROM1 flow‐sorted cells from the subventricular zone (SVZ) 1283 

of adult mice (Dulken et al, 2017). qNSC1 = dormant quiescent neural stem cell, qNSC2 = 1284 

primed‐quiescent neural stem cell, aNSC1 = active neural stem cell, aNSC2 = actively dividing 1285 

neural stem cell. qNSC = quiescent neural stem cell, aNSC = active neural stem cell. E. 1286 

Proportions of cell cycle states from scRNA-seq (C) and snRNA-seq (N) from spinal, cervical, 1287 

lumbar, and thoracic regions from the developing human spinal cord at 8, 10, 11, 20, and 23 1288 

PCW (Zhang et al, 2021). 1289 

 1290 

Figure 7. Application of ccAFv2 to spatial transcriptomics data from a male C57BL/6 mouse 1291 

embryo at E15.5. A. H&E staining for the whole embryo. B. Spatial overlay of the predicted 1292 

ccAFv2 states onto the whole embryo. C. Spatial expression of the cell cycle marker gene 1293 

Mki67 for the whole embryo. The black boxes in panels A through C indicate the region of the 1294 

developing cortex that was magnified in panels D through Q. The developmental regions of the 1295 

developing cortex are denoted on the side:  Dermis = developing skin, Skull = developing skull, 1296 

CP/MZ = cortical plate and marginal zone, IZ = intermediate zone, SVZ = subventricular zone, 1297 

VZ = ventricular zone. D. H&E staining for the developing embryo cortex. E. Spatial overlay of 1298 

the predicted ccAFv2 states onto the developing embryo cortex. F-I. Expression of key marker 1299 

genes describing the developmental regions in the developing embryo cortex. J. Spatial 1300 

expression of the cell cycle marker gene Mki67 in the developing embryo cortex. K-Q. 1301 

Likelihoods for each of the cell cycle states spatially overlayed onto the developing embryo 1302 

cortex. The magnitude of the likelihood indicates the probability that a cell with that cell cycle 1303 

state underlies that spot of the spatial array. 1304 
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