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Abstract

Individual behaviours require the nervous system to execute specialised motor programs, each
characterised by unique patterns of coordinated movements across body parts. Deep learning
approaches for body-posture tracking have facilitated the analysis of such motor programs.
However, translating the resulting time-stamped coordinate datasets into meaningful kinematic
representations of motor programs remains a long-standing challenge. We developed the versatile
quantitative framework AutoGaitA (Automated Gait Analysis), a Python toolbox that enables
comparisons of motor programs at multiple levels of granularity and across tracking methods,
species and behaviours. AutoGaitA allowed us to demonstrate that flies, mice, and humans, despite
divergent biomechanics, converge on the age-dependent loss of propulsive strength, and that, in
mice, locomotor programs adapt as an integrated function of both age and task difficulty.
AutoGaitA represents a truly universal framework for robust analyses of motor programs and

changes thereof in health and disease, and across species and behaviours.
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Introduction

Animals and humans employ an impressively rich array of motor behaviours, such as grooming,
swimming or walking, each requiring coordinated neural activity across the nervous system to
execute the appropriate motor program'. Individual motor programs are executed with redundant
kinematic solutions, which arise from distinct combinations of joint positions, angles and
velocities® and operate within species-specific biomechanical constraints!2, Consequently, the
kinematic outputs of even seemingly simple motor programs, such as walking, exhibit tremendous
variability, which complicates deciphering the underlying neural code.

Advances in deep-learning methods, such as DeepLabCut (DLC?* and SLEAP®, have
considerably improved our ability to track body landmarks across behavioural tasks and species.
Nevertheless, no universal framework currently exists to coalesce these time-stamped body
coordinates into meaningful representations of motor programs. Current analysis methods rely on
commercial software (e.g., DigiGait, Motorater, Theia3D, SIMI) or custom scripts that are often
task- and/or species-specific, limiting their scope. Toolboxes assessing rodent kinematics are task-
specific, being constrained to ladder, treadmill (ALMAS; PMotion’) or beam walking (Forestwalk®;
Ledged Beam Walking®). Further, available analyses provide only basic gait parameters (PMotion,
Forestwalk), disease-specific features, e.g. for stroke (PMotion), or complex kinematic

extrapolations (ALMA, Ledged Beam Walking). Additionally, although numerous species-

10-13 6,8,9,14,15

specific approaches to gait analysis have been developed for fruit flies'”'>, mice and
humans!®, no framework exists for cross-species kinematic comparisons.

AutoGaitA (Automated Gait Analysis) provides a versatile framework to standardise the
analysis of body coordinates and assess motor programs by comparing kinematic features at

different levels of granularity, from individual landmarks to full-body coordination strategies.
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Using AutoGaitA, we here demonstrate that fruit flies, mice and humans, despite their divergent
biomechanics, share a common age-dependent adaptation strategy: they reduce leg propulsive
strength during walking to gain postural stability. Furthermore, we showed that mice employ
distinct strategies, defined by age and task difficulty, to preserve the flexibility and robustness of
motor execution, suggesting that adaptation strategies emerge as integrative functions of
concomitant perturbations.

In sum, AutoGaitA fills a critical gap in the methods currently used to study motor control
policies by providing a general-purpose toolbox to assess and compare motor programs and their

changes in health and disease across species and behaviours.
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Results
A universal framework to analyse rhythmic motor programs at different granularity levels

The heterogeneity of behaviours, model organisms and tracking methods has so far hindered
the development of a standardised quantitative framework for the kinematic analysis of motor
programs. AutoGaitA addresses this methodological gap by providing a universal framework
applicable to any rhythmic behaviour and species. We developed three first-level toolboxes,
implementing the same overall workflow to accommodate the diversity of tracking methods (Fig.
la-c). AutoGaitA DeepLabCut (DLC) and AutoGaitA SLEAP analyse 2D coordinates obtained
with DLC* or SLEAP?, respectively. AutoGaitA Universal 3D analyses 3D coordinates tracked
with any marker-based or marker-less method.

AutoGaitA’s first-level toolboxes transform time series of body coordinates into standardised
sets of kinematic outputs. First, AutoGaitA loads the coordinate tables containing the time series
of landmark positions and the manually generated annotation tables specifying the timestamps of
all behaviour-cycles of interest (Fig. 1a). In this context, a behaviour-cycle (henceforth cycle)
defines the simplest instance of a thythmic behaviour with clearly defined start and end timepoints.
For example, a step is the cycle of walking, starting when the foot is lifted off the ground and
ending just before the foot is lifted again for the next step. The coordinates are segmented into
user-annotated cycles (Fig. 1b), and the segmented data is processed to compute kinematic
features: stride (horizontal distance), height (vertical distance), angles, velocities, and
accelerations of any user-defined landmark. Next, the segmented data is normalised to bring
individual cycles, naturally varying in duration, to a fixed length, making the cycles’ kinematics
well-suited for comparing and averaging. The generated first-level results consist of image and

tabular files containing raw, segmented, normalised and averaged data (Fig. 1c¢).
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The AutoGaitA Group toolbox computes and compares group-level effects after averaging the
first-level results of each group (Fig. 1d). Individual kinematic features can be assessed statistically
with a permutation test, an ANOVA, and Tukey’s test, while more general kinematic patterns can
be identified using principal component analyses (PCA). Datasets for each group are provided as
tabular files, enabling custom post-hoc analyses when required. The results of group-level
comparisons are provided as image and tabular files (Fig. le).

To demonstrate AutoGaitA’s versatility and applicability, we analysed a published dataset of
tracked body landmarks in human subjects performing distinct rhythmic movements (MoVi
dataset'”). Using AutoGaitA, we were not only able to analyse a range of rthythmic behaviours -
from running to jumping - but also to cluster the underlying motor programs in PCA space, with
similar movements such as walking and running being in closer proximity (Supplementary Note

1, Supplementary Fig. 1).
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Figure 1 | AutoGaitA’s universal framework for the kinematic comparisons of rhythmic behaviours within and across species.
a, User input. AutoGaitA loads 2D (from DeepLabCut or SLEAP tracking) or 3D (any 3D method) body coordinate data as well as
the annotation table storing time information. The AutoGaitA workflow is applicable to any model organisms (e.g. axolotl,
salamander, frogs, songbirds) performing a variety of rhythmic behaviours. b, First-level workflow. Landmark coordinates are
first segmented into cycles based on the annotation table and then normalised. Normalised kinematic features (stride, height,
angles, velocities and accelerations) are computed and averaged for each trial. ¢, First-level results. Results are generated as
image and tabular files, summarising raw coordinates and kinematic features for each trial after segmentation, normalisation,
and averaging. d, Group-level workflow. Comparisons of kinematic features among groups are computed via statistical tests and
principal component analysis (PCA). e, Group-level results. Results of statistical tests (e.g., pair-wise time points of statistical
significance and p-values) are provided for each variable tested. PCA results are provided as customisable scatterplots, videos,
and tabular files.
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94  Species-specific and convergent strategies of age-dependent motor adaptation

95 Comparing motor programs across species has long posed a significant challenge due to
96  fundamental biological differences in morphology, biomechanics and size, as well as the
97  heterogeneity of experimental paradigms and posture tracking methods. Leveraging AutoGaitA’s
98 ability to analyse coordinate data independently of the model organism and tracking algorithm, we
99  assessed the motor programs underlying walking (henceforth locomotor program) - one of the
100  most fundamental rhythmic behaviours - in flies (Drosophila Melanogaster), mice (Mus
101  Musculus) and humans. DLC was used to track body landmarks in flies walking on a spherical
102 treadmill, mice walking on a 25-mm wide beam, and humans walking on a wide walkway (Fig.
103 2a-c). We focused our analyses on posterior/lower limb landmarks: the thorax-coxa (Th-Cx), the
104  coxa-trochanter (Cx-Tr), the femur-tibia (Fe-Ti), the tibia-tarsus (Ti-Tar), and the tip of the tarsus
105  (Tar) on the fly posterior leg (Fig. 2d); the iliac crest, hip, knee, ankle and middle hindpaw on the
106  mouse hindlimb (Fig. 2e); and the hip, knee, ankle, and midfoot on the human leg (Fig. 2f). We
107  analysed how the kinematic features of these landmarks vary during the step cycle, defined from
108  the beginning of swing (foot is lifted from the ground) to the end of stance (just before the foot is
109  lifted from the ground for the next step) (Fig. 2f). The stick diagrams, illustrating the horizontal
110  (stride) and vertical (height) displacement of the limbs during a step cycle, revealed the divergent
111 kinematics resulting from species-specific biomechanics (Fig. 2g-1).
112 In tethered flies, the proximal Th-Cx and Cx-Tr remained in relatively fixed positions, while
113 the distal Fe-Ti, Ti-Tar and Tar moved, almost synchronously, upward during swing and
114  downward during stance (Fig. 2g,j, Supplementary Fig. 2d). This resulted in all distal joints being
115  maximally flexed at the swing-to-stance transition and maximally extended at the stance-to-swing

116  transition (Supplementary Fig. 2a), suggesting that in flies, distal joints are synergistically
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117  coordinated to provide the primary power stroke for forward propulsion of the posterior leg. In
118  mice, the iliac crest remained relatively static throughout the step cycle, the hip moved upward
119  and downward only during swing, the knee and the hindpaw moved upward during swing and at
120  the end of stance and downward during mid-stance, while the ankle exhibited opposite behaviour,
121  moving downward during swing and upward during stance (Fig. 2h,k, Supplementary Fig. 2e).
122 This resulted in the ankle, knee and hip being similarly maximally flexed mid-swing, but diverging
123 in their peak extension, with the ankle and knee being maximally extended at the beginning of
124 stance and the hip at the end of stance (Supplementary Fig. 2b). Together, this kinematic pattern
125  suggests that in mice, the hip provides the initial power stroke, while the relative inversion of ankle
126  and knee positions drives the forward thrust. In humans, the hip oscillated through the step cycle,
127  marking the transitions across swing and stance, the knee moved upward during swing and
128  downward during stance, while the ankle and the midfoot oscillated during swing, and moved
129  upward at the end of stance (Fig. 21,1, Supplementary Fig. 2f). This resulted in the peak flexion
130  and extension of the knee occurring during swing and of the ankle at the end of stance and
131  beginning of swing (Supplementary Fig. 2¢). Taken together, this pattern suggests that in humans,
132 the ankle push-off at the end of stance generates the additional power stroke that, together with the
133 hip-driven oscillations, promotes the forward propulsion. Notably, our kinematic analysis suggests
134 that the generation of propulsive strength relies on coordinated flexion/extension of all distal joints
135 in flies, whereas it requires opposite displacement of knee, ankle and hindpaw in mice, and hip
136  oscillations and ankle push-off in humans. Despite distinct biomechanics, all species converge on
137  landmark velocities increasing along the proximal-to-distal axis (Supplementary Fig. 2g-i). Thus,
138  leveraging the numerous kinematic features assessed by AutoGaitA, we revealed that the

139  mechanisms underlying locomotor programs in hexapedal (flies), quadrupedal (mice) and bipedal
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140  (human) model organisms converge in setting a proximal-to-distal gradient of landmark velocities

141  and diverge in how leg propulsive strength is generated.
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143 Figure 2 | Divergent and convergent kinematic strategies underlying locomotor programs in flies, mice, and humans.
144 a-c, Snapshots of a fly walking on a spherical treadmill (a), a mouse walking on a 25 mm wide beam (b), and a human walking

145 on a walkway (c). d-f, Snapshots illustrating the landmarks analysed on the fly posterior leg (d), the mouse hindlimb (e) and the
146 human leg (f). The right panels in d-e illustrate how landmarks translate to the stick diagrams below. The right panel in f depicts

147 a step cycle and its division into swing (toe-off) and stance (toe-down) phases. g, Stick diagram illustrating the horizontal and
148 vertical displacements of the fly posterior leg. Note that flies were tethered. h-i, Stick diagrams of the mouse hindlimb (h) and
149 human leg (i) for two consecutive steps. j, Group-averaged variations in the height of key landmarks of the fly posterior leg
150 throughout the step-cycle showing that all distal joints are moved almost synchronously upward and downward to generate
151 propulsion. k, Group-averaged variations in the height of key landmarks of the mouse hindlimb throughout the step-cycle
152 showing that the hip provides the initial power stroke, while the ankle and knee invert their relative heights to generate the

153 subsequent thrust. |, Group-averaged variations in the height of key landmarks of the human leg throughout the step-cycle
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154 showing that in humans the hip moves pendulously to ensure stability, while distal joints, particularly the ankle, generate
155 propulsion. Data are presented as mean+SEM, SEM is shown as shaded areas. N=6 for flies, N=9 for mice, N=29 for humans.
156 Next, we investigated how the same physiological perturbation, ageing, affects the execution

157  oflocomotor programs across species. The PCA obtained with the AutoGaitA group-level analysis
158 indicates that the locomotor program shows an ageing signature in each species (Fig. 3a-c).
159  Remarkably, not all older subjects segregate from the “young cluster”, showing inter-individual
160  variability in response to ageing in all species (Fig. 3a-c). To assess the components driving the
161  age-dependent adaptation of the locomotor programs, we analysed individual features next.
162  Intriguingly, and consistent with their species-specific roles in generating propulsion, we observed
163  that age reduced i) in flies, the flexion of the Fe-Ti and Cx-Tr angles at the swing-stance transition,
164  shortening the power stroke length (Fig. 3d, Supplementary Fig. 3a); ii) in mice, the extension of
165  the ankle at the swing-stance transition, affecting the knee/ankle dynamics driving the forward
166  thrust (Fig. 3e, Supplementary Fig. 3b); ii1) in humans, the ankle flexion during stance that usually
167  provides the additional push-off power to move forward (Fig. 3f). Taken together, these
168  observations revealed a conserved effect of aging on locomotor programs: a reduction in the
169  generation of propulsive strength resulting from changes in the species-specific kinematic features

170  that underlie the forward thrust of the leg.

171
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173 Figure 3 | Age-dependent adaptation of locomotor programs across species.
174 a, PCA scatterplot of fly posterior leg kinematics shows segregated clusters for young (green, 2-3 days, N=6) and old (purple, 21-
175 22 days, N=6) flies. Each circle represents an individual fly. b, PCA scatterplot of mouse hindlimb kinematics shows segregated

176 clusters for young (8 months, N=9) and old (24 months, N=12) mice. Each circle represents an individual mouse. ¢, PCA

177 scatterplot of human leg kinematics shows partially segregated clusters for young (21-36 years, N=29) and old (46-85 years,
178 N=18) humans. Each circle represents a single participant. d, Flexion of the femur-tibia (Fe-Ti) angle at the swing-stance

179 transition is reduced in old compared to young flies. e, Extension of the ankle angle at the swing-stance transition is reduced in
180 old compared to young mice. f, Flexion of the ankle angle during stance is reduced in old compared to young humans. Data are

181 presented as meantSEM, SEM is represented as shaded areas. Statistical analysis: one-way ANOVA followed by Tukey’s post-
182 hoc test. Significance is indicated with asterisks, *p<0.05. See Supplementary Tables S1-S9 for complete statistical and PCA

183 results.

184  AutoGaitA accurately detects task- and age-dependent changes in mouse kinematics

185 Real-world locomotion rarely involves a single, discrete perturbation, but is rather influenced
186 by multiple, simultaneous disturbances, whose effects add up to more than their sum. Thus, the
187  nervous system must deploy adaptive motor programs that account for interactions between

188  different perturbations. We therefore investigated how the adaptation of locomotor programs to
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189 increased task difficulty evolves with age, studying how untrained 3-, 8-, and 24-month-old
190  C57BL6/J mice cross beams of varying widths: 25-, 12-, and 5-mm (Fig. 4a-4c).

191 3-month-old mice significantly changed their locomotor program to adapt to narrowing beams.
192  When mice crossed the 5-mm beam, the stride and the swing duration shortened (Fig. 4d). Further
193 during swing, the ankle and knee angles showed reduced flexion and increased extension (Fig.
194 4e,f), suggesting that mice walked with a predominantly extended limb posture, indicative of an
195 adaptive strategy to improve balance on a narrow surface. Importantly, hip kinematics were
196  unchanged (Fig. 4g), indicating that the requirement for increased precision of paw placement is
197  implemented mainly through a finer regulation of the distal joints. The challenge to balance on the
198  narrow beam caused the ankle/knee inversion, typically used to generate forward thrust, to be
199  reduced (Supplementary Fig. 4a-c), necessitating a compensatory increase in joint velocities to
200  generate sufficient propulsive strength (Supplementary Fig. 4d-f). Coalescing all meaningful
201  kinematic features (forelimb and hindlimb height, angles and velocity) in PCA space revealed
202  segregated clusters corresponding to the different beam widths (Fig. 4h). Thus, AutoGaitA’s multi-
203  level analysis revealed the kinematic adaptation of locomotor programs to increased task difficulty.
204 Next, we investigated how age affects these locomotor adaptation strategies by comparing how
205  3- and 8-month-old mice performed on the beam task. Aging did not change the kinematic pattern
206  induced by the narrow beam, with older mice still showing reduced knee/ankle inversion
207  (Supplementary Fig. 4g-i), increased joint velocity (Supplementary Fig. 4j-1), shortened stride
208  (Supplementary Fig. 4m), less flexed ankle (Fig. 41) and knee (Supplementary Fig. 4n), and no
209  changes to the hip angle (Supplementary Fig. 4n). However, 8-month-old mice adopted an even
210  more extended limb posture, with the ankle having higher peaks of extension at the end of swing

211 (Fig. 41). Thus, 8-month-old mice preserve the ability to execute the 25-, 12-, and 5-mm locomotor

13
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212 programs, but with minor adjustments, such as increased distal joint extension (Fig. 4i,
213 Supplementary Fig. 4g-n). Consistently, the PCA showed that the 25-, 12-, and 5-mm locomotor
214  programs cluster separately, but with almost no difference between ages (Supplementary Fig. 40).
215 Finally, we compared 8- and 24-month-old mice on the beam task. Age reduced paw placement
216  dexterity, with older mice displaying increased footslips (Supplementary Fig. 5a). Nevertheless,
217  the kinematic adaptation to narrower beams was preserved, as older mice still exhibited shortened
218  stride (Fig. 4j), extended leg posture (Fig. 4k, Supplementary Fig. 5d-f), and increased joint
219  velocity (Supplementary Fig. 5g-i). In contrast to younger mice, 24-month-old mice displayed
220  increased hip flexion on the 5-mm beam (Supplementary Fig. 5¢), suggesting a more crouched
221  posture to lower the centre of mass and improve postural stability. This crouched posture was also
222 evident when comparing 8- and 24-month-old mice, as older mice exhibited a reduced peak of
223 ankle extension during swing (Fig. 4k). Finally, the PCA showed a clear separation by both age
224 and beam width (Fig. 41), suggesting that locomotor programs undergo a more significant change
225  between 8§ and 24 months than at earlier stages (Supplementary Fig. 40).

226 In summary, AutoGaitA enabled us to identify task-specific locomotor programs, and assess

227  how they change as a function of age.
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229 Figure 4 | Task- and age-dependent motor adaptation of locomotor programs in mice.
230 a-c, Snapshots of a mouse crossing the 25 mm (a), 12 mm (b) and 5 mm (c) wide beam. d, 3-month-old mice shorten their stride
231 when crossing a 5 mm wide beam (blue) compared to the 25 mm (green) and 12 mm (orange) wide beams. The shortened
232 stride also corresponds to a shorter swing, as indicated by the arrowheads coloured according to beam widths. e-g Changes
233 during the step cycle in the ankle (e), knee (f) and hip (g) angles in 3-month-old mice crossing the 25 mm (green), 12 mm
234 (orange) and 5 mm (blue) wide beams. Mice crossing the narrowest (5 mm) beam showed reduced flexion and increased
235 extension of the ankle and knee during swing, as indicated by the coloured arrowheads. h, PCA of changes in heights, angles
236 and velocities of the forelimb and hindlimb throughout the step cycle revealed segregated clusters based on beam widths. Each
237 circle represents an individual mouse. i, Ankle angles of 8-month-old (solid lines) and 3-month-old (dashed lines) mice crossing
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238 the three beams. 8-month-old mice exhibited a similar kinematic pattern of beam-induced adaptation, but an even more

239 accentuated extended-limb posture. j, 24-month-old mice shorten their stride even more when crossing a 5 mm wide beam
240 (blue) compared to the 25 mm (green), 12 mm (orange) wide beams. The shortened stride also corresponds to a shorter swing,
241 as indicated by the arrowheads coloured according to beam widths. k, Ankle angles of 8-month-old (solid lines) and 24-month-
242 old (dashed lines) mice crossing the three beams. 24-month-old mice exhibited a similar kinematic pattern of beam-induced
243 adaptation, but flexed their joints more, indicating a crouched position on the beam to lower their centre of mass. |, PCA of
244 changes in heights, angles and velocities of the forelimb and hindlimb throughout the step cycle between 8-month-old (solid
245 lines) and 24-month-old (dashed lines) mice revealed segregated clusters based on beam widths and age. Each circle represents

246 an individual mouse. Data presented as mean+SEM. N=20 for 3-month-old, N=9 for 8-month-old and N=12 for 24-month-old
247 mice. Statistical comparison: one-way ANOVA followed by Tukey’s post-hoc test, significance is indicated by orange (5-mm
248 versus 12-mm), blue (5-mm versus 25-mm), and green (12-mm versus 25mm) asterisks. See Supplementary Tables S10-S20 for
249 complete statistical and PCA results.
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250 Discussion

251 We have developed AutoGaitA, the open-source Python toolbox providing a versatile
252  framework for the quantitative and standardised assessment and comparison of motor programs at
253  different levels of granularity across species and behaviours. Showcasing the potential of this
254  framework, we used it to reveal three key principles in motor control: i) the species-specific
255 Dbiomechanics underlying propulsive strength generation during walking (Fig. 2); ii) the age-
256  dependent adaptation mechanisms to generate propulsive strength (Fig. 3); iii) the combined
257  effects that concomitant perturbations exert on locomotor programs to preserve robustness and
258  flexibility (Fig. 4).

259 A versatile quantitative framework for motor control

260 One of the key factors underlying the deep-learning posture tracking revolution has been the
261  algorithms” applicability to any species or task*>. We have developed a similarly versatile tool that
262  enables comparable and standardised kinematic outputs to be generated independently of the input.
263  This versatility has already been leveraged to identify gait alterations in cerebellar
264  neurodegeneration'®, assess to which extent physiological locomotor programs are restored in a
265 mouse model of ataxia'®, and characterise how perturbations of spinal interneurons affect limb
266  movement in neonatal mice®’.

267 AutoGaitA can also be used to assess the motor programs underlying other rhythmic
268  behaviours, such as those commonly used as readouts of dexterity (rope pulling, ladder walking)
269  or deregulated sensation (grooming, chronic scratching). Compiling kinematic data of all these
270  behaviours with AutoGaitA will establish a catalogue of motor programs across model organisms.
271  Moreover, the annotation tables provide an additional tool to compare successful to failed cycles

272  or failed cycles across mutations or perturbations, granting important insight into how motor
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273  programs are adapted or degraded by physiological and pathological states. The standardised
274  comparison of motor programs in health and disease will allow to better classify motor disorders,
275  to identify motor symptom progression over the course of diseases and to unveil early disease
276  hallmarks in pre-symptomatic stages.

277 Beyond, future applications of AutoGaitA could involve assessing athletes’ performance in
278  sports science, optimising treatments in physiotherapy and neurology, studying the impact of
279  affective disorders on motor behaviours in psychiatry, and establishing kinematic readouts of
280  environmental influences (e.g. stress/anxiety) in behavioural research.

281  Propulsion in locomotion: species-, age- and task-dependent mechanisms

282 The generation of propulsion during locomotion varies widely across species, reflecting
283  differences in biomechanical constraint, body size, and environmental demands®!. In hexapedal
284  organisms such as fruit flies, posterior leg propulsion relies on the synchronised flexion and
285 extension of all distal leg joints, producing a coordinated power stroke that drives forward
286 movement (Fig. 2g,j, Supplementary Fig. 2a,d). Quadrupedal mammals such as mice use a hip-
287  driven initial power stroke, while the coordinated but opposing ankle and knee movements create
288  the primary thrust (Fig. 2h,k, Supplementary Fig. 2b,e). In contrast, humans combine hip
289  oscillations with ankle push-offs, with the ankle generating additional power during the stance-to-
290  swing transition (Fig. 21,1, Supplementary Fig. 2¢,f). Taken together, our data show how evolution
291  has shaped distinct kinematic solutions to the fundamental challenge of efficient forward
292  propulsion of the leg. Notably, in multi-legged species, interlimb coordination is required to
293  preserve postural stability and synergise the propulsion generated by individual limbs!.

294 Ageing degrades locomotor ability in all species by causing declines in muscle strength, joint

295  flexibility, and neural control?*2*, Yet, whether the age-dependent changes in locomotor programs
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296  follow convergent or divergent mechanisms across species has been a long-standing open question.
297  Difficulties in addressing this question arise from studies focusing on different outputs — strength,
298  stride, coordination, endurance, dexterity — and results needing to be evaluated in light of the
299  distinct biomechanics. By using comparable paradigms and standardised readouts, we determined
300 a conserved mechanism of age-dependent locomotor adaptation in flies, mice and humans: the
301  decline of propulsive strength (Fig. 3). This decline manifested within the constraints of each
302  species’ unique biomechanics (Fig. 3). Defining the mechanistic bases underlying the ageing
303  decline of propulsive strength is particularly important with respect to the motor impairments
304 caused by neurodegenerative diseases and for establishing meaningful comparisons between
305 patients and animal models. For example, ankle push-off power is decreased in ageing humans
306  (Fig. 31)*>%, especially in stroke patients?’. However, our findings imply that in a mouse model of
307  stroke, the loss of propulsive strength should be studied with a focus on the knee/ankle inversion
308 instead of the ankle push-off.

309 When locomotor tasks become more demanding, such as crossing narrow paths, the nervous
310  system has to balance stiffness and forward propulsion in a way that guarantees postural stability?®,
311  As mice cross narrow beams, hindlimbs become rather stiff, with propulsive strength being
312 generated by faster joint movements instead of the typical large angular excursions (Fig. 4a-f,
313 Supplementary Fig. 4a-f). We additionally showed that as mice age and require an even finer
314  balance control, this alternative strategy to generate propulsion was complemented by a lower
315  centre of mass (Fig. 4k, Supplementary Fig. 5).

316 In summary, AutoGaitA represents a much-needed standardized framework for the quantitative
317  assessment of motor programs across behaviours, perturbations, and species. Through our

318 showcase studies, we demonstrated that AutoGaitA enables the discovery of fundamental
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319  principles governing motor control across species. We anticipate that this framework will have
320  profound implications for advancing therapeutic interventions, optimizing rehabilitative strategies,

321  and elucidating the evolutionary basis of motor control.
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340 Methods

341  Software Availability

342 AutoGaitA is provided as an open-source Python toolbox (GitHub — mahan-

343  hosseini/AutoGaitA: Automated Gait Analysis in Python), being developed on top of well

344  established, documented, and maintained Python dependencies: NumPy?*2° (https:/numpy.org),

345  SciPy?! (https://scipy.org), pandas®? (https://pandas.pydata.org), Scikit-Learn®® (https:/scikit-

346  learn.org), Pingouin* (https://pingouin-stats.org/), Matplotlib® (https://matplotlib.org), seaborn3®

347  (https://seaborn.pydata.org), CustomTkinter (https://customtkinter.tomschimansky.com), Pillow?’

348  (https://python-pillow.github.io), openpyxl (https://openpyxl.readthedocs.io/en/stable/), ffmpeg-

349  python (https://kkroening.github.io/ffmpeg-python/), and h5py*® (https://www.h5py.org).
350 AutoGaitA’s source code can be accessed in the GitHub repository under the GPLv3 license,

351 and is further integrated with Zenodo®® (http://doi.org/10.5281/zenodo.15373063), automatically

352 linking all releases to unique digital object identifiers (DOIs). AutoGaitA’s central goal is to take
353  off the burden of post-tracking analyses from researchers, particularly those not too familiar with
354  programming. We thus provide easy-to-understand graphical user interfaces (GUIs), a

355  straightforward documentation consisting of many images, and comprehensive video tutorials on

356  the AutoGaitA YouTube channel. Nonetheless, we have simultaneously made it easy for well-

357  versed developers and users to contribute to and extend AutoGaitA as well as to integrate our
358  toolbox into custom workflows and other (Python) tools. We strongly appreciate and encourage

359  user feedback and contributions via email: autogaita@fz-juelich.de or directly as GitHub pull

360 requests.

21


https://github.com/mahan-hosseini/AutoGaitA
https://github.com/mahan-hosseini/AutoGaitA
https://numpy.org/
https://scipy.org/
https://pandas.pydata.org/
https://scikit-learn.org/
https://scikit-learn.org/
https://pingouin-stats.org/
https://matplotlib.org/
https://seaborn.pydata.org/
https://customtkinter.tomschimansky.com/
https://python-pillow.github.io/
https://openpyxl.readthedocs.io/en/stable/
https://kkroening.github.io/ffmpeg-python/
https://www.h5py.org/
http://doi.org/10.5281/zenodo.15373063
https://docs.google.com/document/d/1iQxSwqBW3VdIXHm-AtV4TGlgpJPDldogVx6qzscsGxA/edit?usp=sharing
https://docs.google.com/document/d/1iQxSwqBW3VdIXHm-AtV4TGlgpJPDldogVx6qzscsGxA/edit?usp=sharing
https://www.youtube.com/@autogaita
mailto:autogaita@fz-juelich.de
https://doi.org/10.1101/2024.04.14.589409
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.14.5894009; this version posted August 29, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

361  AutoGaitA workflow details

362  Data preparation and important settings

363 For AutoGaitA DLC and SLEAP, we provide two ways of naming input data files: a thorough
364  and safe way, which provides detailed information about the contents of files, and a reduced and
365 risky way, which is quick to implement but carries some ambiguity. AutoGaitA Universal 3D
366  includes a tool which allows convenient adaptation of the required naming convention of the
367  columns of corresponding 3D data files. Since AutoGaitA Universal 3D analyses 2D kinematics
368  of 3D body coordinates, users are advised to pay attention to their behaviour of interest and to
369  which dimension’s features are of particular interest (e.g. along which 2D-plane angles should be
370  computed). Excel tables containing the timestamp annotations of the behaviour to be analysed
371  (annotation tables) need to be prepared before any analysis. These need to follow a specific format,
372 which differs slightly between AutoGaitA DLC/SLEAP and AutoGaitA Universal 3D.

373  Normalisation of segmented data

374 In first-level workflows (Figure 1b), segmented data is normalised to be equally long for all
375  cycles. In the explanations below, we will use time-points when referring to the length of original
376  cycles before normalisation and cycle-bins when referring to the length of normalised cycles.
377  Cycles are normalised to a user-chosen target length n (in cycle-bins) by being either extended if
378  they were shorter (i.e. had fewer time-points than n originally) or compressed if they were longer
379  (i.e. had more time-points than n originally). For example, if the user selected to normalise to ten
380  cycle-bins, all original cycles of length 9 or below would be extended, and all original cycles of
381  length 11 or more would be compressed. Extension is done via repetition. For the example target
382  value of 10 cycle-bins and an original cycle having only 5 time-points before normalisation, all its

383  data values will be repeated once (i.e.: original data at time-points: 1, 1,2, 2, ... 5, 5 = normalised
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384  data at cycle-bins 1, 2, 3, 4, ... 9, 10). Compression is done via averaging. In our example, if the
385  original cycle comprises 20 time-points, its data points are averaged in adjacent pairs: first and
386  second, third and fourth data points and so on (i.e.: averages of data at time-points: 1 & 2,3 & 4,
387 5&6,7&8,...17 & 18,19 & 20 = normalised data at cycle-bins 1, 2, 3, ..., 9, 10).

388 After normalisation, each cycle-bin thus represents the data at respective percentiles, based on
389  the number of selected bins. Default settings normalise to 25 cycle-bins, leading to cycle-bins
390 reflecting 4% percentiles: 1-4%, 5-8%, 9-12%, etc., since this value showed the best comparability
391  in our cross-species locomotion analysis.

392  Standardisation of direction of movement

393 In the same locomotion experiment, animals might walk through the video screen from left to
394  right or vice versa. To ensure that the data is independent of the direction of motion, AutoGaitA
395  offers options to adjust the horizontal coordinates (e.g., x-coordinates in 2D), effectively
396  simulating that all animals walk towards the same point. For behaviours like jumping jacks or rope
397  climbing, which are approximately stationary along the horizontal dimension, this option should
398  be turned off. Users of AutoGaitA Universal 3D should consider additional details about this
399  standardisation in 3D in the documentation’s section on back and forth behaviours.

400  Standardisation of horizontal coordinates

401 AutoGaitA provides an option to analyse horizontal coordinates, for example, x-coordinates in
402 2D (see Fig. 4d). In a locomotion study, the x-coordinates of the foot inform about its distance
403  travelled with each step (i.e., the stride). To ensure that x-coordinates are comparable across steps,
404  they must be standardised to the same position across cycles. This standardisation ensures that no
405 bias is introduced by AutoGaitA averaging features across cycles (and, consecutively, across

406  animals at the group level). For standardisation, we subtract, at each cycle separately, the minimum
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407  x-coordinate of a user-chosen key point from those of all key points. As a result, x-coordinates
408  after standardisation inform about key points’ distance to the standardisation-joint’s zero-point and
409 are, critically, independent of their absolute position in space.

410  Standardisation of vertical coordinates

411 Vertical coordinates, for example y-coordinates in 2D, can be standardised according to
412  baseline, global, or landmark standardisation. In the (typically most accurate) baseline
413  standardisation, the y-coordinates of a tracked reference baseline, like the beam in our mouse
414  experiments (Fig. 2b), are subtracted from those of the animal’s body at the corresponding time
415  points. If no baseline data is available, users can use global or landmark standardisation. Global
416  standardisation subtracts the smallest y-coordinate present across the full dataset (i.e., across time
417  and all landmarks) from the y-coordinates of all body landmarks. Landmark standardisation
418  subtracts the smallest y-coordinate of a user-chosen landmark from the body’s y-coordinates.
419  AutoGaitA also provides an option to standardise the y-coordinates of each step separately, which
420  is recommended if no baseline standardisation is possible and the floor is uneven or cameras are
421  distorted.

422 Principal Components Analysis

423 Users can choose which kinematic features to include in AutoGaitA’s Principal Components
424  Analysis (PCA), which commences with extracting averages of these features across the entire
425  cycle for each animal (Fig. 1c). Each cycle-bin of each feature is included as an input feature in
426  the PCA. For example, if the ankle angle is an input feature and cycles were normalised to 10
427  cycle-bins, the PCA would have 10 input features capturing animals’ ankle angles: ankle angle 1-
428  10% cycle, ankle angle 11-20% cycle, ..., ankle angle 91-100% cycle. Users have the option to

429  compute input features only over a subset of the cycle (e.g. the first half, or the first and last
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430  quartile) instead. Following the PCA convention, input features are standardised to have zero mean
431  and unit variance before the model is fitted. Scikit-Learn® is used for standardisation as well as
432  model-fitting. Depending on user input, the number of returned principal components (PC) can
433 either be chosen directly or configured to explain a certain percentage of data variance. AutoGaitA
434  produceSs PCA outputs as: 2D- and 3D scatterplots, generating video-files of the latter if wanted,
435  and tabular files containing PC’s explained variance, input features’ eigenvectors, each animal’s
436  coordinates in PC-space, and an overview of the 20 input features that contributed most strongly
437  to each PC to simplify their interpretability.

438  One-way ANOVA and Tukey’s Test

439 AutoGaitA provides between- or within-subjects one-way ANOV As, with the former assessing
440  different subjects, as in Fig. 3, and the latter assessing the same subjects across different conditions,
441  asin Fig. 4d-f, for example. ANOVA results are provided as conventional ANOVA tables in text
442  files. While the one-way ANOVA tests a certain feature for group differences globally, Tukey’s
443  post-hoc test compares the feature at individual cycle-bins separately, correcting for the number
444  of multiple comparisons (AutoGaitA does not require the ANOVA for Tukey’s to be run). Besides
445  figures illustrating the results of Tukey’s tests, we provide their exact numerical results (i.e.,
446  Tukey’s g-values as well as corresponding p-values and confidence intervals) in text and tabular
447  files. AutoGaitA uses Pingouin®* for one-way ANOVAs and SciPy?! for Tukey’s tests.

448  Cluster-extent Permutation Test

449 The cluster-extent test is preferred over the ANOV A whenever parametric assumptions are not
450  met. AutoGaitA’s cluster-extent test follows the concepts introduced by Maris and Oostenveld®,
451  which are by now well-established in the field of human electrophysiology. We provide an in-

452  depth explanation of how the test is implemented in AutoGaitA in Hosseini et al.*!. The outputs of
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453  the cluster-extent test are provided as figures as well as text files, storing the p-values of all clusters.
454 AutoGaitA uses SciPy?! for t-tests and Scikit-Learn®? for shuffling data randomly.

455  Experimental fly model

456 Adult male wild-type Canton-S Drosophila melanogaster flies were collected after eclosion
457  and reared on a standard yeast-based medium*? at 25°C and 65% humidity in a 12-hour dark/light
458  cycle. Experiments were performed with young (2-3 days old) and old (21-22 days old) flies.
459  Tethered flies walked on a spherical treadmill and were recorded from the side using a high-speed
460 camera (acA1300-200um, Basler), equipped with a 50 mm lens (LM50JCIMS, Kowa Optical
461  Products)!?. Videos were recorded at 400 frames/second with a resolution of 912 x 550 pixels. To
462  convert pixels into metric scale, the camera was calibrated with a custom-made checkerboard
463  pattern (7 x 6 squares with size 399 pm x 399 um per square) developed on a photographic slide.
464  The conversion factor of 5.883 £ 0.198 um per pixel (mean + standard deviation) was determined
465 by analysing the side length of 1850 squares from 74 images of the checkerboard.

466 DeepLabCut* was used for automated tracking of leg landmarks in the videos by training a
467  ResNet-50 network with a training set containing 755 images (10 videos with 54 to 105 frames
468 each) from 5 flies. Resulting leg landmark predictions were visually inspected and manually
469  corrected as needed with a custom-made graphical user interface software. Begin and end times
470  for swing and stance phases were manually annotated for each step.

471  Experimental mouse model

472 Mice were maintained following the protocols for animal experiments approved by the local
473  health authority in North Rhine-Westphalia (LAVE, Landesamt fiir Verbraucherschutz und
474  Erndhrung, Nordrhein-Westfalen). 3-month-, 8-month- and 24-month-old C56BL6/J mice of both

475  sexes were used for behavioural experiments. These mouse age groups are commonly used to
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476  characterise gait following physiological, pathological and circuit perturbations. Analysis of the
477  behavioural data showed similar responses in male and female mice. Mice had ad libitum access
478  to food and water, and were housed in groups of maximum 5 animals, maintained on a 12-hour
479  dark/light cycle within a room controlled for humidity and temperature.

480 We opted for the beam paradigm to test a challenge, e.g. walking on a narrowing path, mice
481  are likely to encounter also in their naturalistic settings. Naive mice of different ages were tested
482  asthey crossed 1.3-meter-long beams with different widths (5-mm, 12-mm, and 25-mm). Studying
483  untrained mice enables the identification of innate adaptation strategies in response to the width-
484  dependent perturbations. On the first day, mice were tasked to cross the wide, 25-mm, beam, on
485  the second day the 12-mm beam, and on the third day the narrow, 5-mm, beam. For each beam
486  size, three to five trials per mouse were recorded using eight high-speed cameras (mV Blue Cougar
487  XD) positioned around the beam (3D Simi Motion). Multiple camera views were analysed to count
488  the number of slips, which were then averaged across trials per individual mouse. Videos were
489  recorded at 100 frames/second, with a resolution of 1200 x 900 pixels.

490 The Simi™ Motion software (version 10.2.0) was used to record markerless mice walking in
491  both directions, so our data are averages of both right and left limbs. We used DeepLabCut* to
492  track the body landmark coordinates, as well as the beam surface to define our vertical baseline.
493  Tracking was done after training a ResNet-50 network on 2147 frames (113 videos with 19 frames
494  each) from 8 mice. The number of slips and the phases of the step cycle (beginning of swing, end
495  of swing, and end of stance) were manually annotated. Slips or pauses on the beam were excluded
496  from the kinematic analysis. Please note that 24-month-old mice display an increased number of

497  slips on the narrowest beam (5-mm), thus, we analysed fewer animals compared to the other tasks.
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498  Human dataset

499 Participants meeting the following criteria were eligible for inclusion in the study: Age
500  between 21 and 90 years, written informed consent, absence of neurological or psychiatric diseases
501  and no health conditions affecting the locomotor system. The study was conducted according to
502  the principles of the Declaration of Helsinki and approved by the local ethics committee of the
503  Faculty of Medicine at University of Cologne (21-1418 1). The final sample is presented in
504  Supplementary Table S32 and consisted of 47 individuals, including 29 younger participants (age
505 [mean + SD]: 28.1 & 3.5 years, age range: 21 to 36 years; 19 females) and 18 older participants
506 (age [mean + SD]: 67.7 = 11.0 years, age range: 46 to 85; 9 females). There were no significant
507  differences between the two age groups with regard to sex (%> = 0.560, p = 0.454) and body height

508  (t=0.819,p=10.417).

509 Participants walked on a walkway (460 cm in length x 60 cm in width), while being recorded
510 by eight high-speed cameras (mvBlueCougar XD, Matrix Vision GmbH) positioned in a circular
511 arrangement around the walkway. Videos were recorded at 100 frames/second, with a resolution
512 of 1936 x 1216 pixels. The Simi™ Motion software (version 10.2.0) was used for the video
513  recordings and DeepLabCut* was used to track body landmarks. Tracking was done after training
514  a ResNet-50 network on 4797 frames (123 videos with 39 frames each) from 31 humans.

515 At the beginning of the recordings, participants were asked to stand at a marked position on
516  one end of the walkway. After a verbal signal, participants started walking at a convenient, self-
517  generated speed to the other end of the walkway. Once they arrived at the end, they turned around
518 and walked back to the start position. This back-and-forth walking was repeated until up to three
519  trials were performed by each participant. Videos were split based on turns before being tracked

520  with DLC, meaning that (as for our mouse data) the data corresponds to averages of left and right
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legs. Step cycle phases, i.e., the start of the swing phase, the end of the swing phase, and the end
of the stance phase, were annotated manually. More specifically, the toe-off moment of the feet
was marked as the end of the stance phase and simultaneously as the start of the swing phase, while
the moment of the heel-strike was marked as the end of the swing phase and simultaneously as the

start of the stance phase.
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