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Abstract 2 

Individual behaviours require the nervous system to execute specialised motor programs, each 3 

characterised by unique patterns of coordinated movements across body parts. Deep learning 4 

approaches for body-posture tracking have facilitated the analysis of such motor programs. 5 

However, translating the resulting time-stamped coordinate datasets into meaningful kinematic 6 

representations of motor programs remains a long-standing challenge. We developed the versatile 7 

quantitative framework AutoGaitA (Automated Gait Analysis), a Python toolbox that enables 8 

comparisons of motor programs at multiple levels of granularity and across tracking methods, 9 

species and behaviours. AutoGaitA allowed us to demonstrate that flies, mice, and humans, despite 10 

divergent biomechanics, converge on the age-dependent loss of propulsive strength, and that, in 11 

mice, locomotor programs adapt as an integrated function of both age and task difficulty. 12 

AutoGaitA represents a truly universal framework for robust analyses of motor programs and 13 

changes thereof in health and disease, and across species and behaviours.   14 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2025. ; https://doi.org/10.1101/2024.04.14.589409doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 3 

Introduction 15 

Animals and humans employ an impressively rich array of motor behaviours, such as grooming, 16 

swimming or walking, each requiring coordinated neural activity across the nervous system to 17 

execute the appropriate motor program1,2. Individual motor programs are executed with redundant 18 

kinematic solutions, which arise from distinct combinations of joint positions, angles and 19 

velocities3 and operate within species-specific biomechanical constraints1,2. Consequently, the 20 

kinematic outputs of even seemingly simple motor programs, such as walking, exhibit tremendous 21 

variability, which complicates deciphering the underlying neural code. 22 

Advances in deep-learning methods, such as DeepLabCut (DLC4) and SLEAP5, have 23 

considerably improved our ability to track body landmarks across behavioural tasks and species. 24 

Nevertheless, no universal framework currently exists to coalesce these time-stamped body 25 

coordinates into meaningful representations of motor programs. Current analysis methods rely on 26 

commercial software (e.g., DigiGait, Motorater, Theia3D, SIMI) or custom scripts that are often 27 

task- and/or species-specific, limiting their scope. Toolboxes assessing rodent kinematics are task-28 

specific, being constrained to ladder, treadmill (ALMA6; PMotion7) or beam walking (Forestwalk8; 29 

Ledged Beam Walking9). Further, available analyses provide only basic gait parameters (PMotion, 30 

Forestwalk), disease-specific features, e.g. for stroke (PMotion), or complex kinematic 31 

extrapolations (ALMA, Ledged Beam Walking). Additionally, although numerous species-32 

specific approaches to gait analysis have been developed for fruit flies10–13, mice6,8,9,14,15 and 33 

humans16, no framework exists for cross-species kinematic comparisons.  34 

AutoGaitA (Automated Gait Analysis) provides a versatile framework to standardise the 35 

analysis of body coordinates and assess motor programs by comparing kinematic features at 36 

different levels of granularity, from individual landmarks to full-body coordination strategies. 37 
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Using AutoGaitA, we here demonstrate that fruit flies, mice and humans, despite their divergent 38 

biomechanics, share a common age-dependent adaptation strategy: they reduce leg propulsive 39 

strength during walking to gain postural stability. Furthermore, we showed that mice employ 40 

distinct strategies, defined by age and task difficulty, to preserve the flexibility and robustness of 41 

motor execution, suggesting that adaptation strategies emerge as integrative functions of 42 

concomitant perturbations. 43 

In sum, AutoGaitA fills a critical gap in the methods currently used to study motor control 44 

policies by providing a general-purpose toolbox to assess and compare motor programs and their 45 

changes in health and disease across species and behaviours.  46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2025. ; https://doi.org/10.1101/2024.04.14.589409doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 5 

Results  47 

A universal framework to analyse rhythmic motor programs at different granularity levels 48 

The heterogeneity of behaviours, model organisms and tracking methods has so far hindered 49 

the development of a standardised quantitative framework for the kinematic analysis of motor 50 

programs. AutoGaitA addresses this methodological gap by providing a universal framework 51 

applicable to any rhythmic behaviour and species. We developed three first-level toolboxes, 52 

implementing the same overall workflow to accommodate the diversity of tracking methods (Fig. 53 

1a-c). AutoGaitA DeepLabCut (DLC) and AutoGaitA SLEAP analyse 2D coordinates obtained 54 

with DLC4 or SLEAP5, respectively. AutoGaitA Universal 3D analyses 3D coordinates tracked 55 

with any marker-based or marker-less method.  56 

AutoGaitA’s first-level toolboxes transform time series of body coordinates into standardised 57 

sets of kinematic outputs. First, AutoGaitA loads the coordinate tables containing the time series 58 

of landmark positions and the manually generated annotation tables specifying the timestamps of 59 

all behaviour-cycles of interest (Fig. 1a). In this context, a behaviour-cycle (henceforth cycle) 60 

defines the simplest instance of a rhythmic behaviour with clearly defined start and end timepoints. 61 

For example, a step is the cycle of walking, starting when the foot is lifted off the ground and 62 

ending just before the foot is lifted again for the next step. The coordinates are segmented into 63 

user-annotated cycles (Fig. 1b), and the segmented data is processed to compute kinematic 64 

features: stride (horizontal distance), height (vertical distance), angles, velocities, and 65 

accelerations of any user-defined landmark. Next, the segmented data is normalised to bring 66 

individual cycles, naturally varying in duration, to a fixed length, making the cycles’ kinematics 67 

well-suited for comparing and averaging. The generated first-level results consist of image and 68 

tabular files containing raw, segmented, normalised and averaged data (Fig. 1c). 69 
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The AutoGaitA Group toolbox computes and compares group-level effects after averaging the 70 

first-level results of each group (Fig. 1d). Individual kinematic features can be assessed statistically 71 

with a permutation test, an ANOVA, and Tukey’s test, while more general kinematic patterns can 72 

be identified using principal component analyses (PCA). Datasets for each group are provided as 73 

tabular files, enabling custom post-hoc analyses when required. The results of group-level 74 

comparisons are provided as image and tabular files (Fig. 1e).  75 

To demonstrate AutoGaitA’s versatility and applicability, we analysed a published dataset of 76 

tracked body landmarks in human subjects performing distinct rhythmic movements (MoVi 77 

dataset17). Using AutoGaitA, we were not only able to analyse a range of rhythmic behaviours - 78 

from running to jumping - but also to cluster the underlying motor programs in PCA space, with 79 

similar movements such as walking and running being in closer proximity (Supplementary Note 80 

1, Supplementary Fig. 1).  81 
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 82 

Figure 1 | AutoGaitA’s universal framework for the kinema9c comparisons of rhythmic behaviours within and across species.  83 
a, User input. AutoGaitA loads 2D (from DeepLabCut or SLEAP tracking) or 3D (any 3D method) body coordinate data as well as 84 
the annotaFon table storing Fme informaFon. The AutoGaitA workflow is applicable to any model organisms (e.g. axolotl, 85 
salamander, frogs, songbirds) performing a variety of rhythmic behaviours. b, First-level workflow. Landmark coordinates are 86 
first segmented into cycles based on the annotaFon table and then normalised. Normalised kinemaFc features (stride, height, 87 
angles, velociFes and acceleraFons) are computed and averaged for each trial. c, First-level results. Results are generated as 88 
image and tabular files, summarising raw coordinates and kinemaFc features for each trial aPer segmentaFon, normalisaFon, 89 
and averaging. d, Group-level workflow. Comparisons of kinemaFc features among groups are computed via staFsFcal tests and 90 
principal component analysis (PCA). e, Group-level results. Results of staFsFcal tests (e.g., pair-wise Fme points of staFsFcal 91 
significance and p-values) are provided for each variable tested. PCA results are provided as customisable scaQerplots, videos, 92 
and tabular files.  93 
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Species-specific and convergent strategies of age-dependent motor adaptation 94 

Comparing motor programs across species has long posed a significant challenge due to 95 

fundamental biological differences in morphology, biomechanics and size, as well as the 96 

heterogeneity of experimental paradigms and posture tracking methods. Leveraging AutoGaitA’s 97 

ability to analyse coordinate data independently of the model organism and tracking algorithm, we 98 

assessed the motor programs underlying walking (henceforth locomotor program) - one of the 99 

most fundamental rhythmic behaviours - in flies (Drosophila Melanogaster), mice (Mus 100 

Musculus) and humans. DLC was used to track body landmarks in flies walking on a spherical 101 

treadmill, mice walking on a 25-mm wide beam, and humans walking on a wide walkway (Fig. 102 

2a-c). We focused our analyses on posterior/lower limb landmarks: the thorax-coxa (Th-Cx), the 103 

coxa-trochanter (Cx-Tr), the femur-tibia (Fe-Ti), the tibia-tarsus (Ti-Tar), and the tip of the tarsus 104 

(Tar) on the fly posterior leg (Fig. 2d); the iliac crest, hip, knee, ankle and middle hindpaw on the 105 

mouse hindlimb (Fig. 2e); and the hip, knee, ankle, and midfoot on the human leg (Fig. 2f). We 106 

analysed how the kinematic features of these landmarks vary during the step cycle, defined from 107 

the beginning of swing (foot is lifted from the ground) to the end of stance (just before the foot is 108 

lifted from the ground for the next step) (Fig. 2f). The stick diagrams, illustrating the horizontal 109 

(stride) and vertical (height) displacement of the limbs during a step cycle, revealed the divergent 110 

kinematics resulting from species-specific biomechanics (Fig. 2g-i).  111 

In tethered flies, the proximal Th-Cx and Cx-Tr remained in relatively fixed positions, while 112 

the distal Fe-Ti, Ti-Tar and Tar moved, almost synchronously, upward during swing and 113 

downward during stance (Fig. 2g,j, Supplementary Fig. 2d). This resulted in all distal joints being 114 

maximally flexed at the swing-to-stance transition and maximally extended at the stance-to-swing 115 

transition (Supplementary Fig. 2a), suggesting that in flies, distal joints are synergistically 116 
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coordinated to provide the primary power stroke for forward propulsion of the posterior leg. In 117 

mice, the iliac crest remained relatively static throughout the step cycle, the hip moved upward 118 

and downward only during swing, the knee and the hindpaw moved upward during swing and at 119 

the end of stance and downward during mid-stance, while the ankle exhibited opposite behaviour, 120 

moving downward during swing and upward during stance (Fig. 2h,k, Supplementary Fig. 2e). 121 

This resulted in the ankle, knee and hip being similarly maximally flexed mid-swing, but diverging 122 

in their peak extension, with the ankle and knee being maximally extended at the beginning of 123 

stance and the hip at the end of stance (Supplementary Fig. 2b). Together, this kinematic pattern 124 

suggests that in mice, the hip provides the initial power stroke, while the relative inversion of ankle 125 

and knee positions drives the forward thrust. In humans, the hip oscillated through the step cycle, 126 

marking the transitions across swing and stance, the knee moved upward during swing and 127 

downward during stance, while the ankle and the midfoot oscillated during swing, and moved 128 

upward at the end of stance (Fig. 2i,l, Supplementary Fig. 2f). This resulted in the peak flexion 129 

and extension of the knee occurring during swing and of the ankle at the end of stance and 130 

beginning of swing (Supplementary Fig. 2c). Taken together, this pattern suggests that in humans, 131 

the ankle push-off at the end of stance generates the additional power stroke that, together with the 132 

hip-driven oscillations, promotes the forward propulsion. Notably, our kinematic analysis suggests 133 

that the generation of propulsive strength relies on coordinated flexion/extension of all distal joints 134 

in flies, whereas it requires opposite displacement of knee, ankle and hindpaw in mice, and hip 135 

oscillations and ankle push-off in humans. Despite distinct biomechanics, all species converge on 136 

landmark velocities increasing along the proximal-to-distal axis (Supplementary Fig. 2g-i). Thus, 137 

leveraging the numerous kinematic features assessed by AutoGaitA, we revealed that the 138 

mechanisms underlying locomotor programs in hexapedal (flies), quadrupedal (mice) and bipedal 139 
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(human) model organisms converge in setting a proximal-to-distal gradient of landmark velocities 140 

and diverge in how leg propulsive strength is generated. 141 

 142 

Figure 2 | Divergent and convergent kinema9c strategies underlying locomotor programs in flies, mice, and humans.  143 
a-c, Snapshots of a fly walking on a spherical treadmill (a), a mouse walking on a 25 mm wide beam (b), and a human walking 144 
on a walkway (c). d-f, Snapshots illustraFng the landmarks analysed on the fly posterior leg (d), the mouse hindlimb (e) and the 145 
human leg (f). The right panels in d-e illustrate how landmarks translate to the sFck diagrams below. The right panel in f depicts 146 
a step cycle and its division into swing (toe-off) and stance (toe-down) phases. g, SFck diagram illustraFng the horizontal and 147 
verFcal displacements of the fly posterior leg. Note that flies were tethered. h-i, SFck diagrams of the mouse hindlimb (h) and 148 
human leg (i) for two consecuFve steps. j, Group-averaged variaFons in the height of key landmarks of the fly posterior leg 149 
throughout the step-cycle showing that all distal joints are moved almost synchronously upward and downward to generate 150 
propulsion. k, Group-averaged variaFons in the height of key landmarks of the mouse hindlimb throughout the step-cycle 151 
showing that the hip provides the iniFal power stroke, while the ankle and knee invert their relaFve heights to generate the 152 
subsequent thrust. l, Group-averaged variaFons in the height of key landmarks of the human leg throughout the step-cycle 153 
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showing that in humans the hip moves pendulously to ensure stability, while distal joints, parFcularly the ankle, generate 154 
propulsion. Data are presented as mean±SEM, SEM is shown as shaded areas. N=6 for flies, N=9 for mice, N=29 for humans. 155 

Next, we investigated how the same physiological perturbation, ageing, affects the execution 156 

of locomotor programs across species. The PCA obtained with the AutoGaitA group-level analysis 157 

indicates that the locomotor program shows an ageing signature in each species (Fig. 3a-c). 158 

Remarkably, not all older subjects segregate from the “young cluster”, showing inter-individual 159 

variability in response to ageing in all species (Fig. 3a-c). To assess the components driving the 160 

age-dependent adaptation of the locomotor programs, we analysed individual features next. 161 

Intriguingly, and consistent with their species-specific roles in generating propulsion, we observed 162 

that age reduced i) in flies, the flexion of the Fe-Ti and Cx-Tr angles at the swing-stance transition, 163 

shortening the power stroke length (Fig. 3d, Supplementary Fig. 3a); ii) in mice, the extension of 164 

the ankle at the swing-stance transition, affecting the knee/ankle dynamics driving the forward 165 

thrust (Fig. 3e, Supplementary Fig. 3b); iii) in humans, the ankle flexion during stance that usually 166 

provides the additional push-off power to move forward (Fig. 3f). Taken together, these 167 

observations revealed a conserved effect of aging on locomotor programs: a reduction in the 168 

generation of propulsive strength resulting from changes in the species-specific kinematic features 169 

that underlie the forward thrust of the leg. 170 

  171 
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 172 

Figure 3 | Age-dependent adapta9on of locomotor programs across species. 173 
a, PCA scaQerplot of fly posterior leg kinemaFcs shows segregated clusters for young (green, 2-3 days, N=6) and old (purple, 21-174 
22 days, N=6) flies. Each circle represents an individual fly. b, PCA scaQerplot of mouse hindlimb kinemaFcs shows segregated 175 
clusters for young (8 months, N=9) and old (24 months, N=12) mice. Each circle represents an individual mouse. c, PCA 176 
scaQerplot of human leg kinemaFcs shows parFally segregated clusters for young (21-36 years, N=29) and old (46-85 years, 177 
N=18) humans. Each circle represents a single parFcipant. d, Flexion of the femur-Fbia (Fe-Ti) angle at the swing-stance 178 
transiFon is reduced in old compared to young flies. e, Extension of the ankle angle at the swing-stance transiFon is reduced in 179 
old compared to young mice. f, Flexion of the ankle angle during stance is reduced in old compared to young humans. Data are 180 
presented as mean±SEM, SEM is represented as shaded areas. StaFsFcal analysis: one-way ANOVA followed by Tukey’s post-181 
hoc test. Significance is indicated with asterisks, *p<0.05. See Supplementary Tables S1-S9 for complete staFsFcal and PCA 182 
results. 183 

AutoGaitA accurately detects task- and age-dependent changes in mouse kinematics 184 

Real-world locomotion rarely involves a single, discrete perturbation, but is rather influenced 185 

by multiple, simultaneous disturbances, whose effects add up to more than their sum. Thus, the 186 

nervous system must deploy adaptive motor programs that account for interactions between 187 

different perturbations. We therefore investigated how the adaptation of locomotor programs to 188 
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increased task difficulty evolves with age, studying how untrained 3-, 8-, and 24-month-old 189 

C57BL6/J mice cross beams of varying widths: 25-, 12-, and 5-mm (Fig. 4a-4c).  190 

3-month-old mice significantly changed their locomotor program to adapt to narrowing beams. 191 

When mice crossed the 5-mm beam, the stride and the swing duration shortened (Fig. 4d). Further 192 

during swing, the ankle and knee angles showed reduced flexion and increased extension (Fig. 193 

4e,f), suggesting that mice walked with a predominantly extended limb posture, indicative of an 194 

adaptive strategy to improve balance on a narrow surface. Importantly, hip kinematics were 195 

unchanged (Fig. 4g), indicating that the requirement for increased precision of paw placement is 196 

implemented mainly through a finer regulation of the distal joints. The challenge to balance on the 197 

narrow beam caused the ankle/knee inversion, typically used to generate forward thrust, to be 198 

reduced (Supplementary Fig. 4a-c), necessitating a compensatory increase in joint velocities to 199 

generate sufficient propulsive strength (Supplementary Fig. 4d-f). Coalescing all meaningful 200 

kinematic features (forelimb and hindlimb height, angles and velocity) in PCA space revealed 201 

segregated clusters corresponding to the different beam widths (Fig. 4h). Thus, AutoGaitA’s multi-202 

level analysis revealed the kinematic adaptation of locomotor programs to increased task difficulty. 203 

Next, we investigated how age affects these locomotor adaptation strategies by comparing how 204 

3- and 8-month-old mice performed on the beam task. Aging did not change the kinematic pattern 205 

induced by the narrow beam, with older mice still showing reduced knee/ankle inversion 206 

(Supplementary Fig. 4g-i), increased joint velocity (Supplementary Fig. 4j-l), shortened stride 207 

(Supplementary Fig. 4m), less flexed ankle (Fig. 4i) and knee (Supplementary Fig. 4n), and no 208 

changes to the hip angle (Supplementary Fig. 4n). However, 8-month-old mice adopted an even 209 

more extended limb posture, with the ankle having higher peaks of extension at the end of swing 210 

(Fig. 4i). Thus, 8-month-old mice preserve the ability to execute the 25-, 12-, and 5-mm locomotor 211 
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programs, but with minor adjustments, such as increased distal joint extension (Fig. 4i, 212 

Supplementary Fig. 4g-n). Consistently, the PCA showed that the 25-, 12-, and 5-mm locomotor 213 

programs cluster separately, but with almost no difference between ages (Supplementary Fig. 4o). 214 

Finally, we compared 8- and 24-month-old mice on the beam task. Age reduced paw placement 215 

dexterity, with older mice displaying increased footslips (Supplementary Fig. 5a). Nevertheless, 216 

the kinematic adaptation to narrower beams was preserved, as older mice still exhibited shortened 217 

stride (Fig. 4j), extended leg posture (Fig. 4k, Supplementary Fig. 5d-f), and increased joint 218 

velocity (Supplementary Fig. 5g-i). In contrast to younger mice, 24-month-old mice displayed 219 

increased hip flexion on the 5-mm beam (Supplementary Fig. 5c), suggesting a more crouched 220 

posture to lower the centre of mass and improve postural stability. This crouched posture was also 221 

evident when comparing 8- and 24-month-old mice, as older mice exhibited a reduced peak of 222 

ankle extension during swing (Fig. 4k). Finally, the PCA showed a clear separation by both age 223 

and beam width (Fig. 4l), suggesting that locomotor programs undergo a more significant change 224 

between 8 and 24 months than at earlier stages (Supplementary Fig. 4o). 225 

In summary, AutoGaitA enabled us to identify task-specific locomotor programs, and assess 226 

how they change as a function of age.  227 
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 228 

Figure 4 | Task- and age-dependent motor adapta9on of locomotor programs in mice. 229 
a-c, Snapshots of a mouse crossing the 25 mm (a), 12 mm (b) and 5 mm (c) wide beam. d, 3-month-old mice shorten their stride 230 
when crossing a 5 mm wide beam (blue) compared to the 25 mm (green) and 12 mm (orange) wide beams. The shortened 231 
stride also corresponds to a shorter swing, as indicated by the arrowheads coloured according to beam widths. e-g Changes 232 
during the step cycle in the ankle (e), knee (f) and hip (g) angles in 3-month-old mice crossing the 25 mm (green), 12 mm 233 
(orange) and 5 mm (blue) wide beams. Mice crossing the narrowest (5 mm) beam showed reduced flexion and increased 234 
extension of the ankle and knee during swing, as indicated by the coloured arrowheads. h, PCA of changes in heights, angles 235 
and velociFes of the forelimb and hindlimb throughout the step cycle revealed segregated clusters based on beam widths. Each 236 
circle represents an individual mouse. i, Ankle angles of 8-month-old (solid lines) and 3-month-old (dashed lines) mice crossing 237 
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the three beams. 8-month-old mice exhibited a similar kinemaFc paQern of beam-induced adaptaFon, but an even more 238 
accentuated extended-limb posture. j, 24-month-old mice shorten their stride even more when crossing a 5 mm wide beam 239 
(blue) compared to the 25 mm (green), 12 mm (orange) wide beams. The shortened stride also corresponds to a shorter swing, 240 
as indicated by the arrowheads coloured according to beam widths. k, Ankle angles of 8-month-old (solid lines) and 24-month-241 
old (dashed lines) mice crossing the three beams. 24-month-old mice exhibited a similar kinemaFc paQern of beam-induced 242 
adaptaFon, but flexed their joints more, indicaFng a crouched posiFon on the beam to lower their centre of mass. l, PCA of 243 
changes in heights, angles and velociFes of the forelimb and hindlimb throughout the step cycle between 8-month-old (solid 244 
lines) and 24-month-old (dashed lines) mice revealed segregated clusters based on beam widths and age. Each circle represents 245 
an individual mouse. Data presented as mean±SEM. N=20 for 3-month-old, N=9 for 8-month-old and N=12 for 24-month-old 246 
mice. StaFsFcal comparison: one-way ANOVA followed by Tukey’s post-hoc test, significance is indicated by orange (5-mm 247 
versus 12-mm), blue (5-mm versus 25-mm), and green (12-mm versus 25mm) asterisks. See Supplementary Tables S10-S20 for 248 
complete staFsFcal and PCA results.   249 
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Discussion 250 

We have developed AutoGaitA, the open-source Python toolbox providing a versatile 251 

framework for the quantitative and standardised assessment and comparison of motor programs at 252 

different levels of granularity across species and behaviours. Showcasing the potential of this 253 

framework, we used it to reveal three key principles in motor control: i) the species-specific 254 

biomechanics underlying propulsive strength generation during walking (Fig. 2); ii) the age-255 

dependent adaptation mechanisms to generate propulsive strength (Fig. 3); iii) the combined 256 

effects that concomitant perturbations exert on locomotor programs to preserve robustness and 257 

flexibility (Fig. 4). 258 

A versatile quantitative framework for motor control 259 

One of the key factors underlying the deep-learning posture tracking revolution has been the 260 

algorithms´ applicability to any species or task4,5. We have developed a similarly versatile tool that 261 

enables comparable and standardised kinematic outputs to be generated independently of the input. 262 

This versatility has already been leveraged to identify gait alterations in cerebellar 263 

neurodegeneration18, assess to which extent physiological locomotor programs are restored in a 264 

mouse model of ataxia19, and characterise how perturbations of spinal interneurons affect limb 265 

movement in neonatal mice20.  266 

AutoGaitA can also be used to assess the motor programs underlying other rhythmic 267 

behaviours, such as those commonly used as readouts of dexterity (rope pulling, ladder walking) 268 

or deregulated sensation (grooming, chronic scratching). Compiling kinematic data of all these 269 

behaviours with AutoGaitA will establish a catalogue of motor programs across model organisms. 270 

Moreover, the annotation tables provide an additional tool to compare successful to failed cycles 271 

or failed cycles across mutations or perturbations, granting important insight into how motor 272 
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programs are adapted or degraded by physiological and pathological states. The standardised 273 

comparison of motor programs in health and disease will allow to better classify motor disorders, 274 

to identify motor symptom progression over the course of diseases and to unveil early disease 275 

hallmarks in pre-symptomatic stages. 276 

Beyond, future applications of AutoGaitA could involve assessing athletes’ performance in 277 

sports science, optimising treatments in physiotherapy and neurology, studying the impact of 278 

affective disorders on motor behaviours in psychiatry, and establishing kinematic readouts of 279 

environmental influences (e.g. stress/anxiety) in behavioural research.  280 

Propulsion in locomotion: species-, age- and task-dependent mechanisms 281 

The generation of propulsion during locomotion varies widely across species, reflecting 282 

differences in biomechanical constraint, body size, and environmental demands21. In hexapedal 283 

organisms such as fruit flies, posterior leg propulsion relies on the synchronised flexion and 284 

extension of all distal leg joints, producing a coordinated power stroke that drives forward 285 

movement (Fig. 2g,j, Supplementary Fig. 2a,d). Quadrupedal mammals such as mice use a hip-286 

driven initial power stroke, while the coordinated but opposing ankle and knee movements create 287 

the primary thrust (Fig. 2h,k, Supplementary Fig. 2b,e). In contrast, humans combine hip 288 

oscillations with ankle push-offs, with the ankle generating additional power during the stance-to-289 

swing transition (Fig. 2i,l, Supplementary Fig. 2c,f). Taken together, our data show how evolution 290 

has shaped distinct kinematic solutions to the fundamental challenge of efficient forward 291 

propulsion of the leg. Notably, in multi-legged species, interlimb coordination is required to 292 

preserve postural stability and synergise the propulsion generated by individual limbs1. 293 

Ageing degrades locomotor ability in all species by causing declines in muscle strength, joint 294 

flexibility, and neural control22–24. Yet, whether the age-dependent changes in locomotor programs 295 
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follow convergent or divergent mechanisms across species has been a long-standing open question. 296 

Difficulties in addressing this question arise from studies focusing on different outputs – strength, 297 

stride, coordination, endurance, dexterity – and results needing to be evaluated in light of the 298 

distinct biomechanics. By using comparable paradigms and standardised readouts, we determined 299 

a conserved mechanism of age-dependent locomotor adaptation in flies, mice and humans: the 300 

decline of propulsive strength (Fig. 3). This decline manifested within the constraints of each 301 

species’ unique biomechanics (Fig. 3). Defining the mechanistic bases underlying the ageing 302 

decline of propulsive strength is particularly important with respect to the motor impairments 303 

caused by neurodegenerative diseases and for establishing meaningful comparisons between 304 

patients and animal models. For example, ankle push-off power is decreased in ageing humans 305 

(Fig. 3f)25,26, especially in stroke patients27. However, our findings imply that in a mouse model of 306 

stroke, the loss of propulsive strength should be studied with a focus on the knee/ankle inversion 307 

instead of the ankle push-off. 308 

When locomotor tasks become more demanding, such as crossing narrow paths, the nervous 309 

system has to balance stiffness and forward propulsion in a way that guarantees postural stability28. 310 

As mice cross narrow beams, hindlimbs become rather stiff, with propulsive strength being 311 

generated by faster joint movements instead of the typical large angular excursions (Fig. 4a-f, 312 

Supplementary Fig. 4a-f). We additionally showed that as mice age and require an even finer 313 

balance control, this alternative strategy to generate propulsion was complemented by a lower 314 

centre of mass (Fig. 4k, Supplementary Fig. 5). 315 

In summary, AutoGaitA represents a much-needed standardized framework for the quantitative 316 

assessment of motor programs across behaviours, perturbations, and species. Through our 317 

showcase studies, we demonstrated that AutoGaitA enables the discovery of fundamental 318 
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principles governing motor control across species. We anticipate that this framework will have 319 

profound implications for advancing therapeutic interventions, optimizing rehabilitative strategies, 320 

and elucidating the evolutionary basis of motor control.  321 
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Methods 340 

Software Availability 341 

AutoGaitA is provided as an open-source Python toolbox (GitHub – mahan-342 

hosseini/AutoGaitA: Automated Gait Analysis in Python), being developed on top of well 343 

established, documented, and maintained Python dependencies: NumPy29,30 (https://numpy.org), 344 

SciPy31 (https://scipy.org), pandas32 (https://pandas.pydata.org), Scikit-Learn33 (https://scikit-345 

learn.org), Pingouin34 (https://pingouin-stats.org/), Matplotlib35 (https://matplotlib.org), seaborn36 346 

(https://seaborn.pydata.org), CustomTkinter (https://customtkinter.tomschimansky.com), Pillow37 347 

(https://python-pillow.github.io), openpyxl (https://openpyxl.readthedocs.io/en/stable/), ffmpeg-348 

python (https://kkroening.github.io/ffmpeg-python/), and h5py38 (https://www.h5py.org). 349 

AutoGaitA’s source code can be accessed in the GitHub repository under the GPLv3 license, 350 

and is further integrated with Zenodo39 (http://doi.org/10.5281/zenodo.15373063), automatically 351 

linking all releases to unique digital object identifiers (DOIs). AutoGaitA’s central goal is to take 352 

off the burden of post-tracking analyses from researchers, particularly those not too familiar with 353 

programming. We thus provide easy-to-understand graphical user interfaces (GUIs), a 354 

straightforward documentation consisting of many images, and comprehensive video tutorials on 355 

the AutoGaitA YouTube channel. Nonetheless, we have simultaneously made it easy for well-356 

versed developers and users to contribute to and extend AutoGaitA as well as to integrate our 357 

toolbox into custom workflows and other (Python) tools. We strongly appreciate and encourage 358 

user feedback and contributions via email: autogaita@fz-juelich.de or directly as GitHub pull 359 

requests. 360 
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AutoGaitA workflow details 361 

Data preparation and important settings 362 

For AutoGaitA DLC and SLEAP, we provide two ways of naming input data files: a thorough 363 

and safe way, which provides detailed information about the contents of files, and a reduced and 364 

risky way, which is quick to implement but carries some ambiguity. AutoGaitA Universal 3D 365 

includes a tool which allows convenient adaptation of the required naming convention of the 366 

columns of corresponding 3D data files. Since AutoGaitA Universal 3D analyses 2D kinematics 367 

of 3D body coordinates, users are advised to pay attention to their behaviour of interest and to 368 

which dimension’s features are of particular interest (e.g. along which 2D-plane angles should be 369 

computed). Excel tables containing the timestamp annotations of the behaviour to be analysed 370 

(annotation tables) need to be prepared before any analysis. These need to follow a specific format, 371 

which differs slightly between AutoGaitA DLC/SLEAP and AutoGaitA Universal 3D. 372 

Normalisation of segmented data  373 

In first-level workflows (Figure 1b), segmented data is normalised to be equally long for all 374 

cycles. In the explanations below, we will use time-points when referring to the length of original 375 

cycles before normalisation and cycle-bins when referring to the length of normalised cycles. 376 

Cycles are normalised to a user-chosen target length n (in cycle-bins) by being either extended if 377 

they were shorter (i.e. had fewer time-points than n originally) or compressed if they were longer 378 

(i.e. had more time-points than n originally). For example, if the user selected to normalise to ten 379 

cycle-bins, all original cycles of length 9 or below would be extended, and all original cycles of 380 

length 11 or more would be compressed. Extension is done via repetition. For the example target 381 

value of 10 cycle-bins and an original cycle having only 5 time-points before normalisation, all its 382 

data values will be repeated once (i.e.: original data at time-points: 1, 1, 2, 2, … 5, 5 = normalised 383 
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data at cycle-bins 1, 2, 3, 4, … 9, 10). Compression is done via averaging. In our example, if the 384 

original cycle comprises 20 time-points, its data points are averaged in adjacent pairs: first and 385 

second, third and fourth data points and so on (i.e.: averages of data at time-points: 1 & 2, 3 & 4, 386 

5 & 6, 7 & 8, … 17 & 18, 19 & 20 = normalised data at cycle-bins 1, 2, 3, …, 9, 10). 387 

After normalisation, each cycle-bin thus represents the data at respective percentiles, based on 388 

the number of selected bins. Default settings normalise to 25 cycle-bins, leading to cycle-bins 389 

reflecting 4% percentiles: 1-4%, 5-8%, 9-12%, etc., since this value showed the best comparability 390 

in our cross-species locomotion analysis. 391 

Standardisation of direction of movement  392 

In the same locomotion experiment, animals might walk through the video screen from left to 393 

right or vice versa. To ensure that the data is independent of the direction of motion, AutoGaitA 394 

offers options to adjust the horizontal coordinates (e.g., x-coordinates in 2D), effectively 395 

simulating that all animals walk towards the same point. For behaviours like jumping jacks or rope 396 

climbing, which are approximately stationary along the horizontal dimension, this option should 397 

be turned off. Users of AutoGaitA Universal 3D should consider additional details about this 398 

standardisation in 3D in the documentation’s section on back and forth behaviours.  399 

Standardisation of horizontal coordinates  400 

AutoGaitA provides an option to analyse horizontal coordinates, for example, x-coordinates in 401 

2D (see Fig. 4d). In a locomotion study, the x-coordinates of the foot inform about its distance 402 

travelled with each step (i.e., the stride). To ensure that x-coordinates are comparable across steps, 403 

they must be standardised to the same position across cycles. This standardisation ensures that no 404 

bias is introduced by AutoGaitA averaging features across cycles (and, consecutively, across 405 

animals at the group level). For standardisation, we subtract, at each cycle separately, the minimum 406 
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x-coordinate of a user-chosen key point from those of all key points. As a result, x-coordinates 407 

after standardisation inform about key points’ distance to the standardisation-joint’s zero-point and 408 

are, critically, independent of their absolute position in space.  409 

Standardisation of vertical coordinates  410 

Vertical coordinates, for example y-coordinates in 2D, can be standardised according to 411 

baseline, global, or landmark standardisation. In the (typically most accurate) baseline 412 

standardisation, the y-coordinates of a tracked reference baseline, like the beam in our mouse 413 

experiments (Fig. 2b), are subtracted from those of the animal’s body at the corresponding time 414 

points. If no baseline data is available, users can use global or landmark standardisation. Global 415 

standardisation subtracts the smallest y-coordinate present across the full dataset (i.e., across time 416 

and all landmarks) from the y-coordinates of all body landmarks. Landmark standardisation 417 

subtracts the smallest y-coordinate of a user-chosen landmark from the body’s y-coordinates. 418 

AutoGaitA also provides an option to standardise the y-coordinates of each step separately, which 419 

is recommended if no baseline standardisation is possible and the floor is uneven or cameras are 420 

distorted.  421 

Principal Components Analysis 422 

Users can choose which kinematic features to include in AutoGaitA’s Principal Components 423 

Analysis (PCA), which commences with extracting averages of these features across the entire 424 

cycle for each animal (Fig. 1c). Each cycle-bin of each feature is included as an input feature in 425 

the PCA. For example, if the ankle angle is an input feature and cycles were normalised to 10 426 

cycle-bins, the PCA would have 10 input features capturing animals’ ankle angles: ankle angle 1-427 

10% cycle, ankle angle 11-20% cycle, …, ankle angle 91-100% cycle. Users have the option to 428 

compute input features only over a subset of the cycle (e.g. the first half, or the first and last 429 
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quartile) instead. Following the PCA convention, input features are standardised to have zero mean 430 

and unit variance before the model is fitted. Scikit-Learn33 is used for standardisation as well as 431 

model-fitting. Depending on user input, the number of returned principal components (PC) can 432 

either be chosen directly or configured to explain a certain percentage of data variance. AutoGaitA 433 

produce5s PCA outputs as: 2D- and 3D scatterplots, generating video-files of the latter if wanted, 434 

and tabular files containing PC’s explained variance, input features’ eigenvectors, each animal’s 435 

coordinates in PC-space, and an overview of the 20 input features that contributed most strongly 436 

to each PC to simplify their interpretability.  437 

One-way ANOVA and Tukey’s Test 438 

AutoGaitA provides between- or within-subjects one-way ANOVAs, with the former assessing 439 

different subjects, as in Fig. 3, and the latter assessing the same subjects across different conditions, 440 

as in Fig. 4d-f, for example. ANOVA results are provided as conventional ANOVA tables in text 441 

files. While the one-way ANOVA tests a certain feature for group differences globally, Tukey’s 442 

post-hoc test compares the feature at individual cycle-bins separately, correcting for the number 443 

of multiple comparisons (AutoGaitA does not require the ANOVA for Tukey’s to be run). Besides 444 

figures illustrating the results of Tukey’s tests, we provide their exact numerical results (i.e., 445 

Tukey’s q-values as well as corresponding p-values and confidence intervals) in text and tabular 446 

files. AutoGaitA uses Pingouin34 for one-way ANOVAs and SciPy31 for Tukey’s tests. 447 

Cluster-extent Permutation Test 448 

The cluster-extent test is preferred over the ANOVA whenever parametric assumptions are not 449 

met. AutoGaitA’s cluster-extent test follows the concepts introduced by Maris and Oostenveld40, 450 

which are by now well-established in the field of human electrophysiology. We provide an in-451 

depth explanation of how the test is implemented in AutoGaitA in Hosseini et al.41. The outputs of 452 
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the cluster-extent test are provided as figures as well as text files, storing the p-values of all clusters. 453 

AutoGaitA uses SciPy31 for t-tests and Scikit-Learn33 for shuffling data randomly. 454 

Experimental fly model 455 

Adult male wild-type Canton-S Drosophila melanogaster flies were collected after eclosion 456 

and reared on a standard yeast-based medium42 at 25°C and 65% humidity in a 12-hour dark/light 457 

cycle. Experiments were performed with young (2-3 days old) and old (21-22 days old) flies. 458 

Tethered flies walked on a spherical treadmill and were recorded from the side using a high-speed 459 

camera (acA1300-200um, Basler), equipped with a 50 mm lens (LM50JC1MS, Kowa Optical 460 

Products)12. Videos were recorded at 400 frames/second with a resolution of 912 x 550 pixels. To 461 

convert pixels into metric scale, the camera was calibrated with a custom-made checkerboard 462 

pattern (7 x 6 squares with size 399 µm x 399 µm per square) developed on a photographic slide. 463 

The conversion factor of 5.883 ± 0.198 µm per pixel (mean ± standard deviation) was determined 464 

by analysing the side length of 1850 squares from 74 images of the checkerboard. 465 

DeepLabCut4 was used for automated tracking of leg landmarks in the videos by training a 466 

ResNet-50 network with a training set containing 755 images (10 videos with 54 to 105 frames 467 

each) from 5 flies. Resulting leg landmark predictions were visually inspected and manually 468 

corrected as needed with a custom-made graphical user interface software. Begin and end times 469 

for swing and stance phases were manually annotated for each step. 470 

Experimental mouse model 471 

Mice were maintained following the protocols for animal experiments approved by the local 472 

health authority in North Rhine-Westphalia (LAVE, Landesamt für Verbraucherschutz und 473 

Ernährung, Nordrhein-Westfalen). 3-month-, 8-month- and 24-month-old C56BL6/J mice of both 474 

sexes were used for behavioural experiments. These mouse age groups are commonly used to 475 
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characterise gait following physiological, pathological and circuit perturbations. Analysis of the 476 

behavioural data showed similar responses in male and female mice. Mice had ad libitum access 477 

to food and water, and were housed in groups of maximum 5 animals, maintained on a 12-hour 478 

dark/light cycle within a room controlled for humidity and temperature.  479 

We opted for the beam paradigm to test a challenge, e.g. walking on a narrowing path, mice 480 

are likely to encounter also in their naturalistic settings. Naïve mice of different ages were tested 481 

as they crossed 1.3-meter-long beams with different widths (5-mm, 12-mm, and 25-mm). Studying 482 

untrained mice enables the identification of innate adaptation strategies in response to the width-483 

dependent perturbations. On the first day, mice were tasked to cross the wide, 25-mm, beam, on 484 

the second day the 12-mm beam, and on the third day the narrow, 5-mm, beam. For each beam 485 

size, three to five trials per mouse were recorded using eight high-speed cameras (mV Blue Cougar 486 

XD) positioned around the beam (3D Simi Motion). Multiple camera views were analysed to count 487 

the number of slips, which were then averaged across trials per individual mouse. Videos were 488 

recorded at 100 frames/second, with a resolution of 1200 x 900 pixels. 489 

The Simi™ Motion software (version 10.2.0) was used to record markerless mice walking in 490 

both directions, so our data are averages of both right and left limbs. We used DeepLabCut4 to 491 

track the body landmark coordinates, as well as the beam surface to define our vertical baseline. 492 

Tracking was done after training a ResNet-50 network on 2147 frames (113 videos with 19 frames 493 

each) from 8 mice. The number of slips and the phases of the step cycle (beginning of swing, end 494 

of swing, and end of stance) were manually annotated. Slips or pauses on the beam were excluded 495 

from the kinematic analysis. Please note that 24-month-old mice display an increased number of 496 

slips on the narrowest beam (5-mm), thus, we analysed fewer animals compared to the other tasks. 497 
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Human dataset 498 

Participants meeting the following criteria were eligible for inclusion in the study: Age 499 

between 21 and 90 years, written informed consent, absence of neurological or psychiatric diseases 500 

and no health conditions affecting the locomotor system. The study was conducted according to 501 

the principles of the Declaration of Helsinki and approved by the local ethics committee of the 502 

Faculty of Medicine at University of Cologne (21-1418_1). The final sample is presented in 503 

Supplementary Table S32 and consisted of 47 individuals, including 29 younger participants (age 504 

[mean ± SD]: 28.1 ± 3.5 years, age range: 21 to 36 years; 19 females) and 18 older participants 505 

(age [mean ± SD]: 67.7 ± 11.0 years, age range: 46 to 85; 9 females). There were no significant 506 

differences between the two age groups with regard to sex (χ² = 0.560, p = 0.454) and body height 507 

(t= 0.819, p = 0.417). 508 

Participants walked on a walkway (460 cm in length x 60 cm in width), while being recorded 509 

by eight high-speed cameras (mvBlueCougar XD, Matrix Vision GmbH) positioned in a circular 510 

arrangement around the walkway. Videos were recorded at 100 frames/second, with a resolution 511 

of 1936 x 1216 pixels. The Simi™ Motion software (version 10.2.0) was used for the video 512 

recordings and DeepLabCut4 was used to track body landmarks. Tracking was done after training 513 

a ResNet-50 network on 4797 frames (123 videos with 39 frames each) from 31 humans. 514 

At the beginning of the recordings, participants were asked to stand at a marked position on 515 

one end of the walkway. After a verbal signal, participants started walking at a convenient, self-516 

generated speed to the other end of the walkway. Once they arrived at the end, they turned around 517 

and walked back to the start position. This back-and-forth walking was repeated until up to three 518 

trials were performed by each participant. Videos were split based on turns before being tracked 519 

with DLC, meaning that (as for our mouse data) the data corresponds to averages of left and right 520 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 29, 2025. ; https://doi.org/10.1101/2024.04.14.589409doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.14.589409
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 29 

legs. Step cycle phases, i.e., the start of the swing phase, the end of the swing phase, and the end 521 

of the stance phase, were annotated manually. More specifically, the toe-off moment of the feet 522 

was marked as the end of the stance phase and simultaneously as the start of the swing phase, while 523 

the moment of the heel-strike was marked as the end of the swing phase and simultaneously as the 524 

start of the stance phase.   525 
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