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Abstract

Single-cell and single-nucleus RNA sequencing (sc/snRNA-Seq) have become essential tools for
profiling gene expression across different cell typesin biomedical research. While factors like
RNA integrity, cell count, and sequencing depth are known to influence data quality, quantitative
benchmarks and actionable guidelines are lacking. This gap contributes to variability in study
designs and inconsistencies in downstream analyses. In this study, we systematically evaluated
guantitative precision and accuracy in expression measures across 23 sc/snRNA-Seq datasets
comprising 3,682,576 cells from 339 samples. Precision was assessed using technical replicates
based on pseudo-bulks created from subsampling. Accuracy was evaluated using sample-
matched scRNA-Seq and pooled-cell RNA-Seq data of mononuclear phagocytes from four
species. Our results show that precision and accuracy are generally low at the single-cell level,
with reproducibility being strongly influenced by cell count and RNA quality. We establish
data-driven thresholds for optimizing study design, recommending at |east 500 cells per cell type
per individual to achieve reliable quantification. Furthermore, we show that signal-to-noise ratio
isakey metric for identifying reproducible differentially expressed genes. To support future
research, we developed VICE (Variability In single-Cell gene Expressions), atool that evaluates
sc/snRNA-seq data quality and estimates the true positive rate of differential expression results
based on sample size, observed noise levels, and expected effect size. These findings provide
practical, evidence-based guidelines to enhance the reliability and reproducibility of sc/snRNA-
seq studies.

KEYWORDS: Single-cell RNA sequencing; Single-nuclel RNA sequencing; Single-cell

genomics; Transcriptome; Quality control
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I ntroduction

Single-cdll/nuclel RNA sequencing (Sc/snRNA-Seq) is a powerful technology developed for
measuring gene expression in individual cells. The first SsRNA-Seq study was published in 2009
by Tang et al[1]. Smart-seq was devel oped, enabling the amplification and sequencing of full-
length mRNA transcripts from individual cells, characterizing transcriptomes at single-cell
resolution. Since then, more technol ogies have been developed for single-cell profiling[2], with

10X chromium and Smart-seq being the two most commonly used methods.

Sc/snRNA-Seq has been used in various applications, including identifying novel transcriptional
regulatory mechanismg 3], characterizing cell types and tissue compositiong 4], studying
developmental dynamics and trgjectory of different cell typeg[5, 6], and identifying cell-type-
specific changes as biomarkers for disease or treatment responseg 7-9]. All these studies rely on
accurate and precise measures of gene expression in each cell type. Precision and accuracy in the
guantitative measurement of gene expression are defined as the variability of expression across
replicates and the degree to which expression measurements match the actual or true values,
hereafter referred to as 'precision’ and 'accuracy,’ respectively. Only when gene expression is
guantified precisely and accurately in each sample, can the results of downstream analyses be

reproducible and meaningful.

Random and systematic technical variability adds noise to the expression measurementsin
sc/snRNA-Seq[10]. Many zero values are observed in sc/snRNA-Seq data, called ‘ dropouts' [11].
Dropouts can be caused by target genes truly not being expressed, or due to technical factors
such as low mRNA input, mMRNA degradation, capture efficiency, amplification efficiency, and
sequencing depth. These technical factors can reduce precision and cause bias in accuracy of
gene expression measurements. Previous studies attempted to assess technical noise in sSCRNA-
Seq data using Spike-ing12], sample-matched bulk-tissue RNA-Seq data[ 13], or gPCR[14] as
references. However, these methods have rarely been used due to costs and practical limitations.

Strategies to improve the quality of single-cell data such as pooling more cells have been
devel oped, but standardized procedures for completing sc/snRNA-Seq are lacking. Thereisa
lack of systematic, quantitative thresholds to guide experimental design, making it challenging to
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define optimal parameters for achieving reliable results. These factors are often inconsistently
evaluated across published studies, resulting in variability in data quality assessment. Practical
guidelines—such as the minimum number of cells required per cell type—are either lacking or
too vague, leaving researchers without clear direction for ensuring robust data quality in their

experiments.

We evaluated the precision and accuracy of expression measurements with 23 sc/snRNA-Seq
datasets produced on three different platforms published in high-profile journals (Table 1) in the
framework asillustrated in Figure 1. Initially, we surveyed the cell numbers and missing ratesin
these sc/shnRNA-Seq data, followed by calculating precision in each dataset using technical
replicates based on pseudo-bulks. Additionally, we explored the impact of several technical
factors, including RNA quality, saturation rate, total reads, and sequencing platform on
expression precision. We also evaluated the expression accuracy with four datasets of cultured
mononuclear phagocytes from sample-matched pooled-cell RNA-Seq and scRNA-Seq data.
Lastly, we evaluated the effect of cell number and other factors on the reproducibility of
downstream differential expression (DE) analysis. Based on the evaluation, we provided
practical guidelines for future studies. To facilitate future experiment design and data evaluation,
we developed atool we named VICE (Variability In single-Cell gene Expressions)
https://github.com/RujiaDai/VICE.

Results

Existing sc/snRNA-Seq data have high missing rate

We measured the missing rate for each gene at both the individual-cell and pseudo-bulk levels.
Pseudo-bulks were created from single-cell gene expression of a specific cell type within an
individual to mimic bulk RNA-Seq data. The missing rate was defined as the proportion of cells
with zero expression for a given gene across all individual cells or pseudo-bulks of the same cell
type. Individual cells had an average missing rate of 90% (Figure 2A), while the pseudo-bulks
reduced the average missing rate to 40% (Figur e 2B). Including more cells in the pseudo-bulks

resulted in alower observed missing rate (Figure S1).

Though each project sequenced many cells, we noticed that the number of cells sequenced per
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cell type per individual was sometimes very small, particularly for minor cell types. Acrossthe
14 brain datasets, the average total cell count was 247,190, whereas the average cell number per
individual was 34,483 (Figure 2C). The number was even much smaller for specific cell types
per individual. For instance, the BICCN_HV'S study sequenced 353,194 cells and categorized 24
cell classes (Figure 2D). The largest group of cellsin this data comprised an average of 1,021
intratelencephalic (IT) neurons from layers 2 and 3, while the smallest group had only an average
of 4 somatostatin (SST) chodl inhibitory neurons across the samples, a difference of three orders

of magnitude.

L ow expression precision in sc/snRNA-Seq data

Expression precision was evaluated by the expression variability across technical replicates
based on pseudo-bulks in sc/snRNA-Seq data. First, we generated technical replicates based on
pseudo-bulks by randomly grouping cells of the same type from the same individual into three
groups and totaling expression values of each gene from all cells within each group (Figure S2).
We then calculated the coefficient of variation (CV) for each gene to measure the variability of
gene expression across the technical replicates based on pseudo-bulksin each cdll type. To avoid
sampling bias, we calculated the CV 100 times and used the averaged CV to represent the overall

precision in the data.

Our analysis revealed that the median CV of detected genes across technical replicates based on
pseudo-bulks was 0.68 + 0.24 in the 14 brain datasets (Figur e 3), which is much higher than the
median CV observed in bulk-tissue RNA-Seq[15] (ranging from 0.11 to 0.39) and microarray
data[ 16] (ranging from 0.1 to 0.2). Utilizing cell classification in the BICCN_HV S study, we
calculated the CV values a both cell type and subtype levels. The CVswere not significantly
different at these two resolution levels, suggesting the observed variability was not driven by
heterogeneity in a higher-level cell classification (Figure S3). A similar pattern was noted in
independent mouse brain data when different numbers of cells were sequenced, indicating that
low precision isatechnical challengein single-cell data across various sample sources (Figure
$4).

To illustrate the expression variability in multiple tissues, the single-cell RNA-seq data from
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blood, lung, and lymph nodes were evaluated[17]. A similar CV pattern across cell numbers was
observed, consistent with findingsin brain tissue data. Regardless of tissue type and cell type,
approximately 500 cells are needed to drive CV closeto 0.1 (Figure S5).

Major cell types exhibited lower CV than minor cell types. For example, excitatory neurons, as
the most abundant cell type, had a CV of 0.19+0.20 across datasets. In contrast, the other cell
types had amedian CV of 0.55+0.40 across datasets, indicating that the precision problem is
particularly severe for low-abundance cdll types. Additionally, expression CV was negatively
correlated with expression abundance (Correlation coefficient = -0.88, p-value < 2.2e-16, Figure

S6A). Notably, marker genes have lower CV than other genes (Figure S6B).

To compare the expression variability in sc- and sSnRNA-Seq data, we evaluated three brain
microglia samples with both sc- and sShRNA-Seq datg[ 18]. We observed aimost identical CV
patternsin the two data types, indicating that quality issues are a common concern for both
(Figure S7). We calculated the percentage of samples achieving a designated precision threshold,
aCV of 0.1 or lower for each cdll type. There was a striking disparity: the proportion of samples
from five distinct datasets that satisfied this precision criterion ranged from 3% to 25%, with an
average of 5%, asillustrated in Figure S8A. For example, every sample representing upper-layer
IT neuronsin the BICCN adult dataset successfully passed the precision assessment (Figure
S8B). In the case of the BICCN_HV S dataset, 67% of samples pertaining to IT neuronsin layers
2 and 3 met the established quality benchmarks (Figure S8C). Conversely, in the other nine
datasets, not a single sample reached the requisite levels of precision. Thisindicates a prevalent

problem with gene expression noisein individual samples of these datasets.

Expression precision iscorrelated with number of cells sequenced

We expected that the expression precision would be associated with the number of cells
sequenced and aimed to identify the minimum cell number for acceptable precision. To prove the
expectation by actual data, we generated technical replicates based on pseudo-bulks with varying
numbers of cells, ranging from single cell to the maximum cell number divided by three. The
sample with the largest number of total cellsin each dataset was utilized for testing. Asthe
number of cells pooled into the technical replicates based on pseudo-bulks increased, the overall
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variability decreased until it reached a plateau for major cell types (Figure 4A and Figure 4C).
With the small total number of cells sequenced, the minor cell types did not reach a stable CV
(Figure S9). Similar correlation coefficients of -0.66+0.07 and -0.78%0.14 were observed
between the number of cellsin each replicate and median CV in excitatory neuron and

oligodendrocyte respectively (p-value < 0.05, Figure 4B and Figure 4D).

The minimum number of cells required for delivering acceptable precision is suggested by data
of excitatory neurons. Based on five datasets (BICCN_adult, BICCN_dev, BICCN _trimesterl,
M1 10X, and BICCN_HVS), approximately 500 cells were required to achieve a median CV
close to 0.1 for neurons (Figure 4A). None of the other cell types attained CV values aslow as
0.1 and they all had fewer than 500 cells sequenced.

RNA integrity iscorrelated with expression precision

The cell numbers required for achieving an acceptable precision level in sc/snRNA-Seq data
vary across studies, suggesting expression precision may not be solely dependent on the number
of cells. We examined the effects of four technical factors, including RNA integrity, sequencing
depth, sequencing saturation, and sequencing platform, on expression precision of excitatory

neurons.

We tested the relationship between RNA integrity, as measured by the RNA integrity number
(RIN), and median CV in technical replicates. Two datasets with RIN information available for
analysis were used. Samples with higher RIN value tended to have lower CV values (Figure 5A
and Figure 5B). By zooming into replicates with 200 cells, negative correlations were observed
between RIN and median CV in the ROSMAP (R?= 0.26, p-value = 0.06, Figure 5C) and
autism_PFC (R*= 0.60, p-value = 0.04, Figure 5D) datasets, suggesting that RNA integrity is
another factor contributing to expression precision.

In the autism_PFC data, we also explored the correlation between median CV and total
sequencing depth (p-value = 0.89) and saturation rates (p-value = 0.76), but no significant
correlation was found (Figure S10A, Figure S10B). We also compared expression variability
across technical replicates in data generated from two different sequencing platforms, 10X
Chromium (autssim_PFC) and Smart-seq (MTG). The median CV across detected genesin
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199  replicates constructed by 200 cells was used for comparison. No significant difference in gene
200  expression variability was observed between the two technologies (p-value = 0.56, Wilcoxon
201  signed-rank test, Figure S10C), indicating the precision problem is not unique to a specific
202 sequencing platform.

203
204  Low expresson accuracy in sScRNA-Seq data associated with the number of cells sequenced

205  To evaluate the accuracy of gene expression, we compared pooled-cell RNA-Seq data with

206  single-cell RNA-Seq data of cultured mononuclear phagocytes from matched samples (Figure
207  6A). RNA-seq data from pooled cultured cells (of one type) was referred to as pooled-cell RNA-
208  seq. The gene expressions from pooled-cell RNA-Seq were considered as the ground truth. We
209  used Pearson correlation and linear regression to assess the expression accuracy. In the linear
210  regression model, the ground truth was treated as the independent variable, while the pseudo-
211 bulks from sample-matched scRNA-Seq was the dependent variable. We tested the significance
212 of the slope deviating from one. The significance of the linear regression, combined with the

213 Pearson correlation coefficient, was used to measure expression accuracy. We calculated the
214  expression accuracy independently for each of the four species. To illustrate the relationship

215  between the number of cells and expression accuracy, we performed downsampling experiments,

216  ranging from 1,000 to 1 cell for each sample.

217  The number of genes with good accuracy decreased in down sampling (Figure 6B). We

218  observed 3,450 out of 13,907 detected genes with good accuracy as defined by criteria of

219  regression slope of 1 (p-value of 0.05) and correlation coefficient of 0.9 when 1000 cells were
220 analyzed for each sample in mouse data. When each sample contained a single cell, only 100
221 genes showed good accuracy. When data have 500 cells in each sample, the gene accuracy tends
222  toreach astable value. Similar patterns were observed in data from rat, pig, and rabbit, though
223 pig and rabbit data showed overall worse performance than mouse and rat data (Table S1).

224  The relationship between number of cells and expression accuracy was replicated in the
225 simulation data. In the simulation, ScCRNA-Seq data of six samples, each with 3000 cells, were
226 synthesized. The pseudo-bulks of 3000 cells in each sample were used as ground truth. We

227  observed that the number of genes with good accuracy increased with larger cell numbers
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228  (Figure S11), consistent with results from our real data. Notably, when at least 500 cells were

229  sampled, the number of genes with good accuracy began to stabilize.
230

231  Noiselevel and trait effect size interactively affectsthe reproducibility of differential

232 expression analysisin scRNA-Seq data

233 Toassess theimpact of data quality on downstream analysis, we conducted a DE analysisin
234 sample-matched scCRNA-Seq and pooled-cell RNA-Seq datasets independently, comparing

235  Lipopolysaccharide (LPS)-treated and untreated groups using the edgeR algorithm. Genes were
236  considered significantly differentially expressed (DEGs) when their false discovery rate (FDR)-
237  corrected p-value was less than 0.05. Since we already showed that both expression precision
238  and accuracy were positively correlated with the number of cells sequenced, we employed a
239  down-sampling strategy to investigate the influence of cell number on DE results. By utilizing
240  the DE resultsin pooled-cell RNA-Seq data as ground truth, we evaluated the overall

241  reproducibility of DE results in ScRNA-Seq data with true positive rate, the proportion of actual
242  positive instances that are correctly identified as positive. Notably, as the number of cells

243 increased, the true positive rate improved and had a plateau at about 500 cells (Figure 7A). The
244  true pogtive rates were 0.72, 0.63, 0.62, 0.44 in data from mouse, rat, pig and rabbit, when 500

245  cellswereincluded in each sample.

246  Effect size, which reflects the differences between the compared groups, playsacrucial rolein
247  determining the statistical power of a DE analysis. By categorizing the mouse DEGs into three
248  groups based on effect size: high (Jlog2FC| > 2), medium (1 < [log2FC| < 2), and low (Jlog2FC| <
249 1), we observed that DEGs with high and medium effect sizes demondtrate a better true positive
250  ratethan those with low effect sizes. DEGs with medium effect sizes still exhibit arelatively

251  lower true positive rate compared to genes with high effect sizes, particularly when the number
252 of cdlsislimited. (Figure 7B).

253  For example, when 500 cells were included in each sample, DEGs with large effect sizes (over
254  two-fold changes) had atrue positive rate of 0.73, whereas DEGs with small effect sizes had a
255  true pogitiverate of only 0.38. When only 50 cells were included in each sample, the true

256  positive rates were 0.41 and 0.09 for DEGs with large and small effect sizes, respectively.
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This suggested that the relationship between effect size and noise level has an interactive impact
on DEG reproducibility. To quantify this combined effect, we adopted signal-to-noise ratio (SNR)
metric for each gene, defined as normalized effect size divided by CV. Using mouse data as an
example, we found that replicated DEGs exhibited significantly higher SNRs than non-replicated
DEGs (P < 2.2 x 1071, Figure 7C). This trend was consi stent with the observation that DEGs
showing higher expressions tend to have better reproducibility (Figure S12). The factors

influencing DEG reproducibility are summarized in Figure 7D.

To evaluate the applicability of the 500-cell cutoff and the SNR measurement, we applied
various cell number cutoffs to an independent dataset from Ruzicka et al.[19], which conducted
DE analysis on two schizophrenia postmortem brain cohorts (MCL and Mt Sinai). Using an
Exact test, we assessed the reproducibility of DEGs across the two cohorts. At a 500-cell cutoff,
cell types with significant DEG reproducibility were clearly distinguishable from those without
(Figure S13A). However, reducing the cell-number cutoff to lower thresholds, such as 300 or
100 cells—commonly regarded as acceptable in practice—may result in misleading indications
of reproducibility. For instance, the Vip neuron emerged as a potential cell type with replicable
DEGs at these lower cutoffs, yet its reproducibility was not statistically significant. Moreover,
we found that reproduced DEGs exhibited significantly higher SNR (P = 0.0002, Figure S13B),
effectively distinguishing reproducible genes from non-reproducible ones in this dataset.

Discussion

The use of sc/snRNA-Seq in biological studies has become a common practice, necessitating
meticulous evaluation of data quality to avoid misleading or even false findings. The current
investigation assesses the expression precision and accuracy of published sc/shRNA-Seq data.
By analyzing 23 representative datasets, we demonstrated that the gene expressions per
individual measured for most cell types were of low precision and accuracy. We found a robust
correlation between the number of cells sequenced and the precision, accuracy, and
reproducibility of downstream DE analysis. Only cell types having a large number of cells
(minimum 500 cells) sequenced delivered relatively accurate and precise quantification of gene
expression and, consequently, credible results of downstream analyses, such as case-control

comparisons.


https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.12.589216; this version posted April 14, 2025. The copyright holder for this preprint (which

286

287
288
289
290
291
292
293
294
295
296
297
298
299
300

301
302
303
304
305
306
307
308
309
310

311
312
313
314
315

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Many studies have speculated that cell number, RNA integrity, and sequencing depth influence
sc/snRNA-seq data quality, but none have systematically quantified these effects across datasets
or established actionable thresholds. Thislack of clear, reproducible standards has led to
inconsistencies in experimental design and, in some cases, unreliable—or even outright
incorrect—conclusions. A striking example is Murphy et al.[20], who demonstrated that many of
the transcriptional differences reported in Mathys et al.[9] regarding Alzheimer’s disease were
false positives, caused by inadequate noise control and flawed differential expression analysis.
Alarmingly, this paper —despite its misidentified genes—has been cited over 2,000 times,
significantly shaping the Alzheimer’s research landscape. Thisisjust one example; similar issues
permeate the field[ 21-23]. This concern aligns with the findings of previous studies[24, 25]. Itis
urgent that the single-cell research community recognizes the critical importance of data quality
to prevent misleading findings and ensure the reliability of future discoveries. Our study
addresses this urgent need by providing a quantitative threshold driven by large datasets, gene-

level evaluation metrics, and practical tools and guidance.

Our study establishes quantitative thresholds critical for ensuring high-quality single-cell data
and results. Prior studies qualitatively recognized that increasing the number of cellsimproves
data quality and reproducibility[ 26, 27], but the relationship between them is non-linear and the
gene expression precision, accuracy and reproducibility saturate at certain cell numbers (Figure
4A, Figure 6B, and Figure 7A). Therefore, a quantitative cutoff is required to exclude low-
quality genes and samples, similar to standard practices in bulk RNA-seg. This cutoff has never
been defined, creating a gap that limits consistency and reliability in single-cell studies. Our
systematic evaluation of 23 sc/snRNA-seq datasets of matured cell types from brain and other
tissues demonstrates that at least 500 cells per cell type per individual are required for robust

measurements—an evidence-based threshold previously missing in the field.

The criteria used for evaluating expression precision in this study are standard statistical
techniques. We used CV < 0.1 as the cutoff for the expression precision in thisevaluation. This
is based on previous quality evaluations of bulk RNA-Seq datg[ 16]. We believe that holding
sc/sn RNA-seq data to the same standard as bulk RNA seq is appropriate and lowering the
standard will lead to noisy results and poor reproducibility. Additionally, our evaluation
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demonstrated that CV tendsto stabilize at around 0.1 in single-cell data, as the number of cells
increases. However, when constructing the technical replicates based on pseudo-bulks, we
assumed homogeneity within one cell type. Such an assumption can be violated by heterogeneity
caused by cell subtypes and states, which may explain the minimum CV that is observed.
Nonetheless, our results indicated that cell subtype was not the major cause of poor precision in
the cell types we evaluated, as the precision at cell type level is not worse than that at subtype

level.

RNA quality is another crucial factor impacting expression precision. Notably, in the
BICCN_HV S study[ 28], the minimum number of cells required to achieve aCV of 0.1 was 500,
but other datasets require even larger numbers of cells. A key factor contributing to this
difference may be the use of surgical samplesin the BICCN_HV S study, as these samples tend
to be less degraded than frozen postmortem brain samples. Ensuring high RNA quality in
samples, such asusing RNA with RIN values greater than 7, will likely reduce the number of

cellsrequired for quality quantification.

The signal-to-noise ratio emerges as a pivotal determinant of the reproducibility of DE analysis.
Our investigation revealed that DEGs with large effect sizes exhibit superior reproducibility
compared to those with smaller effect sizes. When 500 cells were included in each sample where
the noise level was low, DEGs with large effect sizes had a true positive rate of 0.73, whereas
DEGs with small effect sizes had a true positive rate of only 0.38. When the cell number
decreased to 50 cells where the noise level was high, the true positive rates were 0.41 and 0.09
for DEGs with large and small effect sizes, respectively. This comparison indicates that the
technical noise matters more for the smaller biological effects and technical noise may be
manageable for phenotypes associated with pronounced expression changes. Improving data
guality becomes more critical in scenarios where the effect size of the phenotype approaches the
noise level. Thisis particularly relevant for many complex diseases, including neuropsychiatric
disorders, where the effect size is typically small[29], necessitating an increase in the number of

cells to minimize technical noise.

Thiswork provides gene-level metricsto help refinereliable signals. Most prior studies assessed
data quality at the cell or sample level, which can be biased by highly expressed genes. In
contrast, our study introduces a gene-by-gene evaluation framework, enabling precise quality
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and reproducibility assessments for individual genes—a crucial advancement for downstream
analyses like differential expression. Specifically, we introduce the SNR as a key metric for
assessing DEG reproducibility, calculated by dividing fold change by CV. Applying this
approach to schizophrenia DEGs and mouse data, we found that reproduced DEGs have
significantly higher SNR, which effectively distinguishes reproducible genes from non-
reproducible ones in this data, providing a practical metric for ensuring reliable single-cell data

analysis.

We introduce VICE, a powerful tool that enables researchers to assess the quality of existing
single-cell data and predict the reliability of differential expression results. With calculated CV
values, users can: (1) determine noise levels across different cell types and samples and (2)
identify genes with low noise level, ensuring that only high-confidence genes are prioritized for
analysis. By inputting cell numbers, effect sizes, and noise levels, VICE estimates the true
positiverate for single-cell DE analysis, providing a direct, data-driven framework for
optimizing experimental design and result interpretation. For trait-specific analyses, such as DE,
VICE can be used to: (1) estimate the true positive rate based on sample size and cell numbersto
guide study design; and (2) evaluate DEG reliability by estimating the true positive rate based on

signal-to-noise levels rather than relying solely on p-values.

We provide the following guidelines for future single-cell research. For general data quality
control, we recommend: (1) prioritizing high-quality RNA samples (RIN > 7) whenever possible,
as degraded RNA increases noise and reduces reproducibility; and (2) ensuring sufficient cell
numbers for reliable analysis. We suggest at least 500 cells per individual per cell type for
optimal precision. If thisisnot feasible, focusing on genes with low noise levelsis advisable.
Adjusting the CV threshold based on trait effect size can help balance precision with dataset
constraints. For result reporting, we recommend: (1) routinely reporting CV values and
associated power as quality metricsin single-cell data analysis; and (2) providing the median CV
for each sample in sc/shRNA-seq experiments to assess sample quality. These benchmarks set
optimal standards rather than rigid requirements. Researchers can adapt them as needed, using
pseudo-bulk strategies for low cell numbers or adjusting CV thresholds based on effect size. Our
approach provides practical, data-driven guidance that supports informed decision-making rather

than imposing one-size-fits-all rules.


https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.12.589216; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

376 Our findings hold significant implications across multiple domains. Many researchers have

377  reported results from minor cell typesin avariety of tissues, but our work casts doubt about the
378  validity of conclusions drawn from much of this research due to insufficient numbers of cells.
379  The accurate identification and comprehensive study of these minor cell types necessitates

380  sequencing more cells. Beyond e ucidating the nuances of DE analysis, our resultsimply low
381  precision and accuracy impacts other analytical methodologies, including cell classification[30],
382 eQTL mapping[31], and the construction of co-expression networks32]. The effect of cell

383  numbers on other data analyses remains to be explored.

384  Our study rigorously quantifies these effects and provides concrete, data-driven guidelinesto
385  improve sc/snRNA-seq studies. Our goal is not to rescue poor experimental designs—thereisno
386 smplefix for flawed data. Instead, we define the scale of the problem with precise numbers,

387  highlighting critical pitfallsin single-cell data analysis. We equip researchers with clear,

388  (uantitative metricsto assess which genes and samples meet quality standards for reliable

389  downstream analysis. More importantly, we provide practical tools and data-driven cutoffs,

390  ensuring that future studies are designed correctly from the start, minimizing errors and

391  maximizing reproducibility.
392 Conclusion

393  Inthisstudy, we conducted a quantitative evaluation of expression precision and accuracy across
394 23 representative sc/snRNA-Seq datasets, revealing significant deficienciesin gene expression
395  measurements—particularly when sequencing alimited number of cells. We demonstrate that the
396 reproducibility of DE analysisistightly correlated with cell number, emphasizing the need for
397  data-driven thresholdsin study design. To improve the reliability and reproducibility of

398  sc/snRNA-Seqg studies, we recommend sequencing at least 500 cells per cell type per individual,
399 including minor cdll types and RNA quality (RIN > 7). Recognizing practical constraints, we
400 provideflexible, evidence-based guidelines rather than rigid requirements. We strongly advocate
401  for quality assessment before downstream analyses to prevent false discoveries. To facilitate this,
402  wedeveloped VICE, atool that quantifies technical variability, estimates the true positive rate of
403  DE results, and enables data-driven decision-making in sc/snRNA-Seq studies.

404 Materials and methods
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Collection of sc/snRNA-Seq data from cortex

A total of 14 brain sc/snRNA-Seq datasets were obtained for analysis. The collected datasets
were derived from human brain studies published between 2012 and 2023[8, 9, 28, 34-45].
Samples from individuals with brain disorders were excluded from the analysis to prevent
biasing the expression profiles. The raw count and cell annotation data were obtained from the
original studies. Dueto differencesin cell classification across studies, we harmonized cell
identities into eight major cell types present in the adult brain, namely excitatory neurons,
inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, astrocytes, microglia,
endothelia cells, and pericytes. The annotation of datafrom BICCN 2023 collection was
retained to evaluate cell subtypes. The sScRNA-Seq data of blood, lung, and lymph node from
Tabula Sapiens Consortium were used for evaluating expression variability in multiple

tissues[17].
Collection of sample-matched data from four species

To assess expression accuracy, we utilized four sample-matched scRNA-Seq and pool ed-cell
RNA-Seq datasets. These datasets were sourced from Hagai et al.[46], encompassing bone
marrow-derived mononuclear phagocytes derived from mouse, rat, pig, and rabbit, all subjected
to stimulation with either lipopolysaccharide or poly-1:C for a duration of four hours. Within
each species, atotal of three samples received lipopolysaccharide treatment, while three
additional samples were designated as control groups. We employed the preprocessed data
provided by Squair et al.[24], which is available at https://doi.org/10.5281/zenod0.5048449.

RIN

The RIN isanumerical value that measures the quality of RNA samples. It is calculated before
sequencing using an automated analysis of RNA molecules through electrophoresis, such as
Agilent 2100 bioanalyzer. The RIN scale ranges from 1 to 10, with 10 indicating fully intact
RNA and 1 indicating completely degraded RNA. We obtained the RIN of samples from the

original studies.
Processing of sc/snRNA-Seq data

The sc/snRNA-Seq data underwent processing using Seurat version 4[47]. The raw count matrix
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and cell annotation matrix were used as input to Seurat. We filtered out genes with zero
expression in more than /1000 of the total cells in each dataset. The proportion of transcripts
mapped to mitochondrial genes was calculated for each cell, and cells with 10% or more
mitochondrial gene expression were removed to prevent the inclusion of dead cells. Additionally,
cells with less than 200 detected genes or those with more than three standard deviations from
the mean number of detected genes were excluded. The count data were normalized based on
library size and were scaled with afactor of 10,000. The normalized data were then log-
transformed.

Marker geneidentification

To identify marker genes in the ROSM AP dataset, we utilized a one versus second high strategy
at both the cell and pseudo-bulk level. At the cell level, marker genes were identified using
Seurat. Genes with a proportion of zero expression greater than 15% in the target cell type were
removed prior to marker gene identification. The Wilcoxon signed-rank test was used to assess
the expression difference, and genes with alog2FC greater than 1 and FDR-corrected p-value
less than 0.05 were defined as marker genes. At the pseudo-bulk level, pseudo-bulks were
constructed by aggregating gene expression for the same cell type from the same individual.
Marker genes were then tested using DESeq2[48], and the likelihood ratio test was utilized to
evaluate the expression difference between the two cell groups. Marker genes with alog2FC
greater than 2 and FDR-corrected p-value less than 0.05 were defined as marker genes at the
pseudo-bulk level. Finally, marker genes supported by both cell- and pseudo-bulk-level tests

were selected as final marker genes.
Technical replicate construction and CV calculation

To generate technical replicates based on pseudo-bulks for each cell type, cells in the count
matrix were randomly divided into three groups for the same individual. The count expression
for each gene was then summed within each group. The CV value was calculated for each gene
using the following formula:

sd(x)

Formulal: (CVi=—7—
mean(x)

, Where x represents the gene expression of gene i across three replicates of a specific cell type.
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To ensure the robustness of technical replicates, the cell groupings and CV calculations were

repeated 100 times, and the average CV across 100 samplings was used.
CV-cell-number relationship in data with cell class and subclass annotations

To compare the relationship between CV values and the number of sequenced cells in the mouse
class and subclass data, a Student's t-test was used (Figure S3). To compare the relationship
between CV values and the number of sequenced cells in the mouse class and subclass data when
different number of cells were sequenced, we used a two-sample Z-test (Figure $4). The null
hypothesis was that the slope in the regression model testing the relationship between the number
of cellsand CV values was the same in the class and subclass data. We calculated the difference

in slope between the two datasets using the following formula:

b1l - b2

Formula2: diff = ——=

, where b1 and b2 were the coefficients, and sel and se2 were the standard errors from the
regression model in the class and subclass data, respectively. We then used the area of the
standard normal curve corresponding to the calculated difference to determine the probability in

atwo-tailed manner.
Data smulation

Single-cell count data was simulated based on a negative binomial model using the R package
Splatter[49]. Two conditions were generated with the “group” simulation, with between 10 and
3000 cells per sample and three replicates per condition. The proportion of differentially
expressed genes (‘de.prob’) was set to 0.25.

Evaluation of expression accuracy

Since no single statistic is sufficient to describe accuracy, we developed a composite criterion
that captures the bias and distance from ground truth simultaneously using Pearson correlation
and alinear regression model. The sScRNA-Seq data were summarized by pseudo-bulks first. The
pseudo-bulks were normalized by the library size and were transformed into log2-transformed
counts per million (CPM). Then the batch effect between pseudo-bulks and pooled-cell RNA-
Seq data was corrected using the combat function in the sva package] 50]. Pearson correlation
between sample-matched scRNA-Seq and pooled-cell RNA-Seq was calculated for each gene. In
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the linear regression model, the expression in pooled-cell RNA-Seq was treated as the
independent variable and expression in SCRNA-Seq was treated as the dependent variable. The
intercept of linear regression model was set to 0. By setting offset in function Imin R, the
significance of slope deviating from 1 was tested. Good accuracy was defined as correlation

coefficient over 0.9 and p-value of linear regression over 0.05.
DE analysis

DE analysis was carried out on both sScRNA-Seq and pooled-cell RNA-Seq datasets to examine
the expression disparities between samples treated with lipopolysaccharide and the control
samples. For sScRNA-Seq data, DE analysis was performed on pseudo-bulk data using the
likelihood ratio test approach provided by edgeR[51]. For pooled-cell RNA-Seq data, edgeR was
performed on the count data directly. Genes exhibiting an FDR corrected p-value of less than
0.05 were classified as DEGs. We assessed the consistency between DE results obtained from
single-cell and pooled-cell RNA-Seq with true positive rate which denotes the proportion of
DEGs identified in pooled-cell RNA-Seq that were also replicated in the sScRNA-Seq data.

Application of DE analysisto Ruzicka et al.

The schizophrenia DE results were obtained from the supplementary materials of Ruzicka et al.
This study includes samples from the Mt Sinai and MCL cohorts. DEGs were defined as genes
with logZZFC > 0.1 and FDR < 0.05. Replicated DEGs were those that met the DE criteriain
both cohorts. The Exact test[52] was performed to assess the statistical significance of DEG
replication.

Data and code availability

The data supporting the findings of this study are publicly available, with details for accessing
the datasets provided in Table 1. The code for this paper can be found at
https.//github.com/RujiaDai/VICE and https.//ngdc.cnch.ac.cn/biocode/tool/BT7673.
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Figure 1 Overview of the study. Framework for evaluating the expression precision and
accuracy of sc/snRNA-Seq across datasets and platforms. We assessed the precision and
accuracy of gene expression measurements using 23 sc/snRNA-Seq datasets generated on three
platforms. These datasets, published in high-profile journals, were derived from large consortium
efforts, including the BICCN, reflecting current technological standards. Our analysis began with
asurvey of cell numbers and missing rates across datasets, followed by the evaluation of
precision based on technical replicates. We then examined the influence of technical factors such

as RNA quality, sequencing saturation rate, total read counts, and platform type on expression
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669  precision. To assess accuracy, we compared SCRNA-Seq data from four cultured mononuclear
670  phagocyte datasets with corresponding pooled-cell RNA-Seq data from the same samples.
671  Finally, we analyzed the effects of cell numbers and other factors on the reproducibility of
672  downstream differential expression analyses. This figure was created with BioRender.com.
673  Sc/snRNA-Seq, Single-cell/nuclel RNA sequencing expression measures; BICCN, BRAIN
674 Initiative Cell Census Network.
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Figure 2 Missing rates and cell numbers in the 14 datasets. A. Missing rate per gene at

676

individual cell level. B. Missing rate per gene at the pseudo-bulk level. C. Total number of cells

677

studied, along with the average number of cells per individual. The cell count per individual was

678

calculated by dividing the total number of cells by the number of individuals in the study. Cell

679

numbers were |ogl0-transformed for better visualization. D. An illustrative example showcasing

680

the average number of cells per individual, specifically drawn from the BICCN_HV'S study.
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Figure 3 Gene expression precision evaluated by technical replicatesin sc/snRNA-Seq data.

683

We calculated gene expression variability asthe CV of gene expression in three technical

684
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685  replicates based on pseudo-bulks for each gene. The sample with the largest number of total cells
686  in each dataset was used for illustration. The red dashed line denotes the CV thresholds of 0.1,
687  which isathreshold recommended for bulk-tissue gene expression quality control processing[16].

688 CV, coefficient of variation.
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689 Cells in each replicate

690 Figure4 Relationship between cell number and gene expression precison. A. CV valuesin
691  down-sampled neurons. B. Pearson correlation coefficient and p value between neuron cell

692  numbersin replicate and median CV. C. CV valuesin down-sampled oligodendrocytes. D.

693  Pearson correlation coefficient and p-value between oligodendrocyte cell numbersin replicate
694  and median CV. To enhance visual clarity, the number of cellsin each replicate was capped at
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708  with good accuracy is defined by Pearson correlation and linear regression model.
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Figure 7 Reproducibility of differential expression analysisin ScRNA-Seq data. A. True

positive rate of DEGs in data with different numbers of cells. Datasets from different species are

colored. B. True positive rate of DEGs with different effect sizes categorized by logFC of

differential expression. C. The relationship between signal-to-noise ratio (SNR), and DEG

reproducibility in mouse data. D. Model of DE reproducibility.

Table 1 Single-cell/nuclei RNA sequencing datasets assessed in this study

] . #Samp #Gene  #Cell
Data label  Species PMID Tissue #Cells Platform
les s types
3104269 Prefronta
ROSMAP Human 24 75,060 17,926 8 10X
7 | cortex
3109766 Prefronta
autism_PFC  Human 10 29,900 27,563 8 10X
8 | cortex
3109766 ;
autism_ACC  Human . Anterior 16 22065 27,072 8 10X

cingulate


https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.12.589216; this version posted April 14, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

cortex
Medial
3143501 Smart-
MTG Human temporal 8 15,583 43,474 7
9 Seq
gyrus
Primary
3461606
M1 10X Human 5 motor 2 76,533 27,933 8 10X
cortex
GSE97930_ 2922746 Visual
Human 3 19,368 21,273 8 Drop-seq
\'/o 9 cortex
GSE97930_ 2922746 Frontal
Human 1 19,368 18,751 8 Drop-seq
fro 9 cortex
3282689
GSE140231 Human 3 Cortex 5 10,581 24,702 6 10X
3193279 Prefronta
TREM Human 11 36,671 36,601 6 10X
7 | cortex

3423913 Prefronta

GSE174367 Human 8 21,996 25,392 6 10X
2 | cortex
BICCN_adul 3782466 130,507
Human Cortex 4 19,762 30 10X
t 3 5
BICCN_HV 3782464
s Human 9 Cortex 78 353,194 18,797 24 10X
BICCN_trim 3782465
Human Cortex 21 789,139 33,538 12 10X
esterl 0
3782464
BICCN_dev  Human ; Cortex 106 709,372 19,005 9 10X
Tabula 3554940
) Human Lung 3 33,222 23,739 3 10X
Sapiens 4
Tabula 3554940
) Human Blood 6 37,892 21,147 1 10X
Sapiens 4

Tabula ~ HUMan 3554040  Lymph 3 47,801 22271 1 10X
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Sapiens 4 node
3299799
Thruppetal Human 4 Microglia 3 14,823 21,015 1 10X
10X
3299799
Thruppetal Human 4 Microglia 3 3940 27,891 1 (whole
cell)
Mononuc
) 3035622 lear Smart-
Hagai etal* Mouse 6 17,776 15,319 1
0 phagocyt seq2
es
Mononuc
) 3035622 lear Smart-
Hagai et al * Rat 6 13,277 15,150 1
0 phagocyt seq2
es
Mononuc
) ) 3035622 lear Smart-
Hagaietal* Rabbit 6 17,097 9263 1
0 phagocyt seq2
es
Mononuc
) ) 3035622 lear Smart-
Hagai et al * Pig 6 12,753 8906 1
0 phagocyt seq2
es

716 Note: *With sample-matched sorted-cell RNA-Seq data

717

718 Supplementary materials
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724  Figure S2 lllustration of constructing technical replicates and calculating the CV of

725  expression acrosstechnical replicates. CV, coefficient of variation.
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727  Figure S3 Expression variability at class and subclasslevel for excitatory neurons. Data

728  from BICCN_HVSwas used. P value was calculated with Student's T-Test.
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730  Figure $4 Gene expression variability across technical replicatesin mouse brain snRNA-
731  Seq data. A. Median CV across genes in replicates constructed at class and subclass level. B.
732 Linear regression model of cell numbersin replicates and median CV identified at class and

733  subclasslevd.
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734

735  Figure S5 Reduction of CV with theincreased number of cells sequenced in three non-
736  Dbrain tissues. Datafrom Tabula Sapiens Consortium was used. Red line denotes CV of 0.1.
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738  Figure S6 Expression abundanceand CV in ROSMAP data. A. Relationship of expression
739  and CV in excitatory neuron from ROSMAP study. B. CV of marker genes. Blue and red line
740  denote CV of 0.2 and 0.1.
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741

742  Figure S7 Expression variability in sScCRNA-seq and snRNA-seq data. Three human microglia
743  samples with both sc- and snRNA-Seq data are shown.
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745  Figure S8 Proportions of samples with acceptable expression variability. A. The average and
746  maximum percentages of samples that satisfy the precision criterion. Examples from
747  BICCN_adult (B) and BICCN_HV S(C) datasets were used for illustration. Samples achieving
748  theprecision threshold, defined by a CV of 0.1 or lower, are indicated in green, signifying
749  acceptable expression precision, while those failing to meet the threshold are marked in yellow,
750 indicating low precision. Instances where a cell typeis not represented in asample are left blank.
751  The accompanying bar plot provides a detailed breakdown of the exact proportion of samples
752  that satisfy the precision criterion.
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754  Figure SO Expression variability acrossreplicatesin human microglia.
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756  Figure S10 Association between technical factor s and gene expression variability acr oss
757  technical replicatesin snRNA-Seq data. A. Median CV across detected genesin replicates
758  versustotal sequencing depth. B. Median CV across detected genes in replicates versus total
759  sequencing saturation rate. C. Comparison of median CV across detected genesin replicates
760  between data sequenced by 10X Chromium and Smart-Seq platforms.
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762  Figure S11 Relationship between expression accuracy and the number of cellsin ssmulated
763  data. The X-axis represents the number of cellsin each sample, and the Y -axis shows the

764  percentage of genes with good accuracy, as defined by Pearson correlation and alinear regression
765  model.
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766

767  Figure S12 True positive rate of DEGs with different expression levels categorized by log-
768  transformed counts per million (CPM).
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769

770  Figure S13 Applying the 500-cell threshold and SNR to schizophrenia case-control ScCRNA-
771  seq data (Ruzicka et al). A. Impact of cell number cutoff on the reproducibility of DEGs in two
772 schizophrenia cohorts. The plot illustrates the effect of different cell number cutoffs on the
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773 reproducibility of DEGs identified in two independent schizophrenia cohorts (MCL and Mt
774  Sina). B. The relationship between SNR and DEG reproducibility in astrocytes.

775  Table S1 Expression accuracy statisticsin datasets from four species
776
777

778
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