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 26 

Abstract  27 

Single-cell and single-nucleus RNA sequencing (sc/snRNA-Seq) have become essential tools for 28 

profiling gene expression across different cell types in biomedical research. While factors like 29 

RNA integrity, cell count, and sequencing depth are known to influence data quality, quantitative 30 

benchmarks and actionable guidelines are lacking. This gap contributes to variability in study 31 

designs and inconsistencies in downstream analyses. In this study, we systematically evaluated 32 

quantitative precision and accuracy in expression measures across 23 sc/snRNA-Seq datasets 33 

comprising 3,682,576 cells from 339 samples. Precision was assessed using technical replicates 34 

based on pseudo-bulks created from subsampling. Accuracy was evaluated using sample-35 

matched scRNA-Seq and pooled-cell RNA-Seq data of mononuclear phagocytes from four 36 

species. Our results show that precision and accuracy are generally low at the single-cell level, 37 

with reproducibility being strongly influenced by cell count and RNA quality.  We establish 38 

data-driven thresholds for optimizing study design, recommending at least 500 cells per cell type 39 

per individual to achieve reliable quantification. Furthermore, we show that signal-to-noise ratio 40 

is a key metric for identifying reproducible differentially expressed genes. To support future 41 

research, we developed VICE (Variability In single-Cell gene Expressions), a tool that evaluates 42 

sc/snRNA-seq data quality and estimates the true positive rate of differential expression results 43 

based on sample size, observed noise levels, and expected effect size. These findings provide 44 

practical, evidence-based guidelines to enhance the reliability and reproducibility of sc/snRNA-45 

seq studies. 46 

KEYWORDS: Single-cell RNA sequencing; Single-nuclei RNA sequencing; Single-cell 47 

genomics; Transcriptome; Quality control 48 
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 54 

Introduction 55 

Single-cell/nuclei RNA sequencing (Sc/snRNA-Seq) is a powerful technology developed for 56 

measuring gene expression in individual cells. The first scRNA-Seq study was published in 2009 57 

by Tang et al[1]. Smart-seq was developed, enabling the amplification and sequencing of full-58 

length mRNA transcripts from individual cells, characterizing transcriptomes at single-cell 59 

resolution. Since then, more technologies have been developed for single-cell profiling[2], with 60 

10X chromium and Smart-seq being the two most commonly used methods.  61 

Sc/snRNA-Seq has been used in various applications, including identifying novel transcriptional 62 

regulatory mechanisms[3], characterizing cell types and tissue compositions[4], studying 63 

developmental dynamics and trajectory of different cell types[5, 6], and identifying cell-type-64 

specific changes as biomarkers for disease or treatment responses[7-9]. All these studies rely on 65 

accurate and precise measures of gene expression in each cell type. Precision and accuracy in the 66 

quantitative measurement of gene expression are defined as the variability of expression across 67 

replicates and the degree to which expression measurements match the actual or true values, 68 

hereafter referred to as 'precision' and 'accuracy,' respectively. Only when gene expression is 69 

quantified precisely and accurately in each sample, can the results of downstream analyses be 70 

reproducible and meaningful.  71 

Random and systematic technical variability adds noise to the expression measurements in 72 

sc/snRNA-Seq[10]. Many zero values are observed in sc/snRNA-Seq data, called ‘dropouts’[11]. 73 

Dropouts can be caused by target genes truly not being expressed, or due to technical factors 74 

such as low mRNA input, mRNA degradation, capture efficiency, amplification efficiency, and 75 

sequencing depth. These technical factors can reduce precision and cause bias in accuracy of 76 

gene expression measurements. Previous studies attempted to assess technical noise in scRNA-77 

Seq data using Spike-ins[12], sample-matched bulk-tissue RNA-Seq data[13], or qPCR[14] as 78 

references. However, these methods have rarely been used due to costs and practical limitations.  79 

Strategies to improve the quality of single-cell data such as pooling more cells have been 80 

developed, but standardized procedures for completing sc/snRNA-Seq are lacking. There is a 81 

lack of systematic, quantitative thresholds to guide experimental design, making it challenging to 82 
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define optimal parameters for achieving reliable results. These factors are often inconsistently 83 

evaluated across published studies, resulting in variability in data quality assessment. Practical 84 

guidelines—such as the minimum number of cells required per cell type—are either lacking or 85 

too vague, leaving researchers without clear direction for ensuring robust data quality in their 86 

experiments. 87 

We evaluated the precision and accuracy of expression measurements with 23 sc/snRNA-Seq 88 

datasets produced on three different platforms published in high-profile journals (Table 1) in the 89 

framework as illustrated in Figure 1. Initially, we surveyed the cell numbers and missing rates in 90 

these sc/snRNA-Seq data, followed by calculating precision in each dataset using technical 91 

replicates based on pseudo-bulks. Additionally, we explored the impact of several technical 92 

factors, including RNA quality, saturation rate, total reads, and sequencing platform on 93 

expression precision. We also evaluated the expression accuracy with four datasets of cultured 94 

mononuclear phagocytes from sample-matched pooled-cell RNA-Seq and scRNA-Seq data. 95 

Lastly, we evaluated the effect of cell number and other factors on the reproducibility of 96 

downstream differential expression (DE) analysis. Based on the evaluation, we provided 97 

practical guidelines for future studies. To facilitate future experiment design and data evaluation, 98 

we developed a tool we named VICE (Variability In single-Cell gene Expressions) 99 

https://github.com/RujiaDai/VICE.  100 

 101 

Results 102 

Existing sc/snRNA-Seq data have high missing rate  103 

We measured the missing rate for each gene at both the individual-cell and pseudo-bulk levels. 104 

Pseudo-bulks were created from single-cell gene expression of a specific cell type within an 105 

individual to mimic bulk RNA-Seq data. The missing rate was defined as the proportion of cells 106 

with zero expression for a given gene across all individual cells or pseudo-bulks of the same cell 107 

type. Individual cells had an average missing rate of 90% (Figure 2A), while the pseudo-bulks 108 

reduced the average missing rate to 40% (Figure 2B). Including more cells in the pseudo-bulks 109 

resulted in a lower observed missing rate (Figure S1).  110 

Though each project sequenced many cells, we noticed that the number of cells sequenced per 111 
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cell type per individual was sometimes very small, particularly for minor cell types.  Across the 112 

14 brain datasets, the average total cell count was 247,190, whereas the average cell number per 113 

individual was 34,483 (Figure 2C). The number was even much smaller for specific cell types 114 

per individual. For instance, the BICCN_HVS study sequenced 353,194 cells and categorized 24 115 

cell classes (Figure 2D). The largest group of cells in this data comprised an average of 1,021 116 

intratelencephalic (IT) neurons from layers 2 and 3, while the smallest group had only an average 117 

of 4 somatostatin (SST) chodl inhibitory neurons across the samples, a difference of three orders 118 

of magnitude.  119 

 120 

Low expression precision in sc/snRNA-Seq data  121 

Expression precision was evaluated by the expression variability across technical replicates 122 

based on pseudo-bulks in sc/snRNA-Seq data. First, we generated technical replicates based on 123 

pseudo-bulks by randomly grouping cells of the same type from the same individual into three 124 

groups and totaling expression values of each gene from all cells within each group (Figure S2). 125 

We then calculated the coefficient of variation (CV) for each gene to measure the variability of 126 

gene expression across the technical replicates based on pseudo-bulks in each cell type. To avoid 127 

sampling bias, we calculated the CV 100 times and used the averaged CV to represent the overall 128 

precision in the data.  129 

Our analysis revealed that the median CV of detected genes across technical replicates based on 130 

pseudo-bulks was 0.68 ± 0.24 in the 14 brain datasets (Figure 3), which is much higher than the 131 

median CV observed in bulk-tissue RNA-Seq[15] (ranging from 0.11 to 0.39) and microarray 132 

data[16] (ranging from 0.1 to 0.2). Utilizing cell classification in the BICCN_HVS study, we 133 

calculated the CV values at both cell type and subtype levels. The CVs were not significantly 134 

different at these two resolution levels, suggesting the observed variability was not driven by 135 

heterogeneity in a higher-level cell classification (Figure S3). A similar pattern was noted in 136 

independent mouse brain data when different numbers of cells were sequenced, indicating that 137 

low precision is a technical challenge in single-cell data across various sample sources (Figure 138 

S4).  139 

To illustrate the expression variability in multiple tissues, the single-cell RNA-seq data from 140 
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blood, lung, and lymph nodes were evaluated[17]. A similar CV pattern across cell numbers was 141 

observed, consistent with findings in brain tissue data. Regardless of tissue type and cell type, 142 

approximately 500 cells are needed to drive CV close to 0.1 (Figure S5). 143 

Major cell types exhibited lower CV than minor cell types. For example, excitatory neurons, as 144 

the most abundant cell type, had a CV of 0.19±0.20 across datasets. In contrast, the other cell 145 

types had a median CV of 0.55±0.40 across datasets, indicating that the precision problem is 146 

particularly severe for low-abundance cell types. Additionally, expression CV was negatively 147 

correlated with expression abundance (Correlation coefficient = -0.88, p-value < 2.2e-16, Figure 148 

S6A). Notably, marker genes have lower CV than other genes (Figure S6B). 149 

To compare the expression variability in sc- and snRNA-Seq data, we evaluated three brain 150 

microglia samples with both sc- and snRNA-Seq data[18]. We observed almost identical CV 151 

patterns in the two data types, indicating that quality issues are a common concern for both 152 

(Figure S7). We calculated the percentage of samples achieving a designated precision threshold, 153 

a CV of 0.1 or lower for each cell type. There was a striking disparity: the proportion of samples 154 

from five distinct datasets that satisfied this precision criterion ranged from 3% to 25%, with an 155 

average of 5%, as illustrated in Figure S8A. For example, every sample representing upper-layer 156 

IT neurons in the BICCN adult dataset successfully passed the precision assessment (Figure 157 

S8B). In the case of the BICCN_HVS dataset, 67% of samples pertaining to IT neurons in layers 158 

2 and 3 met the established quality benchmarks (Figure S8C). Conversely, in the other nine 159 

datasets, not a single sample reached the requisite levels of precision. This indicates a prevalent 160 

problem with gene expression noise in individual samples of these datasets. 161 

 162 

Expression precision is correlated with number of cells sequenced  163 

We expected that the expression precision would be associated with the number of cells 164 

sequenced and aimed to identify the minimum cell number for acceptable precision. To prove the 165 

expectation by actual data, we generated technical replicates based on pseudo-bulks with varying 166 

numbers of cells, ranging from single cell to the maximum cell number divided by three. The 167 

sample with the largest number of total cells in each dataset was utilized for testing. As the 168 

number of cells pooled into the technical replicates based on pseudo-bulks increased, the overall 169 
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variability decreased until it reached a plateau for major cell types (Figure 4A and Figure 4C). 170 

With the small total number of cells sequenced, the minor cell types did not reach a stable CV 171 

(Figure S9). Similar correlation coefficients of -0.66±0.07 and -0.78±0.14 were observed 172 

between the number of cells in each replicate and median CV in excitatory neuron and 173 

oligodendrocyte respectively (p-value < 0.05, Figure 4B and Figure 4D).  174 

The minimum number of cells required for delivering acceptable precision is suggested by data 175 

of excitatory neurons. Based on five datasets (BICCN_adult, BICCN_dev, BICCN_trimester1, 176 

M1_10X, and BICCN_HVS), approximately 500 cells were required to achieve a median CV 177 

close to 0.1 for neurons (Figure 4A). None of the other cell types attained CV values as low as 178 

0.1 and they all had fewer than 500 cells sequenced. 179 

 180 

RNA integrity is correlated with expression precision  181 

The cell numbers required for achieving an acceptable precision level in sc/snRNA-Seq data 182 

vary across studies, suggesting expression precision may not be solely dependent on the number 183 

of cells. We examined the effects of four technical factors, including RNA integrity, sequencing 184 

depth, sequencing saturation, and sequencing platform, on expression precision of excitatory 185 

neurons.  186 

We tested the relationship between RNA integrity, as measured by the RNA integrity number 187 

(RIN), and median CV in technical replicates. Two datasets with RIN information available for 188 

analysis were used. Samples with higher RIN value tended to have lower CV values (Figure 5A 189 

and Figure 5B). By zooming into replicates with 200 cells, negative correlations were observed 190 

between RIN and median CV in the ROSMAP (R2 = 0.26, p-value = 0.06, Figure 5C) and 191 

autism_PFC (R2 = 0.60, p-value = 0.04, Figure 5D) datasets, suggesting that RNA integrity is 192 

another factor contributing to expression precision.  193 

In the autism_PFC data, we also explored the correlation between median CV and total 194 

sequencing depth (p-value = 0.89) and saturation rates (p-value = 0.76), but no significant 195 

correlation was found (Figure S10A, Figure S10B). We also compared expression variability 196 

across technical replicates in data generated from two different sequencing platforms, 10X 197 

Chromium (autsim_PFC) and Smart-seq (MTG). The median CV across detected genes in 198 
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replicates constructed by 200 cells was used for comparison. No significant difference in gene 199 

expression variability was observed between the two technologies (p-value = 0.56, Wilcoxon 200 

signed-rank test, Figure S10C), indicating the precision problem is not unique to a specific 201 

sequencing platform. 202 

 203 

Low expression accuracy in scRNA-Seq data associated with the number of cells sequenced 204 

To evaluate the accuracy of gene expression, we compared pooled-cell RNA-Seq data with 205 

single-cell RNA-Seq data of cultured mononuclear phagocytes from matched samples (Figure 206 

6A). RNA-seq data from pooled cultured cells (of one type) was referred to as pooled-cell RNA-207 

seq. The gene expressions from pooled-cell RNA-Seq were considered as the ground truth. We 208 

used Pearson correlation and linear regression to assess the expression accuracy. In the linear 209 

regression model, the ground truth was treated as the independent variable, while the pseudo-210 

bulks from sample-matched scRNA-Seq was the dependent variable. We tested the significance 211 

of the slope deviating from one. The significance of the linear regression, combined with the 212 

Pearson correlation coefficient, was used to measure expression accuracy. We calculated the 213 

expression accuracy independently for each of the four species. To illustrate the relationship 214 

between the number of cells and expression accuracy, we performed downsampling experiments, 215 

ranging from 1,000 to 1 cell for each sample.  216 

The number of genes with good accuracy decreased in down sampling (Figure 6B). We 217 

observed 3,450 out of 13,907 detected genes with good accuracy as defined by criteria of 218 

regression slope of 1 (p-value of 0.05) and correlation coefficient of 0.9 when 1000 cells were 219 

analyzed for each sample in mouse data.  When each sample contained a single cell, only 100 220 

genes showed good accuracy. When data have 500 cells in each sample, the gene accuracy tends 221 

to reach a stable value. Similar patterns were observed in data from rat, pig, and rabbit, though 222 

pig and rabbit data showed overall worse performance than mouse and rat data (Table S1).  223 

The relationship between number of cells and expression accuracy was replicated in the 224 

simulation data. In the simulation, scRNA-Seq data of six samples, each with 3000 cells, were 225 

synthesized. The pseudo-bulks of 3000 cells in each sample were used as ground truth. We 226 

observed that the number of genes with good accuracy increased with larger cell numbers 227 
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(Figure S11), consistent with results from our real data. Notably, when at least 500 cells were 228 

sampled, the number of genes with good accuracy began to stabilize. 229 

 230 

Noise level and trait effect size interactively affects the reproducibility of differential 231 

expression analysis in scRNA-Seq data 232 

To assess the impact of data quality on downstream analysis, we conducted a DE analysis in 233 

sample-matched scRNA-Seq and pooled-cell RNA-Seq datasets independently, comparing 234 

Lipopolysaccharide (LPS)-treated and untreated groups using the edgeR algorithm. Genes were 235 

considered significantly differentially expressed (DEGs) when their false discovery rate (FDR)-236 

corrected p-value was less than 0.05. Since we already showed that both expression precision 237 

and accuracy were positively correlated with the number of cells sequenced, we employed a 238 

down-sampling strategy to investigate the influence of cell number on DE results. By utilizing 239 

the DE results in pooled-cell RNA-Seq data as ground truth, we evaluated the overall 240 

reproducibility of DE results in scRNA-Seq data with true positive rate, the proportion of actual 241 

positive instances that are correctly identified as positive. Notably, as the number of cells 242 

increased, the true positive rate improved and had a plateau at about 500 cells (Figure 7A). The 243 

true positive rates were 0.72, 0.63, 0.62, 0.44 in data from mouse, rat, pig and rabbit, when 500 244 

cells were included in each sample.  245 

Effect size, which reflects the differences between the compared groups, plays a crucial role in 246 

determining the statistical power of a DE analysis. By categorizing the mouse DEGs into three 247 

groups based on effect size: high (|log2FC| ≥ 2), medium (1 < |log2FC| < 2), and low (|log2FC| ≤ 248 

1), we observed that DEGs with high and medium effect sizes demonstrate a better true positive 249 

rate than those with low effect sizes. DEGs with medium effect sizes still exhibit a relatively 250 

lower true positive rate compared to genes with high effect sizes, particularly when the number 251 

of cells is limited. (Figure 7B). 252 

For example, when 500 cells were included in each sample, DEGs with large effect sizes (over 253 

two-fold changes) had a true positive rate of 0.73, whereas DEGs with small effect sizes had a 254 

true positive rate of only 0.38. When only 50 cells were included in each sample, the true 255 

positive rates were 0.41 and 0.09 for DEGs with large and small effect sizes, respectively.  256 
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This suggested that the relationship between effect size and noise level has an interactive impact 257 

on DEG reproducibility. To quantify this combined effect, we adopted signal-to-noise ratio (SNR) 258 

metric for each gene, defined as normalized effect size divided by CV. Using mouse data as an 259 

example, we found that replicated DEGs exhibited significantly higher SNRs than non-replicated 260 

DEGs (P < 2.2 × 10�¹�, Figure 7C). This trend was consistent with the observation that DEGs 261 

showing higher expressions tend to have better reproducibility (Figure S12). The factors 262 

influencing DEG reproducibility are summarized in Figure 7D. 263 

To evaluate the applicability of the 500-cell cutoff and the SNR measurement, we applied 264 

various cell number cutoffs to an independent dataset from Ruzicka et al.[19], which conducted 265 

DE analysis on two schizophrenia postmortem brain cohorts (MCL and Mt Sinai). Using an 266 

Exact test, we assessed the reproducibility of DEGs across the two cohorts. At a 500-cell cutoff, 267 

cell types with significant DEG reproducibility were clearly distinguishable from those without 268 

(Figure S13A). However, reducing the cell-number cutoff to lower thresholds, such as 300 or 269 

100 cells—commonly regarded as acceptable in practice—may result in misleading indications 270 

of reproducibility. For instance, the Vip neuron emerged as a potential cell type with replicable 271 

DEGs at these lower cutoffs, yet its reproducibility was not statistically significant. Moreover, 272 

we found that reproduced DEGs exhibited significantly higher SNR (P = 0.0002, Figure S13B), 273 

effectively distinguishing reproducible genes from non-reproducible ones in this dataset. 274 

Discussion  275 

The use of sc/snRNA-Seq in biological studies has become a common practice, necessitating 276 

meticulous evaluation of data quality to avoid misleading or even false findings. The current 277 

investigation assesses the expression precision and accuracy of published sc/snRNA-Seq data. 278 

By analyzing 23 representative datasets, we demonstrated that the gene expressions per 279 

individual measured for most cell types were of low precision and accuracy. We found a robust 280 

correlation between the number of cells sequenced and the precision, accuracy, and 281 

reproducibility of downstream DE analysis. Only cell types having a large number of cells 282 

(minimum 500 cells) sequenced delivered relatively accurate and precise quantification of gene 283 

expression and, consequently, credible results of downstream analyses, such as case-control 284 

comparisons.  285 
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 286 

Many studies have speculated that cell number, RNA integrity, and sequencing depth influence 287 

sc/snRNA-seq data quality, but none have systematically quantified these effects across datasets 288 

or established actionable thresholds. This lack of clear, reproducible standards has led to 289 

inconsistencies in experimental design and, in some cases, unreliable—or even outright 290 

incorrect—conclusions. A striking example is Murphy et al.[20], who demonstrated that many of 291 

the transcriptional differences reported in Mathys et al.[9] regarding Alzheimer’s disease were 292 

false positives, caused by inadequate noise control and flawed differential expression analysis. 293 

Alarmingly, this paper —despite its misidentified genes—has been cited over 2,000 times, 294 

significantly shaping the Alzheimer’s research landscape. This is just one example; similar issues 295 

permeate the field[21-23]. This concern aligns with the findings of previous studies[24, 25].  It is 296 

urgent that the single-cell research community recognizes the critical importance of data quality 297 

to prevent misleading findings and ensure the reliability of future discoveries. Our study 298 

addresses this urgent need by providing a quantitative threshold driven by large datasets, gene-299 

level evaluation metrics, and practical tools and guidance. 300 

Our study establishes quantitative thresholds critical for ensuring high-quality single-cell data 301 

and results. Prior studies qualitatively recognized that increasing the number of cells improves 302 

data quality and reproducibility[26, 27], but the relationship between them is non-linear and the 303 

gene expression precision, accuracy and reproducibility saturate at certain cell numbers (Figure 304 

4A, Figure 6B, and Figure 7A).  Therefore, a quantitative cutoff is required to exclude low-305 

quality genes and samples, similar to standard practices in bulk RNA-seq. This cutoff has never 306 

been defined, creating a gap that limits consistency and reliability in single-cell studies. Our 307 

systematic evaluation of 23 sc/snRNA-seq datasets of matured cell types from brain and other 308 

tissues demonstrates that at least 500 cells per cell type per individual are required for robust 309 

measurements—an evidence-based threshold previously missing in the field.  310 

The criteria used for evaluating expression precision in this study are standard statistical 311 

techniques. We used CV < 0.1 as the cutoff for the expression precision in this evaluation. This 312 

is based on previous quality evaluations of bulk RNA-Seq data[16]. We believe that holding 313 

sc/sn RNA-seq data to the same standard as bulk RNA seq is appropriate and lowering the 314 

standard will lead to noisy results and poor reproducibility. Additionally, our evaluation 315 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


demonstrated that CV tends to stabilize at around 0.1 in single-cell data, as the number of cells 316 

increases. However, when constructing the technical replicates based on pseudo-bulks, we 317 

assumed homogeneity within one cell type. Such an assumption can be violated by heterogeneity 318 

caused by cell subtypes and states, which may explain the minimum CV that is observed. 319 

Nonetheless, our results indicated that cell subtype was not the major cause of poor precision in 320 

the cell types we evaluated, as the precision at cell type level is not worse than that at subtype 321 

level.  322 

RNA quality is another crucial factor impacting expression precision. Notably, in the 323 

BICCN_HVS study[28], the minimum number of cells required to achieve a CV of 0.1 was 500, 324 

but other datasets require even larger numbers of cells. A key factor contributing to this 325 

difference may be the use of surgical samples in the BICCN_HVS study, as these samples tend 326 

to be less degraded than frozen postmortem brain samples. Ensuring high RNA quality in 327 

samples, such as using RNA with RIN values greater than 7, will likely reduce the number of 328 

cells required for quality quantification. 329 

The signal-to-noise ratio emerges as a pivotal determinant of the reproducibility of DE analysis. 330 

Our investigation revealed that DEGs with large effect sizes exhibit superior reproducibility 331 

compared to those with smaller effect sizes. When 500 cells were included in each sample where 332 

the noise level was low, DEGs with large effect sizes had a true positive rate of 0.73, whereas 333 

DEGs with small effect sizes had a true positive rate of only 0.38. When the cell number 334 

decreased to 50 cells where the noise level was high, the true positive rates were 0.41 and 0.09 335 

for DEGs with large and small effect sizes, respectively. This comparison indicates that the 336 

technical noise matters more for the smaller biological effects and technical noise may be 337 

manageable for phenotypes associated with pronounced expression changes. Improving data 338 

quality becomes more critical in scenarios where the effect size of the phenotype approaches the 339 

noise level. This is particularly relevant for many complex diseases, including neuropsychiatric 340 

disorders, where the effect size is typically small[29], necessitating an increase in the number of 341 

cells to minimize technical noise. 342 

This work provides gene-level metrics to help refine reliable signals.  Most prior studies assessed 343 

data quality at the cell or sample level, which can be biased by highly expressed genes. In 344 

contrast, our study introduces a gene-by-gene evaluation framework, enabling precise quality 345 
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and reproducibility assessments for individual genes—a crucial advancement for downstream 346 

analyses like differential expression. Specifically, we introduce the SNR as a key metric for 347 

assessing DEG reproducibility, calculated by dividing fold change by CV. Applying this 348 

approach to schizophrenia DEGs and mouse data, we found that reproduced DEGs have 349 

significantly higher SNR, which effectively distinguishes reproducible genes from non-350 

reproducible ones in this data, providing a practical metric for ensuring reliable single-cell data 351 

analysis.  352 

We introduce VICE, a powerful tool that enables researchers to assess the quality of existing 353 

single-cell data and predict the reliability of differential expression results. With calculated CV 354 

values, users can: (1) determine noise levels across different cell types and samples and (2) 355 

identify genes with low noise level, ensuring that only high-confidence genes are prioritized for 356 

analysis. By inputting cell numbers, effect sizes, and noise levels, VICE estimates the true 357 

positive rate for single-cell DE analysis, providing a direct, data-driven framework for 358 

optimizing experimental design and result interpretation. For trait-specific analyses, such as DE, 359 

VICE can be used to: (1) estimate the true positive rate based on sample size and cell numbers to 360 

guide study design; and (2) evaluate DEG reliability by estimating the true positive rate based on 361 

signal-to-noise levels rather than relying solely on p-values. 362 

We provide the following guidelines for future single-cell research. For general data quality 363 

control, we recommend: (1) prioritizing high-quality RNA samples (RIN ≥ 7) whenever possible, 364 

as degraded RNA increases noise and reduces reproducibility; and (2) ensuring sufficient cell 365 

numbers for reliable analysis. We suggest at least 500 cells per individual per cell type for 366 

optimal precision. If this is not feasible, focusing on genes with low noise levels is advisable. 367 

Adjusting the CV threshold based on trait effect size can help balance precision with dataset 368 

constraints. For result reporting, we recommend: (1) routinely reporting CV values and 369 

associated power as quality metrics in single-cell data analysis; and (2) providing the median CV 370 

for each sample in sc/snRNA-seq experiments to assess sample quality. These benchmarks set 371 

optimal standards rather than rigid requirements. Researchers can adapt them as needed, using 372 

pseudo-bulk strategies for low cell numbers or adjusting CV thresholds based on effect size. Our 373 

approach provides practical, data-driven guidance that supports informed decision-making rather 374 

than imposing one-size-fits-all rules. 375 
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Our findings hold significant implications across multiple domains. Many researchers have 376 

reported results from minor cell types in a variety of tissues, but our work casts doubt about the 377 

validity of conclusions drawn from much of this research due to insufficient numbers of cells.   378 

The accurate identification and comprehensive study of these minor cell types necessitates 379 

sequencing more cells. Beyond elucidating the nuances of DE analysis, our results imply low 380 

precision and accuracy impacts other analytical methodologies, including cell classification[30], 381 

eQTL mapping[31], and the construction of co-expression networks[32]. The effect of cell 382 

numbers on other data analyses remains to be explored. 383 

Our study rigorously quantifies these effects and provides concrete, data-driven guidelines to 384 

improve sc/snRNA-seq studies. Our goal is not to rescue poor experimental designs—there is no 385 

simple fix for flawed data. Instead, we define the scale of the problem with precise numbers, 386 

highlighting critical pitfalls in single-cell data analysis. We equip researchers with clear, 387 

quantitative metrics to assess which genes and samples meet quality standards for reliable 388 

downstream analysis. More importantly, we provide practical tools and data-driven cutoffs, 389 

ensuring that future studies are designed correctly from the start, minimizing errors and 390 

maximizing reproducibility. 391 

Conclusion 392 

In this study, we conducted a quantitative evaluation of expression precision and accuracy across 393 

23 representative sc/snRNA-Seq datasets, revealing significant deficiencies in gene expression 394 

measurements—particularly when sequencing a limited number of cells. We demonstrate that the 395 

reproducibility of DE analysis is tightly correlated with cell number, emphasizing the need for 396 

data-driven thresholds in study design. To improve the reliability and reproducibility of 397 

sc/snRNA-Seq studies, we recommend sequencing at least 500 cells per cell type per individual, 398 

including minor cell types and RNA quality (RIN ≥ 7). Recognizing practical constraints, we 399 

provide flexible, evidence-based guidelines rather than rigid requirements. We strongly advocate 400 

for quality assessment before downstream analyses to prevent false discoveries. To facilitate this, 401 

we developed VICE, a tool that quantifies technical variability, estimates the true positive rate of 402 

DE results, and enables data-driven decision-making in sc/snRNA-Seq studies. 403 

Materials and methods 404 
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Collection of sc/snRNA-Seq data from cortex 405 

A total of 14 brain sc/snRNA-Seq datasets were obtained for analysis. The collected datasets 406 

were derived from human brain studies published between 2012 and 2023[8, 9, 28, 34-45]. 407 

Samples from individuals with brain disorders were excluded from the analysis to prevent 408 

biasing the expression profiles. The raw count and cell annotation data were obtained from the 409 

original studies. Due to differences in cell classification across studies, we harmonized cell 410 

identities into eight major cell types present in the adult brain, namely excitatory neurons, 411 

inhibitory neurons, oligodendrocytes, oligodendrocyte precursor cells, astrocytes, microglia, 412 

endothelial cells, and pericytes. The annotation of data from BICCN 2023 collection was 413 

retained to evaluate cell subtypes. The scRNA-Seq data of blood, lung, and lymph node from 414 

Tabula Sapiens Consortium were used for evaluating expression variability in multiple 415 

tissues[17].  416 

Collection of sample-matched data from four species 417 

To assess expression accuracy, we utilized four sample-matched scRNA-Seq and pooled-cell 418 

RNA-Seq datasets. These datasets were sourced from Hagai et al.[46], encompassing bone 419 

marrow-derived mononuclear phagocytes derived from mouse, rat, pig, and rabbit, all subjected 420 

to stimulation with either lipopolysaccharide or poly-I:C for a duration of four hours. Within 421 

each species, a total of three samples received lipopolysaccharide treatment, while three 422 

additional samples were designated as control groups. We employed the preprocessed data 423 

provided by Squair et al.[24], which is available at https://doi.org/10.5281/zenodo.5048449. 424 

RIN 425 

The RIN is a numerical value that measures the quality of RNA samples. It is calculated before 426 

sequencing using an automated analysis of RNA molecules through electrophoresis, such as 427 

Agilent 2100 bioanalyzer. The RIN scale ranges from 1 to 10, with 10 indicating fully intact 428 

RNA and 1 indicating completely degraded RNA. We obtained the RIN of samples from the 429 

original studies.  430 

Processing of sc/snRNA-Seq data 431 

The sc/snRNA-Seq data underwent processing using Seurat version 4[47]. The raw count matrix 432 
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and cell annotation matrix were used as input to Seurat. We filtered out genes with zero 433 

expression in more than 1/1000 of the total cells in each dataset. The proportion of transcripts 434 

mapped to mitochondrial genes was calculated for each cell, and cells with 10% or more 435 

mitochondrial gene expression were removed to prevent the inclusion of dead cells. Additionally, 436 

cells with less than 200 detected genes or those with more than three standard deviations from 437 

the mean number of detected genes were excluded. The count data were normalized based on 438 

library size and were scaled with a factor of 10,000. The normalized data were then log-439 

transformed. 440 

Marker gene identification  441 

To identify marker genes in the ROSMAP dataset, we utilized a one versus second high strategy 442 

at both the cell and pseudo-bulk level. At the cell level, marker genes were identified using 443 

Seurat. Genes with a proportion of zero expression greater than 15% in the target cell type were 444 

removed prior to marker gene identification. The Wilcoxon signed-rank test was used to assess 445 

the expression difference, and genes with a log2FC greater than 1 and FDR-corrected p-value 446 

less than 0.05 were defined as marker genes. At the pseudo-bulk level, pseudo-bulks were 447 

constructed by aggregating gene expression for the same cell type from the same individual. 448 

Marker genes were then tested using DESeq2[48], and the likelihood ratio test was utilized to 449 

evaluate the expression difference between the two cell groups. Marker genes with a log2FC 450 

greater than 2 and FDR-corrected p-value less than 0.05 were defined as marker genes at the 451 

pseudo-bulk level. Finally, marker genes supported by both cell- and pseudo-bulk-level tests 452 

were selected as final marker genes. 453 

Technical replicate construction and CV calculation  454 

To generate technical replicates based on pseudo-bulks for each cell type, cells in the count 455 

matrix were randomly divided into three groups for the same individual. The count expression 456 

for each gene was then summed within each group. The CV value was calculated for each gene 457 

using the following formula: 458 

������� 1:    ��
 �
�����

�������
 

, where x represents the gene expression of gene i across three replicates of a specific cell type. 459 
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To ensure the robustness of technical replicates, the cell groupings and CV calculations were 460 

repeated 100 times, and the average CV across 100 samplings was used. 461 

 CV-cell-number relationship in data with cell class and subclass annotations 462 

To compare the relationship between CV values and the number of sequenced cells in the mouse 463 

class and subclass data, a Student's t-test was used (Figure S3). To compare the relationship 464 

between CV values and the number of sequenced cells in the mouse class and subclass data when 465 

different number of cells were sequenced, we used a two-sample Z-test (Figure S4). The null 466 

hypothesis was that the slope in the regression model testing the relationship between the number 467 

of cells and CV values was the same in the class and subclass data. We calculated the difference 468 

in slope between the two datasets using the following formula:  469 

 ������� 2:     �
�� �  
�� � ��

√���� 	 ����
 470 

, where b1 and b2 were the coefficients, and se1 and se2 were the standard errors from the 471 

regression model in the class and subclass data, respectively. We then used the area of the 472 

standard normal curve corresponding to the calculated difference to determine the probability in 473 

a two-tailed manner.  474 

Data simulation  475 

Single-cell count data was simulated based on a negative binomial model using the R package 476 

Splatter[49]. Two conditions were generated with the “group” simulation, with between 10 and 477 

3000 cells per sample and three replicates per condition. The proportion of differentially 478 

expressed genes (‘de.prob’) was set to 0.25. 479 

Evaluation of expression accuracy 480 

Since no single statistic is sufficient to describe accuracy, we developed a composite criterion 481 

that captures the bias and distance from ground truth simultaneously using Pearson correlation 482 

and a linear regression model. The scRNA-Seq data were summarized by pseudo-bulks first. The 483 

pseudo-bulks were normalized by the library size and were transformed into log2-transformed 484 

counts per million (CPM). Then the batch effect between pseudo-bulks and pooled-cell RNA-485 

Seq data was corrected using the combat function in the sva package[50]. Pearson correlation 486 

between sample-matched scRNA-Seq and pooled-cell RNA-Seq was calculated for each gene. In 487 
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the linear regression model, the expression in pooled-cell RNA-Seq was treated as the 488 

independent variable and expression in scRNA-Seq was treated as the dependent variable. The 489 

intercept of linear regression model was set to 0. By setting offset in function lm in R, the 490 

significance of slope deviating from 1 was tested. Good accuracy was defined as correlation 491 

coefficient over 0.9 and p-value of linear regression over 0.05.  492 

DE analysis 493 

DE analysis was carried out on both scRNA-Seq and pooled-cell RNA-Seq datasets to examine 494 

the expression disparities between samples treated with lipopolysaccharide and the control 495 

samples. For scRNA-Seq data, DE analysis was performed on pseudo-bulk data using the 496 

likelihood ratio test approach provided by edgeR[51]. For pooled-cell RNA-Seq data, edgeR was 497 

performed on the count data directly. Genes exhibiting an FDR corrected p-value of less than 498 

0.05 were classified as DEGs. We assessed the consistency between DE results obtained from 499 

single-cell and pooled-cell RNA-Seq with true positive rate which denotes the proportion of 500 

DEGs identified in pooled-cell RNA-Seq that were also replicated in the scRNA-Seq data.  501 

Application of DE analysis to Ruzicka et al. 502 

The schizophrenia DE results were obtained from the supplementary materials of Ruzicka et al. 503 

This study includes samples from the Mt Sinai and MCL cohorts. DEGs were defined as genes 504 

with log�FC > 0.1 and FDR < 0.05. Replicated DEGs were those that met the DE criteria in 505 

both cohorts. The Exact test[52] was performed to assess the statistical significance of DEG 506 

replication. 507 

 508 

Data and code availability 509 

The data supporting the findings of this study are publicly available, with details for accessing 510 

the datasets provided in Table 1. The code for this paper can be found at 511 

https://github.com/RujiaDai/VICE and  https://ngdc.cncb.ac.cn/biocode/tool/BT7673.  512 

 513 

Declaration of AI and AI-assisted technologies  514 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


During the preparation of this work the authors used ChatGPT to improve the clarity, grammar, 515 

and readability of the text. After using this tool/service, the authors reviewed and edited the 516 

content as needed and take full responsibility for the content of the publication. 517 

 518 

CRediT author statement  519 

Rujia Dai, Chunyu Liu, and Chao Chen contributed to conceptualization. Rujia Dai, Tianyao Chu, 520 

Ming Zhang contributed to formal analysis, data curation, validation, software and methodology. 521 

Rujia Dai and Chunyu Liu contributed to the writing of the original draft. Chunling Zhang, 522 

Richard Kopp, Kefu Liu, Xusheng Wang, Yue Wang contributed to the investigation, review and 523 

editing. Chunyu Liu, and Chao Chen contributed to funding acquisition, supervision, and project 524 

administration. 525 

 526 

Competing interests 527 

The authors declare no competing interests. 528 

 529 

Acknowledgment  530 

We thank all the participants in studies for making the data available. We also thank Sidney 531 

Wang for invaluable guidance and expertise in the experimental design and data analysis. This 532 

work was supported by NIH grants U01MH122591, U01MH116489, R01MH110920, 533 

U01MH103340, and R01MH126459; the National Natural Science Foundation of China 534 

82022024 and 31970572; the science and technology innovation Program of Hunan Province 535 

2021RC4018 and 2021RC5027.  This work was supported in part by the Bioinformatics Center, 536 

Xiangya Hospital, and Central South University. 537 

 538 

References 539 

[1] Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome 540 

analysis of a single cell. Nat Methods 2009;6:377-82. 541 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


[2] Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past 542 

decade. Nat Protoc 2018;13:599-604. 543 

[3] Cuomo ASE, Nathan A, Raychaudhuri S, MacArthur DG, Powell JE. Single-cell genomics meets 544 

human genetics. Nat Rev Genet 2023;24:535-49. 545 

[4] Network BICC. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 546 

2021;598:86-102. 547 

[5] Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human 548 

brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat 549 

Neurosci 2021;24:584-94. 550 

[6] Nowakowski TJ, Bhaduri A, Pollen AA, Alvarado B, Mostajo-Radji MA, Di Lullo E, et al. 551 

Spatiotemporal gene expression trajectories reveal developmental hierarchies of the human cortex. 552 

Science 2017;358:1318-23. 553 

[7] Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, et al. Single-cell 554 

multi-cohort dissection of the schizophrenia transcriptome. medRxiv 2022:2022.08.31.22279406. 555 

[8] Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell genomics 556 

identifies cell type-specific molecular changes in autism. Science 2019;364:685-9. 557 

[9] Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al. Single-cell 558 

transcriptomic analysis of Alzheimer's disease. Nature 2019;570:332-7. 559 

[10] Bacher R, Kendziorski C. Design and computational analysis of single-cell RNA-sequencing 560 

experiments. Genome Biol 2016;17:63. 561 

[11] Lahnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand 562 

challenges in single-cell data science. Genome Biol 2020;21:31. 563 

[12] Brennecke P, Anders S, Kim JK, Kolodziejczyk AA, Zhang X, Proserpio V, et al. Accounting for 564 

technical noise in single-cell RNA-seq experiments. Nat Methods 2013;10:1093-5. 565 

[13] Hicks SC, Townes FW, Teng M, Irizarry RA. Missing data and technical variability in single-cell 566 

RNA-sequencing experiments. Biostatistics 2018;19:562-78. 567 

[14] Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, et al. Quantitative assessment 568 

of single-cell RNA-sequencing methods. Nat Methods 2014;11:41-6. 569 

[15] Li S, Tighe SW, Nicolet CM, Grove D, Levy S, Farmerie W, et al. Multi-platform assessment of 570 

transcriptome profiling using RNA-seq in the ABRF next-generation sequencing study. Nat Biotechnol 571 

2014;32:915-25. 572 

[16] Consortium M, Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, et al. The MicroArray Quality 573 

Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. 574 

Nat Biotechnol 2006;24:1151-61. 575 

[17] Tabula Sapiens C, Jones RC, Karkanias J, Krasnow MA, Pisco AO, Quake SR, et al. The Tabula 576 

Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science 2022;376:eabl4896. 577 

[18] Thrupp N, Sala Frigerio C, Wolfs L, Skene NG, Fattorelli N, Poovathingal S, et al. Single-Nucleus 578 

RNA-Seq Is Not Suitable for Detection of Microglial Activation Genes in Humans. Cell Rep 579 

2020;32:108189. 580 

[19] Ruzicka WB, Mohammadi S, Fullard JF, Davila-Velderrain J, Subburaju S, Tso DR, et al. Single-581 

cell multi-cohort dissection of the schizophrenia transcriptome. Science 2024;384:eadg5136. 582 

[20] Murphy AE, Fancy N, Skene N. Avoiding false discoveries in single-cell RNA-seq by revisiting the 583 

first Alzheimer's disease dataset. Elife 2023;12. 584 

[21] Lau SF, Cao H, Fu AKY, Ip NY. Single-nucleus transcriptome analysis reveals dysregulation of 585 

angiogenic endothelial cells and neuroprotective glia in Alzheimer's disease. Proc Natl Acad Sci U S A 586 

2020;117:25800-9. 587 

[22] Soreq L, Bird H, Mohamed W, Hardy J. Single-cell RNA sequencing analysis of human Alzheimer's 588 

disease brain samples reveals neuronal and glial specific cells differential expression. PLoS One 589 

2023;18:e0277630. 590 

[23] Liu CS, Park C, Ngo T, Saikumar J, Palmer CR, Shahnaee A, et al. RNA Isoform Diversity in 591 

Human Neurodegenerative Diseases. eNeuro 2024;11. 592 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


[24] Squair JW, Gautier M, Kathe C, Anderson MA, James ND, Hutson TH, et al. Confronting false 593 

discoveries in single-cell differential expression. Nat Commun 2021;12:5692. 594 

[25] Soneson C, Robinson MD. Bias, robustness and scalability in single-cell differential expression 595 

analysis. Nat Methods 2018;15:255-61. 596 

[26] Polioudakis D, de la Torre-Ubieta L, Langerman J, Elkins AG, Shi X, Stein JL, et al. A Single-Cell 597 

Transcriptomic Atlas of Human Neocortical Development during Mid-gestation. Neuron 2019;103:785-598 

801 e8. 599 

[27] Lahnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand 600 

challenges in single-cell data science. Genome Biol 2020;21:31. 601 

[28] Johansen N, Somasundaram S, Travaglini KJ, Yanny AM, Shumyatcher M, Casper T, et al. 602 

Interindividual variation in human cortical cell type abundance and expression. Science 603 

2023;382:eadf2359. 604 

[29] Gandal MJ, Zhang P, Hadjimichael E, Walker RL, Chen C, Liu S, et al. Transcriptome-wide 605 

isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018;362. 606 

[30] Saliba AE, Westermann AJ, Gorski SA, Vogel J. Single-cell RNA-seq: advances and future 607 

challenges. Nucleic Acids Res 2014;42:8845-60. 608 

[31] van der Wijst M, de Vries DH, Groot HE, Trynka G, Hon CC, Bonder MJ, et al. The single-cell 609 

eQTLGen consortium. Elife 2020;9. 610 

[32] Su C, Xu Z, Shan X, Cai B, Zhao H, Zhang J. Cell-type-specific co-expression inference from single 611 

cell RNA-sequencing data. Nat Commun 2023;14:4846. 612 

[33] Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain 613 

transcriptome diversity at the single cell level. Proc Natl Acad Sci U S A 2015;112:7285-90. 614 

[34] Lake BB, Chen S, Sos BC, Fan J, Kaeser GE, Yung YC, et al. Integrative single-cell analysis of 615 

transcriptional and epigenetic states in the human adult brain. Nat Biotechnol 2018;36:70-80. 616 

[35] Nagy C, Maitra M, Tanti A, Suderman M, Theroux JF, Davoli MA, et al. Single-nucleus 617 

transcriptomics of the prefrontal cortex in major depressive disorder implicates oligodendrocyte precursor 618 

cells and excitatory neurons. Nat Neurosci 2020;23:771-81. 619 

[36] Hodge RD, Bakken TE, Miller JA, Smith KA, Barkan ER, Graybuck LT, et al. Conserved cell types 620 

with divergent features in human versus mouse cortex. Nature 2019;573:61-8. 621 

[37] Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, et al. Comparative cellular analysis 622 

of motor cortex in human, marmoset and mouse. Nature 2021;598:111-9. 623 

[38] Li M, Santpere G, Imamura Kawasawa Y, Evgrafov OV, Gulden FO, Pochareddy S, et al. Integrative 624 

functional genomic analysis of human brain development and neuropsychiatric risks. Science 2018;362. 625 

[39] Agarwal D, Sandor C, Volpato V, Caffrey TM, Monzon-Sandoval J, Bowden R, et al. A single-cell 626 

atlas of the human substantia nigra reveals cell-specific pathways associated with neurological disorders. 627 

Nat Commun 2020;11:4183. 628 

[40] Zhou Y, Song WM, Andhey PS, Swain A, Levy T, Miller KR, et al. Human and mouse single-629 

nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in 630 

Alzheimer's disease. Nat Med 2020;26:131-42. 631 

[41] Morabito S, Miyoshi E, Michael N, Shahin S, Martini AC, Head E, et al. Single-nucleus chromatin 632 

accessibility and transcriptomic characterization of Alzheimer's disease. Nat Genet 2021;53:1143-55. 633 

[42] Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F, et al. A 634 

taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 635 

2021;184:3222-41 e26. 636 

[43] Velmeshev D, Perez Y, Yan Z, Valencia JE, Castaneda-Castellanos DR, Wang L, et al. Single-cell 637 

analysis of prenatal and postnatal human cortical development. Science 2023;382:eadf0834. 638 

[44] Braun E, Danan-Gotthold M, Borm LE, Lee KW, Vinsland E, Lonnerberg P, et al. Comprehensive 639 

cell atlas of the first-trimester developing human brain. Science 2023;382:eadf1226. 640 

[45] Siletti K, Hodge R, Mossi Albiach A, Lee KW, Ding SL, Hu L, et al. Transcriptomic diversity of cell 641 

types across the adult human brain. Science 2023;382:eadd7046. 642 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


[46] Hagai T, Chen X, Miragaia RJ, Rostom R, Gomes T, Kunowska N, et al. Gene expression variability 643 

across cells and species shapes innate immunity. Nature 2018;563:197-202. 644 

[47] Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. Integrated analysis of 645 

multimodal single-cell data. Cell 2021;184:3573-87 e29. 646 

[48] Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data 647 

with DESeq2. Genome Biol 2014;15:550. 648 

[49] Zappia L, Phipson B, Oshlack A. Splatter: simulation of single-cell RNA sequencing data. Genome 649 

Biol 2017;18:174. 650 

[50] Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects 651 

and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28:882-3. 652 

[51] Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression 653 

analysis of digital gene expression data. Bioinformatics 2010;26:139-40. 654 

[52] Wang M, Zhao Y, Zhang B. Efficient Test and Visualization of Multi-Set Intersections. Sci Rep 655 

2015;5:16923. 656 

 657 

 658 

Figures 659 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


660 

Figure 1 Overview of the study. Framework for evaluating the expression precision and 661 

accuracy of sc/snRNA-Seq across datasets and platforms. We assessed the precision and 662 

accuracy of gene expression measurements using 23 sc/snRNA-Seq datasets generated on three 663 

platforms. These datasets, published in high-profile journals, were derived from large consortium 664 

efforts, including the BICCN, reflecting current technological standards. Our analysis began with 665 

a survey of cell numbers and missing rates across datasets, followed by the evaluation of 666 

precision based on technical replicates. We then examined the influence of technical factors such 667 

as RNA quality, sequencing saturation rate, total read counts, and platform type on expression 668 
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precision. To assess accuracy, we compared scRNA-Seq data from four cultured mononuclear 669 

phagocyte datasets with corresponding pooled-cell RNA-Seq data from the same samples. 670 

Finally, we analyzed the effects of cell numbers and other factors on the reproducibility of 671 

downstream differential expression analyses. This figure was created with BioRender.com. 672 

Sc/snRNA-Seq, Single-cell/nuclei RNA sequencing expression measures; BICCN, BRAIN 673 

Initiative Cell Census Network.  674 

675  
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Figure 2 Missing rates and cell numbers in the 14 datasets. A. Missing rate per gene at676 

individual cell level. B. Missing rate per gene at the pseudo-bulk level. C. Total number of cells677 

studied, along with the average number of cells per individual. The cell count per individual was678 

calculated by dividing the total number of cells by the number of individuals in the study. Cell679 

numbers were log10-transformed for better visualization. D. An illustrative example showcasing680 

the average number of cells per individual, specifically drawn from the BICCN_HVS study.  681 

682 

Figure 3 Gene expression precision evaluated by technical replicates in sc/snRNA-Seq data.683 

We calculated gene expression variability as the CV of gene expression in three technical 684 
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replicates based on pseudo-bulks for each gene. The sample with the largest number of total cells 685 

in each dataset was used for illustration. The red dashed line denotes the CV thresholds of 0.1, 686 

which is a threshold recommended for bulk-tissue gene expression quality control processing[16]687 

CV, coefficient of variation. 688 

689 

Figure 4 Relationship between cell number and gene expression precision. A. CV values in 690 

down-sampled neurons. B. Pearson correlation coefficient and p value between neuron cell 691 

numbers in replicate and median CV. C. CV values in down-sampled oligodendrocytes. D. 692 

Pearson correlation coefficient and p-value between oligodendrocyte cell numbers in replicate 693 

and median CV. To enhance visual clarity, the number of cells in each replicate was capped at 694 

lls 

6]. 
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5000. The Red dashed line denotes a CV of 0.1. Cor, Pearson correlation coefficient; Pval, p-695 

value. 696 

697 

Figure 5 Association between RNA integrity and gene expression variability across 698 

technical replicates in snRNA-Seq data. The relationship between number of cells in replicate 699 

and median CV was tested in ROSMAP (A) and autism_PFC (B) dataset. Samples were colored 700 

by RIN. Red dashed line denotes the CV threshold of 0.1. (C) & (D) illustrate the relationship 701 

between RIN and median CV when replicate containing 200 cells in ROSMAP and autismPFC 702 

data, respectively. Linear regression model was used. RIN, RNA integrity number. 703 
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704 

 705 

Figure 6 Relationship between expression accuracy and cell number. A. Illustration of 706 

expression accuracy assessment. B. The relationship between cell number and number of genes 707 

with good accuracy is defined by Pearson correlation and linear regression model.  708 
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709 

Figure 7 Reproducibility of differential expression analysis in scRNA-Seq data. A. True 710 

positive rate of DEGs in data with different numbers of cells. Datasets from different species are 711 

colored. B. True positive rate of DEGs with different effect sizes categorized by logFC of 712 

differential expression. C. The relationship between signal-to-noise ratio (SNR), and DEG 713 

reproducibility in mouse data. D. Model of DE reproducibility.  714 

Table 1 Single-cell/nuclei RNA sequencing datasets assessed in this study 715 

Data label Species PMID Tissue 
#Samp

les 
#Cells 

#Gene

s 

#Cell 

types 
Platform 

ROSMAP Human 
3104269

7 

Prefronta

l cortex 
24 75,060 17,926 8 10X 

autism_PFC Human 
3109766

8 

Prefronta

l cortex 
10 29,900 27,563 8 10X 

autism_ACC Human 
3109766

8 
Anterior 

cingulate 
16 22,065 27,072 8 10X 
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cortex 

MTG Human 
3143501

9 

Medial 

temporal 

gyrus 

8 15,583 43,474 7 
Smart-

Seq 

M1_10X Human 
3461606

2 

Primary 

motor 

cortex 

2 76,533 27,933 8 10X 

GSE97930_

vc 
Human 

2922746

9 

Visual 

cortex 
3 19,368 21,273 8 Drop-seq 

GSE97930_

fro 
Human 

2922746

9 

Frontal 

cortex 
1 19,368 18,751 8 Drop-seq 

GSE140231 Human 
3282689

3 
Cortex 5 10,581 24,702 6 10X 

TREM Human 
3193279

7 

Prefronta

l cortex 
11 36,671 36,601 6 10X 

GSE174367 Human 
3423913

2 

Prefronta

l cortex 
8 21,996 25,392 6 10X 

BICCN_adul

t 
Human 

3782466

3 
Cortex 4 

130,507

5 
19,762 30 10X 

BICCN_HV

S 
Human 

3782464

9 
Cortex 78 353,194 18,797 24 10X 

BICCN_trim

ester1 
Human 

3782465

0 
Cortex 21 789,139 33,538 12 10X 

BICCN_dev Human 
3782464

7 
Cortex 106 709,372 19,005 9 10X 

Tabula 

Sapiens 
Human 

3554940

4 
Lung 3 33,222 23,739 3 10X 

Tabula 

Sapiens 
Human 

3554940

4 
Blood 6 37,892 21,147 1 10X 

Tabula Human 3554940 Lymph 3 47,891 22,271 1 10X 
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Sapiens 4 node 

Thrupp et al Human 
3299799

4 
Microglia 3 14,823 21,015 1 10X 

Thrupp et al Human 
3299799

4 
Microglia 3 3940 27,891 1 

10X 

(whole 

cell) 

Hagai et al* Mouse 
3035622

0 

Mononuc

lear 

phagocyt

es 

6 17,776 15,319 1 
Smart-

seq2 

Hagai et al * Rat 
3035622

0 

Mononuc

lear 

phagocyt

es 

6 13,277 15,150 1 
Smart-

seq2 

Hagai et al * Rabbit 
3035622

0 

Mononuc

lear 

phagocyt

es 

6 17,097 9263 1 
Smart-

seq2 

Hagai et al * Pig 
3035622

0 

Mononuc

lear 

phagocyt

es 

6 12,753 8906 1 
Smart-

seq2 

Note: *With sample-matched sorted-cell RNA-Seq data 716 

 717 
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 719 

Figure S1 Per gene missing rate in pseudo-bulk data with different number of cells. Missing 720 

rate was defined as proportion of zeros in all samples. Data from ROSMAP was used for the 721 

demonstration.  722 

 723 

ng 
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Figure S2 Illustration of constructing technical replicates and calculating the CV of724 

expression across technical replicates.  CV, coefficient of variation. 725 

726 

Figure S3 Expression variability at class and subclass level for excitatory neurons. Data 727 

from BICCN_HVS was used. P value was calculated with Student's T-Test. 728 

of 
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Figure S4 Gene expression variability across technical replicates in mouse brain snRNA-730 

Seq data. A. Median CV across genes in replicates constructed at class and subclass level. B. 731 

Linear regression model of cell numbers in replicates and median CV identified at class and 732 

subclass level.  733 

734 

Figure S5 Reduction of CV with the increased number of cells sequenced in three non-735 

brain tissues.  Data from Tabula Sapiens Consortium was used. Red line denotes CV of 0.1. 736 
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737 

Figure S6 Expression abundance and CV in ROSMAP data. A. Relationship of expression 738 

and CV in excitatory neuron from ROSMAP study. B. CV of marker genes. Blue and red line 739 

denote CV of 0.2 and 0.1. 740 

 741 

Figure S7 Expression variability in scRNA-seq and snRNA-seq data. Three human microglia 742 

samples with both sc- and snRNA-Seq data are shown. 743 
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744 

Figure S8 Proportions of samples with acceptable expression variability. A. The average and 745 

maximum percentages of samples that satisfy the precision criterion. Examples from 746 

BICCN_adult (B) and BICCN_HVS(C) datasets were used for illustration. Samples achieving 747 

the precision threshold, defined by a CV of 0.1 or lower, are indicated in green, signifying 748 

acceptable expression precision, while those failing to meet the threshold are marked in yellow, 749 

indicating low precision. Instances where a cell type is not represented in a sample are left blank. 750 

The accompanying bar plot provides a detailed breakdown of the exact proportion of samples 751 

that satisfy the precision criterion.  752 
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753 

Figure S9 Expression variability across replicates in human microglia.  754 

755 
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Figure S10 Association between technical factors and gene expression variability across 756 

technical replicates in snRNA-Seq data. A. Median CV across detected genes in replicates 757 

versus total sequencing depth. B. Median CV across detected genes in replicates versus total 758 

sequencing saturation rate. C. Comparison of median CV across detected genes in replicates 759 

between data sequenced by 10X Chromium and Smart-Seq platforms. 760 

 761 

Figure S11 Relationship between expression accuracy and the number of cells in simulated 762 

data. The X-axis represents the number of cells in each sample, and the Y-axis shows the 763 

percentage of genes with good accuracy, as defined by Pearson correlation and a linear regression 764 

model. 765 

d 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2025. ; https://doi.org/10.1101/2024.04.12.589216doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.12.589216
http://creativecommons.org/licenses/by-nc/4.0/


 766 

Figure S12 True positive rate of DEGs with different expression levels categorized by log-767 

transformed counts per million (CPM). 768 

769 

Figure S13 Applying the 500-cell threshold and SNR to schizophrenia case-control scRNA-770 

seq data (Ruzicka et al). A. Impact of cell number cutoff on the reproducibility of DEGs in two 771 

schizophrenia cohorts. The plot illustrates the effect of different cell number cutoffs on the 772 
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reproducibility of DEGs identified in two independent schizophrenia cohorts (MCL and Mt 773 

Sinai). B. The relationship between SNR and DEG reproducibility in astrocytes. 774 

Table S1 Expression accuracy statistics in datasets from four species 775 

 776 

 777 
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