

Proteomic profile analysis of plasma and aqueous humor from glaucoma and non-glaucomatous patients

Carmen L. Pessuti¹, Chia-Ling Huang², Angela Banks², Nhi Vo², Lori Jennings², Joseph Loureiro², Kleber S. Ribeiro¹, Deise Fialho Costa¹, Heloisa Nascimento¹, Cristina Muccioli¹, Ivan Maynart Tavares¹, Alessandra G. Commodaro¹, Rubens Belfort Jr¹, Christopher W. Wilson², Amy Chen², Ganesh Prasanna², VijayKrishna Raghunathan².

¹Department of Ophthalmology, Universidade Federal de Sao Paulo, Sao Paulo, Brazil

²BioMedical Research, Novartis, Cambridge, MA, USA

Corresponding author(s):

VijayKrishna Raghunathan, Ph.D., Ophthalmology, BioMedical Research, Novartis, 22 Windsor St, Cambridge, MA, Massachusetts, 02139. *Email:* Vijay.Raghunathan@novartis.com

Ganesh Prasanna, Ph.D., Ophthalmology, BioMedical Research, Novartis, 22 Windsor St, Cambridge, MA, Massachusetts, 02139. *Email:* ganesh.prasanna@novartis.com

Running title: Proteomic analysis of glaucomatous donor biofluids

Keywords: Aqueous humor, plasma, intraocular pressure, glaucoma, cup-to-disc ratio, SomaScan, proteomics

1 **ABSTRACT**

2 **Purpose:** Glaucoma, a multifactorial ocular neuropathy, can lead to irreversible vision loss.
3 Diagnosis involves assessing optic cupping (increased cup-to-disc ratios) and structural
4 changes (like retinal nerve fiber layer thinning) through clinical imaging. Elevated intraocular
5 pressure (IOP) is commonly associated with glaucoma, but not always. However, understanding
6 disease progression is hindered by limited access to donor ocular tissue and consistent clinical
7 data. We hypothesize that the proteome of aqueous humor and plasma may be altered in
8 disease and correlates with clinical parameters such as IOP and cup-to-disc ratios.

9 **Methods:** Aqueous humor (AH) and plasma samples were collected from 36 glaucoma patients
10 (17 male, 19 female), and 35 non-glaucomatous control patients (16 male, 19 female)
11 undergoing cataract surgery. The protein profile was compared using the SOMAscan® assay
12 system for proteome profiling. From glaucomatous donors, correlations between IOP and cup-
13 to-disc ratios to proteome differences were determined.

14 **Results:** Overall proteomics profiles between both AH and plasma were compared by
15 combining all samples (glaucoma and non-glaucoma) and then performing correlation analyses.
16 This study revealed similar protein abundance in the two biological fluids. Additionally, it
17 identified different abundance of proteins in plasma and AH between glaucoma and non-
18 glaucoma samples. The differential proteins identified were involved in pathways related to
19 vascular integrity, inflammation, immune response, cell adhesion, and complement activation.
20 Generally, glaucomatous AH showed higher protein levels. Neurofilament light chain (NEFL)
21 protein correlated with elevated IOP and inflammatory markers, but not with cup-to-disc ratios.

22 **Conclusions:** Together, our data demonstrate that the proteins identified in this study from
23 glaucomatous donors correspond to markers of neurodegeneration and those that may inhibit
24 cell proliferation or disrupt vascular integrity.

26 **INTRODUCTION**

27 Primary open angle glaucoma (POAG) is one of the leading causes of irreversible blindness,
28 estimated to affect 111.8 million people worldwide by 2040 ^{1,2}. Although the etiology and
29 progression of POAG is multifactorial, the only modifiable causal risk factor for managing visual
30 field loss is to reduce intraocular pressure (IOP), which is demonstrated to slow the progression
31 of damage to the optic nerve and death of retinal ganglion cells ³. IOP is largely determined by a
32 balance between aqueous humor production and resistance to outflow ^{4,5}. In the human eye,
33 approximately 75% of all aqueous humor flows from the anterior chamber through the trabecular
34 meshwork (TM) and Schlemm's canal (SC) ^{6,7} and is thus the primary egress for aqueous
35 humor ⁸. Increased resistance to aqueous drainage due to changes in TM cells and extracellular
36 matrix (ECM) is considered a major contributor to ocular hypertension (OHT) ^{9,10}. Differential
37 profiles and levels of soluble factors have been identified in the AH, which have the potential to
38 affect cells in the tissues (outflow tract) that they traverse through, and thus influence OHT.

39 AH is secreted into the posterior chamber by the non-pigmented epithelial cells of the ciliary
40 processes. Though the total amount of protein in the anterior chamber is less than 1% (w/v) due
41 to the functional blood aqueous barrier ⁴, the aqueous humor is enriched with proteins secreted
42 by intraocular structures from both the anterior and posterior segments ¹¹. It is thus reasonable
43 to hypothesize that systemic disorders, genetic conditions, or perturbations to ocular integrity
44 and health may all adversely influence expression of proteins in the aqueous humor and other
45 ocular tissues ¹². Disease associations of protein compositions of tear films, AH and vitreous
46 humors have been observed with dry eye, glaucoma, age related macular degeneration, or
47 other pathologies ¹³⁻¹⁸, although very few studies have correlated these with clinically relevant
48 parameters.

49 Several studies have demonstrated differences between metabolites or proteomes in the AH of
50 patients with primary open angle glaucoma and have subsequently posited that these may
51 serve as biomarkers of dysfunction in the outflow apparatus ^{16,19-29}. Proteomic analysis of

52 aqueous humor reveals significant protein expression differences between cataract and primary
53 open angle glaucoma (POAG) patients. Multiple studies report that dozens to hundreds of
54 proteins are differentially expressed in POAG, involving pathways such as oxidative stress,
55 inflammation, lipid metabolism, extracellular matrix regulation, and neural degeneration³⁰⁻⁴¹.
56 Key findings from these various studies identify several proteins in the complement cascade,
57 apolipoproteins, and antioxidant defense suggesting immune involvement and metabolic stress
58 in POAG.

59 For the aforementioned investigations, complementary approaches were used to quantify
60 protein expression in AH from glaucomatous donors, including ELISA, multiplexed
61 immunoassays, LC-MS/MS, or antibody microarrays. Limitations in quantifying
62 proteins/metabolites include the small volume and low protein concentration in AH, alongside
63 the need for validated antibody-based methods, which restricts biomarker identification. Thus,
64 more sensitive methods are needed to broadly identify AH proteins to find disease progression
65 biomarkers when comparing pre- and post-treatment stages. Discovering new proteins in the
66 AH of patients could indeed shed light on the molecular mechanisms behind outflow resistance
67 in OHT and glaucoma. Overall, while these proteomic changes provide insight into POAG
68 mechanisms and support biomarker development, limited studies⁴² have performed direct
69 comparisons between plasma and aqueous humor or with clinical parameters such as IOP or
70 cup-to-disc ratios. Others have suggested that differences in proteome profiling within POAG
71 populations may enable subgrouping to identify POAG severity⁴³, though these studies lacked
72 clinical correlation. We hypothesize that proteins secreted into the AH and plasma of patients
73 with glaucoma differ from non-glaucomatous individuals and are associated with clinically
74 relevant parameters. Here, we utilize the SOMAscan® assay⁴⁴, a highly multiplexed, aptamer-
75 based technology, to detect and assess relative abundance of a broad range of proteins from

76 small volumes of human blood alongside AH from patients undergoing glaucoma surgery, as
77 compared to controls patients subject to cataract surgery.

78

79 MATERIALS AND METHODS

80 ***Study population***

81 The study was approved by the ethics committee investigational review board (CEP 1.209.725)
82 and adhered to the principles of the Declaration of Helsinki. Informed consent was obtained
83 from all participants. Aqueous humor (AH) and plasma samples were collected from 32
84 glaucoma patients (16 male, 16 female), and 35 cataract control patients (16 male, 19 female)
85 undergoing cataract surgery (**Figure 1**). The control cohort underwent clinical examinations
86 (e.g. elevated IOP, optic nerve head changes, or uveitis) to rule out any glaucoma-related
87 findings as part of inclusion/exclusion criteria. Within the glaucoma patient group one underwent
88 trabeculectomy, two were pseudophakic, and AH was collected at the beginning of the surgery.
89 Clinical diagnosis of glaucoma was based on elevated IOP (IOP > 21 mmHg), documented
90 progressive cupping or thinning of the neuroretinal rim. All glaucoma patients were treated with
91 medication to control IOP. Patients with other eye diseases or associated with systemic
92 diseases were not included. Our study is exploratory in nature, and the primary focus is on the
93 proteomic analysis of plasma and aqueous humor samples from the study participants. As such,
94 the data about the glaucoma patients in this study will be limited to the existing inclusion criteria
95 and general demographic information. Additional longitudinal clinical data including summary
96 statistics of HVF, glaucoma phenotype, number of medications, etc. were unavailable and thus
97 not being reported here for this study. All donor meta data including IOP, cup to disc ratios and
98 visual acuity are included as **Supplementary Table 1**.

99 ***Aqueous humor (AH) and plasma sample collection***

100 AH samples were collected from patients following a previously validated method ⁴⁵ at the
101 beginning of the surgery. Briefly, after anesthetic and antiseptic eyedrops administration, a 1mL

102 tuberculin syringe (27 gauge, $\frac{1}{2}$ inch) was used to aspirate the AH. Approximately, 0.1 ml was
103 collected, and transferred to two labeled Eppendorf tubes. Peripheral blood (10 mL) was
104 collected from an arm of the patient in EDTA tubes during the surgery. The tubes were
105 centrifuged for 10 min at 1900 \times g, and plasma was collected. Total protein concentrations in the
106 AH samples were determined using the BCA Protein Assay Kit (Pierce, Rockford, IL).

107 ***SOMAscan® analysis***

108 All AH and plasma samples were analyzed in parallel using the SOMAscan® proteome profiling
109 platform that provides a broad and relative abundant assessment of selected proteins in
110 biological fluid. The SOMAscan® platform, using affinity-based slow off-rate modified aptamers
111 (SOMAmers), has been described extensively elsewhere^{44,46,47}. The custom SOMAscan®
112 version used in our study covered 5,080 SOMAmers, including 4,785 human-specific
113 SOMAmers targeting 4,161 human proteins. Evidence supporting SOMAmer endogenous
114 antigen annotation, including SOMAmer validation by proteogenetic evidence, mass
115 spectrometry detection, or orthogonal assay concordance, where known, are provided in the
116 referenced studies⁴⁸⁻⁶⁶. The targeted proteins include transmembrane receptors, secreted
117 proteins, kinases, transcription regulators and signal transducers. The samples (55 μ l) were
118 aliquoted into 2D barcoded tubes and were shipped on dry ice to SomaLogic for analysis.

119 ***Statistical analysis***

120 The relative abundance of captured SOMAmers were quantified by microarray hybridization as
121 relative fluorescence units (RFU). The annotations for the SOMAmers and \log_2 (RFU) for all
122 samples analyzed are provided in **Supplementary table 2**. Quality control and sample outlier
123 detection was conducted using the arrayQualityMetrics⁶⁷, and by running principal component
124 analysis (PCA) and Spearman's correlation analysis with custom R scripts. RFU were \log_2 -
125 transformed and normalized by smooth quantile normalization using R package qsmooth⁶⁸. In
126 total, 5 samples (2 non-glaucomatous, 3 glaucoma) were removed from the AH cohort and 2
127 non-glaucomatous samples were removed from the plasma cohort, which left 62 samples in the

128 AH cohort and 65 samples in the AH cohort. Exclusion of 5 samples were based on an
129 unbiased statistical outlier analysis (**Supplemental Figure 1**) and are thus not presented in
130 subsequent analysis. We applied the limma R package (v3.50.3) in R 4.1.0 environment to
131 determine differentially expressed proteins between groups⁶⁹. Pathway enrichment analysis was
132 performed with pre-ranked GSEA using R package fgsea v1.20.0 and Gene Ontology Biological
133 Process category (GOBP) in MSigDB⁷⁰⁻⁷³.

134 ***Correlation analysis***

135 We conducted Elastic Net, a machine learning based method, to identify proteins correlated with
136 the total protein concentration. For this analysis, we utilized the cv.glmnet function from the R
137 package glmnet v4.1-3. We employed a 10-fold cross-validation approach to optimize the alpha
138 and lambda parameters^{74,75}. Additionally, we performed a 1000-fold bootstrapping using the
139 optimized alpha and lambda values to determine the frequency at which each protein was
140 selected as a top predictor for estimating the total protein concentration. To enhance the
141 performance of our analysis, we only included proteins with an absolute Pearson's correlation
142 coefficient greater than 0.4 with the total protein concentration.

143

144 **RESULTS**

145 ***Donor demographics***

146 Donor demographics for the patient samples used in this study are provided in **Figure 1**. The
147 average age of donors with cataract was 66.9 ± 10.9 while those with glaucoma was $68.41 \pm$
148 12.84. No significant differences ($p=0.60$, t-test; **Figure 1**) were seen in donor ages between the
149 groups *in toto* or when evaluated by sex. Amongst these donors, we note that one donor had
150 primary angle closure glaucoma while the remainder had POAG. The mean IOP of glaucoma
151 donors (IOP controlled with medication) was 17.94 ± 8.28 mmHg with no differences seen
152 between male or female donors. Only one POAG donor had an IOP > 24 mmHg. A statistically
153 significant difference in total protein concentration in AH was observed between cataract and

154 glaucoma groups (Cataract: 0.383 ± 0.505 mg/ml; Glaucoma: 1.17 ± 1.48 mg/ml). Visual acuity
155 and cup-to-disc ratios of POAG donors are listed in donor metadata within **Supplementary**
156 **Table 1.**

157 ***Differential analysis of SOMAScan® profiling data***

158 Principal component analysis of the cataract and glaucoma samples revealed heterogeneity
159 between samples, including outliers that were subsequently excluded from further analysis.
160 Subsequent analysis revealed few differences in protein levels between non-glaucomatous and
161 glaucomatous aqueous humor and plasma (**Supplementary Fig. 1**). Nevertheless, we
162 observed that samples were clustered by tissue types with reasonable correlation ($r > 0.5$)
163 between AH and plasma samples (**Figure 2a**). The histogram (**Figure 2b**) demonstrates that
164 the distribution of Pearson's correlation coefficients between AH and plasma samples from
165 same donor demonstrates some variability. Considering all donors, a reasonable correlation ($r >$
166 0.5) was observed comparing protein levels between AH and plasma samples.

167 Subsequent to multivariate analysis, we performed differential protein analysis for both
168 plasma and aqueous samples. Expression values that were $|\log_2(\text{RFU})| > 0.5$ and where the
169 adjusted p-value was < 0.05 are highlighted as significant (**Figure 3**). Within glaucomatous AH
170 (**Figure 3A**), 7 SOMAmer probes representing 6 target proteins were observed to be significantly
171 down regulated, while 49 SOMAmer probes representing 49 target proteins were upregulated.
172 Examples of top up-regulated proteins include complement proteins (C3, C7, C1QTNF3),
173 Apolipoprotein (APOE, APOF), matrix proteins (endostatin/Col18A1), macrophage associated
174 proteins (CSF1R, CD163), while top down-regulated proteins include growth factors such as
175 FGF9, FGF20 and CCK. We observed that in plasma samples, the majority of the differential
176 proteins were upregulated in glaucoma. Some of the upregulated proteins of interest include
177 ENO1, NEK7, AKT, PRKCA, PRKCB, JAK2, MAP kinase-activated protein kinase 2
178 (MAPKAPK2), whereas the top down-regulated proteins include APOC3, GDF2, DCP1B and
179 EDIL3. A comprehensive list of proteins altered in their levels comparing glaucomatous and

180 non-glucomatous plasma and AH are provided in **Supplementary table 3**. Although protein
181 levels from AH and plasma from the same donor showed a positive correlation, we only
182 observed SNX4 to be significantly up regulated in both AH and plasma samples from
183 glaucomatous donors.

184 ***Pathway enrichment analysis***

185 Next, we asked if the differentially enriched proteins were enriched in common biological
186 pathways, by performing pathway analysis (**Supplementary table 4**). We identified 51 and 559
187 significantly up-regulated pathways (adjusted p-value < 0.05) in AH and plasma samples from
188 glaucoma donors, respectively. 16 pathways were up-regulated in both AH and plasma,
189 including inflammatory response, IL6 production and immune response related pathways.

190 ***Correlation analysis of protein levels with total protein concentration***

191 While individual protein changes may help identify signaling pathways perturbed in disease,
192 total protein concentration of the AH may help ascertain the overall health of the blood-aqueous
193 barrier and the outcomes of IOP lowering medications. Thus, normalizing individual proteins to
194 total protein concentrations assists in determining if observed changes reflect pathway changes
195 underpinning disease, or are merely a consequence of structural failure or drug treatment(s).
196 We conducted an Elastic Net regression analysis to identify proteins that can accurately predict
197 the total protein concentration (**Figure 4a**). Our analysis specifically focused on AH proteins, as
198 proteins from these samples may provide a better reflection of changes in glaucoma disease
199 compared to plasma samples. Through our analysis, we successfully identified 5 proteins
200 (KNG1, IGFBO6, MAP2K4, H6PD, and C3) that demonstrated the highest predictive capability
201 for the total protein concentration collected from the patients (**Figure 4a**).

202 ***Correlation analysis of protein levels with IOP***

203 We conducted Elastic net regression analysis to identify 13 proteins to be associated with IOP
204 values reported in glaucomatous patients (**Figure 4b**). We note that a glaucoma sample with

205 extremely high IOP measurement was excluded from the analysis. Among the proteins of
206 interest in glaucoma, the protein with maximal correlation with IOP levels in glaucomatous
207 patients was neurofilament light chain (NEFL; **Figure 4c, Supplementary Fig. 2**). Linear
208 regression analysis validated this finding and demonstrated a net correlation with IOP
209 measurements ($R^2 = 0.3067$). Since NEFL is a widely accepted marker for several
210 neurodegenerative diseases including glaucoma⁷⁶⁻⁸⁵, we then decided to further investigate if
211 levels of NEFL correlated with other SOMAmers identified in glaucomatous donors. We
212 calculated the Pearson's correlation coefficient of NEFL and rest of the proteins and identified
213 29 proteins that are positively or negatively correlated with NEFL ($|r| > 0.4$), including TEAD3,
214 CNTF, C4A, C4B and CCL27 (**Figure 5**).

215 ***Changes in protein levels as a function of cup-to-disc ratios in glaucoma***

216 Finally, we sought to determine if changes in relative abundance of protein levels in AH
217 correlated with cup-to-disc ratios of glaucomatous patients via Pearson's correlation analysis
218 (**Figure 6**). For patients where cup-to-disc ratios were available for both eyes, we used the
219 average measurements from both eyes. We note that among the 29 glaucomatous samples
220 obtained, cup-to-disc ratios were available for 26 donors. Figure 6 shows the top 6 positive
221 (KLRG2, C8G, PENK, ALB, APOA1, and KNG1) and negative (IL12A/B, LRRC3, ZAP70,
222 CTSG, DEFB115, and NSG1) correlated proteins with cup-to-disc ratios.

223 **DISCUSSION**

224 Monitoring glaucoma in the clinic typically involves measuring IOP, gonioscopy, and advanced
225 imaging of the retina/optic nerve head, which require regular visits and patient compliance.
226 Without a detailed medical history, it is challenging to understand the molecular mechanisms of
227 disease progression or identify biomarkers to ascertain treatment effectiveness. Since collecting
228 intraocular tissues from living patients is not feasible, analyzing biofluids such as AH and blood
229 can provide critical insights into disease mechanisms. In this study, we examined protein levels
230 in AH and plasma from patients with and without glaucoma undergoing cataract surgery using a

231 SomaLogic platform and correlating these with IOP and cup-to-disc ratios measured
232 immediately prior to the surgery.

233 ***Comparative analysis of plasma and aqueous humor proteomes***

234 The ages and sex of glaucomatous and non-glaucomatous donors in this dataset were
235 comparable. We observed significant changes in relative abundance of a subset of proteins
236 identified both in AH and plasma. Protein levels from AH and plasma from the same donor
237 sample showed a positive correlation ($r > 0.5$ for all of samples). Interestingly, when comparing
238 protein levels and correlations across all fluids and disease states, we only observed a
239 significant upregulation of SNX4 in glaucomatous AH and plasma when compared with those
240 from non-glaucomatous donors. SNX4 is a synaptic & endosomal membrane trafficking protein
241 in the secretory pathway and is also implicated as a mitochondrial recycling quality protein in
242 aging⁸⁶⁻⁸⁸. The lack of greater correlation between plasma and AH proteins may be due to
243 several reasons: turnover rates of AH vs plasma, tissues & cell types involved in protein
244 secretions, systemic vs local transport of proteins. It is yet unclear if glaucoma is purely a
245 disease of the eye or if systemic factors exist that regulate its etiology and progression, although
246 co-morbidities have been reported⁸⁹⁻⁹³. Further, Miguel Coca-Prados et al⁹⁴ have identified
247 several unique proteins and peptides in the AH attributed to the neuroendocrine nature of ciliary
248 non-pigmented epithelial cells in addition to plasma proteins. It is thus unsurprising that
249 differences in uniquely identified proteins exists between the two biofluids. Nevertheless, in the
250 plasma, 48 proteins were upregulated while 4 (EDIL3, DCP1B, GDF2, APOC3) were
251 downregulated when comparing non-glaucomatous and glaucomatous donors. Gene ontology
252 analyses of proteins altered in the plasma of glaucomatous donors were related to multiple
253 pathways corresponding to protein & macromolecule localization, intracellular transport, kinase
254 activity pathways, post translational / post transcriptional regulation of proteins / genes,
255 cytoskeletal reorganization and GPCR related pathways. On the other hand, 7 (ISLR2, CCK,

256 INSL4, FGF9, FGF20, BMPR1A) proteins were significantly downregulated and 49 were
257 significantly upregulated in the AH of glaucomatous donors. Gene ontology analyses of proteins
258 identified as altered in the AH of glaucomatous donors were related to multiple pathways
259 corresponding to inflammatory response, humoral & adaptive immune response, cell-cell & cell-
260 matrix adhesion, complement activation, and wound healing responses. These together suggest
261 that though overall concordance in proteins may be observed between AH and plasma, some
262 differences exist and thus proximity of biofluid to relevant tissue being studied (i.e. ciliary
263 process, ciliary muscle and trabecular meshwork/Schlemm's canal) may be important to
264 consider. As such, deeper analysis in this study was focused on the ocular specific biofluid (AH)
265 proteins.

266 ***Effect of disease state on aqueous humor proteome***

267 All changes in protein levels were normalized to total protein concentration and as such
268 these changes are independent of mean protein concentration. Interestingly, regression
269 modeling demonstrated that total protein concentrations trended towards being significantly
270 greater in AH of glaucomatous compared with non-glaucomatous donors. While this is
271 suggestive of a breakdown in the blood-aqueous barrier ⁴, whether this is due to the chronic
272 nature of the disease or due to IOP lowering medications (e.g. prostaglandin analogs), other
273 systemic medications or other co-morbidities is unclear. Nevertheless, the changes in proteins
274 appear to be directly related to pathways with the potential for consequential effects on IOP
275 regulation and outflow homeostasis. When comparing our overall findings with that from
276 previous publications using other technologies, it was noteworthy that proteins related to
277 complement and immune-related proteins (e.g. C3b, IL1, C1Q, C7 etc), apolipoproteins (APOE,
278 APOF etc), heat shock/oxidative stress (HSPD1/Hsp60), matrix and serpin (SERPINA1,
279 SERPING1, BGN etc) remained consistently differentially expressed between glaucomatous
280 and non-glaucomatous AH^{34,41,95-101}. These suggest that the proteomics methodology used in
281 our study is sensitive and robustly identifies certain proteins, in glaucoma, regardless of study

282 design or detection method. This highlights that certain pathways and proteins may have a
283 functional or disease-correlative role that required further studies to establish their role in
284 disease mechanisms. Nonetheless, several unique proteins were also identified in our study.

285 For example, Col18A1, which was upregulated in AH of glaucomatous donors, is expressed
286 ubiquitously in ocular tissues except in photoreceptors, and protein fragments that contain
287 endostatin (from Col18A1 cleavage) has been observed to accumulate in ocular fluid samples
288 ¹⁰². Interestingly, endostatin has been reported to promote expression and release of
289 thrombospondin-1, implicated in outflow resistance & glaucoma ¹⁰³⁻¹⁰⁵, in non-ocular endothelial
290 cells ¹⁰⁶. Conversely, endostatin has also been posited to crosstalk with Rho/ROCK, TGF β , NF-
291 κ B, PDGF, and autophagy pathways to yield anti-fibrotic effects ¹⁰⁷. SVEP1, another
292 overexpressed secreted ECM protein in AH & a disease modifier allele for congenital glaucoma
293 ¹⁰⁸, is known to be a binding partner for TIE1 and can thus regulate signaling outcomes in
294 lymphatics and vasculature ¹⁰⁹. Since AH predominantly drains into the Schlemm's canal, a
295 unique vessel with both vasculature and lymphatic properties ¹¹⁰, studying SVEP1 in the context
296 of glaucoma warrants further investigation. Of particular interest, VCAM1, CDH11, and BGN
297 were other proteins that were overexpressed in the AH of glaucomatous patients. SVEP1,
298 CDH11 and VCAM1 were all identified as genes relevant to POAG pathogenesis in a genome-
299 wide meta-analysis across ancestries ¹¹¹. CDH11 can interact reciprocally with fibronectin
300 binding protein syndecan-4 to facilitate cell migration and adhesion, partake in EMT, and
301 modulate proliferation ¹¹²⁻¹¹⁵. In non-ocular cells, CDH11 was shown to mediate adhesion of
302 macrophages to fibroblasts promoting transdifferentiation into myofibroblasts and a self-
303 sustaining profibrotic niche ¹¹⁶. Biglycan (BGN) is an extracellular proteoglycan, expressed in
304 the trabecular meshwork ¹¹⁷, is posited as a prognostic marker for cancer aggressiveness ¹¹⁸,
305 fibrosis & inflammation ¹¹⁹ and is predicted to be a circulating "messenger" for triggering
306 inflammation and/or autophagy ¹²⁰. Whether biglycan in the AH serves as a biomarker, a
307 signaling molecule to trigger autophagy or inflammatory phenotypes in the trabecular meshwork

308 to mediate subsequent outflow regulation requires mechanistic studies. High levels of circulatory
309 VCAM1 in the blood/plasma was found to correlate with ventricular hypertrophy, hypertension
310 and is suggested to thus serve as a predictive soluble biomarker for cardiovascular disease and
311 inflammation ¹²¹⁻¹²³. In this study, whether VCAM1 expression is a result of chronic elevated
312 IOP, drugs to lower IOP, or due to undiagnosed/unknown underlying systemic vascular
313 conditions is unknown. Regardless, increased presence of the aforementioned proteins may
314 serve as 'proteins-of-interest' in mechanistic understanding of outflow regulation for as potential
315 biomarkers for dysregulation in outflow homeostasis. Further studies and orthogonal methods
316 are needed to validate these findings.

317 ***Protein changes identified as a function of clinical parameters in glaucoma***

318 Since proteins with associations with 'hypertension' were identified, we next sought to
319 determine if protein changes were a function of IOP levels through additional regression
320 modeling. Two proteins notably were found to be of importance: DLL4 and NEFL. DLL4, a
321 Notch ligand, is a key regulator of vascular morphogenesis, vessel maturation, and function.
322 Secreted/soluble DLL4 has previously been reported to significantly reduce hydraulic
323 conductivity, vascular permeability, and disrupt endothelial barrier function in non-ocular
324 vasculature ^{124,125}. Further, DLL4 has been demonstrated to be critical in developing retinal
325 vasculature, increased endothelial cell proliferation, and angiogenic sprouting ¹²⁶. Interestingly,
326 DLL4 was also shown to inhibit inflammatory choroidal neovascularization despite opposing
327 effects seen in endothelial cells (anti-angiogenic) and macrophages (pro-angiogenic) ¹²⁷.
328 Collectively, we speculate that DLL4, found upregulated with IOP, may act to increase outflow
329 resistance via a yet unknown mechanism. Further, whether a dichotomous function for the DLL4
330 ligand or the Notch pathway exists in outflow regulation remains to be seen. A recent study
331 suggests that Notch pathway protein expression may differ between segmental flow regions of
332 healthy and glaucomatous donors, at least *in vitro* ¹²⁸. Thus, ligands circulating in the aqueous
333 humor could differentially impact TM cell function necessitating further studies.

334 NEFL is a well-established marker of neurodegeneration^{77,79-82,129} and similar to our finding,
335 has previously been reported to be elevated in glaucomatous AH in humans and animal models
336^{76,78,130}. In fact, NEFL had the highest correlation with IOP in all donors in this study, providing
337 additional confidence that NEFL in the AH may indeed be a suitable biomarker for
338 glaucomatous neurodegeneration and ocular hypertension. However, we advise caution that AH
339 samples utilized in this study were from patients identified for glaucoma filtration surgery.
340 Therefore, it is likely that the disease stage may be advanced and thus markers of axonal
341 degeneration are expected within the AH. Whether NEFL would serve as an early marker of
342 disease is unclear and thus requires comprehensive longitudinal natural history investigations.
343 Further the source of the neurofilament protein, determined in the aqueous humor, is unclear
344 (i.e. whether it is due to degeneration of the optic nerve, secretion from cells of neural crest
345 origin (developmentally) in the anterior segment, or Schwann/nerve cells in the anterior segment
346 remains unknown). Interestingly, while NEFL levels correlated with IOP, its levels did not appear
347 to correlate with cup-to-disc ratios of glaucoma donors (**Supplementary Fig. 3**), though other
348 proteins that did correlate were identified. Interestingly, cup-to-disc ratio was independent of
349 IOP values as well (**Supplementary Fig. 3**). Inflammatory proteins (such as interleukins and
350 cathepsins) corresponded with low cup-to-disc ratio, while apolipoprotein A1 (APOA1), albumin,
351 kininogen-1 (KNG1) and complement C8G correlated with a higher cup-to-disc ratio suggesting
352 proteins altered in the AH may differ based on disease severity. KNG1 is an antiangiogenic
353 molecule that has been suggested to be a marker of neurodegeneration¹³¹ and can impair the
354 proliferation of endothelial cells¹³². To the best of our knowledge, the role of KNG1 in POAG
355 and/or ocular hypertension has not been studied, although its cleaved nonapeptide, Bradykinin
356 (BK), has been the target for IOP lowering investigations¹³³⁻¹³⁸. A prior study reported a
357 decrease in C8G¹³⁹ in glaucomatous AH conflicting with our results. However, Kim et al¹⁴⁰
358 previously reported C8G to act as a neuroinflammation inhibitor; our result correlating C8G

359 levels with high cup-to-disc ratios may thus reflect the advanced stage of
360 neurodegeneration/neuroinflammation in glaucoma.

361 Consistent with our study, elevated levels of APOA1 were reported in AH of POAG donors
362 ¹⁴¹. It is important to note that the direct role of APOA1 in IOP homeostasis is not known.
363 However, APOA1 plays a critical role in reverse cholesterol transport pathway via direct
364 interactions with the ABCA1 gene whose variants are implicated in POAG ¹⁴². Cholesterol is
365 itself a risk factor for elevated IOP ¹⁴³. Elevation in albumin levels in glaucomatous AH is also
366 reported in several studies, though attributed to administration of IOP lowering drugs ¹⁴⁴. Finally,
367 a correlation analysis of NEFL to other proteins identified in glaucomatous aqueous humor
368 revealed that NEFL levels may be associated with proteins regulating apoptosis, complement
369 activation, proliferation, and cytoskeletal reorganization. Together, the proteins identified in this
370 study correspond to both markers of neurodegeneration and those that may inhibit proliferation
371 or vascular integrity.

372

373 **LIMITATIONS**

374 This study is not without limitations. One of the major limitations is that the biofluids obtained in
375 this study were obtained at the time of ocular surgery thus representing a singular snapshot in
376 time and no information was gleaned about the stage of the disease; although, clinically
377 measured IOP measurements and cup-to-disc ratios are available at this stage. We understand
378 that glaucoma can be asymmetric, and in future studies, we will consider incorporating cup-to-
379 disc ratios from objective approaches such as OCT to validate or refine these findings. Also,
380 while cup-to-disc ratios are a clinical parameter, and protein levels (which potentially are
381 dynamic) are a molecular parameter, it is important to note that these variables are
382 independent, and that the kinetics of structural changes may differ from the kinetics of molecular
383 turnover. The independent parameters were nevertheless compared to ascertain if the clinical
384 parameter investigated had any association with the proteome content in the AH and if this

385 could perhaps reflect the current state of the disease in the donor. Under the current study
386 design, it is important to note that any causal or correlational relationship is hard to conclude
387 since there are practical limitations on frequency of aqueous humor sampling. Further,
388 comprehensive and longitudinal patient histories of systemic co-morbidities or ocular diseases
389 and medications that may affect systemic or ocular hypertension including but limited to
390 intraocular pressure were unavailable. Since IOP in glaucoma patients was controlled with IOP
391 lowering medication, the impact of these therapeutics on proteome changes cannot be
392 ascertained. Further functional measurements for visual field or additional structural deficits
393 including longitudinal and pre-surgical fundus photography or OCT measurements (nerve fiber
394 layer thinning, rim width, ganglion cell analysis etc.) are not known for these patients. We
395 speculate that additional information that may be obtained from *longitudinal prospective studies*
396 with disease state factored in could further enable identification of determining factors driving
397 changes in the proteome. We did not perform any genetic linkage or association analysis to
398 identify any polygenic risk assessment from the POAG patients enrolled. Future studies may be
399 needed to identify correlations between genetic causes, structure-function changes, and
400 molecular profiling approaches in a longitudinal manner if feasible. Since the entirety of the
401 samples collected in this study were utilized for proteomics, attempts to validate the results
402 using orthogonal or secondary methodologies were not undertaken. As such, since mass
403 spectrometry (a commonly used profiling technique for proteomics) was not part of the current
404 study's scope, we recommend future research from independent investigators to include such
405 methods, and to compare SOMAscan findings with previously published aqueous humor
406 proteomic profiles and/or methods. Thus, we anticipate that the approach and data presented
407 here will enable the design of validation studies for future investigations within the glaucoma
408 community.

409

410 **ACKNOWLEDGEMENTS**

411 The authors would like to thank the patient donors for the biological fluid samples without whose
412 consent these experiments would be impossible.

413

414 **FUNDING STATEMENT**

415 This work was sponsored by Novartis Biomedical Research, and CNPq (Ministry of Science,
416 Technology, and Innovation of Brazil).

417

418 **AUTHORS' DISCLOSURE**

419 C.H, A.B, N.V, L.J, J.L, C.W.W, A.C, G.P, V.R are all employees of Novartis Biomedical
420 Research.

421

422 **CONTRIBUTION STATEMENT**

423 C.L.S, K.S.R, D.F.C, H.N, C.M, I.M.T, A.G.C, R.B.J: clinical design, sample collection, data
424 interpretation, critical review, revisions, and approval of article. C.H, A.B: data analysis, data
425 interpretation, critical review, revisions, and approval of article. A.C, G.P: Conceptualization of
426 study, data interpretation, critical review, revisions, and approval of article. N.V, L.J, J.L: sample
427 preparation & analysis, data analysis, data interpretation, critical review, revisions, and approval
428 of article. C.W.W: data interpretation, critical review, revisions, and approval of article. V.R: data
429 analysis, data interpretation, critical review, revisions, and approval of article.

430

431 **FIGURE LEGENDS**

432 **Figure 1:** Patient demographics demonstrate study participants were age and sex matched.
433 Intraocular pressures and protein concentrations from AH are reported for both glaucomatous
434 and non-glaucomatous donors.

435

436 **Figure 2:** Proteins identified in aqueous humor and plasma clustered by type of biofluid, and
437 appear to correlate reasonably well as evidenced by Spearman's correlation. **(A)** Heatmap, and
438 **(B)** histogram of Spearman's correlation index demonstrates that the correlation, while evident,
439 is not absolute i.e. $0.5 < R^2 < 0.7$.

440

441 **Figure 3:** Principal component (PCA) and differential expression analysis demonstrates
442 differences in proteins identified in **(A)** aqueous humor and **(B)** plasma comparing
443 glaucomatous and non-glaucomatous donors. PCA demonstrates large variance between
444 cataract (non-glaucoma) and glaucomatous donor samples with no discernible separation
445 between the two disease groups. Volcano plots demonstrate that no significant differences were
446 seen comparing cataract (non-glaucoma) and glaucomatous donors for most proteins. Few
447 proteins whose levels were significantly altered are represented in the bar plot.

448

449 **Figure 4:** Elastic net regression analysis (aqueous humor only) demonstrated **(A)** increased
450 protein concentration is observed in aqueous humor of donors with glaucoma, with no specific
451 sex related differences observed, **(B)** changes in some proteins correlate significantly with IOP
452 independent of sex of donor. **(C)** Scatter plots and linear regression of proteins ($R^2 > 0.25$) as a
453 function of IOP indicate NEFL, DLL4, and NFE2L1 to most significantly altered proteins in the
454 aqueous humor.

455

456 **Figure 5:** Heatmap demonstrates correlation of NEFL to top 30 proteins identified in the
457 aqueous humor of glaucomatous donors. Pearson's correlation analysis comparing NEFL with
458 rest of the proteins identified ~30 proteins that either positively (red) or negatively (blue)
459 correlated with NEFL ($|r| > 0.4$). In general, more proteins that negatively correlated with NEFL
460 levels were identified than those that exhibited positive correlation.

461

462 **Figure 6:** Heatmap identifies top 6 proteins either up or down regulated in the aqueous humor
463 of glaucomatous donors as a function of cup-to-disc ratios.

464

465 **SUPPLEMENTARY INFORMATION**

466 **Supplementary figure 1:** Outlier and principal component analysis identifying donors to
467 exclude from data set in an unbiased manner.

468

469 **Supplementary figure 2:** Scatter plots of proteins identified in glaucomatous AH as a function
470 of IOP demonstrate large variability between samples.

471

472 **Supplementary figure 3: (A)** Scatter plot of NEFL expression levels as a function of cup-to-
473 disc ratios of glaucomatous donors demonstrate no significant relationship ($R^2 = 0.037$) between
474 the two parameters. **(B)** Cup-to-disc ratios of glaucomatous donors show no significant
475 correlation ($R^2 = 0.008$) with intraocular pressures reported.

476

477 **Supplementary table 1:** Donor metadata including age, sex, disease state, sample ID, IOP,
478 cup-to-disc ratios & visual acuity.

479

480 **Supplementary table 2:** List of SOMAmer annotations and $\log_2(\text{RFU})$ for all samples analyzed
481 from plasma and aqueous humor for both glaucoma and non-glaucoma donors.

482

483 **Supplementary table 3:** List of differentially expressed proteins in aqueous humor and plasma
484 comparing glaucomatous and non-glaucomatous donors.

485

486 **Supplementary table 4:** GSEA pathway analysis of proteins identified in aqueous humor and
487 plasma comparing glaucomatous and non-glaucomatous donors.

488 **REFERENCES**

- 489 1. Tham Y-C, Li X, Wong TY, et al. Global Prevalence of Glaucoma and Projections of Glaucoma
490 Burden through 2040: A Systematic Review and Meta-Analysis. *Ophthalmology* 2014;121(11):2081-2090,
491 doi:<https://doi.org/10.1016/j.ophtha.2014.05.013>
- 492 2. Allison K, Patel D, Alabi O. Epidemiology of Glaucoma: The Past, Present, and Predictions for the
493 Future. *Cureus* 2020, doi:10.7759/cureus.11686
- 494 3. Glaucoma. In: *Moorfields Manual of Ophthalmology*. (Jackson TL. ed.) Mosby: Edinburgh; 2008;
495 pp. 274-330.
- 496 4. Freddo TF. A contemporary concept of the blood-aqueous barrier. *Prog Retin Eye Res*
497 2013;32(181-95, doi:10.1016/j.preteyeres.2012.10.004
- 498 5. Freddo TF, Johnson M. Chapter 6 Aqueous Humor Outflow Resistance. In: *The Eye's Aqueous
499 Humor*. 2008; pp. 161-192.
- 500 6. Toris CB, Yablonski ME, Wang Y-L, et al. Aqueous humor dynamics in the aging human eye.
501 *American journal of ophthalmology* 1999;127(4):407-412
- 502 7. Toris CB, Koepsell SA, Yablonski ME, et al. Aqueous humor dynamics in ocular hypertensive
503 patients. *Journal of glaucoma* 2002;11(3):253-258
- 504 8. Stamer WD, Acott TS. Current understanding of conventional outflow dysfunction in glaucoma.
505 *Curr Opin Ophthalmol* 2012;23(2):135-43, doi:10.1097/ICU.0b013e32834ff23e
- 506 9. Acott TS, Kelley MJ. Extracellular matrix in the trabecular meshwork. *Exp Eye Res*
507 2008;86(4):543-61, doi:10.1016/j.exer.2008.01.013
- 508 10. Vranka JA, Kelley MJ, Acott TS, et al. Extracellular matrix in the trabecular meshwork: intraocular
509 pressure regulation and dysregulation in glaucoma. *Exp Eye Res* 2015;133(112-25,
510 doi:10.1016/j.exer.2014.07.014
- 511 11. Yorio T, Prasanna G, Coca-Prados M. CHAPTER 4 - The Ciliary Body: A Potential Multifaceted
512 Functional Neuroendocrine Unit. In: *Ocular Therapeutics*. (Yorio T, Clark AF, Wax MB. eds.) Academic
513 Press: London; 2008; pp. 69-85.
- 514 12. Ahmad MT, Zhang P, Dufresne C, et al. The Human Eye Proteome Project: Updates on an
515 Emerging Proteome. *PROTEOMICS* 2018;18(5-6):1700394, doi:10.1002/pmic.201700394
- 516 13. Baek J-H, Lim D, Park KH, et al. Quantitative proteomic analysis of aqueous humor from patients
517 with drusen and reticular pseudodrusen in age-related macular degeneration. *BMC Ophthalmology*
518 2018;18(1), doi:10.1186/s12886-018-0941-9
- 519 14. Aghamollaei H, Parvin S, Shahriary A. Review of proteomics approach to eye diseases affecting
520 the anterior segment. *Journal of Proteomics* 2020;225(103881,
521 doi:<https://doi.org/10.1016/j.jprot.2020.103881>
- 522 15. Skeie JM, Roybal CN, Mahajan VB. Proteomic Insight into the Molecular Function of the Vitreous.
523 *PLOS ONE* 2015;10(5):e0127567, doi:10.1371/journal.pone.0127567
- 524 16. Kang GY, Bang JY, Choi AJ, et al. Exosomal proteins in the aqueous humor as novel biomarkers
525 in patients with neovascular age-related macular degeneration. *J Proteome Res* 2014;13(2):581-95,
526 doi:10.1021/pr400751k
- 527 17. Dammeier S, Martus P, Klose F, et al. Combined Targeted Analysis of Metabolites and Proteins
528 in Tear Fluid With Regard to Clinical Applications. *Translational Vision Science & Technology*
529 2018;7(6):22-22, doi:10.1167/tvst.7.6.22
- 530 18. De Almeida Borges D, Alborghetti MR, Franco Paes Leme A, et al. Tear proteomic profile in three
531 distinct ocular surface diseases: keratoconus, pterygium, and dry eye related to graft-versus-host
532 disease. *Clinical Proteomics* 2020;17(1), doi:10.1186/s12014-020-09307-5
- 533 19. Agnifili L, Pieragostino D, Mastropasqua A, et al. Molecular biomarkers in primary open-angle
534 glaucoma: from noninvasive to invasive. *Prog Brain Res* 2015;221(1-32, doi:10.1016/bs.pbr.2015.05.006
- 535 20. Babizhayev MA. Biomarkers and special features of oxidative stress in the anterior segment of
536 the eye linked to lens cataract and the trabecular meshwork injury in primary open-angle glaucoma:
537 challenges of dual combination therapy with N-acetylcarnosine lubricant eye drops and oral formulation of
538 nonhydrolyzed carnosine. *Fundam Clin Pharmacol* 2012;26(1):86-117, doi:10.1111/j.1472-
539 8206.2011.00969.x
- 540 21. Bollinger KE, Crabb JS, Yuan X, et al. Quantitative proteomics: TGFbeta(2) signaling in
541 trabecular meshwork cells. *Invest Ophthalmol Vis Sci* 2011;52(11):8287-94, doi:10.1167/iov.11-8218

542 22. Burgos-Blasco B, Vidal-Villegas B, Saenz-Frances F, et al. Tear and aqueous humour cytokine
543 profile in primary open-angle glaucoma. *Acta Ophthalmol* 2020;98(6):e768-e772, doi:10.1111/ao.14374
544 23. Castany M, Jordi I, Catala J, et al. Glaucoma patients present increased levels of diadenosine
545 tetraphosphate, Ap4A, in the aqueous humour. *Experimental Eye Research* 2011;92(3):221-226,
546 doi:<http://dx.doi.org/10.1016/j.exer.2010.12.004>
547 24. Csosz E, Deak E, Toth N, et al. Comparative analysis of cytokine profiles of glaucomatous tears
548 and aqueous humour reveals potential biomarkers for trabeculectomy complications. *FEBS Open Bio*
549 2019;9(5):1020-1028, doi:10.1002/2211-5463.12637
550 25. Garweg JG, Zandi S, Pfister IB, et al. Comparison of cytokine profiles in the aqueous humor of
551 eyes with pseudoexfoliation syndrome and glaucoma. *PLoS One* 2017;12(8):e0182571,
552 doi:10.1371/journal.pone.0182571
553 26. Guo T, Guo L, Fan Y, et al. Aqueous humor levels of TGFbeta2 and SFRP1 in different types of
554 glaucoma. *BMC Ophthalmol* 2019;19(1):170, doi:10.1186/s12886-019-1183-1
555 27. Igarashi N, Honjo M, Asaoka R, et al. Aqueous autotaxin and TGF-betas are promising diagnostic
556 biomarkers for distinguishing open-angle glaucoma subtypes. *Sci Rep* 2021;11(1):1408,
557 doi:10.1038/s41598-021-81048-3
558 28. Lin JB, Sheybani A, Santeford A, et al. Increased Aqueous Humor GDF15 Is Associated with
559 Worse Visual Field Loss in Pseudoexfoliative Glaucoma Patients. *Transl Vis Sci Technol* 2020;9(10):16,
560 doi:10.1167/tvst.9.10.16
561 29. Sun C, Zhang H, Jiang J, et al. Angiogenic and inflammatory biomarker levels in aqueous humor
562 and vitreous of neovascular glaucoma and proliferative diabetic retinopathy. *Int Ophthalmol*
563 2020;40(2):467-475, doi:10.1007/s10792-019-01207-4
564 30. Kaeslin MA, Killer HE, Fuhrer CA, et al. Changes to the Aqueous Humor Proteome during
565 Glaucoma. *PLOS ONE* 2016;11(10):e0165314, doi:10.1371/journal.pone.0165314
566 31. Kaur I, Kaur J, Sooraj K, et al. Comparative evaluation of the aqueous humor proteome of
567 primary angle closure and primary open angle glaucomas and age-related cataract eyes. *International
568 Ophthalmology* 2019;39(1):69-104, doi:10.1007/s10792-017-0791-0
569 32. Sharma S, Bollinger KE, Kodeboyina SK, et al. Proteomic Alterations in Aqueous Humor From
570 Patients With Primary Open Angle Glaucoma. *Investigative Ophthalmology & Visual Science*
571 2018;59(6):2635, doi:10.1167/iovs.17-23434
572 33. Rejas-González R, Montero-Calle A, Pastora Salvador N, et al. Unraveling the nexus of oxidative
573 stress, ocular diseases, and small extracellular vesicles to identify novel glaucoma biomarkers through in-
574 depth proteomics. *Redox Biology* 2024;77(103368, doi:10.1016/j.redox.2024.103368
575 34. Saccà SC, Centofanti M, Izzotti A. New Proteins as Vascular Biomarkers in Primary Open Angle
576 Glaucomatous Aqueous Humor. *Investigative Ophthalmology & Visual Science* 2012;53(7):4242,
577 doi:10.1167/iovs.11-8902
578 35. Beutgen VM, Graumann J. Advances in aqueous humor proteomics for biomarker discovery and
579 disease mechanisms exploration: a spotlight on primary open angle glaucoma. *Frontiers in Molecular
580 Neuroscience* 2024;17(doi:10.3389/fnmol.2024.1397461
581 36. Adav SS, Wei J, Terence Y, et al. Proteomic Analysis of Aqueous Humor from Primary Open
582 Angle Glaucoma Patients on Drug Treatment Revealed Altered Complement Activation Cascade. *Journal
583 of Proteome Research* 2018;17(7):2499-2510, doi:10.1021/acs.jproteome.8b00244
584 37. Nikhalashree S, George R, Shantha B, et al. Detection of Proteins Associated with Extracellular
585 Matrix Regulation in the Aqueous Humour of Patients with Primary Glaucoma. *Current Eye Research*
586 2019;44(9):1018-1025, doi:10.1080/02713683.2019.1608261
587 38. Izzotti A, Longobardi M, Cartiglia C, et al. Proteome Alterations in Primary Open Angle Glaucoma
588 Aqueous Humor. *Journal of Proteome Research* 2010;9(9):4831-4838, doi:10.1021/pr1005372
589 39. Liu H. Proteome alterations in aqueous humour of primary open angle glaucoma patients.
590 *International Journal of Ophthalmology* 2020;13(1):176-179, doi:10.18240/ijo.2020.01.24
591 40. Funke S, Perumal N, Bell K, et al. The potential impact of recent insights into proteomic changes
592 associated with glaucoma. *Expert Review of Proteomics* 2017;14(4):311-334,
593 doi:10.1080/14789450.2017.1298448
594 41. Kiełbus M, Kuźmiuk D, Skrzyniarz AM, et al. Changes in the Protein Composition of the Aqueous
595 Humor in Patients with Glaucoma: An Update Review. *International Journal of Molecular Sciences*
596 2025;26(7):3129, doi:10.3390/ijms26073129

597 42. Kodeboyina SK, Lee TJ, Bollinger K, et al. Aqueous Humor Proteomic Alterations Associated with
598 Visual Field Index Parameters in Glaucoma Patients: A Pilot Study. *Journal of Clinical Medicine*
599 2021;10(6):1180, doi:10.3390/jcm10061180

600 43. Hubens WHG, Mohren RJC, Liesenborghs I, et al. The aqueous humor proteome of primary open
601 angle glaucoma: An extensive review. *Exp Eye Res* 2020;197(108077, doi:10.1016/j.exer.2020.108077

602 44. Gold L, Ayers D, Bertino J, et al. Aptamer-Based Multiplexed Proteomic Technology for
603 Biomarker Discovery. *PLoS ONE* 2010;5(12):e15004, doi:10.1371/journal.pone.0015004

604 45. Belfort R, Jr., Moura NC, Mendes NF. T and B lymphocytes in the aqueous humor of patients with
605 uveitis. *Arch Ophthalmol* 1982;100(3):465-7, doi:10.1001/archopht.1982.01030030467019

606 46. Mehan MR, Ostroff R, Wilcox SK, et al. Highly multiplexed proteomic platform for biomarker
607 discovery, diagnostics, and therapeutics. *Adv Exp Med Biol* 2013;735(283-300, doi:10.1007/978-1-4614-
608 4118-2_20

609 47. Gold L, Walker JJ, Wilcox SK, et al. Advances in human proteomics at high scale with the
610 SOMAscan proteomics platform. *N Biotechnol* 2012;29(5):543-9, doi:10.1016/j.nbt.2011.11.016

611 48. Zhang J, Dutta D, Kottgen A, et al. Plasma proteome analyses in individuals of European and
612 African ancestry identify cis-pQTLs and models for proteome-wide association studies. *Nat Genet*
613 2022;54(5):593-602, doi:10.1038/s41588-022-01051-w

614 49. Surapaneni A, Schlosser P, Zhou L, et al. Identification of 969 protein quantitative trait loci in an
615 African American population with kidney disease attributed to hypertension. *Kidney Int* 2022;102(5):1167-
616 1177, doi:10.1016/j.kint.2022.07.005

617 50. Katz DH, Robbins JM, Deng S, et al. Proteomic profiling platforms head to head: Leveraging
618 genetics and clinical traits to compare aptamer- and antibody-based methods. *Sci Adv*
619 2022;8(33):eabm5164, doi:10.1126/sciadv.abm5164

620 51. Gudjonsson A, Gudmundsdottir V, Axelsson GT, et al. A genome-wide association study of
621 serum proteins reveals shared loci with common diseases. *Nat Commun* 2022;13(1):480,
622 doi:10.1038/s41467-021-27850-z

623 52. Emilsson V, Gudmundsdottir V, Gudjonsson A, et al. Coding and regulatory variants are
624 associated with serum protein levels and disease. *Nat Commun* 2022;13(1):481, doi:10.1038/s41467-
625 022-28081-6

626 53. Pietzner M, Wheeler E, Carrasco-Zanini J, et al. Mapping the proteo-genomic convergence of
627 human diseases. *Science* 2021;374(6569):eabj1541, doi:10.1126/science.abj1541

628 54. Ferkingstad E, Sulem P, Atlason BA, et al. Large-scale integration of the plasma proteome with
629 genetics and disease. *Nat Genet* 2021;53(12):1712-1721, doi:10.1038/s41588-021-00978-w

630 55. Stanley S, Vanarsa K, Soliman S, et al. Comprehensive aptamer-based screening identifies a
631 spectrum of urinary biomarkers of lupus nephritis across ethnicities. *Nat Commun* 2020;11(1):2197,
632 doi:10.1038/s41467-020-15986-3

633 56. Raffield LM, Dang H, Pratte KA, et al. Comparison of Proteomic Assessment Methods in Multiple
634 Cohort Studies. *Proteomics* 2020;20(12):e1900278, doi:10.1002/pmic.201900278

635 57. Cuveliez M, Vandewalle V, Brunin M, et al. Circulating proteomic signature of early death in heart
636 failure patients with reduced ejection fraction. *Sci Rep* 2019;9(1):19202, doi:10.1038/s41598-019-55727-1

637 58. Bodewes ILA, van der Spek PJ, Leon LG, et al. Fatigue in Sjogren's Syndrome: A Search for
638 Biomarkers and Treatment Targets. *Front Immunol* 2019;10(312, doi:10.3389/fimmu.2019.00312

639 59. Yao C, Chen G, Song C, et al. Genome-wide mapping of plasma protein QTLs identifies
640 putatively causal genes and pathways for cardiovascular disease. *Nat Commun* 2018;9(1):3268,
641 doi:10.1038/s41467-018-05512-x

642 60. Sun BB, Maranville JC, Peters JE, et al. Genomic atlas of the human plasma proteome. *Nature*
643 2018;558(7708):73-79, doi:10.1038/s41586-018-0175-2

644 61. Giudice V, Biancotto A, Wu Z, et al. Aptamer-based proteomics of serum and plasma in acquired
645 aplastic anemia. *Exp Hematol* 2018;68(38-50, doi:10.1016/j.exphem.2018.09.008

646 62. Forster K, Sass S, Ehrhardt H, et al. Early Identification of Bronchopulmonary Dysplasia Using
647 Novel Biomarkers by Proteomic Screening. *Am J Respir Crit Care Med* 2018;197(8):1076-1080,
648 doi:10.1164/rccm.201706-1218LE

649 63. Emilsson V, Ilkov M, Lamb JR, et al. Co-regulatory networks of human serum proteins link
650 genetics to disease. *Science* 2018;361(6404):769-773, doi:10.1126/science.aaq1327

651 64. Suhre K, Arnold M, Bhagwat AM, et al. Connecting genetic risk to disease end points through the
652 human blood plasma proteome. *Nat Commun* 2017;8(14357, doi:10.1038/ncomms14357

653 65. Sasayama D, Hattori K, Ogawa S, et al. Genome-wide quantitative trait loci mapping of the
654 human cerebrospinal fluid proteome. *Hum Mol Genet* 2017;26(1):44-51, doi:10.1093/hmg/ddw366
655 66. Carayol J, Chabert C, Di Cara A, et al. Protein quantitative trait locus study in obesity during
656 weight-loss identifies a leptin regulator. *Nat Commun* 2017;8(1):2084, doi:10.1038/s41467-017-02182-z
657 67. Kauffmann A, Gentleman R, Huber W. *arrayQualityMetrics*--a bioconductor package for quality
658 assessment of microarray data. *Bioinformatics* 2009;25(3):415-6, doi:10.1093/bioinformatics/btn647
659 68. Hicks SC, Okrah K, Paulson JN, et al. Smooth quantile normalization. *Biostatistics*
660 2018;19(2):185-198, doi:10.1093/biostatistics/kxx028
661 69. Ritchie ME, Phipson B, Wu D, et al. *limma* powers differential expression analyses for RNA-
662 sequencing and microarray studies. *Nucleic Acids Res* 2015;43(7):e47, doi:10.1093/nar/gkv007
663 70. Aleksander SA, Balhoff J, Carbon S, et al. The Gene Ontology knowledgebase in 2023.
664 *GENETICS* 2023;224(1), doi:10.1093/genetics/iyad031
665 71. Ashburner M, Ball CA, Blake JA, et al. Gene Ontology: tool for the unification of biology. *Nature*
666 *Genetics* 2000;25(1):25-29, doi:10.1038/75556
667 72. Liberzon A, Subramanian A, Pinchback R, et al. Molecular signatures database (MSigDB) 3.0.
668 *Bioinformatics* 2011;27(12):1739-1740, doi:10.1093/bioinformatics/btr260
669 73. Liberzon A, Birger C, Thorvaldsdóttir H, et al. The Molecular Signatures Database Hallmark Gene
670 Set Collection. *Cell Systems* 2015;1(6):417-425, doi:10.1016/j.cels.2015.12.004
671 74. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via
672 Coordinate Descent. *J Stat Softw* 2010;33(1):1-22, doi:10.18637/jss.v033.i01
673 75. Tay JK, Narasimhan B, Hastie T. Elastic Net Regularization Paths for All Generalized Linear
674 Models. *Journal of Statistical Software* 2023;106(1), doi:10.18637/jss.v106.i01
675 76. Lin JB, Pitts KM, El Helwe H, et al. Neurofilament Light Chain in Aqueous Humor as a Marker of
676 Neurodegeneration in Glaucoma. *Clinical Ophthalmology* 2023;Volume 17(2209-2217,
677 doi:10.2147/opth.s417664
678 77. Kaeser SA, Lehallier B, Thinggaard M, et al. A neuronal blood marker is associated with mortality
679 in old age. *Nature Aging* 2021;1(2):218-225, doi:10.1038/s43587-021-00028-4
680 78. Sasaki Y, Engber TM, Hughes RO, et al. cADPR is a gene dosage-sensitive biomarker of SARM1
681 activity in healthy, compromised, and degenerating axons. *Experimental Neurology* 2020;329(113252,
682 doi:<https://doi.org/10.1016/j.expneurol.2020.113252>
683 79. Baka P, Steenken L, Escolano-Lozano F, et al. Studying serum neurofilament light chain levels
684 as a potential new biomarker for small fiber neuropathy. *Eur J Neurol* 2024;e16192,
685 doi:10.1111/ene.16192
686 80. Fissolo N, Benkert P, Sastre-Garriga J, et al. Serum biomarker levels predict disability
687 progression in patients with primary progressive multiple sclerosis. *J Neurol Neurosurg Psychiatry* 2023,
688 doi:10.1136/jnnp-2023-332251
689 81. Frank A, Bendig J, Schnalke N, et al. Serum neurofilament indicates accelerated
690 neurodegeneration and predicts mortality in late-stage Parkinson's disease. *NPJ Parkinsons Dis*
691 2024;10(1):14, doi:10.1038/s41531-023-00605-x
692 82. Frenthal S, Khalil M, Kern D, et al. Elevated serum neurofilament light chain protein in patients
693 with essential tremor. *Eur J Neurol* 2024;31(2):e16143, doi:10.1111/ene.16143
694 83. Novobilsky R, Bartova P, Licha K, et al. Serum neurofilament light chain levels in patients with
695 cognitive deficits and movement disorders: comparison of cerebrospinal and serum neurofilament light
696 chain levels with other biomarkers. *Front Hum Neurosci* 2023;17(1284416,
697 doi:10.3389/fnhum.2023.1284416
698 84. Sano T, Masuda Y, Yasuno H, et al. Plasma neurofilament light chain as a potential biomarker of
699 neurodegeneration in murine brain. *Toxicol Res (Camb)* 2023;12(5):751-755, doi:10.1093/toxres/tfad063
700 85. Yang Y, Kim WS, Michaelian JC, et al. Predicting neurodegeneration from sleep related biofluid
701 changes. *Neurobiol Dis* 2024;190(106369, doi:10.1016/j.nbd.2023.106369
702 86. Seaman MNJ. Membrane traffic in the secretory pathway. *Cellular and Molecular Life Sciences*
703 2008;65(18):2842-2858, doi:10.1007/s00018-008-8354-1
704 87. Vazquez-Sanchez S, Gonzalez-Lozano MA, Walfenzao A, et al. The endosomal protein sorting
705 nexin 4 is a synaptic protein. *Scientific Reports* 2020;10(1), doi:10.1038/s41598-020-74694-6
706 88. Henkel V, Schürmanns L, Brunner M, et al. Role of sorting nexin PaATG24 in autophagy, aging
707 and development of *Podospora anserina*. *Mechanisms of Ageing and Development* 2020;186(111211,
708 doi:10.1016/j.mad.2020.111211

709 89. Dada T, Verma S, Gagrani M, et al. Ocular and Systemic Factors Associated with Glaucoma. *J*
710 *Curr Glaucoma Pract* 2022;16(3):179-191, doi:10.5005/jp-journals-10078-1383

711 90. Zhang T, Xie X, Lu F. Primary open-angle glaucoma: Neuroendocrine-immune disorder? *Medical*
712 *Hypotheses* 2014;83(4):514-515, doi:10.1016/j.mehy.2014.08.017

713 91. Salim S, Shields MB. Glaucoma and Systemic Diseases. *Survey of ophthalmology*
714 2010;55(1):64-77, doi:10.1016/j.survophthal.2009.03.006

715 92. Pache M, Flammer J. A Sick Eye in a Sick Body? Systemic Findings in Patients with Primary
716 Open-angle Glaucoma. *Survey of ophthalmology* 2006;51(3):179-212,
717 doi:10.1016/j.survophthal.2006.02.008

718 93. Nucci C, Martucci A, Cesareo M, et al. Links among glaucoma, neurodegenerative, and vascular
719 diseases of the central nervous system. In: Elsevier: 2015; pp. 49-65.

720 94. Coca-Prados M, Escribano J. New perspectives in aqueous humor secretion and in glaucoma:
721 the ciliary body as a multifunctional neuroendocrine gland. *Prog Retin Eye Res* 2007;26(3):239-62,
722 doi:10.1016/j.preteyeres.2007.01.002

723 95. Auler N, Tonner H, Pfeiffer N, et al. Antibody and Protein Profiles in Glaucoma: Screening of
724 Biomarkers and Identification of Signaling Pathways. *Biology* 2021;10(12):1296,
725 doi:10.3390/biology10121296

726 96. Samelska K, Zaleska-Żmijewska A, Bałan B, et al. Immunological and molecular basics of the
727 primary open angle glaucoma pathomechanism. *Central European Journal of Immunology*
728 2021;46(1):111-117, doi:10.5114/ceji.2021.104328

729 97. Vernazza S, Oddone F, Tirendi S, et al. Risk Factors for Retinal Ganglion Cell Distress in
730 Glaucoma and Neuroprotective Potential Intervention. *International Journal of Molecular Sciences*
731 2021;22(15):7994, doi:10.3390/ijms22157994

732 98. Kodeboyina SK, Lee TJ, Churchwell L, et al. The Constitutive Proteome of Human Aqueous
733 Humor and Race Specific Alterations. *Proteomes* 2020;8(4):34, doi:10.3390/proteomes8040034

734 99. Beutgen VM, Perumal N, Pfeiffer N, et al. Autoantibody Biomarker Discovery in Primary Open
735 Angle Glaucoma Using Serological Proteome Analysis (SERPA). *Frontiers in Immunology*
736 2019;10(doi:10.3389/fimmu.2019.00381

737 100. Williams E, Altman J, Ahmed S, et al. Unveiling the levels and significance of different serpin
738 family proteins in aqueous humor dynamics. *BMC Ophthalmology* 2025;25(1), doi:10.1186/s12886-025-
739 04119-3

740 101. De Maria A, Zientek KD, David LL, et al. Compositional Analysis of Extracellular Aggregates in
741 the Eyes of Patients With Exfoliation Syndrome and Exfoliation Glaucoma. *Invest Ophthalmol Vis Sci*
742 2021;62(15):27, doi:10.1167/iovs.62.15.27

743 102. Määttä M, Heijasvaara R, Pihlajaniemi T, et al. Collagen XVIII/endostatin shows a ubiquitous
744 distribution in human ocular tissues and endostatin-containing fragments accumulate in ocular fluid
745 samples. *Graefe's Archive for Clinical and Experimental Ophthalmology* 2006;245(1):74-81,
746 doi:10.1007/s00417-006-0281-y

747 103. Haddadin RI, Oh DJ, Kang MH, et al. Thrombospondin-1 (TSP1)-null and TSP2-null mice exhibit
748 lower intraocular pressures. *Invest Ophthalmol Vis Sci* 2012;53(10):6708-17, doi:10.1167/iovs.11-9013

749 104. Shan S-W, Do C-W, Lam TC, et al. Thrombospondin-1 mediates Rho-kinase inhibitor-induced
750 increase in outflow-facility. *Journal of Cellular Physiology* 2021;236(12):8226-8238,
751 doi:<https://doi.org/10.1002/jcp.30492>

752 105. Wirtz MK, Sykes R, Samples J, et al. Identification of Missense Extracellular Matrix Gene
753 Variants in a Large Glaucoma Pedigree and Investigation of the N700S Thrombospondin-1 Variant in
754 Normal and Glaucomatous Trabecular Meshwork Cells. *Curr Eye Res* 2022;47(1):79-90,
755 doi:10.1080/02713683.2021.1945109

756 106. Goyanes AM, Moldobaeva A, Marimoutou M, et al. Functional Impact of Human Genetic Variants
757 of COL18A1/Endostatin on Pulmonary Endothelium. *American Journal of Respiratory Cell and Molecular*
758 *Biology* 2020;62(4):524-534, doi:10.1165/rcmb.2019-0056oc

759 107. Zhang Z, Liu X, Shen Z, et al. Endostatin in fibrosis and as a potential candidate of anti-fibrotic
760 therapy. *Drug Delivery* 2021;28(1):2051-2061, doi:10.1080/10717544.2021.1983071

761 108. Young TL, Whisenhunt KN, Jin J, et al. SVEP1 as a Genetic Modifier of TEK-Related Primary
762 Congenital Glaucoma. *Invest Ophthalmol Vis Sci* 2020;61(12):6, doi:10.1167/iovs.61.12.6

763 109. Hußmann M, Schulte D, Weischer S, et al. Svep1 is a binding ligand of Tie1 and affects specific
764 aspects of facial lymphatic development in a Vegfc-independent manner. *eLife* 2023;12(e82969,
765 doi:10.7554/eLife.82969

766 110. Kizhatil K, Ryan M, Marchant JK, et al. Schlemm's Canal Is a Unique Vessel with a Combination
767 of Blood Vascular and Lymphatic Phenotypes that Forms by a Novel Developmental Process. *PLoS
768 Biology* 2014;12(7):e1001912, doi:10.1371/journal.pbio.1001912

769 111. Gharahkhani P, Jorgenson E, Hysi P, et al. Genome-wide meta-analysis identifies 127 open-
770 angle glaucoma loci with consistent effect across ancestries. *Nat Commun* 2021;12(1):1258,
771 doi:10.1038/s41467-020-20851-4

772 112. Langhe RP, Gudzenko T, Bachmann M, et al. Cadherin-11 localizes to focal adhesions and
773 promotes cell-substrate adhesion. *Nat Commun* 2016;7(10909, doi:10.1038/ncomms10909

774 113. Schneider DJ, Wu M, Le TT, et al. Cadherin-11 contributes to pulmonary fibrosis: potential role in
775 TGF- β production and epithelial to mesenchymal transition. *The FASEB Journal* 2012;26(2):503-512,
776 doi:10.1096/fj.11-186098

777 114. Passanha FR, Divinagracia ML, Lapointe VLS. Cadherin-11 Regulates Cell Proliferation via the
778 PDGFR β -ERK1/2 Signaling Pathway in Human Mesenchymal Stem Cells. *Stem Cells* 2022;40(2):165-
779 174, doi:10.1093/stmcls/sxab019

780 115. Passanha FR, Geuens T, LaPointe VLS. Cadherin-11 Influences Differentiation in Human
781 Mesenchymal Stem Cells by Regulating the Extracellular Matrix Via the TGF β 1 Pathway. *Stem Cells*
782 2022;40(7):669-677, doi:10.1093/stmcls/sxac026

783 116. Lodyga M, Cambridge E, Karvonen HM, et al. Cadherin-11-mediated adhesion of macrophages
784 to myofibroblasts establishes a profibrotic niche of active TGF- β . *Science Signaling*
785 2019;12(564):eaao3469, doi:10.1126/scisignal.aao3469

786 117. Wirtz MK, Bradley JMB, Xu H, et al. Proteoglycan expression by human trabecular meshworks.
787 *Current Eye Research* 1997;16(5):412-421, doi:10.1076/ceyr.16.5.412.7040

788 118. Pinto F, Santos-Ferreira L, Pinto M, et al. The Extracellular Small Leucine-Rich Proteoglycan
789 Biglycan Is a Key Player in Gastric Cancer Aggressiveness. *Cancers* 2021;13(6):1330,
790 doi:10.3390/cancers13061330

791 119. Schulz M, Diehl V, Trebicka J, et al. Biglycan: A regulator of hepatorenal inflammation and
792 autophagy. *Matrix Biol* 2021;100-101(150-161, doi:10.1016/j.matbio.2021.06.001

793 120. Poluzzi C, Nastase MV, Zeng-Brouwers J, et al. Biglycan evokes autophagy in macrophages via
794 a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. *Kidney Int* 2019;95(3):540-
795 562, doi:10.1016/j.kint.2018.10.037

796 121. Kuroda Y. Vascular cell adhesion molecule-1 as a biochemical marker of left ventricular mass in
797 the patients with hypertension. *American Journal of Hypertension* 2001;14(9):868-872,
798 doi:10.1016/s0895-7061(01)02139-2

799 122. Troncoso MF, Ortiz-Quintero J, Garrido-Moreno V, et al. VCAM-1 as a predictor biomarker in
800 cardiovascular disease. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease*
801 2021;1867(9):166170, doi:10.1016/j.bbadi.2021.166170

802 123. Papaianni A, Alexopoulos E, Giannalis P, et al. Circulating levels of ICAM-1, VCAM-1, and
803 MCP-1 are increased in haemodialysis patients: association with inflammation, dyslipidaemia, and
804 vascular events. *Nephrology Dialysis Transplantation* 2002;17(3):435-441, doi:10.1093/ndt/17.3.435

805 124. Boardman R, Pang V, Malhi N, et al. Activation of Notch signaling by soluble Dll4 decreases
806 vascular permeability via a cAMP/PKA-dependent pathway. *American Journal of Physiology-Heart and
807 Circulatory Physiology* 2019;316(5):H1065-H1075, doi:10.1152/ajpheart.00610.2018

808 125. Scehnet JS, Jiang W, Kumar SR, et al. Inhibition of Dll4-mediated signaling induces proliferation
809 of immature vessels and results in poor tissue perfusion. *Blood* 2007;109(11):4753-60,
810 doi:10.1182/blood-2006-12-063933

811 126. Lobov IB, Renard RA, Papadopoulos N, et al. Delta-like ligand 4 (Dll4) is induced by VEGF as a
812 negative regulator of angiogenic sprouting. *Proc Natl Acad Sci U S A* 2007;104(9):3219-24,
813 doi:10.1073/pnas.0611206104

814 127. Camelo S, Raoul W, Lavalette S, et al. Delta-like 4 inhibits choroidal neovascularization despite
815 opposing effects on vascular endothelium and macrophages. *Angiogenesis* 2012;15(4):609-622,
816 doi:10.1007/s10456-012-9290-0

817 128. Dhamodaran K, Baidouri H, Nartey A, et al. Endogenous expression of Notch pathway molecules
818 in human trabecular meshwork cells. *Exp Eye Res* 2022;216(108935, doi:10.1016/j.exer.2022.108935

819 129. Khalil M, Pirpamer L, Hofer E, et al. Serum neurofilament light levels in normal aging and their
820 association with morphologic brain changes. *Nature Communications* 2020;11(1), doi:10.1038/s41467-
821 020-14612-6

822 130. Taniguchi T, Shimazawa M, Hara H. Alterations in neurofilament light in optic nerve in rat kainate
823 and monkey ocular hypertension models. *Brain Research* 2004;1013(2):241-248,
824 doi:<http://dx.doi.org/10.1016/j.brainres.2004.04.023>

825 131. Markaki I, Bergström S, Tsitsi P, et al. Cerebrospinal Fluid Levels of Kininogen-1 Indicate Early
826 Cognitive Impairment in Parkinson's Disease. *Movement Disorders* 2020;35(11):2101-2106,
827 doi:10.1002/mds.28192

828 132. Liu Y, Cao DJ, Sainz IM, et al. The inhibitory effect of HKa in endothelial cell tube formation is
829 mediated by disrupting the uPA-uPAR complex and inhibiting its signaling and internalization. *Am J*
830 *Physiol Cell Physiol* 2008;295(1):C257-67, doi:10.1152/ajpcell.00569.2007

831 133. Sharif NA, Katoli P, Scott D, et al. FR-190997, a Nonpeptide Bradykinin B2-Receptor Partial
832 Agonist, is a Potent and Efficacious Intraocular Pressure Lowering Agent in Ocular Hypertensive
833 Cynomolgus Monkeys. *Drug Development Research* 2014;75(4):211-223,
834 doi:<https://doi.org/10.1002/ddr.21174>

835 134. Sharif NA, Li L, Katoli P, et al. Preclinical pharmacology, ocular tolerability and ocular hypotensive
836 efficacy of a novel non-peptide bradykinin mimetic small molecule. *Experimental Eye Research*
837 2014;128(0):170-180, doi:<http://dx.doi.org/10.1016/j.exer.2014.10.008>

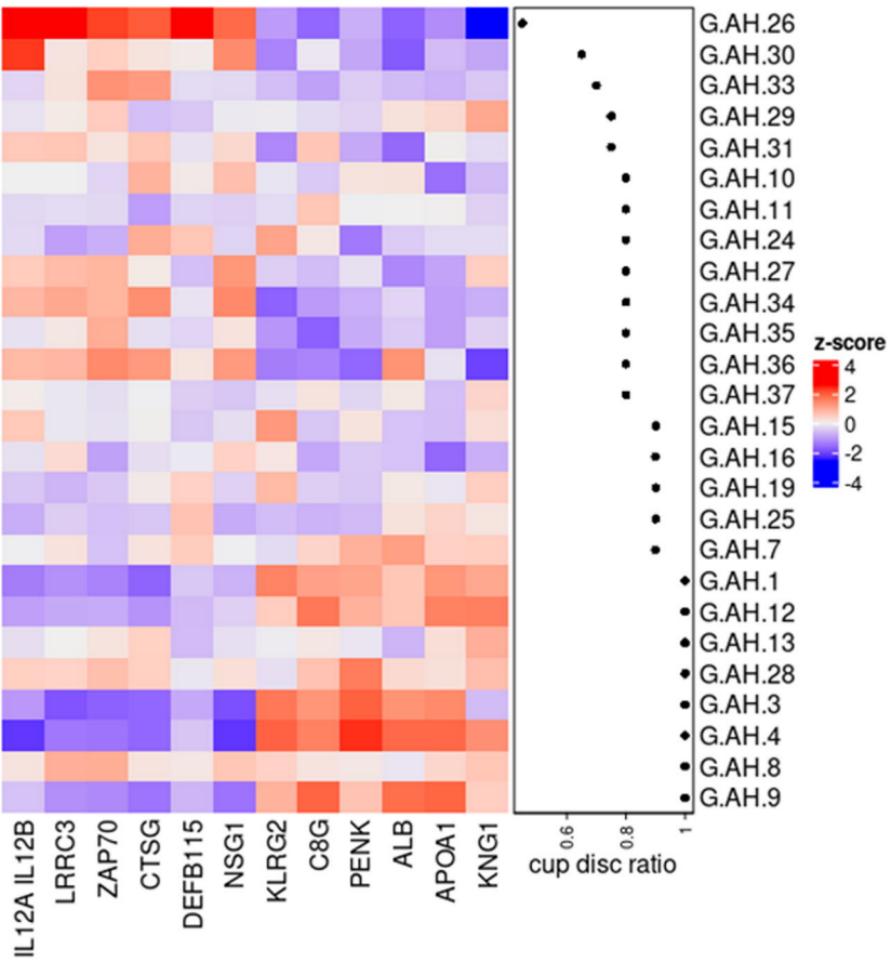
838 135. Sharif NA, Wang Y, Katoli P, et al. Human Non-Pigmented Ciliary Epithelium Bradykinin B2-
839 Receptors: Receptor Localization, Pharmacological Characterization of Intracellular Ca²⁺ Mobilization,
840 and Prostaglandin Secretion. *Current Eye Research* 2014;39(4):378-389,
841 doi:10.3109/02713683.2013.816324

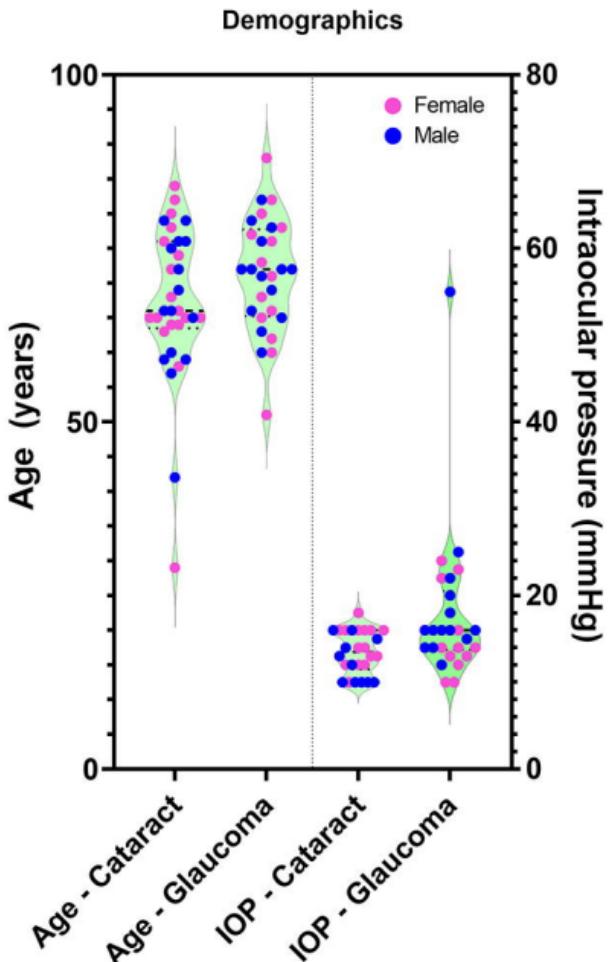
842 136. Sharif NA, Xu SX. Pharmacological Characterization of Bradykinin Receptors Coupled to
843 Phosphoinositide Turnover in SV40-Immortalized Human Trabecular Meshwork Cells. *Experimental Eye*
844 *Research* 1996;63(6):631-637, doi:<http://dx.doi.org/10.1006/exer.1996.0157>

845 137. Webb JG, Shearer TW, Yates PW, et al. Bradykinin enhancement of PGE2 signalling in bovine
846 trabecular meshwork cells. *Experimental Eye Research* 2003;76(3):283-289,
847 doi:[http://dx.doi.org/10.1016/S0014-4835\(02\)00313-5](http://dx.doi.org/10.1016/S0014-4835(02)00313-5)

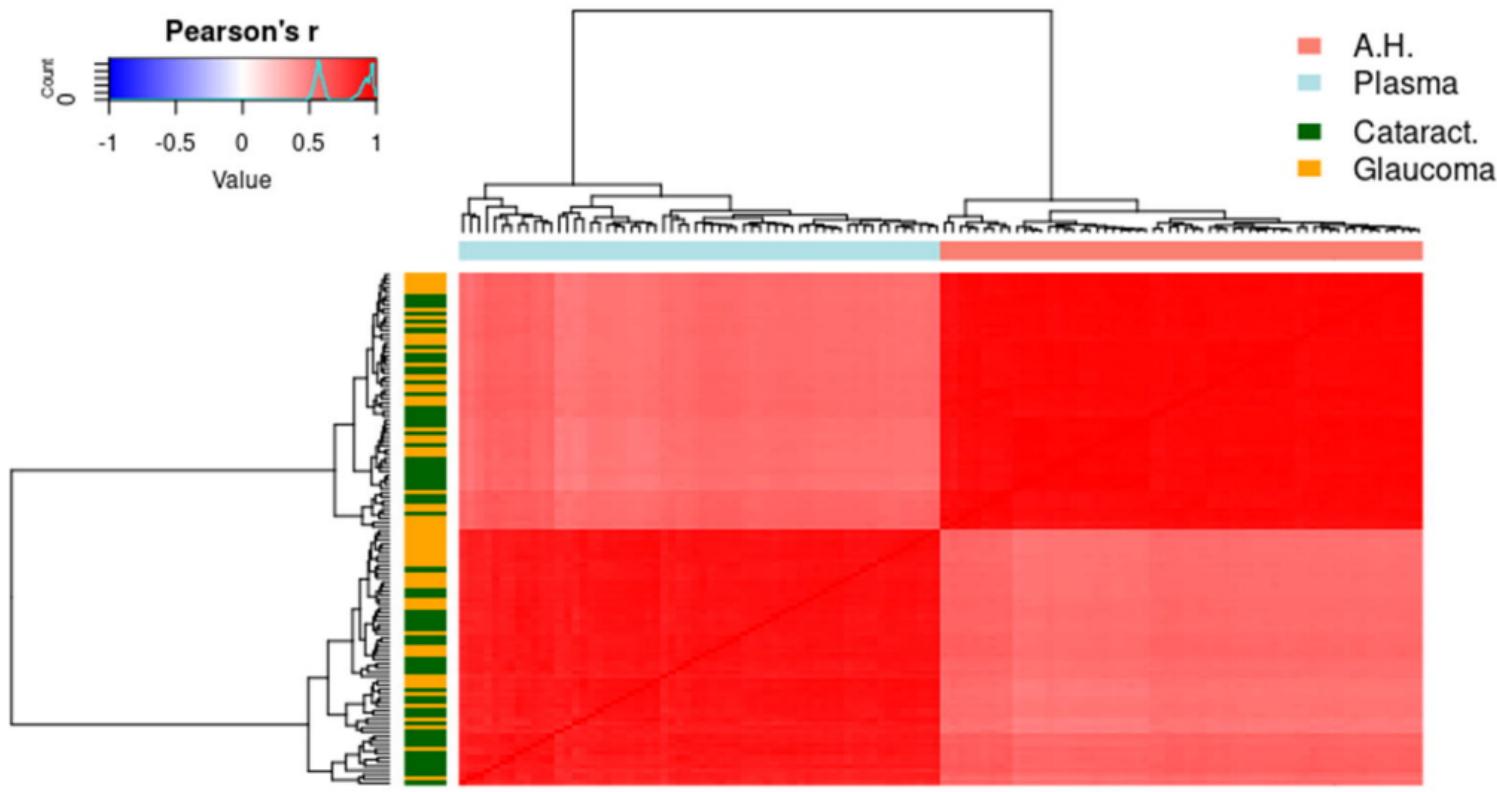
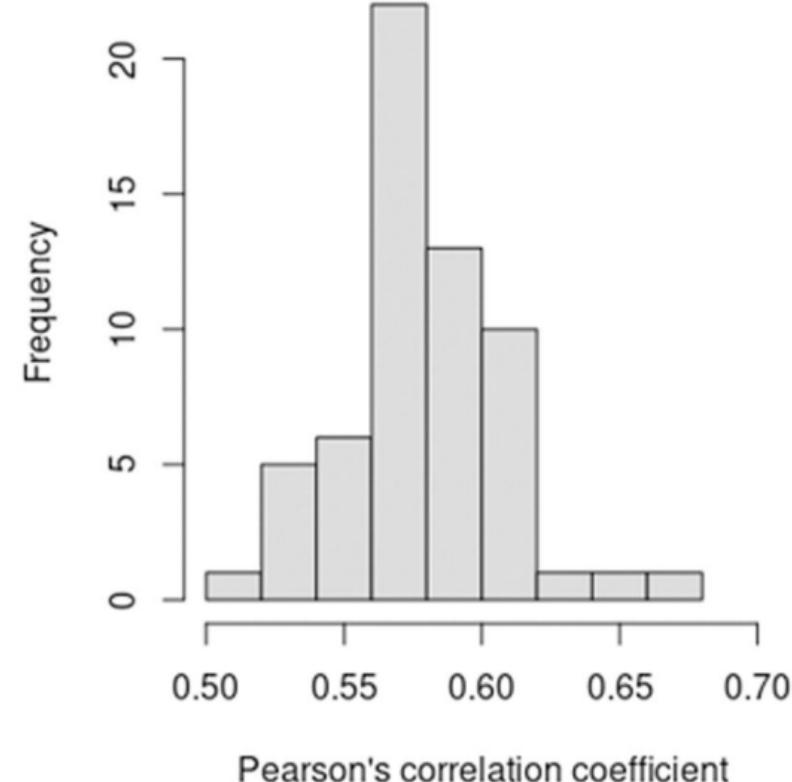
848 138. Webb JG, Yang X, Crosson CE. Expression of the kallikrein/kinin system in human anterior
849 segment. *Experimental Eye Research* 2009;89(2):126-132,
850 doi:<http://dx.doi.org/10.1016/j.exer.2009.02.016>

851 139. Vashishtha A, Maina SW, Altman J, et al. Complement System Proteins in the Human Aqueous
852 Humor and Their Association with Primary Open-Angle Glaucoma. *Journal of Personalized Medicine*
853 2023;13(9):1400, doi:10.3390/jpm13091400

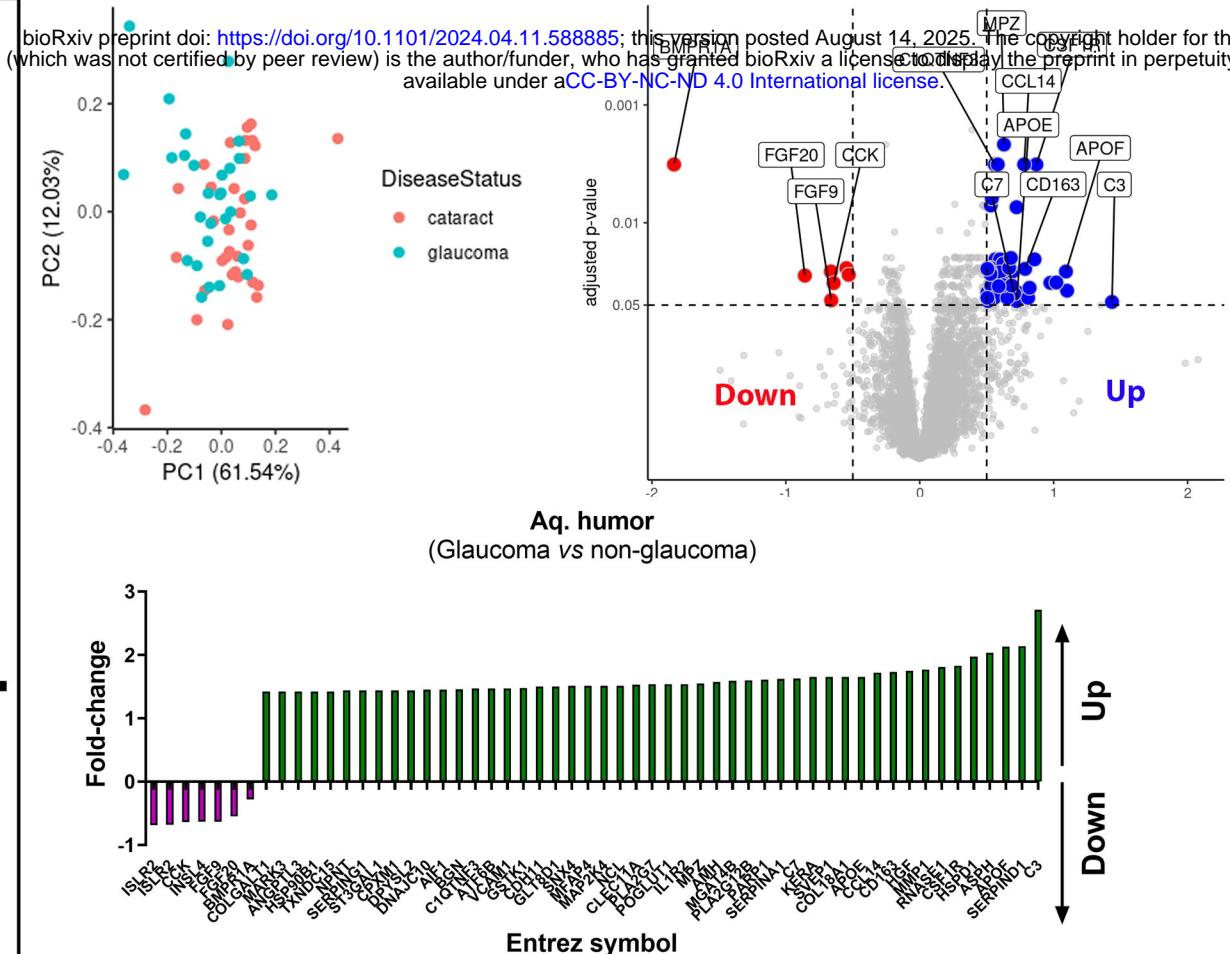

854 140. Kim J-H, Afzidi R, Han J, et al. Gamma subunit of complement component 8 is a
855 neuroinflammation inhibitor. *Brain* 2021;144(2):528-552, doi:10.1093/brain/awaa425


856 141. Patel PA, Lee TJ, Kodeboyina SK, et al. Intra-population differences of apolipoproteins in the
857 aqueous humor. *Lipids in Health and Disease* 2021;20(1), doi:10.1186/s12944-021-01555-0

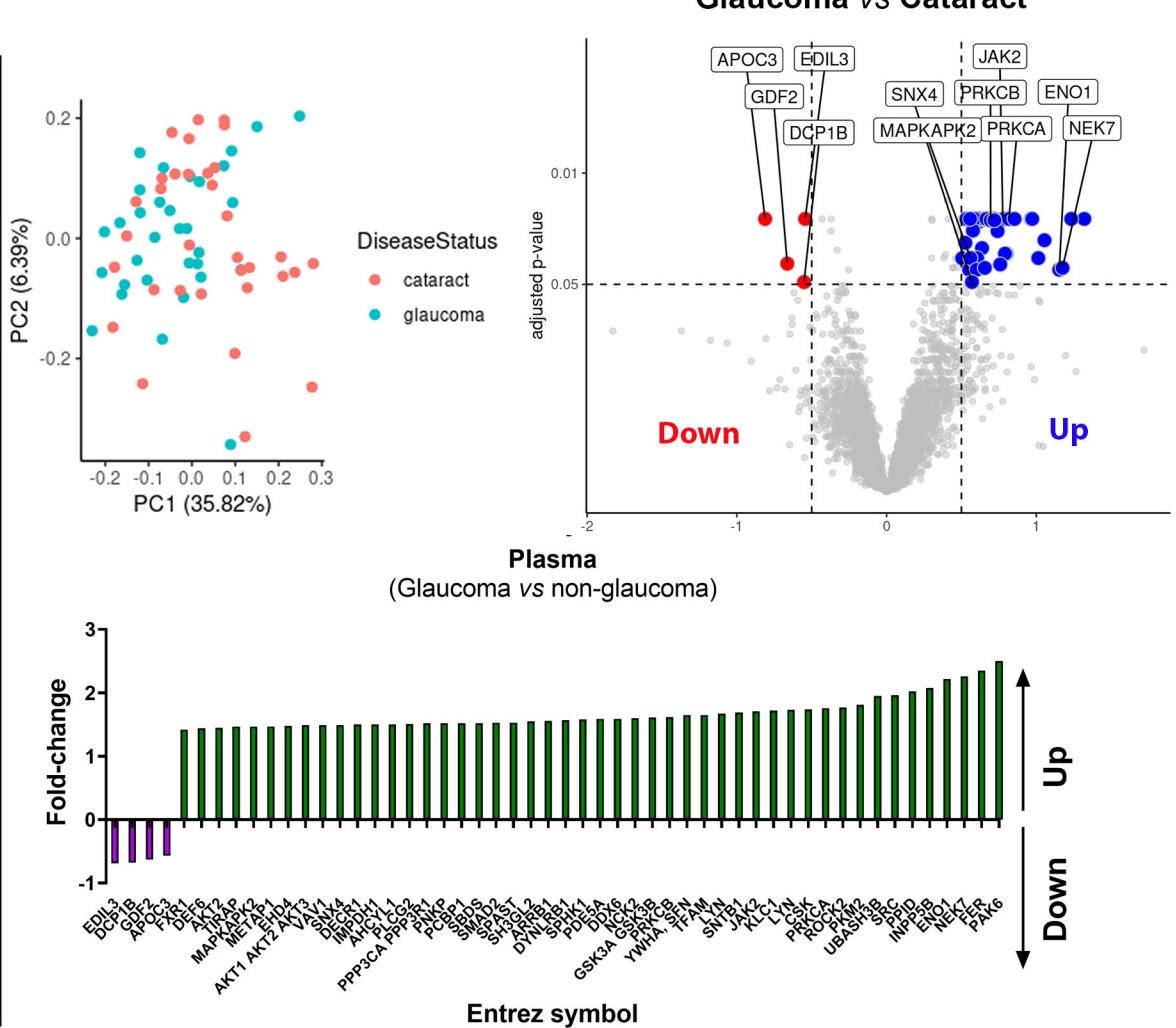
858 142. Gharahkhani P, Burdon KP, Fogarty R, et al. Common variants near ABCA1, AFAP1 and GMDS
859 confer risk of primary open-angle glaucoma. *Nature Genetics* 2014;46(10):1120-1125,
860 doi:10.1038/ng.3079



861 143. Stewart WC, Sine C, Sutherland S, et al. Total Cholesterol and High-Density Lipoprotein Levels
862 as Risk Factors for Increased Intraocular Pressure. *American Journal of Ophthalmology* 1996;122(4):575-
863 577, doi:10.1016/s0002-9394(14)72121-x

864 144. Stur M, Grabner G, Dorda W, et al. The effect of timolol on the concentrations of albumin and IgG
865 in the aqueous humor of the human eye. *Am J Ophthalmol* 1983;96(6):726-9, doi:10.1016/s0002-
866 9394(14)71914-2

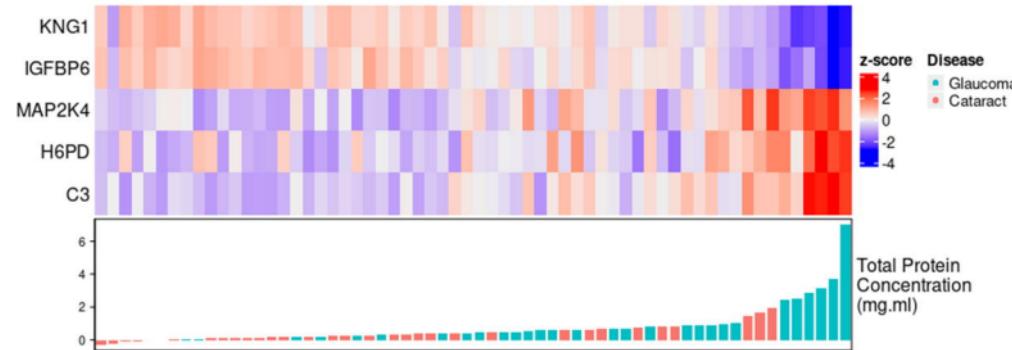


Condition	Gender	# of patients	Age	IOP (mmHg)
Cataract	Male	16	66.7 ± 10.2	12.4 ± 2.5
	Female	19	67.7 ± 12.2	14.3 ± 2.2
Glaucoma	Male	17	71.2 ± 6.3	19.6 ± 10.7
	Female	17	71.2 ± 9.9	15.4 ± 4.9

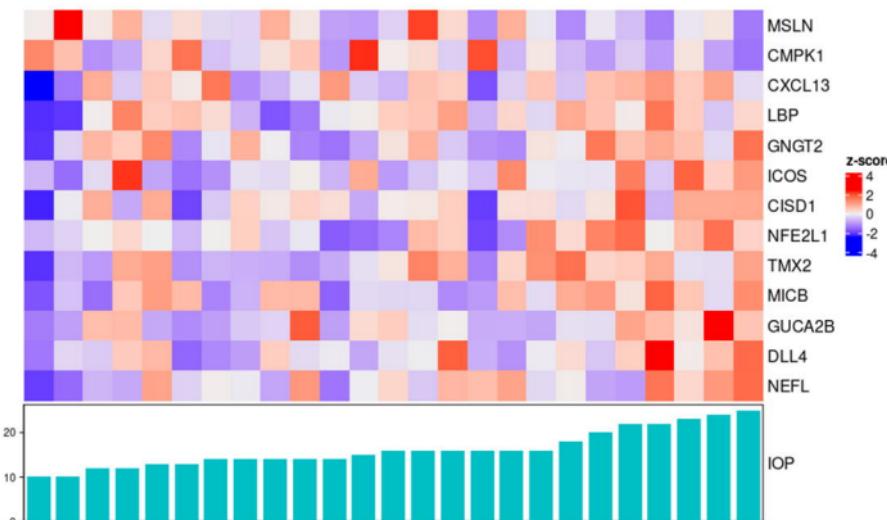
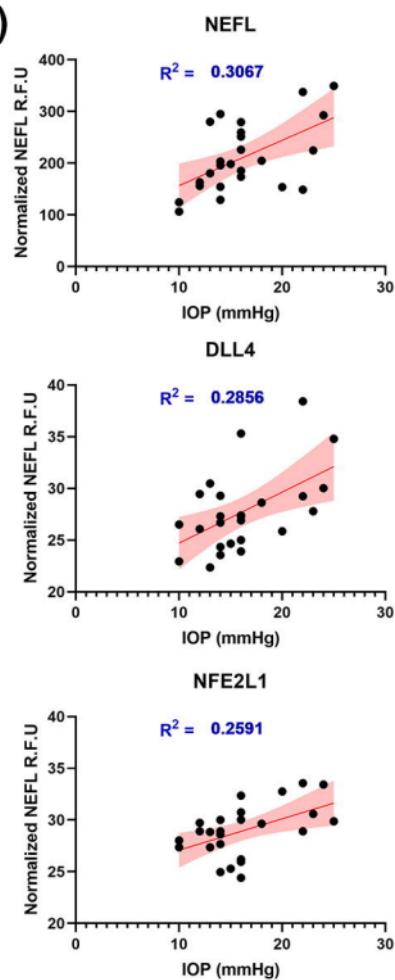

(A)**(B)**

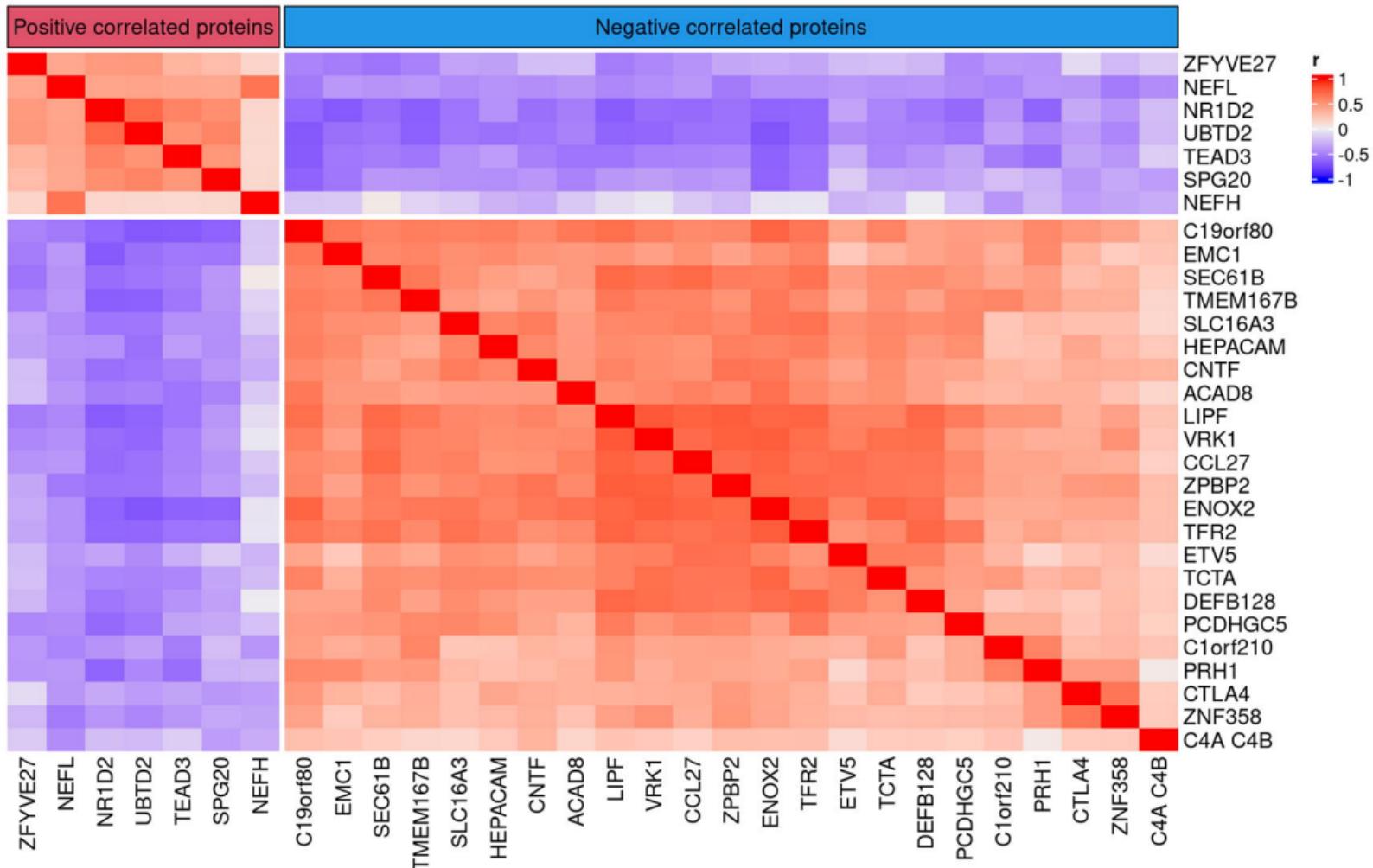
(A)

Aqueous humor


(B)

Plasma


(A)

Total protein concentration

(B)

Intraocular pressure

(C)

