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SUMMARY

Past work has reported inverted-U relationships between arousal and auditory task performance, but the underlying
neural network mechanisms remain unclear. To make progress, we recorded auditory cortex activity from behaving
mice during passive tone presentation and simultaneously monitored pupil-indexed arousal. In these experiments,
neural discriminability of tones was maximized at intermediate arousal, revealing a neural correlate of the inverted-U.
We explained this arousal-dependent sound processing using a spiking model with clusters. In the model, stimulus
discriminability peaked as the network transitioned from a multi-attractor phase exhibiting slow switching between
metastable cluster activations (low arousal) to a single-attractor phase with uniform activity (high arousal). This
transition also qualitatively captured arousal-induced reductions of neural variability observed in the data. Alto-
gether, this study elucidates computational principles to explain interactions between arousal, neural discriminability,
and variability, and suggests that transitions in the dynamical regime of cortical networks could underlie nonlinear
modulations of sensory processing.
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INTRODUCTION

Variations in brain state — such as levels of arousal — significantly impact sensory responses and information
processing [1-8]. During wakefulness, increases in arousal and arousal-related neuromodulator activity are associated
with increases in pupil diameter [9-11], enabling non-invasive monitoring of arousal state in behaving animals. Using
pupillometry, several studies have reported an intriguing “inverted-U” relationship between baseline pupil diameter
and task performance, indicating optimal performance at intermediate arousal [12-18].

The inverted-U relationship between pupil-indexed arousal and performance has been demonstrated particularly
clearly in the context of auditory processing, with examples observed during sound detection and discrimination
tasks in mice [12, 13] and humans [14-16]. Although some work has revealed neural substrates of optimal sound
detection [12], network-level dynamical principles mediating the inverted-U relationship, especially for sound discrim-
ination, remain unclear. Here, we combined electrophysiology and circuit modeling to shed light on potential network
mechanisms underlying optimal, arousal-dependent performance states for auditory discrimination.

Given that neural signatures of inverted-U arousal-performance relationships have been observed in auditory cortex
(ACtx) without task engagement [12], we examined how arousal impacted neural discriminability of pure tones during
passive stimulus presentation. To this end, we used Neuropixels probes to record sound-evoked activity from ACtx of
behaving mice, while simultaneously monitoring arousal levels with pupillometry. We found that tone frequency was
most accurately decoded from ACtx activity during intermediate pupil dilation, in line with an inverted-U relationship.
This finding extends previous results on neural correlates of optimal sound detection in ACtx [1] to population-based
neural discriminability of auditory stimuli.

To illuminate potential network mechanisms governing this neural manifestation of the inverted-U relationship, we
modeled ACtx as a recurrently-connected network of excitatory and inhibitory spiking neurons. We compared two
canonical models for the network architecture — uniform or clustered. In the latter model, neurons were organized
into strongly-connected modules representing functional neural assemblies [19]. Unlike uniformly-connected networks,
clustered networks exhibit metastable activity patterns, characterized by spontaneous, transient activations of different
neural assemblies [20-27].

We hypothesized that non-monotonic variations of stimulus discriminability might emerge from modulations of
the metastable assembly dynamics present in clustered networks. To investigate this, we presented model networks
with sensory stimulation and an arousal modulation. Motivated by experimental studies, an increase in arousal was
modeled as a suppression of recurrent excitatory synaptic transmission [28-38] and an increase in external drive
(representing increased thalamic activation) [12, 39-45]. Under this implementation, the clustered model reproduced
the inverted-U relationship between arousal and stimulus discriminability, while the uniform model failed to display
such an effect.

In the clustered model, we show that the inverted-U relationship emerges via a transition from a multi-attractor
phase, characterized by slow switching between different highly-active neural assemblies (low arousal), to a single-
attractor phase with uniform activity (high arousal). Optimal stimulus discriminability occurred between these two
regimes, where assembly activation dynamics were present but flexibly modulated. The clustered model additionally
predicted a reduction of neural variability with increasing arousal, and we found evidence of that trend in the experi-
mental data. As a whole, our results suggest that arousal-induced transitions in the collective dynamical regime of a
cortical circuit may explain certain aspects of arousal-dependent stimulus processing and neural variability in auditory
cortex. Although our study does not rule out alternative explanations for these phenomena, it provides insight into
one possible computational mechanism that can be further tested and built upon in future work.

RESULTS

We used Neuropixels probes to record from populations of auditory cortical neurons in head-fixed mice (primarily
targeting A1), while simultaneously monitoring locomotion speed and pupil diameter (Fig. 1A; Methods). The pupil
diameter in each session was normalized by its maximum value and was used as a proxy for arousal level (Fig. 1B,C).
A full spectrum of arousal states was expressed in several sessions, and the middle-to-high pupil range was expressed
in the remaining recordings. Single-unit activity was measured during passive sound presentation (Fig. 1D, “evoked”
periods) and in the absence of auditory stimuli (Fig. 1E, “spontaneous” periods). During evoked periods, mice were
presented with brief pure tones (25 ms, 2-32 kHz).
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FIG. 1. Neuropixels recordings from mouse ACtx during a range of arousal states. (A) Schematic of experimental
setup (Methods). (B) Pupil diameter distributions from an example session during stillness (dark gray) or running (light gray).
(C) Running speed and pupil diameter traces from an example session. (D) Pupil diameter trace and population raster across
5 seconds of evoked activity; vertical ticks indicate stimulus onset times. (E) Same as (D) but for spontaneous activity.

Neural discriminability of pure tones is optimal at intermediate arousal in ACtx

To test whether arousal impacts neural discriminability of pure tones in ACtx, we split the trials in each session
by pupil diameter (see Fig. 2A for an example). Within each pupil-based partition, we then computed a single-cell
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measure of neural stimulus discriminability (Df.; Fig. 2B,C, Methods). On average across sessions, the cell-averaged
D! followed an inverted-U relationship with normalized pupil diameter (Fig. 2F). At the population level, intermediate
pupil diameters were associated with significant increases in D._ relative to small or large diameters (Fig. 2G), and
in individual sessions, the cell-averaged D/, was highest at moderate pupil diameters (Fig. S1A).

Auditory information is also encoded in the collective activity of neuronal ensembles [46-52]. To understand how
arousal might affect the ability of downstream areas to read out sound information from ACtx ensemble activity, we
trained an ideal-observer linear classifier to decode tone frequency from single-trial population spike-counts (Fig. 2D,
Methods). Training and testing was done separately for each pupil-based partition in a session, and results were
summarized with the cross-validated decoding accuracy (Fig. 2E).

On average across sessions, decoding performance exhibited an inverted-U relationship with pupil diameter
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FIG. 2. Neural discriminability of pure tones is optimal at intermediate arousal in ACtx. (A) Histogram of
pre-stimulus pupil diameter from an example session; black lines indicate deciles. (B) Schematic of single-cell discriminability
index (d') for one pair of stimuli. An overall measure, D;., was computed by averaging d’ across all tone pairs (Methods).
(C) Cell-averaged D, in each pupil decile from (A). (D) Schematic of linear population decoding analysis (Methods). (E)
Cross-validated decoding accuracy in each pupil decile from (A). (F) Percent change in cell-averaged D.. (relative to session-
maximum) vs. pupil diameter (group data from n = 15 sessions). In each pupil diameter bin, we show single-session data
(gray) with the corresponding boxplot and session-average (red). (G) Left: Difference in D, between the most central and
first pupil decile of a session (n = 1002 units from 10 sessions with average pupil diameter of first decile < 33% max dilation;
red triangle indicates mean difference; p < 0.001, Wilcoxon signed-rank test). Right: Distribution of the difference in D,
between the most central and last pupil decile of a session (n = 1552 units from 15 sessions with average pupil diameter of last
decile > 67% max dilation; red triangle indicates mean difference; p < 0.001, Wilcoxon signed-rank test). (H) Same as (F)
but for cross-validated decoding accuracy. (I) Left: Accuracy in the most central and first pupil decile of a session (data from
n = 10 sessions with average pupil diameter of first decile < 33% max dilation; p < 0.005, Wilcoxon signed-rank test). Right:
Accuracy in the most central and last pupil decile of a session (data from n = 15 sessions with average pupil diameter of last
decile > 67% max dilation; p < 0.001, Wilcoxon signed-rank test). See also Fig. S1.

(Fig. 2H), and there was a statistically significant increase in accuracy in states of moderate pupil dilation rela-
tive to more constricted or highly-dilated pupil states (Fig. 2I). Moreover, the best performance in all sessions was
achieved at intermediate pupil diameters, and the worst performance at relatively small or large diameters (Fig. S1B).
The session-averaged decoding performance still followed an inverted-U after excluding locomotion trials (Fig. S1C,D),
though the right-hand-side decline was less pronounced. This may be due to the fact that average pupil diameters
were smaller without movement data (Fig. S1E). The decoding results were also similar when pupil diameter was
normalized by the global maximum across all sessions (Fig. S1IF,G). Altogether, our findings reveal neural signatures
of an inverted-U relationship between arousal level and neural sound discriminability at single-cell and population
levels.

Network modeling of arousal-dependent stimulus processing in ACtx

What circuit mechanisms can explain the inverted-U relationship between tone discriminability and arousal in ACtx?
Because the inverted-U relationship is nonlinear, we speculated that it could stem from a modulation of collective
dynamics akin to a phase transition. To investigate this, we modeled ACtx as a recurrently-connected network of
excitatory (E) and inhibitory (I) integrate-and-fire neurons (Fig. 3A,B; Methods). This type of spiking model strikes
a balance between biological plausibility and tractability, and also allows for analysis of spiking variability (Fig. 8).

The collective activity of a cortical network depends on the architecture of synaptic couplings. Here, we considered a
model with “clustered” architecture (Fig. 3A) and compared it to a control with “uniform” architecture (Fig. 3B). By
comparing these alternative models, we aimed to elucidate potential dynamical principles underlying the experimental
observations. Following previous work, neurons in the clustered model were arranged into clusters with strong internal
synaptic coupling and relatively weak coupling to other clusters [19-22, 25]. Neurons in the uniform model were instead
connected randomly with homogeneous coupling strengths. In both models, auditory stimuli were implemented as
external excitatory inputs (Fig. 3A,B). In the clustered model, stimulus input targeted cells in a randomly-chosen
subset of the clusters, and in the uniform model, stimulus input targeted a random subset of all excitatory cells. To
match the experiments, we modeled five stimuli and allowed for overlap in the cell subgroups targeted by different
stimuli, in line with the fact that auditory neurons can respond to multiple tones.

As shown in past studies, the clustered model exhibits metastable attractor dynamics [19-22, 24-27]. These
dynamics occur in a regime of strong intracluster coupling, where the network’s state space contains a multiplicity
of attractors corresponding to different configurations of active clusters (Fig. S5A,B) [21, 22, 26]. In such a regime,
random fluctuations can cause transitions between attractors; this generates metastable dynamics wherein individual
clusters switch between high and low firing modes over time, and collective network activity moves between different
collective states characterized by different groups of simultaneously active clusters (Fig. 3A Right). Throughout
the text, we use the term “multistability” to denote the property of the state space having multiple attractors,
and the term “metastable” to denote the itinerant dynamics describing spontaneous transitions between attractors.
We hypothesized that modulations of metastable cluster dynamics could provide a mechanism for the inverted-U
relationship. In contrast to the clustered model, the uniform model has a single attractor with asynchronous activity
(Fig. 3B Right).

The second aspect of the model is the arousal implementation. Experimental studies indicate that arousal modulates
sensory processing through various neuromodulatory systems [in particular, via the actions of acetylcholine (Ach) and
norepinephrine (NE)] and thalamocortical mechanisms [1-3, 53-60]. Given that these pathways can induce a variety of
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FIG. 3. Network modeling of arousal-dependent stimulus processing in ACtx. (A, B) ACtx was modeled as a
recurrent network of spiking neurons arranged in either a clustered (A Left) or uniform (B Left) architecture. Both networks
were subjected to an arousal signal and sensory stimulation. Raster plots show spontaneous baseline activity of a subset of
neurons from a clustered (A Right) or uniform (B Right) network. (C) An increase in arousal was modeled as a simultaneous
modulation of two parameters. (C-i) Synaptic strength Jgg (relative to baseline value) vs. arousal. (C-ii) External input vexs
(relative to baseline value) vs. arousal; different curves correspond to different example cells. See also Table S1 and Figs. S2,
S3. See Methods for model details.

effects on cortical circuits [3, 54, 55, 58—66], there are several possibilities for how to model the impact of arousal. Here,
we considered one implementation involving a simultaneous modulation of two parameters. In particular, an increase
in arousal was modeled as (i) a global decrease in the strength of recurrent E-to-E synapses, and (ii) an increase in the
external excitatory drive to E and I cells; to improve biological plausibility, we also introduced cell-to-cell variability
in the external drive modulation (Fig. 3C).

The first component of the arousal model is motivated by experiments showing that increases in Ach and NE
can have suppressive effects on intracortical excitatory synaptic transmission [28-38, 67]. We reasoned that such a
modulation of synaptic efficacy would strongly impact assembly dynamics in the clustered model — which rely on
recurrent excitation — and thus impact stimulus processing. The second component of the arousal model is motivated
by studies showing that active states are associated with increases in thalamic activity, which provides a major source
of excitatory drive to sensory cortices [12, 39-45]. Importantly, this arousal implementation qualitatively captured
the heterogeneity of arousal-related firing rate modulations observed in the data (Fig. S2).

In what follows, we examine how collective network dynamics are affected by the above arousal modulation. We
refer to the induced changes in network dynamics as the “computational” or “network mechanism”, in contrast to
the “biological implementation” of arousal, which refers to the specific neurophysiological pathways and modulations
of network parameters used to model arousal. Though here we examined one biological implementation of arousal
supported by empirical evidence, alternative implementations can produce similar network mechanisms (see Fig. S3
and Discussion).
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Evidence of functionally-organized correlation-based clusters in ACtx

A distinctive feature of the clustered model is that noise correlations — covariations in activity across repeated
presentations of the same stimulus [68] — are larger between cells in the same versus different clusters (Fig. 4B). To
better motivate the clustered model, we thus tested for the presence of functional clusters in the data. To identify
putative clusters, we estimated pairwise noise correlations and performed hierarchical clustering on the resulting
correlation matrix. The statistical significance of detected clusters was assessed via comparison against a trial-shuffled
null model that contained no true clustering (Methods).

In the clustered model, significant functional assemblies were clearly detected with hierarchical clustering (Fig. 4A
Left), and neurons were accurately assigned to their ground-truth clusters (Fig. 4B). By contrast, significant clusters
were rarely identified in noise-correlation matrices from the uniform model (Fig. 4A Right). Correlations in the
experimental data were typically weaker and more diffuse relative to the clustered model (Fig. 4F for two examples).
Nonetheless, the clustering analysis revealed significant correlation-based assemblies (Fig. 4E). In most sessions, a
majority of neurons belonged to significant clusters (Fig. 4I), and cluster sizes ranged from a few to tens of cells
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FIG. 4. Evidence of functionally-organized correlation-based clusters in ACtx. (A-D) Clustering analysis in the
network models. (A) Violin plots of cluster quality obtained from hierarchical clustering of observed (“obs”) and trial-
shuffled (“shuf’) noise-correlation matrices. In the example clustered network, all observed clusters are significant relative to
trial-shuffled data (p < 0.05, Bonferroni-corrected); in the example uniform network, no clusters are significant. (B) Noise
correlation matrix of a random subsample of cells from a clustered network, sorted according to detected clusters. (C) Tuning
similarity matrix for the same cells and sorting in (B). (D) Test-statistic for cluster-based tuning similarity, computed from the
data in (B,C). The observed value exceeds the distribution obtained by permuting cluster labels across cells (p < 0.001). (E-H)
Clustering analysis in two experimental sessions (1 session/row). (E) Same as (A), but for the experimental sessions. Clusters
in the observed distribution above the dashed line are significant relative to trial-shuffled data (p < 0.05, Bonferroni-corrected).
(F) Noise correlation matrices sorted according to detected clusters; significant clusters are outlined in black. (G) Tuning
similarity matrices for the same cells and sorting in (F). (H) Same as (D), but for the experimental sessions. The observed
values exceed the distributions obtained by permuting cluster labels across cells (p < 0.001). (I-K) Summary statistics for
experimental data. (I) Distribution of the fraction of cells in a session that belong to significant clusters. (J) Distribution of
cluster sizes (significant clusters only). (K) Test statistic for cluster-based tuning similarity in each session. Colored diamonds
indicate observed values and violin plots show distributions obtained by permuting cluster labels across cells. Green indicates
a significant result relative to permuted data (p < 0.05) and magenta otherwise. See Methods for details.

(Fig. 47).

To assess the functional relevance of inferred clusters, we tested whether cells in the same cluster had higher-
than-chance tuning similarity (Pearson correlation between trial-averaged stimulus responses [68]). For each cell, we
computed the difference between its average within- and between-cluster tuning similarity, and defined a test statistic
(“cluster-based tuning similarity”) as the average across cells in significant clusters. The observed value of the test
statistic was then compared to a null distribution obtained by randomly permuting cluster labels across neurons
(Methods).

In the clustered model, cluster-based tuning similarity was significantly greater than chance (Figs. 4C,D). Because
neurons in the same cluster exhibit coordinated dynamics, the presence (absence) of stimulus-related drive biases
activation (inactivation) of the entire assembly, leading to similar stimulus responses for its constituent neurons. The
relationship between correlation-based clusters and tuning similarity was less straightforward in the data. However,
we still observed a certain degree of overlap, which was visually apparent in some sessions (Fig. 4G) and verified
with the statistical test described above (Fig. 4H). In total, cluster-based tuning similarity was significant in nearly
all sessions (Fig. 4K), suggesting that the detected correlation-based clusters exhibit some functional organization.
These results provide additional motivation for the clustered model.

The clustered model captures the inverted-U relationship between stimulus discriminability and arousal

We next examined whether the inverted-U relationships between stimulus discriminability and arousal (Fig. 2)
could be reproduced in either the uniform or clustered circuit models. We began by investigating how the single-cell
discriminability index (D) varied with the arousal modulation (Methods). In the clustered model, the cell-averaged
D!, peaked at moderate arousal (Fig. 5C), whereas in the uniform model, it decreased with arousal (Fig. 5D). Thus,
at the level of single-cell discriminability, only the clustered model captured the inverted-U relationship with arousal
observed in the data.

We also examined how the arousal modulation impacted the read-out of stimulus identity from population activity.
To this end, we trained ideal-observer linear decoders to discriminate stimuli given responses from an ensemble of
neurons sampled from the full network (Methods). Similar to single-cell discriminability, cross-validated decoding
performance followed an inverted-U relationship in the clustered networks, but decreased with arousal in the uniform
networks (Fig. 5E,F). Though decoding performance at moderate and high arousal did increase with population size
in the clustered networks, the overall inverted-U shape of the decoding curve was relatively robust to variations in
the number of sampled neurons (Fig. S4).

In sum, the clustered network can explain the inverted-U relationships between stimulus discriminability and arousal
observed in the data, while the uniform network fails to do. In what follows, we examine the network mechanisms
underlying the inverted-U behavior in the clustered model.

The arousal modulation controls the dynamical regime of the clustered model

Because the inverted-U relationship emerged only in the clustered networks, it must rely on an arousal-induced
modulation of the ongoing metastable dynamics unique to that model. To understand the mechanism through which
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FIG. 5. The clustered model captures the inverted-U relationship between stimulus discriminability and arousal.
(A,B) Five different stimuli were presented several times to the clustered (A) and uniform (B) networks, and measures of
neural stimulus discriminability were computed from the responses. (C, D) Percent change in cell-averaged D, vs. arousal
in the clustered (C) or uniform (D) models (percent change was computed relative to the maximum across arousal levels;
Methods). (E, F) Same as (C, D) but for cross-validated population decoding accuracy (Methods). For this analysis, linear
classification was performed using ensemble activity from 10% of the excitatory cells (in the clustered model, an approximately
equal number of cells were used from each cluster). In panels C-F, data points and error bars indicate the mean &+ 1 SD across
network realizations. See Fig. S4 for results with different population sizes.

arousal modulates stimulus discriminability, we first used mean-field theory (MFT) to elucidate the effects of arousal
on the clustered network’s attractor landscape under spontaneous conditions (Methods). Though the MFT does not
quantitatively describe the simulations, it provides useful qualitative insights.

At low arousal, MFT reveals the presence of multiple attractors in which different subsets of clusters are highly
active (multistable cluster states). Beyond a certain arousal, however, the MFT indicates a transition to a regime
with only a single-attractor phase (uniform state), wherein all clusters have the same moderate firing rate (Fig. 6A).
The MFT thus predicts that increasing arousal will reduce the contrast between the firing rate of active and inactive
firing modes, an intuition that was qualitatively confirmed in network simulations (Fig. 6B). These modulations of
the collective dynamics are driven by the suppression of recurrent synaptic excitation onto pyramidal neurons, which
hinders the ability of clusters to achieve and maintain a high activity state.

The arousal modulation could also impact the timescale of cluster switching dynamics. To theoretically elucidate
the effects, we analyzed a reduced network composed of two excitatory clusters (Fig. 6C Left; Methods). This
network also displays cluster states, but has a simplified landscape with two attractors in which either cluster is active
(Fig. S5D-H). Using effective mean field theory [24, 25, 69, 70], the attractors can be represented by two potential
wells separated by a barrier (Fig. 6C Right). The height A of this barrier controls the rate of stochastic transitions
between attractors [21, 24, 71].

The barrier height changed with arousal level. At low arousal, the two attractors were separated by a relatively
large barrier, indicating inflexible dynamics with slow switching between attractors (Fig. 6D Left). At intermediate
arousal, the two wells were preserved but the barrier height decreased (Fig. 6D Middle), implying more flexible cluster
dynamics with faster switching between configurations. For yet larger arousal, there was a transition from the 2-
attractor phase to a single-attractor phase (Fig. 6D Right); this transition indicates the loss of metastable cluster
states. The theoretical insights from the reduced circuit were verified in simulations of the full clustered model.
Specifically, we observed decreases in the average cluster inter-activation interval and activation time with increasing
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FIG. 6. The arousal modulation controls the dynamical regime of the clustered model. (A) Mean-field firing rates
of active and inactive excitatory clusters vs. arousal. In these analyses, the mean-field calculations used a larger intracluster
coupling than the simulations, so the comparison to panel (B) is only qualitative (Methods; see also Fig. S5A-C). (B) Average
firing rate of active and inactive excitatory clusters from simulations vs. arousal. (C) Schematic of the reduced mean-field
analysis using a simplified network of two excitatory clusters. The behavior of the two clusters can be described via an effective
potential energy, where the two wells correspond to the network’s two attractors (Methods; see also Fig. S5D-H, Table S2). (D)
The effective potential of the 2-cluster network at three increasing levels of arousal. (E) The barrier height h of the effective
potential vs. arousal. (F) Example raster plots from simulations of the full clustered networks at three increasing levels of
arousal. (G) The average cluster inter-activation interval (IAI, left axis) and average cluster activation time (AT, right axis)
vs. arousal in simulations of the full clustered networks (Methods). In panels (B) and (G), circular markers and error bars
indicate the mean £ 1 SD across network realizations.
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FIG. 7. Modulations of cluster dynamics underlie the inverted-U relationship. (A) Schematics demonstrating
variations in single-trial evoked responses as a function of arousal in the clustered model. Each panel depicts single-trial cluster
firing rates in response to a stimulus s (plotted relative to the time of peak decoding accuracy). At a given arousal level, we
computed two quantities to characterize the cluster activity pattern: the “cluster signal” Cs and the “cluster reliability” C,
(Methods). (B) The cluster signal vs. arousal. (C) The cluster reliability vs. arousal. Data points and error bars indicate the
mean + 1 SD across network realizations. The purple area indicates the region of optimal stimulus discriminability (Fig. 5).

arousal (Fig. 6F Left, Middle; Fig. 6G), in accordance with the shrinking barrier in the reduced network (Fig. 6E).
Visual inspection of network activity also revealed a degradation of metastable cluster states with increasing arousal
(Fig. 6F Right), consistent with a transition to a uniform phase.

Modulations of cluster dynamics underlie the inverted-U relationship

We used the insights of the previous section to develop intuition for the inverted-U nature of stimulus discriminabil-
ity. To begin, we note that stimulus identity would be perfectly read-out from population activity if each stimulus
could strongly activate all of its targeted clusters on every trial and strongly suppress all non-targeted clusters. To
quantify the extent to which the ideal scenario occurs, we examined two properties of network activity following stim-
ulus presentation (Fig. 7A; Methods): (i) the difference between the average firing rates of targeted and non-targeted
clusters (“cluster signal”), and (ii) the difference between the fractions of targeted and non-targeted clusters that are
in an activated state (“cluster reliability”).

The cluster signal increased slightly and then strongly decreased as a function of arousal strength (Fig. 7B).
At low arousal, there is a large separation in the spontaneous firing rates of active and inactive clusters; because
stimulus presentation biases the activation of targeted clusters, the cluster signal is high in this regime (Fig. TA
Left). When arousal increases to moderate levels, the contrast between active and inactive clusters decreases but
remains substantial; at the same time, transitions between cluster states are induced more easily. These effects enable
an increase in the relative amount of targeted cluster activation in response to a stimulus, and the cluster signal
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remains relatively high (Fig. TA Middle). As arousal increases further, the spontaneous firing rates of active and
inactive clusters further converge. In consequence, the contrast between the average evoked responses of targeted and
non-targeted clusters also decreases, and the cluster signal eventually drops to near zero (Fig. 7A Right).

The cluster reliability, in contrast, increased from low to moderate arousal, and then slightly decreased at high
arousal (Fig. 7C). At low arousal, spontaneous cluster dynamics are slow and inflexible and only a fraction of all
clusters activate in a fixed time window. Because stimuli are not strong enough to completely override the ongoing
dynamics, only a fraction of all targeted clusters become activated in response to stimulation, and sometimes non-
targeted clusters fail to deactivate. This results in inconsistent activation of targeted clusters and low cluster reliability
at low arousal (Fig. 7TA Left). As arousal increases, cluster dynamics are more malleable and a larger fraction of clusters
activate in a fixed time window. These effects drive the increase in cluster reliability at moderate arousal (Fig. TA
Middle). At very high arousal, non-targeted clusters are not as strongly suppressed (relative to the amount that
targeted clusters are activated), which leads to the slight decrease in cluster reliability (Fig. 7A Right); however, it
is difficult to estimate reliability at high arousal because the distinction between active and inactive clusters is not
well-defined.

The variations in cluster signal and reliability provide intuition for the inverted-U behavior of neural stimulus
discriminability. At intermediate arousal, both the signal and reliability are relatively high (Fig. 7B,C). In this
optimal regime, stimulus discriminability is maximal. For both lower and higher arousal, either the reliability or
signal drop substantially, and discriminability is worse. The key insight is that the arousal modulation affects both
the overall strength and consistency of cluster activation patterns, which combine to determine how well the responses
to different stimuli can be distinguished.

The clustered model qualitatively captures arousal-related modulations of neural variability

In the clustered model, the transition from the metastable attractor phase to the uniform phase also predicts certain
modulations of neural variability. To delineate these effects, we examined the Fano factor (FF), which measures trial-
to-trial variability of single-neuron spike-trains (Methods). Increasing arousal was associated with a strong decrease
in the FF during spontaneous activity (FFspont; Fig. 8A). At low arousal, clusters slowly transition between highly
active and inactive states (Fig. 6F,G); as a result, single-neuron firing rates strongly fluctuate across time and/or
trials, leading to high spike-count variability. As arousal increases, cluster switching dynamics accelerate and the
distinction between active and inactive rates decreases; these changes lead to a decrease in spontaneous FF as the
model transitions towards the uniform phase. The evoked FF (FFoyoked) also decreased with arousal (Fig. 8B), which
is a consequence of stimulus-evoked activity being constrained by the ongoing dynamics. That is, while stimulus
presentation does bias activation of targeted clusters, stimuli are not so strong as to be able to activate all targeted
clusters simultaneously on every trial (Fig. 7A). The evoked activity thus inherits much of the intrinsic variability
present in spontaneous activity. The above-mentioned modulations of cluster dynamics are also reflected in arousal-
induced reductions of the coefficient of variation of interspike intervals and low-frequency spike-train power (Fig. S6).

Observed trends in the empirical data qualitatively agreed with predictions from the clustered model. At the
population level, the spontaneous FF decreased with pupil diameter (Fig. 8D), and was significantly smaller in states
of high pupil-indexed arousal compared to low pupil-indexed arousal (Fig. 8E; Fig. S7TA). The population-averaged
evoked FF plateaued at moderate-to-large pupil diameters (Fig. 8F), but was still significantly smaller in high arousal
compared to low arousal conditions (Fig. 8G; Fig. S7TB). Similar trends were also observed for the coefficient of
variation of interspike intervals and low-frequency spike-train power (Fig. S6). In sum, the model captures qualitative
trends in spike-train variability with arousal, but does not quantitatively match the data in terms of the absolute
values of the variability measures.

Past studies indicate that stimulus presentation quenches neural variability [72]. To quantify this effect in our
dataset, we estimated the difference between the spontaneous and evoked FF (AFF = FF ot — FFevokea), marginal-
ized across pupil diameter. Consistent with past reports, we observed a reduction in the FF during evoked conditions
(Fig. S7TD). Clustered networks were previously proposed to explain this phenomenon [20, 21], and in our model,
we also observed some stimulus-induced quenching at low arousal (Fig. 8C). However, the effect is relatively subtle,
since our model operates in a regime where stimuli cannot entirely override ongoing activity. The clustered model
also exhibited an interaction between arousal and stimulus-induced variability quenching, wherein AFF decreased
with arousal (Fig. 8C). In the data, we similarly found a decreasing trend in the population-averaged AFF with pupil
diameter (Fig. 8H), and a significant reduction in AFF between highly-constricted and highly-dilated pupil conditions
(Fig. 8I; Fig. S7C).
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FIG. 8. The clustered model qualitatively captures arousal-related modulations of neural variability. (A-C)
Results from the clustered model. (A) Population-averaged spontaneous FF (FFgpont) vs. arousal. Data points and error bars
indicate the mean £+ SD of the population-averaged FFspont across network realizations. (B) Same as (A) but for evoked FF
(FFevoked)- (C) Same as (A) but for spontaneous minus evoked FF (AFF). (D-I) Results from the experimental data. (D)
Population-averaged FFgspons vs. pupil diameter (units pooled over sessions). Horizontal error bars indicate pupil diameter
bins; data points and vertical error bars indicate mean £ SEM of FFsont across cells from all sessions that contributed to
the corresponding pupil bin. (E) Distribution of the difference in FFspont between small and large pupil diameters [n = 487
units pooled over 9 sessions with average pupil diameter of smallest (largest) decile bin < 33% (> 67%) max dilation; red
triangle indicates mean difference; p < 0.001, Wilcoxon signed-rank test]. (F, G) Same as (D,E), but for FFeyokea (p < 0.001,
Wilcoxon signed-rank test). (H,I) Same as (D,E), but for AFF (p < 0.001, Wilcoxon signed-rank test). See also Figs. S6, S7.
Methodological details are provided in Methods.

DISCUSSION

We recorded activity from mouse ACtx during passive tone presentation and found that neural stimulus dis-
criminability followed an inverted-U relationship with pupil-linked arousal. We then showed that this inverted-U
relationship could be explained via modulations of metastable attractor dynamics in a clustered network model, with
optimal stimulus discriminability achieved near a transition in the dynamical regime of the network. The clustered
model further predicted a reduction of neural variability with arousal, which was confirmed in the empirical data.
This study thus unifies two different phenomena — arousal-dependent changes in neural discriminability and variability
— under the same computational mechanism: modulations of metastable attractor dynamics.
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Neural correlates of an inverted-U relationship between performance and arousal in ACtx

Several studies have reported inverted-U relationships between pupil-linked arousal and behavioral performance on
auditory tasks [12-16], raising questions about the neural origins of optimal performance at intermediate arousal.
Previous work found neural correlates of optimal sound detection in mouse ACtx and medial geniculate nucleus at
moderate arousal, as evidenced by reduced variability of spontaneous membrane potential dynamics and increased
magnitude and reliability of evoked responses [12]. Here, we found that intermediate arousal was also associated with
optimal neural discriminability of tones in mouse ACtx, even in the absence of a task.

Our results suggest that arousal-related modulations of ACtx activity might contribute to the inverted-U relation-
ship between arousal and behavioral performance observed during auditory discrimination tasks [13, 16]. That said,
the inverted-U relationship for task performance could also receive contributions from arousal-induced modulations of
areas up- or down-stream of ACtx. Important future directions include analyzing task-engaged settings and different
stages of the auditory and decision-making pathways [73-75]. It is also important to note that the decoding approach
used here assumes that a downstream readout unit acts as an ideal observer implementing linear classification [76].
While a useful benchmark, neural decoding performance can depend on population size, and information readout and
perceptual discrimination performance may differ from predictions based on ideal-observer linear decoding frameworks
[47]. Finally, we note that one previous study reported a monotonic increase of tone decoding accuracy in mouse
ACtx [77]. Several factors could contribute to across-study discrepancies, including differences in recording technique,
experimental design, or analysis methods (e.g., type of classifier used). Further examining the conditions under which
non-monotonic relationships emerge is an important avenue for future work.

Motivation for the clustered model

We proposed a mechanism for the inverted-U relationship between arousal and neural discriminability using a
network model in which neurons were organized into strongly-coupled clusters representing functional neural assemblies
(see [19-22, 24, 25].) Our empirical dataset exhibited some evidence of functionally-organized cell ensembles, where
we found putative correlation-based clusters with larger tuning similarity than expected by chance alone. Such a
relationship between noise correlations and stimulus response similarity is reminiscent of prior work showing positive
associations between noise and signal correlations in ACtx [78-81]. More broadly, the clustered model is motivated
by evidence of strongly-connected groups of cells in sensory cortices [82-87]. As in the clustered model, neural data
indicates that strongly-coupled neurons display similar stimulus responses [83, 85, 87] and that spontaneously-activated
cell ensembles are also triggered by stimulation [88, 89], suggesting that cell assemblies may act as basic cortical
processing units. The functional architecture of population activity in ACtx, specifically, also appears consistent with
the presence of partially-overlapping and strongly-connected neuronal subnetworks [78].

Metastable attractor dynamics are a key feature of the clustered network [20-22, 24, 25], and some analyses
have suggested activity patterns reminiscent of those in the model. In particular, Bathellier et al. [48] found that
evoked activity patterns in ACtx populations were organized into a small set of discrete “response modes”, and that
transitions between modes were abrupt, indicative of attractor-like dynamics. Their study also suggested that sounds
are represented by the combined activation pattern of several response modes spread across ACtx [49], somewhat akin
to the encoding of stimuli via global cluster activation patterns in our circuit model. Other studies in ACtx have
observed transient “packets” of elevated spiking activity that occur sporadically during spontaneous periods and that
constrain stimulus responses [80, 90], as well as evidence of locally-clustered activity in superficial layers [91]. Although
these findings are suggestive of the activity patterns in our network model, more spatially-distributed recordings and
targeted perturbation studies are necessary to directly test for the presence of metastable cluster dynamics in ACtx.

Emergence of arousal-induced modulations of neural discriminability and variability in the clustered model

Clustered network models with metastable activity have been used to explain several features of cortical activity
and computation [26, 27, 92], including stimulus-induced quenching of variability [20, 21, 23], the emergence of state-
sequences during taste processing [22, 93], and context-dependent sensory processing and decision-making dynamics
[24, 25, 94]. Previous work examined the response of clustered networks to relatively small parameter perturbations,
leading to monotonic variations in stimulus processing efficacy [24, 25]. Here, we explored a broader range of parameter
variations, which led to the inverted-U modulation of stimulus discriminability required to explain the data.

In our model, arousal was implemented as a global decrease in synaptic efficacy between excitatory cells and
an increase in external excitatory drive. When the clustered network was subjected to this arousal modulation,
the inverted-U relationship emerged via a transition from a dynamical phase with slow switching between multiple
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metastable attractors to a phase with uniform network activity. Stimulus discriminability was maximized between
these two extremes, where stimulus responses were both relatively strong and reliable. Because the transition from
the metastable attractor phase to the uniform phase is accompanied by a suppression of slow rate fluctuations, the
clustered model also qualitatively captured observed reductions of spiking variability and stimulus-induced variability
quenching at high arousal (though see [95] for a study in ferrets where variability quenching was independent of pupil
size).

Alternative mechanisms and approaches

We modeled one implementation of arousal that was motivated by empirical evidence and that reproduced the
inverted-U relationship. That said, arousal-related neuromodulators affect many biophysical processes to induce
diverse alterations of cortical circuit dynamics [54, 55, 58, 59, 62, 64, 65]. For example, neuromodulators can directly
excite cortical neurons [96, 97|, alter excitability [98], synaptic transmission [61, 66], and cellular firing modes [99],
and regulate circuit function via modulation of distinct interneuron classes [100]. The modeling framework presented
here could be extended to explore additional mechanisms. Importantly, similar modulations of collective network
dynamics can be produced by different circuit perturbations [101]. Even here, we identified an alternative arousal
implementation that induced similar functional outcomes to the one studied in the main text (though lacked the same
degree of biological plausibility; Fig. S3). Further experimental work is needed to isolate the precise neurophysiological
mechanisms of arousal responsible for the inverted-U relationship.

Any circuit mechanism for the inverted-U relationship must incorporate a means of non-linearly modulating the
efficacy of stimulus responses. The mechanism we presented here relied critically on the modulation of metastable
dynamics in networks with clustering. Importantly, though, our study does not rule out alternative mechanisms
that do not require those features (see, e.g., [16, 74]). Along these lines, one particularly relevant study proposed
a rate-based decision-making circuit with two excitatory populations, each selective for a different stimulus, and
two interneuron classes (VIP and SST), which were both modulated by arousal [16]. In that model, an increase in
arousal first improved discrimination performance via VIP-SST-mediated disinhibition of the excitatory pools; but
a further increase in arousal saturated the VIP population, leading to a degradation in performance due to SST-
mediated inhibition. This study indicates that another way of achieving non-linear performance modulations is to
incorporate other types of complexity, such as multiple inhibitory cell types. Other work has shown that cortical
sensory processing is impacted by the presence of spontaneously-generated “Up” and “Down” states [50, 102], which
are themselves dependent on behavioral state [5] (also discussed further below). Arousal-induced modulation of these
global activity patterns could thus also contribute to the inverted-U relationship. Moreover, the right-hand side of
the inverted-U relationship might be mediated, at least in part, by motor-related signals, which can suppress tone-
evoked activity in ACtx via postsynaptic inhibition of excitatory cells [103]. More generally, a large body of literature
demonstrates that information processing capabilities in neural systems are often optimal near criticality [104-109],
and some studies have demonstrated enhanced stimulus discriminability at the transition between asynchronous and
synchronous dynamics in cortical network models [110, 111]. These studies suggest that other types of dynamical
regime transitions — besides the one studied here — may also be able to explain the inverted-U relationship. Future
work could seek to further test alternative models and mechanisms and determine which are most consistent with
experimental observations.

Mechanisms other than cluster-based switching dynamics could also explain arousal-related decreases of neural
variability. In particular, modulations of spontaneous “Up-Down” dynamics — alternating periods of global silence and
global activity observed during anesthesia, sleep, and quiet wakefulness [5, 80, 112-115] — could produce similar state-
dependent adjustments of single-neuron spiking variability [116-118]. While an advantage of the clustered model is its
ability to explain arousal-induced modulations of neural discriminability and variability with a single mechanism, it is
possible that both cell assembly dynamics and more distributed Up-Down dynamics contribute to our findings. Indeed,
signatures of both have been observed in rodent auditory cortex [48, 49, 78, 80, 90, 102, 114, 116, 119], with prior work
suggesting that locally-clustered activity may be more prevalent in superficial layers [49, 91]. In our data, we found
evidence of correlated subgroups of neurons suggestive of functionally-meaningful neural clusters. However, we also
observed more dispersed correlation structure in the data compared to the model, which could be indicative of more
globally-coordinated activity fluctuations. Future experiments with more targeted and spatially-expansive electrode
placement (i.e., spanning multiple layers and columns) are needed to isolate and refine the network mechanisms
contributing to arousal-related modulations of neural variability and stimulus processing. Building network models
that combine global Up-Down fluctuations with clustered neural assemblies [120] may also allow for a more complete
description of state-dependent dynamics.
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Modality-dependent effects of arousal on sensory-evoked activity

During perceptual decision-making, inverted-U relationships between arousal and performance arise in both auditory
[12, 13] and visual [13, 121] tasks. However, relationships between arousal and sensory-evoked activity strongly differ
between auditory and visual cortex. In auditory cortex, previous investigations [12] (and this study) report inverted-U
relationships between pupil-indexed arousal and measures of stimulus response efficacy, as well as suppressed evoked
responses during locomotion [103, 122-124]. In contrast, prior work in visual cortex indicates that sensory-evoked
responses are enhanced during high arousal [121, 125] and locomotion [126-129]. The origin of this divergence remains
unclear. Although both auditory and visual cortex appear to share some common architectural features (e.g. functional
neural assemblies), there may be important variations in their recurrent circuitry or intrinsic neuron properties that
lead to differences in ongoing activity, sensory responses, and interplays with arousal. Another possibility is that
differences between auditory and visual cortex reflect an underlying distinction in arousal signaling pathways in the
two areas. Indeed, the impacts of locomotion in visual cortex are thought to be mediated by a disinhibitory pathway
involving VIP interneurons [96], but this is not the case in auditory cortex [123, 124]. Further elucidating the
neuromodulatory pathways regulating arousal may help resolve outstanding questions regarding modality-dependent
phenomena.
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METHODS
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

All procedures were carried out with approval from the University of Oregon Institutional Animal Care and Use
Committee. Wild-type animals (2 female mice and 3 male mice ranging between approximately 11-20 weeks at the
time of surgery) were of C57BL/6J background purchased from Jackson Laboratory and were bred in-house. Mice
were kept on a reverse light cycle and had ad libitum access to food and water. For all analyses, experimental sessions
were pooled across both sexes. We did not examine potential influences of sex on our results, which is a limitation of
this study.

METHOD DETAILS
Experimental data
Surgical procedures

All surgical procedures were performed in an aseptic environment with mice under 1-2% isoflurane anesthesia,
maintaining an oxygen flow rate of 1.5 L/min, and homeothermic maintenance at 36.5 degrees Celsius. Mice were
administered systemic analgesia (Meloxicam SR: 4 mg/kg & Buprenorphine SR: 0.5 mg/kg, Wildlife Pharmaceuticals)
and a fluid supplement (1 ml lactated ringer’s solution) subcutaneously. Fur was removed from the skull, and the
skin was disinfected. To access auditory areas, the skin, connective tissue, and part of the right temporalis muscle
were resected, and cleaned as necessary. A custom-designed headplate was affixed to the skull using dental cement
(RelyX Unicem Aplicap, 3M) and covered with silicone elastomer (Kwik-sil, World Precision Instruments), and skin
was affixed to the outside edge of the headpost as necessary (Vetbond, 3M). Mice were allowed to recover for three
days in an incubator recovery chamber.

Mice were habituated to handling and head fixation for 2-3 days with increasing duration prior to craniotomy. This
was a necessary step for well-being and also helped increase the likelihood that mice entered a broad range of arousal
states across the wakefulness spectrum. Habituation to head-fixation atop a treadmill allowed mice to choose to
locomote or remain still and quiescent. Craniotomy followed the same aseptic and analgesic procedures as mentioned
above. Mice were anesthetized with isoflurane and affixed to the stereotax where a <1 mm circular craniotomy was
drilled over the right auditory cortex (AP: -2.9 mm, ML: 4.4 mm relative to bregma) with dura left intact; the above-
mentioned coordinates were chosen in an attempt to mainly target primary auditory cortex (Al). A small well was
created surrounding the craniotomy with flowable composite (Flow-it, Pentron), and a piece of plastic was secured
lateral to the well to act as a shield for the probe. The craniotomy was filled with silicone elastomer (Kwik-sil, World
Precision Instruments) until the start of the recording session. Mice were allowed to recover overnight, and recovery
was monitored.

Neuropizels recordings

On the day of a recording, a mouse was affixed to a treadmill and the Kwik-sil was removed. The craniotomy was
immediately filled with saline, and a high-density silicon probe (Neuropixels 1.0, imec) [131] was inserted perpendic-
ular to the brain surface using a motorized micromanipulator (MP225A, Sutter Instruments) at low speed (~ 2-4
pum/second) until all layers of the auditory cortex were covered (1.5-2.5 mm). After the Neuropixels probe reached
a desired depth, the remaining saline was removed and the craniotomy was filled with 1% agarose mixture in saline
and covered with mineral oil to keep the brain surface moist. A recording was started at least 20 minutes after the
completion of probe insertion to ensure the stability of the probe and the brain. Recordings were made in up to 5
sessions from one mouse depending on the status of the brain surface. For the last recording session, the Neuropixels
probe was covered with Dil (Vybrant solution, Thermofisher Scientific) for histology.

Neurophysiology data was acquired using the PXIe acquisition module (imec) in a NI PXIe-1071 chassis (National
Instruments) and OpenEphys software [132] at gain of 250 (LFP), and 500 (APs). An output pulse from the OpenE-
phys software was manually toggled between 1 Hz and 10 Hz to give an accurate and discrete timestamp to the Power
1401 digitizer, which allowed for accurate alignment and further synchronization of the behavioral data. Neuropixels
data was sampled at a rate of 30 kHz. The recorded data was pre-processed with common-average referencing [133],
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[134] sorted with Kilosort2 [135, 136], and then manually curated with the phy GUI (https://github.com/cortex-
lab/phy). For manual curation, each cluster was compared with other clusters based on the spike waveforms and
cross-correlation. Clusters with high similarity were mainly inspected to determine whether they should be merged.
Then, the cluster was labeled as a good single unit, multi-units, or noise depending on the quality of the cluster
assessed by waveform consistency, amplitude, cross-correlation, and inter-spike intervals. To determine if the good
single units were within the auditory cortex, the depth from phy was referenced. In four out of the five mice analyzed,
we also verified the recording site of the final session with Dil track spanning after histology. Sessions for which the
brain condition was poor, auditory responses were weak, or timestamps could not be aligned were discarded.

Histological Analysis

Following the last recording session, a mouse was anesthetized and perfused using phosphate buffer and 4%
paraformaldehyde. Then, the brain was kept in 4% paraformaldehyde, cryo-sectioned (CM3050S, Leica) at 100 pm
thickness, and DAPI-stained. Slides were imaged and Dil tracks were manually registered with the Franklin-Paxinos
atlas [137].

Spontaneous data and auditory stimulation

Each experimental session consisted of alternating spontaneous and auditory stimulation blocks, repeated for up to
2 hours. During spontaneous blocks, neural activity was recorded in the absence of stimulus presentation; each block
lasted for five minutes. A spontaneous block was followed by 25 minutes of auditory stimulation. This design enabled
us to record substantial amounts of both spontaneous activity (~ 20-25 minutes/session) and evoked activity (~
75-100 minutes/session). The stimulus set consisted of five pure tones (2, 4, 8, 16, or 32 kHz), which were randomly
interleaved and sampled from a uniform distribution. Each tone lasted for 25 ms (cosine ramp-up) followed by a
775 ms inter-stimulus interval (IST). Auditory stimuli were delivered using custom LabView (National Instruments)
scripts. Tones were calibrated to 60 dB SPL and waveforms were generated (NI PXI-4461, National Instruments)
at 200 kHz sampling rate, conditioned (ED1, Tucker Davis Technologies), and transduced by electrostatic speakers
(ES1, Tucker Davis Technologies).

Behavioral measures

All data collection was conducted using custom LabView scripts. Mice were headfixed atop a cylindrical treadmill
(15 cm diameter, 20 cm width) and allowed to freely locomote. Locomotion speed was calculated via a rotary encoder
(Encoder Products CO.; 15T-01SF-2500NV1RPP-F03-S1) attached to the axle of the treadmill. Signals from the
rotary encoder were continuously converted into cm/s in real-time using LabView software at a rate of 100 Hz,
and data was recorded using a Power 1401 digitizer. The running trace was upsampled to match the Neuropixels
acquisition rate, and post-hoc analysis was performed using custom python scripts.

The face was lit using an infrared LED (Digi-Key TSHG8200, 830 nm) adjusted to achieve uniform illumination
of the face and eye. Additionally, a white LED (RadioShack 5 mm 276-0017) was manually titrated to achieve a
wide dynamic range of the pupil, ensuring it remained visible during full dilation. Pupil videos were collected from a
camera (Grasshopper 3, FLIR) with a lens (Telecentric TEC-55, Computar) and near-IR Bandpass filter (BN810-43,
MidOpt) with FlyCapture software (FLIR). Frames were triggered at 30 Hz through a Power 1401 Digitizer (Cambridge
Electronic Design), and online pupillometry was performed using LabView software according to previously described
methods [13]. The pupil diameter trace was upsampled to match the Neuropixels acquisition rate, and post-hoc
analysis was performed using custom python scripts.

Raw pupil diameter traces were subject to three processing steps: (1) artifact removal, (2) smoothing, and (3)
normalization. The pupil-tracking procedure is imperfect, which can lead to artifacts in the pupil diameter traces
such as abrupt drops or spikes. To mitigate the effect of these artifacts, we performed both automated and manual
cleaning of the pupil traces in each session. Automated artifact removal consisted of finding and discarding periods
of time associated with unnaturally-sharp jumps in pupil diameter values between nearby time points. To find these
artifacts, we first normalized the pupil diameter trace in a given session by its maximum value. At each time point
t,, we then compared the difference in normalized pupil diameter between ¢, and ¢, + 0.5 ms. If the absolute
difference in the normalized pupil diameter between those times exceeded a threshold of 0.08, then we removed the
pupil data within a time window starting 250 ms before ¢,, and ending 500 ms after ¢,,. This automated procedure
removed a large majority of pupil artifacts, but pupil traces were still manually inspected afterwards for outstanding
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abnormalities. Remaining problematic time windows were tabulated, and the corresponding pupil data was removed
from those periods. Pupil traces were also smoothed after artifact removal for easier manipulation. Smoothing was
achieved by taking a moving average of the pupil diameter timecourses using windows of length 1/30*" of a second
sliding forward in 1 ms steps. After artifact removal and smoothing, the resulting pupil diameter trace for a given
session was re-normalized by its maximum value; in all sessions, maximum dilation was associated with movement
bouts. This normalization procedure, which has been utilized in several prior studies [11-13, 40, 77, 121], facilitates
combining data across sessions. All pupil-based analyses in the main text were performed using the within-session
normalized pupil diameter traces. We also verified that the population decoding results (Fig. 2H,I) were robust to an
alternative normalization procedure, wherein the pupil traces for each session were all normalized by the same value
(the largest pupil diameter attained across all sessions combined; Fig. S1F,G). Throughout the text, pupil diameters
are reported as a percentage of the maximum value (denoted as “% max dilation”).

Periods of time corresponding to artifacts in the pupil diameter trace were also removed from the running trace.
The running trace was then smoothed using the same process as for the pupil diameter.

Additional unit selection criteria

After following the procedures described in “Neuropizels recordings’ to identify putative single units, we imple-
mented some additional criteria for the final unit selection process. First, we discarded all clusters whose average
firing rate across the duration of the recording was less than 0.25 spikes/second. The remaining criteria mainly in-
volved further analysis of the spike template amplitudes of each cluster that was identified as “good” after performing
the spike sorting and manual curation steps detailed above. Examining the behavior of the template amplitudes
(output by Kilosort) for a given cluster across time can reveal potential issues with electrode drift and the general
quality of the cluster. Our analysis was designed to search for two potential issues in the spike template amplitudes.
First, we considered the shape of the amplitude distribution in a sliding time window, and in each window, we looked
for signatures of multiple peaks occurring in the corresponding distribution. The presence of multiple peaks in the
amplitude distribution computed from a short block of time is an indication that the particular cluster should not be
marked as a well-isolated single unit. Second, we looked for cases when the amplitude appeared to drift towards or
away from very low values (i.e., towards or away from the “noise floor”) over time. This scenario could suggest that
the cluster was not stably-tracked across the recording.

To determine if the distribution of template amplitudes in a short time segment was composed of two or more
separate peaks, we examined the amplitude data in non-overlapping, 5-minute windows over the entire dataset. For
each window, we used the ‘scipy.stats.gaussian_kde’ function from SciPy to estimate the probability density function
(pdf) of the amplitude data via kernel density estimation with a Gaussian kernel. For each window, we then determined
the locations (i.e., amplitude values) and heights of all peaks in the corresponding pdf. If the pdf from a given window
had more than one peak, we computed two additional quantities. First, we computed the ratio of the height of the
tallest peak to the height of the second tallest peak in the window; we refer to this quantity as the “peak height
ratio”. Smaller peak height ratios tend to correspond to more even splits of the data between the two groups. Second,
we computed the percent difference between the locations of the two highest peaks in a window. Larger percent
differences between the peak locations correspond to more well-separated groups. After computing these quantities,
we found the set of time windows for which the peak height ratio was less than or equal to ten and for which the
percent difference between peak locations was greater than or equal to forty. These cut values were selected so as to
find time windows for which there were two (or more) well-separated template amplitude ranges that each contributed
substantially to the total amount of data in the window. If at least 10% of all time windows satisfied the above criteria,
then the corresponding cluster was not used in subsequent analyses.

To determine if the template amplitude for a given cluster appeared to drift into or out of the “noise floor” over
time, we first estimated the noise floor as the smallest template amplitude of the cluster across the whole recording.
As above, we then considered the pdf of the amplitudes in 5-minute bins. First, we computed the percent difference
between the location of the tallest peak in the pdf of a given window and the location of the noise floor. If this
percent difference was less than or equal to fifteen, then the corresponding window was marked as having template
amplitudes that were concentrated near the noise floor.

For each window, we also determined the location (i.e., amplitude) of the tallest peak in the pdf. We then computed
the smallest and largest of those amplitudes across all time windows, and computed the percent difference between the
resulting two values. This quantity, which we refer to as the maximum peak location difference, provides information
about the range of template amplitudes sampled across the recording. We removed a cluster from subsequent analyses
if the following criteria were met: (i) more than 10% (but not all) of time windows either had template amplitudes
concentrated near the noise floor or in the bulk, and (ii) the maximum peak location difference was greater than
or equal to twenty-five. These cut values were chosen so as to try and isolate clusters with significant drift towards
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or away from low amplitude values. All analyses in the main text were performed after applying the unit selection
procedures described in this section. The number of simultaneously recorded single-units that passed all selection
criteria ranged from 30 - 235 per session.

Robustness to cell selection criteria

Because our recordings could have included some cells outside the ACtx, we also tested a more conservative cell
selection method that incorporated strict criteria for sound responsiveness. After spike sorting and manual curation
(see “Neuropizels recordings’), we analyzed the tone-evoked responses of all “good” single units/cells. To begin,
evoked data was aligned to stimulus onset (¢ = 0), and a time-dependent firing rate was computed in each trial by
counting spikes in a 100 ms window sliding forward in 1 ms steps. The time ¢ of each window was defined as the
location of its right edge, and the first time window (baseline activity) was located at ¢ = 0 and the last time window
was located at ¢ = 150 ms. For a given tone, we then compared the firing rate measurements in each evoked time
window (i.e., windows with ¢ > 0) to the distribution of baseline firing rates (¢t = 0 window) using the Wilcoxon
signed-rank test. The p-value for each evoked window was Bonferroni-corrected for multiple comparisons (i.e., using
a correction factor equal to the number of evoked windows), and a cell was considered “responsive” to the given tone
if at least one of the evoked time windows had a corrected p-value < 0.01. Only cells that responded to at least
two tones according to this criteria (and that passed the additional cuts described above in “Additional unit selection
criteria” were kept for further analysis. We found that the main trends in the neural discriminability, clustering, and
neural variability analyses were still evident when using this more conservative cell selection method (Fig. S8).

Network modeling

We modeled a local cortical circuit representing ACtx as a recurrently-connected network of N spiking neurons, N¥
of which were excitatory (E) cells and N7 of which were inhibitory (I) cells. Further details on the circuit modeling
are provided below. All model parameters are shown in Table S1.

Neural dynamics

Neural activity evolved according to the leaky-integrate-and-fire (LIF) model with exponential excitatory and
inhibitory synapses. In this model, the dynamics of the membrane potential of the i*" neuron in population a € {E, I}

are described by

L Ve
Tm ™ gt

= Vi + Tl + T dbi + Tl (1)

m*rec,i stim,7?

where 7,7 is the membrane time constant of cells in population a, I ; is the recurrent input to cell ¢ in population «

from other neurons in the network, I}, represents background external input, and Ig;, ; is an additional external input
representing sensory stimulation. When the membrane potential V;* reaches a threshold Vi3, .., & spike is emitted by
the neuron and its membrane potential is reset to a value V.. After spike emission, the membrane potential remains
clamped at the reset value for a refractory period of length 7.%.

The recurrent input is a sum of excitatory and inhibitory synaptic currents, such that I¢

rec,i = I¢E, + 12l . These
currents obeyed the following differential equations:

rec,t rec,i*

E A, E < E k,E
Tsyn dt - = 7Iroéc,i + Z Wz'a]{ Z 5(t - tj’ ) (2)
j=1 k
drel . N1 1
I rec,i ol al ’
Tsyn dt - _Ircc,i + Jz::l Wij zk: 5(t - tj ) (3)

In Egs. 2 and 3, Tgn and TSIyn are the excitatory and inhibitory synaptic time constants, and Wioj‘-ﬁ represents the

strength of the synapse from the j* neuron of population 8 € {E, I} to the i** neuron of population «; these weights
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depend on the network architecture (see the section “Recurrent network architectures” below). Finally, t?"g is the
time of the k*" spike emitted by the j** neuron of population f.

In addition to the recurrent input, each neuron in population « received C&E connections from other excitatory
cells outside of the local network. The background synaptic input at the i** neuron of population a evolved according
to

aE
E dlﬁi @ aF s a.k
Tsyn dt = _Ib,i + Jext Z Z(S(t - tij )’ (4)
j=1 k
where JOZ is the strength of external excitatory synapses to cells in population o, and where t%’k is the k™ spike time

of the j** external cell targeting neuron 7 in population a.. The spike times t%’k were generated from a Poisson process

with rate vg, ;; spike trains were independent for each external synapse to a given cell, and there was no shared input

across different cells. The baseline value of the external input rate for cells in population « is denoted as v¢.
Finally, sensory stimuli were modeled as smoothly-varying, deterministic external inputs Is;im,i(t) that directly

entered the voltage equation of the corresponding neuron. Further details on the stimulus inputs are given in the
section “Sensory stimuli’.

Recurrent network architectures

In the circuit model, the network architecture was either “clustered” or “uniform” (Fig. 3A,B). For the uniform
case, neurons of type o € {E, I'} received a synaptic connection from C*? = p®# N randomly chosen neurons of type
B € {E,I}. Moreover, all existing synapses from presynaptic neurons of type § to postsynaptic neurons of type «
had the same weight, Jgﬂ , in the uniform network. In the clustered model, excitatory and inhibitory neurons were
instead arranged into p non-overlapping clusters. Each cluster contained f®N“ randomly chosen neurons of type «,
and the remaining (1 — pf®)N® neurons were placed into an unclustered “background” population. Each neuron in
a given cluster of type « received f?C®? connections from other neurons in the same cluster of type 3, (p — 1) f2C*8
connections from neurons in different clusters of type 3, and (1—pf?)C? connections from neurons in the background
population of type 5. Each neuron in the background population of type a received pf?C*? connections from neurons
in clusters of type 8 and (1 — pf?)C*”? connections from other neurons in the background population of type 3. In
this way, the total number of non-zero synaptic connections was the same for the uniform and clustered networks.
The weights of non-zero synaptic connections between neurons within the same cluster, J{/)‘VB , were generally stronger

in magnitude relative to the uniform case (J‘?‘VB = Jf_ﬂ JSﬁ , Jfﬁ > 1). Moreover the weights of non-zero synaptic

connections between neurons in different clusters, Jgﬁ , were generally weaker in magnitude relative to the uniform
case (Jg’g = JfBJSB, 0 < JY < 1). Synaptic contacts between cells in the background population and cells in
clusters were also weakened relative to the uniform model, and given by Jgﬁ . Finally, connection weights between
background neurons were unchanged relative to the uniform architecture and equal to Jgﬁ .

The uniform and clustered networks were constructed such that the sum of all synaptic weights was the same for
the two architectures. For a given value of J{}‘ﬁ , this was accomplished by fixing the intracluster weight factor Jﬁﬁ ,

and solving for the appropriate intercluster weight factor JoP. Following this procedure gives

s _ SO+ 0 —ppe O — ot
T et [P pfefP - fefp

Sensory stimuli

To model stimulus-evoked activity, sensory signals were incorporated as additional, depolarizing external inputs to
the cortical circuit (Eq. 1). For the clustered networks, 50% of the assemblies were chosen at random to receive input
from a particular stimulus; for each selected cluster, stimulus-related input was then applied to 50% of its E cells
(chosen at random). In this way, two different stimuli in general targeted unique but overlapping sets of clusters. For
the uniform networks, a given stimulus was modeled as an external input that was applied to a randomly-selected
subset of the E cells; for each stimulus, the total number of stimulated neurons was chosen to be the same as in
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the clustered model. Throughout the text, we refer to the cells and/or clusters that receive input from a particular
stimulus s as “targeted” by that stimulus, and the cells and/or clusters that do not receive input from stimulus s
as “not-targeted” by that stimulus. We presented each model network with five different stimuli, matching the five
tones used in the experiments.

If the i*" cell of population o € {E, I} was targeted by a given stimulus, then the stimulus-related input to that
cell took the form

B )= {0 if t < totim (©)

stim,? a arvaE TaE . .
stim XV, cht cht X S(t) if t Z tstim7

(t) = 0Vt. In Eq. 6, tsim is the onset time of the stimulus, AS. > 0 sets the amplitude of the

stim
I

stim

otherwise, I, ;
stimulation signal for cells in population «, and s(t) describes the stimulus timecourse. Here, A = 0 since only E

cells receive sensory stimulation. For the timecourse s(t), we used a difference of exponentials:

S(t) — ,Y[e—(t—tsnm)/m _ e_(t_tsthn)/Tr], (7)

where v = [(Tr/Td) T (1+/7a) Tarr ] _1, 7, is the rise time constant, and 74 is the decay time constant.

Arousal modulation

In the model, an increase in arousal was implemented as a simultaneous modulation of two parameters: (i) a
decrease in the strength of recurrent synapses between excitatory cells (JEF), and (ii) an increase in the level of
external drive to E and I cells (v2,, a € {E,I}). The arousal-related reduction in JZ was applied globally to all
existing (i.e., all nonzero) E-E synapses: for a pair (i, j) of synaptically-connected E cells, the reduction was modeled
by setting JZ];:E = Jgf —Ajyp X Jﬁf, where Jgf is the baseline value of the synapse and A, > 0 is a parameter
that sets the strength of the modulation. For a given x € [0,1] (where the upper/lower limits of x correspond to

arousal levels of 0%/100%), the JZ¥ reduction parameter was given by

L

AJEE(‘r) = 1+ (xC _ l)kv

(8)

where C' = log,{1/[1 + (%)1/’“]}, k=125 2,=0.2, and L = 0.75. As arousal increases from 0 to 100% (i.e., as x

increases from 0 to 1), JEE decreases as shown in Fig. 3C(i). The arousal-related increase in v2,

. varied from cell-to-
cell. For the ' cell in population o € {E, I}, the external input modulation was modeled by setting Vext,i = Vo TAY,
, where v is the baseline value of the external input and A, > 0 is a cell-dependent parameter that sets the strength
of the modulation. For a given z € [0, 1] (where the upper/lower limits of « correspond to arousal levels of 0%/ 100%),

the modulation parameter was given by

2 M
AL@) =T e - 9)

where C = logo{1/[1 + (1522)/¥]}, k = 1.25, 2, = 0.2, and M = 13.125. For a € {E, I}, 2 ~ Beta(a, b) is a random
variable drawn from a Beta distribution with shape parameters a = 10 and b = 10 (same for both E and I populations).
Note that because z&* € [0, 1], the external drive always increases with arousal, but by varying amounts for different
cells (see Fig. 3C(ii) for examples). For the mean-field analysis of the reduced 2-cluster network (“Effective MFT for
reduced 2-cluster networks”), we used the same arousal model, but multiplied L and M in Eqgs. 8 and 9, respectively,
by a factor of 0.35 (i.e., we used L = 0.75 x 0.35 and M = 13.125 x 0.35). This adjustment recalibrated the arousal
parameters such that they varied over an appropriate range for the 2-cluster model.
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Numerical simulations

The dynamical system defined by Eqs. 1-4 was integrated using a discrete time step dt = 0.5 x 10~* seconds.
All spike times were forced to the simulation grid, and exact updates were performed between time steps. At
a given level of arousal, we performed simulations on several realizations of the clustered and uniform networks;
different network instances were also associated with different realizations of the arousal model (i.e., different random
draws of the external input modulations; see Eq. 9 above). For most analyses, we generated 10 realizations of the
network architecture, and simulated 30 trials of network activity per stimulus for each network realization. For
these simulations, each trial lasted 2.5 seconds and stimulus onset occurred at tg i, = 1 second; the pre-stimulus
period of each trial was considered “spontaneous” activity. For some analyses, we ran a separate set of simulations
to obtain longer continuous blocks of spontaneous activity. For the cluster interactivation and activation timescale
analyses (“Cluster timescales’; Fig. 6G), we simulated two network realizations, and for each one, we ran 30, 5.2-
second-long trials of spontaneous-only activity (no stimulus presentation). For the interspike-interval (“Variability
of interspike intervals”; Fig. S6A) and power spectra (“Spectral analyses’; Fig. S6B,C) analyses, we simulated two
network realizations, and for each one, we ran 30, 2.7-second-long trials of spontaneous-only activity. In all simulations,
different trials used different random initial conditions for neurons’ membrane potentials.

Single-cell discriminability

To examine neural discriminability on a single-cell level, we computed a standard metric for quantifying the sep-
arability of two univariate stimulus response distributions. Given the responses of an individual cell to repeated
presentations of two stimuli s4 and sp, one measure of single-cell discriminability (d’) is:

J(AB) = azrsl (10)
3(0% + o)

where 14 and pp denote the average responses to the two stimuli, and where 0 4 and o denote the standard deviations
of the two response distributions.

To compute an overall discriminability index in the model or data, we began by computing timecourses of the
single-cell discriminability relative to stimulus presentation. First, trials were parsed according to arousal level (see
below) and then aligned to stimulus onset. For each trial of a given stimulus, we then computed binned spike counts
of every cell in a sliding window (see subsections below for window parameters used in the model and data). In
total, we obtained an array of spike counts (i.e., responses) of dimension Neens X Ngtimuli X Ntrials X Ntime bins- 10
each time bin, the across-trial mean and standard deviation of the spike counts were used to compute d’ for each cell
and pair of stimuli, according to Eq. 10. To summarize the discriminability of an individual cell ¢ in time bin ¢, we
computed its average d’ over all stimulus pairs, denoted as Wi,t. We then computed the average across all cells in
each time bin, denoted as (d’;). An overall discriminability index for the population was defined as the maximum of
the timecourse (d’;); we denote this index as the cell-averaged D’.. We also determined the time point ¢+ at which
(d'y) was maximized, from which we computed an overall discriminability index for each cell i as D}, ; = d’;¢,. In
the following two subsections, we provide further details on the single-cell discriminability analyses for the network
models and experimental data.

Ezxperimental data

To quantify how arousal level impacted single-cell discriminability in the experimental data, we parsed the trials
in a given session according to their pupil diameter. To begin, we computed the average pupil diameter across the
pre-stimulus period of each trial (100 ms window preceding tone onset). We then split the trials into ten equally-sized
partitions according to the deciles of the pre-stimulus pupil diameter distribution (see Fig. 2A for an example); this
partitioning procedure allowed us to use the maximum number of trials for the analysis. Within each decile bin,
we also randomly subsampled the trials to ensure that each partition contained the same number of trials per tone
frequency.

After parsing the data, we computed the single-cell discriminability separately for each pupil-based partition in a
session. For this analysis, spikes from each cell were counted in 100 ms windows incremented in 10 ms steps, and we
considered a total time span of 450 ms after stimulus onset. We then computed the cell-averaged and single-cell D’,_
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values using the procedure described above.

The arousal-conditioned analysis yielded a single value for the cell-averaged D’ in each pupil diameter decile of a
given session. We now explain the procedure for combining results across sessions in order to understand the aggregate
effect of arousal on single-cell discriminability (Fig. 2F). First, for each pupil decile in a given session, we computed
the percent change in the cell-averaged D’ relative to the maximum value of that quantity across all decile bins in the
session. We then computed the average pupil diameter of the trials in each decile bin, and binned each data point in a
session (one per decile) according to that average pupil diameter. For this binning step, we used ten non-overlapping
bins, each of width 10% max-normalized pupil diameter. If more than one data point from the same session fell
within a single pupil diameter bin, we stored the average percent change in cell-averaged D’ across all the data in
that bin. This process was then repeated for each session, yielding a collection of data points (percent changes in
cell-averaged D’.) in each pupil diameter bin (gray dots in Fig. 2F). Note that because different sessions explored
different pupil dilation ranges, not all sessions contributed to every pupil diameter bin; specifically, there was more
data at intermediate diameters relative to very small or large ones. To summarize how single-cell discriminability
varied with arousal, we computed the average percent change in cell-averaged D._. across all sessions in each pupil
diameter bin (red curve in Fig. 2F); the spread of the data across sessions in each pupil bin was indicated by a boxplot
(Fig. 2F).

To quantitatively test whether single-cell discriminability was improved at intermediate arousal relative to either
low or high arousal, we compared the distribution of single-cell D.. values at intermediate pupil diameter to the
distributions at small or large diameters using a paired statistical test. For each session, we first determined the
pupil decile whose trials had an average pupil diameter closest to 50% of maximum pupil dilation (“central” decile).
We also found the set of sessions for which the trials in the first decile bin had an average pupil diameter < 33% of
maximum dilation (“low pupil sessions”, LS, 10 sessions in total), and the set of sessions for which the trials in the
last pupil decile bin had an average pupil diameter > 67% of maximum dilation (“high pupil sessions”, HS, all 15
sessions). To compare D!, between low and middle pupil diameters, we pooled the single-cell D! values from the
first decile bin and central decile bin of each low pupil session into two groups: {D{. .y pupii JLs a0d {D{. 1id pupit JTS-
To compare DY, between high and middle pupil diameters, we pooled the D._ values from the last decile bin and
central decile bin of each high pupil session into two sets: {D{. ;a3 pupit 11 a0d { DL 1iq pupin frs- We then tested for a
signiﬁcant difference between {D;c,low pupil}LS and {D:/sc,mid pupil}LS (OI‘ {Déc,high pupil}HS and {D;c,mid pupi]}HS) using
the Wilcoxon signed-rank test. In Fig. 2G, we show the distributions of the differences { D!

!
sc,mid pupil — Dsc,low pupil}LS
! ’
(top pa'nel) and {Dsc,mid pupil Dsc,high pupil}HS (bOttOIl’l panel)'

Network models

In the network models, spikes from each cell were counted in 100 ms windows incremented in 20 ms steps along
the length of a trial. We then used the previously-described procedure to compute the cell-averaged D... For a
given network realization and arousal level, results were based off 30 trials per each of 5 stimuli. To summarize
how the overall single-cell discriminability varied with arousal strength, we computed the cell-averaged D’ at each
sampled arousal level for a given network realization. At each arousal, we then computed the percent change in the
cell-averaged D7, relative to the maximum value over all arousal levels. Finally, we averaged the results across ten
network realizations to obtain the results in Figs. 5C,D.

Population decoding

Population decoding analyses assess the extent to which stimulus identity can be read-out from single-trial responses
of a neural ensemble [138]. Here, we used cross-validated linear classification methods to examine how well stimuli
could be discriminated from population activity as a function of arousal. For this analysis, trials were first parsed by
arousal and aligned to stimulus onset; the spikes of each cell in the ensemble were then counted in a sliding window
moving along the length of a trial. For a given arousal level, this procedure yielded a spike-count array of dimension
Neells X Nirials X Nwindows- 1he following two subsections below provide details on the data selection and spike-count
window parameters for decoding in the experimental sessions and network models.

After obtaining the spike-count array, a linear decoding analysis was performed separately for each time window in
a trial. Cross-validated linear classification was implemented using version 0.24.2 of the scikit-learn Python package,
and proceeded in several steps. Within a given time window, trials were split into training and testing sets. This
was achieved using ten repetitions of stratified, 5-fold cross-validation. By using stratified folds, we ensured that the
training and testing sets contained the same proportion of trials per stimulus. For each train-test split (50 in total),
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the training data was used to fit a multiclass, linear support vector classifier (‘sklearn.svm.LinearSVC’ with C = 0.1,
dual = False and all other parameters set to the defaults). After fitting, the trained model was used to predict the
stimulus identity of each trial in the test set.

To assess decoding performance, we computed the average cross-validated classification accuracy. Within a given
time bin, the accuracy of a single train-test split was defined as the fraction of test trials whose stimulus identity
was correctly predicted. The average cross-validated accuracy of the time window was then computed as the average
accuracy across all train-test splits. Repeating this process for each time bin yielded a time-course of cross-validated
decoding accuracy relative to stimulus onset. The maximum of this time-course (which we refer to as “peak accuracy”
or simply “accuracy”) was then computed to summarize the overall decoding performance. Throughout the text, we
refer to the time window corresponding to peak decoding accuracy as the “peak decoding window”. In the following
two subsections, we provide further details on the arousal-conditioned decoding analyses for the experimental data
and network models.

Ezxperimental data

In the experimental data, all cells were used as features for the population decoding. To quantify how arousal level
impacted decoding performance, trials were grouped according to the deciles of their pre-stimulus pupil diameter
distribution, as described in the section “Single-cell discriminability”. Within each decile bin, we randomly subsam-
pled the trials to ensure that each partition contained the same number of trials per tone frequency. Subsequent
decoding analyses were then performed independently for each pupil-based partition of the data. When examining
the relationship between decoding performance and arousal in the absence of locomotion, we excluded trials with an
average pre-stimulus treadmill speed exceeding 2 cm/sec.

After collecting the relevant subset of data, we computed the spike counts of each cell in every trial using 100
ms windows incremented in 10 ms steps, and we considered a total time span of 600 ms after stimulus onset. We
then followed the previously-described procedure to compute the peak decoding accuracy in each pupil decile bin of a
session. To combine results across sessions (Fig. 2H), we used the method described in “Single-cell discriminability’.

To test whether moderate arousal was associated with improvements in population-level decoding, we compared the
decoding accuracy at moderate pupil diameters to the accuracy at either small or large diameters. For each session,
we first determined the decile whose average pupil diameter was closest to 50% of maximum pupil dilation (“central”
decile). We then found the set of “low pupil sessions” (those for which the average pupil diameter of trials in the first
decile bin was < 33% of maximum dilation; 10 sessions total) and “high pupil sessions” (those for which the average
pupil diameter of trials in the last decile bin was > 67% of maximum dilation; all 15 sessions). For all low pupil (high
pupil) sessions, we then tested for a significant difference between the accuracy in the central decile and the accuracy
in the first decile (last decile) using the Wilcoxon signed-rank test (Fig. 2I).

Network models

For stimulus decoding in the network models, we sampled a subset of the excitatory cells to be used as features in
the classification analysis. In the main text (Fig. 5E,F), decoding was performed using ensembles composed of 10% of
the excitatory cell population. For the uniform networks, these ensembles were generated by drawing a random sample
of cells from the entire excitatory population. For the clustered networks, we randomly sampled an equal number of
cells from each subpopulation (i.e, from each cluster and the background population) until the correct sample size
was reached; since the total number cells to be sampled was not evenly divisible by the number of subpopulations,
the number of cells remaining after sampling equally from each subpopulation were drawn from a randomly-chosen
set of the clusters and/or background population. We also explored the impact of using different ensemble sizes in the
decoding analyses (Fig. S4). Specifically, we considered sample sizes of 1, 2, 4, 8, 16, and 32 neurons/subpopulation,
corresponding to a total of 19, 38, 76, 152, 304, and 608 features (~ 1.2%, 2.4%, 4.8%, 9.5%, 19.0% and 38.0% of the
excitatory cell population).

For a given cell ensemble, the cross-validated decoding accuracy was computed according to the procedure described
in the previous section. For this analysis, we used 100 ms spike-count windows incremented in 20 ms steps along
the length of a trial. For a given network realization and arousal level, results were based off 30 trials per each of
5 stimuli, and the decoding accuracy was averaged over 25 different runs, where each run used a different random
subsample of cells.

The decoding analysis was performed at several values of arousal for each network realization. For a given network
realization, we summarized the impact of arousal by computing the percent change in decoding accuracy at each
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arousal level relative to the maximum accuracy obtained across all arousal levels. At each level of arousal, we then
computed the average percent change in accuracy across ten different network realizations (Fig. 5E,F).

Relationships between firing rate and arousal
Ezxperimental data

To examine how spontaneous firing rates varied with arousal in the data (Fig. S2A-E), we split the spontaneous
periods of each session into smaller windows of length 100 ms. For each window, we computed the spike count of
every cell and the average pupil diameter over the window duration. Windows from all spontaneous periods were
collected into a single dataset, and were then divided into ten groups according to the deciles of their pupil diameter
distribution. For each decile bin, we computed (i) the average pupil diameter across all windows in the bin, and (%)
the average firing rate of each unit across all windows in the bin (see Fig. S2A,B for examples). Finally, we tested for a
monotonic relationship between spontaneous firing rate and arousal by computing the Spearman correlation between
a unit’s average firing rate in each pupil decile bin and the average pupil diameter in each decile bin (Fig. S2C). A
correlation with p < 0.05 was considered statistically significant, and the sign of the correlation indicated whether
the firing rate of the corresponding unit tended to increase (positive modulation) or decrease (negative modulation)
with pupil diameter; non-significant correlations indicated the absence of a clear monotonic relationship between
spontaneous firing rate and pupil diameter. We note that the above approach is similar to that used in Christensen
and Pillow [139]. Fig. S2D shows the fraction of units (averaged across sessions), with significant positive or negative
correlations computed with this method. Results for individual sessions are shown in Fig. S2E.

Network models

To quantify how spontaneous activity was impacted by arousal in the network models, we computed single-cell
firing-rates in the absence of sensory stimuli. For a fixed value of arousal, rates of all cells were computed during the
800 ms window preceding stimulus onset; in total, we used 150 trials (5 stimuli x 30 trials/stimulus) per network
realization. We then averaged the spontaneous rates of each neuron across trials, and computed the Spearman
correlation between the trial-averaged rate of each cell and the arousal modulation strength. A significant (p < 0.05)
positive/negative correlation indicated a cell whose firing rate tended to monotonically increase/decrease with arousal
strength. Fig. S2F shows the fraction of all neurons in the clustered networks that exhibited significant positive or
negative correlations with arousal strength. Similar results for the uniform networks are shown in Fig. S2G.

Determining stimulus-responsiveness

To determine if a cell responded significantly to a particular stimulus, we compared its pre- and post-stimulus
activity. Specifically, for each trial of a given stimulus, we computed cell spike counts in the 100 ms window preceding
stimulus onset and in the 100 ms window right after stimulus onset. For each cell, the pre- and post-stimulus spike
counts were then compared using the Wilcoxon signed-rank test, and the stimulus response was considered significant
if the two-sided p-value was < 0.05. In the experimental data, the number of trials per tone (before conditioning on
arousal state) ranged from 1076-1517, depending on the session.

Correlation-based clustering analysis

We analyzed noise correlation and tuning similarity matrices to look for evidence of functionally-organized neural
clusters in patterns of neural activity (Fig. 4). In what follows, we explain how noise correlations and tuning similarity
were computed in the model and data. We then describe the clustering procedure used to extract neural clusters
from noise correlation matrices, and the statistical methods employed to test whether the detected clusters were
meaningfully organized by tuning similarity.
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Noise correlations in the network models

We estimated noise correlations for random samples of cells drawn from either clustered or uniform networks.
For a given network realization of the clustered (uniform) model, we subsampled 10% of clustered (all) excitatory
cells at random. After subsampling, only cells that responded significantly to at least one stimulus were kept for
further analysis (see “Determining stimulus-responsiveness” for details). To estimate noise correlations, we computed
the spike-counts of each cell in the 100 ms post-stimulus window of every trial. We then computed the Pearson
correlation between the spike-count vectors of each pair of cells. To avoid capturing correlations driven by arousal-
or stimulus-related changes in firing rate, neuron-by-neuron correlation matrices were computed separately for each
stimulus and arousal level. A single, overall correlation matrix was then obtained by averaging across all conditions
(i.e., across all stimuli and arousals). For a given network realization, results were based off 30 trials/stimulus/arousal
level.

We also generated a set of trial-shuffled correlation matrices for each network. For a given stimulus and arousal level,
we randomly and independently permuted the trial spike-count vector of each neuron prior to computing pairwise
correlations; a single, trial-shuffled correlation matrix was then obtained by averaging across all stimuli and arousal
levels, as above. This independent trial-shuffling of the spike-count vectors destroys correlated variability, and leaves
behind only correlations that are expected by chance. We repeated this process 100 times, yielding a set of 100
trial-shuffled correlation matrices for each network realization.

Noise correlations in the experimental data

To estimate noise correlations in the experimental recordings, we began by computing single-cell spike counts in the
100 ms post-stimulus window in every trial. We also computed the average pupil diameter across the 100 ms window
preceding stimulus onset, and binned trials according to the deciles of the resulting pre-stimulus pupil diameter
distribution. To mitigate the impact of correlations due to arousal- or stimulus-related firing rate modulations, trials
were separated by tone and pupil decile, and the same number of trials was subsampled for each combination. Then,
for a given tone and pupil bin, the noise correlation between a neuron pair was defined as the Pearson correlation
between their spike-count vectors from that stimulus and arousal condition. Finally, an overall estimate of pairwise
correlations was obtained by averaging noise correlation matrices over 100 different trial subsamples and over all
stimulus and arousal combinations. Only cells that responded significantly to at least one tone were included in the
analysis (see “Determining stimulus-responsiveness” for details).

For each session, we also generated a set of trial-shuffled correlation matrices. For each tone and pupil bin com-
bination, we randomly and independently permuted each neuron’s spike-count vector prior to computing pairwise
correlations; a single, trial-shuffled correlation matrix was then obtained by averaging across tones and pupil bins, as
above. The shuffling process was repeated 100 times (once for each subsampling of the data), yielding a set of 100
trial-shuffled correlation matrices for each session.

Tuning similarity in the network models

To quantify the similarity between the stimulus responses of two neurons, we computed the correlation between
their trial-averaged evoked spike-counts for different stimuli. To begin, we computed a time-dependent spike-count for
each cell in every trial of a given stimulus using a 100 ms window sliding forward in 5 ms increments. The single-trial
stimulus response of a cell was then defined as its spike-count in the 100 ms window following stimulus onset minus
the time-averaged spike-count across the 800 ms period preceding the stimulus. The trial-averaged response was then
computed as the mean response across all trials of a given stimulus, aggregated over all arousal levels. Finally, the
tuning similarity between a pair of cells was defined as the Pearson correlation between their trial-averaged responses
to the five different stimuli.

Tuning similarity in the experimental data

The stimulus tuning similarity between each pair of (tone-responsive) neurons was determined from their trial-
averaged stimulus responses. For each cell, the single-trial stimulus response was defined as the difference between
the spike-counts in the 100 ms window following stimulus onset and the 100 ms window preceding stimulus onset.
The trial-averaged response was then computed as the mean response over all trials of a given stimulus, regardless of
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pupil diameter. Finally, the tuning similarity between a pair of cells was defined as the Pearson correlation between
their trial-averaged responses to the five different tones.

Hierarchical clustering

After obtaining a noise correlation matrix, we performed a clustering analysis to extract putative neural clusters
corresponding to functionally-coordinated groups of cells. Given the noise correlation r;; between cells ¢ and j, we
defined the distance between them as d;; = 1 — r;;. Hierarchical clustering [140] was then performed on the distance
matrix using SciPy routines. In hierarchical clustering, each neuron begins in its own cluster. The pair of clusters that
are closest — according to a certain “linkage criteria” — are then merged, and this is repeated until all neurons are in
a single cluster. The algorithm thus results in a hierarchical partitioning of cells into clusters, where with IV neurons,
the lowest level contains IV clusters and the highest level contains 1 cluster. Here, hierarchical clustering was executed
using ‘scipy.cluster.hierarchy.linkage’ with the ‘average’ linkage method, followed by ‘scipy.cluster.hierarchy.cut_tree’
to obtain the cluster partition at each level.

The number of clusters, k, is a free parameter. To determine the best solution, we defined a measure of partition
quality as

Q= (ry —17), (11)

where r¥¥ is the average correlation between cell i and other cells within its cluster (with self-correlation set to zero), r9

is the average correlation between cell i and cells outside its cluster, and (-) indicates an average over cells. Computing

the partition quality at each hierarchical level results in a curve Q(k); the optimal number of clusters k* was then

defined as argmax Q(k). The final output of the clustering procedure is a vector that contains the cluster label of
2

each neuron for the partition with k* clusters.

The clustering algorithm always yields a partition of neurons into clusters. It is therefore important to determine
whether the detected clusters are significant relative to surrogate data that does not contain true clusters. To this
end, we applied the same clustering procedure to observed and trial-shuffled correlation matrices, and determined
the optimal partitions in each case. We then computed a quality measure for each cluster in the optimal partition
of the observed (un-shuffled) data, and compared the observed statistic to the distribution derived from the optimal
clustering of the trial-shuffled data. For a given cluster ¢, the cluster quality was defined as

Qe = (1Y’ —19)iees (12)
where Y is the average correlation between cell ¢ and other cells within its cluster (with self-correlation set to zero),
ro
cluster c).

The null distribution of cluster qualities {Q""!'} was generated by computing the quality of each cluster in a given
cell were excluded). For each cluster in the observed data, we then computed a p-value as p = (1 4 byun)/(1 4+ muun),
where my1 is the total number of clusters in the null distribution, and b, is the number of clusters in the null
for multiple comparisons, detected clusters with p < 0.05/nps were considered statistically significant, where nqps is
the number of (non-trivial) clusters in the observed data (i.e., the number of comparisons). Fig. 4A,E show examples

r? is the average correlation between cell i and cells outside its cluster, and (-);e. indicates an average over cells in
trial-shuffled partition, and then aggregating the values across all shuffled partitions (trivial clusters containing only 1
distribution with a quality Q™! greater than or equal to the observed statistic Q°P. Using the Bonferroni correction
of observed and trial-shuffled cluster quality distributions for the network models and experimental data.

Cluster-based tuning similarity

The functional relevance of detected clusters was assessed with a permutation test, which quantified whether cells
in the same cluster had larger tuning similarity than expected by chance. To begin, we defined a test-statistic,
“cluster-based tuning similarity”, as

G = (s} = )iefer) (13)
, where s¥ is the average tuning similarity between cell i and other cells within its cluster (with self-similarity set

to zero), s? is the average tuning similarity between cell i and all cells outside its cluster, and (*)iefcry indicates an
average over cells in significant clusters). In general, G is large when the average tuning similarity between cells in
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the same cluster is much greater than between cells in different clusters. To determine if the cluster-based tuning
similarity was statistically significant, we compared the value of G computed from the optimal cluster partition
(“observed value”) to a null distribution obtained by randomly permuting cluster labels across neurons. Specifically,
we permuted cluster labels mperm = 1000 times, and computed a p-value as p = (14 bperm)/(1 + Mperm), Where bperm
is the number of permutations that yield a test statistic as large as the observed value obtained from the optimal
cluster labels. The cluster-based tuning similarity was considered significant if p < 0.05. Fig. 4D,H show examples of
the observed and permuted cluster-based tuning similarity in the clustered network model and experimental data. In
the clustered model, the cluster-based tuning similarity was always statistically significant (based on results from 10
cell subsamples from each of 10 different networks).

Validity of the clustering procedure

In the clustered model, ground-truth cluster identities are known. To quantify the accuracy of the clustering
procedure, we thus applied it to simulations of the clustered model and computed how well the clusters detected
by the algorithm agreed with the ground-truth ones. For a given network realization, we computed the optimal
clustering partition as described in the section “Hierarchical clustering’. To quantify the similarity between the true
cluster labels and those predicted by the clustering procedure, we then computed the “adjusted rand score” metric
as provided by scikit-learn. Using that metric, we found that the clustering algorithm yielded partitions that were
> 99% accurate (average score across 10 random cell subsamples from each of 10 different network realizations.

We also verified that the clustering procedure gave reasonable results when applied to simulations of the uniform
network model, which does not have true clusters. For a given network realization, we employed the clustering
algorithm and statistical test described in “Hierarchical clustering” to determine significant clusters. Using those
procedures, we found that only 0.2% of clusters detected in cell ensembles from the uniform model were statistically
significant (average over clustering results from 10 random cell subsamples from each of 10 different networks). These
results are consistent with the fact that the uniform networks do not have strong clustering.

Mean-field analyses

To obtain theoretical insight into the effects of the arousal modulation on network activity, we performed a series of
mean-field analyses for the clustered model. Mean-field theory (MFT) is a commonly-applied technique for studying
the collective dynamics of large, recurrently-connected networks of integrate-and-fire neurons [141], and has previously
been used to study attractor dynamics in networks of LIF neurons with clusters [19, 22, 24, 25]. In what follows,
we first explain the mean-field analysis carried out for the full clustered networks with both excitatory (E) and
inhibitory (I) assemblies (associated with Fig. 6A of the main text). We then describe the effective MFT performed
on the reduced 2-cluster network (associated with Fig. 6C-E of the main text). Because observed changes in stimulus
processing result only from changes in network dynamics induced by the arousal modulation (versus from changes in
the stimuli themselves), all mean-field analyses were performed for the “spontaneous” condition (i.e., in the absence
of sensory stimulation).

MFT for the full clustered networks

Consider a network of LIF neurons composed of p E clusters, p I clusters, 1 “background” (unclustered) E population,
and 1 “background” I population, for a total of 2(p + 1) populations. We label the populations with a pair of
superscripts (a, ). The first superscript o € {F, I} labels populations as excitatory or inhibitory, and the second
superscript v € {1, ...,p+ 1} specifies the population number, where the first p indices correspond to the cluster labels
and the p + 1 index corresponds to the background population. All neurons in the same population described by a
specific (a, «y) pair have the same intrinsic parameters and the same recurrent connectivity properties (i.e., receive the
same number and strength of inputs from their own and other populations). If the external input parameters were
also homogeneous across population (c, ), then the statistics of the overall input to each cell would be identical and
all cells in the population would share the same average steady-state firing rate, v*7. The situation is more complex
in the simulations, because the level of external input varies from cell-to-cell (due to the quenched randomness in
the external drive component of the arousal modulation; see “Arousal modulation”). However, for the mean-field

analyses, we neglect the heterogeneity in the external input rates vg,, ; and assume that all neurons in population
(a,7y) are subject to the cell-average external rate v, = ﬁ > i Vext,i- Thus, in the mean-field, all neurons in the
same population (¢, y) are statistically identical and are described by the same average firing rate »*?. Though here
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we neglect the quenched variability in the external inputs, we note that it may be possible to incorporate it using an
extended mean-field framework [142].

The goal of the mean-field analysis is to solve for the steady-state firing rates of each population. To proceed,
one makes a set of assumptions about the operating regime of the network, namely, that each neuron’s spike train
is described by a stationary Poisson process, that the spike trains of different neurons are independent, and that
individual spikes from a presynaptic neuron induce only a small change in the voltage of a postsynpatic neuron
relative to it’s firing threshold [141]. Under these conditions, one can make the diffusion approximation and replace
the presynaptic input to population (a,7) by a Gaussian white noise with mean p®? and standard deviation o®7.
Assuming exponentially-decaying synapses with time constant 75, the dynamics of a neuron 4 in population (a,7)
becomes

dver
e Tl = V) I () (19
Ts c%t ==L (t) + p*7 + o ni(t) (15)

where 7% is the membrane time constant, V;*7 is the membrane potential, I;"7(¢) is the total synaptic input from
both external and recurrent sources, and 7;(¢) is a Guassian white noise obeying (n;(¢)) = 0 and (n;(¢t)n;(t')) = §(t—t').
The mean p*7 and variance (0®7)? of the input depend on the network architecture. For the clustered networks
studied here, we have

p
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where 1% is the firing rate of population (8, \) with 8 € {E, I}, A € {1, ...,p+ 1}; all other parameters in Eqs. 16-17
are defined in the section “Network modeling”. For each population, p and o2 contain recurrent contributions from
the same population and from the other populations in the network, as well as an external contribution from the
background drive. The system defined by Eqgs. 14- 17, along with the threshold and reset conditions for the membrane
potential, can be analyzed using the Fokker-Planck framework [141]. When 7, << 7%, the steady-state firing rate of
neurons in population (a,-y) satisfies the self-consistent relationship

VT = O (1), 0% ()] (18)

In Eq. 18, v = [vF1, . vBrtl L1 yIpH1] g the vector of firing rates of each population and 7 is the transfer
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function for population («, "), given by

@,y —1
g
O = |1, + 70V e””%rfc(—:r)d;v] (19)
a”
where
N Vo ooy
@ =t %(Taﬁ + a7 /TS (20)

‘/ta o ozluoz,'y

o, . L

@ = \/77_(17;"&,7 +a\/Ts /TS (21)
m

and with a = —((1/2)/v/2 [143].

To find allowed states of the network, we numerically solved the set of 2(p 4+ 1) self-consistent equations defined
by Eq. 18 in conjunction with Egs. 16 and 17. Importantly, multiple solutions — corresponding to different numbers
of active and inactive clusters — can exist for the same set of parameters. In such cases, the solution obtained will
depend on the initial guess for the firing rate vector. To systematically deal with this fact, we looked for solutions
with n4 active clusters and p — n4 inactive clusters by setting the initial rates for the first n4 E and first na I
populations to Vfigh and V}{igh, respectively, and the initial rates for the remaining E and I populations to Vﬁw and
v+ respectively. By choosing Vﬁgh > v, and I/I{igh > vl we biased the numerical solver to search for solutions
with n4 active clusters; the solution space was then mapped by varying n4 € {0, ..., p}.

We denote a self-consistent solution with n 4 active clusters as v, ,. The solution in which all clusters have the same
firing rate (i.e., na = 0) is referred to as the “uniform state” and solutions with n4 > 1 active clusters are referred
to as “cluster states”. For cluster states, the na active clusters of type o € {E, I} have steady-state rate Vo p and
the p —n 4 inactive clusters of type a have rate vy, 1» Where v > v . Depending on the network parameters,
cluster states may not be found.

Selecting JEF for the MFT

To study the impact of the arousal modulation in the MFT, we first examined the effect of the E-to-E intracluster
weight factor J£¥, which controls the dynamical regime of the network [22]. We varied JF¥ € [12,19.5] using steps
of size AJEE = 0.025. At each JfE, we searched for self-consistent solutions v, , with ng € {0,...,5} active clusters.
Whether or not a cluster solution was found for a particular n4 > 1 depended on the value of J fE (Fig. S5A).

To compare to the MFT, we ran an additional set of network simulations in which J fE was varied in the range
[12,19.5] in steps of size AJ fE = 0.75. For these simulations, no arousal modulations or sensory stimuli were applied,
and we ran 20 trials per each of 5 network realizations; all other parameters were as described in Table S1 and the
“Network modeling’ section. For each simulated trial at a given J fE, we computed (i) the active cluster rate Z/EA’T
conditioned on a given number of active clusters n4 (see “Cluster firing rates”), (ii) the probability P(n4) of finding
na active clusters (see “Cluster firing rates”), and (iii) the population average firing rate of all E neurons. Analyses
were based on 2.3 seconds of simulated activity per trial, and all quantities were averaged across trials and network
realizations. Results are shown in Fig. S5B; note that the active cluster rate I/EA,T is only plotted for values of n4
satisfying P(na) > 0.2.

We observed that cluster states emerged at lower values of JfE in the simulations compared to the mean-field
(Fig. S5A,B). This is potentially due to the finite-size of the simulated networks and the inexact incorporation of
synaptic dynamics in the mean-field. Although the mean-field does not quantitatively capture the behavior of the
simulations, it can still provide insight into the effects of the arousal modulation. In order to qualitatively compare
the theory and simulations as a function of arousal, we considered a fixed intracluster weight factor for the simulations

(JEEm)- We then ran the mean-field at a larger intracluster weight factor J£¥ ., which was chosen to achieve the

, sim
best match with simulations run at .J. f’Esim in the absence of the arousal modulation (i.e, using the baseline network

parameters). More specifically, we fixed J fiim

m

= 15.75 (default value used throughout the main text), and computed

the active cluster rate sz sim [ £E = 15.75] conditioned on the most likely number of active clusters n’ = 3. In the
mean-field, we then determined the value of J fE for which the active cluster rate sz 4.mfe most closely matched the

value V%

n;,T,sim[J fE = 15.75] from the simulations. This procedure yielded a mean-field intracluster weight factor of
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JEE + e = 16.725 (Fig. S5A), which was then used for the mean-field calculations performed as a function of arousal
in the main text (Fig. 6A).

MFT as a function of arousal strength

The mean-field analysis provides the steady-state firing rates of active and inactive clusters, conditioned on a
particular number n4 of active clusters. Together, these rates summarize the collective activity patterns of the
network. To elucidate how the arousal modulation impacts the dynamics of the clustered networks, we fixed the
mean-field E-to-E intracluster weight factor J e according to the procedure described in “Selectmg J +E for the
MFT”. We then ran the mean-field analysis as a function of the arousal strength, sampling the same data pomts
as the simulations. In the mean-field, varying the arousal strength impacts the E-to-E synaptic weights (J5Z, JEE,

1%

ext) All other network parameters were set to the values

JEF) and the mean external inputs to E and I cells WE,
given in Table. S1.

For a particular choice of n4, we solved for the active and inactive mean-field rates, v, , + and v,,, |, as a function
of arousal strength. The mean-field rates were obtained using the procedure described previously in “MFT for the full
clustered networks”. This process was then repeated for different numbers of active clusters n4. In general, whether
or not a cluster state solution was found for a particular n4 > 1 depended on the arousal level; beyond a certain
arousal strength only the uniform state was found.

Fig. 6A of the main text shows the mean-field rates for active and inactive excitatory clusters as a function of

arousal. More specifically, for a given arousal level, the plot shows the cluster rates VEE’T and VEZ’ 1» where nj; was the

ext)

most frequently observed number of active clusters in the simulations at that arousal level (see section “Cluster firing
rates”; Fig. S5C). If the cluster state solution was not found for a particular arousal level, then the mean-field rate
corresponding to the uniform solution is shown. Note that because the mean-field analysis used a different intracluster
weight factor than the simulations (JE2 . # JEE :see “Selecting JE¥ for the MFT”), the comparison between the
mean-field and simulations in Fig. 6 is only meant to be qualitative.

Effective MFT for reduced 2-cluster networks

The MFT described thus far yields the steady-state cluster firing rates, but it cannot make predictions about
dynamical transitions between the metastable states. To further understand the switching behavior of the clustered
networks (Fig. 6D,E), we adapted the effective MFT developed in [69] and later utilized in [24, 25]. For these
calculations, we analyzed a reduced version of the full LIF clustered networks composed of two excitatory clusters
E, and Es, one background (unclustered) excitatory population Ej,, and one background inhibitory population I,
(Fig. S5D). This 2-cluster network was constructed as described in the section “Recurrent network architectures”, with
the exception that we did not depress inter-cluster weights (see Table S2 for reduced network parameters). With the
chosen parameters (and the arousal level set to 0%), the standard MFT predicts the presence of a uniform fixed point
and two configurations in which one cluster is active and the other inactive (Fig. S5E). The effective MEFT enables
insight into dynamical transitions between the two cluster states via a dimensionality reduction process that results
in a description of the cluster states as wells in an effective potential energy landscape.

Following Mascaro and Amit [69], the analysis proceeds by splitting the network’s populations into two groups:
(i) a set of “in-focus” populations whose dynamical behaviors are of interest, and (i) a set of “ambient” popula-
tions. Here, the two clusters E; and Fy are taken as the in-focus populations, and their rates v = (V%1 52)
are treated as parameters. The two background populations, Ej and I, are considered ambient populations with
rate vector v4 = (v v1:?). For some frozen combination of the in-focus rates v = vf, the rates v of the am-

mn’

bient populations are allowed to adapt, and are computed self-consistently by solving the coupled system of equations

ln’

JEb (I)E,b[uE,b(VlF VA) E,b( F A)} (22)

mn? n?

b_ (I)I,b['uI,b(VF VA) ol b(VF VA)} (23)

The solution to Eqgs. 22 and 23 is denoted as v (vf). Feedback from the ambient populations then induces new

m
output rates vE, = (v2!

ot = vE ) for the in-focus populatlons which are given by

out out
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z/fu’tl = ¢b! [,uE’l (uil;:, VA(uiﬁ)),crE’l (uiﬂ, VA(yilg))} = (bfffl [uﬁ} (24)
vt = O P2 (ulh w A wh), o2 (vl v () | = @5 (] (25)

In Eqgs. 22-25, the u’s, ¢’s, and ®’s are computed similarly to Egs. 16, 17, and 19, but adjusted for the 2-cluster
system.

The induced rates of the in-focus populations, v, are in general different from the initial rates, v£. By varying v

out»
: : : E1 E2
F. — vl at each point, we obtain a flow map in the (v; '

and computing the difference v o

out

, V") plane (see Fig. S5F).
This flow map captures the response of the clusters to a particular set of quenched input rates (ui]i’l,ui]i’2), and
contains the effect of feedback from the ambient populations. In this way, the map reveals the system’s fixed points
and the flow of the cluster rates v¥! and v¥? away from the stationary points. Examination of this reduced 2D
description indicates that the two cluster states are attractors of the system, and are linked by an unstable fixed point
corresponding to the uniform state (v2! = v:2; Fig. S5G).

To understand how the arousal modulation impacts the cluster dynamics, we performed the effective MFT for
several values of arousal. For these analyses, we used the same implementation of arousal described previously in the
section “MFT for the full clustered networks”, wherein the quenched randomness in the external inputs is neglected.
For each arousal level, we obtained a compact representation of the system by numerically integrating the 2D flow-field
along a trajectory connecting the two cluster states via the unstable fixed point (see Fig. S5F). This process results
in a 1D effective potential with two wells — corresponding to the two cluster states — separated by a barrier whose
maxima corresponds to the uniform state (Fig. S5H; Fig. 6C,D). The height h of this barrier is related to the rate of
stochastic transitions between the two cluster states [21, 24, 25, 71]. Computing the barrier height as a function of
arousal strength thus provides insight into the effects of the arousal modulation on the cluster dynamics, with lower
barriers indicating faster switching and shorter-lived cluster activation periods (Fig. 6E).

Measures of cluster activity in the model
Cluster firing rates

To compute cluster firing rates in the clustered model, we first computed the time-dependent firing rate r;(t)
of each neuron ¢ by convolving its spike train with a Gaussian kernel of width ¢ = 25 ms, incremented in 1 ms
steps. The firing rate r.(t) of a given cluster ¢, was then computed as the average rate of its constituent neurons:
Tc(t) = <Ti (t)>i € cluster c-

To quantify how cluster activity varied with arousal (Fig. 6B) or the intracluster weight factor J,, (Fig. S5B), we
computed active and inactive cluster firing rates during the pre-stimulus period of each trial (here taken as the window
spanning [-0.8, -0.1]s relative to stimulus onset). To determine the active and inactive rates, we first computed the
time-dependent cluster firing rate r.(t) of every excitatory cluster in each trial (see section “Cluster firing rates”).
We then computed the average pre-stimulus cluster firing rate across time and trials, which we denote as (r2*¢). In
a given trial, a cluster was considered “active” at time ¢ if its baseline-subtracted firing rate, g.(t) = r.(t) — (rbase),
was greater than zero (i.e., g.(t) > 0). Given this criteria for cluster activation, we determined the number of active
clusters n 4 as a function of time during the pre-stimulus period. By pooling across all time points with a particular
value of n 4, we then calculated the probability of finding n4 clusters active, as well as the average rate of active
and inactive clusters as a function of n4. We denote the trial-averaged active and inactive cluster firing rates for a
given ny as rp, + and r,, |, respectively, and the trial-averaged probability of finding n4 active clusters as P(ng).
We determined the most likely number of active clusters, n%, as the value corresponding to the maximum of the
probability P(na) (after averaging across network realizations).

At a fixed arousal level, only some values of n4 occur with high likelihood; moreover, the most likely number of
active clusters (n%) varies with arousal (see Fig. S5C for the probability of finding n4 active clusters at different
arousal levels). To summarize the behavior of the clustered networks as a function of arousal, we thus computed the
active and inactive cluster rates conditioned on the most likely number of active clusters at each level of arousal (results
shown in Fig. 6B). This analysis was based on 150 trials per network realization (5 stimuli x 30 trials/stimulus), and
results were averaged over 10 different networks. See “Selecting J. fE for the MFT’ and Fig. S5 for details on the
analysis of active and inactive cluster rates as a function of the intracluster weight factor JEE.
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Cluster timescales

To calculate the average cluster interactivation and activation timescales, we analyzed long simulations of spon-
taneous activity (see the section “Numerical simulations” for details). For each trial, we used the threshold criteria
described in “Cluster firing rates” to determine the time points of cluster activation (discarding the first 0.2 seconds
and last 0.1 seconds of each simulation). The cluster interactivation interval and activation time were then calculated
as the average duration of all cluster interactivation and activation periods, respectively. Results were then averaged
across 30 trials per network realization. Fig. 6G shows the cluster interactivation and activation timescales as a
function of arousal (average across two different network realizations).

Cluster signal

To calculate the cluster signal (Cy; Fig. 7B), we first computed the time-dependent firing rate r.(t) of each excitatory
cluster in every trial (see section “Cluster firing rates”). From the individual cluster rates, we next computed the
average time-dependent rate across all targeted clusters, rr(t), and the average time-dependent rate across all non-
targeted clusters, rn(t). We then took the difference between the average targeted and non-targeted cluster rates,
Arpn(t) = ro(t) —rn(t), and averaged the difference across the peak decoding window (100 ms window corresponding
to peak decoding accuracy; see “Population decoding”). This procedure resulted in a single number Ari y for each
trial. The cluster signal was then defined as the average of Ar}  across trials. For each network realization, the
cluster signal was computed using 150 trials (5 stimuli x 30 trials/stimulus); results were then averaged across 10
different network realizations.

Cluster reliability

To compute the cluster reliability (C,; Fig. 7C), we began by computing the time-dependent, baseline-subtracted
rate of each cluster, g.(t) = r.(t) — (r2s) (see section “Cluster firing rates”). The baseline-subtracted rate was then
used to determine if a given cluster was active during the peak decoding window (see “Population decoding’) in a given
trial. In particular, defining g%V as the average of g.(t) over the window of interest, a cluster was considered active
during that window if gXV > 0. Given this criteria, we computed the fractions of targeted and non-targeted clusters,
Jr, and fx,, that were active during the peak decoding window in each trial. We then took the difference between
those two fractions, Afr, n, = fr, — fn;, and defined the cluster reliability as the average of Afr, n, across trials.
For each network realization, the cluster reliability was computed using 150 trials (5 stimuli x 30 trials/stimulus);
results were then averaged across 10 different network realizations.

Fano factor analyses

We used the Fano factor to characterize single-cell spiking variability in both the clustered network model and the
experimental data. For a given cell, the Fano factor (FF) is defined as

var|nep)

= (Tsp)

; (26)

where ng, indicates the spike count of the cell within a fixed time window, and where var[-] and (-) indicate the
variance and mean across repeated trials (or observation windows), respectively. In both the model and the data, we
computed the FF during both spontaneous and evoked conditions.

Network model

In the clustered network model, FFs were computed across 30 trials/stimulus and then averaged across 5 stimuli
for each network realization at a fixed arousal level. For this analysis, we focused on cells in the stimulated excitatory
clusters (and in the counterpart inhibitory clusters). Cells that had a low spontaneous rate of < 1 spike/second at
any arousal level were excluded from the analysis. To compute the FF of a given cell for a particular stimulus, we
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binned the spikes in each trial using a 100 ms window incremented in 20 ms steps. The FF was then computed in each
time bin according to Eq. 26, yielding a time course FF(¢). The spontaneous FF (FFg,on) was defined as the value
of FF(t) in the bin immediately preceding stimulus onset. To summarize the evoked FF, we averaged the single-cell
timecourses FF(t) across the relevant set of cells for each stimulus and then across all stimuli; we then determined
the time point tgp,,;, corresponding to the minimum of the cell- and stimulus-averaged trace. For a given cell and
stimulus, the evoked FF, (FFqyoked) Was then defined as the value of FF(¢t) at the time tpp,_, . For each cell and
stimulus, we also computed the difference between the spontaneous and evoked FFs: AFF = FFq,ont — FFevoked. To
summarize the results, we averaged each quantity across the relevant set of cells for each stimulus and then across all
stimuli; we refer to these overall values as (FFypont), (F Fevoked), and (AFF). Fig. 8A-C show (FFgpont), (FFevoked)s
and (AFF), respectively, as a function of arousal (where red markers and error bars indicate the mean +/— 1 SD across
10 network realizations). Figs. STH-J also show the impact of varying the spike-count window length on (FFgpont).

Ezxperimental data

To compute evoked FFs as a function of arousal, we computed the average pupil diameter across the 100 ms
pre-stimulus period of each trial; trials were then split into ten groups according to the deciles of the pre-stimulus
pupil diameter distribution (using the procedure described previously in “Single-cell discriminability”). To compute
spontaneous FFs, the spontaneous blocks of each session were divided into 100 ms windows, and the average pupil
diameter was computed across each one; windows were then grouped by pupil diameter, using the same partitions
as for the evoked data. This procedure ensured that spontaneous and evoked Fano factors were evaluated across
similar pupil dilation ranges. To account for differing numbers of windows and trials in each pupil decile partition,
we subsampled the data such that all pupil partitions contained the same number of windows and trials per tone.

For the spontaneous data, the spike count of each cell was computed in each window within a given pupil-based
partition. The FF of each cell i was then computed via Eq. 26, and a final estimate of the spontaneous Fano factor,
F Fypont,i, was obtained by averaging across 100 random subsamples of the data. For the evoked FF, trials were first
aligned to stimulus onset. In each trial, spikes from each cell were binned using 100 ms windows incremented in 1
ms steps. Using the trials for a given tone and pupil partition, FFs were calculated in each time bin (up to 150 ms
after stimulus onset) according to Eq. 26, and results were averaged across 100 random subsamples of the data. This
process yielded a time course F'F; 4(¢) for each cell ¢ and tone s. To summarize evoked FFs, we averaged the timecourse
FF; s(t) across the tone-responsive cells for a particular stimulus (see “Determining stimulus-responsiveness’) and
then across all stimuli. We then determined the time point tpp,,, corresponding to the minimum of the cell- and
stimulus-averaged trace. For a given cell i and tone s, F'Feyoked,i,s Was defined as the value of F'F; 4(t) at the time
tFF,..,- Finally, we obtained an overall evoked FF for cell i — F'Fyyoked,; — by averaging F'Feyoked,i,s across all tones
that induced a significant response in that cell. In each pupil bin, we also computed the difference AF F; between the
spontaneous and evoked FFs of cell ¢: AFF; = FFypont,i — FFovoked,i- Only cells that responded to at least one tone
and that had an average spontaneous rate > 1 spike/second in every pupil bin were included in the analyses.

To examine the overall effect of arousal on F'Fypont, F'Fevoked, OF AFF, we aggregated each quantity across cells
and sessions in a pupil-dependent manner. For each session, we first calculated the average pupil diameter of the
trials in each pupil decile partition; we then binned the FF data in each pupil decile according to the decile’s average
pupil diameter. For this discretization, we used ten non-overlapping pupil bins, each of width 10% max-normalized
pupil diameter. If more than one pupil decile from a given session fell into the same pupil diameter bin, we stored
the average value of each data point across those deciles. We then repeated this process for each session, yielding
a collection of single-cell F' Fipont, F'Fevoked, 08 AFF values in each pupil diameter bin. Note that because different
sessions explored different pupil dilation ranges, not all sessions contributed to every pupil diameter bin; specifically,
there was more data at intermediate diameters relative to very small or large ones. To summarize how the FF
quantities varied with arousal, we computed the average of each quantity across all cells in each pupil diameter bin.
We denote these cell-averaged quantities as (F Fspont), (F' Fevoked), and (AFF). The results of this analysis are shown
in Fig. 8D,F,H, where horizontal error bars indicate pupil diameter bins, and where red markers and vertical error
bars indicate the cell-average +/— 1 SEM of each FF quantity (FFipont; F Fevoked, 0r AFF) over the cells in each
pupil bin. Figs. STE-J also show the effect of varying the spike-count window length on FFgyont.

To test for a difference in each FF quantity between low and high arousal states, we found the set of sessions
that expressed a broad range of pupil diameters. Specifically, we considered sessions for which the average pupil
diameter of trials in the first pupil decile was < 33% of maximum dilation and for which the average pupil diameter
of trials in the last pupil decile was > 67% of maximum dilation (9 sessions in total). We then pooled the single-
cell FF quantities in the first and last pupil decile partition across all sessions with a broad pupil range. This
yielded a “small pupil” and “large pupil” dataset for each FF quantity: (i) {FF; small puPil} and {FF, large pupﬂ},

spont spont

(ii) {FEsmall pupily o pq (FEEee Pupily i (i) {AFFsmall pupil) anq {AF Flarse pupill - For cach FF quantity, the

evoked evoked
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small pupil and large pupil groups were compared using the Wilcoxon signed-rank test. The results are summarized in
Fig. 8E,G,I, which show the distributions of the difference in each FF quantity between small and large pupil diameters
(Pl popil  ppjoree pupil | ppsmall pupil o plarge pupil g A psmall pupil - A pplarge pupil) - Fig. S7A-C also show
the small and large pupil FF quantities separately (both for single cells and population averages).

To test for overall decreases in neural variability during stimulus presentation relative to spontaneous conditions, we
marginalized the data in a session across pupil diameters. Specifically, we combined the evoked trials or spontaneous
windows from each pupil decile partition (see above) into two aggregate datasets. Using the aggregate datasets, we
then followed the methods described above to compute (i) a pupil-aggregated spontaneous Fano factor F Fypont,; of
each cell 4, and (ii) a pupil-aggregated evoked Fano factor F Fyyoked,i Of each cell . Only cells that responded to at
least one tone and that had an average spontaneous rate of > 1 spk/second were included in the analysis. To test
for stimulus-induced variability quenching, we pooled the single-cell F'Fi,ont and F'Feyoked values across all sessions
to obtain two groups of data: {FFeyokea} and {F Fypons}. We then compared {F Fevoked} and {F Fypons} using the
Wilcoxon signed-rank test (Fig. S7D).

Variability of interspike intervals

Spike train irregularity was quantified by computing the coefficient of variation of interspike interval (c¢vISI) distri-
butions during spontaneous activity. Given the interspike-interval (ISI) distribution of a single cell, the ¢vISI is given
by

cvISI = @, (27)

H1ST

where o1g1 and gy are, the standard deviation and mean of the ISIs, respectively [144]. The cvISI is equal to 0 for
regular, clock-like spiking and is equal to 1 for Poisson spike trains.

Network model

In the clustered model, single-neuron cvISI values were estimated from several simulations (trials) of spontaneous
activity at a fixed level of arousal. First, we computed the ISIs of each cell in a given trial. We then collated the ISIs
across all trials into a single distribution (separately for each cell). The spontaneous cvISI of a given cell (cvISIgpont)
was then computed from its trial-aggregated ISI distribution. At each arousal level, calculations were based on 30, 2.5
second-long trials of spontaneous activity. Results were summarized as the average cvISIspont across all clustered cells
that had an average firing rate of at least 1 spike/second at each arousal level. We refer to this population averaged
quantity as (cvISIspont). Fig. S6A shows (cvISIgpont) as a function of arousal, where each data point indicates the
mean across 2 network realizations.

Experimental data

To compute cvISIs in the neural data, the spontaneous blocks of each session were split into 2.5 second-long windows,
and the average pupil diameter was computed across each one. In order to obtain similar arousal-based partitions
of the data across different analyses, the spontaneous windows were then grouped — based on their pupil diameter —
into one of the ten decile partitions of the pre-stimulus pupil diameter distribution (same splits used for the neural
discriminabilty analysis; see “Single-cell discriminability”). This discretization allowed us to evaluate changes in the
spontaneous cvISI (cvISIgpont) across a broad range of arousal states while maintaining several trials in each pupil
decile split. Since different pupil diameter partitions contained different amounts of data, we subsampled the same
number of windows from each partition. For a given pupil-based split of the data, we then computed the ISIs of
each cell in every time window. The single-unit ISIs were then combined across all time windows in the given pupil
partition, and the cvISIspont of each cell was computed from its trial-aggregated ISI distribution. This was repeated
for 100 different random subsamplings of the data, and a final estimate of cvISIspont in each pupil partition was
computed as the average across subsamples. Only cells that had an average spontaneous firing rate of at least 1
spike/second in all pupil partitions were included.

To examine the average behavior of cvISIipont as a function of arousal, we combined the data over cells and
sessions in a pupil-dependent manner, using the method described in “Fano factor analyses”. The result is shown
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in Fig. S6D, where horizontal error bars indicate the pupil diameter bins, and where red markers and vertical error
bars indicate the average (cvISIgpont) +/— 1 SEM across all cells in each pupil bin. To quantitatively compare
cvISIspont between low and high arousal conditions, we used the procedure described previously for the FF quantities
(see “Fano factor analyses’). First, we found all sessions that expressed a broad range of pupil diameters. We then
pooled the single-cell cvISIgpon; values in the first and last pupil decile partition across all of those sessions (9 in

total), yielding two groups of data: {cvISIZ™2! PUPI 5nd {evISIE™Ee PUPlY - Finally, the small pupil and large pupil
spont spont

groups were compared using the Wilcoxon signed-rank test, and results were visualized by plotting the distribution

of the difference cvISIERal Pupil _ cypglarse pupil (pie S6E). Fig. S6F,G also show cvISIEmN Pupil g cygyiaree pupil

spont spont spont spont
separately (for both single cells and population averages).

Spectral analyses

We utilized spectral analyses to characterize the temporal structure of spike trains during spontaneous periods in
both the network model (Fig. S6B,C) and the experimental data (Fig. S6H-L). To compute the power spectrum of a
neuronal spike train from a single trial (time window) of length 7', we first binned the spike train at a fine temporal
resolution of At = 1 ms. The power spectrum of the binned spike train was then estimated using the multitaper
method applied to point processes, as described in [145] and numerically-implemented in [146]. For the multitaper
estimates, we used a time-bandwidth product of TW = 2 and averaged over 2I'W — 1 = 3 tapers. The multitaper
estimate of the spectrum from a given trial was then normalized by the average firing rate of the neuron across
that trial; this rate-normalization is equivalent to normalizing the spectrum by that of a Poisson process with the
same firing rate. Normalized spectra for a given neuron were then averaged across all trials of a particular condition
to obtain a final, normalized power spectrum Shorm(f). The low-frequency power was computed as the average of
Shorm (f) between 1-4 Hz.

Network model

In the clustered network model, single-neuron spectra were estimated from several simulated trials of spontaneous
activity conditioned on a particular value of arousal. Specifically, for a given network realization and arousal level,
we used the method described above to compute the normalized spectrum Sporm,i(f) and the low-frequency power
PSI;,OHM of cell 4; these calculations were based on 30, 2.5 second trials of spontaneous activity. To summarize the
overall extent of low-frequency fluctuations, we computed the average low-frequency power across all clustered cells
that had a firing rate of at least 1 spike/second for all arousal levels. We refer to this cell-averaged low-frequency
power as (P, spont). Fig. S6B shows the population-averaged power spectrum (rate-normalized) and Fig. S6C shows

(Pr spont) as function of arousal (averages across 2 network realizations).

Ezxperimental data

To compute power spectra in the experimental data, the spontaneous blocks of each session were divided into 2.5
second-long windows. The windows were then grouped according to pupil diameter using the same scheme that was
implemented for the c¢vISI analysis (see “Variability of interspike intervals”). Before computing the power spectra in
a given session, we subsampled the same number of windows from each pupil decile partition (we used the maximum
possible number of windows given the distribution across pupil partitions); results were then averaged across 50
random subsamplings. For these analyses, we only included cells that had an average spontaneous firing rate > 1
spike/second in all pupil decile partitions, and that had a non-zero spike count in all sampled time windows.

For each pupil decile partition in a session, we computed the normalized spectrum Sporm(f) and low-frequency
power P, spont Of each cell. To examine overall trends in P, spont as a function of arousal, we aggregated the data over
cells and sessions in a pupil-dependent manner, using the method described in “Fano factor analyses’. The result is
shown in Fig. S6I, where horizontal error bars indicate the pupil diameter bins, and where red markers and vertical
error bars indicate the cell-average low-frequency power (P, gpont) +/— 1 SEM in each pupil bin. To compute the
cell- and session-averaged power spectrum as a function of arousal (Fig. S6H), we followed the same procedure, but
used three large pupil bins for combining data across sessions ([0 — 33)%, [33 — 67)%, and [67 — 100]% of maximum
dilation).

To test for overall changes in low-frequency power between low and high arousal states, we used the method
described previously for the FF quantities (see “Fano factor analyses’). First, we found all sessions that expressed a
broad range of pupil diameters. We then pooled the single-cell P, spont values in the first and last pupil decile partition
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across all of those sessions (9 in total), yielding two groups of data: {Pﬁf’;‘zlolnfupil} and {Pﬁgiinﬂupﬂ}. Finally, the
small pupil and large pupil groups were compared using the Wilcoxon signed-rank test, and results were visualized by

plotting the distribution of the difference Pfﬁsgnﬁupﬂ - Pﬁ?;ﬁinﬁwil (Fig. S6J). Fig. S6K,L also show individual values

small pupil large pupil . .
of FY spont and Pp oo (for both single cells and population averages).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis and simulations were carried out in Python, and utilized the NumPy package [147], SciPy library
[148], scikit-learn library [149], and Nitime library [150]. Details of the statistical tests used in this study are provided
in the figure legends and/or relevant sections of the Methods. For all statistical comparisons of two paired samples,
we used the non-parametric Wilcoxon signed-rank test (implemented with the ‘scipy.stats’ module from SciPy). For
these analyses, “n” refers to either the number of trials, number of cells/units, or the number of sessions (as indicated
for each analysis), and significance was determined based on the two-sided p-value. For the clustering analysis, cluster
significance was assessed by comparing the observed cluster quality against the distribution obtained under a trial-
shuffled null model, and the significance of the cluster-based tuning similarity was assessed with a permutation test
(see “Correlation-based clustering analysis” for details). When relevant, significance levels were corrected for multiple
comparisons using the Bonferroni correction. In cases where some data was excluded from a statistical test (e.g.,
based on firing rate thresholds), the criteria is specified in the relevant Methods sections. The meaning of error bars
(either SEM or SD) is indicated in each figure caption. Boxplots display the median and the first and third quartiles
of the data, with the whiskers extending from the quartiles to £+ 1.5 of the interquartile range. Violin plots display
probability densities, and tick marks indicate the minimum, maximum, and median of the data.
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