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Abstract 
Synapses formed by equivalent pairs of pre- and postsynaptic neurons have similar 

electrophysiological characteristics, belonging to the same type. However, these are 
generally confined to microscopic brain regions, precluding their proteomic analysis. This fact 

has greatly limited our ability to investigate the molecular basis of synaptic physiology. We 
introduce a procedure to characterise the synaptic proteome of microscopic brain regions 

and explore the molecular diversity among the synapses forming the trisynaptic circuit in the 

hippocampus. While we observe a remarkable proteomic diversity among these synapses, 

we also report that proteins involved in the regulation of the function of glutamate receptors 

are differentially expressed in all of them. Moreover, neuron-specific gene expression 

programs would contribute to their regulation. Here, we introduce a combined proteomics 

and transcriptomics analysis uncovering a previously unrecognised neuron-specific control 

of synaptic proteome diversity, directed towards the regulation of glutamate receptors and 
their regulatory proteins. 

 

Keywords: Synaptic type, proteomics, proteome diversity, transcriptomics, laser-

capture microdissection, hippocampus, trisynaptic circuit, glutamate receptors, gene 

regulation.  
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Introduction 
Proteomics research performed on synaptic biochemical preparations has established a very 

comprehensive catalogue of proteins with a synaptic function1–7. This central advance in 
brain research has nevertheless been limited by the requirements of biochemical 

fractionation procedures and the sensitivity of proteomics methods, which involve relatively 
large brain areas, such as the hippocampus or neocortex6,8–11. Yet, these brain samples are 

not homogenous, containing many different synaptic types12. Accordingly, proteomics 
research uncovers the composition of the average, or the prototypical, synapse in a given 

sample. However, to understand the molecular mechanisms orchestrating the functional 
states that a synapse can take, it is imperative to investigate individual synaptic types. This 

is arguably the most important technical hurdle to precisely elucidate the molecular 
mechanisms behind synaptic function, with implications on information processing, cognition 

and disease. 
 
Synaptic types can be defined in different ways, for instance they can be chemical or 

electrical. They can also be defined based on their neurotransmitter, the pair of neurons 
forming them or as recently shown, according to the expression patterns of key scaffolding 

molecules13,14. In the present work a synaptic type refers to that formed by a specific pair of 
pre- and post-synaptic neurons. This is because there is an extensive electrophysiological 

literature showing that synapses defined by connectivity have different functional 
properties12,15–18. A paradigmatic example is to be found in the hippocampus, where 

functional differences between CA3-CA1 and DG-CA3 glutamatergic synapses are 
prominent17.  

 
Several methodological approaches have appeared in recent years to get closer to the final 

goal of isolating individual synaptic types or even individual synapses. All of them have been 
performed in mice and rely on genomic manipulations. Some of these approaches used 

fluorescently tagged proteins to sort synaptosomal preparations19–23. These methods have 
allowed investigation of glutamatergic neurons in large brain regions, or to investigate the 
cell-surface proteome of mossy fibre synapses in CA321. Other approaches took advantage 

of proximity labelling methods to define the proteome of inhibitory synapses or the synaptic 
cleft24–26. More recently, confocal imaging studies in mice expressing proteins of the Psd95 

family tagged with different fluorophores, provided a glimpse at the daunting molecular 
diversity that excitatory synapses could have, without losing anatomical information14,27. 

These cutting-edge studies are starting to uncover a molecular diversity among synapses 
that could only be suspected until now. Nevertheless, these approaches are not fit to explore 

the large proteomic landscapes of local synaptic types, and have low translational power, as 
they cannot be used in human samples.  
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To address the molecular diversity between types of glutamatergic synapses, we leveraged 
on the topographical organization of the hippocampus, which contains one of the best studied 

neuronal circuits in the brain, the trisynaptic circuit. Synapses in this circuit are anatomically 
segregated, being found in three distinct hippocampal layers28. The first synapse localizes to 

the molecular layer of the dentate gyrus and is made between the axons of layer II neurons 
from the entorhinal cortex and the dendritic spines of the granule cells in the dentate (EC-

DG synapse). The second synapse is found in the stratum lucidum of the CA3 subfield, made 
between granule cells and pyramidal neurons (DG-CA3 synapse). These synapses are 

structurally unique, as they are formed by large presynaptic boutons, the mossy fibre 
boutons, that contact equally big dendritic structures called thorny excrescences17. Finally, 

the third synapse is in the stratum radiatum of the CA1 subfield, made by axons leaving CA3 
neurons and contacting the proximal dendrites of CA1 pyramidal neurons (CA3-CA1 
synapse). 

 
Importantly, within its corresponding layer, each one of these synapses accounts for the vast 

majority of all synapses therein. More specifically, studies on the numbers and types of 
neurons and synapses in these hippocampal layers indicate that over 90% of the synapses 

in the stratum radiatum of the CA1 subfield29–32 and the stratum lucidum33–37 correspond to 
CA3-CA1 and DG-CA3 synapses, respectively. Similarly, electron microscopy studies in the 

molecular layer have shown that 86-90% of all synapses correspond to those stablished 
between layer II entorhinal cortex excitatory neurons and granule cells38. 

 
In this work we introduce a high-yield procedure that allows to characterise the proteomic 

diversity between glutamatergic synapses. This method has allowed us to investigate the 
molecular diversity of the synapses that form the trisynaptic circuit of the dorsal 
hippocampus. We also investigated expression of genes coding for synaptic proteins in 55 

neuronal types from the hippocampus and subiculum. Together, our proteomics and 
transcriptomics analysis indicate that abundance differences in glutamate receptors and the 

proteins that regulate them are common drivers of proteome variability across synaptic types 
and that neuron-specific gene expression mechanisms participate in this regulation.  
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Results 
 

Isolation of synaptic proteins from microscopic brain regions 
To increase the anatomical resolution of synapse proteomics we have developed a 

procedure to extract synaptic proteins from microscopic brain regions. This method combines 
laser-capture microdissection (LCM) with enhanced extraction and recovery of synaptic 

proteins. We applied this procedure to perform deep proteomic profiling of the synaptic types 
constituting the trisynaptic circuit from the dorsal hippocampus. 

 
In this procedure forebrains are dissected and rapidly snap-frozen prior to cryo-sectioning. 

Brains cannot be chemically fixed, as this negatively interferes with later proteomic analysis. 

We stablished maximum section thickness for effective LCM cutting to be 10 µm. 

Microdissection was performed in coronal slices encompassing the first 500 µm of the dorsal 

hippocampus (Suppl. Fig. 1a). As the pyramidal and granular layers, containing cell bodies, 
can be visually distinguished (Fig. 1a), they can be excluded, collecting only the synaptic-

rich neuropile (Fig.1b-c). By dissecting fragments of 100 µm in width it is possible to have 

control over the hippocampal layer acquired (Suppl. Fig. 1b-c). From the dentate gyrus we 

obtained the Molecular Layer (ML, Fig. 1d), from CA3 we dissected the Stratum Lucidum 
(SL, Fig. 1e) and from CA1 the Stratum Radiatum (SR, Fig. 1c). The characteristic 

translucidity of the SL helped in localizing and collecting this layer. As the total area of the 
anterior hippocampus in a coronal section is around 2.3mm2 (39), we estimate that the tissue 

collected from CA1-SR, CA3-SL and dDG-ML corresponds to 8%, 6% and 7% of the entire 
hippocampus, respectively. 
 

Extracting synaptic proteins from the microscopic amounts of tissue collected by LCM is very 
challenging. To cope with this limitation, we developed a procedure designed to minimize 

sample manipulation, reducing sample loss, while maximizing recovery of synaptic proteins. 
This procedure takes advantage of the selective solubility of synaptic structures to the 

detergent Triton X-100, such as the postsynaptic density (PSD), the active zone (AZ) or the 
extracellular matrix of the synaptic cleft5. First, microdissected tissue is accumulated in a 

solution containing 1% Triton X-100 (Fig. 1f-h). Next, neuropile fragments are subjected to a 
three-step treatment, a brief bath sonication, a mild thermal shock at 35C in agitation, and a 

second sonication step. This procedure fully disperses neuropile fragments and maximises 
the effect of the detergent, while preserving protein integrity and avoiding sample 

manipulation. A final centrifugation allows to collect Triton-insoluble proteins (Fig. 1i). 
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Figure 1. Effective separation of proteins from the synapses constituting the trisynaptic circuit using 
laser-capture microdissection and biochemical processing of hippocampal layers. 
a. Brightfield image of a coronal brain section showing the hippocampus, as used for laser-capture 

microdissection (LCM). Note that CA1/CA3 pyramidal layers and dDG granular layer are visible. Scale 
bar 1000µm. 

b. CA1 subfield before microdissection. Pyramidal Layer in purple. Green line marks microdissected area. 
Microdissected fragments had a width of approximately 100µm, only collecting neuropile from the 
Stratum Radiatum. Scale bar 300µm. 

c. CA1 subfield from the section shown in (b) after LCM. The pyramidal layer, in purple, is not collected. 
Scale bar 300µm. 

d. Dentate gyrus after LCM. Microdissected fragments had a width of approximately 100µm, which allowed 
specifically collecting neuropile from the Molecular Layer. Granular layer highlighted in orange. Scale 
bar 300µm.  

e. CA3 subfield after LCM. Microdissected fragments had a width of approximately 100µm, which allowed 
to collect neuropile from the Stratum Lucidum. Pyramidal layer in green. Scale bar 300µm. 

f. Total area (mm2) microdissected and number of brain sections collected for the biological replicas used 
in proteomics of dDG. 

g. Total area (mm2) microdissected and number of brain sections collected for the biological replicas used 
in proteomics of CA3. 

h. Total area (mm2) microdissected and number of brain sections collected for the biological replicas used 
in proteomics of CA1. 
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i. Outline of the procedure used to enrich LCM samples in synaptic proteins. 
j. Immunoblot of 1% Triton X-100 insoluble (Pellet) and soluble (Supern.) fractions from the three 

hippocampal layers investigated. Proteins analysed are Psd95 and Synaptophysin (Syp).  
k. Relative Psd95 abundance determined by immunoblot in 1% Triton X-100 soluble (Supern.) and 

insoluble (Pellet) fractions. IU: intensity units. Error bars: SE. Sample size (n) = 3. Statistics, Two-way 
ANOVA and Fisher’s LSD post-hoc test, * p < 0.05. 

l. Relative Synaptophysin abundance (Syp) determined by immunoblot in 1% Triton X-100 soluble 
(Supern.) and insoluble (Pellet) fractions. IU: intensity units. Error bars: SE. Sample size (n) = 3. 
Statistics, Two-way ANOVA and Fisher’s LSD post-hoc test, * p < 0.05.  

m. Micrograms of protein recovered in 1% Triton X-100 pellets per area of microdissected neuropile. To 
obtain 20µg of protein 100mm2 of neuropile have to be microdissected. Error bars: SE. 

 
To evaluate the efficacy of this procedure, we assayed samples by immunoblot against 
proteins known to be mostly soluble (Synaptophysin, Syp) or mostly insoluble (Psd95) to 

Triton X-100. Over 90% of the Psd95 signal was detected in pellets, conversely, the same 
proportion of Syp was in supernatants (Fig.1j-l). No difference in Psd95 abundance was 

observed between samples (two-way ANOVA), indicating that the procedure had a similar 
efficiency in all hippocampal layers.  

 
As these samples contain very little protein, standard approaches for protein quantification 

could not be used. Protein concentration was determined by electrophoresis, using as 
internal calibration standards hippocampal synaptic preparations accurately quantified 
(Suppl. Fig. 2a,b). Using this approach, we determined that insoluble fractions contain 

approximately 20% of all protein in the tissue (Suppl. Fig. 2c), indicating that proteins in these 
fractions were concentrated 4-5 times. We also tested different extraction buffers to 

investigate if we could improve the efficiency of the procedure. Using a RIPA buffer we found 
that the amount of protein recovered in pellets was significantly smaller (Suppl. Fig. 2d,e), 

yet this was at the expense of solubilizing a larger proportion of both Psd95 and Syp (Suppl. 
Fig. 2f-g). Indicating that more synaptic components were lost in the soluble fraction. On the 

other hand, increasing Triton concentration to 2% did not improved protein yield (Suppl. Fig. 
2e). Neither RIPA nor 2% Triton showed improved performance over 1% Triton X-100, which 

remained as the buffer of choice. Finally, we established how much protein was recovered 
in pellets per area of microdissected neuropile, this was important to keep LCM time to a 

minimum. We determined that for each 100mm2 of neuropile we obtained approximately 

20µg of Triton insoluble protein (Fig. 1m). 

 

High similarity in the composition of trisynaptic circuit synapses 
Using the above procedure, we obtained biological triplicates of synaptic preparations from 

the layers of the trisynaptic circuit and subjected them to a proteomics workflow40. MS/MS 
data was examined with Scaffold-DIA (Proteome Software), to identify protein specimens, 

and Progenesis QI (Waters), for peptide quantification (Fig. 2a). Peptide abundance was 
normalized by the average abundance of peptides from 14 synaptic scaffolding proteins (see 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2025. ; https://doi.org/10.1101/2024.04.04.588090doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588090
http://creativecommons.org/licenses/by-nc/4.0/


 8 

methods). This allowed us to correct for differences in: i) synaptic yield between preparations 

and ii) synaptic density between layers. Finally, MsqROB41,42 was used to identify proteins 
differentially expressed (DE) between synaptic types.  

 
The proteomic dataset obtained from microdissected tissue was benchmarked against a 

reference proteome. This was generated from the combination of two proteomes of 
hippocampal synaptic fractions prepared by differential ultracentrifugation (Suppl. Fig. 2i)6. 

We generated one of these datasets and the other had been previously published8 (Fig. 2b 
and Suppl. Table 1). Proteins detected in LCM samples but absent from the reference 

proteome were discarded as contaminants (Fig. 2a). An analysis of overrepresentation of 
synaptic locations (GO-CCs) and biological processes (GO-BPs) among discarded proteins 

returned only one significant GO-CC (postsynaptic ribosome) and no significant GO-BPs 
(Suppl. Fig. 3a,b). Indicating that benchmarking served the purpose of removing 
contaminants from our synaptic preparations. Of the 2905 identified by Scaffold 2277 

remained after benchmarking. Of these, 2014 could be quantified with at least 2 peptides by 
Progenesis, this being the final dataset investigated (Fig. 2a and Suppl. Table 1). 

 
We next confirmed that our method was able to retrieve proteins from distinct subsynaptic 

locations. Using the SynGO database2 to assign subsynaptic compartments onto our 
dataset, we found that it was enriched in many of them, both pre- and postsynaptic (Fig. 2c). 

As a matter of fact, pre- and postsynaptic proteins were similarly enriched. The presence of 
presynaptic proteins in our preparations was confirmed by immunoblot (Suppl. Fig. 2f,j). 

Thus, this approach provides a wide view into the synaptic proteome. 
 

A small number of proteins were identified only in one sample (CA3-CA = 29, DG-CA3 = 68 
and EC-DG = 52, Suppl. Table 1). Potentially these proteins could be very interesting, as 
they might be markers of synaptic types. Nevertheless, most of them (86%) could only be 

identified in one of the three replicates, and their abundance was very low (mean 3.45 
peptides/protein, compared with 43 peptides/protein for the whole set). Thus, we decided to 

exclude these molecules from subsequent analysis. Our data suggests that few proteins, if 
any, are unique to a single synaptic type in the trisynaptic loop, making functionally different 

synapses nearly identical at the proteomic level.  
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Figure 2. Proteomics workflow and validation of proteins found differentially expressed. 
a. Steps involved and informatic tools used to establish the final proteome of synapses from the trisynaptic 
loop.  
b. Overlap between proteins from the trisynaptic loop and two reference proteomes. Ref. Proteome I, from 
this study; Ref. Proteome II is PSDII from Distler et al8. 
c. Sunburst plot showing SynGO Cellular Component terms enriched among synaptic proteins from the 
trisynaptic loop.  
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d-f. Relative abundances of GluA2 (d, left), Vamp1 (d, right), Shisa6 (e, left), Prkar2a (e, right), mGluR2 (f, 
left) and Ptprd (f, right) determined by immunoblot in synaptic fractions from CA1, CA3 and DG subfields. 
Representative immunoblots shown. Error bars: SE. Sample size (n) = 6, 2-3 replicates per sample. 
Statistical test, one-way ANOVA, post-hoc Fisher's LSD test, * p < 0.05, *** p < 0.001, **** p < 0.0001. 
g-l. Left: Representative images of double immunofluorescences of the postsynaptic marker Psd95 (in red) 
with Homer2 (g), Calcineurin (Ppp3ca, h), Homer3 (i), Band 4.1-like protein 1 (Epb41l1, k) and Mpp2 (l) and 
the presynaptic marker vGlut1 (in red) with Synaptoporin (Synpr, j).   
Right: Quantification of the overlapping signal in IFs (see also Suppl. Figs. 4-6 for more detail on the IFs): 
Homer2 (g), Ppp3ca (h), Homer3 (i), Synpr (j), Epb41l1 (k) and Mpp2 (l). Error bars: SE. Sample size (n) = 
4, 3-6 images taken from subfield and animal.  Statistical test, one-way ANOVA, post-hoc Fisher's LSD test, 
**** p < 0.0001.  
m. Percentage of DE proteins in CA3-CA1 synapses with concordant or discordant ISH levels.  
n. Percentage of DE in DG-CA3 synapses with concordant or discordant ISH levels.   
o. Percentage of DE proteins in EC-DG synapses with concordant or discordant ISH levels.   
p. DE proteins in CA3-CA1 synapses with increased scRNAseq levels in dorsal CA3 (CA3do, left column) 
or dorsal CA1 (CA1do, right column) neurons are indicated with a blue box. 
q. DE proteins in DG-CA3 synapses with increased scRNAseq levels in dentate gyrus (DG, left column) or 
dorsal CA3 (CA3do, right column) neurons are indicated with a green box.  
r. DE proteins in EC-DG synapses with increased scRNAseq levels in Entorhinal cortex (EC, left column) or 
Dentate Gyrus (DG, right column) neurons are indicated with an orange box.   
 
Identification and validation of differentially expressed synaptic proteins 
The above data implied that quantitative, rather than qualitative variation drives functional 

diversity across synapses. To identify DE synaptic proteins, we used a ridge regression 
method designed to analyse peptide abundances acquired by label-free mass 

spectrometry41,42. We identified a total of 283 significantly overexpressed proteins, 14% of 
the entire dataset, of which 78, 157 and 48 in CA3-CA1, DG-CA3 and EC-DG synapses, 
respectively (Suppl. Fig. 3c and Suppl. Table 2).  

 
To validate our proteomics results we first performed immunoblot analysis of six DE proteins 

(GluA2 and Vamp1 for CA1; Shisa6 and Prkar2a for CA3; mGluR2 and Ptprd for DG; Fig. 
2d-f) in synaptic fractions obtained from manually dissected hippocampal fields (Suppl. Video 

1), finding perfect agreement between proteomics and immunoblot data. Afterwards, we 
performed double immunofluorescence (IF) on hippocampal slices for another 6 DE proteins 

(Homer2 and Ppp3ca for CA1-CA3, Homer3 and Synpr for DG-CA3, and Epb41l1 and Mpp2 
for EC-DG synapses) and a pre- or a postsynaptic marker, to specifically look at their synaptic 

abundances. For each double IF we quantified the intensity of the overlapping signal in CA1-
SR, CA3-SL and dDG-ML. This was always highest in the synapse where proteomics also 

identified maximum abundance, corroborating our initial findings (Fig.2g-l, and see Suppl. 
Figs. 4-6 for more detail on this analysis). 
 

Finally, we also performed an electrophysiological validation of our proteomics data. Based 
on the fact that GluA2 was more abundant in CA3-CA1 synapses (Suppl. Table 2, Fig. 2d 

and Fig. 3), and that GluA2-containing AMPARs present slower deactivation kinetics43–45 
regardless of the auxiliary subunits interacting with them46,47, we investigated if the decay of 
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miniature excitatory postsynaptic currents (mEPSCs, Suppl. Fig. 7a-d) was slower in CA1 

than in CA3 pyramidal neurons. mEPSCs were not investigated in DG granule cells as GluA2 
levels in DG and CA3 synapses were very similar (GluA2 abundance ratio DG:CA3 0.94, 

Suppl. Table 2). mEPSCs had similar amplitudes in CA1 and CA3 neurons (Suppl. Fig. 7e) 
but presented a significantly slower decay in CA1 neurons. With a weighted mean time 

constant (Tw) of 6.82ms for CA1 and 2.48ms for CA3 neurons (Suppl. Fig. 7f,g). This different 

kinetics would agree with an increased number of GluA2-containig AMPARs in CA3-CA1 

synapses, as indicated by the proteomics data. 
 

Contribution of gene expression to synaptic proteome diversity 
Having identified and validated DE proteins across synaptic types, we asked if gene 
expression mechanisms could account for some of this variability. To achieve this, we 

analysed RNA expression data from in situ hybridization studies on the mouse brain (ISH, 
Allen Mouse Brain Atlas48, Suppl. Table 3) and single-cell RNA sequencing (scRNAseq) of 

excitatory neurons from the dorsal CA1, dorsal CA3, DG and entorhinal cortex (Allen Brain 
Cell Atlas, ABCA49, Suppl. Table 3), and compared them with proteomic abundances. Protein 

and RNA data were considered concordant if an upregulated protein showed highest RNA 
expression in the pre- and/or postsynaptic neuron/s forming it. We observed a protein to RNA 

abundance concordance of 35% and 34 % for ISH (Fig. 2m-o) and scRNAseq data (Fig. 2p-
r, Suppl. Table 3), respectively. Importantly, a permutation test shows that this percentage of 

concordance is significantly higher than what would be expected by chance, as random 
concordance between our proteomics and the RNA expression data investigated would be 

around 23% (permutation test p=0.002, see Methods). What indicates that gene transcription 
partially accounts for synaptic proteome variability at the hippocampus. 
 

High diversity in the molecular mechanism operating at different synapses  
To investigate the biological functions related to proteins with highest expression in one 

synaptic type, we performed enrichment analysis of signalling pathways50–52 and GO 
terms53,54 using the pathfindR tool55. pathfindR constructs protein-protein interaction 

networks and maps enriched terms onto them. Using hierarchical clustering and pairwise 
kappa statistics, pathfindR identifies one ‘Representative’ term for each network (see 

methods).  
 

We first clarified if a small number of proteins were responsible for a large proportion of 
enriched terms, a common bias with pathway enrichment analysis56,57. Yet this was not the 

case, as the ratio of enriched terms per protein was low (Suppl. Fig. 3d) and the proportion 
of proteins contributing to terms was high (Suppl. Fig. 3e) in all samples. Importantly, most 
enriched pathways (75%) and GO terms (96%) were found only in one synaptic type (Suppl. 
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Fig. 3f,g), thus, effectively informing about their unique functional properties. Only 5 terms 

were enriched in all samples. These were strongly related to synaptic function and included 
transmission across chemical synapses, postsynaptic signalling, actin cytoskeleton and cell 

adhesion (Suppl. Fig. 3h and Suppl. Table 4). 
 

While CA3-CA1 and DG-CA3 synapses shared several functional categories, only 3 were 
found between DG-CA3 and EC-DG synapses and none between CA3-CA1 and EC-DG 

synapses. Of note, the GOCC term ‘Schaffer collateral CA1 synapse’, appeared enriched in 
DE proteins from CA3-CA1 and DG-CA3 synapses. Among the pathways common to these 

synapses we identified well-known synaptic processes, such as signalling via calcium, 
through Ras and Rho GTPases or trans-synaptic signalling via BDNF, Ephrins and 

Semaphorins (Fig. 3).   
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Figure 3. Signalling pathways differentially regulating function in each synaptic type from the 
trisynaptic circuit. 
Signalling pathways overrepresented amongst DE proteins in each synapse of the trisynaptic loop. Pathways 
specific to CA3-CA1 synapses are framed in a blue box, pathways specific to DG-CA3 in a green box, those 
common to these 2 in a yellow box and, finally, pathways specific to EC-DG synapses are in an orange box. 
Relative protein abundance for each of the 9 samples investigated by LC-MS/MS are presented as z-scores 
in heatmaps. A title and a heatmap is presented for each overrepresented pathway. Related pathways (i.e. 
CA3-CA1 pathways involved in Energy Metabolism) are framed with a dashed black line. For some pathways 
(i.e. Traffic of A2-containing AMPARs) we also present a heatmap with proteins that have a clear DE but did 
not reach statistical significance (Not Significant). In the ‘Rhos Activate Wasps and Waves’ gene names of 
members of the Arp2/3 complex are in bold.   
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AMPAR trafficking, actin dynamics and energy metabolism regulated in CA3-CA1 
synapses  
As previously mentioned, we observed an increased abundance of the GluA2 AMPAR 

subunit in these synapses (Fig. 2d and 3), suggesting that they would have more Gria2-
containig AMPARs, an observation supported by our recordings of mEPSCs (Supp. Fig. 7). 

In agreement with these findings the analysis of enriched pathways retrieves ‘Traffic of GluA2 
containing AMPAR’ as strongly overrepresented among DE proteins in these synapses (fold 

enrichment, 38.6, Suppl. Table 4). Other proteins involved in the regulation of AMPAR 
trafficking, such as those controlling clathrin-mediated endocytosis58 and neuronal pentraxin 

1 (Nptx1)59, were also strongly enriched in these synapses.  
 

Although actin-related categories were found in all synaptic types (Suppl. Fig. 3h and Suppl. 
Table 4), CA3-CA1 synapses presented many more functional categories related to 
microfilaments, particularly to their polymerization. For example, all 7 members of the Arp2/3 

complex, necessary for actin branching and dendritic spine structural plasticity60, presented 
higher abundance in this synaptic type, albeit only three reached statistical significance (Fig. 

3 and Suppl. Table 2). This would be suggestive of a more refined control of spine structural 
dynamics in these synapses.  

 
We also found the non-canonical Wnt signalling pathway, which controls calcium levels and 

synaptic plasticity61,62 overrepresented in CA3-CA1 synapses. Among the downstream 
effectors of this pathway, calcineurin (Ppp3ca) and the calcium-activated protein kinase C 

(PKC, isoenzyme Prkcg) were overexpressed in this synaptic type, suggesting that the 
modulation of spine calcium dynamics via Wnt signalling might be especially relevant in these 

synapses. 
 
Finally, multiple functional categories related to energy production were specifically 

overrepresented in CA3-CA1 synapses. Suggesting that these synapses would have higher 
energetic demands. These include proteins regulating the trafficking of glucose transporters 

to the plasma membrane, five out of the 10 glycolytic enzymes and enzymes related to 
pyruvate metabolism or ATP synthesis.  

 
Control over metabotropic signalling, translation and neurofilaments in DG-CA3 
synapses  
The postsynaptic metabotropic glutamate receptor Grm1 presented increased abundance in 

DG-CA3 synapses, particularly in relation to CA3-CA1 synapses, with a 3.4-fold increase. 
Grm1 signals through Gq protein alpha subunits, which regulate levels of the second 

messenger inositol trisphosphate (IP3) and diacyl glycerol (DAG). The signalling pathways 
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‘G alpha Q signalling events’ and ‘DAG and IP3 signalling’ were also found significantly 

enriched in DG-CA3 synapses. Similarly, Necab2 and Homer3, known to modulate 
metabotropic glutamate signalling63 were found strongly overexpressed in DG-CA3 

synapses.  
 

DE proteins in DG-CA3 synapses also regulate NMDA and AMPA receptors. We found 
overrepresented pathways related to NMDA receptor function, including ‘Regulation of 

NMDA Receptor Activity’ or ‘Negative Regulation of NMDA Receptor Mediated Neuronal 
Transmission’ (Suppl. Table 4). Among DE proteins controlling NMDARs, PTK2B might be 

particularly relevant, as this kinase also interacts with Grm164. We also identified proteins 
regulating AMPAR function, including Shisa665, Syt1766, Snap4767, and Nptxr59. Also related 

to the function of both AMPA and NMDA receptors is the signalling through ERK1/2 kinases. 
The GO pathway ‘Positive Regulation of ERK1 and ERK2 Cascade’ was also found 
overrepresented in DG-CA3 synapses.  

 
Interestingly, among NMDAR related proteins we identified the neurofilament light chain 

(Nefl), known to be involved in its trafficking68,69. Actually, the four proteins that form 
neurofilaments were found significantly overexpressed in DG-CA3 synapses (Suppl. Table 

2). Many modulators of the Rho family of small GTPases, including GTPase activating 
proteins (GAPs) and, specially, guanine nucleotide exchange factors (GEFs) were also found 

overexpressed. This suggests that pathways regulated by these signalling molecules, mostly 
related to the regulation of the cytoskeleton, might be controlled in a more specific manner 

in this synaptic type.  
 
Finally, we observed a striking increase of virtually all ribosomal proteins in DG-CA3 
synapses, with 21 of them reaching statistical significance (Fig. 3, Suppl. Tables 2 and 4). 
Several functional categories related to proteostasis were overrepresented in this synaptic 

type, including ‘Protein Stability’, or ‘Unfolded Protein Binding’, and Pura and Purg, involved 
in the transport of messenger RNA into the postsynapse70, were also found overexpressed. 

To further investigate this finding, we went back to the analysis of scRNAseq (Suppl. Table 
3) and also found a very strong upregulation of most ribosomal genes in the Dentate Gyrus 

(Suppl. Fig. 8a). These findings, together with the recent discovery that local translation 
occurs at Mossy Fibre boutons71, indicate that proteostasis would play a particularly relevant 

role in this synaptic type. 
 

A unique extracellular matrix at EC-DG synapses 
The proteome of EC-DG synapses presented several DE proteoglycans, including Bcan, 

Ncan, Agrn and Hspg2 (Vcan and Cspg5 also presented highest expression in EC-DG, but 
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did not reach statistical significance, Fig. 3). The synaptic location of all these proteins is well 

documented2, mostly localizing to the extracellular matrix (ECM). Indeed, the GO term 
‘Extracellular matrix structural constituent’ and the Reactome pathway ‘Integrin cell surface 

interactions’, related to the ECM, were overrepresented in EC-DG synapses. We thus 
observed a differential composition of the ECM, especially regarding the abundance of 

proteoglycans, that could specifically modulate the properties of this synaptic type. As 
previously, we also identified overexpressed proteins that are related to the regulation of 

AMPAR. These include the ‘receptor-type tyrosine-protein phosphatase delta’ (Ptprd)72, the 
AMPAR auxiliary protein Shisa9, first described in the DG73, and the scaffolding protein 

Epb41l1, known to bind to A1 subunits of the AMPAR74,75, regulating its activity-dependant 
insertion into the plasma membrane76. 

 
Finally, proteins with highest expression in EC-DG synapses also retrieved several pathways 
related to the catabolism of branched chain amino, including ‘valine, leucine and isoleucine 

degradation’ (KEGG), ‘branched chain amino acid catabolism’ (Reactome) or ‘alpha amino 
acid metabolic process’ (GO). One of the two metabolic pathways to synthesize glutamate 

requires the catabolism of these amino acids, and the product of this reaction feed into the 
TCA cycle. EC-DG synapses might have a preferential use of this glutamate synthesis 

pathway, coupling synaptic transmission with energy production.  
 

Different neuronal expression of genes related to glutamate receptors 
The fact that synapses formed by different neurons exhibit distinct expression patterns of 

proteins involved in the regulation of glutamate receptors prompted us to investigate whether 
this is mediated by genetic factors. Furthermore, as shown above, gene expression would 

explain some of the proteomic variability found between synapses (Fig. 2m-r). Thus, we 
returned to the ABCA49 database and explored gene expression in excitatory neurons of the 
hippocampus and subiculum. In these regions the ABCA defines 55 types of excitatory 

neurons, grouped into 8 classes. We first split all genes in two groups, those coding for our 
reference proteome, which we refer to as ‘synaptic genes’, and the rest (‘non-synaptic’ 

genes). We found that 18% of synaptic genes presented expression differences between 
neuronal classes (Suppl. Fig. 8b, Suppl. Fig. 9a, and Suppl. Table 5) and 17% between 

neuronal types (Suppl. Fig. 9b-i and Suppl. Table 6). Interestingly, the frequency of DE genes 
was 3 times higher among synaptic genes (Chi-square Test p < 0.0001, Suppl. Fig.8c). This 

remained significant if synaptic genes were compared to random gene sets of the same size 
taken from: i) all genes or ii) non-synaptic genes (Suppl. Fig. 8c). 
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Figure 4. Differentially expressed genes mostly regulate neurotransmitter receptor function and 
synaptic vesicle exocytosis. 
a. Clustering of the coefficients of correlation for RNA expression of up-regulated genes with a synaptic 

location in excitatory neuron types from the hippocampal formation. 
b. Sunburst chart showing SynGO Cellular Component terms enriched among genes expressed at 

synapses that present increased expression in one or two types of excitatory neurons from the 
hippocampal formation. The background set for this analysis was the set of genes with a synaptic 
expression. Maximum stringency was applied for evidence filtering of SynGO annotations. PM: plasma 
membrane, AZ: active zone and PSD: postsynaptic density. 
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c. Sunburst chart showing SynGO Biological Process terms enriched among genes expressed at 
synapses that present increased expression in one or two types of excitatory neurons from the 
hippocampal formation. 

d. Classes and types of excitatory neurons presenting increased expression of genes within Biological 
Process (GO) terms most overrepresented in the SynGO analysis. 

 
Upregulated genes were mostly present in one neuronal class and eventually in two (Suppl. 

Fig. 8d), while downregulated ones appeared more repeatedly, in up to 5 classes (Suppl. 
Fig. 8e). The same happened in the comparison between neuronal types (Suppl. Fig. 8f), 

downregulated genes appeared more repeatedly. As our goal was to capture the functional 
categories most unique to each neuronal class/type, we only considered upregulated genes 

for subsequent analysis.  
 
Next, we wanted to compare the expression patterns of upregulated synaptic genes between 

neuronal types. To achieve this, we computed expression correlation coefficients of these 
genes for each pair of neurons and performed hierarchical clustering. Neurons from the same 

class were grouped together (Fig. 4a), perfectly replicating the classification obtained by the 
ABCA with the entire transcriptome49. This indicates that synaptic genes from closely related 

neurons have more similar expression patterns, and that synaptic genes have a role in the 
classification of hippocampal neuronal types. 

 
To investigate common features among upregulated synaptic genes, we performed 

enrichment analysis of ‘Cellular Component’ and ‘Biological Process’ categories with the 
SynGO database. To obtain highly specific categories we used our reference proteome as a 

background set, and the most stringent criteria for evidence filtering. The first analysis found 
that these genes code for proteins residing in two main locations, the postsynaptic density 
(PSD) and the active zone (AZ) (Fig. 4b). The analysis of Biological Processes returned 

categories related to synaptic vesicle exocytosis and to the regulation of glutamatergic 
transmission, including the regulation of neurotransmitter receptor levels (Fig. 4c). Finally, 

we asked if the genes linked to these SynGO categories were spread across neuronal 
classes and types or if, instead, they were concentrated in a small number of them. We found 

that genes from these functional categories are widely spread across neuronal types (Fig. 
4d), indicating that their differential regulation is a common trend among them. 

 
We also investigated the signalling pathways associated with upregulated genes from 

individual neuronal types using pathfindR. In many instances the number of upregulated 
genes was small (Suppl. Table 6). Accordingly, pathfindR could only find enriched terms in 

22 of the 55 neuronal types of the hippocampus and subiculum (Fig. 5a and Suppl. Table 7). 
Nevertheless, we observed that many of the enriched pathways were again related to the 
function of glutamate receptors (Fig. 5b). In 11 of the 22 types, upregulated genes were 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 8, 2025. ; https://doi.org/10.1101/2024.04.04.588090doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.04.588090
http://creativecommons.org/licenses/by-nc/4.0/


 19 

associated with pathways related to neurotransmitter receptor function, and in 8 this term 

was the most enriched one (Fig. 5b, dark blue bars). These included terms such as ‘ionotropic 
glutamate receptor activity’, ‘Trafficking of AMPA receptors’, ‘Activation of NMDAR and 

postsynaptic events’ or ‘Extracellular ligand gated ion channel activity’. In one neuronal type 
(CA1-343) the term ‘SV exocytosis’ was identified as the most enriched (Fig. 5b, red bars). 

These observations matched the findings obtained with SynGO (Fig. 4b,c), and strengthen 
them, as they were obtained with different databases and bioinformatic tools.  
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Figure 5. Hippocampal synaptic types are mostly defined by genes regulating neurotransmitter 
receptor function 
a. Neuron types having genes expressed at synapses that show increased expression define neuron-

specific synaptic types. Dashed lines correspond to neuron types whose upregulated genes cannot be 
linked to significantly overexpressed term. These synapses would not present any functional difference 
with those of other neurons from the same class.   

b. Fold enrichment of significantly enriched terms related to neurotransmitter receptor function (blue bars) 
or synaptic vesicle exocytosis (red bars). Dark blue or red denotes a term that is the most enriched one 
for that synaptic type. Light colours denote terms that are enriched but are not the most enriched. Fold 
enrichment corresponds to the ratio between the number of observed and expected genes related to 
one term.    
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Genes related to glutamatergic signalling drive neuronal classifications 
We found that synaptic genes present greater transcriptomic variation (Suppl. Fig. 8c), and 
that the ABCA neuronal classification49 can be replicated considering only synaptic genes 

(Fig. 4a). To investigate if synaptic genes contribute to the classification of hippocampal 
neurons, we referred again to the ABCA database, and first confirmed we could replicate 

their classification, as indicated by the segregation of neuronal classes in nonlinear 
dimensionality reduction maps (U-Map) (Fig. 6a). Noticeably, the U-map made with synaptic 

genes (Fig. 6b) was highly similar to that produced with all genes. Instead, U-Maps from non-
synaptic genes had very different topologies, with high overlaps between neurons from 

different classes (Fig. 6c and Suppl. Fig. 10a). This suggests that synaptic genes drive the 
classification of hippocampal excitatory neurons, as it has been shown for cortical neurons77. 

To validate this observation, we used the Random Forest method, a supervised machine 
learning approach78, that computes the relative contribution of each gene to the classification. 
 

After the training phase, the algorithm could predict neuronal classes with high accuracy 
(total accuracy for the train set 0.9893 - total accuracy for the test set 0.9014), indicating that 

the computed contribution of each gene to the classification was reliable. Indeed, the 
predictive power of the algorithm was above 95% for 6 of the 8 neuronal classes (Fig. 6d). 

We found that a small number of genes did drive the overall classification. The added weight 
of the top 1000 genes contributing to the classification accounted for 90% of the information 

carried by the whole transcriptome (Fig. 6e and Suppl. Table 8). Importantly, over 50% of 
these genes were synaptic (Suppl. Fig. 10b), a 4x overrepresentation that was highly 

statistically significant (Chi-square test, p < 1e-23). Using the synaptic genes in the top 1000 
was sufficient to replicate the U-map generated with the entire transcriptome (Fig. 6f). 

Furthermore, the accuracy of the Random Forest prediction was better when using synaptic 
genes as opposed to the entire transcriptome and best when using the synaptic genes found 
in the top 1000 list (Suppl. Fig. 10c).  

 
Using the Chi-square stat, we found that genes expressed at synapses were more over-

represented in genes driving the classification than genes enriched in the PSD79, in the 
MASC complex80 or in other functional categories enriched in the top 1000 genes contributing 

to the classification (Suppl. Fig. 10d). Random Forest performance was also good in 
classifying neurons into types, although less accurately (total accuracy of the train set 0.8559 

and total accuracy of the test set 0.7653, Suppl. Fig. 10e). The list of the top 1000 genes 
most relevant to the classification of types also carried over 90% of the weight, and included 

over 500 synaptic genes (Chi-square test, p < 1e-10, Suppl. Fig. 10b and Suppl. Table 8). 
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pathfindR analysis of synaptic genes in the top 1000 contributing to the classification of 

neuronal classes revealed synaptic functions or locations related to both pre and 
postsynaptic compartments (Fig. 6g-h and Suppl. Table 8). Yet, terms with highest fold 

enrichments were mostly related to the function and organization of glutamate receptors (Fig. 
6h). Curiously, non-synaptic genes of the top 1000 were also associated with some functions 

of the nervous system (i.e. Neuron differentiation or Neuroinflammation), among others.  
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Figure 6. Expression differences in genes encoding synaptic proteins strongly determine the 
classification of excitatory neurons. 
a. UMAP graph generated with single-cell RNA abundance data obtained from excitatory neurons in the 8 

classes identified in the hippocampal formation. Abundance of all genes in the genome was considered 
for the construction of this graph. ProS, prosubiculum; SUB, subiculum, NP SUB; near-projecting 
neurons from the subiculum and CT SUB; corticothalamic neurons from the subiculum.  

b. UMAP generated as in (a), although in this occasion only genes coding for synaptic proteins were 
considered. 

c. UMAP generated as in (a), using a random set of genes not expressed at synapses, with the same 
number of genes as in the synaptic dataset in (b). 

d. Confusion or error matrix generated by the Random Forest algorithm, showing the success rates in 
assigning a class to each neuron. Colour legend correspond with the accuracy of the prediction, 1 being 
perfect accuracy.  

e. Cumulative importance of the expression level of each gene in the genome for the classification of 
excitatory neurons into classes. Inset, cumulative Importance of the top 2000 genes with the highest 
importance to the classification. Note that the top 1000 contributing genes provide 90% of the 
information necessary to construct the classification. 
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f. UMAP generated as in (a) but using only the 520 synaptic genes found among the Top 1000 genes 
contributing to the classification. 

g. Main signalling pathways and biological functions found among genes encoding for synaptic and non-
synaptic proteins of the top 1000 that most contribute to the classification of excitatory neurons into 
classes. 

h. Top 10 signalling pathways with the largest fold enrichment. In yellow those relative to the function of 
ionotropic or metabotropic glutamate receptors. In green those relevant to presynaptic function.  
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Discussion 
Electrophysiological studies have shown that different synaptic types have unique functional 

properties81,82. Yet the molecular basis driving these differences are poorly understood. 
Investigating synaptic types at the proteomic level has been challenging, as they are confined 

to microscopic brain regions. To address this limitation, we have developed a procedure to 
obtain microscopic brain samples, and to extract synaptic proteins from them in sufficient 

quantities for high-throughput proteomics. This method has several advantages, it provides 
a great level of anatomical resolution, as the location of the collected samples is known; it 

delivers a wide and deep coverage of the synaptic proteome, identifying proteins from most 
subsynaptic compartments and it can be used in any species, including humans, as it does 

not require prior genomic manipulations. We have used this approach to profile the proteome 
of the synapses constituting the trisynaptic circuit of the hippocampus. Its anatomical 

organization segregates these synapses into different layers where they account for close to 
90% of all29–38.  
 

A relevant conclusion of our proteomics study is that essentially the same proteins are 
present in all synapses investigated. This observation denotes that functional diversity arises 

from changes in the abundance of shared components. These changes would result in 
specific molecular processes being favoured at individual synapses. For example, it is well-

known that CA3-CA1 synapses require the activation of NMDARs for LTP expression but 
DG-CA3 synapses don’t. Several synaptic types express forms of NMDAR-independent LTP 

across the brain, and class I metabotropic glutamate receptors (Grm) are involved in some 
of them83,84. Indeed, the role of Grm1/5 in NMDAR-independent LTP at DG-CA3 synapses 

has been addressed by a few studies, albeit these returned contradictory results17. Our data 
provides strong support for a role of Grm1 in LTP at DG-CA3 synapses, as this receptor and 

several of its downstream signalling molecules are highly expressed in them. Thus, while 
these molecules are present in both synaptic types, their increased abundance in DG-CA3 

synapses could allow them to express an NMDAR-independent LTP, finetuning the functional 
properties of this synaptic type. 
 

Differentially expressed proteins were involved in many signalling pathways and biological 
processes relevant to synaptic biology. Remarkably, most of them were exclusively found in 

one synaptic type, suggesting they could contribute specific functions. CA3-CA1 synapses 
exhibited several overrepresented pathways directly related with AMPAR trafficking, 

particularly regarding GluA2-containing AMPARs, and clathrin mediated endocytosis, the 
primary mechanism by which AMPARs are removed from synapses58. Proteins in CA3-CA1 

synapses also displayed many functional categories related to actin polymerization and 
branching, key processes in spine structural plasticity. The non-canonical Wnt/Ca2+ pathway, 
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which regulates calcium release from internal stores61, was also overrepresented in this 

synaptic type. And so were numerous metabolic pathways related to energy production, 
suggesting they might have increased energetic demands.  

 
Instead, DG-CA3 synapses were characterised by signalling pathways downstream of class 

I metabotropic glutamate receptors. They also exhibited a striking increase in ribosomal 
proteins, likely due to an elevated number of presynaptic ribosomes, as protein translation at 

mossy fibre boutons would regulate synaptic plasticity71. They also presented increased 
levels of proteins that positively regulate ERK1/2 signalling, a pathway linking ionotropic 

glutamate receptors with protein translation. In line with previous findings, showing that 
mossy fibre boutons have the highest level of ERK1/2 activation in the hippocampus85. 

Furthermore, DG-CA3 synapses presented increased abundance of all 4 proteins organizing 
intermediate neurofilaments. These proteins have been confidently identified in synapses68, 
being involved in synaptic transmission and plasticity68. Our data indicates that CA3-CA1 and 

DG-CA3 synapses would have specific requirements regarding their cytoskeletal 
requirements. Structural plasticity studies at dendritic spines show considerable differences 

between neurons, which might originate in different cytoskeletal compositions86. Finally, EC-
DG synapses were characterised by a unique ECM, with increased levels of several 

proteoglycans and other of its constituents. The synaptic localization of proteoglycans is also 
well documented2, contributing to AMPAR trafficking87,88 and synaptic transmission89. 

Indeed, the ECM is known to restrict AMPAR mobility90. 
 

Overall, our proteomic findings provide support for considerable molecular diversity among 
the synapses of the trisynaptic loop. Impacting multiple domains of synaptic biology, including 

the trafficking and synaptic stability of AMPARs, spine structural plasticity, signalling through 
metabotropic receptors, control of calcium levels, local protein translation or regulation of the 
energetic metabolism, among others. Importantly, however, we also identified DE proteins 

controlling the function of glutamate receptors in all samples studied. As we had seen that 
gene expression contributes to synaptic proteome diversity, we explored if gene expression 

mechanisms could be involved in this common feature.  
 

We found that synaptic genes differentially expressed between neuronal types mostly 
localized to two subsynaptic locations, the active zone, and the postsynaptic density. Being 

involved in synaptic vesicle (SV) exocytosis, and the postsynaptic regulation of chemical 
synaptic transmission, especially in the regulation of neurotransmitter receptor levels at the 

synapse. Importantly, genes involved in these processes had differential expression patterns 
in most neuronal types from the ABCA, with each type overexpressing a subset of them. 

Therefore, the differential expression of these genes would be a common trend among 
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excitatory neurons in the hippocampus and subiculum. In a second analysis we investigated 

the signalling pathways overrepresented in independent neuronal types. These analyses 
also retrieved many pathways related to glutamate receptor function, these being the most 

enriched ones for many neuronal types. While pathways related to SV exocytosis were 
weakly overrepresented in this analysis. An orthogonal mathematical approach based on 

machine learning corroborated the differential expression of genes related to glutamatergic 
function between neuronal types. This approach was employed to identify the genes that 

contribute the most to transcriptomics-based neuronal classifications. Showing that genes 
involved in glutamatergic function were key to these classifications. 

 
In the present study, we introduce a procedure that allows to explore the synaptic proteome 

of anatomically defined microscopic brain regions. With this method we have been able to 
identify major molecular differences between the synapses that comprise the trisynaptic 
circuit. This is an important resource to advance in our understanding of the molecular 

mechanisms controlling their diverse functional properties. More importantly, our combined 
investigation of proteomic and transcriptomic datasets indicates that glutamate receptors and 

proteins directly controlling their function, are common drivers of synaptic proteome 
variability, possibly having key contributions to their specific properties. Remarkably, neuron-

specific transcriptional mechanisms would contribute to the unique expression levels of these 

synaptic proteins.  
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Methods 
 
Animal handling 
All animal research was done with C56BL/6J mice (Jackson Laboratories, Research Resource 

Identifier, RRID:MGI:5656552) in accordance with national and European legislation (Decret 

214/1997 and RD 53/2013). Research procedures were approved by the Ethics Committee on 

Animal Research from the: i) Institut de Recerca de l´Hospital de la Santa Creu i Sant Pau (IR-

HSCP) and from the ii) Universitat de Barcelona for whole-cell recording experiments. These 

procedures were also approved by the Departament de Territori i Sostenibilitat from the 
Generalitat de Catalunya (approval reference numbers 9,655 and 164.16). Maintenance and 

experimental procedures were conducted at the animal facilities of the IR-HSCP or the Faculty of 

Medicine of the Universitat de Barcelona, for whole-cell recording experiments. Mice were housed 

at a 12h light/dark cycle, with fresh water and food ad libitum. We used animals of both sexes and 

9-14 weeks of age. 12 animals were used for laser-capture microdissection proteomics 

experiments, 2 to isolate postsynaptic density fractions using sucrose gradients and 12 for manual 

hippocampal dissection and preparation of triton insoluble membranes. 12 animals were used for 

double immunofluorescence in brain sections. Finally, 22 mice were used for electrophysiological 
studies.  

 

Mouse brain dissection 
Mice were culled by cervical dislocation, the head was dissected, and brain removed from skull 

and meninges. All brain dissection manipulations were done in the presence of chilled 1x 

phosphate-buffered saline (PBS, 0.144 M NaCl, 2.683 mM KCl, 10.144 mM Na2HPO4, 0.735 mM 

KH2PO4, [P5368-10PAK from Sigma]). Cerebellum and olfactory bulb were removed prior to any 
other manipulation. For laser-capture microdissection the forebrain was wrapped in aluminium 

foil, snap frozen in liquid nitrogen and stored at -80C. For isolation of postsynaptic density (PSD) 

fractions by ultracentrifugation hippocampi were dissected using iris scissors (PMD120; Thermo 

Scientific), tissue forceps 1:2 (PMD023445; Thermo Scientific) and scalpel blades in chilled glass 

petri dishes. Entire hippocampi were frozen at -80C before processing. For manual dissection of 

CA1, CA3 and DG regions readily dissected hippocampi were first cut coronally in 500 µm slices 

in the presence of chilled 1x PBS using a tissue slicer (Kerr Scientific Instruments). 8-12 slices 

where obtained from each hippocampus. Slices were immediately transferred into a glass petri-

dish with chilled 1x PBS using a small paint brush. Next CA1, CA3 and DG regions were manually 

separated from each other using 18G needles (BD) under a microscope Carl Zeiss Meditec model 

S100/OPMI 1-FC (see Supplementary Video for a demonstration of manual dissection of 

hippocampal regions). Dissected regions were placed in individual tubes containing chilled 

homogenization buffer with phosphatase and protease inhibitors (0,32M Sucrose; 10mM HEPES 

pH 7,4; 2mM EDTA; 5mM sodium o-vanadate; 30mM NaF; 2µg/ml aprotinin; 2µg/ml leupeptin 

and 1:2000 PMSF (v/v)) with a pasteur pipette and frozen dry at -80C.  
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Laser-capture microdissection of hippocampal neuropile 
Frozen forebrains were used to obtain 10 µm thick coronal sections in a Leica CM1950 cryostat. 

Only sections that contained the dorsal hippocampus (Suppl. Fig. 1a) were processed by laser-

capture microdissection. Sections were placed in membraneSlide 1.0 PEN microscope slides 

(Zeiss, 415190-9041-000) and stored at -20C. The neuropile of CA1, CA3 and dorsal DG were 
microdissected using a Leica LMD 6000 laser microdissection microscope. Between 90 and 110 

mm2 were microdissected for each hippocampal region and biological replica. Three biological 

replicas were generated for each area. All microdissected tissue for each replica was collected in 

the same 1.5ml tube.  

 

Isolation of synaptic fractions from laser-capture microdissected tissue 
Laser-capture microdissected tissue was collected in 1.5 ml tubes and mixed with PBS containing 

1% Triton X-100, 2µg/ml leupeptin and 1/2500 PMSF. The sample was then sonicated in an 

ultrasonic bath (Branson 1510) for 2 min, incubated in agitation (300rpm) in a ThermoMixer C 

(Eppendorf) for 30 min at 35C and sonicated again as previously. Afterwards, sample was 

centrifuged for 10 min at 21.000xg at 4C in a refrigerated centrifuge (Eppendorf 5417R). The 

pellet was resuspended in PBS with 1% SDS. The resuspended pellet and supernatant were 

mixed with 10x SDS sample buffer for analysis by proteomics or immunoblot. Tissue extraction 

was also performed with a RIPA buffer containing PBS, 0.1% SDS, 0.5% sodium deoxycholate 

and 2% Triton X-100 buffer. 
 

Isolation of synaptic fractions from hippocampal subfields 
Manually dissected hippocampal subfields (CA1, CA3, dDG; see Supplementary Video) from 3 

animals where accumulated for each biological replica. A total of four biological replicas were 

prepared for each region. CA1 samples were homogenized in 450µl of homogenizing buffer (HB), 

CA3 and DG in 300µl. Homogenizing buffer composition: 0,32M Sucrose; 10mM HEPES pH 7,4; 

2mM EDTA; 5mM sodium o-vanadate; 30mM NaF; 2µg/ml aprotinin; 2µg/ml leupeptin and 1:2000 

PMSF (v/v). Homogenization was performed in 1ml borosilicate tissue homogenizers (357538, 
Wheaton), using 20-30 strokes. The homogenate was centrifugated in 1.5ml tubes at 800xg and 

4C for 10 min in a Eppendorf refrigerated centrifuge (Eppendorf 5417R). The pellet, containing 

the nuclear fraction and cell debris, was re-homogenized once in the same buffer and centrifuged 

in the same conditions. Supernatants from both centrifugations were pooled and spun down at 

10.000xg for 15 min at 4C in the same centrifuge. The resulting pellet was resuspended in Triton 

buffer (TB: 50mM HEPES pH7.4; 2mM EDTA; 5mM EGTA; 1mM sodium o-vanadate; 30mM NaF; 

1% Triton X-100; 2µg/ml aprotinin; 2µg/ml leupeptin and 1:2000 PMSF (v/v)). TB volume used 

was ½ HB. This mixture was left in ice for 15 minutes and centrifuged at 21.000xg for 30 min at 

4C in the same centrifuge. The resulting pellet was resuspended with 30µl of 50mM Tris pH 7.1; 

1% SDS and incubated with this buffer for 15 min at room temperature. A final centrifugation was 

done at 21.000xg for 15 min at room temperature. The resulting supernatant corresponds with 
the postsynaptic density enriched fraction. 
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Isolation of synaptic fractions by differential ultracentrifugation  
Isolation of synaptic fractions using differential ultracentrifugation involves first the separation of 

synaptosomes on the bases of their sedimentation rate in sucrose density gradients and the 

isolation of synaptic protein complexes insoluble to the non-ionic detergent Triton X-1006,9,79. 

Briefly, the hippocampi from two mice were homogenized in 1ml borosilicate tissue homogenizer 

(357538, Wheaton) adding 9ml of homogenizing buffer for each 1g of tissue weight. 
Homogenization was done with 20-30 strokes. Homogenizing buffer composed of: 0,32M 

Sucrose; 10mM HEPES pH 7,4; 2mM EDTA; 5mM sodium o-vanadate; 30mM NaF; 2µg/ml 

aprotinin; 2µg/ml leupeptin and 1:2000 PMSF (v/v). This sample was first centrifuged at 1400xg 

and 4C for 10 minutes in a refrigerated centrifuge (Eppendorf 5417R). The pellet of this 
centrifugation was re-homogenized twice following the same procedure. The three supernatants 

generated were pooled and centrifuged at 700xg for 10 minutes, the pellet was discarded. Next, 

the sample was centrifuged at 21.000xg for 30 minutes at 4C in the same centrifuge. The resulting 

pellet was resuspended with Tris 50mM pH7.4 and 0,32M sucrose. A sucrose gradient was 

prepared with 1 ml of (top to bottom): sample; 50 mM Tris pH 7.4, 0.85 M sucrose; 50 mM Tris 

pH 7.4, 1 M sucrose; 50 mM Tris pH 7.4, 1.2 M sucrose. This gradient was centrifuged in a 

SW60Ti rotor (Beckman Coulter) at 82.500xg for 2 hours. The 1.0-1.2 interphase was collected, 
diluted with 2 equal volumes of 50mM Tris pH 7.4, and centrifuged at 21.000xg for 30 minutes at 

4C. The subsequent pellet was resuspended in 50mM Tris pH 7.4, 1% Triton X-100 and 

maintained in ice for 10 min. This sample was centrifuged at 21,000xg during 30 min at 4C, the 

resulting pellet corresponds with the final synaptic fraction. 

 
Protein electrophoresis and immunoblot 
Sample preparation for protein electrophoresis and immunoblot was accomplished by mixing it 

with 10x SDS loading sample buffer, composition: 500mM Tris pH7.4; 20% SDS; 50% glycerol 
and 10% b-mercaptoethanol. Prior to its analysis samples were boiled at 95C for 5 min. 

 

SDS-PAGE gels were run in a vertical MiniProtean system kit (Bio-Rad) with 1x running buffer 

(25 mM TRIS pH 8.4; 0.187 M glycine and 0.1% SDS). Protein standards used were All blue 

Precision Plus (Bio-Rad). For LC-MS/MS analysis protein gels were stained over night at room 

temperature with Coomassie solution (B8522-1EA; Sigma-Aldrich) and washed with 2.5% acetic 

acid and 20% methanol and subsequent washes of 20% methanol, until protein bands were 
clearly visible. For immunoblot TGX Stain-Free™ gels (161-0181 & 161-0185, SF gels; Bio-Rad) 

were used and activated as recommended by the manufacturer. Gel images were acquired with 

ChemiDoc XRS+ (Bio-Rad) and quantified with Image Studio Lite ver. 3.1 (LI-COR Biosciences). 

 

Protein transference was done using a MiniProtean kit (Bio-Rad), and 1x chilled transference 

buffer (20% methanol; 39 mM Glycine; 48 mM TRIS; 0.04% SDS). Proteins were transferred onto 

methanol pre-activated polyvinylidene fluoride (PVDF) membranes (IPFL00010, Immobilon-P; 
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Merck-Millipore). Membranes transferred from TGX Stain-Free™ gels were imaged and 

quantified for posterior normalization with a ChemiDoc XRS+ (Bio-Rad) using the Image Lab 

software (Bio-Rad). After transference, PVDF membranes were blocked with 5ml Odissey 

blocking solution (927-50000; LI-COR) diluted with 1x tris-buffered saline (TBS, 50 mM Tris 

pH7.4; NaCl 150mM and 0.1% sodium azide). Next, membranes were incubated with primary 

antibodies in Tween-TBS (T-TBS: 0,1% Tween 20 - TBS) ON at 4C or 1 hour at room temperature. 

Primary antibodies used: Psd95 (#3450; Cell Signaling, [RRID:AB_2292883]); Synaptophysin 
(Ab8049; Abcam [SY38], [RRID:AB_2198854]); GluA2 (MAB397; Millipore [RRID:AB_2113875]; 

Shisa6 (NBP2-85726; Novus Biologicals [RRID:AB_3427376]); mGluR2 (# 191 103; Synaptic 

Systems [RRID:AB_2232859]; Prkar2a (ab32514; Abcam [RRID:AB_777289]); Ptprd (NBP2-

94767; Novus Biologicals [RRID:AB_3464681]). Antibody dilution was 1:1000 except for mGluR2, 

Ptprd, Prkar2a (1:500) and Shisa6 (1:250). Membranes were washed four times with 1x T-TBS 

for 5 min before incubation for 1 hr at room temperature protected from light with 5 ml of the 

following secondary antibodies prepared in T-TBS at a dilution of 1:7.500: anti-rabbit (926-68073, 

IRDye 680CW, [AB_10954442]), anti-mouse (926-32212, IRDye 800CW [RRID:AB_621847] or 
925-68072, IRDye 680RD, [RRID:AB_2814912]) and anti-goat (926-32214, IRDye 800CW, 

[RRID:AB_621846]). Images were acquired with an Odissey Scanner (LI-COR Biosciences) and 

protein bands were analysed with Image Studio Lite ver. 3.1 (LI-COR Biosciences). Protein 

abundance in postsynaptic density enriched fractions was normalized by the abundance of 

Psd95, a marker of postsynaptic densities, to correct for purity differences between samples.  

 

Sample processing for mass spectrometry 
Synaptic fractions obtained from laser-captured microdissected tissue or PSD fractions generated 
with standard procedures were analysed by conventional protein gel electrophoresis in 6% 

polyacrylamide gels. For LCM samples gels were run to half their length and stained with 

Coomassie as described above. After distaining LCM samples were cut into 5 bands of the same 

size (Suppl. Fig. 2h). PSD samples were separated into 13 electrophoretic bands (Suppl. Fig. 2i). 

Next, gel bands were cut into 1x1 mm cubes with a scalpel blade in an ethanol cleaned glass 

plate and under a laminar flow hood. Gel cubes were transferred to 1.5ml tubes for proteomic 

analysis (0030 123 328; Eppendorf). 50 mM ammonium bicarbonate (ABC) in 50% ethanol was 
added to each tube and incubated for 20 min at room temperature. This solution was replaced 

with absolute ethanol and incubated 15 more min. For protein reduction gel cubes were mixed 

with freshly prepared 10mM DTT (dithiothreitol; Merck) in 50mM BA and incubated 1 h at 56C. 

For protein alkylation, DTT was removed and freshly prepared 55mM IAA (iodacetamide; Merck) 

in 50mM BA added, incubation was performed in the dark for 30 min at room temperature. IAA 

was removed, 25mM BA added to gel cubes and incubated in the dark for 15 min. For in-gel 

protein digestion reduced and alkylated samples were mixed with 25 mM BA-50% acetonitrile 

(ACN) and incubated 15 min twice. Gel cubes were dehydrated with 100% ACN for 10 min. Next, 
trypsin (Promega) containing solution was prepared and incubated with gel cubes ON at 30C. 

Tryptic peptides were extracted from gel cubes by first adding 100% ACN and incubating 15 min 
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at 37C. Later, 0.2% trifluoroacetic acid (TFA) was added and incubated for 30 min. Supernatants 

were transferred to 0.5 ml tubes (#0030 123 301; Eppendorf) previously washed with ACN to 

prevent peptide binding to the walls. Liquid-phase was evaporated using a SpeedVac (Thermo-

Fisher Scientific). Dried peptides were resuspended in 5% ACN and 0.1% formic acid and bath 

sonicated for 2 min. Samples were then centrifuged at maximum speed to remove possible gel 

remainings. Samples were stored at -20C. 

 
Mass spectrometry analysis of tryptic peptides  
Tryptic peptides were analysed by LC-MS/MS using an EASY-nLC system (Proxeon Biosystems, 

Thermo Fisher Scientific) connected to a Velos-Orbitrap mass spectrometer (Thermo Fisher 

Scientific, Bremen, Germany). Instrument control was performed using Xcalibur software 

package, version 2.1.0 (Thermo Fisher Scientific, Bremen, Germany). First, peptide mixtures 

were fractionated by on-line nanoflow liquid chromatography with a two-linear-column system. 

Digests were loaded onto a trapping guard column (EASY-column, 2 cm long, ID 100 μm, packed 

with Reprosil C18, 5 μm particle size from Proxeon, Thermo Fisher Scientific) at a maximum 
pressure of 160 Bar. Then, samples were separated on the analytical column (EASY-column, 10 

cm long, ID 75 μm, packed with Reprosil, 3 μm particle size from Proxeon, Thermo Fisher 

Scientific). Elution was achieved by using a mobile phase from 0.1% formic acid and 100% 

acetonitrile with 0.1% formic acid and applying a linear gradient from 5 to 35% of buffer B for 120 

min at a flow rate of 300 nL/min. Ions were generated applying a voltage of 1.9 kV to a stainless-

steel nano-bore emitter (Proxeon, Thermo Fisher Scientific), connected to the end of the analytical 

column. The LTQ Orbitrap Velos mass spectrometer was operated in data-dependent mode. A 

scan cycle was initiated with a full-scan MS spectrum (from mass to charge [m/z] 300 to 1600) 
acquired in the Orbitrap with a resolution of 30,000. The 20 most abundant ions were selected for 

collision-induced dissociation fragmentation in the linear ion trap when their intensity exceeded a 

minimum threshold of 1000 counts, excluding singly charged ions. Accumulation of ions for both 

MS and MS/MS scans was performed in the linear ion trap, and the AGC target values were set 

to 1 × 106 ions for survey MS and 5000 ions for MS/MS experiments. The maximum ion 

accumulation time was 500 and 200 ms in the MS and MS/MS modes, respectively. The 

normalized collision energy was set to 35%, and one microscan was acquired per spectrum. Ions 
subjected to MS/MS with a relative mass window of 10 ppm were excluded from further 

sequencing for 20 s. For all precursor masses a window of 20 ppm and isolation width of 2 Da 

was defined. Orbitrap measurements were performed enabling the lock mass option (m/z 

445.120024) for survey scans to improve mass accuracy. 

 

LC-MS/MS data was analysed using Progenesis QI software (Nonlinear Dynamics, Newcastle, 

UK). This software allows to review the chromatogram alignments, to filter the data, to review 

peak picking, to normalize the data and to identify peptides, among other features. Specifically, 
sample ions were automatically aligned to compensate for drifts in retention time between runs. 

Yet, they were also reviewed and edited manually. The peak picking limits were automatic, the 
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main ion charge selected was set at 4 and the retention time limits were adjusted according to 

the chromatograms in each sample. Peptide ions were filtered by removing those with a charge 

of 1 or >4, m/z from 300 to 1,600 and the specific retention determined for each case was also 

set. Progenesis was also used to normalize peptide and protein abundances, allowing for sample 

comparisons. Log of abundance ratios between each LC-MS/MS run and a reference run from 

the same dataset, which is selected by the Progenesis algorithm, are first computed. Next, the 

median of the log ratios is calculated for each of the runs. The variance of the ratio distribution is 
also used iteratively to remove outliers. Finally, the ratio between the median calculated for each 

run and the reference run is used as a scalar factor for recalibration of all runs. 

 

 

Database search of mass spectrometry data 
All MS/MS samples were analysed using Mascot (Matrix Science, London, UK; version"2.5.1). 

Mascot was searched with a fragment ion mass tolerance of 0.80 Da and a parent ion tolerance 

of 10.0 ppm. Charge state deconvolution and deisotoping were not performed. MS/MS spectra 
were searched with a precursor mass tolerance of 10 ppm, fragment tolerance of 0.5-0.8 Da, 

trypsin specificity with a maximum of 2 missed cleavages, cysteine carbamidomethylation set as 

fixed modification (up to 57) and methionine oxidation as variable modification (up to 16). The 

quantification method applied to quantify protein abundances was a label-free based approach.  

 
Criteria for protein identification by mass spectrometry data 
Scaffold (version Scaffold_4.8.5, Proteome Software Inc., Portland, OR) was used to validate 

MS/MS based peptide and protein identifications obtained from Mascot. Peptide identifications 
were accepted if they could be established at greater than 95,0% probability by the Peptide 

Prophet algorithm91 with Scaffold delta-mass correction. Protein identifications were accepted if 

they could be established at greater than 99,0% probability and contained at least 2 identified 

peptides. Protein probabilities were assigned by the Protein Prophet algorithm92. Using these 

filters a protein false discovery rate (FDR) under 1.0 was achieved, at the level of the entire 

dataset, as estimated by a search against a target-decoy database. Proteins that contained 

similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to 
satisfy the principles of parsimony. 

 

Peptide and protein quantification 
Peptide abundances were calculated and normalized using Progenesis, which integrates the area 

under the curve (AUC) of MS1 peaks for peptide quantification. Normalized peptide abundances 

were exported from Progenesis and peptides from proteins not identified by Scaffold were 

discarded. Next unique peptides were identified as those defined as non-conflicting by Progenesis 

or identified as unique by NextProt tool (Expasy) or the Peptide Search tool from Uniprot. 
Abundances from species of the same unique peptide identified with different retention times were 

added together. Abundances from modified peptides were added separately. Finally, peptide 
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abundances were normalized based on the average abundance of all peptides from the 14 main 

postsynaptic density (PSD) scaffolds (Dlg1, Dlg2, Dlg3, Dlg4, Dlgap1, Dlgap2, Dlgap3, Dlgap4, 

Shank1, Shank2, Shank3, Homer1, Homer2 and Homer3), thus correcting for synaptic 

enrichment differences between purifications. Peptide abundances were then analysed with 

MSqROB to obtain protein abundance data and to identify proteins differentially expressed 

between groups41,42. MSqROB was used with the following settings: abundance data was log2 

transformed, no normalization was applied, each peptide had to be identified in at least two 
experiments and only proteins identified with at least 2 peptides were considered for 

quantification. Furthermore, genotype was used as the fixed effect, while run, sequence and 

peptide modification were defined as random effects. 
 
Tissue processing for double immunofluorescence analysis 
Mice were first anesthetized with a solution containing Ketamine (120 mg/kg) and Xylazine (30 

mg/kg). Next, an intracardial perfusion of 4% paraformaldehyde solution in 0.1 M phosphate buffer 

(pH 7.4) was performed. Brains were extracted, post-fixed overnight in the same solution and 
then cryoprotected in a 30% sucrose solution in 0.1 M phosphate buffer for 48 h at 4°C. 

Subsequently, brains were frozen in ice-cold 2-methylbutane (Merck, 1060561000) and stored at 

-80°C. Coronal brain sections, ranging from bregma -1.46 mm to bregma -2.06 mm, were 

prepared using a Leica CM1950 cryostat. Free-floating sections, 25 μm thick, were preserved at 

-20°C in a 0.01 M antifreeze solution containing 20% sucrose, 30% ethylene glycol, and 1% 

polyvinylpyrrolidone (PVP) until used. 

 
Double immunofluorescence in adult mouse brain sections 
Frozen free-floating brain sections were first washed with PBS (0.1 M, pH 7.4) and next with PBS 

containing 0.1% Triton X-100 to remove the antifreeze solution. The sections were then incubated 

at room temperature (RT) for 1 h in a blocking buffer containing 10% foetal bovine serum (FBS), 

3% bovine serum albumin (BSA) and 0.25% Triton X-100 in PBS. After blocking, sections were 

incubated overnight at 4°C with the primary antibody corresponding to the protein of interest 

diluted in blocking buffer. Following 0.1% Triton X-100 PBS washes, sections were incubated for 

1 h at 37°C with the corresponding secondary antibody diluted in blocking buffer. Subsequently, 
sections were incubated for 2 h at 37°C with the primary antibody for the pre- (vGlut1) or post-

synaptic (Psd95) marker, followed by additional washes and a final incubation with its 

corresponding secondary antibody. Following this procedure nuclei were stained with 4',6-

diamidino-2-phenylindole (DAPI) (1:10,000; D9542, Sigma-Aldrich) in PBS during 10 min at RT. 

Sections were washed with PBS, mounted on slides, and coverslipped using ProLong Glass anti-

fade mounting medium (P36984, Thermo Fisher Scientific). Representative images of the 

hippocampus were captured using a Leica inverted fluorescence confocal microscope (Leica TCS 

SP5-AOBS, Wetzlar, Germany) with an HCX PL APO 63x oil/0.6-1.4 objective. To minimize 
crosstalk and bleed-through effects, sequential scanning was employed. Fluorescent images 

were acquired in a 1024x1024 pixel scan format within a spatial dataset (xyz) and processed 
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using Leica Standard Software TCS-AOBS. Confocal images were analysed with the software 

FIJI/ImageJ93 to quantify the signal from the pre- or post-synaptic marker overlapping with the 

protein of interest. Using the ‘Image Calculator’ function we generated an image that represents 

the overlap from both channels and measure the Integrated Density (IntDen) of the overlapping 

signal. These values were then compared between images from the three different hippocampal 

layers.  

Primary antibodies used: Psd95 (1:100 dilution, Thermofisher MA1045; [RRID:AB_325399]), 
vGlut1 (1:750, Merck Millipore AB5905; [RRID:AB_2301751]), Homer2 (1:100, 160203, Synaptic 

Systems; [RRID:AB_10807099]), Calcineurin (1:100, 387002, Synaptic Systems; 

[RRID:AB_2661875]), Homer3 (1:100, 160303, Synaptic Systems; [RRID:AB_10804288]), 

Synaptoporin (1:100, 102003, Synaptic Systems; [RRID:AB_2619748]), Epb41l1 (1:100, 276103, 

Synaptic Systems; [RRID:AB_2620007]) and Mpp2 (1:50, HPA073483, Merck, [RRID: 

AB_3678682]). 
Secondary antibodies used: Anti-Rabbit Alexa-Fluor-488 (1:500, 160203, Invitrogen), anti-Mouse 

Alexa-Fluor-594 (1:500, 387002, Invitrogen) and anti-Guinea pig Alexa-Fluor-647 (1:1000, 
AB5905, Invitrogen). 

 
Slice preparation for whole-cell electrophysiological recordings 
Hippocampal acute slices were prepared from 8 to 12 weeks old C57BL/6J mice as follows. 

Animals were anesthetized with isoflurane and decapitated prior quick brain removal. Brains were 

then immersed in ice-cold artificial cerebral spinal fluid 1 (aCSF1 containing in mM, 206 sucrose, 

1.25 NaH2PO4, 26 NaHCO3, 1.3 KCl, 1 CaCl2, 10 MgSO4, 11 glucose, purged with 95 % O2/5% 

CO2, pH 7.35). Hippocampal slices containing the anterior hippocampus (300 μm thick) were cut 
coronally in a Leica vibroslicer (VT1200 S; Leica Microsystems, Wetzlar, Germany) in the same 

cold solution. Slices were transferred to an incubation chamber with a nylon mesh containing 

aCSF2 (in mM, 119 NaCl, 1.25 NaH2PO4, 25 NaHCO3, 2.5 KCl, 2.5 CaCl2, 1.5 MgSO4, 11 

glucose, purged with 95% O2/ 5% CO2, pH 7.35). Slices were kept at 37°C for 45-60 min for 

optimal recovery. After that, the incubation chamber was gently transferred out of the bath and 

held at room temperature (22–25 °C) for at least 1h before starting the recordings.  

 
Whole-cell recordings 
The recording chamber consisted of a circular well of a 1–2 ml volume and was continuously 

perfused with aCSF2 at a flow rate of 4–5 ml/min. A horseshoe shape wire enchased with nylon 

wires was placed on top of the slice to allow for the most rapid flow while minimizing cell 

movement. The recording chamber was mounted on an upright fluorescence microscope 

(SliceScope Pro 1000, Scientifica). The microscope was used to identify individual cells from the 

CA1 or CA3 region of the hippocampus and, and after patching, spontaneous mini excitatory 

postsynaptic currents (mEPSCs) were recorded. Recordings were obtained in “gap free” model 
of 30 to 600 second recording intervals sampled at 10KHz and low-pass filtered at 1 KHz. Glass 

pipettes were pulled with a micropipette puller Model P-1000 (Sutter Instruments, USA) and had 
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a resistance of 3–6 MΩ when filled with an internal solution (consisting of the following, in mM: 

115 CsMeSO3, 20 CsCl, 10 HEPES, 2.5 MgCl2, 4 Na2-ATP, 0.4 Na-GTP, 10 Na-phosphocreatine, 

0.6 EGTA, pH 7.2). Cells were voltage-clamped at -70 mV, and experiments were conducted only 

after the access resistance had stabilized. Membrane and access resistance were monitored 

before starting the recording and at the end of it. Recordings were included for analysis if there 

was less than a 20% variation in series resistance (15-35 MΩ) and the input resistance remained 

constant throughout the experiment (100–300 MΩ). 50 μM picrotoxin, 50 μM APV and 1 μM 
tetrodotoxin were added to the recording solution to avoid iPSCs contamination, NMDAR-

mediated currents and EPSCs generated by synaptic transmission, respectively. All recordings 

were amplified and stored using amplifier Multiclamp 700B (Molecular Devices, San Jose, CA). 

Miniature events were detected and analysed with IGOR Pro 6.06 (Wavemetrics) using 

NeuroMatic 2.03 ((Rothman and Silver, 2018); http://www.neuromatic.thinkrandom.com). 

Statistical analysis was performed using GraphPad Prism version 8.0.1 for Mac OS X (GraphPad 

Software, San Diego California USA, www.graphpad.com). 

 
The deactivation kinetics of AMPAR-mediated miniature responses were determined by fitting the 

average of the events for a given cell to a double-exponential function to calculate the weighted 

time constant (tw): 

 

𝜏# = 𝜏% &
𝐴%

𝐴% + 𝐴)
* + 𝜏) &

𝐴)
𝐴% + 𝐴)

* 

 

where Af and tf are the amplitude and time constant of the fast component of recovery and As 

and ts are the amplitude and time constant of the slow component. 
 
Allen Brain Atlas RNA in situ hybridization (ISH) data analysis 
Four different scientists manually inspected RNA in situ hybridization (ISH) data from adult mouse 

brain from the Allen Brain Atlas94. Each researcher reviewed the 283 proteins overexpressed in 

CA3-CA1, DG-CA3 and EC-DG synapses. RNA ISH data from the entorhinal cortex was also 

reviewed for proteins with highest expression in dDG. For a protein to be classified as with highest 

expression in one or more regions there had to be agreement on 3 out of the 4 researchers. 
Proteins were classified into those with concordant protein and ISH expression and non-

concordant ones. Proteomic data was considered concordant with ISH data when the RNA 

expression level of a synaptic protein found with highest expression in one of the three 

hippocampal regions investigated had highest ISH levels in the somas of one or both brain regions 

contributing to that synapse. For instance, a protein found with highest expression in CA3-CA1 

synapses had concordant ISH data if CA3 and/or CA1 somas presented highest expression level 

of that gene for 3 out of the 4 researchers.  
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Pathway enrichment analysis 
Pathway enrichment analysis was performed using the pathfindR R package55. pathfindR takes 

into consideration protein-protein interaction (PPI) data for pathway enrichment analysis, which 

is performed using one-sided hypergeometric tests. For our analysis PPI data was retrieved from 

BioGRID build 4.3.196 (https://thebiogrid.org/) and STRING version 11 (https://string-db.org/), 

both restricted to Mus musculus species. Only STRING interactions with a confidence score 

above 0.9 were taken into consideration. Redundant interactions between both databases were 
removed, resulting in a final interaction database with 339.776 interactions. Gene name 

conversions needed for merging data from different databases and converting them to updated 

gene symbols were done with biomaRt R package95. Pathways investigated with pathfindR were 

taken from MSigDB collections, (https://www.gsea-msigdb.org) and were restricted to Mus 

musculus. MSigDB contains several collections of gene sets, we used the C2 set: curated gene 

sets and the C5 set: ontology gene sets. On C2 collection, only REACTOME, WikiPathways and 

KEGG pathways were used for analysis, which resulted in 2405 gene sets. For the C5 collection 

all the GO gene sets were selected: Biological process (BP), Cellular Component (CC) and 
Molecular Function (MF), resulting in 10185 gene sets. 

 

Briefly, pathfindR first builds a Protein Interacting Network (PIN) from all differentially expressed 

(DE) molecules (genes/proteins) investigated using the PPI data provided. Next, subnetworks are 

built from the PIN with a minimum length of 10 DE molecules using the Greedy algorithm with a 

maximum depth of 1, hence only considering the addition of direct neighbours from DE molecules. 

Subnetworks with 50% of gene overlap are discarded, maintaining those with a higher score, 

based on the adjusted p-value of DE molecules. Finally, pathway enrichment analyses is done 
for each subnetwork, using all the molecules of the PIN as the background set. Pathways that 

include less than 3 DE molecules are discarded. As the greedy algorithm is a stochastic method, 

the whole process is repeated 50 times, starting from the subnetwork construction. For a pathway 

to be considered it had to appear (occurrence) at least in 13 of the 50 (>25%) iterations. Finally, 

to reduce complexity, enriched pathways are grouped using hierarchical clustering, based on their 

similarity on the DE molecules they include. One ‘Representative’ term for each cluster was 

chosen based on the lowest p-value from the hypergeometric test. Heatmaps to represent 
gene/protein abundance data were generated with the scrattch.hicat R package from the Allen 

brain atlas (https://github.com/AllenInstitute/scrattch.hicat). Protein and RNA abundance data 

was normalized by a Log2(x+1) transformation and converted to z-scores. 

 

Source data files relevant to these analyses: Source_Data_6, 7 and 8.  

 

Analysis of single cell RNA-sequencing data from the Allen Brain Cell Atlas  
Single cell RNA-seq. data from mouse glutamatergic neurons of the hippocampal formation was 
retrieved from the Allen Brain Cell Atlas Database (Whole Cortex & Hippocampus - 10X Genomics 

(2020) with 10X-SMART-SEQ taxonomy49). More precisely, we collected RNA-seq. data from the 
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following sub-classes of glutamatergic neurons: DG, CA2-IG-FC, CA3, CA1-ProS, SUB-ProS, CT 

SUB and NP SUB, all belonging to the hippocampal formation which also includes subiculum 

neurons49. Of note, in this manuscript we refer to ABA Sub-classes as Classes, for simplicity.  

 

Statistical analysis of RNA abundance data was performed using the Seurat R package96, which 

is designed to work with single cell gene expression data. To identify DE genes, we performed 

the Wilcoxon Rank Sum test, which is the default test in the Seurat package. p-values were 
corrected for multiple testing using the Benjamini-Hochberg procedure. As we are interested in 

identifying abundance differences among genes expressed at synapses, we only worked with 

RNA abundance data from the genes corresponding to our reference list of synaptic proteins 

(Suppl. Table 1).  

 

To identify DE genes in each group (i.e. class or type) we compared gene expression in that 

group against that of all other groups together. The identification of DE among neuronal types 

was done within classes. Statistics were done with an equal number of neurons for each group. 
To identify DE genes between classes we used 100 neurons per class, and to identify DE genes 

between neuronal types we used 25 neurons per type. To sample a representative number of 

neurons per group so that all DE genes per group would be identified we had to iterate this 

process. We empirically found that 150 iterations were enough to saturate the number of DE 

genes in each group. Importantly, for a gene be considered as DE in each group it had to be 

identified as significantly DE in at least 90% of these 150 iterations. Furthermore, DE genes not 

only had to present and adjusted p-value below 0.05, but their expression fold change value (in 

log2 scale) had to be above 0.6 for overexpressed genes or below -0.6 for downregulated genes.  
 

Gene expression dendograms were generated with the median value of log2(x+1) transformed 

gene expression abundance data and using the scrattch.hicat R package from the Allen brain 

atlas (https://github.com/AllenInstitute/scrattch.hicat). 

 

Source data files relevant to these analyses: Source_Data_1 to 5. 

 
General Statistics  
Specific statistical tests are mentioned in the figure legends. Data was tested for normality using 

the Shapiro-Wilk test and the Kolmogorov-Smirnov test. When possible, statistical test used were 

two-sided. Statistical tests on omics data were corrected for multiple testing. 

 
Permutation test 
A permutation test was performed to assess whether the observed concordance between protein 

and RNA abundance was higher than expected by chance. To calculate the expected 
concordance, differentially expressed (DE) proteins were randomly assigned to the three synaptic 

types, and the concordance with the ABCA RNA abundance data was computed. This process 
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was repeated 1,000 times, yielding an average concordance which would correspond to random 

or chance concordance. Finally, the permutation test, based on these 1,000 random sets, 

computes if the observed concordance iss significantly different from the one expected by chance. 

Permutation test was performed with the function permutation_test included in the Python 

package scipy.stats. 
 

Uniform Manifold Approximation and Projection (U-MAPS) 
To generate neuronal classes and types, gene expression U-MAPS we used the umap-learn 

package (https://pypi.org)97. The hyperparameters used to generate the maps were: Random 

state: 24, Number of neighbours: 15 and Minimum Distance 0.1. All other parameters were left 

as by default. Only the first two dimensions were used to generate the u-maps. 

 

Gene classification using machine learning  
We used the random forest classification method to identify genes with the highest weight in the 

organization of neurons in classes and types. Gene expression data from the Allen Brain atlas 
was analysed with the ‘Random Forest Classifier’ function within the scikit-learn (https://scikit-

learn.org/0.16/about.html) Python package78. The hyperparameters used for the Random Forest 

Classifier were: Random state: 24, Max. Depth: 12 and Number of estimators: 200. Values for all 

other parameters were kept as by default. The test set used included 20% of neurons in each 

group and the train set the remaining 80%. The ‘confusion matrix’ function from scikit-learn was 

used to generate confusion matrices. 

 

Source data file relevant to these analyses: Source_Data_9.  
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Source Data: 
 

Source_Data_1_Iteration_Classes.R: R script to iterate the statistical analysis performed with 

Seurat to identify genes differentially expressed between neuronal classes. 

 

Source_Data_2_Iteration_Types.R: R script to iterate the statistical analysis performed with 

Seurat to identify genes differentially expressed between neuronal types. 

 

Source_Data_3_Analysis_Classes.R: R script to generate data tables and graphs for genes 
differentially expressed between neuronal classes. This script also includes a quality control test 

to validate differentially expressed genes.  

 

Source_Data_4_Analysis_Types.R: R script to generate data tables and graphs for genes 

differentially expressed between neuronal Types. This script also includes a quality control test 

to validate differentially expressed genes. 

 

Source_Data_5_Split_Types.R: R script to obtained data from a subset of neuronal types from 
the entire transcriptomic database provided by the ABCA. 

 

Source_Data_6_pathfindR_Proteomics.Rmd: R script to perform the pathfinder analysis and to 

generate the heatmaps from the proteomics data. 

 

Source_Data_7_pathfindR_Classes.R: R script to perform the pathfinder analysis and to 

generate the heatmaps from transcriptomics data of neuronal classes (ABCA). 
 

Source_Data_8_pathfindR_Types.R: R script to perform the pathfinder analysis and to generate 

the heatmaps from transcriptomics data of neuronal types (ABCA). 

 

Source_Data_9_ Random_Forest.ipynb: Python code to perform the Random Forest analysis on 

transcriptomic data from the ABCA.  
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Data and code Availability 
All the data generated by the bioinformatics analysis performed in this manuscript can 

be found in the supplementary tables. 

Mass spectrometry proteomics data has been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository98 with the dataset identifiers PXD052901 

and PXD052913. 

All custom-made code is available from GitHub: 

https://github.com/Alex-Bayes/Synaptic-Proteome-Diversity 
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