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Abstract

Drought stress is a significant environmental threat to global agricultural production and distribution.
Plant adaptation to dehydration stress involves intricate biological processes with substantial changes in
metabolite composition. In this study, we investigated the role of tricarboxylic acid (TCA) cycle
metabolites in drought tolerance in grapevine and Arabidopsis by metabolome, live cell imaging,
electrophysiological and pharmacological approaches. Metabolome analysis revealed that amount of
malate, citrate, and isocitrate increased over time in detached grapevine leaves. Ca** imaging and ion
channel measurements indicated that fumarate, malate, and o-ketoglutarate induced cytosolic free Ca*"
concentration ([Ca*'].y) elevation in guard cells and directly activated a guard-cell anion channel
SLAC1. However, only malate induced stomatal closure, which required increases in [Ca*"]cy in guard
cells and activation of SLACI1. Through pharmacological experiments and reverse genetics analyses, G-
proteins were identified as essential components of malate signaling by regulating second messenger
production. These results indicate that TCA cycle metabolites are sensed individually by guard cells and
that malate plays a key role in connecting metabolic regulation and drought tolerance through G-protein-

dependent signal cascades.
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Introduction

Grapevine (Vitis) is one of the oldest domesticated crops and holds crucial economic importance for

industries through the production of wine, brandy, juice, table grapes, and raisins. Despite the increasing

demand for grapes and grape products, the global vineyard area is diminishing annually. In 2023, wine

production was anticipated to reach its lowest levels in 60 years, primarily due to the impacts of global

climate change (http://www.oiv.int/). Drought constitutes a major environmental stress with global

implications for crop survival and yields. The regulation of metabolism stands out as a key mechanism

for maintaining cell osmotic potential during drought stress. The metabolic responses to dehydration

stress has been comprehensively studied in Arabidopsis thaliana. The metabolic reprogramming

triggered by drought leads to elevated tricarboxylic acid (TCA) cycle intermediates in leaves (Urano et

al., 2009; Pires et al., 2016). TCA cycle intermediates play an essential role in providing energy fuels

and metabolic precursors. Malate is crucial due to its significant associations with stomatal movements,

aluminum toxicity, CO; fixation, ripening, and the taste of berries. Particularly in grapevines, malate is

instrumental in determining wine quality and facilitating the growth of microorganisms for vinification

(Fernie and Martinoia, 2009; Sweetman et al., 2009). The accumulation of malate is induced by

environmental changes and may be linked to physiological responses in various tissues such as leaves,

xylem, roots, and mesocarp (Van Kirk and Raschke, 1978; Kondo and Murata, 1987; Delhaize et al.,

1993; Hedrich et al., 1994; Patonnier, 1999; Wada et al., 2008; Malcheska et al., 2017). However, the

regulatory mechanism of physiological responses by TCA cycle metabolites remains unclear.

In response to drought, plants synthesize a phytohormone abscisic acid (ABA) and close stomatal pores,

formed by pairs of guard cells in the epidermis of leaves, to prevent excessive water loss through guard
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cell signaling (Hetherington and Woodward, 2003; Murata et al., 2015). Stomatal closure is initiated by
the transport of anions across the plasma membrane of guard cells through the slow-type anion channel
encoded by the SLOW ANION CHANNEL-ASSOCIATED 1 (SLAC1) gene (Schroeder et al., 2001; Negi
et al., 2008; Vahisalu et al., 2008). In ABA signaling, SLAC1 is phosphorylated and activated by
cytosolic Ca?* sensor kinases, CALCIUM-DEPENDENT PROTEIN KINASEs (CDPKs) (Brandt et al.,
2015), and a Ca**-independent protein kinase OPEN STOMATA1 (OST1) (Geiger et al., 2009), leading
to a decrease in turgor pressure and subsequent stomatal closure. Cytosolic free Ca®" acts as a ubiquitous
second messenger, and its concentration transiently increases in response to environmental,
developmental, and growth signals (Luan and Wang, 2021). The increase in cytosolic free Ca*"
concentration ([Ca?"]cy) results from the uptake of Ca?" into the cell and the release of Ca>" from internal
stores through Ca*" channels in response to a membrane potential shift (Hamilton et al., 2000) and
second messengers such as cyclic adenosine diphosphate ribose (cADPR) (Leckie et al., 1998), cyclic
adenosine monophosphate (cAMP) (Lemtiri-Chlieh and Berkowitz, 2004), inositol trisphosphate (IP3)
(Gilroy et al., 1990), reactive oxygen species (ROS) (Pei et al., 2000), nitric oxide (NO) (Garcia-Mata
et al., 2003), cyclic guanosine monophosphate (¢cGMP) (Wang et al., 2013), and nicotinic acid adenine
dinucleotide phosphate (NAADP) (Navazio et al., 2000). In guard cells, cytosolic Ca*" binds to the EF
hands of CDPKs, leading to activation of CDPKs, which then induces stomatal closure through the

phosphorylation of SLACI (Brandt et al., 2015).

Heterotrimeric G-proteins, composed of Ga, Gf, and Gy subunits, play pivotal roles in the generation
of second messengers, such as cADPR, cAMP, IP3;, and ROS (Zhang et al., 2011; Jin et al., 2013),
thereby participating in various biological processes such as growth, development, and responses to

environmental stimuli (Jin et al., 2013; Pandey, 2020). The genome of 4. thaliana encodes one canonical
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84  Ga (GPA1), one GB (AGB1), and three Gy subunits (AGG1-AGG3). GPA1 and/or AGBI are involved
85  in activating Ca?" channels, slow-type anion channels and K* channels and regulating stomatal
86  movements by controlling the production of second messengers in ABA and Ca?®* signaling of guard
87  cells (Wang et al., 2001; Fan et al., 2008; Zhang et al., 2011; Jeon et al., 2019). Recent findings have
88  demonstrated that TCA cycle intermediates modulate systemic energy metabolism as metabolic signals
89  "metabokine" via G-protein signaling cascades (Krzak et al., 2021). Malate as well as succinate directly
90 binds to a G-protein-coupled receptor (GPCR) and causes rapid increases in [Ca*']e and IP;
91  accumulation (Trauelsen et al., 2017). However, it is unknown whether TCA cycle metabolites regulate

92  G-protein signaling in plants.

93  In this study, we demonstrate that several TCA cycle metabolites accumulate in grapevine leaves during
94  dehydration stress, among which malate most effectively regulates stomatal response via a G-protein

95  signaling cascade. We propose that malate forms a hub between energy homeostasis and stress response.

96

97 Results

98  Metabolic responses of TCA cycle metabolites to dehydration stress in grapevine leaves

99  To investigate metabolic changes in response to drought, grapevine (Vitis vinifera) leaves were subjected
100  to water-deficit stress. Detached leaves were sampled at 0—24 h of the dehydration stress treatment and
101  subjected to non-targeted metabolome analysis. Principal component analysis (PCA) revealed that
102  metabolite level changes were not pronounced between 0 and 1 h but gradually increased thereafter (Fig.

103  1A). Significant metabolite changes were classified into three patterns: gradual decrease (subclass 1),
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104  gradual increase (subclass 2), and increase followed by decrease (subclass 3) (Supplementary Fig. S1A).
105  The endogenous level of a phytohormone abscisic acid (ABA), an indicator of drought stress, increased
106  after 2 h of dehydration stress and reached a plateau after 6 h (Fig. 1B). After 24 h of treatment, out of
107 2,407 metabolites, 436 were upregulated, and 80 were downregulated (Fig. 1C, Supplementary Table
108  S1). Amino acids, lipids, terpenoids, phenolic acids, alkaloids, and flavonoids were the primary
109  categories exhibiting changes (Fig. 1D, Supplementary Fig. S1B). Among the upregulated metabolites,
110  we specifically examined three TCA cycle metabolites—malate, isocitrate, and citrate—since malate
111  functions as a signaling molecule inducing stomatal closure in 4. thaliana (Mimata et al., 2022b). Malate,
112  isocitrate, and citrate increased after 12 or 24 h of dehydration stress (Fig. 1E). In contrast, cis-aconitate

113 decreased immediately after 2—4 h and then returned to basal values.

114  Effects of TCA cycle metabolites on the [Ca?"|y in guard cells

115  Since Ca*' is a critical second messenger in guard cell signaling, we investigated the effects of TCA
116  cycle metabolites (succinate, fumarate, malate, oxalacetate, a-ketoglutarate, citrate, cis-aconitate and
117  isocitrate) and their associated compounds (acetate and pyruvate) on the elevations of [Ca**]cy: through
118  live cell imaging of A. thaliana guard cells expressing a Ca*" sensor fluorescent protein Yellow
119  Cameleon 3.6. Exogenous application of fumarate, malate, a-ketoglutarate, acetate, and pyruvate
120  induced elevations in [Ca?"].y, significantly increasing the frequency of [Ca?"].y elevation compared to
121 mock (Fig. 2). This finding suggests that a-hydroxy or o-keto acids are effective in [Ca*"]cy elevation.
122  Here, acetate caused transient long-term [Ca®'ey increase (Fig. 2A). Unlike the normal function of
123 YC3.6, the CFP fluorescence did not return to its baseline, and the YFP fluorescence dropped below the

124  basal level (Supplementary Fig. S2). This dysfunctional response of YC3.6 following the Ca*" surge
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125  served as an indicator of impending cell death (Ye et al., 2020). The Ca®" channel blocker La*
126 completely suppressed the malate-induced [Ca*]cy: increases (Fig. 2A, D), indicating that Ca®>* channels

127  are responsible for this Ca** response.

128  Effects of TCA cycle metabolites on the activation of SLAC1 expressed in Xenopus oocytes

129  The activation of the SLACI1 anion channel plays a critical role in stomatal closure. VVSLACI1 and
130  AtSLACI share 71% amino acid identity. A phenylalanine residue essential for pore gating (F450 in
131  AtSLACI) is conserved as F440 in VVSLAC1 (Qin et al., 2024). We predicted the structure of
132  VVSLACI1 wusing in silico modeling. The modeling results showed that VVSLACI1 has ten
133  transmembrane helices (Fig. 3 A—D). The pore is surrounded by an odd number of transmembrane
134  helices and is occluded by F440. To further analyze VVSLACI activity, we conducted two-electrode
135  voltage-clamp experiments on Xenopus oocytes. The negative currents in oocytes expressing VVSLACI
136  were minimal, whereas those in oocytes expressing the VVSLAC1F440A mutant were much higher (Fig.
137  3E-G). This indicates that VVSLACI is in an inactive state, while VVSLAC1F440A is constitutively
138  active. This finding aligns with previous reports showing that an open-gate mutant, AtSLAC1F450A,
139  exhibits substantial basal activity (Chen et al., 2010). The reversal potential was near the calculated
140  equilibrium potential of CI” (approximately 50-80 mV), suggesting that VVSLACI1 permeates CI” and

141  that these currents are minimally affected by leak currents.

142 The activity of AtSLAC1F450A is enhanced by malate, whereas that of the wild-type AtSLACI is not
143  (Mimata et al., 2022b). To examine the effects of TCA cycle metabolites, VVSLACI activity was
144  continuously monitored during perfusion with a bathing solution supplemented with the metabolites.

145  Isocitrate and citrate increased the negative currents in water-injected oocytes (Fig. 4A, B), indicating
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146  that this activation is due to Xenopus endogenous transporters. None of the other tested metabolites
147  affected the activity of wild-type VVSLACI1 (Fig. 4C, D). Dicarboxylates, however, promoted the
148  activity of VVSLACI1F440A. These results indicate that the open state of VVSLACI is a prerequisite for
149  the promotion of its activity by TCA cycle metabolites. Next, we examined whether these effects depend
150  on membrane potential. The increase in current magnitude was greater as the membrane potential
151  became more negative (Fig. 4E, F). Excluding oxalacetate, dicarboxylates significantly enhanced
152  VvSLACI activity without affecting its reversal potential. These results show that dicarboxylates in the

153  TCA cycle primarily promote CI™ transport through SLACI once it is in the active state.

154  Malate emerges as a specific modulator in the regulation of stomatal responses

155  To assess how TCA cycle metabolites influence plant responses to drought stress, we measured stomatal
156  aperture in the presence of the metabolites. After stomata were fully open under light, each metabolite
157  was applied, and stomatal aperture was measured. A significant reduction in stomatal aperture was
158  observed exclusively with malate treatment in V. vinifera (Fig. SA). Consistent results were obtained
159  using A. thaliana (Fig. 5B). These findings suggest that malate specifically acts as a modulator of

160 stomatal closure.

161  To further investigate the malate signaling pathway, we conducted a series of pharmacological
162  experiments (Supplementary Table S2). We applied anion channel blockers, DIDS and 9-
163  anthracenecarboxylic acid (9-AC) (Schwartz et al., 1995; Geiger et al., 2009), extracellular Ca* chelator
164  1,2-bis(2-aminophenoxy)ethane-N,N,N',N-tetraacetic acid (BAPTA) (Levchenko et al., 2005), and Ca**
165  channel blockers, nifedipine and La** (Reiss and Herth, 1985; Pei et al., 2000). Malate-induced stomatal

166  closure in both V. vinifera and A. thaliana was abolished by all inhibitors (Fig. SC-F; Mimata et al.,
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167  2022b). These results suggest anion channels and Ca®" signaling via Ca®>" channels are essential for
168  malate-induced stomatal closure in V. vinifera and A. thaliana, consistent with the results for [Ca®]cy

169  and SLACI activity (Fig. 2A, D, 4D-F; Mimata et al., 2022b).

170  Malate stimulates Ca** signaling via second messengers including cADPR, cAMP, and IP;

171 To further elucidate the malate-induced stomatal closure, the involvement of second messengers relevant
172  to Ca®' signaling, including cADPR, cAMP, IP3, ROS, NO, cGMP, NAADP, and PIPs, was investigated
173 by a pharmacological approach. We applied inhibitors targeting these second messengers that are well-
174  established in plant studies. Nicotinamide, alloxan, neomycin, and salicylhydroxamic acid (SHAM),
175  which are inhibitors of cADPR (Dodd et al., 2007), cAMP (Ma et al., 2009), IP; (Tang et al., 2007), and
176  peroxidase-catalyzed ROS production (Mori et al., 2001), respectively, completely abolished the malate-
177  induced stomatal closure in V. vinifera and A. thaliana (Fig. 4C, D, F—I). On the other hand, N-nitro-L-
178  arginine methyl ester (L-NAME), 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide
179  (cPTIO), LY83583, Ned 19, and wortmannin, which are an NO synthetase inhibitor (Joudoi et al., 2013),
180  an NO scavenger (Isner et al., 2019), a guanylate cyclase inhibitor, an antagonist of NAADP (Gonz&ez
181 et al., 2012), and an inhibitor of PIP; production (Matsuoka et al., 1995), respectively, have little
182  inhibitory effect on malate-induced stomatal closure (Supplementary Fig. S3). Ca’*" imaging
183  experiments further showed that nicotinamide, alloxan, and neomycin but not SHAM inhibited malate-
184  induced [Ca®]ey oscillations in Arabidopsis (Fig. 6A, B). These results suggest that Ca®* signaling

185  involving cADPR, cAMP, and IP; is required for malate-induced stomatal closure.

186  G-proteins are master regulators in malate signaling

187  Since the generation of cADPR, cAMP, IP3;, and ROS is regulated by G-proteins, their roles in the

9
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188  stomatal response to malate were investigated with the G-protein inhibitors. All inhibitors completely
189  abolished the malate effect in V. vinifera and A. thaliana (Fig. TA, B, Supplementary Fig. S3E, F). To
190  confirm the pharmacological result, a reverse genetic approach was performed using loss-of-function
191  mutants for the Go subunit and Gf subunit, gpal and agbl. The stomata of gpal and aghl mutants were
192  insensitive to malate (Fig. 7C). GDPBS also suppressed malate-induced [Ca*']cy: elevations and ROS
193  production (Fig. 7D-F). Furthermore, ROS production was not promoted by malate in the gpal and
194  agbl mutants (Fig. 7G). These data together demonstrate that malate signaling is transduced by G-

195  proteins in guard cells.

196 Discussion

197  Drought has severe impacts on agricultural crops and results in metabolite fluctuations in plants. In this
198  study, we identified 436 upregulated and 80 downregulated metabolites in grapevine leaves in response
199  to dehydration stress (Fig. 1C). These included modulators of stomatal movements, such as
200  phytohormones, primary metabolites, and aromatic secondary metabolites (Supplementary Table S1).
201  Among the upregulated metabolites, there were those that induce stomatal closure or inhibit stomatal
202  opening, such as ABA, phaseic acid, adenosine-3'-5'-diphosphate, y-aminobutyric acid (GABA), and
203  malic acid. On the other hand, among the downregulated metabolites, there were those that promote
204  stomatal opening or inhibit stomatal closure, such as indole-3-acetic acid and 5-aminolevulinic acid.
205  Amino acids and TCA cycle metabolites are osmolytes and their accumulation reduces the water
206  potential. Several amino acids induce stomatal closure through a pathway dependent on glutamate
207  receptor-like channels (GLRs) (Kong et al., 2016). Although TCA cycle metabolites, especially malate,

208 are key metabolites for stomatal movements, their role in signal transduction has remained largely

10
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209  unknown. This study specifically focused on the effect of TCA cycle metabolites and clarified the

210  mechanism underlying stomatal closure triggered by TCA cycle metabolites.

211  Specific guard cell responses triggered by TCA cycle metabolites

212  TCA cycle metabolites elicit distinct guard cell responses, including increases in [Ca**]ey, activation of
213  SLACI, and stomatal closure (Fig. 2, 4, 5). The different specificity of the Ca®" response to TCA cycle
214  metabolites (Fig. 2), compared to SLACI1 activation (Fig. 4), suggests that SLAC1 activation does not
215  necessarily lead to increases in [Ca*"]ey,, and a carboxylate receptor independent from SLACI may exist.
216  Despite both a-ketoglutarate and oxaloacetate are a-keto acids, only a-ketoglutarate, with a carbon chain
217  length similar to glutamate, was effective in inducing elevation of [Ca®"]ey (Fig. 2A, D), indicating the
218  importance of carbon chain length in perception. It was shown that dicarboxylate glutamate induces
219  [Ca®']ey elevation in guard cells and stomatal closure through a pathway dependent on glutamate
220  receptor-like channels (GLRs), while malate signaling is independently of GLRs (Mimata et al., 2022b).
221 It is plausible that a-ketoglutarate is recognized by GLRs. Even though fumarate and a-ketoglutarate
222  caused Ca®" elevation, SLAC1 activation, and ROS production (Fig. 2A, D, 4, Supplementary Fig. S4A),
223  they failed to close the stomata (Fig. 5A, B). An unknown factor specific to malate, but not to fumarate
224 or o-ketoglutarate, likely contributes to this process and requires further investigation. Taken together,

225  TCA cycle metabolites are individually sensed by guard cells through distinct mechanisms (Fig. 2, 4, 5).

226  Malate plays a key role in stress responses

227  Dehydration stress initiated the accumulation of ABA after 2 h (Fig. 1B), which correlates with the onset
228  of stomata closure (Hopper et al., 2014). The endogenous level of malate increased 12 h after

229  dehydration stress (Fig. 1E). Supporting this, a related study reported 6.78-fold increase in the relative

11
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230  abundance of malate in Arabidopsis aerial parts after 10 h of dehydration stress (Urano et al., 2009).

231  These findings showed that malate slowly accumulates in whole leaves. Malate was observed to be

232 secreted during stomatal closure (Van Kirk and Raschke, 1978), with its content in guard cells

233  decreasing right after ABA treatment (Kondo and Murata, 1987; Jin et al., 2013). Consistent with these

234 reports, the concentration of apoplast malate increased within 15 minutes in response to elevated COs,

235  which triggered stomatal closure (Hedrich et al., 1994). The apoplastic malate concentration is estimated

236  to reach approximately 10 mM, with other metabolites being present in lower concentrations or

237  undetected in leaves of several plant species (Lohaus et al., 1995; Gabriel and Kesselmeier, 1999;

238  Hedrich et al., 2001). Notably, the malate exporter AtALMT 12, mainly expressed in guard cells and

239  localized at the plasma membrane, is activated through the ABA signaling pathway (Meyer et al., 2010;

240  Sasaki et al., 2010), and loss-of-function mutation of AtALMT12 has been shown to increase malate

241  content in leaves (Medeiros et al., 2016). These findings suggest that malate is rapidly expelled by

242  transporters and gradually recharged, likely through intracellular biosynthesis, under stress conditions.

243  Malate was the most potent TCA cycle metabolite that induces stomatal closure (Fig. 5A, B). The

244  malate-induced stomatal closure has also been confirmed in other methods: feeding malate through the

245  petiole decreases stomatal aperture and conductance in ash and aspen trees (Patonnier, 1999; Rasulov

246 et al., 2018). The atalmti12 mutants exhibit increased malate accumulation and weaker and slower

247  stomatal closure in leaves (Meyer et al., 2010; Sasaki et al., 2010; Medeiros et al., 2016). As AtALMT12

248  is gated by malate (Meyer et al., 2010), exported malate accelerates malate efflux as a feedback loop.

249  This process subsequently leads to malate accumulation in apoplast, which activates SLAC1 and drives

250  stomatal closure. Moreover, exogenous application of malate inhibits stomatal opening (Esser et al.,

251  1997). Therefore, malate may play a role in maintaining stomatal closure to reduce water loss and

12
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252 enhance drought tolerance. This hypothesis is further supported by a report showing that atalmti?2

253  mutants are sensitive to drought stress (Medeiros et al., 2016).

254  Malate signaling is mediated by a specific set of second messengers

255  Stomatal measurements (Fig. 5D, G) and Ca®" imaging (Fig. 6) with inhibitors suggest the involvement
256  of second messengers including cAMP, cADPR, and IP; in malate signaling. cAMP triggers Ca** influx
257  through CYCLIC NUCLEOTIDE-GATED CHANNELS (CNGCs) in guard cells (Lemtiri-Chlieh and
258  Berkowitz, 2004; Ali et al., 2007). Recently, it was reported that multiple CNGCs work redundantly as
259  ABA-activated Ca®" channels, which are necessary for ABA-induced Ca*" oscillations and stomatal
260  closure independently of ROS (Tan et al., 2023; Yang et al., 2024). Future studies should investigate

261  the involvement of CNGCs in malate signaling.

262  Malate-induced stomatal closure required the peroxidase activity (Fig. SH, I). Malate promotes ROS
263  production by peroxidases (Mimata et al., 2022a), and ROS increase [Ca*']cy: via plasma membrane Ca®*
264  channels (Pei et al., 2000). Based on these observations, we hypothesized that malate accelerates Ca*"
265  influx by promoting ROS production. Contrary to our hypothesis, the inhibition of ROS production did
266  not impair malate-induced Ca*" responses (Fig. 6). Moreover, blocking Ca?* influx did not affect ROS
267  production (Supplementary Fig. S4B). These findings indicate that ROS production is independent of

268  Ca* signaling in malate-induced stomatal closure.

269  Malate signaling is transduced by G-protein signaling cascades

270  In mammals, carboxylates, such as succinate and malate, are sensed by a GPCR. Succinate is released

271  from stimulated macrophages and injured tissues, reaching millimolar concentrations locally
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272  (Chouchani et al., 2014; Littlewood-Evans et al., 2016). Extracellular succinate activates GPCRs,
273  stimulating IP; formation, inhibiting cAMP production, and increasing [Ca®']ey: via the G-protein
274  signaling pathway (He et al., 2004; Trauelsen et al., 2021). Likewise, malate is recognized by the
275  succinate receptor, leading to rapid increases in intracellular [Ca*"] and IP; accumulation (Trauelsen et

276 al., 2017).

277  In this study, pharmacological and reverse genetics experiments demonstrated the involvement of
278  second messengers, such as Ca?", cAMP, IP;, and G-proteins, in malate signaling in plants (Fig. 7).
279  Unlike animal GPCRs, plant GPCRs lack well-characterized guanine nucleotide exchange factor activity,
280  and such GPCRs have not yet been identified. Nevertheless, TCA cycle metabolites are common stress-
281  responsive signal molecules mediated by G-protein-dependent signaling cascades in both animal and

282  plant kingdoms.

283  Based on our findings, we propose a model summarizing malate signaling in guard cells (Fig. 7H). The
284  malate signal is transmitted via G-proteins, which regulate the generation of second messengers. This
285  signaling cascade induces increases in [Ca*']ey, which activates SLAC1 through phosphorylation by
286  Ca*-dependent protein kinases. Consequently, malate promotes Cl~ transport through active-form

287  SLACI, decreasing turgor pressure and driving stomatal closure.

288

289 Materials and Methods

290  Plants and growth conditions

291  Grapevine (V. vinifera L. cv. Chardonnay) was grown on a soil mixture of 1:1 = soil: vermiculite (v/v)
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in a growth room at 24°C and 80% relative humidity under 16 h-light/8 h-dark photoperiod with a photon
flux density of 100 pmol m 2 s~!. Arabidopsis (4. thaliana L. ecotype Colombia-0) was grown on a soil
mixture of 1:1 = soil: vermiculite (v/v) in a growth chamber at 21°C and 60% relative humidity under
16 h-light/8 h-dark photoperiod with a photon flux density of 120 pmol m ™ s™!. The T-DNA insertion
lines, gpal (SALK 001846 and SALK 066823C) and agb! (SALK_077086C and SALK 204268C),

were obtained from Arashare and NASC.

Dehydration stress treatment

Fully expanded leaves from 1 to 2-month-old grapevine plants were randomly detached. Dehydration
was performed as described previously (Urano et al., 2009) with a few modifications. The detached
leaves were exposed to dehydration stress on the paper at 26°C and ambient humidity under light. At

indicated time, the leaves were frozen by liquid nitrogen.

Sample preparation for LC-MS

The detached leaves were freeze-dried in a lyophilizer (Scientz-100F; Scientz, Zhejiang, China) and
then homogenized (30 Hz, 1.5 min) into powder using a grinder (MM 400; Retsch, Dusseldorf,
Germany). Next, 1200 pL of -20°C pre-cooled 70% methanolic aqueous internal standard extract added
to 50 mg of sample powder. The sample was vortexed once every 30 min for 30 s, for a total of 6 times.
After centrifugation at 12000 rpm for 3 min, the supernatant was aspirated, and the sample was filtered
through a microporous membrane (0.22 pm pore size) and stored in the injection vial for UPLC-MS/MS

analysis.

Metabolite analysis using LC-MS
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312  The sample extracts were analyzed using an UPLC-ESI-MS/MS system (UPLC, ExionLC™ AD:

313  SCIEX, MA, USA; MS, Applied Biosystems 4500 Q TRAP: SCIEX). The analytical conditions were

314  as follows, UPLC: column, Agilent SB-C18 (1.8 um, 2.1 mm * 100 mm); The mobile phase was

315  consisted of solvent A, pure water with 0.1% formic acid, and solvent B, acetonitrile with 0.1% formic

316  acid. Sample measurements were performed with a gradient program that employed the starting

317  conditions of 95% A, 5% B. Within 9 min, a linear gradient to 5% A, 95% B was programmed, and a

318  composition of 5% A, 95% B was kept for 1 min. Subsequently, a composition of 95% A, 5.0% B was

319  adjusted within 1.1 min and kept for 2.9 min. The flow velocity was set as 0.35 mL per min; The column

320  oven was set to 40°C; The injection volume was 4 pL. The effluent was alternatively connected to an

321  ESl-triple quadrupole-linear ion trap (QTRAP)-MS.

322  The ESI source operation parameters were as follows: source temperature 550°C; ion spray voltage (IS)

323 5500 V (positive ion mode)/-4500 V (negative ion mode); ion source gas I (GSI), gas II (GSII), curtain

324  gas (CUR) were set at 50, 60, and 25 psi, respectively; the collision-activated dissociation (CAD) was

325  high. QQQ scans were acquired as MRM experiments with collision gas (nitrogen) set to medium. DP

326  (declustering potential) and CE (collision energy) for individual MRM transitions was done with further

327  DP and CE optimization. A specific set of MRM transitions were monitored for each period according

328  to the metabolites eluted within this period.

329  Sample preparation for GC-MS

330  The leaves subjected dehydration stress were ground to a powder in liquid nitrogen. 500 mg (1 mL) of

331  the powder was transferred immediately to a 20 mL head-space vial (Agilent, CA, USA), containing

332  NaCl saturated solution, to inhibit any enzyme reaction. The vials were sealed using crimp-top caps with
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333  TFE-silicone headspace septa (Agilent). At the time of SPME analysis, each vial was placed in 60°C for

334 5 min, then a 120 um DVB/CWR/PDMS fiber (Agilent) was exposed to the headspace of the sample

335 for 15 min at 60°C.

336  Metabolite analysis using GC-MS

337  After sampling, desorption of the VOCs from the fiber coating was carried out in the injection port of

338  the GC apparatus (Model 8890; Agilent) at 250°C for 5 min in the splitless mode. The identification and

339  quantification of VOCs was carried out using an Agilent Model 8890 GC and a 7000D mass

340  spectrometer (Agilent), equipped with a 30 m x 0.25 mm x 0.25 pm DB-5MS (5% phenyl-

341  polymethylsiloxane) capillary column. Helium was used as the carrier gas at a linear velocity of 1.2

342  mL/min. The injector temperature was kept at 250°C and the detector at 280°C. The oven temperature

343  was programmed from 40°C (3.5 min), increasing at 10°C/min to 100°C, at 7°C/min to 180°C, at

344  25°C/min to 280°C, hold for 5 min. Mass spectra was recorded in electron impact (EI) ionization mode

345  at 70 eV. The quadrupole mass detector, ion source and transfer line temperatures were set, respectively,

346  at 150,230 and 280°C. The MS was selected ion monitoring (SIM) mode was used for the identification

347  and quantification of analytes.

348  Data analysis of the non-target metabolome

349  Relative metabolite abundances were calculated by the peak areas. Unsupervised PCA was performed

350 by statistics function prcomp within R (www.r-project.org). The relative contents of all differential

351  metabolites were processed by UV (unit variance scaling) followed by K-Means cluster analysis.

352  Identified metabolites were annotated using KEGG Compound database

353  (http://www.kegg.jp/kegg/compound/). Pathways with significantly regulated metabolites mapped to
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were then fed into metabolite sets enrichment analysis (MSEA), their significance was determined by
hypergeometric test’s P-values. Upregulated metabolites are defined VIP >1, log, (Fold change) >1 and
P-value >0.05, downregulated metabolites are defined VIP >1, log, (Fold change) <-1 and P-value

>0.05. P-value was calculated by Welch’s t-test.

[Ca’"]cye imaging

Wild-type Arabidopsis plants expressing Yellow Cameleon 3.6 were used to measure [Ca*"]ey in guard
cells as described previously (Mimata et al., 2022b). The abaxial side of an excised rosette leaf was
gently attached to a glass slide with a medical adhesive (stock no. 7730; Hollister, IL, USA) and then
mesophyll tissues were whittled away with a razor blade to keep the abaxial epidermis intact on the slide.
The remaining abaxial epidermis was immersed in stomatal assay solution, comprising 5 mM KCl, 50
uM CaCl, and 10 mM MES/Tris (pH 5.6), in the light for 2 h to induce stomatal opening. The epidermis
was treated with 10 mM TCA cycle metabolites in stomatal assay solution at the indicated time.
Inhibitors were added 5 min before starting imaging. The stock solution of TCA cycle metabolites was

dissolved in stomatal assay solution and adjusted to a pH of 5.6 with Tris.

The images were acquired under a fluorescence microscope (ECLIPSE Ti2-E; NIKON). Excitation light
was provided by a mercury arc lamp and a 436 nm filter (ET436/20x, Chroma Technology Corporation,
VT, USA). Emission of the CFP was measured at 480 nm filter (ET480/40m, Chroma Technology
Corporation) and of the YFP at 535 nm filter (ET535/30m, Chroma Technology Corporation) using a
CMOS camera (ORCA-Fusion BT Digital CMOS camera C15440; HAMAMATSU, Shizuoka, Japan).
Images were taken every 5 s.

Modeling
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375  AlphaFold3 was used to predict the protein structure of VVSLACI. Five protomer models were
376  generated, with predicted template modeling scores raging from 0.65 to 0.67 and ranking scores raging
377  from 0.81 to 0.83. The models were compared with the cryo-EM structure of AtSLAC1 (PDBs 8gw6:
378  Leeetal, 2023) and the top-scored model has a root mean square deviation of 0.852 A/335 Ca. Due to
379  the limited length of the AtSLACI structure, the residues 1-141 and 507-553 in VvVSLACI were
380  removed.

381  Cloning and cRNA synthesis

382  All constructs were cloned into the oocyte expression vector pNBlu (Nour-Eldin et al., 2006) by
383  ClonExpress II One Step Cloning Kit (Vazyme Biotech, Nanjing, China). The site-directed mutants were
384  generated by FastCloning (Li et al., 2011). VVSLAC1 (LOC100244459) cDNA from V. vinifera was
385  used for cloning, and all constructs were verified by sequencing. Primers used for cloning and site-
386  directed mutagenesis are listed in Table S3. cRNA was prepared using an mMESSAGE mMACHINE

387  ™T7 Transcription Kit (Thermo Fisher Scientific, MA, USA).

388  Two-electrode voltage-clamp

389  Xenopus laevis oocytes were injected with 50 nL ¢cRNA (each 10 ng) and incubated in ND96 buffer at
390  18°C for a few days before voltage-clamp recordings (Mimata et al., 2022b). The bath solution contained
391 1 mM Mg-gluconate, 1 mM Ca-gluconate and 1 mM LaCl; £ 10 mM TCA cycle metabolites buffered
392  with 10 mM MES/Tris to adjust the pH to 5.6. Osmolality was adjusted to 220 mOsmol kg using D-
393  sorbitol. The voltage pulse was commanded to clamp the membrane potential at —120 mV in gap-free
394  or from +60 to —160 mV in 20 mV decrements in step for 2.5 s with a holding potential of 0 mV. Voltage-

395  clamp recordings for oocytes were performed using an Axoclamp 900A amplifier (Molecular Devices,
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396  CA, USA), data were acquired using a Digidata 1550B system (Molecular Devices) and analyzed using
397  pCLAMP 11.2 software (Molecular Devices).

398

399  Measurement of stomatal aperture

400  Stomatal apertures were measured as described previously (Ye et al., 2020) with modifications. Leaf
401  discs (4 mm in diameter) obtained from fully expanded leaves were placed abaxial side down on
402  stomatal assay solution. The discs were exposed to light for 2 h to induce stomatal opening and
403  subsequently treated with 10 mM TCA cycle metabolites in stomatal assay solution for an additional 2
404  h. Inhibitors were added 5 min before malate treatment. The types and concentrations of inhibitors are
405  listed in Supplementary Table S2. The abaxial epidermis was captured under optical microscopes
406 (ECLIPSE Ts-2R, ECLIPSE Ti2-E and ECLIPSE Ci; NIKON, Tokyo, Japan) using NIS ELEMENTS
407  software (NIKON). Stomatal apertures were quantified using IMAGEJ software (NIH). We measured
408 30 stomatal apertures from a leaf disc to calculate an average. This measurement was repeated four times
409  using different plants, and the overall average was calculated.

410

411  Measurement of ROS production

412 ROS production in guard cells was analyzed using the fluorescent dye 2',7'-dihydrodichlorofluorescein
413  diacetate (H,DCF-DA) as described previously (Mimata et al., 2022a) with modifications. The abaxial
414  side of an excised rosette leaf was gently attached to a glass slide with a medical adhesive and then
415  mesophyll tissues were whittled away with a razor blade. The remaining abaxial epidermis was

416  immersed in stomatal assay solution in the light for 2 h to induce stomatal opening. A total of 50 uM
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H,DCF-DA was added to the stomatal assay solution and the epidermal tissues were incubated in the

dark for 30 min. After the dye loading, the epidermal tissues were gently rinsed with stomatal assay

solution. The epidermis was treated with 10 mM TCA cycle metabolites + inhibitor in stomatal assay

solution. After the 30 min incubation, fluorescent signals were captured using the fluorescence

microscope with 480 + 15 nm/ 535 + 23 nm excitation/emission filters. We measured 30 guard cells

from an epidermis to calculate an average. This measurement was repeated three times using different

plants, and the overall average was calculated.
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653

654  Figure legends

655  Figure 1. Metabolome analysis in grapevine leaves during dehydration treatment.

656  A) PCA score plot of metabolomic datasets colored by the time of dehydration stress as clusters. Dots

657  represent biological replicates. Ellipse display 95% confidence regions of each cluster.

658  B) Relative ABA levels. Fold changes were normalized to the values of 0 h. Data are the mean + SE.

659  C) Volcano plot for the differential metabolites. Red and green dots mark the metabolites with
660  significantly increased and decreased level in 0 h versus 24 h, respectively. Upregulated metabolites are
661  defined VIP >1, logx(Fold change) >1 and P-value >0.05, downregulated metabolites are defined VIP

662  >1, logx(Fold change) <-1 and P-value >0.05. P-value was calculated by Welch’s t-test.

663 D) Categorization of the differential metabolites in C). Upper panel shows upregulated metabolites, and

664  lower panel shows downregulated metabolites.

665  E) Relative TCA cycle metabolite levels at different time points. Heat maps represent log>(Fold change).
666  Fold changes were normalized to the values of 0 h. Data were obtained from three independent

667  Dbiological replicates. Abbreviations: F6P, fructose-6-phosphate; F1,6BP, fructose 1,6-bisphosphate;
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668  GADP, glyceraldehyde 3-phosphate; 3PG, 3-phosphoglycerate; PEP, phosphoenolpyruvate; Pyr,
669  pyruvate; Cit, citrate; cis-Aco, cis-aconitate; Isocit, isocitrate; Keto, a-ketoglutarate; Suc, succinate;
670  Fum, fumarate; Mal, malate; Oxal, oxalacetate; Ser, serine; Trp, tryptophan; Tyr, tyrosine; Phe,
671 phenylalanine; Val, valine; Leu, leucine; lle, isoleucine; Thr, threonine; Asp, aspartate; Asn, asparagine;
672  Met, methionine; Lys, lysine; Glu, glutamate; Gln, glutamine; His, histidine; Pro, proline; Arg, arginine;

673 GABA, y-aminobutyrate.

674

675  Figure 2. Ca®’ response to TCA cycle metabolites in guard cells.

676 A and B) Representative traces of fluorescence emission ratios (535/480 nm) in A4. thaliana guard cells
677  expressing the Ca*" sensor Yellow Cameleon 3.6. Grey bars indicate the time point when treatment was

678  applied. The guard cells were treated with TCA cycle metabolites 3 min after the measurement.

679  C and D) Percentage of number of guard cells showing different numbers of transient [Ca?*]cy; increases.
680  Anincrease in [Ca*"].y is defined by an increase in fluorescence ratio by >0.1 U from the baseline ratio.
681  Data were obtained from Mock (25), Isocit (16) for C); Mock (51 guard cells), Suc (31), Fum (28), Mal
682  (44) Oxal (27), Keto (28), Cit (30), cis-Aco (29), Ace (33), Pyr (33), Mal+La*" (21) for D). Asterisks
683  and taggers indicate statistical significances based on Fisher’s exact test, P <0.05. Abbreviations: Isocit,
684  isocitrate; Suc, succinate; Fum, fumarate; Mal, malate; Oxal, oxalacetate; Keto, a-ketoglutarate; Cit,

685  citrate; cis-Aco, cis-aconitate; Ace, acetate; Pyr, pyruvate.

686

687  Figure 3. The negative currents of Xenopus oocytes expressing VVSLACI1F440A.
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A to D) A ribbon model of a VVSLACI protomer. A top view of the promoter is shown A), and side

views are shown B to D). The VVSLACI structure model is displayed in red and the AtSLAC1 structure

is displayed in green for comparison. The side chain of Phe 440 of VVSLACI is shown in magenta and

Phe 450 of AtSLACI1 is shown in blue. The pore is shown as solid surface.

E) Representative whole-cell negative current recordings in Xenopus oocytes expressing

VVvSLAC1F440A. The voltage pulse was commanded to clamp the membrane potential from +60 mV

to =160 mV in —20 mV steps for 2.5 seconds with a holding potential of 0 mV.

F) Average steady-state current—voltage curves of whole-cell negative current recordings.

G) Average steady-state negative currents at —160 mV in C). Data are the mean = SE (n = 12 for

VVSLACI; n = 7 for VVSLAC1F440A). Different letters indicate statistical significances based on

Student’s #-test, P < 0.05.

Figure 4. VVSLACI activity in the presence of TCA cycle metabolites.

A) Representative whole-cell negative current traces during perfusion with TCA cycle metabolites in

water-injected Xenopus oocytes. The voltage pulse was commanded to clamp the membrane potential

at —120 mV. Grey regions indicate metabolite perfusion and white regions indicate washout.

B) Average of relative currents. The currents were normalized to the mock-treated current. Data were

obtained from six oocytes per condition. Data are the mean + SE.

C) Representative whole-cell negative current traces during perfusion with TCA cycle metabolites in
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707  Xenopus oocytes expressing VVSLAC1F440A.

708 D) Average of relative currents. Data are the mean + SE (n = 5 for VVSLACI; n = 6 for

709  VVvSLACIF440A).

710  E) Average steady-state current—voltage curves of whole-cell negative current recordings in bathing

711  solution supplemented with TCA cycle metabolites. The voltage pulse was commanded to clamp the

712  membrane potential from +60 mV to —160 mV in —20 mV steps for 2.5 seconds with a holding potential

713 of 0 mV.

714  F) Average steady-state negative currents at —160 mV in E). Data are the mean = SE. Data were obtained

715  from four oocytes per condition. Different letters indicate statistical significances based on one-way

716  ANOVA with Tukey’s HSD test, P < 0.05. Abbreviations: Suc/S, succinate; Fum/F, fumarate; Mal/M,

717  malate; Oxal/O, oxalacetate; Keto/K, a-ketoglutarate; Cit, citrate; Isocit/I, isocitrate; Cis, cis-aconitate;

718  Ace/A, acetate; Pyr/P, pyruvate.

719

720  Figure 5. Malate-induced stomatal closure is mediated by anion channels and second messengers.

721 A and B) Effects of TCA cycle metabolites on stomatal aperture in A) V. vinifera or B) A. thaliana leaves.

722  Data are the mean + SE. Different letters indicate statistical significances based on one-way ANOVA

723  with Tukey’s HSD test, P <0.05.

724  Cto I) Effects of inhibitors on malate-induced stomatal closure in C, D and H) V. vinifera or E to G, I)

725  A. thaliana leaves. Averages of stomatal apertures from four independent experiments (n = 4) are shown.

726  Data are the mean + SE. Different letters indicate statistical significances based on two-way ANOVA
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with Tukey’s HSD test, P < 0.05. Abbreviations: Suc, succinate; Fum, fumarate; Mal, malate; Oxal,
oxalacetate; Keto, a-ketoglutarate; Cit, citrate; Isocit, isocitrate; cis-Aco, cis-aconitate; Ace, acetate; Pyr,

pyruvate; Nif, nifedipine; Nic, nicotinamide.

Figure 6. Malate-induced [Ca?'].y elevations are mediated by cADPR, cAMP and IPs.

A) Representative traces of fluorescence emission ratios (535/480 nm) in A. thaliana guard cells
expressing the Ca®" sensor Yellow Cameleon 3.6. Grey bar indicates the time point when treatment was
applied. The guard cells were treated with malate 3 min after the measurement. Inhibitors were added 5

min before starting imaging.

B) Percentage of number of guard cells showing different numbers of transient [Ca®*]cy increases. An
increase in [Ca*']cy is defined by an increase in fluorescence ratio by >0.1 U from the baseline ratio.
Data were obtained from Mock (10 guard cells), Mal (12), +Nicotinamide (13), +Alloxan (10),
+Neomycin (15), +SHAM (12). Asterisks indicate statistical significances based on Fisher’s exact test,

P <0.05.

Figure 7. Malate signaling is mediated by G-proteins.

A and B) Effects of G-protein inhibitors on malate-induced stomatal closure in A) V. vinifera or B) A.

thaliana leaves.

C) Effects of gpal and agbl mutation on malate-induced stomatal closure. Averages of stomatal

apertures from four independent experiments (n =4) are shown. Data are the mean + SE. Different letters
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indicate statistical significances based on two-way ANOVA with Tukey’s HSD test, P < 0.05.

D) Representative traces of fluorescence emission ratios (535/480 nm) in A. thaliana guard cells
expressing the Ca®" sensor Yellow Cameleon 3.6. Grey bar indicates the time point when treatment was
applied. The guard cells were treated with malate 5 min after the measurement. Inhibitors were added 5

min before starting imaging.

E) Percentage of number of guard cells showing different numbers of transient [Ca®]y increases. An
increase in [Ca?']ey is defined by an increase in fluorescence ratio by >0.1 U from the baseline ratio.
Data were obtained from Mock (34 guard cells), Mal (32), +GDP 3 S (33). Asterisks indicate statistical

significances based on Fisher’s exact test, P <0.05.

F) Effects of GDPBS on malate-induced ROS production in A4. thaliana guard cells. The ROS-sensitive
dye, 2',7'-dichlorodihydrofluorescein diacetate (H,DCF-DA) was used for ROS detection in guard cells.

Fluorescence intensity was normalized to mock value in water.

G) Effects of gpal and aghl mutation on malate-induced ROS production in 4. thaliana guard cells.
Fluorescence intensity was normalized to mock value in WT. Averages from three independent
experiments (n = 3) are shown. Data are the mean + SE. Different letters indicate statistical significances

based on two-way ANOVA with Tukey’s HSD test, P <0.05.

H) A proposed working model for malate signaling.

37


https://doi.org/10.1101/2024.04.02.587830
http://creativecommons.org/licenses/by-nc-nd/4.0/

Fig. 1 Metabolome analysis in grapevine leaves during dehydration treatment.
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Fig. 2 Ca%* response to TCA cycle metabolites in guard cells.
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Fig. 3 The negative currents of Xenopus oocytes expressing VVSLAC1F440A.
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Fig. 4 VVSLACL activity in the presence of TCA cycle metabolites.
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Fig. 5 Malate-induced stomatal closure is mediated by anion channels and second messengers.
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Fig. 6 Malate-induced [Ca2+]Cyt elevations are mediated by cCADPR, cAMP and IP.
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Fig. 7 Malate signaling is mediated by G-proteins.
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