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Abstract 
 
In profiling assays, thousands of biological properties are measured across many samples, 
yielding biological discoveries by capturing the state of a cell population, often at the single-cell 
level. However, for profiling datasets, it has been challenging to evaluate the phenotypic activity 
of a sample and the phenotypic consistency among samples, due to profiles’ high 
dimensionality, heterogeneous nature, and non-linear properties. Existing methods leave 
researchers uncertain where to draw boundaries between meaningful biological response and 
technical noise. Here, we developed a statistical framework that uses the well-established mean 
average precision (mAP) as a single, data-driven metric to bridge this gap. We validated the 
mAP framework against established metrics through simulations and real-world data 
applications, revealing its ability to capture subtle and meaningful biological differences in cell 
state. Specifically, we used mAP to assess both phenotypic activity for a given perturbation (or a 
sample) as well as consistency within groups of perturbations (or samples) across diverse 
high-dimensional datasets. We evaluated the framework on different profile types (image, 
protein, and mRNA profiles), perturbation types (CRISPR gene editing, gene overexpression, 
and small molecules), and profile resolutions (single-cell and bulk). Our open-source software 
allows this framework to be applied to identify interesting biological phenomena and promising 
therapeutics from large-scale profiling data. 
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Introduction 
 
Today, the study of complex diseases and biological processes at the systems level increasingly 
relies on the use of multiplex and high-throughput experiments. One particular experimental 
design, known as “profiling,” has emerged as a powerful approach to characterize biological 
functions, classify patient subpopulations, and identify promising therapeutic targets1–6. A typical 
profiling experiment measures hundreds to tens of thousands of features of a biological system 
simultaneously across many samples. The measurements can report on bulk properties or offer 
single-cell resolution, depending on the experimental design and research question asked. 
Thus, they convey information about the molecular (e.g., genomic, epigenomic, transcriptomic, 
proteomic, or metabolomic) or cellular (e.g., morphological, spatial, viability across cell lines) 
status of the system. In some profiling experiments biological samples are subjected to various 
perturbations, usually chemical compounds or genetic reagents6–13. Ultimately, by combining 
high-dimensional readouts, diverse biological samples, and a large number of perturbations, 
profiling can reveal the mechanisms of biological processes and potential therapeutic avenues. 
 
By casting a wide and systematic net, profiling experiments provide a rich source of information 
for elucidating molecular and cellular response to perturbations through comparing their readout 
signatures. Profiling data analyses enable functional annotation of uncharacterized 
perturbations, identification of perturbation groups using clustering, and visualization of complex 
relationships with dimensionality reduction techniques2–6,11. Due to the variation in responses to 
different perturbations, it is crucial to prioritize perturbations that exhibit strong and reproducible 
phenotypic effects that are more likely to reflect true biological signals. Likewise, it is important 
to be able to distinguish treatments that produce cells that genuinely genuinely resemble each 
other (such as chemicals with the same mechanism or genes with the same function) and those 
that appear similar due to biological variation and confounding factors. However, the variety of 
perturbations, high dimensionality of readouts, and the overall heterogeneous nature of profiling 
datasets make it challenging to discern biologically meaningful patterns from noise and 
technical variation14–19. The ability to systematically prioritize perturbations for downstream 
analysis, optimize preprocessing and experimental design choices, and evaluate profile 
similarity is essential for maximizing the utility of these datasets. 
 
Unlike differential feature analysis that aims to identify individual readouts that differ between 
samples20, profiling data analysis treats readout signatures as holistic representations that 
comprehensively reflect the cellular state2,4,5,15. The most commonly used methods for 
evaluating profile strength and similarity are either based on statistical testing or, more recently, 
on machine learning (ML)15,16. Traditional multivariate statistical tests such as MANOVA and 
Hotelling’s T2 along with other recent parametric approaches21,22 still rely on assumptions that 
each feature’s measurements are normally distributed, sample sizes are larger than feature 
space dimensionality, and that, for the most part, observed phenomena are linear and not 
co-dependent15,23. Thus, these approaches broadly oversimplify the behavior of biological 
systems24. Multivariate nonparametric kernel tests25 still assume sufficient sample size to obtain 
informative embeddings of distributions and require careful choice of the kernel. On the other 
hand, ML strategies use a classifier to sort measured phenotypes into distinct groups, where 
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biological replicability and activity are determined by a better ability to classify samples from 
controls or each other. However, these methods are not readily adopted by the community for 
this purpose, because in addition to the high computational cost of creating numerous pairwise 
classifiers, ML strategies face the dual challenges of limited replicates in biological studies and 
overfitting, which requires extensive model evaluation, analytical design (e.g. model selection, 
train/test splitting), and parameter tuning. Additionally, ML approaches can overfit confounding 
variables, such as batch effects, which can be hard to ascertain, especially if the model is not 
fully explainable26. This precludes the selection of a single set of parameters that applies to all 
scenarios, because these choices are (and should be) influenced by each particular 
experimental design or application. Data-driven profile evaluation that does not require 
extensive parameter tuning and adapts easily across various experimental designs is therefore 
preferred. 
 
To overcome these issues, we proposed to approach profile evaluation as an information 
retrieval problem and developed a statistical framework and open-source software for 
retrieval-based assessment of profile strength and similarity. Specifically, we employ mean 
average precision (mAP) as a single data-driven evaluation metric that we adapt to multiple 
useful tasks in profiling analysis, including determining similarity of perturbations or groups of 
perturbations to controls and/or to each other. mAP assesses the probability that samples of 
interest will rank highly on a list of samples rank ordered by some distance or similarity metric. 
With appropriate distance metric choice, mAP is inherently multivariate, nonparametric, and 
does not make linearity or sample size assumptions unlike most commonly used alternatives. 
We provide a detailed description of mAP properties in this context and a method for assigning 
statistical significance to mAP scores such that resulting p-values can be used to filter profiles 
by phenotypic activity and/or consistency. We show the advantages of mAP over existing 
metrics using simulated data and illustrate the utility of mAP on a variety of real-world datasets, 
including image-based (Cell Painting27), protein (nELISA12), and mRNA (Perturb-seq7–10) 
profiling data, some at the single-cell level, and involving several perturbation types (CRISPR 
gene editing, gene overexpression, and small molecules). We provide a Python package 
implementing a flexible framework for grouping profiles based on metadata, and efficient 
calculation of mAP scores and corresponding p-values for easy and scalable application of our 
method to other datasets. We expect that the mAP framework we provide will streamline 
hypothesis generation and improve hit prioritization from a wide range of large-scale, 
high-throughput biological profiling data. 
 
Results 
 
Profile evaluation as information retrieval 
 
A fundamental goal of profiling analysis is to identify biologically meaningful relationships 
between samples by comparing their phenotypic signatures. One important application of this is 
the ability to annotate previously uncharacterized perturbations by comparing them to a 
reference dataset of annotated profiles (or “compendium”)1,2,4,6. For example, a compound with 
an unknown mechanism of action (MoA) can be compared against a compendium of 
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compounds with known MoAs. If the unknown compound exhibits a phenotypic signature highly 
similar to those of compounds targeting a specific pathway, it suggests a shared mechanism 
and potential therapeutic relevance. 
 
This problem naturally aligns with principles of information retrieval, where the goal is to rank 
and retrieve relevant items from a large dataset (annotated perturbation profiles) based on their 
similarity to a given query (uncharacterized perturbation profile)28. Similarity-based retrieval 
allows evaluating how similar a query profile is to a given group (e.g., a shared MoA) in a 
data-driven manner, without making assumptions about the distribution or interpretability of 
features, linear separability, or the number of reference samples per group. 
 
In high-throughput profiling experiments, perturbations vary widely in their effects, from strong, 
reproducible phenotypic changes to those indistinguishable from controls. To ensure that 
retrieval-based annotation is meaningful, both the reference compendium and the 
uncharacterized profiles should exhibit robust phenotypic signals. Similarity-based retrieval also 
provides an effective way to evaluate this task by assessing whether a perturbation reliably 
retrieves its own replicates over controls—a task we refer to as phenotypic activity—only 
requiring the minimum of two replicates per perturbation. By filtering out phenotypically inactive 
perturbations, we can focus on perturbations that induce biologically relevant effects. 
Additionally, if most perturbations (or known strong perturbations) fail to retrieve their own 
replicates or are indistinguishable from controls, this may indicate systemic issues with the 
whole dataset that can prevent detecting real effects. For phenotypically active perturbations 
with known annotations, retrieval-based assessment can also be used to evaluate phenotypic 
consistency—the degree to which perturbations with a shared annotation (e.g., a known MoA) 
exhibit a distinct and cohesive signature compared to other groups. Assessment of phenotypic 
consistency in profiling data using mAP can help prioritizing perturbation groups that produce 
robust phenotypes but also find useful and previously unrecognized connections. Finally, we 
also can assess phenotypic distinctiveness of an active perturbation by retrieving its replicates 
against all other active perturbations. Because all these tasks are framed as information 
retrieval (Supplementary Table 1), we can leverage a single retrieval-based metric (mean 
average precision, mAP) for their evaluation. Hence, we refer to our approach to profile 
evaluation as the mAP framework. 
 
By assessing both phenotypic activity and consistency through information retrieval, we can 
enhance the ability to distinguish meaningful biological relationships from artifacts of 
experimental noise or technical variation in downstream analyses. 
 
The mAP framework overview 
 
In this section, we demonstrate through a simple example the application of the proposed mAP 
framework to evaluating phenotypic activity of a perturbation (Figure 1). 
  
Mean average precision (mAP) is a performance metric routinely used in information retrieval 

and machine learning, particularly in the context of ranking tasks 28,29. mAP measures the ability 
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to retrieve samples within a group (“correct” samples) from a collection of samples from another 
group (“incorrect” samples). We used mAP to indicate the degree to which profiles from one 
group exhibit greater intra-group similarity compared to their similarity with the profiles from a 
second group. 
 
In a typical profiling experiment, both perturbations and controls are represented by multiple 
biological replicates, i.e., the same perturbation is replicated across multiple wells and, 
depending on the experiment’s scale, even multiple plates and batches (Figure 1A). These 
replicate profiles can be obtained directly at the well level or first measured at the single-cell 
level and then aggregated. We illustrate calculation of mAP for phenotypic activity assessment 
through retrieving a group of perturbation replicate profiles against a group of control replicate 
profiles. This example demonstrates the simplest block design, when we group profiles only by 
the replicate identity and not other metadata variables, such as well position, plate, etc (Figure 
1A). In experimental design, a block design refers to the arrangement of experimental units into 
groups (blocks) that are similar to one another, to reduce sources of variability and increase the 
precision of the comparisons being made 30. The choice of block design can impact the mAP 
calculation, as it determines which profiles are considered “correct” or “incorrect” when 
evaluating retrieval performance. As discussed later, more complex block designs can be used 
to account for the impact of other sources of variation (e.g., well position or plate effects) on the 
retrieval task of interest, by grouping profiles accordingly. 
 
Profiles can be viewed as points in a high-dimensional feature or representation space, where 
the closeness between pairs corresponds to profile similarity. Profile similarity can be assessed 
by measuring the distance between these points defined by any relevant distance function, such 
as cosine, Euclidean, Mahalanobis, etc., such that a larger distance between points indicates 
lower similarity and vice versa. Following a typical information retrieval workflow28, we began by 
designating one profile from a replicate group as a query and measuring distances between the 
query and the rest of this perturbation’s replicates as well as control replicates (Figure 1B).​
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Figure 1. Schematic overview of the mAP framework. A: A typical output of a profiling experiment 
contains multiple replicate profiles for each perturbation and controls. B: To measure average precision 
per perturbation replicate, we selected one replicate profile as a query and measured distances to its 
other replicates and controls. C: Profiles were then ranked by decreasing similarity (increasing distance) 
to the query; the rank list was converted to binary form and used to calculate precision Pk and recall Rk at 
each rank k. D: Average precision was calculated by averaging precision values over those ranks k 
containing perturbation replicates, which corresponds to a non-interpolated approximation of the area 
under the precision-recall curve. E: By applying this procedure to each perturbation replicate, we 
calculated a set of AP scores that were then averaged to obtain a mAP score for a perturbation’s 
phenotypic activity. F: One can also apply the same framework to retrieving groups of perturbations with 
the same biological annotations (rather than groups of replicates of the same perturbation)—for example, 
compounds that share the same mechanism of action (MoA)—by calculating the mAP score per each 
group of perturbations (MoA). 
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We rank profiles by their decreasing similarity to the query, such that the most similar profile is 
at the top of the list (Figure 1C). We then convert this ranked list to a binary form by replacing 
perturbation replicates with ones (these are “correct matches”, i.e., expected to be more similar 
to the query) and controls with zeros (they are ”incorrect matches”, i.e., expected to be less 
similar to the query). In an ideal scenario where a perturbation produces a strong signal that is 
technically replicable, all perturbation replicates are more similar to each other than to controls 
and, hence, will appear on the top of the list. However, in practice, it is often challenging to 
detect differences from controls, especially given the presence of technical variation 
(Supplementary Figure S1). Having a binary rank list allows calculating precision and recall at 
each rank k. Precision at rank k (also called Precision@k) is the fraction of ranks 1 to k that 
contain correct matches (ones). Recall at rank k is the fraction of the correct matches (ones) 
across ranks from 1 to k. 
 
Although there are multiple possible ways to aggregate precision and/or recall values, we chose 
calculating average precision (AP) because of its statistical properties. It has an underlying 
theoretical basis as it corresponds to the area under the precision-recall curve29, it allows a 
probabilistic interpretation31, it has a natural top-heavy bias32 (top-ranked correct matches 
contribute more than low-ranked), it is highly informative for predicting other metrics such as 
R-precision33, and finally, it results in good performance when used as an objective in 
learning-to-rank methods34. Although many formulations of AP exist35, we calculate the 
conventional non-interpolated AP score as the average value of precision over those ranks k 
that contain correct matches29 (Figure 1D). 
 
By sequentially using each replicate as a query to retrieve the remaining replicates, we calculate 
replicate-level AP scores (Figure 1E). These scores can identify outlier replicates that deviate 
substantially from their group. Averaging these scores yields the perturbation-level mean 
Average Precision (mAP) score29. This score effectively quantifies the phenotypic activity of a 
perturbation, reflecting the average extent to which its replicate profiles were more similar to 
each other compared to control profiles (Figure 1E). We also calculate mAP to assess the 
phenotypic consistency of multiple group members annotated with common biological 
mechanisms or modes of action (Figure 1F). In this setting, we first aggregate replicate profiles 
at the perturbation level (for example, by taking the median value for each feature of single 
cells). We then apply the mAP framework to quantify to what extent perturbations with related 
biological annotations produce profiles that resemble each other compared to other 
perturbations in the experiment. By using other perturbations for the null distribution instead of 
negative controls, we assess the biological specificity of each group of profiles relative to other 
samples. 
 
The mAP framework is implemented such that it can accommodate any distance measure that 
accepts a pair of points and returns their (dis)similarity, allowing for customization best suited for 
the particular type of data at hand. The careful choice of the distance metric is crucial and may 
vary across profiling experiments. In this article, we used cosine distance due to its ability to 
identify related samples from biological perturbational data based on the similarity of their 
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change patterns, rather than the extent of these changes 36–38. As a similarity-based approach, 
mAP is not immune to challenges typical for the analysis of profiling data that can be noisy and 
sparse. To enhance the observation of useful biological patterns, profile preprocessing may 
include 15,39: sample and feature filtering, missing value imputation, dimensionality reduction, 
feature transformation, normalization, and selection. 
 
Statistical significance of mAP 
 
In all cases, we determined the statistical significance of the mAP score using permutation 
testing, a common method for significance determination when distribution of the test statistic is 
unknown (for example, not known to follow a normal distribution). This approach is frequently 
applied in biological data analysis, including high-throughput screening22. Under the null 
hypothesis, we assume that both perturbation and control replicates were drawn from the same 
distribution. We generate mAP distribution under the null hypothesis, by repeatedly reshuffling 
the rank list and calculating mAP. The p-value is then calculated according to standard practices 
for permutation-based methods, defined as the fraction of permutation-derived mAP values that 
are greater than or equal to the original mAP value. This approach aligns with the interpretation 
of significance values in parametric statistical analyses, where a nominal significance cutoff of 
0.05 is typically used. Finally, these p-values are corrected for multiple comparisons using False 
Discovery Rate (FDR) control methods, such as Benjamini–Hochberg procedure40 or its 
alternatives41. We refer to the percentage of samples with calculated mAP scores having a 
corrected p-value below 0.05 as the percent retrieved (see Methods: Assigning significance to 
mAP scores for details). Very low values of percent retrieved can indicate widespread assay 
insensitivity, suboptimal feature extraction, or uncontrolled experimental variation. 
 
We therefore concluded that the mAP framework, as described and applied, could assess 
various qualities of high-dimensional profiling data by quantifying the similarity within a group of 
profiles in contrast to their similarity to another group. Unlike existing solutions, mAP is 
completely data-driven, does not involve complex calculations or parameter tuning, and is 
independent of the underlying nature of the observations given the appropriate selection of the 
distance measure. It is flexible across various experimental designs and offers a robust means 
to ascertain the statistical significance of the observed similarities or differences. 
 
mAP detects profile differences introduced in simulated data 
 
We next sought to rigorously assess and compare our mAP framework in phenotypic activity 
assessment against existing metrics using simulated data, where profile characteristics could be 
carefully controlled. Among established approaches, we selected the multidimensional 
perturbation value22 (mp-value) for comparison because it is multivariate by design, can be 
applied to any two groups of profiles, and has been shown to outperform other approaches, 
including univariate and clustering-based, in a simulation study with a similar design22. It is 
based on a combination of principal component analysis, Mahalanobis distance, and 
permutation testing to determine whether two groups of profiles differ from each other. Another 
method we choose to compare with mAP is maximum mean discrepancy test (MMD)25, which is 
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a nonparametric kernel-based method for multivariate two sample testing. Finally, we also 
directly clustered profiles using the k-means algorithm, which was considered to be successful 
when it correctly separates perturbation and control profiles. By comparing our framework with 
these established methods in controlled scenarios that mimic real-world experimental designs, 
we aimed to evaluate mAP’s potential as a more effective tool for analyzing differences in 
profiling data. 
 
We conducted simulations to evaluate mAP performance by generating perturbation and control 
profiles such that each perturbation had 2 to 4 replicates, in experiments with 12, 24, or 36 
control replicates (in all combinations). The simulated profiles varied in feature size, ranging 
from 100 to 5,000, representing a typical range for various kinds of profiles, particularly after 
feature reduction or selection. We generated control profile features using a standard normal 
distribution 𝒩(0,1). For perturbation replicates, a certain proportion of features (ranging from 1% 
to 64%) were sampled from a normal distribution with a shifted mean 𝒩(1,1), while the rest were 
drawn from 𝒩(0,1). Following the previously described method, we calculated mAP scores and 
corresponding p-values at the perturbation level to assess phenotypic activity for each 
perturbation (see Figure 1E). We measured performance by calculating recall as the proportion 
of the 100 simulated perturbations for which each metric achieved statistical significance (p < 
0.05). 
 
mAP consistently detected the same or higher proportion of perturbations compared to 
mp-value, MMD, and k-means clustering in most simulated scenarios (Figure 2, 
Supplementary Figure S2). Our findings highlighted that all metrics were sensitive to the 
experimental design, including the number of replicates and controls, the dimensionality 
(number of features) of the dataset, and the proportion of features that were perturbed. As 
expected, a decrease in the number of replicates and controls generally led to reduced 
performance for all metrics. mAP's recall rate consistently improved with an increase in the 
number of features and the proportion of perturbed features. This trend highlights mAP's 
adaptability to high-dimensional data, a critical advantage in handling the vast feature spaces 
typical in modern profiling assays. In contrast to mAP and k-means clustering, mp-value and 
MMD were less stable and often demonstrated stagnation or decline in recall with an increase in 
the number of features. These results were further confirmed by additional simulations that used 
a normal distribution with other parameters (Supplementary Figure S3) and with a more 
challenging heavy-tailed Cauchy distribution (Supplementary Figure S4). Finally, testing mAP 
with Pearson correlation and Euclidean distance as a similarity metric showed performance 
competitive with alternative metrics, albeit lower compared to our default choice of cosine 
distance (Supplementary Figure S5). All methods struggled to reach a retrieval rate of 20% 
when perturbed profiles differed from controls in only a few features. To alleviate this issue, we 
recommend dimensionality reduction and feature selection to improve signal-to-noise ratio prior 
to profile evaluation15. While in theory it is possible to test for differences in individual features 
using mAP, it would not be practical, because the main purpose of this framework lies in 
high-dimensional profile similarity analysis; other methods are more suited to analyzing 
individual features20. 
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Taken together, our findings reveal mAP's consistent performance in most scenarios, 
highlighting its potential as an effective and adaptable tool for biological data analysis compared 
to existing methods. Specifically, we found mAP could sensitively detect subtle differences 
between samples, in the context most relevant to large high-dimensional profiling datasets: 
scenarios when the number of features was much larger than the number of replicate profiles 
per sample. While approaches such mp-value and MMD aim to represent and compare 
distributions estimated from a very few high-dimensional observations, mAP achieves better 
sensitivity by relying on discretized ranking of pairwise distances. It is simpler and more efficient, 
without requiring complex matrix operations needed for calculating mp-value and MMD, and 
without multiple restarts needed to reach a robust solution for k-means. 
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Figure 2. Benchmarking retrieval performance of mAP p-value (orange), mp-value (blue), MMD p-value 
(green), and k-means clustering (purple) for retrieving phenotypic activity on simulated data, where 
unperturbed and perturbed features are sampled from 𝒩(0,1) and 𝒩(1,1), correspondingly. Recall 
indicates the percentage of 100 simulated perturbations under each condition that were called accurately 
by each method (as distinguishable from negative controls, or not). The horizontal axis probes what 
proportion of the features in the profile was different from controls (note the binary exponential scaling). 
Marker and line styles indicate different numbers of replicates per perturbation (# replicates of 2, 3, and 
4). Columns correspond to the different number of controls (# controls of 12, 24, and 36). Rows 
correspond to different profile sizes (# features being 100, 200, 500, 1000, 2500, and 5000). 
​
mAP captures diverse properties of real-world morphological profiling data with 
both genetic and chemical perturbations 
 
Next, we demonstrated the versatility of the mAP framework through its application to different 
tasks on real-world data, evaluating the effects of selected preprocessing methods and 
experimental designs. We began with image-based profiles of genetic perturbations and tested 
several ways mAP can be used for tasks beyond ranking perturbations by their phenotypic 
activity. We chose our published “Cell Health” dataset of Cell Painting images of CRISPR-Cas9 
knockout perturbations of 59 genes, targeted by 119 guides in three different cell lines42. We 
used a subset of 100 guides that had exactly six replicates (two replicates in three different 
plates) in each cell line. 
 
We used mAP to evaluate phenotypic activity (replicate retrievability against non-targeting 
cutting controls43) (Figure 1E) for four different tasks (Figure 3A-D). First, we assessed the 
overall quality of the dataset by checking that at least some guides resulted in phenotypes 
robustly distinguishable from controls. Second, we compared how two different data 
preprocessing methods influence the effects of technical variability on phenotypic activity of 
each guide across cell lines. Third, we ranked individual guides by phenotypic activity and 
filtered out inactive ones for downstream analysis of phenotypic consistency. Finally, we 
compared contributions of each fluorescent channel to guide phenotypic activity. 
 
First, we calculated mAP for guide phenotypic activity using two different data preprocessing 
methods (Figure 3A). The first preprocessing method included data standardization by 
subtracting means from feature values and dividing them by standard deviation using the whole 
dataset. Alternatively, we used a robust version of standardization, which replaces mean and 
variance with median and median absolute deviation, correspondingly, and is applied on a 
per-plate basis (“MAD robustize”). In each scenario, we retrieved grouped profiles against 
negative controls from both plates and reported percent retrieved (percentage of mAP scores 
with a corrected p-value below 0.05). For both preprocessing methods and all three cell types, 
retrieval percentages ranging 13%-94% indicated presence of perturbations with distinguishable 
phenotypes, and the full range of mAP values showed that perturbation effects varied from weak 
to very strong, confirming the good overall dataset quality. 
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Then, we leveraged the fact that each guide had replicates in different well positions and plates 
to formulate three profile groupings for well position and plate effect assessment (Figure 3A-B). 
The first group only included profiles derived from different plates and well position; the second 
group only included profiles from the same well position, but different plates; and the third group 
only included profiles from the same plate, but different wells. Our framework implementation 
allows specifying which metadata columns should have the same or different values for a pair of 
profiles to belong to the same group. In the absence of well-position and plate effects on 
phenotypic activity, all three tasks should demonstrate similar mAP values. However, as 
expected, the data reveals differences in retrieval rates due to technical variation (Figure 3A): 
with standardized profiles, retrieval of replicates in a different well position and different plate 
had the lowest scores (28% retrieved on average across cell lines), while sharing the same well 
position or plate resulted in higher scores (46% and 44% retrieved on average, 
correspondingly). Using standardization per plate, results for A549 and ES2 cell lines had higher 
retrieval rates when considering replicates from the same plate (38% and 56% correspondingly) 
vs not sharing the same plate (13% and 31%), indicating the presence of plate-to-plate 
variability. For the HCC44 cell line, retrieval rate on the same plate (38%) was not better than for 
replicates across plates (39%). By contrast, using robust standardization (MAD robustize) 
per-plate increased retrieval of profiles from a different well position and different plate (55% 
retrieved) to a larger extent than it did for the same plate, different well test (51% retrieved). But 
it also inflated retrieval of profiles that share the same well position in different plates (88% 
retrieved), demonstrating that well position effects were not addressed by this pre-processing 
and may affect downstream analyses. These results were observed on the level of individual 
cell lines as well, with all three having similar retrieval rates independently of sharing a specific 
plate but showing substantially higher rates when sharing a well position (Figure 3A). We used 
MAD robustize to preprocess for all subsequent analysis given its better performance on a 
challenging task (retrieving from different well position, different plate). This example showcased 
the flexibility of the mAP framework for grouping profiles according to experimental properties 
and assessing impact of technical variation in profiling data on phenotypic activity of 
perturbations. However, we note that evaluating batch effects and methods for their correction is 
a complex problem that may require using multiple specialized metrics for a comprehensive 
assessment 17–19. 
 
Next, we used all six replicates per CRISPR guide to assess its phenotypic activity (Figure 1E) 
by retrieving each perturbation’s replicates against non-targeting controls in three cell types. 
Retrieval percentage varied 31-70% by cell line, respectively (Figure 3B), showing that mAP 
captures cell context-dependent differences of each guide’s phenotypic activity, though 
potentially confounded by well-position and plate effects. We also showed cell line-dependent 
differences in individual replicate AP scores for a subset of guides (Figure 3C). For example, 
while five out of six replicates of the ATF4-1 guide in ES2 cells showed high similarity and clear 
distinction from controls, the sixth replicate did not, as indicated by its low AP score and high 
p-value, suggesting it may be an outlier. We observed similar retrieval rates using an alternate 
negative control, wells that were not perturbed at all (Supplementary Figure S6A). The 
significance of mAP was somewhat negatively correlated with CERES scores44 
(Supplementary Figure S6B), a measure of gene essentiality derived from viability 
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experiments, confirming that many perturbations that impact viability also impact morphology45, 
though one would expect many exceptions, for example, for genes that are not expressed well 
in the given cell type. This assessment allowed us to filter out “inactive” guides that produce 
phenotypes indistinguishable from controls to ensure that at the next step, perturbation 
similarities are not due to shared lack of activity. 
 
Then, we evaluated the mAP framework for a different block design characterizing contributions 
of different fluorescence channels by calculating metrics for each single channel individually 
(Figure 3D, Y axis); the mitochondria channel proved the most independently useful for 
retrieving guide replicates against controls. In most cases, dropping a channel (Figure 3D, X 
axis) only slightly diminished retrieval performance, a useful guide for researchers wanting to 
swap out a channel for a particular marker of interest. In a similar fashion, we assessed the 
contributions of different feature types extracted from different cell compartments and found 
(Supplementary Figure S6C) that, for example, excluding RadialDistribution or AreaShape 
features dropped the percentage of retrieved guides to below 35%. Removing Texture or 
Intensity features resulted in ~70% retrieval rates, which can hint at what phenotypic responses 
were distinguishing for this gene set as a whole. 
 
We next assessed phenotypic consistency of CRISPR guides that targeted the same gene by 
retrieving them against guides that targeted other genes (similar to Figure 1F), to see whether 
guides targeting the same gene yielded a consistent and relatively distinctive phenotype. First, 
we aggregated each guide’s six replicates by taking the median value for each feature. Then, 
we filtered guides that did not pass the significance threshold for phenotypic activity in each cell 
type (Figure 3B) to remove profiles that could not be confidently distinguished from controls. 
There were two aggregated guide profiles per gene annotation, which we retrieved against 
guide profiles of other genes (2 "replicates" vs 118 “controls” using the terms of Figure 2). 
Retrieval percentages ranged from 54-92% across cell lines (Figure 3E). We also reported 
per-guide AP scores for a subset of individual genes (Figure 3F), demonstrating gene-to-gene 
differences and variability in guide consistency across the three cell lines. For instance, in the 
case of CDK4, A549 and HCC44 cell lines each had one guide that was inconsistent with other 
guides targeting the same gene. 
 
Finally, we applied the mAP framework to other perturbation types (small molecules and gene 
overexpression, rather than CRISPR-Cas9 knockouts), to assess their phenotypic activity 
(Supplementary Figure S7). We used the dataset “cpg0004”11, which contains Cell Painting 
images of 1,327 small-molecule perturbations of A549 human cells and the JUMP Consortium’s 
“cpg0016[orf]” dataset46 dataset of U2OS cells treated with 15,136 overexpression reagents 
(open reading frame - ORFs), encompassing 12,602 unique genes, including controls, making it 
the largest dataset in this study in terms of number of perturbations. In both cases, we first 
calculated mAP to assess the phenotypic activity of each perturbation by replicate retrievability 
against controls, which resulted in 34% of small molecules retrieved for cpg0004 
(Supplementary Figure S7A) and 56% of ORFs retrieved (Supplementary Figure S7B). 
Subsequently, we filtered out perturbations that did not pass the phenotypic activity threshold 
and aggregated the rest on a per-perturbation basis by computing the median value for each 
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feature across replicates. Finally, we calculated mAP to assess phenotypic consistency (a 
measure of whether profiles capture true biological meaning, captured here by public 
annotations). We tested for phenotypic consistency among small molecules that were annotated 
as targeting the same gene (cpg0004) or among ORFs encoding genes that produce proteins 
that were annotated as interacting with each other, per the mammalian CORUM database47 
(cpg0016[orf]). For cpg0004, 32% of target genes showed consistent phenotypic similarity 
among small molecules targeting them (Supplementary Figure S7C); for cpg0016[orf] it was 
4% of assessed protein complexes (Supplementary Figure S7D). Evaluating phenotypic 
consistency by nature relies on the accuracy and completeness of external annotations. 
Leveraging multiple sources of annotation, such as combining pathway databases, can 
strengthen the interpretability of phenotypic profiling, helping to recapitulate known relationships 
and improving benchmarking outcomes48. For practical applications, incorporating diverse 
annotations could similarly enhance profile retrieval by allowing cross-validation of biological 
relationships under different contexts, such as across cell types or experimental conditions. 
 
These results demonstrated that the proposed mAP framework can be used for assessing 
various properties of real-world morphological profiling data created with both genetic and 
chemical perturbations. By changing how profile groupings are defined, mAP can be used for 
multiple purposes: to characterize technical variation in data, to evaluate methods to address 
them, to determine the contributions of specific fluorescent channels or measured feature types, 
and to ultimately select and rank perturbations by their phenotypic activity and consistency for 
potential downstream analyses. 
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Figure 3. The mAP framework applied to morphological profiling of CRISPR-Cas9 knockout perturbations 
(Cell Health dataset). A: mAP is calculated to assess well position and individual plate effects on 
phenotypic activity by retrieving guide replicates against controls in three scenarios (replicates of a guide 
across different plates and well positions; replicates of a guide across different plates, but in the same 
well position; and replicates of a guide within the same plate, but in different well position) and two data 
preprocessing methods (standardize and MAD robustize per plate). Percentages retrieved indicate the 
percentage of scores with p-value below 0.05 per cell line (and averaged across all cell lines in 
parenthesis). B: mAP is calculated to assess the phenotypic activity of perturbations by guide replicate 
retrievability against controls in three cell lines individually (49% retrieved on average across all three cell 
lines). Results included all three replicate plates available per cell line. C: Replicate-level AP scores 
calculated for a subset of guides from panel B highlight the variation from guides to guides across cell 
lines. D: mAP p-values calculated to assess the influence of individual fluorescence channels on guide 
phenotypic activity against controls by either dropping a channel or including only that single channel 
(percent retrieved is shown for each axis); these results can be compared to 49% retrieved when all 
channels’ data is available (on average across all three cell lines, as in B). E: mAP is calculated to assess 
the phenotypic consistency of guides annotated with related target genes (against guides annotated with 
other genes) in three cell lines individually. F: Replicate-level AP scores calculated for a subset of guides 
from panel E highlight the variation from guides to guides across cell lines. Percent retrieved indicates the 
percentage of scores with p-value below 0.05. 
 
mAP quantifies strength and similarity of protein and single-cell mRNA profiling 
data ​
 
To demonstrate the applicability of the mAP framework beyond image-based profiling, we 
applied it to other modalities, including transcriptomics and proteomics. 
 
The first dataset contained proteomic profiles from a 191-plex nELISA, a high-throughput, 
high-plex assay designed for quantitative profiling of the secretome12, which was performed in 
A549 cells across 306 well-characterized compound perturbations from the Broad Institute’s 
drug repurposing library49. This dataset also had matching Cell Painting morphological profiles 
imaged from the same physical samples whose supernatants were nELISA-profiled. 
 
First, we used mAP to assess phenotypic activity via replicate retrievability for both assays. This 
analysis resulted in 72% of compounds being retrieved using Cell Painting and 39% with 
nELISA (Figure 4A); the smaller percentage is likely due to the limitations in the original 
experimental design that was not ideal for secretome profiling. We further calculated mAP to 
assess phenotypic consistency by identifying compounds annotated with the same target gene. 
This analysis yielded 23% retrieval for Cell Painting and 5% for nELISA (Figure 4B). Similarly to 
phenotypic activity results, much lower percent retrieved for nELISA was likely due to A549 
cells' limited secretory capacities, the absence of immune stimulation, and a mismatch between 
pathways targeted by small molecules and nELISA readouts 12. This comparison validated 
mAP's utility in comparing two different profiling assays, offering valuable insights for planning 
future studies, for example, selecting an appropriate cell type for a particular assay. 
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Finally, we used mAP to evaluate a Perturb-seq7–10 mRNA profiling dataset of single cells 
treated with CRISPRi. The experiment assessed how single-guide RNAs (sgRNAs) containing 
mismatches to their target sites attenuate expression levels of target genes50. Specifically, 25 
genes involved in a diverse range of essential cell biological processes were targeted with 5–6 
mismatched sgRNAs, covering the range from full to low activity, and 10 nontargeting controls. 
Each mismatched guide was characterized by its activity levels relative to the perfectly matched 
sgRNA targeting the same gene50. We aggregated single-cell profiles on the biological replicate 
level and compared mAP scores to sgRNA relative activity, expecting that guide mismatches 
that disrupt activity levels to a larger extent should have mRNA profiles that are less easily 
distinguishable from controls. We indeed observed an overall correlation between mAP scores 
for a sgRNA’s mRNA profile similarity and its relative activity levels, (Figure 4C), with more 
nuanced differences in correlations for specific genes (Figure 4D). 
 
These applications demonstrate mAP’s robustness in quantifying the strength and similarity of 
image, protein, and mRNA profiles, affirming its broad utility across diverse profiling assays. 
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Figure 4. The mAP framework applied to proteomic and mRNA profiling. A: mAP is calculated to assess 
the phenotypic activity of compounds by replicate retrievability against controls in matching Cell Painting 
and nELISA profiling data. B: mAP is calculated to assess the phenotypic consistency by retrieving 
phenotypically active compounds annotated with the same gene target in matching Cell Painting and 
nELISA profiling data (note: the nELISA panel includes 191 targets including cytokines, chemokines, and 
growth factors which are not expected to respond well in these convenience samples from a prior study, 
because there is no immune stimulation and the A549 cells used have limited secretory capacity). C: 
mAP is calculated to assess the mRNA profile-based phenotypic activity of a mismatched CRISPRi guide 
from a Perturb-seq experiment (y-axis) and correlate it with the guide’s activity relative to a perfectly 
matching guide for that gene (x-axis). D: A subset of the data from panel C is presented, with several 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2025. ; https://doi.org/10.1101/2024.04.01.587631doi: bioRxiv preprint 

https://doi.org/10.1101/2024.04.01.587631
http://creativecommons.org/licenses/by/4.0/


genes highlighted individually to demonstrate the variation from gene to gene. Percent retrieved indicates 
the percentage of scores with p-value below 0.05. 
 
mAP captures subtle phenotypic impacts of perturbations at the single-cell 
resolution​
 
Single-cell profiling has become increasingly feasible, providing detailed and nuanced insights 
into the complex nature of biological systems, which are often obscured in bulk analyses. To 
illustrate the mAP framework's utility in analyzing single-cell data, we applied it to two distinct 
single-cell profiling datasets. Because mAP is an average of AP scores calculated by using 
each observation as a query, it is straightforward to use single-cell AP scores to characterize 
individual observations and the whole query group. 
 
First, we repeated the analysis of the Perturb-seq mRNA profiling dataset50 (Figure 4C-D) on 
the single-cell level. The overall relationships between single-cell AP scores and relative activity 
levels recapitulate those observed in the bulk profiles with more fine-grained details (Figure 
5A), while per-gene (Figure 5B) and per-guide (Supplementary Figure S8) visualizations 
revealed varied levels of heterogeneity across individual cells, even for guides with perfect 
relative activity levels. 
 
The second dataset called “Mitocheck” contained cell images of genome-wide gene silencing by 
RNA interference51. We used a subset of these images, in which almost 3,000 cells were 
manually annotated with observed morphological classes and processed by either CellProfiler52 
or DeepProfiler53 feature extractors to create single-cell morphological profiles54. After filtering 
out cells that failed quality control or were out of focus, the subset contained 2456 single-cell 
profiles annotated with 15 morphological classes across 60 genes. 
 
We used replicate retrievability against non-targeting controls to compare phenotypic activity of 
single-cell CellProfiler- and DeepProfiler-derived profiles grouped by morphological classes and 
target genes. Both feature extraction methods showed on average similar performance, 
retrieving morphological annotations with 0.33-0.42 mAP and 93-95% retrieved (Figure 5C, 
Supplementary Figure S8A). Interestingly, however, their performance varied across individual 
classes (Figure 5C, Supplementary Figure S9B), indicating some complementarity in 
phenotypes that are characterized more informatively with one approach than the other. 
Although performance was lower for both methods in the target gene retrieval task 
(Supplementary Figure S9C), the decrease was more severe for CellProfiler features (0.18 
mAP, 89% retrieved) compared to DeepProfiler (0.22 mAP, 92% retrieved). When comparing 
performance across both tasks, CellProfiler features overall demonstrated more variability 
across the range of mAP scores (Supplementary Figure S9D) compared to more consistent 
results of DeepProfiler (Figure 5D). Visualizing embeddings of individual morphological classes 
for both feature types indicated that those with higher retrieval rates resulted in more consistent 
clusters (Supplementary Figure S10). Calculation of mAP p-values for gene phenotypic activity 
took the longest for this dataset due to the large size of control cells and the highly variable 
number of single cells per targeted gene (Supplementary Table 2). 
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This analysis underscores the ability of the mAP framework to discern phenotypic variability and 
heterogeneity inherent in single-cell data, revealing both the strengths and complementary 
nature of different feature extraction methodologies. 
 

 
Figure 5. The mAP framework applied to single-cell mRNA and imaging data. A: AP scores are 
calculated to assess the single-cell mRNA profile-based phenotypic activity of a mismatched CRISPRi 
guide from a Perturb-seq experiment (y-axis) and correlate it with the guide’s activity relative to a perfectly 
matching guide for that gene (x-axis). B: A subset of the data from panel A is presented, with several 
genes highlighted individually to demonstrate the variation from gene to gene. C: AP scores are 
calculated to evaluate the power of CellProfiler and DeepProfiler features to classify multiple phenotypic 
classes in Mitocheck morphological data. AP scores capture the ability to retrieve single cells annotated 
with the same morphological class against negative controls. D: Mitocheck data, correlation between 
mAP scores for retrieving single cells annotated with the same morphological class versus gene, for 
DeepProfiler features. MC: morphological class. Percent retrieved indicates the percentage of scores with 
p-value below 0.05. 
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Discussion 
 
High-throughput profiling experiments have shown great promise in elucidating biological 
functions, patient subpopulations, and therapeutic targets. However, the high dimensionality and 
heterogeneity of profiling datasets present a significant obstacle for traditional methods in 
evaluating data quality and identifying meaningful relationships among profiles. Our work 
advances this domain by reframing profile quality assessment as an information retrieval task 
and by proposing a comprehensive statistical and computational framework using mean 
average precision (mAP) to assess profile strength and similarity. The mAP framework can be 
applied to image-based, protein, and gene expression profiling datasets created with either 
genetic and chemical perturbations. By assessing replicability of repeated experiments via 
retrieval of perturbation replicates against negative controls, the mAP framework checks dataset 
for potential dataset-scale issues, identifies phenotypically active perturbations and allows to 
filter out ones indistinguishable from controls. It can also be used to measure phenotypic 
consistency among different perturbations that share expected biological similarity, such as 
chemical mechanisms of action and gene-gene relationships, by retrieving perturbation groups. 
By selecting phenotypically active and consistent perturbations, mAP helps in prioritizing 
biologically relevant perturbations for deeper mechanistic studies, refining the search space for 
downstream analyses such as differential feature identification. Finally, by using 
metadata-based blocking, mAP assessments can shed light on the effect of technical variation 
in data (e.g., plate layout effects), suitability of experimental design (e.g., cell type or fluorescent 
channel selection), and data processing methods (e.g., feature extraction) on phenotypic activity 
and consistency of profiling data. This adaptability makes mAP a valuable tool for comparing 
different profiling methods and enhancing the interpretation of high-throughput experiments. Our 
implementation of the mAP framework is highly efficient and scales well to the large-scale 
datasets, including at the single-cell level (Supplementary Table 2). 
 
At its core, the mAP framework is based on grouping profiles according to the prespecified block 
design and calculating a well-established evaluation metric on the rank list of nearest neighbors 
to a given profile. Unlike most existing alternatives16, this procedure is robust to outliers, fully 
agnostic to the nature of data, and does not make distributional, linearity, or sample size 
assumptions. With its top-heavy bias, average precision emphasizes early discovery in ranking 
assessment similarly to other recently proposed metrics55–57, but those metrics require careful 
parameter tuning that can be tricky. Unlike the AP31, those metrics cannot be interpreted in 
terms of probability even if they are bounded by [0, 1]56. If only k top ranked perturbations are of 
interest, requiring the rank list to be thresholded (for example, when the goal is to see how often 
the correct profile would be in the top k results), AP can be easily replaced by Precision@k. 
  
Still, the mAP framework has limitations. The effectiveness of the mAP framework, like other 
methods based on nearest neighbors, is contingent upon choosing an appropriate measure of 
profile dissimilarity (a distance metric). A less-suitable distance metric would impair mAP's 
performance, but this is a trade-off for the framework's flexibility. Conversely, this opens an 
opportunity for using a dataset-specific custom similarity measure to suit particular data types 
and analyses. As a rank-based metric, mAP is robust to deviations from typical assumptions for 
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parametric methods, but it cannot reflect differences in effect size beyond perfect separability 
between two groups that are being compared. To overcome this limitation, future studies could 
explore extending mAP to accommodate graded rank lists32, moving beyond binary 
classifications. Finally, the permutation testing approach used for significance assessment has 
limitations when dealing with datasets that have a small number of replicates or controls. This is 
an inherent statistical constraint that highlights the importance of having adequate experimental 
replicates and controls for robust statistical analysis. 
 
In conclusion, the mAP framework presents a powerful strategy for evaluating data quality and 
biological relationships among samples in high-throughput profiling. It adjusts to various data 
types and perturbations and is robust to the complexities of real-world biological data. It can be 
effectively used to improve methods and prioritize perturbations for further studies with the 
potential to streamline the discovery of mechanisms and therapeutic targets in complex 
biological systems. 
 
 
Methods  
 
mAP calculation 
 
In general, the mAP framework can be used to compare any two groups of high-dimensional 
profiles by retrieving profiles from one group (“query group”) against another group (“reference 
group”). Groups are defined by providing a list of metadata columns in which profiles that belong 
to the same group have to have either matching or mismatching values. 
 
Given a group of N reference profiles and a group of M query profiles, we calculate 
non-interpolated AP29 for each query profile as following: 

1.​ out of M query profiles, select one profile i; 
2.​ measure distances from the query profile i to all other (M-1)+N profiles in both groups; 
3.​ rank-order (M-1)+N profiles by increasing distance to the query profile i (decreasing 

similarity); 
4.​ for each rank k going top-down the list, if k contains another query profile (true positive 

we term a “correct match”, i.e. not a reference), calculate precision for this rank k; 
5.​ when done, average calculated precisions to obtain the AP value. 

 
More formally, average precision for profile i is calculated as: 

, where 𝐴𝑃
𝑖
= 1

(𝑀−1)+𝑁
𝑘=1

(𝑀−1)+𝑁

∑ 𝑔
𝑘
𝑃
𝑘

 equals 1 if rank k contains a correct match (True Positive) and 0 if otherwise, 𝑔
𝑘

 is precision at rank k (precision@k), 𝑃
𝑘
=

𝑇𝑃
𝑘

𝑘

 is the number of all query profiles (all Positives) retrieved up to rank k. 𝑇𝑃
𝑘
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More conveniently, AP can be expressed via relative change in recall: 

, where  is the same as above and 𝐴𝑃
𝑖
=

𝑘=1

(𝑀−1)+𝑁

∑ (𝑅
𝑘−1

− 𝑅
𝑘
)𝑃

𝑘
𝑃
𝑘

 is recall at rank k (recall@k), , which replaces both  and dividing by M-1. 𝑅
𝑘
=

𝑇𝑃
𝑘

𝑀−1 𝑅
0
= 0 𝑔

𝑘

 
Then, mean AP (mAP) for the whole query group can be calculated through aggregation of 
individual query profile APs by taking a mean: 

, where M is the number of profiles in the query group. 𝑚𝐴𝑃 = 1
𝑀
𝑖=1

𝑀

∑ 𝐴𝑃
𝑖

 
Assigning significance to mAP scores 
 
We estimate the statistical significance of a mAP score with respect to a random baseline using 
a permutation testing approach, a non-parametric, assumption-free method for testing the null 
hypothesis of sample exchangeability. Under the null hypothesis, we assume that profiles in 
both query and reference groups were drawn from the same distribution. Since the total number 
of points is fixed and the rank list is binary, the mAP distribution under the null hypothesis 
distribution covering all possible ranking outcomes only depends on two parameters: the 
number of positives without the query M-1 and the total number of points without the query 
N+(M-1). Therefore, the null has the exact size equal to the binomial coefficient . In 𝑁+(𝑀−1)

𝑀−1( )
practice, we approximate the null by repeatedly reshuffling the rank list and calculating mAP, 
which is equivalent to reshuffling the profile labels. The p-value is then calculated as the fraction 
of the approximate null that is greater than or equal to the mAP score. This approach aligns with 
the interpretation of significance values in parametric statistical analyses, where a nominal 
significance cutoff of 0.05 is typically used. When we compare mAP scores of multiple query 
groups, we correct corresponding p-values for multiple comparisons using the 
Benjamini–Hochberg procedure40. We refer to the percentage of calculated mAP scores with a 
corrected p-value below 0.05 as the percent retrieved. 
 
mAP for phenotypic activity and consistency assessment 
 
We applied the mAP framework to assess phenotypic activity and consistency. 
 
We assess phenotypic activity of a single perturbation by calculating mAP for replicate 
retrievability, i.e. the ability to retrieve a group of perturbation’s replicates (query group) against 
a group of control profiles (reference group). At this stage, a replicate profile typically means an 
aggregation of single-cell profiles (e.g., across all cells in a single well). By imposing additional 
conditions, we defined various groups of replicates for a given perturbation. For example, we 
used phenotypic activity to evaluate the presence of plate effects by comparing mAP score for 
retrieving replicates from the same plate vs from different plates. After calculating mAP scores 
for all perturbations, they can be compared and ranked in terms of their phenotypic activity. 
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We also use mAP to assess the phenotypic consistency of multiple perturbations annotated with 
common biological mechanisms or modes of action (query group) against perturbations with 
different annotations (reference). When computing phenotypic consistency, each perturbation’s 
replicate profiles are first aggregated into a consensus profile by taking the median of each 
feature to reduce profile noise and improve computational efficiency. 
 
Let’s consider a dataset containing perturbations annotated with mechanisms of action. For 
example, a group of P compounds is annotated with MoA1, and the rest Q compounds are 
annotated with various other MoA labels. 
 
Then the mAP for the MoA1 group of P perturbations can be computed as following: 

1.​ select one perturbation profile from this group, e.g. Pi; 
2.​ measure distances from Pi to all other (P-1)+Q profiles in both groups; 
3.​ rank-order (P-1)+Q profiles by decreasing similarity w.r.t to Pi  
4.​ going top-down the list, if the rank k contains a perturbation profile from the same group 

P, calculate precision@k for this rank k 
5.​ when done, average calculated precisions by summing them up and dividing by P-1 
6.​ repeat the process for all i=1…P and average obtained APs to calculate mAPP 

 
The resulting value mAPP will indicate how internally consistent (has high mAP for retrieving 
perturbations from itself) this group of perturbations annotated with MoA1 is compared to other 
perturbations. This example can be easily extended to an arbitrary number of perturbation 
groups (e.g., compound MoAs). The same process can also be repeated using each set of 
perturbations as a query group. This will result in obtaining mAP scores for all groups of 
perturbations in the dataset and can be used to rank them by phenotypic consistency or 
estimate the consistency of the whole dataset by aggregating them (e.g., by averaging). 
 
Additionally, we can also define phenotypic distinctiveness, although it is not used in this paper. 
While phenotypic activity measures how distinguishable a perturbation is from negative controls, 
phenotypic distinctiveness measures how distinguishable a perturbation is from all other 
perturbations in the experiment. It can be assessed by calculating mAP for retrieving the 
replicates of a perturbation against all other perturbations. This concept is essentially the same 
as the "mAP-nonrep" score used in 19. 
 
Extension to multiple labels 
 
When considering groups of perturbations, a single perturbation can belong to multiple groups 
simultaneously. For example, a compound can have multiple annotations, such as genes whose 
products are targeted by the compound, or mechanisms of action of this compound. Then AP 
can be calculated by considering a single annotation group at a time. In the example below, we 
assume having per-perturbation aggregated consensus profiles. 
 
Let’s consider a dataset containing consensus profiles of P perturbations, with each perturbation 
annotated with “labels” from 1…T, where T is the number of all possible labels in the dataset.  
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Then for a label and one of the perturbations annotated with it, AP can be calculated as: 

1.​ select one label t from T possible options 
2.​ select one perturbation profile pt out of Pt perturbations annotated with this label (query) 
3.​ rank-order the rest of profiles (P-1)+1 by similarity w.r.t to pt 
4.​ going top-down the list, if the rank k contains a perturbation profile that is also annotated 

with the label t, calculate precision@k for this rank k 
5.​ when done, average calculated precisions by summing them up and dividing by Pt, i.e. 

the number of all perturbations annotated with this label  
6.​ the result will be AP for the specific t-pt label-perturbation pair 
7.​ repeat steps 2-6 for all perturbation profiles Pt to obtain APs for all perturbations 

annotated with this label t 
8.​ repeat steps 1-7 for all labels T to obtain APs for all label-perturbation pairs 

 
The result will be a sparse  matrix of APs, where the element corresponding to a 𝑃 × 𝑇
perturbation p and target t is equal to APt-p if p is annotated with t and 0 otherwise. This matrix 
can be aggregated on a per-perturbation or per-label basis (for example, by taking the mean 
across rows or columns, correspondingly) depending on the downstream task. Per-label mAP 
will assess biological consistency of perturbations annotated with a specific label compared with 
perturbations annotated with other labels. Practically, this makes it possible to compare 
consistency of different label groupings for a given perturbation. 
 
Simulated data generation protocol 
 
Simulations of the mAP performance were conducted by repeatedly generating control and 
treatment replicates by sampling features from a number of different normal distributions. Each 
treatment was simulated in 2,3 or 4 replicates, and 8, 16, or 32 replicates were simulated for 
each control. Between 100 and 5000 features were simulated. All features were simulated in the 
control by sampling from the standard normal distribution. Varying numbers of features were 
simulated in treatment replicates by sampling from a shifted normal distribution (μ = 1, σ = 1). 
Any remaining features in treatment replicates were sampled from the standard normal 
distribution. Each perturbation was considered correctly retrieved if its p-value was below 0.05. 
 
Alternative metrics 
 
The multidimensional perturbation value (mp-value)22 is a statistical metric designed to assess 
differences between treatments in various types of multidimensional screening data. It involves 
using principal component analysis (PCA) to transform the data, followed by calculating the 
Mahalanobis distance between treatment groups in this PCA-adjusted space. The significance 
of the mp-value is determined through permutation tests, a non-parametric approach that 
reshuffles replicate labels to assess the likelihood of observed differences occurring by chance. 
 
The Maximum Mean Discrepancy (MMD)25 test is a multivariate nonparametric statistical test 
used to determine if two distributions are significantly different. It measures the largest possible 
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difference in expectations across a function space, typically within a reproducing kernel Hilbert 
space (RKHS). We use MMD with the radial basis function kernel (RBF) and set the kernel 
bandwidth at the median distance between points in the aggregate sample, a common 
heuristic25. 
 
The k-means algorithm clusters data by minimizing within-cluster variance, effectively grouping 
samples based on their similarity. We set the number of groups k to 2 for separating 
perturbation and control replicates. Cluster centroids are initialized randomly, and the algorithm 
is repeated 10 times, with the best result selected based on the lowest overall inertia (the sum 
of squared distances of samples to their closest cluster center), as implemented in scikit-learn 
58. 
 
Cell Health dataset description and preprocessing 
 
We used our previously published “Cell Health” dataset42 of Cell Painting27 images of 
CRISPR-Cas9 knockout perturbations of 59 genes, targeted by 119 guides in three different cell 
lines (A549, ES2, and HCC44). Morphological profiles were previously extracted from images 
using CellProfiler52 and median-aggregated on the well level42. We used a subset of 100 guides 
that had exactly six replicates (two replicates in three different plates) in each cell line. We 
performed two types of profile normalization followed by feature selection using pycytominer39. 
The first preprocessing method included data standardization by subtracting means from feature 
values and dividing them by variance using the whole dataset. Alternatively, we used a robust 
version of standardization, which replaces mean and variance with median and median absolute 
deviation, correspondingly, and is applied on a per-plate basis (“MAD robustize”). Feature 
selection included variance thresholding to remove features with minimal variation across the 
dataset, removing highly correlated features, removing features with missing values or outliers, 
and removing blocklisted features—all using pycytominer39 default parameters. 
 
cpg0004 dataset description and preprocessing 
 
We used our previously published dataset “cpg0004-lincs” (abbreviated to cpg0004 here) that 
contains Cell Painting27 images of 1,327 small-molecule perturbations of A549 human cells11. 
The wells on each plate were perturbed with 56 different compounds in six different doses. 
Every compound was replicated 4 times per dose, with each replicated on a different plate. In 
this study, only the highest dose point of 10 μM was used. Morphological profiles were 
previously extracted from images using CellProfiler52. Profile normalization, feature selection, 
and batch correction were performed using pycytominer39. First, profiles were normalized 
against DMSO controls by subtracting medians from DMSO feature values and dividing them by 
median absolute deviation (“MAD robustize”). Feature selection included variance thresholding 
to remove features with minimal variation across the dataset, removing highly correlated 
features, and removing features with missing values or outliers. Finally, profiles were corrected 
for batch effects by the sphering transformation19 (computes a whitening transformation matrix 
based on negative controls and applies this transformation to the entire dataset). 
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cpg0016[orf] dataset description and preprocessing 
 
We used the JUMP Consortium’s13 “cpg0016-jump[orf]” dataset46 (abbreviated to “cpg0016[orf]” 
here), which contains Cell Painting27 images of U2OS cells treated with 15,136 overexpression 
reagents (ORFs) encompassing 12,602 unique genes. Morphological profiles were previously 
extracted from images using CellProfiler52, mean-aggregated on the well level, and then 
corrected for plate layout effects by subtracting means from feature values per well location. Cell 
counts were regressed out from each feature with more than 100 unique values. After that, 
profiles were normalized per plate by subtracting medians from feature values and dividing them 
by median absolute deviation (“MAD robustize”). Feature selection was performed using 
pycytominer39 and profiles were corrected for batch effects by a combination19 of the sphering 
transformation and Harmony59 (an iterative algorithm based on expectation-maximization that 
alternates between finding clusters with high diversity of batches, and computing mixture-based 
corrections within such clusters). 
 
nELISA dataset description and preprocessing 
 
We used the dataset containing proteomic profiles from a 191-plex nELISA12, a high-throughput, 
high-plex assay designed for quantitative profiling of the secretome, which was performed in 
A549 cells across 306 well-characterized compound perturbations from the Broad Institute’s 
drug repurposing library49. This dataset also included matching CellProfiler52 morphological 
profiles from Cell Painting27 images of the same physical samples whose supernatants were 
nELISA-profiled. Profiles were normalized per-plate by subtracting medians from feature values 
and dividing them by median absolute deviation (“MAD robustize”). Feature selection included 
variance thresholding to remove features with minimal variation across the dataset, removing 
highly correlated features, and removing features with missing values or outliers. 
 
Perturb-seq dataset description and preprocessing 
 
We used the public Perturb-seq7–10 mRNA profiling dataset of single cells treated with CRISPRi 
containing 10X single-cell gene expression reads, barcode identities, and activity readouts 
(Gene Expression Omnibus accession GSE132080)60. The experiment assessed how 
single-guide RNAs (sgRNAs) containing mismatches to their target sites attenuate expression 
levels of target genes50. Specifically, 25 genes involved in a diverse range of essential cell 
biological processes were targeted with 5–6 mismatched sgRNAs, covering the range from full 
to low activity, and 10 nontargeting controls. Each mismatched guide was characterized by its 
activity levels relative to the perfectly matched sgRNA targeting the same gene50. The 
distributions of sgRNAs were largely unimodal, although broader than those with the perfectly 
matched sgRNA or the control sgRNA50. We performed single-cell profile normalization and 
feature selection using Seurat61. 
 
Mitocheck data description and preprocessing 
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We used the previously published Mitocheck dataset51  containing images of GFP-tagged nuclei 
of HeLa cells perturbed with small interfering RNA (siRNAs) to silence approximately 21,000 
protein-coding genes. Within the dataset, approximately 3,000 cell images were manually 
labeled into one of 15 morphological phenotype classes. Recently, these images were 
re-analyzed54 with a more comprehensive image analysis pipeline, which included illumination 
correction using PyBasic62, segmentation using CellPose63, and single-cell feature extraction 
using CellProfiler52 and DeepProfiler53. Extracted profiles were standardized by removing the 
mean and scaling to the unit variance of negative control cells. We performed feature selection 
for both CellProfiler- and DeepProfiler-derived profiles by variance thresholding to remove 
features with minimal variation across the dataset, removing highly correlated features, 
removing features with missing values or outliers, and removing blocklisted features—all using 
pycytominer39 default parameters. 
 
Data availability 
 
Profiles extracted from the Cell Health dataset42 are available at 
https://github.com/broadinstitute/cell-health/tree/30ea5de393eb9cfc10b575582aa9f0f857b44c59
/1.generate-profiles. Profiles extracted from the cpg000411 dataset are available at 
https://github.com/broadinstitute/lincs-cell-painting/tree/061870127481dcd73c29df85ebcfddeac2
ed0828/profiles. Profiles extracted from the cpg0016[orf]46 dataset are available from the Cell 
Painting Gallery13 at 
https://github.com/broadinstitute/cellpainting-gallery/blob/87e04696564e8c61d060c2a8e3a99db
d00fd9b31/README.md. The Perturb-seq dataset is available at Gene Expression Omnibus, 
accession code GSE13208060. Profiles extracted from the matching nELISA-Cell Painting 
dataset12 are available at 
https://github.com/carpenter-singh-lab/2024_Kalinin_mAP/tree/e9a5414726119dca7ed0d79efde
887c1e259c288/experiments/5_nelisa/inputs. Profiles extracted from the Mitocheck dataset51 
are available at 
https://github.com/WayScience/mitocheck_data/blob/613acbb20d2134ad1d725c7605a61c5a9e
823c1a/README.md. 
 
Code availability 
 
The mAP framework is implemented as an open-source Python package available at 
https://github.com/cytomining/copairs. Source code for all analyses in this manuscript is 
provided at https://github.com/carpenter-singh-lab/2024_Kalinin_mAP. 
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