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Abstract

In profiling assays, thousands of biological properties are measured across many samples,
yielding biological discoveries by capturing the state of a cell population, often at the single-cell
level. However, for profiling datasets, it has been challenging to evaluate the phenotypic activity
of a sample and the phenotypic consistency among samples, due to profiles’ high
dimensionality, heterogeneous nature, and non-linear properties. Existing methods leave
researchers uncertain where to draw boundaries between meaningful biological response and
technical noise. Here, we developed a statistical framework that uses the well-established mean
average precision (mMAP) as a single, data-driven metric to bridge this gap. We validated the
mAP framework against established metrics through simulations and real-world data
applications, revealing its ability to capture subtle and meaningful biological differences in cell
state. Specifically, we used mAP to assess both phenotypic activity for a given perturbation (or a
sample) as well as consistency within groups of perturbations (or samples) across diverse
high-dimensional datasets. We evaluated the framework on different profile types (image,
protein, and mRNA profiles), perturbation types (CRISPR gene editing, gene overexpression,
and small molecules), and profile resolutions (single-cell and bulk). Our open-source software
allows this framework to be applied to identify interesting biological phenomena and promising
therapeutics from large-scale profiling data.
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Introduction

Today, the study of complex diseases and biological processes at the systems level increasingly
relies on the use of multiplex and high-throughput experiments. One particular experimental
design, known as “profiling,” has emerged as a powerful approach to characterize biological
functions, classify patient subpopulations, and identify promising therapeutic targets'®. A typical
profiling experiment measures hundreds to tens of thousands of features of a biological system
simultaneously across many samples. The measurements can report on bulk properties or offer
single-cell resolution, depending on the experimental design and research question asked.
Thus, they convey information about the molecular (e.g., genomic, epigenomic, transcriptomic,
proteomic, or metabolomic) or cellular (e.g., morphological, spatial, viability across cell lines)
status of the system. In some profiling experiments biological samples are subjected to various
perturbations, usually chemical compounds or genetic reagents® 3. Ultimately, by combining
high-dimensional readouts, diverse biological samples, and a large number of perturbations,
profiling can reveal the mechanisms of biological processes and potential therapeutic avenues.

By casting a wide and systematic net, profiling experiments provide a rich source of information
for elucidating molecular and cellular response to perturbations through comparing their readout
signatures. Profiling data analyses enable functional annotation of uncharacterized
perturbations, identification of perturbation groups using clustering, and visualization of complex
relationships with dimensionality reduction techniques?®'". Due to the variation in responses to
different perturbations, it is crucial to prioritize perturbations that exhibit strong and reproducible
phenotypic effects that are more likely to reflect true biological signals. Likewise, it is important
to be able to distinguish treatments that produce cells that genuinely genuinely resemble each
other (such as chemicals with the same mechanism or genes with the same function) and those
that appear similar due to biological variation and confounding factors. However, the variety of
perturbations, high dimensionality of readouts, and the overall heterogeneous nature of profiling
datasets make it challenging to discern biologically meaningful patterns from noise and
technical variation''°. The ability to systematically prioritize perturbations for downstream
analysis, optimize preprocessing and experimental design choices, and evaluate profile
similarity is essential for maximizing the utility of these datasets.

Unlike differential feature analysis that aims to identify individual readouts that differ between
samples®, profiling data analysis treats readout signatures as holistic representations that
comprehensively reflect the cellular state?**'®. The most commonly used methods for
evaluating profile strength and similarity are either based on statistical testing or, more recently,
on machine learning (ML)'®'¢. Traditional multivariate statistical tests such as MANOVA and
Hotelling’s T2 along with other recent parametric approaches?'?? still rely on assumptions that
each feature’s measurements are normally distributed, sample sizes are larger than feature
space dimensionality, and that, for the most part, observed phenomena are linear and not
co-dependent’>?. Thus, these approaches broadly oversimplify the behavior of biological
systems?*. Multivariate nonparametric kernel tests? still assume sufficient sample size to obtain
informative embeddings of distributions and require careful choice of the kernel. On the other
hand, ML strategies use a classifier to sort measured phenotypes into distinct groups, where
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biological replicability and activity are determined by a better ability to classify samples from
controls or each other. However, these methods are not readily adopted by the community for
this purpose, because in addition to the high computational cost of creating numerous pairwise
classifiers, ML strategies face the dual challenges of limited replicates in biological studies and
overfitting, which requires extensive model evaluation, analytical design (e.g. model selection,
train/test splitting), and parameter tuning. Additionally, ML approaches can overfit confounding
variables, such as batch effects, which can be hard to ascertain, especially if the model is not
fully explainable?. This precludes the selection of a single set of parameters that applies to all
scenarios, because these choices are (and should be) influenced by each particular
experimental design or application. Data-driven profile evaluation that does not require
extensive parameter tuning and adapts easily across various experimental designs is therefore
preferred.

To overcome these issues, we proposed to approach profile evaluation as an information
retrieval problem and developed a statistical framework and open-source software for
retrieval-based assessment of profile strength and similarity. Specifically, we employ mean
average precision (mAP) as a single data-driven evaluation metric that we adapt to multiple
useful tasks in profiling analysis, including determining similarity of perturbations or groups of
perturbations to controls and/or to each other. mAP assesses the probability that samples of
interest will rank highly on a list of samples rank ordered by some distance or similarity metric.
With appropriate distance metric choice, mAP is inherently multivariate, nonparametric, and
does not make linearity or sample size assumptions unlike most commonly used alternatives.
We provide a detailed description of mAP properties in this context and a method for assigning
statistical significance to mAP scores such that resulting p-values can be used to filter profiles
by phenotypic activity and/or consistency. We show the advantages of mAP over existing
metrics using simulated data and illustrate the utility of mAP on a variety of real-world datasets,
including image-based (Cell Painting®’), protein (nELISA'), and mRNA (Perturb-seq’"?)
profiling data, some at the single-cell level, and involving several perturbation types (CRISPR
gene editing, gene overexpression, and small molecules). We provide a Python package
implementing a flexible framework for grouping profiles based on metadata, and efficient
calculation of mAP scores and corresponding p-values for easy and scalable application of our
method to other datasets. We expect that the mAP framework we provide will streamline
hypothesis generation and improve hit prioritization from a wide range of large-scale,
high-throughput biological profiling data.

Results

Profile evaluation as information retrieval

A fundamental goal of profiling analysis is to identify biologically meaningful relationships
between samples by comparing their phenotypic signatures. One important application of this is
the ability to annotate previously uncharacterized perturbations by comparing them to a
reference dataset of annotated profiles (or “compendium”)'?4¢. For example, a compound with
an unknown mechanism of action (MoA) can be compared against a compendium of
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compounds with known MoAs. If the unknown compound exhibits a phenotypic signature highly
similar to those of compounds targeting a specific pathway, it suggests a shared mechanism
and potential therapeutic relevance.

This problem naturally aligns with principles of information retrieval, where the goal is to rank
and retrieve relevant items from a large dataset (annotated perturbation profiles) based on their
similarity to a given query (uncharacterized perturbation profile)?. Similarity-based retrieval
allows evaluating how similar a query profile is to a given group (e.g., a shared MoA) in a
data-driven manner, without making assumptions about the distribution or interpretability of
features, linear separability, or the number of reference samples per group.

In high-throughput profiling experiments, perturbations vary widely in their effects, from strong,
reproducible phenotypic changes to those indistinguishable from controls. To ensure that
retrieval-based annotation is meaningful, both the reference compendium and the
uncharacterized profiles should exhibit robust phenotypic signals. Similarity-based retrieval also
provides an effective way to evaluate this task by assessing whether a perturbation reliably
retrieves its own replicates over controls—a task we refer to as phenotypic activity—only
requiring the minimum of two replicates per perturbation. By filtering out phenotypically inactive
perturbations, we can focus on perturbations that induce biologically relevant effects.
Additionally, if most perturbations (or known strong perturbations) fail to retrieve their own
replicates or are indistinguishable from controls, this may indicate systemic issues with the
whole dataset that can prevent detecting real effects. For phenotypically active perturbations
with known annotations, retrieval-based assessment can also be used to evaluate phenotypic
consistency—the degree to which perturbations with a shared annotation (e.g., a known MoA)
exhibit a distinct and cohesive signature compared to other groups. Assessment of phenotypic
consistency in profiling data using mAP can help prioritizing perturbation groups that produce
robust phenotypes but also find useful and previously unrecognized connections. Finally, we
also can assess phenotypic distinctiveness of an active perturbation by retrieving its replicates
against all other active perturbations. Because all these tasks are framed as information
retrieval (Supplementary Table 1), we can leverage a single retrieval-based metric (mean
average precision, mAP) for their evaluation. Hence, we refer to our approach to profile
evaluation as the mAP framework.

By assessing both phenotypic activity and consistency through information retrieval, we can

enhance the ability to distinguish meaningful biological relationships from artifacts of
experimental noise or technical variation in downstream analyses.

The mAP framework overview

In this section, we demonstrate through a simple example the application of the proposed mAP
framework to evaluating phenotypic activity of a perturbation (Figure 1).

Mean average precision (mAP) is a performance metric routinely used in information retrieval
and machine learning, particularly in the context of ranking tasks #2°. mAP measures the ability
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to retrieve samples within a group (“correct” samples) from a collection of samples from another
group (“incorrect” samples). We used mAP to indicate the degree to which profiles from one
group exhibit greater intra-group similarity compared to their similarity with the profiles from a
second group.

In a typical profiling experiment, both perturbations and controls are represented by multiple
biological replicates, i.e., the same perturbation is replicated across multiple wells and,
depending on the experiment’s scale, even multiple plates and batches (Figure 1A). These
replicate profiles can be obtained directly at the well level or first measured at the single-cell
level and then aggregated. We illustrate calculation of mAP for phenotypic activity assessment
through retrieving a group of perturbation replicate profiles against a group of control replicate
profiles. This example demonstrates the simplest block design, when we group profiles only by
the replicate identity and not other metadata variables, such as well position, plate, etc (Figure
1A). In experimental design, a block design refers to the arrangement of experimental units into
groups (blocks) that are similar to one another, to reduce sources of variability and increase the
precision of the comparisons being made *°. The choice of block design can impact the mAP
calculation, as it determines which profiles are considered “correct” or “incorrect” when
evaluating retrieval performance. As discussed later, more complex block designs can be used
to account for the impact of other sources of variation (e.g., well position or plate effects) on the
retrieval task of interest, by grouping profiles accordingly.

Profiles can be viewed as points in a high-dimensional feature or representation space, where
the closeness between pairs corresponds to profile similarity. Profile similarity can be assessed
by measuring the distance between these points defined by any relevant distance function, such
as cosine, Euclidean, Mahalanobis, etc., such that a larger distance between points indicates
lower similarity and vice versa. Following a typical information retrieval workflow?, we began by
designating one profile from a replicate group as a query and measuring distances between the
query and the rest of this perturbation’s replicates as well as control replicates (Figure 1B).
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Figure 1. Schematic overview of the mAP framework. A: A typical output of a profiling experiment
contains multiple replicate profiles for each perturbation and controls. B: To measure average precision
per perturbation replicate, we selected one replicate profile as a query and measured distances to its
other replicates and controls. C: Profiles were then ranked by decreasing similarity (increasing distance)
to the query; the rank list was converted to binary form and used to calculate precision P, and recall R, at
each rank k. D: Average precision was calculated by averaging precision values over those ranks k
containing perturbation replicates, which corresponds to a non-interpolated approximation of the area
under the precision-recall curve. E: By applying this procedure to each perturbation replicate, we
calculated a set of AP scores that were then averaged to obtain a mAP score for a perturbation’s
phenotypic activity. F: One can also apply the same framework to retrieving groups of perturbations with
the same biological annotations (rather than groups of replicates of the same perturbation)—for example,
compounds that share the same mechanism of action (MoA)—by calculating the mAP score per each
group of perturbations (MoA).
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We rank profiles by their decreasing similarity to the query, such that the most similar profile is
at the top of the list (Figure 1C). We then convert this ranked list to a binary form by replacing
perturbation replicates with ones (these are “correct matches”, i.e., expected to be more similar
to the query) and controls with zeros (they are "incorrect matches”, i.e., expected to be less
similar to the query). In an ideal scenario where a perturbation produces a strong signal that is
technically replicable, all perturbation replicates are more similar to each other than to controls
and, hence, will appear on the top of the list. However, in practice, it is often challenging to
detect differences from controls, especially given the presence of technical variation
(Supplementary Figure S1). Having a binary rank list allows calculating precision and recall at
each rank k. Precision at rank k (also called Precision@k) is the fraction of ranks 1 to k that
contain correct matches (ones). Recall at rank k is the fraction of the correct matches (ones)
across ranks from 1 to k.

Although there are multiple possible ways to aggregate precision and/or recall values, we chose
calculating average precision (AP) because of its statistical properties. It has an underlying
theoretical basis as it corresponds to the area under the precision-recall curve®, it allows a
probabilistic interpretation®', it has a natural top-heavy bias® (top-ranked correct matches
contribute more than low-ranked), it is highly informative for predicting other metrics such as
R-precision®, and finally, it results in good performance when used as an objective in
learning-to-rank methods**. Although many formulations of AP exist*, we calculate the
conventional non-interpolated AP score as the average value of precision over those ranks k
that contain correct matches® (Figure 1D).

By sequentially using each replicate as a query to retrieve the remaining replicates, we calculate
replicate-level AP scores (Figure 1E). These scores can identify outlier replicates that deviate
substantially from their group. Averaging these scores yields the perturbation-level mean
Average Precision (mAP) score?. This score effectively quantifies the phenotypic activity of a
perturbation, reflecting the average extent to which its replicate profiles were more similar to
each other compared to control profiles (Figure 1E). We also calculate mAP to assess the
phenotypic consistency of multiple group members annotated with common biological
mechanisms or modes of action (Figure 1F). In this setting, we first aggregate replicate profiles
at the perturbation level (for example, by taking the median value for each feature of single
cells). We then apply the mAP framework to quantify to what extent perturbations with related
biological annotations produce profiles that resemble each other compared to other
perturbations in the experiment. By using other perturbations for the null distribution instead of
negative controls, we assess the biological specificity of each group of profiles relative to other
samples.

The mAP framework is implemented such that it can accommodate any distance measure that
accepts a pair of points and returns their (dis)similarity, allowing for customization best suited for
the particular type of data at hand. The careful choice of the distance metric is crucial and may
vary across profiling experiments. In this article, we used cosine distance due to its ability to
identify related samples from biological perturbational data based on the similarity of their
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change patterns, rather than the extent of these changes *-%%. As a similarity-based approach,
mAP is not immune to challenges typical for the analysis of profiling data that can be noisy and
sparse. To enhance the observation of useful biological patterns, profile preprocessing may
include ">*°: sample and feature filtering, missing value imputation, dimensionality reduction,
feature transformation, normalization, and selection.

Statistical significance of mAP

In all cases, we determined the statistical significance of the mAP score using permutation
testing, a common method for significance determination when distribution of the test statistic is
unknown (for example, not known to follow a normal distribution). This approach is frequently
applied in biological data analysis, including high-throughput screening®. Under the null
hypothesis, we assume that both perturbation and control replicates were drawn from the same
distribution. We generate mAP distribution under the null hypothesis, by repeatedly reshuffling
the rank list and calculating mAP. The p-value is then calculated according to standard practices
for permutation-based methods, defined as the fraction of permutation-derived mAP values that
are greater than or equal to the original mAP value. This approach aligns with the interpretation
of significance values in parametric statistical analyses, where a nominal significance cutoff of
0.05 is typically used. Finally, these p-values are corrected for multiple comparisons using False
Discovery Rate (FDR) control methods, such as Benjamini-Hochberg procedure* or its
alternatives*'. We refer to the percentage of samples with calculated mAP scores having a
corrected p-value below 0.05 as the percent retrieved (see Methods: Assigning significance to
mAP scores for details). Very low values of percent retrieved can indicate widespread assay
insensitivity, suboptimal feature extraction, or uncontrolled experimental variation.

We therefore concluded that the mAP framework, as described and applied, could assess
various qualities of high-dimensional profiling data by quantifying the similarity within a group of
profiles in contrast to their similarity to another group. Unlike existing solutions, mAP is
completely data-driven, does not involve complex calculations or parameter tuning, and is
independent of the underlying nature of the observations given the appropriate selection of the
distance measure. It is flexible across various experimental designs and offers a robust means
to ascertain the statistical significance of the observed similarities or differences.

mAP detects profile differences introduced in simulated data

We next sought to rigorously assess and compare our mAP framework in phenotypic activity
assessment against existing metrics using simulated data, where profile characteristics could be
carefully controlled. Among established approaches, we selected the multidimensional
perturbation value® (mp-value) for comparison because it is multivariate by design, can be
applied to any two groups of profiles, and has been shown to outperform other approaches,
including univariate and clustering-based, in a simulation study with a similar design®. It is
based on a combination of principal component analysis, Mahalanobis distance, and
permutation testing to determine whether two groups of profiles differ from each other. Another
method we choose to compare with mAP is maximum mean discrepancy test (MMD)?®, which is
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a nonparametric kernel-based method for multivariate two sample testing. Finally, we also
directly clustered profiles using the k-means algorithm, which was considered to be successful
when it correctly separates perturbation and control profiles. By comparing our framework with
these established methods in controlled scenarios that mimic real-world experimental designs,
we aimed to evaluate mAP’s potential as a more effective tool for analyzing differences in
profiling data.

We conducted simulations to evaluate mAP performance by generating perturbation and control
profiles such that each perturbation had 2 to 4 replicates, in experiments with 12, 24, or 36
control replicates (in all combinations). The simulated profiles varied in feature size, ranging
from 100 to 5,000, representing a typical range for various kinds of profiles, particularly after
feature reduction or selection. We generated control profile features using a standard normal
distribution .4(0,1). For perturbation replicates, a certain proportion of features (ranging from 1%
to 64%) were sampled from a normal distribution with a shifted mean .4(1,1), while the rest were
drawn from .4(0,1). Following the previously described method, we calculated mAP scores and
corresponding p-values at the perturbation level to assess phenotypic activity for each
perturbation (see Figure 1E). We measured performance by calculating recall as the proportion
of the 100 simulated perturbations for which each metric achieved statistical significance (p <
0.05).

MAP consistently detected the same or higher proportion of perturbations compared to
mp-value, MMD, and k-means clustering in most simulated scenarios (Figure 2,
Supplementary Figure S$2). Our findings highlighted that all metrics were sensitive to the
experimental design, including the number of replicates and controls, the dimensionality
(number of features) of the dataset, and the proportion of features that were perturbed. As
expected, a decrease in the number of replicates and controls generally led to reduced
performance for all metrics. mAP's recall rate consistently improved with an increase in the
number of features and the proportion of perturbed features. This trend highlights mAP's
adaptability to high-dimensional data, a critical advantage in handling the vast feature spaces
typical in modern profiling assays. In contrast to mAP and k-means clustering, mp-value and
MMD were less stable and often demonstrated stagnation or decline in recall with an increase in
the number of features. These results were further confirmed by additional simulations that used
a normal distribution with other parameters (Supplementary Figure S$3) and with a more
challenging heavy-tailed Cauchy distribution (Supplementary Figure S4). Finally, testing mAP
with Pearson correlation and Euclidean distance as a similarity metric showed performance
competitive with alternative metrics, albeit lower compared to our default choice of cosine
distance (Supplementary Figure S5). All methods struggled to reach a retrieval rate of 20%
when perturbed profiles differed from controls in only a few features. To alleviate this issue, we
recommend dimensionality reduction and feature selection to improve signal-to-noise ratio prior
to profile evaluation'. While in theory it is possible to test for differences in individual features
using mAP, it would not be practical, because the main purpose of this framework lies in
high-dimensional profile similarity analysis; other methods are more suited to analyzing
individual features?®.
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Taken together, our findings reveal mAP's consistent performance in most scenarios,
highlighting its potential as an effective and adaptable tool for biological data analysis compared
to existing methods. Specifically, we found mAP could sensitively detect subtle differences
between samples, in the context most relevant to large high-dimensional profiling datasets:
scenarios when the number of features was much larger than the number of replicate profiles
per sample. While approaches such mp-value and MMD aim to represent and compare
distributions estimated from a very few high-dimensional observations, mAP achieves better
sensitivity by relying on discretized ranking of pairwise distances. It is simpler and more efficient,
without requiring complex matrix operations needed for calculating mp-value and MMD, and
without multiple restarts needed to reach a robust solution for k-means.
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Figure 2. Benchmarking retrieval performance of mAP p-value (orange), mp-value (blue), MMD p-value
(green), and k-means clustering (purple) for retrieving phenotypic activity on simulated data, where
unperturbed and perturbed features are sampled from .4(0,1) and ./#(1,1), correspondingly. Recall
indicates the percentage of 100 simulated perturbations under each condition that were called accurately
by each method (as distinguishable from negative controls, or not). The horizontal axis probes what
proportion of the features in the profile was different from controls (note the binary exponential scaling).
Marker and line styles indicate different numbers of replicates per perturbation (# replicates of 2, 3, and
4). Columns correspond to the different number of controls (# controls of 12, 24, and 36). Rows
correspond to different profile sizes (# features being 100, 200, 500, 1000, 2500, and 5000).

mAP captures diverse properties of real-world morphological profiling data with
both genetic and chemical perturbations

Next, we demonstrated the versatility of the mAP framework through its application to different
tasks on real-world data, evaluating the effects of selected preprocessing methods and
experimental designs. We began with image-based profiles of genetic perturbations and tested
several ways mAP can be used for tasks beyond ranking perturbations by their phenotypic
activity. We chose our published “Cell Health” dataset of Cell Painting images of CRISPR-Cas9
knockout perturbations of 59 genes, targeted by 119 guides in three different cell lines*?. We
used a subset of 100 guides that had exactly six replicates (two replicates in three different
plates) in each cell line.

We used mAP to evaluate phenotypic activity (replicate retrievability against non-targeting
cutting controls*®) (Figure 1E) for four different tasks (Figure 3A-D). First, we assessed the
overall quality of the dataset by checking that at least some guides resulted in phenotypes
robustly distinguishable from controls. Second, we compared how two different data
preprocessing methods influence the effects of technical variability on phenotypic activity of
each guide across cell lines. Third, we ranked individual guides by phenotypic activity and
filtered out inactive ones for downstream analysis of phenotypic consistency. Finally, we
compared contributions of each fluorescent channel to guide phenotypic activity.

First, we calculated mAP for guide phenotypic activity using two different data preprocessing
methods (Figure 3A). The first preprocessing method included data standardization by
subtracting means from feature values and dividing them by standard deviation using the whole
dataset. Alternatively, we used a robust version of standardization, which replaces mean and
variance with median and median absolute deviation, correspondingly, and is applied on a
per-plate basis (“MAD robustize”). In each scenario, we retrieved grouped profiles against
negative controls from both plates and reported percent retrieved (percentage of mAP scores
with a corrected p-value below 0.05). For both preprocessing methods and all three cell types,
retrieval percentages ranging 13%-94% indicated presence of perturbations with distinguishable
phenotypes, and the full range of mAP values showed that perturbation effects varied from weak
to very strong, confirming the good overall dataset quality.
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Then, we leveraged the fact that each guide had replicates in different well positions and plates
to formulate three profile groupings for well position and plate effect assessment (Figure 3A-B).
The first group only included profiles derived from different plates and well position; the second
group only included profiles from the same well position, but different plates; and the third group
only included profiles from the same plate, but different wells. Our framework implementation
allows specifying which metadata columns should have the same or different values for a pair of
profiles to belong to the same group. In the absence of well-position and plate effects on
phenotypic activity, all three tasks should demonstrate similar mAP values. However, as
expected, the data reveals differences in retrieval rates due to technical variation (Figure 3A):
with standardized profiles, retrieval of replicates in a different well position and different plate
had the lowest scores (28% retrieved on average across cell lines), while sharing the same well
position or plate resulted in higher scores (46% and 44% retrieved on average,
correspondingly). Using standardization per plate, results for A549 and ES2 cell lines had higher
retrieval rates when considering replicates from the same plate (38% and 56% correspondingly)
vs not sharing the same plate (13% and 31%), indicating the presence of plate-to-plate
variability. For the HCC44 cell line, retrieval rate on the same plate (38%) was not better than for
replicates across plates (39%). By contrast, using robust standardization (MAD robustize)
per-plate increased retrieval of profiles from a different well position and different plate (55%
retrieved) to a larger extent than it did for the same plate, different well test (51% retrieved). But
it also inflated retrieval of profiles that share the same well position in different plates (88%
retrieved), demonstrating that well position effects were not addressed by this pre-processing
and may affect downstream analyses. These results were observed on the level of individual
cell lines as well, with all three having similar retrieval rates independently of sharing a specific
plate but showing substantially higher rates when sharing a well position (Figure 3A). We used
MAD robustize to preprocess for all subsequent analysis given its better performance on a
challenging task (retrieving from different well position, different plate). This example showcased
the flexibility of the mAP framework for grouping profiles according to experimental properties
and assessing impact of technical variation in profiling data on phenotypic activity of
perturbations. However, we note that evaluating batch effects and methods for their correction is
a complex problem that may require using multiple specialized metrics for a comprehensive
assessment "9,

Next, we used all six replicates per CRISPR guide to assess its phenotypic activity (Figure 1E)
by retrieving each perturbation’s replicates against non-targeting controls in three cell types.
Retrieval percentage varied 31-70% by cell line, respectively (Figure 3B), showing that mAP
captures cell context-dependent differences of each guide’s phenotypic activity, though
potentially confounded by well-position and plate effects. We also showed cell line-dependent
differences in individual replicate AP scores for a subset of guides (Figure 3C). For example,
while five out of six replicates of the ATF4-1 guide in ES2 cells showed high similarity and clear
distinction from controls, the sixth replicate did not, as indicated by its low AP score and high
p-value, suggesting it may be an outlier. We observed similar retrieval rates using an alternate
negative control, wells that were not perturbed at all (Supplementary Figure S6A). The
significance of MAP was somewhat negatively correlated with CERES scores*
(Supplementary Figure S6B), a measure of gene essentiality derived from viability
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experiments, confirming that many perturbations that impact viability also impact morphology*,
though one would expect many exceptions, for example, for genes that are not expressed well
in the given cell type. This assessment allowed us to filter out “inactive” guides that produce
phenotypes indistinguishable from controls to ensure that at the next step, perturbation
similarities are not due to shared lack of activity.

Then, we evaluated the mAP framework for a different block design characterizing contributions
of different fluorescence channels by calculating metrics for each single channel individually
(Figure 3D, Y axis); the mitochondria channel proved the most independently useful for
retrieving guide replicates against controls. In most cases, dropping a channel (Figure 3D, X
axis) only slightly diminished retrieval performance, a useful guide for researchers wanting to
swap out a channel for a particular marker of interest. In a similar fashion, we assessed the
contributions of different feature types extracted from different cell compartments and found
(Supplementary Figure S6C) that, for example, excluding RadialDistribution or AreaShape
features dropped the percentage of retrieved guides to below 35%. Removing Texture or
Intensity features resulted in ~70% retrieval rates, which can hint at what phenotypic responses
were distinguishing for this gene set as a whole.

We next assessed phenotypic consistency of CRISPR guides that targeted the same gene by
retrieving them against guides that targeted other genes (similar to Figure 1F), to see whether
guides targeting the same gene yielded a consistent and relatively distinctive phenotype. First,
we aggregated each guide’s six replicates by taking the median value for each feature. Then,
we filtered guides that did not pass the significance threshold for phenotypic activity in each cell
type (Figure 3B) to remove profiles that could not be confidently distinguished from controls.
There were two aggregated guide profiles per gene annotation, which we retrieved against
guide profiles of other genes (2 "replicates" vs 118 “controls” using the terms of Figure 2).
Retrieval percentages ranged from 54-92% across cell lines (Figure 3E). We also reported
per-guide AP scores for a subset of individual genes (Figure 3F), demonstrating gene-to-gene
differences and variability in guide consistency across the three cell lines. For instance, in the
case of CDK4, A549 and HCC44 cell lines each had one guide that was inconsistent with other
guides targeting the same gene.

Finally, we applied the mAP framework to other perturbation types (small molecules and gene
overexpression, rather than CRISPR-Cas9 knockouts), to assess their phenotypic activity
(Supplementary Figure S7). We used the dataset “cpg0004”"", which contains Cell Painting
images of 1,327 small-molecule perturbations of A549 human cells and the JUMP Consortium’s
“cpg0016[orf]” dataset*® dataset of U20S cells treated with 15,136 overexpression reagents
(open reading frame - ORFs), encompassing 12,602 unique genes, including controls, making it
the largest dataset in this study in terms of number of perturbations. In both cases, we first
calculated mAP to assess the phenotypic activity of each perturbation by replicate retrievability
against controls, which resulted in 34% of small molecules retrieved for cpg0004
(Supplementary Figure S7A) and 56% of ORFs retrieved (Supplementary Figure S7B).
Subsequently, we filtered out perturbations that did not pass the phenotypic activity threshold
and aggregated the rest on a per-perturbation basis by computing the median value for each
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feature across replicates. Finally, we calculated mAP to assess phenotypic consistency (a
measure of whether profiles capture true biological meaning, captured here by public
annotations). We tested for phenotypic consistency among small molecules that were annotated
as targeting the same gene (cpg0004) or among ORFs encoding genes that produce proteins
that were annotated as interacting with each other, per the mammalian CORUM database*’
(cpg0016[orf]). For cpg0004, 32% of target genes showed consistent phenotypic similarity
among small molecules targeting them (Supplementary Figure S7C); for cpg0016[orf] it was
4% of assessed protein complexes (Supplementary Figure S7D). Evaluating phenotypic
consistency by nature relies on the accuracy and completeness of external annotations.
Leveraging multiple sources of annotation, such as combining pathway databases, can
strengthen the interpretability of phenotypic profiling, helping to recapitulate known relationships
and improving benchmarking outcomes*®. For practical applications, incorporating diverse
annotations could similarly enhance profile retrieval by allowing cross-validation of biological
relationships under different contexts, such as across cell types or experimental conditions.

These results demonstrated that the proposed mAP framework can be used for assessing
various properties of real-world morphological profiling data created with both genetic and
chemical perturbations. By changing how profile groupings are defined, mAP can be used for
multiple purposes: to characterize technical variation in data, to evaluate methods to address
them, to determine the contributions of specific fluorescent channels or measured feature types,
and to ultimately select and rank perturbations by their phenotypic activity and consistency for
potential downstream analyses.
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Figure 3. The mAP framework applied to morphological profiling of CRISPR-Cas9 knockout perturbations
(Cell Health dataset). A: mAP is calculated to assess well position and individual plate effects on
phenotypic activity by retrieving guide replicates against controls in three scenarios (replicates of a guide
across different plates and well positions; replicates of a guide across different plates, but in the same
well position; and replicates of a guide within the same plate, but in different well position) and two data
preprocessing methods (standardize and MAD robustize per plate). Percentages retrieved indicate the
percentage of scores with p-value below 0.05 per cell line (and averaged across all cell lines in
parenthesis). B: mAP is calculated to assess the phenotypic activity of perturbations by guide replicate
retrievability against controls in three cell lines individually (49% retrieved on average across all three cell
lines). Results included all three replicate plates available per cell line. C: Replicate-level AP scores
calculated for a subset of guides from panel B highlight the variation from guides to guides across cell
lines. D: mAP p-values calculated to assess the influence of individual fluorescence channels on guide
phenotypic activity against controls by either dropping a channel or including only that single channel
(percent retrieved is shown for each axis); these results can be compared to 49% retrieved when all
channels’ data is available (on average across all three cell lines, as in B). E: mAP is calculated to assess
the phenotypic consistency of guides annotated with related target genes (against guides annotated with
other genes) in three cell lines individually. F: Replicate-level AP scores calculated for a subset of guides
from panel E highlight the variation from guides to guides across cell lines. Percent retrieved indicates the
percentage of scores with p-value below 0.05.

mAP quantifies strength and similarity of protein and single-cell mRNA profiling
data

To demonstrate the applicability of the mAP framework beyond image-based profiling, we
applied it to other modalities, including transcriptomics and proteomics.

The first dataset contained proteomic profiles from a 191-plex nELISA, a high-throughput,
high-plex assay designed for quantitative profiling of the secretome'?, which was performed in
A549 cells across 306 well-characterized compound perturbations from the Broad Institute’s
drug repurposing library*. This dataset also had matching Cell Painting morphological profiles
imaged from the same physical samples whose supernatants were nELISA-profiled.

First, we used mAP to assess phenotypic activity via replicate retrievability for both assays. This
analysis resulted in 72% of compounds being retrieved using Cell Painting and 39% with
nELISA (Figure 4A); the smaller percentage is likely due to the limitations in the original
experimental design that was not ideal for secretome profiling. We further calculated mAP to
assess phenotypic consistency by identifying compounds annotated with the same target gene.
This analysis yielded 23% retrieval for Cell Painting and 5% for nELISA (Figure 4B). Similarly to
phenotypic activity results, much lower percent retrieved for nELISA was likely due to A549
cells' limited secretory capacities, the absence of immune stimulation, and a mismatch between
pathways targeted by small molecules and nELISA readouts '>. This comparison validated
mAP's utility in comparing two different profiling assays, offering valuable insights for planning
future studies, for example, selecting an appropriate cell type for a particular assay.


https://paperpile.com/c/id1yL7/g0fEb
https://paperpile.com/c/id1yL7/KQp1M
https://paperpile.com/c/id1yL7/g0fEb
https://doi.org/10.1101/2024.04.01.587631
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.01.587631; this version posted March 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Finally, we used mAP to evaluate a Perturb-seq’~'® mRNA profiling dataset of single cells
treated with CRISPRI. The experiment assessed how single-guide RNAs (sgRNAs) containing
mismatches to their target sites attenuate expression levels of target genes®. Specifically, 25
genes involved in a diverse range of essential cell biological processes were targeted with 5-6
mismatched sgRNAs, covering the range from full to low activity, and 10 nontargeting controls.
Each mismatched guide was characterized by its activity levels relative to the perfectly matched
sgRNA targeting the same gene®. We aggregated single-cell profiles on the biological replicate
level and compared mAP scores to sgRNA relative activity, expecting that guide mismatches
that disrupt activity levels to a larger extent should have mRNA profiles that are less easily
distinguishable from controls. We indeed observed an overall correlation between mAP scores
for a sgRNA's mRNA profile similarity and its relative activity levels, (Figure 4C), with more
nuanced differences in correlations for specific genes (Figure 4D).

These applications demonstrate mAP’s robustness in quantifying the strength and similarity of
image, protein, and mRNA profiles, affirming its broad utility across diverse profiling assays.


https://paperpile.com/c/id1yL7/1hyMo+9ig4L+0VMbV+eI1m0
https://paperpile.com/c/id1yL7/r2ehP
https://paperpile.com/c/id1yL7/r2ehP
https://doi.org/10.1101/2024.04.01.587631
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.04.01.587631; this version posted March 13, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Phenotypic activity assessment by replicate retrieval (against negative controls)
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Figure 4. The mAP framework applied to proteomic and mRNA profiling. A: mAP is calculated to assess
the phenotypic activity of compounds by replicate retrievability against controls in matching Cell Painting
and nELISA profiling data. B: mAP is calculated to assess the phenotypic consistency by retrieving
phenotypically active compounds annotated with the same gene target in matching Cell Painting and
nELISA profiling data (note: the nELISA panel includes 191 targets including cytokines, chemokines, and
growth factors which are not expected to respond well in these convenience samples from a prior study,
because there is no immune stimulation and the A549 cells used have limited secretory capacity). C:
mMAP is calculated to assess the mRNA profile-based phenotypic activity of a mismatched CRISPRi guide
from a Perturb-seq experiment (y-axis) and correlate it with the guide’s activity relative to a perfectly
matching guide for that gene (x-axis). D: A subset of the data from panel C is presented, with several
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genes highlighted individually to demonstrate the variation from gene to gene. Percent retrieved indicates
the percentage of scores with p-value below 0.05.

mAP captures subtle phenotypic impacts of perturbations at the single-cell
resolution

Single-cell profiling has become increasingly feasible, providing detailed and nuanced insights
into the complex nature of biological systems, which are often obscured in bulk analyses. To
illustrate the mAP framework's utility in analyzing single-cell data, we applied it to two distinct
single-cell profiling datasets. Because mAP is an average of AP scores calculated by using
each observation as a query, it is straightforward to use single-cell AP scores to characterize
individual observations and the whole query group.

First, we repeated the analysis of the Perturb-seq mRNA profiling dataset® (Figure 4C-D) on
the single-cell level. The overall relationships between single-cell AP scores and relative activity
levels recapitulate those observed in the bulk profiles with more fine-grained details (Figure
5A), while per-gene (Figure 5B) and per-guide (Supplementary Figure S8) visualizations
revealed varied levels of heterogeneity across individual cells, even for guides with perfect
relative activity levels.

The second dataset called “Mitocheck” contained cell images of genome-wide gene silencing by
RNA interference®. We used a subset of these images, in which almost 3,000 cells were
manually annotated with observed morphological classes and processed by either CellProfiler®?
or DeepProfiler® feature extractors to create single-cell morphological profiles®. After filtering
out cells that failed quality control or were out of focus, the subset contained 2456 single-cell
profiles annotated with 15 morphological classes across 60 genes.

We used replicate retrievability against non-targeting controls to compare phenotypic activity of
single-cell CellProfiler- and DeepProfiler-derived profiles grouped by morphological classes and
target genes. Both feature extraction methods showed on average similar performance,
retrieving morphological annotations with 0.33-0.42 mAP and 93-95% retrieved (Figure 5C,
Supplementary Figure S8A). Interestingly, however, their performance varied across individual
classes (Figure 5C, Supplementary Figure S9B), indicating some complementarity in
phenotypes that are characterized more informatively with one approach than the other.
Although performance was lower for both methods in the target gene retrieval task
(Supplementary Figure S9C), the decrease was more severe for CellProfiler features (0.18
MAP, 89% retrieved) compared to DeepProfiler (0.22 mAP, 92% retrieved). When comparing
performance across both tasks, CellProfiler features overall demonstrated more variability
across the range of mAP scores (Supplementary Figure S9D) compared to more consistent
results of DeepProfiler (Figure 5D). Visualizing embeddings of individual morphological classes
for both feature types indicated that those with higher retrieval rates resulted in more consistent
clusters (Supplementary Figure S10). Calculation of mAP p-values for gene phenotypic activity
took the longest for this dataset due to the large size of control cells and the highly variable
number of single cells per targeted gene (Supplementary Table 2).
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This analysis underscores the ability of the mAP framework to discern phenotypic variability and
heterogeneity inherent in single-cell data, revealing both the strengths and complementary
nature of different feature extraction methodologies.

Single cell retrieval of guides with mismatches targeting the same gene (against negative controls)
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Figure 5. The mAP framework applied to single-cell mMRNA and imaging data. A: AP scores are
calculated to assess the single-cell MRNA profile-based phenotypic activity of a mismatched CRISPRI
guide from a Perturb-seq experiment (y-axis) and correlate it with the guide’s activity relative to a perfectly
matching guide for that gene (x-axis). B: A subset of the data from panel A is presented, with several
genes highlighted individually to demonstrate the variation from gene to gene. C: AP scores are
calculated to evaluate the power of CellProfiler and DeepProfiler features to classify multiple phenotypic
classes in Mitocheck morphological data. AP scores capture the ability to retrieve single cells annotated
with the same morphological class against negative controls. D: Mitocheck data, correlation between
MAP scores for retrieving single cells annotated with the same morphological class versus gene, for
DeepProfiler features. MC: morphological class. Percent retrieved indicates the percentage of scores with
p-value below 0.05.
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Discussion

High-throughput profiling experiments have shown great promise in elucidating biological
functions, patient subpopulations, and therapeutic targets. However, the high dimensionality and
heterogeneity of profiling datasets present a significant obstacle for traditional methods in
evaluating data quality and identifying meaningful relationships among profiles. Our work
advances this domain by reframing profile quality assessment as an information retrieval task
and by proposing a comprehensive statistical and computational framework using mean
average precision (MAP) to assess profile strength and similarity. The mAP framework can be
applied to image-based, protein, and gene expression profiling datasets created with either
genetic and chemical perturbations. By assessing replicability of repeated experiments via
retrieval of perturbation replicates against negative controls, the mAP framework checks dataset
for potential dataset-scale issues, identifies phenotypically active perturbations and allows to
filter out ones indistinguishable from controls. It can also be used to measure phenotypic
consistency among different perturbations that share expected biological similarity, such as
chemical mechanisms of action and gene-gene relationships, by retrieving perturbation groups.
By selecting phenotypically active and consistent perturbations, mAP helps in prioritizing
biologically relevant perturbations for deeper mechanistic studies, refining the search space for
downstream analyses such as differential feature identification. Finally, by using
metadata-based blocking, mAP assessments can shed light on the effect of technical variation
in data (e.g., plate layout effects), suitability of experimental design (e.g., cell type or fluorescent
channel selection), and data processing methods (e.g., feature extraction) on phenotypic activity
and consistency of profiling data. This adaptability makes mAP a valuable tool for comparing
different profiling methods and enhancing the interpretation of high-throughput experiments. Our
implementation of the mAP framework is highly efficient and scales well to the large-scale
datasets, including at the single-cell level (Supplementary Table 2).

At its core, the mAP framework is based on grouping profiles according to the prespecified block
design and calculating a well-established evaluation metric on the rank list of nearest neighbors
to a given profile. Unlike most existing alternatives'®, this procedure is robust to outliers, fully
agnostic to the nature of data, and does not make distributional, linearity, or sample size
assumptions. With its top-heavy bias, average precision emphasizes early discovery in ranking
assessment similarly to other recently proposed metrics®*~*", but those metrics require careful
parameter tuning that can be tricky. Unlike the AP?®', those metrics cannot be interpreted in
terms of probability even if they are bounded by [0, 1]%°. If only k top ranked perturbations are of
interest, requiring the rank list to be thresholded (for example, when the goal is to see how often
the correct profile would be in the top k results), AP can be easily replaced by Precision@Ak.

Still, the mAP framework has limitations. The effectiveness of the mAP framework, like other
methods based on nearest neighbors, is contingent upon choosing an appropriate measure of
profile dissimilarity (a distance metric). A less-suitable distance metric would impair mAP's
performance, but this is a trade-off for the framework's flexibility. Conversely, this opens an
opportunity for using a dataset-specific custom similarity measure to suit particular data types
and analyses. As a rank-based metric, mAP is robust to deviations from typical assumptions for
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parametric methods, but it cannot reflect differences in effect size beyond perfect separability
between two groups that are being compared. To overcome this limitation, future studies could
explore extending mAP to accommodate graded rank lists®2, moving beyond binary
classifications. Finally, the permutation testing approach used for significance assessment has
limitations when dealing with datasets that have a small number of replicates or controls. This is
an inherent statistical constraint that highlights the importance of having adequate experimental
replicates and controls for robust statistical analysis.

In conclusion, the mAP framework presents a powerful strategy for evaluating data quality and
biological relationships among samples in high-throughput profiling. It adjusts to various data
types and perturbations and is robust to the complexities of real-world biological data. It can be
effectively used to improve methods and prioritize perturbations for further studies with the
potential to streamline the discovery of mechanisms and therapeutic targets in complex
biological systems.

Methods

mARP calculation

In general, the mAP framework can be used to compare any two groups of high-dimensional
profiles by retrieving profiles from one group (“query group”) against another group (“reference
group”). Groups are defined by providing a list of metadata columns in which profiles that belong
to the same group have to have either matching or mismatching values.

Given a group of N reference profiles and a group of M query profiles, we calculate
non-interpolated AP for each query profile as following:
1. out of M query profiles, select one profile i;
2. measure distances from the query profile i to all other (M-1)+N profiles in both groups;
3. rank-order (M-1)+N profiles by increasing distance to the query profile i (decreasing
similarity);
4. for each rank k going top-down the list, if k contains another query profile (true positive
we term a “correct match”, i.e. not a reference), calculate precision for this rank k;
5. when done, average calculated precisions to obtain the AP value.

More formally, average precision for profile i is calculated as:
. (M—1)+N
APi = m k§1 ngk’ where

g, equals 1 if rank k contains a correct match (True Positive) and 0 if otherwise,

TP

_ ko ] )
P, = —is precision at rank k (precision@k),

TPk is the number of all query profiles (all Positives) retrieved up to rank k.
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More conveniently, AP can be expressed via relative change in recall:
(M=1)+N

APi = Y (Rk_1

— Rk)Pk, where Pk is the same as above and
k=1

TP
R, = M—_’l is recall at rank k (recall@k), R, = 0, which replaces both 9, and dividing by M-1.

Then, mean AP (mAP) for the whole query group can be calculated through aggregation of

individual query profile APs by taking a mean:
M

mAP = ﬁZ AP, where M is the number of profiles in the query group.
i=1

Assigning significance to mAP scores

We estimate the statistical significance of a mAP score with respect to a random baseline using
a permutation testing approach, a non-parametric, assumption-free method for testing the null
hypothesis of sample exchangeability. Under the null hypothesis, we assume that profiles in
both query and reference groups were drawn from the same distribution. Since the total number
of points is fixed and the rank list is binary, the mAP distribution under the null hypothesis
distribution covering all possible ranking outcomes only depends on two parameters: the
number of positives without the query M-1 and the total number of points without the query

N+(M-1). Therefore, the null has the exact size equal to the binomial coefficient (N“Lﬂ;”). In

practice, we approximate the null by repeatedly reshuffling the rank list and calculating mAP,
which is equivalent to reshuffling the profile labels. The p-value is then calculated as the fraction
of the approximate null that is greater than or equal to the mAP score. This approach aligns with
the interpretation of significance values in parametric statistical analyses, where a nominal
significance cutoff of 0.05 is typically used. When we compare mAP scores of multiple query
groups, we correct corresponding p-values for multiple comparisons using the
Benjamini—-Hochberg procedure*. We refer to the percentage of calculated mAP scores with a
corrected p-value below 0.05 as the percent retrieved.

mAP for phenotypic activity and consistency assessment

We applied the mAP framework to assess phenotypic activity and consistency.

We assess phenotypic activity of a single perturbation by calculating mAP for replicate
retrievability, i.e. the ability to retrieve a group of perturbation’s replicates (query group) against
a group of control profiles (reference group). At this stage, a replicate profile typically means an
aggregation of single-cell profiles (e.g., across all cells in a single well). By imposing additional
conditions, we defined various groups of replicates for a given perturbation. For example, we
used phenotypic activity to evaluate the presence of plate effects by comparing mAP score for
retrieving replicates from the same plate vs from different plates. After calculating mAP scores
for all perturbations, they can be compared and ranked in terms of their phenotypic activity.
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We also use mAP to assess the phenotypic consistency of multiple perturbations annotated with
common biological mechanisms or modes of action (query group) against perturbations with
different annotations (reference). When computing phenotypic consistency, each perturbation’s
replicate profiles are first aggregated into a consensus profile by taking the median of each
feature to reduce profile noise and improve computational efficiency.

Let’'s consider a dataset containing perturbations annotated with mechanisms of action. For
example, a group of P compounds is annotated with MoA,, and the rest Q compounds are
annotated with various other MoA labels.

Then the mAP for the MoA, group of P perturbations can be computed as following:
1. select one perturbation profile from this group, e.g. P;
2. measure distances from P; to all other (P-1)+Q profiles in both groups;
3. rank-order (P-1)+Q profiles by decreasing similarity w.r.t to P,
4. going top-down the list, if the rank k contains a perturbation profile from the same group
P, calculate precision@k for this rank k
when done, average calculated precisions by summing them up and dividing by P-1
6. repeat the process for all i=7...P and average obtained APs to calculate mAP,

o

The resulting value mAP, will indicate how internally consistent (has high mAP for retrieving
perturbations from itself) this group of perturbations annotated with MoA, is compared to other
perturbations. This example can be easily extended to an arbitrary number of perturbation
groups (e.g., compound MoAs). The same process can also be repeated using each set of
perturbations as a query group. This will result in obtaining mAP scores for all groups of
perturbations in the dataset and can be used to rank them by phenotypic consistency or
estimate the consistency of the whole dataset by aggregating them (e.g., by averaging).

Additionally, we can also define phenotypic distinctiveness, although it is not used in this paper.
While phenotypic activity measures how distinguishable a perturbation is from negative controls,
phenotypic distinctiveness measures how distinguishable a perturbation is from all other
perturbations in the experiment. It can be assessed by calculating mAP for retrieving the
replicates of a perturbation against all other perturbations. This concept is essentially the same
as the "mAP-nonrep" score used in '°.

Extension to multiple labels

When considering groups of perturbations, a single perturbation can belong to multiple groups
simultaneously. For example, a compound can have multiple annotations, such as genes whose
products are targeted by the compound, or mechanisms of action of this compound. Then AP
can be calculated by considering a single annotation group at a time. In the example below, we
assume having per-perturbation aggregated consensus profiles.

Let's consider a dataset containing consensus profiles of P perturbations, with each perturbation
annotated with “labels” from 7...T, where T is the number of all possible labels in the dataset.
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Then for a label and one of the perturbations annotated with it, AP can be calculated as:

1. select one label t from T possible options

2. select one perturbation profile p; out of P, perturbations annotated with this label (query)

3. rank-order the rest of profiles (P-1)+1 by similarity w.r.t to p;

4. going top-down the list, if the rank k contains a perturbation profile that is also annotated
with the label t, calculate precision@k for this rank k

5. when done, average calculated precisions by summing them up and dividing by P,, i.e.
the number of all perturbations annotated with this label

6. the result will be AP for the specific t-p, label-perturbation pair

7. repeat steps 2-6 for all perturbation profiles P, to obtain APs for all perturbations
annotated with this label ¢

8. repeat steps 1-7 for all labels T to obtain APs for all label-perturbation pairs

The result will be a sparse P x T matrix of APs, where the element corresponding to a
perturbation p and target t is equal to AP, if p is annotated with t and 0 otherwise. This matrix
can be aggregated on a per-perturbation or per-label basis (for example, by taking the mean
across rows or columns, correspondingly) depending on the downstream task. Per-label mAP
will assess biological consistency of perturbations annotated with a specific label compared with
perturbations annotated with other labels. Practically, this makes it possible to compare
consistency of different label groupings for a given perturbation.

Simulated data generation protocol

Simulations of the mAP performance were conducted by repeatedly generating control and
treatment replicates by sampling features from a number of different normal distributions. Each
treatment was simulated in 2,3 or 4 replicates, and 8, 16, or 32 replicates were simulated for
each control. Between 100 and 5000 features were simulated. All features were simulated in the
control by sampling from the standard normal distribution. Varying numbers of features were
simulated in treatment replicates by sampling from a shifted normal distribution (u =1, o = 1).
Any remaining features in treatment replicates were sampled from the standard normal
distribution. Each perturbation was considered correctly retrieved if its p-value was below 0.05.

Alternative metrics

The multidimensional perturbation value (mp-value)?? is a statistical metric designed to assess
differences between treatments in various types of multidimensional screening data. It involves
using principal component analysis (PCA) to transform the data, followed by calculating the
Mahalanobis distance between treatment groups in this PCA-adjusted space. The significance
of the mp-value is determined through permutation tests, a non-parametric approach that
reshuffles replicate labels to assess the likelihood of observed differences occurring by chance.

The Maximum Mean Discrepancy (MMD)® test is a multivariate nonparametric statistical test
used to determine if two distributions are significantly different. It measures the largest possible
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difference in expectations across a function space, typically within a reproducing kernel Hilbert
space (RKHS). We use MMD with the radial basis function kernel (RBF) and set the kernel
bandwidth at the median distance between points in the aggregate sample, a common
heuristic®.

The k-means algorithm clusters data by minimizing within-cluster variance, effectively grouping
samples based on their similarity. We set the number of groups k to 2 for separating
perturbation and control replicates. Cluster centroids are initialized randomly, and the algorithm
is repeated 10 times, with the best result selected based on the lowest overall inertia (the sum

of squared distances of samples to their closest cluster center), as implemented in scikit-learn
58

Cell Health dataset description and preprocessing

We used our previously published “Cell Health” dataset*? of Cell Painting?” images of
CRISPR-Cas9 knockout perturbations of 59 genes, targeted by 119 guides in three different cell
lines (A549, ES2, and HCC44). Morphological profiles were previously extracted from images
using CellProfiler®? and median-aggregated on the well level*>. We used a subset of 100 guides
that had exactly six replicates (two replicates in three different plates) in each cell line. We
performed two types of profile normalization followed by feature selection using pycytominer.
The first preprocessing method included data standardization by subtracting means from feature
values and dividing them by variance using the whole dataset. Alternatively, we used a robust
version of standardization, which replaces mean and variance with median and median absolute
deviation, correspondingly, and is applied on a per-plate basis (“MAD robustize”). Feature
selection included variance thresholding to remove features with minimal variation across the
dataset, removing highly correlated features, removing features with missing values or outliers,
and removing blocklisted features—all using pycytominer® default parameters.

cpg0004 dataset description and preprocessing

We used our previously published dataset “cpg0004-lincs” (abbreviated to cpg0004 here) that
contains Cell Painting®” images of 1,327 small-molecule perturbations of A549 human cells™.
The wells on each plate were perturbed with 56 different compounds in six different doses.
Every compound was replicated 4 times per dose, with each replicated on a different plate. In
this study, only the highest dose point of 10 uM was used. Morphological profiles were
previously extracted from images using CellProfiler®?. Profile normalization, feature selection,
and batch correction were performed using pycytominer®. First, profiles were normalized
against DMSO controls by subtracting medians from DMSO feature values and dividing them by
median absolute deviation (“MAD robustize”). Feature selection included variance thresholding
to remove features with minimal variation across the dataset, removing highly correlated
features, and removing features with missing values or outliers. Finally, profiles were corrected
for batch effects by the sphering transformation' (computes a whitening transformation matrix
based on negative controls and applies this transformation to the entire dataset).
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cpg0016[orf] dataset description and preprocessing

We used the JUMP Consortium’s™ “cpg0016-jumpl[orf]” dataset*® (abbreviated to “cpg0016[orf]”
here), which contains Cell Painting? images of U20S cells treated with 15,136 overexpression
reagents (ORFs) encompassing 12,602 unique genes. Morphological profiles were previously
extracted from images using CellProfiler®?, mean-aggregated on the well level, and then
corrected for plate layout effects by subtracting means from feature values per well location. Cell
counts were regressed out from each feature with more than 100 unique values. After that,
profiles were normalized per plate by subtracting medians from feature values and dividing them
by median absolute deviation (“MAD robustize”). Feature selection was performed using
pycytominer®® and profiles were corrected for batch effects by a combination of the sphering
transformation and Harmony*® (an iterative algorithm based on expectation-maximization that
alternates between finding clusters with high diversity of batches, and computing mixture-based
corrections within such clusters).

nELISA dataset description and preprocessing

We used the dataset containing proteomic profiles from a 191-plex nELISA', a high-throughput,
high-plex assay designed for quantitative profiling of the secretome, which was performed in
A549 cells across 306 well-characterized compound perturbations from the Broad Institute’s
drug repurposing library*. This dataset also included matching CellProfiler®> morphological
profiles from Cell Painting?” images of the same physical samples whose supernatants were
nELISA-profiled. Profiles were normalized per-plate by subtracting medians from feature values
and dividing them by median absolute deviation (“MAD robustize”). Feature selection included
variance thresholding to remove features with minimal variation across the dataset, removing
highly correlated features, and removing features with missing values or outliers.

Perturb-seq dataset description and preprocessing

We used the public Perturb-seq’~'®* mRNA profiling dataset of single cells treated with CRISPRI
containing 10X single-cell gene expression reads, barcode identities, and activity readouts
(Gene Expression Omnibus accession GSE132080)%. The experiment assessed how
single-guide RNAs (sgRNAs) containing mismatches to their target sites attenuate expression
levels of target genes®. Specifically, 25 genes involved in a diverse range of essential cell
biological processes were targeted with 56 mismatched sgRNAs, covering the range from full
to low activity, and 10 nontargeting controls. Each mismatched guide was characterized by its
activity levels relative to the perfectly matched sgRNA targeting the same gene®. The
distributions of sgRNAs were largely unimodal, although broader than those with the perfectly
matched sgRNA or the control sgRNA*. We performed single-cell profile normalization and
feature selection using Seurat®'.

Mitocheck data description and preprocessing
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We used the previously published Mitocheck dataset®’ containing images of GFP-tagged nuclei
of HelLa cells perturbed with small interfering RNA (siRNAs) to silence approximately 21,000
protein-coding genes. Within the dataset, approximately 3,000 cell images were manually
labeled into one of 15 morphological phenotype classes. Recently, these images were
re-analyzed® with a more comprehensive image analysis pipeline, which included illumination
correction using PyBasic®, segmentation using CellPose®®, and single-cell feature extraction
using CellProfiler® and DeepProfiler®®. Extracted profiles were standardized by removing the
mean and scaling to the unit variance of negative control cells. We performed feature selection
for both CellProfiler- and DeepProfiler-derived profiles by variance thresholding to remove
features with minimal variation across the dataset, removing highly correlated features,
removing features with missing values or outliers, and removing blocklisted features—all using
pycytominer® default parameters.

Data availability

Profiles extracted from the Cell Health dataset*? are available at

https://github.com/broadinstitute/cell-health/tree/30ea5de393eb9cfc10b575582aa9f0f857b44c59
/1.generate-profiles. Profiles extracted from the cpg0004" dataset are available at

https://github.com/broadinstitute/lincs-cell-painting/tree/061870127481dcd73c29df85ebcfddeac2
ed0828/profiles. Profiles extracted from the cpg0016[orf]*® dataset are available from the Cell
Painting Gallery™ at
https://github.com/broadinstitute/cellpainting-gallery/blob/87e04696564e8c61d060c2a8e3a99db
d00fd9b31/README.md. The Perturb-seq dataset is available at Gene Expression Omnibus,
accession code GSE132080°%. Profiles extracted from the matching nELISA-Cell Painting
dataset'? are available at
https://github.com/carpenter-singh-lab/2024_Kalinin_mAP/tree/e9a5414726119dca7ed0d79efde
887c1e259c288/experiments/5 nelisal/inputs. Profiles extracted from the Mitocheck dataset®
are available at

https://github.com/WayScience/mitocheck data/blob/613acbb20d2134ad1d725¢c7605a61c5a9e
823c1a/README.md.

Code availability

The mAP framework is implemented as an open-source Python package available at
https://github.com/cytomining/copairs. Source code for all analyses in this manuscript is
provided at https://qithub.com/carpenter-singh-lab/2024 Kalinin_ mAP.
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