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Insects achieve agile flight using a sensor-rich control architecture whose em-
bodiment eliminates the need for complex computation. For example, their visual
systems are tuned to detect the optic flow associated with specific self-motions,
but what functional principle does this tuning embed and how does it facilitate
motor control? Here we test the hypothesis that evolution co-tunes physics and
physiology by aligning an insect’s sensors to its dynamically-significant modes of
self-motion. Specifically, we show that the tuning of the blowfly motion vision sys-
tem maximizes the flow of signal energy from gust disturbances and control inputs
to sensor outputs, jointly optimizing observability and controllability. This evo-
lutionary principle differs from the conventional engineering-design paradigm of
optimizing state estimation, with implications for novel robotic systems combining

high performance with low power-consumption.

Main text

Like fifth-generation fighter aircraft and small multi-rotors, flies and other insects are inherently
unstable in flight. This makes them highly maneuverable, but demands exquisite control. Technolog-
ical and biological systems alike achieve this by combining information on motor input and sensor
output (/) with an internal model of their dynamics (2), enabling them to observe and control their
motion state in the face of disturbances. But whereas modern fly-by-wire control systems operate a
computationally-intensive control architecture with recursive state estimation and a small number
of sensors and actuators, insects have evolved a computationally-efficient control architecture with
parallel processing and many sensors and actuators (3). For instance, the blowfly Calliphora fuses
the output of ~10° sensory cells to provide information on its self-motion, and uses at least 26
steering muscles to control its wingbeat. Yet, it weighs a mere 10~ kg and consumes only 1072
W of metabolic power in flight. The sensor-rich control architecture of insects may therefore point

to a novel flight control paradigm in which specialised sensing avoids the need for generalised
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computation (4), but the underlying functional principle has yet to be identified (5).

One possibility is that an insect’s sensors are tuned to produce signals that directly correspond
to excitation of the natural modes of motion characterising its flight dynamics (3). This principle,
called the “mode-sensing hypothesis” (3, 5), might serve to reduce computational complexity
through the use of embodied sensing. Under this hypothesis, an insect’s sensors need only detect
the characteristic patterns of self-motion that are excited by gust disturbances and control inputs (6),
rather than having to provide a calibrated measurement of some general physical quantity such as
angular velocity or airspeed (3). The mode-sensing hypothesis accords with the broader observation
that biological sensors are exquisitely sensitive to change but poor at measuring absolutes (3), even
varying their gain according to the behavioral state of the animal (7). It might also explain why the
descending neurons that relay sensory information downstream to the flight motor fuse information
from multiple sensory modalities, because an insect’s flight dynamics are characterised by coupled
rotational and translational motions that stimulate multiple sensory systems simultaneously (3).

Here we test whether the mode-sensing hypothesis explains the tuning of the fly motion vision
system, which is currently the best-understood example of a deep neural network in nature (8—10).
Visually-oriented animals including flies detect the wide-field optic flow stimuli experienced during
self-motion by correlating local changes in luminance across neighboring photoreceptors before
pooling this information globally. In flies, this operation is implemented by an array of elementary
movement detectors whose responses are pooled by the lobula plate tangential cells (LPTCs)
that form the output layer of the motion vision pathway. The LPTCs’ response characteristics are
best known for Calliphora (11), functioning as matched filters (/2—74) tuned to detect specific
patterns of optic flow associated with particular combinations of rotational and translational self-
motion (15, 16). Any global tuning principle relating to the fly’s self-motion must therefore be
embedded in the synaptic distribution and weighting of the dendritic inputs to its LPTCs, which
are the unique level of the network at which information is pooled from across the optical array.

Each LPTC is tuned to detect some specific combination of rotation and translation defining a

preferred direction of self-motion, which the mode-sensing hypothesis predicts should correspond
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to one or more dynamically-significant directions in the insect’s state space (3). In principle, this
hypothesis can be tested by analyzing a suitable model of the insect’s flight dynamics (5), but no
such model has yet been elaborated for Calliphora. Moreover, although rigid-body flight dynamics
models (/7) have been successfully developed for several other insect species (/8), they do not
usually attempt to model the output of the insect’s sensory system and do not accurately capture
the detailed changes in wing kinematics involved in its flight control. Likewise, although recent
neuromechanical models of insects are expressly designed to model the sensorimotor control of their
behavior in a lifelike fashion (79, 20), few have yet attempted to model flight in a biomechanically
accurate manner (2/). Even then, as simulation models, these neuromechanical models are not
designed to enable the abstraction of control-theoretic principles as is our aim here.

Our approach is therefore as follows: (i) to capture the dynamic mapping from mechanical input
to sensor output analytically, which we achieve by creating a novel state-space model of blowfly flight
dynamics and control; (ii) to identify the most dynamically-significant directions in the insect’s state
space, which we accomplish by analyzing our state-space model using advanced control-theoretic
tools called Gramians; and (iii) to test whether the preferred directions of the LPTCs correspond to
these dynamically-significant directions more closely than expected by chance. Based on the strong
correspondences that we identify, we conclude that blowfly motion vision is tuned to maximize
the transfer of signal energy from control inputs and gust disturbances to sensor outputs via the
system state (Fig. 1). This end-to-end tuning principle optimizes the observability of the system
state jointly with its controllability and disturbance-sensitivity, which differs from the conventional
engineering-design paradigm of placing sensors so as to optimize state estimation by maximizing
observability alone (22,23). The evolutionary principle that we identify of tuning sensors to optimize
observability jointly with controllability and disturbance sensitivity has important applications to
the design of vehicles and robotic systems combining high performance with low computational

load and low power consumption (24).
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Figure 1: Signal energy transfer in insect flight. The mechanistic relationships illustrated on the right of the
figure (blue arrows) are summarised by the signal energy flows shown on the left (red arrows). We characterise
these mechanistic relationships by developing a state-space model of insect flight (Egs. 1-2), and characterise
the associated signal energy flows using the special matrix structures called Gramians that we derive from this
model (Egs. 3-4). Blue arrows: Control inputs u(#) and gust disturbances d(7) produce changes in the insect’s
motion state x(¢) described by the differential equations characterising its flight dynamics. This self-motion
generates sensory stimuli including an optic flow field. The output layer of the blowfly motion vision system
comprises a set of lobula plate tangential cells (LPTCs), each of which is matched to detect an optic flow
field associated with a specific self-motion, yielding a sensor output y(z) related to the motion state x(z) of
the fly. Red arrows: Signal energy from control inputs and gust disturbances is stored in the system state, so
the system’s controllability and disturbance-sensitivity are maximized by maximizing signal energy storage.
Stored signal energy is released through the evolution of the system state and retrieved at the sensor outputs,
so the system’s observability is maximized by maximizing signal energy retrieval. A system that balances
signal-energy storage/retrieval jointly maximizes observability and controllability or disturbance-sensitivity,
and thereby maximizes the flow of signal energy from control inputs or gust disturbances to sensor outputs

via the system state. Neuroanatomical image of LPTCs adapted from (25).
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Modeling approach

We begin by elaborating the novel flight dynamics model that we develop to characterize observ-
ability, controllability and disturbance-sensitivity in blowfly flight (Fig. 1). The simplest possible
state-space model describing the dynamic mapping from mechanical input to sensor output lin-
earizes an insect’s six degrees of freedom of rigid-body motion about some equilibrium flight

condition (/7) to yield the linear time-invariant equations:

state equation: x(1) = Ax(t) + Bu(¢) + Gd(r) (1)

output equation: y(1) = Cx(1). 2)

Here, all the forces and moments are assumed to be represented by their wingbeat averages, which
is reasonable if the characteristic timescales of any unstable or oscillatory modes of motion are
at least an order of magnitude longer than the wingbeat (/7). This assumption is true of other
flies (/8), and we validate it directly here for Calliphora having first parameterized the model.
The state equation (Eq. 1) models the insect’s flight mechanics, and is parameterized by the
system matrix A characterizing the insect’s natural response to perturbations in its motion state x.
The control matrix B and disturbance matrix G characterize the insect’s forced response to control
inputs u and aerodynamic disturbances d, respectively. The output equation (Eq. 2) models how the
resulting self-motions map to the insect’s sensor output, and is parameterized by the output matrix
C characterizing the physiological mapping from the insect’s motion state X to its sensor outputs y.
Together, these two matrix equations describe the transfer of signal energy from control inputs and
disturbances to sensor outputs via the system state (Fig. 1). Simplified versions of the state equation
have been parameterized for a few other species (/8), but these have not been coupled to an output
equation modeling the resulting sensory output and they have not been founded on an accurate
model of the kinematic inputs used in flight control. Moreover, to the best of our knowledge, there
is no existing flight dynamics model for Calliphora. Given our model’s novelty and its centrality
to the conclusions that follow, we therefore begin by detailing how we parameterize Eqgs. 1-2

empirically in relation to a blowfly’s visual physiology and flight physics. We then analyze this
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model using advanced control-theoretic methods to identify the functional principle that the tuning

of the blowfly’s motion vision system embodies.

Visual physiology

We begin by characterizing the motion vision system whose tuning we aim to explain, providing
the reader with a brief description of its anatomy and physiology, before using new and published

electrophysiological recordings to parameterize the output equation (Eq. 2).

Visual output vector. The output layer of the fly motion vision system is formed by a set of
wide-field optic-flow sensitive neurons called the lobula plate tangential cells (LPTCs). A subset
of the LPTCs in Calliphora is tuned to respond specifically to self-motion stimuli, including the
ten vertical system (VS) cells {VS1-VS10} and three horizontal system (HS) cells {HSN, HSS,
HSE} of each optic lobe (11, 15, 26, 27). The VS- and HS-cells arborize ipsilaterally, yet some
of their response fields extend across both visual hemispheres (Fig. 2B), which is important to
distinguishing rotational from translational self-motion (3). This binocularity is made possible
by a complex coupling arrangement (Fig. S5) in which heterolateral LPTCs called V-cells {V1,
V2, Vx} and H-cells {H1, H2, Hx} relay output from the contralateral optic lobe (11, 27, 28).
The binocular VS- and HS-cell outputs are ultimately combined with output from other sensory
modalities involved in flight control by descending neurons that relay sensory information to the
wing, leg, and neck motor systems (29, 30). Hence, whereas the VS- and HS-cells form the output
layer of each optic lobe, the heterolateral V- and H-cells form a shallow hidden layer that is critical
to the function of this bilaterally symmetric deep neural network (Fig. S5). To allow us to analyse
their respective functions, we use the characteristic responses of all 19 cells in each of the two
mirror-symmetric optic lobes to form the 38 elements of the output vector y. To enable us to model
this output vector y we must quantify the LPTC responses using a combination of new and existing

electrophysiological recordings, as described in the next section.
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Figure 2: The fly motion vision system. (A) A flying insect has six degrees of freedom in rotation {p, ¢, r}
and translation {u, v, w}. Its compound eyes sense self-motion using a deep network comprising an array
of repeated elementary motion detectors whose outputs are pooled by the lobula plate tangential cells
(LPTCs), comprising an output layer of 13 pairs of VS- and HS-cells connected by a hidden layer of at
least 6 pairs of V- and H-cells coupling the left and right optic lobes. (B) Binocular response field of the
left VS6-cell as a function of azimuth (y) and elevation () in retinal coordinates. This closely resembles
the optic flow associated with left-handed roll motion (28), and as the LPTCs only arborize ipsilaterally,
the weak contralateral response visible here must be due to coupling by the heterolateral V-cells. (C,D,E)
Newly-measured response fields of the right V-cells, where N denotes the number of individuals from which
the recordings were pooled. (F,G) Preferred rotation axes of the left VS- (/5, 26) and V-cells (new data);

cells of the right optic lobe have responses that are mirror-symmetric to those of the left optic lobe.
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Electrophysiological measurements. Characterization of the LPTCs’ electrophysiological re-
sponses to local image motion (Fig. 2B-E) reveals that each cell’s response field (i.e., the vector
field describing its local motion sensitivity and local preferred directions) resembles a coherent
optic flow stimulus associated with some specific combination of rotational and translational self-
motion (/6). For example, it is well known that the VS-cells signal combinations of heave translation
and roll or pitch rotation (75, 26) (Fig. 2F), whereas the HS-cells signal combinations of yaw rota-
tion and sideslip or forward translation (27). The responses of the heterolateral LPTCs have been
less well studied, so to complete our model of the blowfly motion vision system, we characterised
the V1, V2, and Vx response fields of male and female flies experimentally (Fig. 2C-E). We did so
by making extracellular recordings of the cells’ activity in response to local image motion, which
we used to determine the spatial distribution of their local preferred directions and local motion
sensitivity across the visual field (see Methods). These new data from both sexes complement and
complete existing recordings made extracellularly from the V- and H-cells (27, 31, 32) and intracel-
lularly from the VS, HS and Hx cells of females only (15, 26—28). Our results show no functional
differences between males and females, and demonstrate that the preferred rotation axes of V1, V2
and Vx (Fig. 2G) each coincide with different subsets of the VS-cells (Fig. 2F; see also Fig. S5).
The correspondence between the response fields of the LPTCs and the optic flow fields associated
with specific combinations of rotational and translational self-motion is striking, but the dynamical

significance of these patterns has only been examined qualitatively to date (3).

Physiological modeling of the output equation. The response fields {F;} of the i = 1,...,38
LPTCs of the left and right optic lobes are defined in retinal azimuth and elevation coordinates {y, 8}
whose equatorial plane 8 = 0 is assumed to be held horizontal at equilibrium. The retinal coordinate
system is assumed to rotate with the body such that the ray defining its origin coincides with the
x-axis used in our flight dynamics modeling (Fig. 3). This approximation is valid for the small
perturbations that we model, and is reasonable to the extent that compensatory head movements

are driven optokinetically (33, 34) and therefore lag the body’s motion (35). The magnitude of
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the optic flow experienced during translational self-motion varies inversely with distance to the
visual environment. To determine how the LPTCs are expected to respond to rigid-body motion, we
assume that the insect is flying at the centre of a 2 m cube, although we relax this assumption later.
To parameterize the output equation (Eq. 2) in this environment, we compute the partial derivative
of the optic flow field Q with respect to each element of the state vector x (see Methods). We then
take the inner products of these matrices with the LPTC response fields {F;}, and use these to form
the elements of the unilateral output matrix C’, whose 38 normalized rows describe the preferred
directions of self-motion of the 19 mirror-symmetric pairs of LPTCs, treating the outputs of the left
and right optic lobes separately (Table S7). Finally, because symmetric and asymmetric motions
can be treated separately in our linearized flight dynamics model (see Fig. 3F), we restructure C’ to
form a bilateral output matrix C whose 38 normalized rows represent the summed and differenced
responses of the 19 mirror-symmetric pairs of LPTCs (see Fig. 4A below). This pairwise approach to
combining the output of the left and right optic lobes is intended to represent the fact that each LPTC
pair carries separable information on symmetric versus asymmetric motions, and makes no explicit
assumptions on the actual downstream connections of the LPTCs, which is necessary because our

knowledge of how the descending neurons combine this information remains incomplete (36-38).

Flight physics

The parameterized output equation (Eq. 2) models how the insect’s six degrees of freedom of rigid-
body motion motion are represented in the 38-dimensional output of its motion vision system. To
understand how this sensor output responds to control inputs and aerodynamic disturbances, we
must also model the insect’s flight dynamics by parameterizing the state equation (Eq. 1). Previous
state-space models of insect flight control (/8) have not attempted to identify the detailed control
inputs that are available to the insect, so building a biologically-meaningful model requires the

development of new analytical modeling approaches, as described in the sections below.
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State and disturbance vector. The insect’s rigid-body flight dynamics (Fig. 2A) are described by
the Newton-Euler equations of motion relating its linear and angular acceleration to the gravitational
and aerodynamic forces and moments (/7). For convenience, these vector quantities are defined
in body-fixed stability axes whose x-axis is aligned to the flight velocity vector at equilibrium and
whose y-axis is normal to the insect’s symmetry plane. It follows that the insect’s state vector x must
contain complete information on its linear velocity v = [u v w]” and angular velocity w = [p ¢ r]”
with respect to an inertial reference frame, together with information on the roll and pitch angles
of the body {¢, 6}, which is needed to keep track of gravity as the insect rotates. For the linearized
system in Eqs 1-2, these 8 elements of the state vector x are treated as small perturbations (¢)
from level symmetric rectilinear flight at equilibrium, and are separated into their symmetric and
asymmetric parts Xjong = [0u ow dg 661" and xiy = [6v Sp 8¢ or]7, describing longitudinal and
lateral motions, respectively. Bulk motion of the surrounding air mass produces the same relative
airflow as translational or rotational self-motion, so we use analogous perturbation quantities to

form the aerodynamic disturbances in the disturbance vector d.
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Figure 3: Modeling of blowfly flight physics. (A) We estimated the fly’s inertia tensor using synchrotron-
based X-ray microtomography: images show a 3D rendering and longitudinal/transverse slices of a male
blowfly. (B,C) We used high-speed videography to record the wing kinematics of free-flying blowflies over
a range of flight speeds, and used functional principal components analysis to define a set of control inputs
summarising the coupled variation in wing-twist (B) and tip (C) kinematics: phase portraits illustrate the
reference wing kinematics (black) +1 S.D. (cyan/magenta) in the first principal component (PC1). Note that
PC1 involves coupled changes in stroke plane, stroke amplitude, and wing twist, which we may conceptualize
as characterizing the result of the fly’s limit-cycle control of its wingbeat oscillation (39). (D) We used a
Reynolds-averaged Navier Stokes solver to model how the aerodynamics vary with the kinematics; this image
of the wing and wake shows vortex shedding at the end of the downstroke, visualized using iso-Q criterion
surfaces (Q = 0.001) colored by vorticity. (E) We estimated the fly’s stability and control derivatives by
regressing the wingbeat-averaged aerodynamic forces and moments on the perturbed states or control inputs
for a single wing; this plot shows the zero-intercept regression of the change in lateral force with respect to
the change in lateral velocity; control derivatives were estimated similarly by modeling the changes in the
aerodynamic forces with respect to each modeled control input. (F) Eigenstructure of the system matrix:
the eigenvalues of A are plotted in the complex plane, with labels denoting the dominant components of
self-motion for the associated eigenvectors; note that there is a pair of unstable modes with positive real

parts, indicating that the fly’s flight dynamics are inherently unstable.
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Reference wing kinematics. A blowfly’s wingbeat is a complex three-dimensional limit cycle
motion involving substantial aeroelastic deformation, driven by muscular forces applied at the
wing root through one of the most complex linkages in the natural world (40). To capture this
complexity, we used four high-speed video cameras to record the deforming wing kinematics of
N=28 individuals over 274 flights at 3,800 fps, and used a voxel carving method (417) to identify the
three-dimensional outline of the wings and estimate the pose of the body (Fig. 3B); see Methods.
We measured the angular position of the wing tips in a body-fixed coordinate system (Fig. 3C),
and estimated the torsional deformation of the wings under a linear twist distribution (Fig. 3B).
We then fitted a Fourier series with linear trend to each of the 2,708 wingbeats that we recorded
for either wing. We defined a set of reference wing kinematics for our aerodynamic modeling by
averaging the Fourier coefficients over three wingbeats representing near-equilibriun flight. These
three wingbeats were centered on the wingbeat that most nearly achieved level flight from within
the subset of wingbeats associated with near-zero body acceleration (< 0.5 m s72). For generality,
we set the reference wingbeat frequency (f, = 166 Hz), reference flight speed (u, = 0.85 m sh),
and reference body pitch angle (6, = 30°) to their mean values over all of the wingbeats we had

measured, and used these to model a reference condition of level forward flight.

Control input vector. Whereas the control inputs of an aircraft are known by design, and in-
clude simple mechanical quantities such as throttle settings and control surface deflection angles,
insect wings are passive structures that lack discrete control surfaces. This makes it challenging
to identify what inputs an insect’s control vector u should contain, but defining this in a biologi-
cally meaningful way is essential to any meaningful analysis of controllability. We therefore used
functional principal components analysis (42) to summarize the empirical variation in the Fourier
coeflicients describing each of the 2,708 wingbeats that we had measured. This analysis decom-
posed the observed aeroelastic variation in the wing kinematics into a set of principal components
(PCs) characterizing the dominant kinematic couplings (Fig. 3B-C; see Methods). The first four

PCs define an orthonormal basis for the control vector u that is sufficient to capture 61% of the
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measured variation in the Fourier coefficients. We assumed that the four PCs could be controlled
independently on each wing, and used them together with the wingbeat frequency f to define the 9
elements of the control vector u. It is an open question whether this approach is sufficient to describe
all of the important kinematic variation in blowfly flight control, but our use of these four PCs is a
pragmatic choice to ensure that the dimension of the resulting control input vector u is the same as
that of the state vector x, resulting in a fully-actuated, rather than under- or over-actuated, system.
Furthermore, in a qualitative sense, the first four PCs already capture the key kinematic control
inputs that are known to be important in insect flight control (43), including coupled changes in
stroke amplitude and stroke plane (Fig. 3C), and changes in the timing and extent of wing rotation

at or around stroke reversal (Fig. 3B).

Physical modeling of the state equation. We used synchrotron-based X-ray microtomography
(Fig. 3A) to estimate the inertia tensor of Calliphora for N=3 freshly-killed individuals, and used
a Reynolds-averaged Navier-Stokes (RANS) solver (Fig. 3D) to model the aerodynamic forces and
moments acting at the wing hinge under the reference kinematics. Because the flight dynamics model
is linearized about equilibrium, we adjusted the assumed body mass, body drag, and wing hinge
moment arm so that the aerodynamic forces and moments balanced the gravitational force when
integrated over the reference wingbeat kinematics. We then ran a computational experiment (44)
in which we simulated the aerodynamic effect of small perturbations to the insect’s motion state
in x. These perturbations are aerodynamically equivalent to the gust disturbances in d, so having
estimated the partial derivatives of the wingbeat-averaged aerodynamic forces and moments using
a zero-intercept regression model (Fig. 3E), we were able to parameterize the system matrix A and
disturbance matrix G. We parameterized the control matrix B in a similar manner for symmetric

versus asymmetric control inputs, thereby completing our modeling of the state equation (Eq. 1).
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Co-tuning of Physics & Physiology

Having fully parameterized our state-space model of blowfly flight (Eqgs. 1-2), it remains to iden-
tify the functional principle that underpins the physiological tuning of the LPTCs. We begin by
examining the natural dynamics of the physical system, as a prerequisite for the more advanced

control-theoretic analyses that follow.

Eigenstructure of the flight dynamics. The system matrix A has a similar eigenstructure (Fig. 3F)
to most other models of insect flight dynamics (/8), describing a characteristic set of symmetric
versus asymmetric, stable versus unstable, and oscillatory versus monotonic motions. We summarise
these by reporting the non-dimensional period (7") and/or time constant (%) of each mode expressed
relative to the insect’s wingbeat period. The symmetric modes are dominated by coupled pitch-
heave motions, comprising a pair of fast (¥ = 8.4) and slow (7 = 72.9) stable monotonic subsidence
modes, and a slow unstable oscillatory mode (' = 70.0; ¥ = 24.6). The asymmetric modes are
dominated by coupled roll-yaw motions, comprising a slow but heavily-damped oscillatory mode
(T = 48.1; # = 8.2), a fast stable monotonic subsidence mode (f = 2.6), and a fast unstable
monotonic divergence mode (7 = 10.7). The time constants of the unstable modes are large enough
that the instability they describe will develop on a timescale of tens of wingbeats in the absence of
closed-loop control. As the period of each oscillatory mode is also an order of magnitude longer
than the wingbeat period, these results validate our earlier assumption that the aerodynamic forces
and moments may be replaced by their wingbeat averages when modeling the rigid-body flight
dynamics (Eq. 1). Moreover, as blowfly flight is inherently unstable in respect of both symmetric
and asymmetric motions, it follows that the insect must use the output of its sensors to command
closed-loop flight stabilization. That being so, how has evolution tuned the visual physiology of the

blowfly in relation to its flight dynamics?

Formalization of the mode-sensing hypothesis. The tuning of the LPTCs is characterised by the

normalized row vectors of the bilateral output matrix C, each of which represents a specific direction
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of symmetric or asymmetric self-motion that the LPTCs are best-tuned to detect (5). The mode-
sensing hypothesis predicts that these physiologically-preferred directions of self-motion should
be matched to certain dynamically-significant directions of self-motion determined by the animal’s
flight dynamics (3). For the unstable system described by Eqs. 1-2, those dynamically-significant
directions are characterised by a set of real symmetric matrix structures called Gramians, which

are defined in the frequency (w) domain as:

1 o0
Observability Gramian: Yo =5- / (—jl =AD'CTCwI-A) M do  (3)
T J-—c0

1 o0
Controllability Gramian: X. =3 / (Gl —A) BB (—jwl - AN dw, (@)
T J-c

where I is the identity matrix (45). The disturbance-sensitivity Gramian X, is composed similar to
the controllability Gramian X, replacing B with G. These Gramians are evaluated as solutions to a
combined pair of Riccati and Lyapunov equations (see Supplementary Materials), but it is clear by
inspection of Eqgs. 3-4 that they relate to the interaction between the natural response of the system
described by the system matrix A, and either the output matrix C, the control matrix B, or the
disturbance matrix G. Each Gramian therefore relates to one of the distinct flows of signal energy
summarised by the red arrows in Fig. 1.

To explain their dynamical significance more formally, we note that the orthonormal eigen-
vectors {V;} and ordered eigenvalues {4;} of each Gramian define the principal axes of an n-
dimensional ellipsoid with semi-axis lengths \//l_j, the longest axes of which represent the most
dynamically-significant directions in the insect’s state space (46). For example, the eigenvectors
and eigenvalues of the controllability Gramian X, define the principal axes of the controllability
ellipsoid & = {x € R"; x X 'x < 1}. The dynamical significance of this structure can be seen by
noting that the controllability Gramian X, is defined (45) such that the quantity ||u0pt||2 = XOTXglxo
represents the minimum control input energy required to: (i) evolve the stable portion of the system
to a given state X = Xo; and (ii) regulate the unstable portion of the system to the origin x = 0.
It follows that the longest axes of the controllability ellipsoid &, encode the most-controllable

directions in the insect’s state space, representing those specific self-motions that can be produced
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with the least input energy ||u0pt||2 at the controls.

The observability and disturbance-sensitivity ellipsoids are constructed similarly, such that the
observability ellipsoid &, encodes the most-observable directions (i.e., those self-motions that
characteristically yield the most output energy at the sensors), and the disturbance-sensitivity
ellipsoid &; encodes the most-sensitive directions (i.e. those self-motions that can be excited with
the least input energy in a gust). These three ellipsoids thereby describe the specific self-motions that
the insect is best-able to drive (&), best-equipped to estimate (&, ), and most-prone to experience
(&4). Aligning the sensors to any of these sets of dynamically-significant directions would therefore
reflect a different optimization principle associated with signal energy flow through the system
(Fig. 1). Comparing these dynamically-significant directions with the preferred directions of the
LPTCs (Fig. 4B-D) allows a formal test of the mode-sensing hypothesis, and the identification
of any underlying optimality principle within the control-theoretic framework of observability,

controllability and disturbance-sensitivity (47).
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Figure 4: Functional principles of blowfly sensorimotor design. (A) Each LPTC pair carries separable in-
formation on symmetric versus asymmetric motion, which we illustrate by taking the sum (blue) or difference
(red) of their response fields, shown here for VS7. (B,C) These response fields encode the cells’ preferred
directions of rotational and translational self-motion, which the mode-sensing hypothesis predicts will be
aligned to dynamically-significant directions in the insect’s state space. To test this, we quantified their align-
ment to the ordered symmetric (blue) or asymmetric (red) eigenvectors of the controllability and observability
Gramians {vy, .. ., vg}, ranked by their dynamical significance. Collectively, the VS-cells strongly encode all
of the most-controllable directions of symmetric/asymmetric motion, whereas the HS-cells strongly encode
only the most-observable direction of symmetric motion. (D) Averaging over each LPTC sub-population, the
V- and VS-cells strongly encode the directions that maximize controllability or disturbance-sensitivity both
independently and jointly with observability; stars (x) denote statistical significance controlling the overall
Type I error at @ = 0.05. Note that no LPTC sub-population is aligned to the most-observable directions
of motion, as would be conventional in engineering design. (E) To assess overall system performance, we
computed three measures (the Hankel norm, the Frobenius-Hankel norm, and the Hankel Nuclear norm)
of the Hankel singular values {A1, ..., hg} characterizing signal energy flow through the system for all 19
LPTC pairs (red points) and compared these to the Hankel singular values of 100,000 randomly-generated
sets of preferred directions (blue box plot; whiskers extend + 2.7 S.D.). The blowfly’s Hankel singular values
are far higher than expected by chance, demonstrating that the LPTCs’ tuning maximizes signal energy flow
through the system. The first Hankel singular valuelrovides an upper bound on signal energy flow from

input to output, and is higher for the blowfly than for any of the randomly-generated systems.
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Directional tuning of the LPTCs. We quantified the alignment of the preferred directions of
the LPTCs to the dynamically-significant directions of self-motion by taking their absolute inner
products «;; = [{¢;, V;)|. However, as the inner product of any symmetric-asymmetric pairing is
identically zero, we use K;} to distinguish symmetric-symmetric or asymmetric-asymmetric pairings
for which K?j € [0, 1]. This analysis shows that the differenced responses of the three V-cells and
VS2-10 are very strongly aligned (K;‘j > 0.9) with the most-controllable direction of asymmetric
motion, whilst the differenced response of VSI1 is similarly strongly aligned with the second most-
controllable direction of asymmetric motion (Fig. 4B). Likewise, the summed responses of the
subset {V1, Vx, VS1-2, VS8-10} are strongly aligned (x; - 0.7) with the most-controllable
direction of symmetric motion (Fig. 4B). The same holds true for the disturbance-sensitivity
directions, but the summed and differenced responses of the vertical system cells are only weakly
aligned with the most-observable directions of symmetric and asymmetric motion (K;;. <0.5). In
contrast, the summed responses of the HS and H-cells are all strongly aligned (k;} 2 0.7) with the
most-observable direction of symmetric motion (Fig. 4C), with those of the subset {HSE, H1, H2,

Hx} being especially so (K;.kj > 0.9).

Overall tuning of LPTC sub-populations. To assess the tuning of each sub-population of LPTCs
to each set of dynamically-significant directions, we defined their weighted mean alignment (17) as:
2n v8
i j=1Kij \/Z
8 2
n i VA

which measures the extent to which the preferred direction vectors of an entire sub-population of

&)

LPTCs encode the longest axes of a given ellipsoid, and generalizes to the case where the preferred
directions of the LPTCs used to calculate the {«;;} are replaced with a mirrored set of randomized
direction vectors drawn from a uniform distribution on the unit sphere in R®. A Monte Carlo analysis
run over 100,000 such sets yields an expected weighted mean alignment of 7 = 0.42 under the null
hypothesis. Applying a Bonferroni correction to control the Type I error rate at @ = 0.05 (Fig. 4D),
we find that the VS-cells encode the most-controllable and most-sensitive directions much more

strongly than expected by chance (7 = 0.73 and n = 0.76, respectively; two-tailed p < .0025) and
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the most-observable directions more weakly (7 = 0.17; two-tailed p < .0025). The V-cells display
similar properties, also encoding the most-controllable and most-sensitive directions much more
strongly than expected by chance (7 = 0.75 and n = 0.80, respectively; two-tailed p < .0025). In
contrast, the HS-cells do not encode any set of dynamically-significant directions any more strongly
than expected by chance (7 < 0.42), and the H-cells encode the most-sensitive directions much
more weakly (7 = 0.07; two-tailed p < .0025). It follows that the VS- and V-cells are tuned to
encode the effects of control inputs and gust disturbances, whereas the H-cells are tuned to observe

characteristics of the optic flow field that are comparatively insensitive to disturbances.

Joint optimization of sensing & control. The properties of controllability, observability, and
disturbance-sensitivity relate to signal energy flow to or from the system state, so depend upon our
choice of coordinate system for the state vector x. That choice is meaningful for a technological
system whose internal state is represented explicitly in its programming, but is ambiguous for a
biological system whose internal state cannot be directly observed. This ambiguity is eliminated
by the alternative hypothesis that instead of being tuned to optimize any one such property in a
given state space, the preferred directions of the LPTCs are matched to the directions of self-motion
that jointly optimize controllability and observability, or disturbance-sensitivity and observability.
A system that implemented this principle would be globally optimal in the sense that it would
maximize the transfer of signal energy from input to output, and hence unique in the sense that
it would not depend on our choice of coordinate system for the state. For example, if evolution
has tuned the vertical system cells to detect the effects of control inputs, then we should expect
them to be strongly aligned to the joint most-controllable/observable directions. Conversely, if
evolution has tuned the horizontal system cells to observe characteristics of the optic flow field
that are robust to gust disturbances, then we should expect them to be weakly aligned to the joint
most-sensitive/observable directions.

The jointly-optimized directions of self-motion are given by the normalized column vectors

{t;} of the transformation matrix T~!, where X = Tx is a balancing transform that equalizes and
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simultaneously diagonalizes the transformed Gramians. Applying this balancing transform, which
is unique up to multiplication by a sign matrix, we have either X, = Y, or X; = Y,, where
Y, = (T"HTY,T"! is a diagonal matrix. The diagonal entries of this matrix are the system’s
Hankel singular values, which may be calculated directly as i; = \/Z where {4} are the ordered
eigenvalues of Y,X, or Y,X,. The Hankel singular values are similarity invariants that do not
depend on the choice of coordinate system for x, and they measure the degree of joint observability
and controllability or disturbance-sensitivity in the directions {t ;}in the original coordinate system.
Importantly, whilst the eigenvectors of the balanced Gramians in the new coordinates are orthogonal,
the directions that they define in the original state space are not.

To assess the overall tuning of the LPTCs to these jointly-optimized directions, we calculated
their absolute inner products as ;; = [(€;, t )1, reporting their weighted mean 7 using the Hankel
singular values h; = \/Z as the weights in Eq. 5. This analysis (Fig. 4D; see also Fig. 5A,B)
confirms that the VS and V-cells encode the most-controllable/observable (7 > 0.75) and most-
sensitive/observable directions (7 > 0.74) much more strongly than expected by chance (two-tailed
p < .0025). The VS- and V-cells thereby embed the principle of encoding the directions in state
space for which signal energy flow through the system is maximized. In other words, they are tuned
to sense those modes of motion whose excitation yields the greatest sensor output for a given input
of energy at the controls or in a gust. In contrast, the H-cells encode the most-sensitive/observable
directions much more weakly than expected by chance (7 = 0.13; two-tailed p < .0025). In other
words, they are tuned to be insensitive to those modes of motion that are most readily excited by

aerodynamic disturbances.

A functional principle of visuomotor tuning. The preceding analyses compare the randomly-
generated directions or preferred directions of the LPTCs against the biological ground truth of
the parameterized state space model (Eqs. 1-2). This approach enables us to draw conclusions on
the directional tuning of the individual LPTCs, but risks circular reasoning because their preferred

directions also define the output matrix C that is used to generate the observability Gramian Y,
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(Eq. 3). This circularity can be avoided altogether by composing a semi-random observability
Gramian Y, from the original system matrix A and a random output matrix C formed by generating
19 random direction vectors, mirroring these to yield 19 mirror-symmetric pairs, and taking their
sums and differences to yield a bilateral output matrix with 38 rows. We then use Y, to compute
the randomized Hankel singular values as & j= \/Z , where the {4} are the ordered eigenvalues of
Y, X, or Y, X,.

Fig. 4E shows three measures of the Hankel singular values associated with the fly’s joint
controllability/observability directions fall at the upper extreme of the null distribution of 100,000
randomly-generated sets. The first measure is the Hankel norm for the open loop system, or the
largest Hankel singular value /. The second is the Hankel-Frobenius norm, ,/>; hl.z, and the third
is the Hankel Nuclear norm, »}; ;. This confirms our conclusion that the preferred directions of the
blowfly motion vision system are specifically adapted to maximize the flow of signal energy from
control inputs to sensor outputs, where signal energy is defined for an arbitrary vector signal w(t)

as

signalenergy: WOl o = [ IWOIE ©)

and || - || is the Euclidean vector norm. Moreover, the first Hankel singular value provides an upper
bound on signal energy flow from input to output, and is higher for the biological ground truth
than for any of the randomly-generated systems in Fig. 4E. Similar conclusions hold for the fly’s
joint disturbance-sensitivity/observability directions, and hence for the flow of signal energy from
gust disturbances to sensor outputs (Fig. S4B,D). Finally, as the neck motor neurons that drive
optokinetic head movements display similar response properties to the VS and HS cells (33), we
infer that the same principle of maximizing signal energy transfer is also likely to apply at the level

of the neck motor system driving any compensatory head movements.

Robustness of conclusions. To avoid making any assumptions on how the LPTC outputs are
combined, we verified that the same conclusions hold when the Hankel singular values are calculated

for the unilateral output matrix C” as opposed to the bilateral output matrix C (Fig. S4). We also tested
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how the assumed nearness distribution of the visual environment influences the fly’s Hankel singular
values, by synthesizing 100 perturbed output matrices and observability Gramians with respect to
two different environmental configurations: a cuboid environment generated by perturbing the 2 m
cube used in the analyses above, and a segmented ellipsoid environment generated by perturbing
a sphere of equal nominal volume (Fig. S3A,C). The parameters defining each configuration were
selected at random from a uniform distribution with 50% variation from their nominal values to
generate variability and asymmetry in the assumed visual environment. The resulting distributions
of perturbed Hankel singular values again remain at the extreme upper end of the null distribution
(Fig. S3B.,D). We conclude that the directional tuning of the LPTCs maximizes signal energy
transfer between the inputs and outputs of the system, as opposed to maximizing conventional

design criteria such as the accuracy of state estimation.

Discussion

How does the LPTCs’ tuning embed the functional principle of maximizing signal energy transfer
from input to output? As we have shown (Fig. 4), the vertical system LPTCs are strongly aligned to
the insect’s most-controllable/observable directions of self-motion. But more than this, their align-
ment is high for all 8 of the joint controllability/observability directions — not just those which
are the most controllable/observable (Fig. SA,B). Specifically, every one of the joint controllabil-
ity/observability directions is strongly aligned (sz > 0.75) with at least one VS-cell and at least one
V-cell (Fig. 5A,B), and the same result holds true for the joint disturbance-sensitivity/observability
directions. In contrast, the horizontal system cells encode the joint controllability/observability
directions much less strongly (Fig. 4D), effectively encoding a region of state space that is of lesser
dynamical significance to the insect, and which is likely to be of greater significance in guidance

and navigation tasks.
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Figure 5: Tuning of the vertical system LPTCs to the fly’s jointly controllable/observable directions
of self-motion. (A,B) Signal energy flow is maximized when a system’s sensors are matched to its most-
controllable/observable directions of self-motion. To demonstrate the closeness of this tuning in the blowfly,
we first quantified the alignment of the preferred directions of the LPTCs to the ordered symmetric (blue) or
asymmetric (red) column vectors {ti, ..., tg} of the inverse balancing transformation matrix. These vectors
span the entire controllable/observable subspace of the insect, and the bilaterally summed and differenced
response fields of the VS- and V-cell pairs are shown to be strongly aligned with them all. (C-E) To
demonstrate this visually, we also computed the re-projected optic flow fields corresponding to: (C) the
top three most controllable/observable directions of symmetric (blue) or asymmetric (red) self-motion; and
(D) the preferred directions of symmetric (blue) or asymmetric (red) self-motion for the three V-cell pairs.
Note the closeness of the match. (E) The summed and differenced response fields of the V-cell pairs also
resemble the re-projected optic flow fields corresponding to the joint most-controllable/observable directions
of motion, but do so less closely owing to spatial variation in the cells’ local motion sensitivity, which is

expected to embed a nearness distribution corresponding to a natural environment (/6).
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How is this combination of breadth and specificity possible? In principle, the 10 pairs of
VS-cells have sufficient redundancy to encode any set of 8 directions strongly, but the same
cannot be said of the 3 pairs of V-cells. The strength of the V-cells’ alignment to all of the joint
controllability/observability directions instead reflects the fact that these 8 directions are highly
non-orthogonal, describing a narrow region of the insect’s state space that is dominated by the
same rotational motions as dominate the VS- and V-cell responses (Fig. 2B-E). Specifically, the
natural modes of motion of a blowfly (Fig. 3F) are dominated by pitch-heave and roll-yaw dynamics
(Table S6), which are the same self-motions that the vertical system LPTCs are tuned to sense.
This is the region of state space that is of the greatest dynamical significance to the insect, and the
hidden layer of V-cells embeds it in its entirety (Fig. 5B).

The strength of this embedding can be visualised by comparing the summed and differenced
response fields of the V-cells (Fig. SE) to the optic flow fields corresponding to their preferred
directions of self-motion (Fig. 5D) and to the optic flow fields corresponding to the top three
most-controllable/observable directions for the insect (Fig. 5C). The closeness of the match is
striking, and this together with the broader correspondence between the vertical system LPTCs and
the joint controllability/observability and disturbance-sensitivity/observability directions makes the
VS- and V-cells well-suited to modulating flight stabilization/control. In contrast, the horizontal
system LPTC responses are dominated by forward motion and yaw-sideslip. With the exception of
yaw, these motions are of lesser dynamical significance, but they include the equilibrium forward-
flight condition about which the dynamics are linearized. It follows that the horizontal system cells
are better suited to encoding steady-state properties of the insect’s self-motion associated with its
navigational state and guidance behaviors, which are also the directions of self-motion that are most
robust to disturbance.

What are the functional benefits of structuring a system in this way? Intuitively, it makes sense
to optimize a system’s sensors in relation to the endogenous inputs and exogenous disturbances
that excite its motion, but how does this work in the context of closed-loop control? The transfer of

signal energy from input to output is maximized by optimizing the storage and retrieval of signal
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energy to and from the system state. For an open-loop system, signal energy stored in the state
X is released through the evolution of the natural modes of the system matrix A, which may be
shaped arbitrarily through closed-loop control. Applying the principle of maximizing the Hankel
singular values by tuning the sensing directions in C to the actuation directions of B through the
natural modes of A balances the open-loop system so that it is optimized for maximum achievable
closed-loop performance. This approach of tuning an open-loop system to maximize potential
closed-loop performance, independent of the feedback architecture, is well documented and has
significant precedent in the sensor placement and selection literature (48).

The evolutionary principle that we have identified of maximizing signal energy transfer from
motor input to sensor output represents a radical departure from the design of current technological
systems. In conventional engineering practice, sensor placement is usually optimized at a late
stage of platform design, and typically aims to maximize the accuracy of state estimation. This
is achieved by maximizing the signal-to-noise ratio at the sensors, which means placing them
to optimize observability (23, 49). Tuning the LPTC response fields in this manner would yield
sensor outputs with the best possible signal-to-noise ratio, but if the system was rarely excited in
those directions by its own actions or by disturbances, then it would not be energetically efficient
to encode them. In contrast, natural selection tends to produce neural architectures that prioritize
energetic and hence computational efficiency (50), so it is reasonable to suppose that the principle
of maximizing signal energy throughput might also extend to the sensorimotor systems of other
organisms.

As the field of robotics transitions from platforms with sensorimotor architectures composed
of small numbers of discrete sensors and actuators to architectures with continuum sensing and ac-
tuation, new design principles will be required. In order to achieve optimal performance, synthesis
approaches that simultaneously consider the specification of sensors, actuators, and platform dy-
namics will be critical. Embodied design principles that have produced nature’s most effective and
agile organisms (57), like the joint maximization of signal energy storage/retrieval uncovered here,

have the potential to revolutionize the early stage design process and maximize the performance of
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future engineering systems. Such bio-informed design principles will prove especially relevant in
applications that—Iike living organisms—are resource-constrained by computational capacity and

power or energy density.

Materials and Methods

Electrophysiological characterisation of LPTC response fields

Animals and dissection method. Adult male and female blowflies (Calliphora vicina) were
taken from a laboratory colony at Imperial College London where they were kept on a 12:12 hour
light:dark cycle. Flies were dissected following a standardized procedure (52): after removing the
legs, proboscis, and wings, the resulting wounds were sealed with beeswax before fixing the animal
to a dedicated holder, with the thorax tilted 45° down relative to the head. The rear head capsule
was opened using a micro-scalpel, and fat tissue, air sacs, and some tracheae were removed to
enable placement of extracellular electrodes in the lobula plate. Saline solution (53) was added to
keep the neural tissue moist. The centre of the head was positioned at the centre of a goniometric
visual stimulation device, and aligned using the symmetrical deep pseudo-pupil method (54) at a

precision of +1° in head roll, pitch and yaw.

Animals and dissection method. Adult male and female blowflies (Calliphora vicina) were
taken from a laboratory colony at Imperial College London where they were kept on a 12:12 hour
light:dark cycle. Flies were dissected following a standardized procedure (52): after removing the
legs, proboscis, and wings, the resulting wounds were sealed with beeswax before fixing the animal
to a dedicated holder, with the thorax tilted 45° down relative to the head. The rear head capsule
was opened using a micro-scalpel, and fat tissue, air sacs, and some tracheae were removed to
enable placement of extracellular electrodes in the lobula plate. Saline solution (53) was added to
keep the neural tissue moist. The centre of the head was positioned at the centre of a goniometric

visual stimulation device, and aligned using the symmetrical deep pseudo-pupil method (54) at a
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precision of +1° in head roll, pitch and yaw.

Extracellular recording and visual stimulation method. We used extracellular tungsten elec-
trodes with 3 MQ impedance (FHC Inc., Bowdoin, ME, USA; product code: UEWSHGSE3N1M)
to record the neural activity of the V1, V2, and Vx heterolateral LPTCs. The electrodes were
placed within different target areas depending on the recorded cell type using the tracheal branch-
ing patterns of the lobula plate as landmarks. Neuronal signals were amplified using a custom-built
differential amplifier with a nominal gain of 10k, sampled and digitized at 20 kHz using a NI-
DAQ board (USB-6211), and stored on the hard drive of a PC. Response fields were characterized
only when the signal-to-noise ratio between recorded LPTC spikes and background noise was
greater than 2:1, in which case a simple threshold-based method was sufficient to reliably detect
time-stamped spikes of the recorded cell.

We used a custom-built automated goniometric recording platform to present a moving visual
stimulus at any specified azimuth (y) and elevation (8) in the fly’s retinal coordinates. An LCD
monitor (AOC AGON AG251FZ) was placed 0.3 m in front of the animal, running at a refresh rate
of 240 Hz. We presented square-wave visual gratings (minimum, maximum intensity: 0.28, 265.70
cd m~2; Michelson contrast: 0.9979) moving perpendicular to their orientation typically at 1 or
3 Hz temporal frequency behind a circular aperture subtending 24°. Experiments where different
temporal frequencies between 0.3 - 3 Hz were applied did not affect the self-motion preferences of
the cells. To assess a cell’s local preferred direction (LPD) and local motion sensitivity (LMS), the
grating was moved in 8 different directions at a spacing of 45°. Each motion stimulus was presented
for 1 s, followed by a brief period of 0.5 s during which a homogeneous screen was presented at the
mean luminance level. In total, the motion stimulus was presented at 84 positions over both eyes,

covering nearly the entire 47 visual field.

Local preferred directions and local motion sensitivities. At any given stimulus position we
calculated the vector sum from the responses to the 8 different stimulus directions. Magnitude

and direction of the resulting vector were taken to indicate the LMS and LPD, respectively. Those
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response parameters were plotted as a function of azimuth () and elevation (f) in a cylindrical
projection of the fly’s spherical visual field to reveal the recorded cell’s global response field
properties (Fig. 2B-E). Within each response field, all vectors were normalized to the maximum
response measured. To facilitate recognition of the global response field organization, the measured
data in Fig. 2B-E (black vectors) are complemented by interpolated data (colored vectors). The data
collected using this method are in line with those previously gathered using a local stimulus that
changed its motion direction continuously (33, 52, 53). Although we presented the motion stimulus
at 84 positions over both eyes, the response fields plotted for the heterolateral LPTCs in Fig. 2C-E
show only the data obtained upon visual stimulation within the visual hemisphere that results in
the highest motion sensitivity (i.e., strongest directional-selective response), which is typically the

visual hemisphere ipsilateral to the dendritic input region of the recorded cell.

modeling of LPTC response properties

Preferred self-motion parameters. We estimated each cell’s preferred self-motion parameters
using an iterative least squares algorithm (KvD) proposed by Koenderink and van Doorn (55).
The KvD algorithm is applied to retrieve the angular velocity w, translational velocity v, and the
local distance distribution d of self-motion that induces an optic flow field that best fits the global
response field organization of the studied cell. Hence, if we consider a given LPTC to act as a
matched-filter for optic flow (/6), the KvD algorithm enables us to estimate which self-motion
components of a moving fly would most strongly stimulate the cell. We applied a slightly modified
version of the KvD algorithm in which we assumed a homogeneous distance distribution to obtain
the preferred rotation axes of the V1, V2, and Vx-cells (Fig. 2G); the preferred rotation axes of the
VS-cells (Fig. 2F) were computed using a similar method by (26). There were no significant sex
differences in the preferred rotation axes of the three heterolateral LPTCs, and we therefore pooled

the response field data across sexes.
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Encoding of motion state by the LPTCs. The matched filter hypothesis proposed in (/6) suggests
that each LPTC’s output can be considered as a comparison between the cell’s response field and
the optic flow fields generated during the animal’s self-motion, where each cell is tuned to sense a
specific flow field and hence some specific combination of rotational and translational self-motion.
Mathematically, this comparison can be modeled as an inner product on a discrete (16, 56, 57) or
continuous (58—60) spatial domain. Here we define a spatial inner product between the instantaneous

pattern of optic flow Qanda given tangential cell’s response field F; as:

yi:(Q,Fi):/Q-FidQ, i=1,...,m, (7)
SZ

where m is the number of LPTC response fields under consideration.

The optic flow pattern Q is the vector field of the relative velocity of visual contrast from objects
in the environment projected into the tangent space TS of the imaging surface (Fig. SIA). Its
global structure depends primarily on the observer’s rotational velocity w and translational velocity
v. The translational contribution at each viewing direction r = (y, 8) is inversely scaled by the
distance d(y, ) from the imaging surface to the nearest object in the environment (Fig. S1B).
Since d can be unbounded, the nearness function u(y, 8) = 1/d(y,8) is commonly used in the
formulation. The instantaneous optic flow pattern Q on a spherical imaging surface S for an

arbitrary distribution of objects can be expressed as (55):

Q=-wxr—ul[v-{v,r)r]. (&)

In order to formulate the optic flow pattern in closed form for the calculation of the spatial inner
product (Q, F;), the shape of the nearness function and its dependence on the relative pose variables
q = {x,y,2, @5, 05, ¥} of the animal needs to be specified. Here {x, y, z} are the coordinates of
the vantage point with respect to the inertial frame & = {27, ,,2r} and {y, 05, ¢} are the
3-2-1 Euler angles of the stability frame S relative to the inertial frame 7. For the analysis here,
two classes of environment structure were considered, which included an enclosed rectangular
prism and a segmented ellipsoid (Fig. S4). For each of these cases, the nearness u(y, 3, q) is a

piecewise-continuous function and the methodology for their derivation can be found in (60).
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Formulation of the output matrix. For a given set of unilateral response fields {F;}, the col-
lection of LPTC outputs form a nonlinear output equation y = h(x). To characterize the rigid
body state information encoded by the selected set of measured response fields, each output is

linearized about the reference flight equilibrium X. The resulting matrix entries in the unilateral

90
;<%,-’ F’>

In this form, each row of the associated C’ matrix represents the state information present in the

output equation y = C’x (Eq. 2) are given by

,  Ohi|  0(Q,F;)
Cl.. = — = -
(9xj axj

€))

% %
signal from a specific LPTC response field: that is, the direction it encodes in state space.

To develop the output matrix for the measured set of 19 left and right LPTC cell response
fields, the raw data was first converted into stability frame coordinates according to the axis
definitions of Fig. S2A. Note that (y, 8) = (0°,90°) in the plotted response fields (Fig. 2B-E, 4A)
corresponds to the ray line along the X axis in Fig. S1B. The recorded LPD and LMS distributions
within the response fields were smoothed with a 2D Gaussian filter and then approximated with
up to 8th degree spherical harmonics in the azimuth and elevation directions to facilitate an
accurate numerical spatial integration. For our baseline calculation, an enclosed rectangular prism
environment (Fig. S4A) was assumed with scaling parameters (gy, gs, @, aw, hp, hy) all set to a
distance of 1 m, and as before the reference flight condition was set to the mean forward flight speed
of g = 0.8509 m s! that we had measured (see below), such that X = [u; wy g 05 Vs ps b5 1s] =
[0.8509 0 0 0 0 0 0 0]7 in the stability axes. The corresponding patterns of partial derivatives of
the optic flow dQ/dx; were computed by systematically perturbing each of the rigid body states
and taking finite differences.

The results were used to compute the inner products numerically, resulting in the estimated
response field state encoding shown in Table S7. To perform the subsequent analysis, we extract
the entries according to the rigid body state vector from the flight dynamics model formulation,
X = [Oug Sws gy 60, 5vs Sps 0 rg]T. The states {0x,, 8y, 025, O } typically are not included
in the linearized dynamics since a homogeneous atmosphere assumption is employed. In the

resulting matrix C; = consecutive odd and even indices {i = 1,...,38} correspond to the left and
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right cells of an LPTC pair. Finally, because the flight dynamics model (Eq. 1) splits into symmetric
and asymmetric parts, we form the 38 normalized rows ¢; of the bilateral output matrix C (Eq. 2) by
summing or differencing the responses of the k = 1, . . ., 19 mirror-symmetric pairs of LPTCs such

that & = (¢}, +¢},_)/lIe}, +¢,_lland & = (¢}, — ¢}, _,)/llc), — €}, _, || as shown in Fig. 4A.

Re-projected optic flow fields. Any given direction of self-motion will produce a specific op-

tic flow field in a given visual environment. We re-projected the optic flow fields Qéi(y, B)

A

and in (v, B) corresponding the specific self-motion directions x = ¢; or X = t; in state space

T

(Fig. 5C-E) by substituting the expressions of the vectors w = [p ¢ r]*, v = [u v w]7, and

r = [cosysinf sinysinB cosp]” in the stability frame S, along with an analytical expression
for the nearness of the environment u(y, 8, q) into the representation for Q above. The resulting

azimuth y and elevation 3 components (Fig. S1) of Q are given by

Oy

pcosBcosy+qgcosBsiny —rsinfS+ u(usiny —vcosy)

Qﬁ = psiny —gcosy+ u(—ucosBcosy —vcosfBsiny +wsinf), (10)

as plotted in Fig. 5C-E.

Measurement and modeling of free-flight kinematics

Animals and experimental protocol. Larval C. vicina were reared on red meat at 20°C until
pupation; the adult flies were fed on a combination of milk powder formula and mashed banana,
and were flown from 2-3 days post-eclosion. Individuals were allowed to fly freely within a 1
m diameter opaque acrylic sphere with diffuse overhead lighting. The interior of the sphere was
decorated with pieces of card to provide visual contrast, and an ultraviolet light was placed at
the top to stimulate loitering flight maneuvers. High-speed video sequences were captured using
four synchronized Photron SA3 cameras (Photron Ltd, West Wycombe, UK) with 180 mm macro
lenses (Sigma Imaging Ltd, Welwyn Garden City, UK) viewing the insect through clear portholes

in the upper hemisphere, recording at 3,800 fps and 768x640 pixels. Backlighting was provided by
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four infrared LED lights (Dragon1IR PowerStars LED, Intelligent LED Solutions, Thatcham, UK)
operating at wavelengths well beyond the visible spectrum of the insect (6/) (centroid wavelength:
850 nm; spectral bandwidth at 50% intensity: 30 nm full width at half maximum). Recordings were
triggered as the insect passed through the centre of the sphere, capturing forward flight punctuated
by fast saccadic maneuvers. In total, we recorded N = 2,708 wingbeats from 205 maneuvering
flights made by 28 individual blowflies, involving a broad range of wing kinematics including

symmetric and asymmetric variation in stroke amplitude, stroke plane angle, and wing twist.

Kinematic reconstruction. The cameras were calibrated using a nonlinear least squares bundle
adjustment routine (62) in MatLAB (The Mathworks, Inc., Natick, MA), using images of a calibra-
tion grid presented in a wide range of positions and orientations. For the main analysis, we used
background subtraction and automatic thresholding to segment the pixels, and used a shape-carving
method to identify the set of voxels containing the wings and body (47). We reprojected the wing
voxels as a mask for tracing the outline of the wing in each frame, and used the shape-carving
algorithm on this linear feature to reconstruct the leading and trailing edges in three dimensions.
We used the major axis of the body voxels to define the insect’s x-axis, and the line connecting
the wing roots to define the insect’s transverse y-axis. We constructed a right-handed body axis
system in which to measure the kinematics of the right wing, and a left-handed body axis system
in which to measure the kinematics of the left wing. These were measured by defining an extrinsic
y-x-z rotation sequence bringing the x-axis of a set of rotating axes initially aligned with the body
axes into alignment with the wing chord connecting the trailing edge to the leading edge at some
given spanwise position (r). The local pitch angle of the wing (w), is defined as the first angle
in this rotation sequence, and was measured at 6 evenly-spaced spanwise stations on the interval
r € [0.3,0.8], where r is expressed as a proportion of wing length. We summarised the instan-
taneous spanwise variation in w by fitting the regression model w[r] = wo + w,r + €[r], where
€[r] is a Gaussian error term. We call wy the twist offset, and w, the twist gradient. The deviation

angle 6,, and stroke angle ¢,, represent the second and third angles in the extrinsic y-x-z rotation
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sequence, and describe the elevation and azimuth of the wingtip in a set of body axes originating at
the wing root. It follows that the insect’s wing kinematics are measured by estimating ¢,, ], 6,,[?],

wo[t], w,[t] for the right and left wings separately at every sample time z.

Fourier series representations of wing kinematics. For each flight sequence, we fitted quintic
smoothing splines modeling ¢,,[¢], 6, (], wo[?], and w, [¢] for each wing as analytical functions
of continuous time 7. The spline tolerance that we used for each kinematic variable was chosen to
preserve information up to the 3" harmonic of wingbeat frequency for ¢,, and 6,,, and up to the 5™
harmonic for wg and w,. We then used a piecewise linear transform to map continuous time ¢ onto
wingbeat phase ¢(7), by taking the turning point of the summed angular velocity of both wingtips
in the stroke plane to define ¢ = 0 as the start of the downstroke. Finally, we evaluated the splines at
101 evenly-spaced phases of each wingbeat on the interval ¢ € [0, 2x], so that all wingbeats were
directly comparable despite variability in the wingbeat period. Fitting each wingbeat separately, we
used multiple regression with time-linear and time-periodic predictor variables to model the four
primary kinematic variables ¢, [¢], 6, [¢], wo[¢], and w,[¢] as de-trended Fourier series of the

form:
P

hlg) = K(p— ) + Ko+ ) (Ko-1 cos(ke) + Ko sin(ke)) + €[¢], (11)
k=1

where €[¢] is a Gaussian error term, and where K; and Ky ... K,p are fitted coeflicients. The
time-linear coefficient K; accounts for the fact that any actual wingbeat cycle is unlikely to begin
and end in exactly the same kinematic state, and multiplies (¢ — 7) rather than ¢ so that this term
has zero mean over the wingbeat cycle. The Fourier coefficients Ky . .. Kpp are fitted with P = 3
for ¢,, and 6,,, and with P = 5 for wg and w,, to capture all of the harmonic content preserved by

the quintic smoothing splines.

Functional principal components analysis . Collecting the Fourier coefficients for a single
wingbeat together as K% = [Kg v .Kg‘;’] for the stroke angle ¢,,, and similarly for the other

primary kinematic variables, we may summarise the time-periodic variation for all N wingbeat
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pairs in the matrix:
(K& K% K@ K@
Zp=| : : L. (12)
WK oyKO pyK@r oK
We used functional principal components analysis to decompose this matrix into a new set of time-
periodic basis functions characterising the key kinematic couplings available for flight control. This

was implemented by subtracting the column means from the matrix of Fourier coefficients Zp to

yield the centered matrix Z = Zp — Zp, and computing its singular value decomposition:
Z=UzV’, (13)

where X is a diagonal matrix containing the singular values of Z, which are the positive square roots
of the eigenvalues of Z7 Z arranged in descending order. The columns of V contain the right-singular
vectors of Z, which are the eigenvectors of 777, normalized such that V'V = I. Because Z'Z is a
scalar multiple of the covariance matrix of Z, the orthonormal basis V that its eigenvectors define
is aligned with the principal directions of the kinematic variation between wingbeats. Because each
row of the principal component (PC) matrix V corresponds to one of the Fourier coefficients, each
of its columns defines a distinct time-periodic kinematic coupling, which we refer to as PC1, PC2,

etc.

Aerodynamic modeling of stability and control derivatives

Computational fluid dynamics modeling. We performed three-dimensional Reynolds-averaged
Navier-Stokes (RANS) simulations of the aerodynamics of the right wing of Calliphora using
the OVERTURNS solver (63, 64). We simulated a reference condition of level symmetric forward
flight with a freestream velocity of U, = 0.8509 m s™! and a wingbeat frequency of f = 166.188
Hz, corresponding to the mean values measured for these variables over the 2,708 wingbeats
whose kinematics we had recorded (see above). We used a mean body pitch angle 6, = 30.365°,
and defined a set of reference wing kinematics by taking the mean of Zp over three consecutive

wingbeats centered on the wingbeat most nearly achieving level flight among the subset of wingbeats
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for which the body acceleration was near-zero (< 0.5 m s2). We assumed a pure laminar boundary
layer based on the measured mean chord length of 2.7 mm and chord Reynolds number of 1,746.
We used 720 time steps per wingbeat cycle with 12 sub-iterations, which allowed us to capture the
unsteady flow characteristics with reasonable computational time. Tables S2 and S3 summarize
the simulation parameters and input setup. The dimensions of the structured wing mesh were 195
(chordwise), 201 (spanwise), and 76 (wall-normal), and the initial wall normal spacing was 1 X 1073

mean chord. Combined with the background mesh, this gave a total of 1.12 x 10’ node points.

Computational experiments. We perturbed the reference kinematics to simulate the aerody-
namic effect of control inputs and small perturbations to the motion state of the body. We used the
three components of translational velocity {u, v, w} and angular velocity {p, g, r} referred to the
body axes B as the perturbed states, and used the wingbeat frequency f together with principal
components PC1-4 of the time-periodic wingbeat kinematics as control perturbations. Among the
six perturbed states variables {u, v, w, p, g, r}, the perturbation level was set at +10% and +20% of
freestream velocity U, for the three flight velocities {u, v, w}, and at +2.5% and +5% of wingbeat
frequency f for the three angular rates {p, ¢, r}. Among the five control variables, we perturbed
PC1-4 by +£0.5 and +1.0 standard deviations, and perturbed the wingbeat frequency f by +1.5%
and +3%, corresponding to +2.5 and +5.0 Hz respectively. We computed the three components
of aerodynamic force {X,Y, Z} and moment {L, M, N} referred to the body axes B (Fig. S2A).
The time-averaged forces and moments had already converged reasonably by the start of the 3rd
wingbeat cycle, so we obtained their wingbeat-averaged values by taking the mean of the forces

and moments over the 3rd and 4th wingbeat cycles of each simulation.

Aerodynamic derivatives. In order to estimate the stability and control derivatives for our lin-
earized flight dynamics model, we first subtracted the total aerodynamic forces and moments in each
perturbed condition from those obtained in the reference flight condition, then fitted a zero-intercept
linear regression through the origin to estimate the corresponding partial derivative of the aerody-

namic forces and moments (Fig. 3B; Fig. S2D-E). The resulting aerodynamic derivatives are defined
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for the right wing using forces and moments resolved at the right wing hinge, and were mirrored
to model the aerodynamic forces and moments on the left wing under the equivalent kinematics.
The results for the left and right wings were then combined to estimate the stability derivatives
(Table S4) and control derivatives (Table S5) resolved at the centre of mass, in a model enforcing
equilibrium under the reference wing kinematics (see Supplementary Information for details). We
used the unilateral control inputs to form sets of symmetric control inputs {ug, uy, us, u3, us} and
asymmetric control inputs {u}, u),, u, u, } through symmetric changes in wingbeat frequency f and

symmetric or asymmetric application of perturbations in PC1-4.

Microtomographic estimation of inertia tensor

Animals and tomographic method. Two male and one female C. vicina from the Imperial
College London colony were sealed in 0.5 mL Eppendorf tubes, having been fed and watered to
satiation and then weighed. The tubes were placed individually in the TOMCAT beamline of the
Swiss Light Source synchrotron facility and were irradiated at 12 keV beam energy until the flies
were dead and no further motion artefacts occurred. A 100 um thick, Ce-doped LuAG scintillator
was placed at a distance of 272 mm behind the sample to convert the transmitted X-rays into
visible light. The resulting image was magnified 2-fold using an Edge 5.5 Microscope, and 1501
projection images were collected at 60 ms exposure time whilst the sample was rotated through
180°. To image the entirety of each fly, it was necessary to image three overlapping volumes in this
way. Phase retrieval was performed using the Paganin algorithm (65), setting the real and imaginary
parts of the deviation from one of the complex refractive index of the material to 1 x 10~ and
1 x 107 respectively. Tomographic reconstruction was performed using a Fourier transform-based

algorithm, resulting in voxels with an isotropic spacing of 3.25 ym.

Estimation of inertia tensor. We segmented the tomograms automatically, using thresholding
and morphological operations to mask voxels corresponding to the cross-section of the Eppendorf

tube and any exterior voxels. The tomograms were then combined into one continuous stack across

37


https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.29.587347; this version posted August 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

the three samples for each specimen, using unique cross-sectional features such as hairs to align the
image stacks manually along their common longitudinal axis. The complete image stack was loaded
into Fiji (66), and the BoneJ plugin (67) was used to calculate the mass moments of inertia about
the principal axes of the specimen, assuming a uniform density of 1.1 g cm™3 appropriate to insect
cuticle and muscle. The mass (m) estimates arrived at using this method (Table S1) were identical
to the weights taken at the start of the experiment to within the 0.01 g readability of the balance.
Because the moments of inertia about the first and second principal axes were identical to within
+1% (Table S1), we set I, = I for the purposes of the flight dynamics modeling, and set I, equal to
the moment of inertia about the third principal axis. Assuming isometry, we non-dimensionalized
the moments of inertia by dividing through by m>/3, then rescaled these using the value of m

assumed in the flight dynamics model.
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Supplementary materials

Flight dynamics modeling

As outlined in the main text, we have parameterized a linear time-invariant (LTI) flight dynamics

model:
[X]g(t) = Ag[x]s(t) +Bgu(?) + Gg[d]g(1), (14)

where the state vector [X]g = [du dw dq 66 6v 6p d¢ 6r]” is sufficient to describe the 6-DoF rigid
body motions of the insect insofar as these motions influence the wingbeat-averaged aerodynamic
forces {X, Y, Z} and moments {L, M, N} resolved in the principal axes of the body B = {X5,,,2s}
as described in Fig. S2A. Here, ¢ denotes a small perturbation from equilibrium, where {u, v, w}
are the components of translational velocity along the principal axes of the body, where {p, g, r}
are the components of angular velocity about these body axes, and where {6, ¢} are the pitch and
bank angles of the insect. These Euler angles are defined as the second and third rotations in an
intrinsic 3-2-1 rotation sequence bringing the body axes to their final orientation, starting from an
initial configuration in which the z-axis is vertical. Note that the first Euler angle describing the
azimuth ¢ about the body z-axis is not included in the system state, because it has no influence on
the flight physics.

The linearization of the equations of motion for a rigid flying body using small perturbation
theory is dealt with in most flight dynamics texts, so is not repeated here. In brief, we modeled the
insect as a symmetric rigid body subject to wingbeat-averaged aerodynamic forces and moments.
These are described as linear functions of the motion state variables {u, v, w, p, ¢, r} and longitudi-

’ ’

u’, u',]" for small

nal and lateral control input variables wone = [1o u1 u2 u3 ug]” and wpy = [u/ 5 Uy

()
perturbations from a symmetric rectilinear equilibrium flight condition. See (/7, 18, 68) for discus-
sion of this approach in the context of insect flight dynamics, including the wingbeat-averaging of
the aerodynamic forces and moments, which is an approach borrowed from simplified helicopter

flight dynamics modeling. In the following, we assume that the relevant quantities are all expressed

in the body frame 8, and therefore drop the coordinate frame notation 8 hereafter.
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With these definitions and assumptions, we model the longitudinal flight dynamics Xjong(#) =

AlongXlong (t) + Blongulong (t) as

[ Xu Xw Xq [ Xuo Xul XM ]
- — — — —w, —gcosb,| -
Sii m m m Su m m m |y,

Zu ZW ZL] . Zuo Zul Zu4

Sw _ T +u, —gsinb.| |sw | m - ll B
0q M, My My 0 0q My My, My,
56 I Iy Iy 56 Iy Iy Iy i
- 0 0 1 0 - 0 o - 0] -

where {u,, w,, 0.} are the values of {u, w, 6} at equilibrium, where g is gravitational acceleration,
m is body mass, and /, is the moment of inertia about the body y-axis. Here the control input ug
denotes a change of wingbeat frequency with respect to equilibrium, whilst the remaining control
inputs {uy, - - -, us} denote mirror-symmetric application of the time-periodic kinematic couplings
in the directions defined by PC1 through to PC4 (see Methods). Quantities of the form X,,, Z,,,
M,, etc. are stability derivatives, denoting the partial derivatives 0X/du, 0Z/0w, 0M /dq, etc.
Likewise, quantities of the form X, , Z,,, M,,, etc., are control derivatives, denoting the partial
derivatives 0 X /dug, 0Z/0uy, M [ duy, etc. Derivatives were estimated by regressing the wingbeat-
averaged forces and moments predicted using CFD on the relevant state variables and control input
variables (see Methods). Note that for the purposes of the flight dynamics modeling described here,
we regress the perturbed forces and moments on the perturbed state variables and control input
variables, and therefore force the regressions through the origin.

If we assume that external gusts d(¢) = {ug4, vg, Wa, pa, qa, a4} are acting on the animal, then
we may replace the motion state variables {u,v,w, p,q,r} used to calculate the aerodynamic
forces and moments (AX, AM, etc.) with an inertial perturbation and a disturbance term, such that
Oug = 0u —ug, ory = or —rq, etc. Under this assumption, the forces and moments on the insect are

now a function of both the inertial and the gust components. For instance,

0X 0X 0X 0X
AX = Eéua = a—u(éu —Ug) = Eéu — a—uud.

Therefore the way the gust u, influences the dynamics X is through the term —d X /du, which is the

negative of the aerodynamic portions of the A matrix. The longitudinal flight dynamics model with
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gusts are then modeled as X = AjongX(?) + Giongiong () With

K X X

m m m

e e 4 ta
G =| ™ n " and diong =
long M, M, Mq long Wd

L 1, qd

0 0 0

The lateral flight dynamics Xja(7) = AjaeXjar(7) + Biagiae (#) are modeled as

Y, Y, Y, ] (Y Y Y Y]
S — — 4w, gcosl, — —u.|r e
ov m m Sv m m m m |
5 & & 0 & 5 LM'1 Lué Lug L“i ,

P = Iy I, I, p + L I I, I, Uy
¢l | o 1 0 twnd, ||°? {0 o o o][*
or| N N 0 N [197] |Nu Ny N N |4

RE I I 1, I, I, I, |

where the notation is similar, save that the control inputs {u’l, e ,ug} denote anti-symmetric

application of the time-periodic kinematic couplings in the directions defined by PC1 through to
PC4 (see Methods). The lateral flight dynamics model with gusts X, (#) = AjaXjac (1) + Graediae (2)

is derived in the same way as its longitudinal counterpart, with

Y, Yp Y,
m m m
LV Lp Lr Vd
G = I Iy L | and dyy =
lat N, Np N, lat Pd
I I I, ra
0 0 0

Note that these equations of motion are linearized about a symmetric rectilinear equilibrium flight
condition withv, = p, = g, = r. = ¢, = 0, and neglect any gyroscopic forces on the beating wings.
They further assume that the fastest natural modes of the system have a characteristic timescale
much longer than the period of the wingbeat, such that there is no significant coupling between
the time-periodic oscillations of the aerodynamic forces and the body’s motion. It is important to

note that their simplified form reflects the fact that all of the forces and moments are resolved with
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respect to the principal axes of the insect. Finally, although we do not derive the LTI model of the
flight dynamics explicitly above, another key feature of this model is that it is linearized about a
state of equilibrium, which is a necessary condition for time-invariant equations of motion to result
from the linearization.

Whilst it is reasonable to assume that the reference flight condition associated with the mean
wingbeat in the functional principal components analysis will be close to equilibrium, there is no
reason to expect that it will be exactly so. To guarantee the internal consistency of the model, we
therefore enforce equilibrium, subject to the assumption: (i) that v, = p, = g, = 1. = ¢, = 0
on grounds of symmetry; and (ii) that {u,.,w,, 0.} are each equal to the reference conditions
assumed in the CFD modeling. We achieve this by making three assumptions. First, we assume that
the magnitude of the vertical aerodynamic force predicted by the CFD under the reference flight
conditions is exactly balanced by the insect’s body weight. We therefore solve for the value of body
mass at which this assumption holds and set m equal to this value (5.7686 x 107> kg) in the flight
dynamics model. Second, we assume that the net thrust predicted by the CFD under the reference
flight conditions is exactly balanced by body drag in forward flight. This body drag does not feature
explicitly in the flight dynamics model, because it is implicit in the treatment of the reference flight
conditions from the CFD as an equilibrium condition. Third, noting that the aerodynamic moments
predicted by the CFD are resolved at the root of the wing, we assume that any non-zero pitching
moment about the wing root is balanced at the centre of mass by the vertical aerodynamic force.
We therefore solve for the horizontal lever arm in the xz-plane for which this assumption holds
and assume that the wing root is located on a known transverse lever arm along the y-axis that we
measure directly from the tomograms (see Methods). Finally, we resolve all of the aerodynamic
moments at the centre of mass prior to taking the stability and control derivatives above.

With these assumptions and parameterizations, the longitudinal and lateral A, B, and G matrices

for a freestream velocity of U, = 0.8509 m/s and a body pitch angle 6, = 30.365° expressed in the

52


https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.29.587347; this version posted August 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

body frame B for Calliphora vicina are as follows, in S.I. units:

——1.4471 2.1998 -0.4351 —8.4614-
-2.4284 -2.3400 0.7282 -4.9573
547.09 345.54 -4.8501 0

0 0 1 0

Along =

1.0492 04250 8.4614 —0.7314]
697.04 —83.067 O  90.875

0 I 0 0.5859
75182 -12546 0 -3.1760]

[ 0.0837 -0.1600 0.3249 —-0.2789 —0.7515)

_0.0768 0.0380 0.1615 0.4448 —0.0946

51932 413.65 74900 159.80 —233.11
0 0 0 0 0

Blong =

04536 —0.1212 —0.0403 —0.6952]

36391 777.94  900.06  556.56

40405 —52660 260.11 602.64
0 0 0 0

Blat

[ 14471 —2.1998 0.0050]

24284 23400 0.0060

547.09 —345.54 4.8501
0 0 0

— 1.9492  0.0051 —0.0028-
-697.24 83.067 -90.875
0 0 0
=751.82 12.546 3.1760

G]at =

Writing the equations of motion in the body frame 8B as above results in a simpler form than

that which is obtained when using an axis system that is not necessarily aligned with the principal
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axes of the body. On the other hand, the visual axes of the head H do not in general coincide with
the principal axes of the body at equilibrium, and it is more reasonable to assume that the head is
held level at equilibrium such that the retinal coordinates (0,0) coincide with the insect’s velocity
vector in level flight at equilibrium. The set of body-fixed axes whose x-axis is aligned with the
insect’s velocity vector at equilibrium, and whose transverse y-axis is normal to the insect’s plane of
symmetry, is called the stability axis system S. In a final step, we therefore transform the equations
of motion above from the body axes 8 into the stability axes S, which simplifies the analysis in the

main text. The details of these coordinate transformations are described further below.

Coordinate Frames

Three different coordinate frames are employed in the preceding analyses (Fig. S2A): (i) the head
(visual) axes H = {Xp, ¥, 2n}, (ii) the body (principal) axes B = {%;,3,,25}, and the stability
axes S = {X;,¥,,2Zs}. The visual H axes and the body B axes are defined anatomically, whereas
the stability S axes are specified by orienting the x direction along the relative velocity vector for
the given reference flight condition. The body axes 8 are the natural coordinate frame in which to
calculate the variations in the aerodynamic forces {X, Y, Z} and moments {L, M, N}, as the results
can be straightforwardly transformed to stability axes S for an arbitrary reference flight condition.
Furthermore, because it assumed that the directions of the visual axes H and the stability axes S
are aligned, the natural coordinate frame in which to express the flight dynamics and sensor outputs

(Egs. 1-2) is the stability frame S:

[X]s (1)
y(1)

As[x]s(?) + Bsu(?) + Gs[d]s(2) (15)

Cs[x]s(1). (16)

Bracket notation and subscripts are used to denote the coordinate frame for which a specific vector
or matrix is expressed. In particular, [X]s = [du; dwy 8g5 005 6vs Ops S¢bs Org]T is the perturbation
]T

state expressed in stability coordinates, [d]s = [#gs Wa.s Ga.s Vds Pd.s Tas]” are the gust inputs in

stability coordinates, and the entries of the Ag, Bs, Gs, and Cg system matrices are relative to the
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stability axes.

The electrophysiological characterization of LPTC response field properties was performed
relative to the visual (head) axes H, whose directions correspond to the stability axes S, therefore
Cs = Cyy. The CFD characterizations of perturbation forces and moments (matrices Ag, Bg, and
Gg) were generated relative to the body axes B, so a transformation of the [x]g and [d]g vectors
into stability axes S is required to put the system into the form of Eqn. 15 to perform a comparison
between the directions encoded by the LPTCs and the dynamically-significant directions defined
by the Gramians.

To derive these transformations, we first consider the relationship between the velocity v and

angular velocity w in these two coordinate frames, which differ by a rotation 6, about the pitch axis

(Fig. S2):

cosf, 0 —sind,
Rgs(0)= 0 1 0 (17)
sind, 0 cos6,
Hence, the velocity of the animal in body coordinates [v]p is related to its velocity in stability

coordinates [v]g via

u cosf, 0O —sinf,\[ ug
[vlp=|v |[=Rgs(b.) [Vls=]| 0 1 0 Vs |- (18)
w sind, 0 cos@, |\w;g

Similarly, the angular velocity of the animal in body coordinates [w]p is related to its velocity in

stability coordinates [w]g via

p cosf, 0 —sinb,\|ps
[wlp=|q|=Rss(b.) [w]ls=| 0 1 0 gs |- (19)
r sinf, 0 <cos@, |\r

The full 8-dimensional state vector expressed in the body frame also contains two attitude angles,
0 and ¢. In the linearized flight dynamics these are actually perturbation angles from equilibrium,

hence 6 = 6, since the y, and y, coordinate axes are colinear. To develop the relationship between
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¢ and ¢, we take the axis-angle form for a rotation ¢, about the X axis expressed in the 8 =
{Xp,¥p,2p} coordinate frame, convert this to its equivalent rotation matrix, then back out the
equivalent 3-2-1 Euler angles {¢, 6,  } referred to the body B frame. The axis-angle form is angle
¢, about axis & = (cos6,,0,sin6,). If we equate the corresponding rotation matrix for ¢, and €
with the 3-2-1 Euler angle parameterization in body axes {¢, 8, ¢} of the same rotation, a ratio of

the (3,2) and (3,3) entries results in

cos 8, sin
ang =  sin ¢

. (20)
(1 = cos ¢y) sin” 6, + cos o

Hence for small ¢, and small ¢, this reduces to ¢ ~ (cos 6, ) ;.
Therefore, the longitudinal state transformation from stability S to body axes B is [Xjongl s =

Rlong [Xlong]S is given by

u cosf, —sind, 0 O\ [ u,
w sind, cosf, 0O Of|w
— e e N ’ (21)
0 0 1 0f|gs
0 0 0 0 1/1\6,

and the lateral state transformation from stability to body axes [Xjy]8 = Riat[Xiat] s 1S given by

% 1 0 0 0 Vg

0 cosd 0 —sind
p _ e el | Ps . 22)
1) 0 0 cos 6, 0 Py

r 0 siné, 0 cosd, g

The transformation for the full state [x]g = R[x]s (longitudinal and lateral states combined) is

R 0
R= long . (23)
0 Ryt

Since the disturbance vector d has six components compared to the eight components of the state
vector X, we also define a transformation Rs which maps components of vectors expressed in the
S frame to the B frame. This transformation is essentially the R matrix with the rows and columns

associated with the 6 and ¢ variables removed.
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To express the Ag, Bg, and Gg matrices relative to the stability axes S, we substitute [x]g =

R[x]s, [X]g = R[X]s, and [d]g = Rg[d]s into [X]g = Ag[x]s + Bgu + Gg[d]sz,
[X]S = R_IABR[X]S + R_IBBU + R_lGBRG [d]s 24)

The final system matrices A = Ag, B = Bgs, and G = Gg (Eqn. 1), expressed in the stability axes
S, are then As = R"'AgR, Bs = R"'Bg, and Gs = R"!GgR;. To simplify our notation, we have

omitted these S subscripts in the main text.

Dynamically significant directions in state space

The Gramians constructed from the A, B, G, and C system matrices encode the dynamic properties
of a system. These matrices have been widely used in testing for controllability and observability
(69-71), in model reduction (46, 70, 72, 73), in sensor and actuator placement (22, 74-76), in
disturbance rejection (77, 78), and in joint sensor and actuator design (79, 80). When the system

matrix A is stable, the controllability and observability gramians are defined in the time domain as:

X, = / ATBBT A T dr (25)
0

Y, = / ATCTCeA dr. (26)
0

The disturbance sensitivity Gramian X, is constructed similar to X., by swapping the B with the
G matrix in Eqn. 25. The Gramians are generated by computing the solutions to the Lyanunov

equations,

AX, +X AT+BBT = 0 (27)

ATY,+Y,A+CIC = 0. (28)

The controllability Gramian is related to the minimum signal energy required to reach a given
state Xo, which is given by [lugyl|®> = ngc_lxo. This is captured by the controllability ellipsoid
E. = {x e R"; x’XZ!x < 1} which defines the region of state space that can be reached by applying

unit norm |[u||, < 1 input. The principal axes directions and lengths of &, are calculated as the

57


https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.29.587347; this version posted August 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

eigenvectors and square roots of the eigenvalues of X.. Therefore, its larger axes represent the
directions in state space requiring the lesser control effort to move along. Similarly, the disturbance
sensitivity ellipsoid (&) is constructed in an identical fashion, but with X, interchanged with X..
Its longest axes represent the directions of motion that are most readily excited by gusts. These
most-sensitive directions characterise the worst-case disturbances that the insect may have to reject.

The observability Gramian is related to output energy for a given initial condition Xg, since
the energy of the output signal y(z) for an arbitrary xo can be expressed as ||y||> = ngoxo. If we
consider the set of initial conditions where ||y||> < 1, this generates the sensed directions in state
space that have the smallest output norm. The observability ellipsoid &, = {x € R*;x’ Y, 'x < 1}
is created by replacing Y, with its inverse Y, !, the covariance for the best unbiased estimate. Its
principal axes correspond to directions in state space with the largest output norm, representing the
specific self-motions that the insect is best-able to sense.

For system matrices A that are unstable, the integrals in Eqns. 25 and 26 are unbounded and
X, and Y, are undefined. Generalizations to the controllability and observability Gramians were
introduced in (45), corresponding to Eqns. 4 and 3 in the main text. For (A, B) stabilizable, (C, A)
detectable, and no eigenvalues of A on the imaginary axis, the generalized Gramians are calculated

as follows. First compute the solutions P and Q to the Riccati equations,

AP + PA - PBB'P

Il
o

(29)

QAT + AQ - QCTCQ

I
S

(30)

Next define F = —B’P and L = —QCT, and the generalized Gramians are the solutions to the

Lyapunov equations,

(A +BF)X, + X' (A + BF) + BB”

Il
(e

€19

(A+LO’Y,+Y,(A+LC)+C'C = o. (32)

If the A matrix is stable, then P = 0 and Q = 0, and Eqns. 31 and 32 reduce to Eqns. 27 and

28. The authors in (45) also provide time domain interpretations of the generalized Gramians, and
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show they can be similarly related to the minimum control input energy ngc_lxo, and average
estimation error Tr(Y,!).

Balanced realization theory for stable linear systems introduced by (46) provides additional
tools for understanding the signal energy flow properties of a dynamical system. In particular,
one can quantify the joint controllability and observability of a system that has been transformed
into balanced coordinates X = Tx, where {t;} denote the columns of T~!. In these new coordi-
nates the controllability and observability Gramians (Eqns. 25 and 26) are equal and diagonal,
X, =Y, = diag(hy,--- , h,), where the Hankel singular values h; = m rank the joint
controllability/observability of the direction t; in original coordinates. In particular, directions with
small /; correspond to directions in state space that are simultaneously difficult to reach and observe,
and contribute little to the overall behavior of the system. An extension to the unstable case was
provided in (45), who showed that the same tools could be applied through the introduction of the
generalized controllability Gramian X, and observability Gramian Y, as in Eqns. 4 and 3 in the main
text. In particular, the Hankel singular values (HSVs) for an unstable system with no eigenvalues on
the imaginary axis are the union of the HSVs for the partitioned stable and anti-stable subsystems,
with the A matrix for the anti-stable partition replaced with —A, and these are computed similarly
as h; = 4/4;(Y,X,). The transformation X = Tx that was used to balance the system was based on
the Cholesky factorization of X, = WW?. The eigenvalue decomposition of W*Y,W = VXV* is

performed, with the resulting balancing transform computed as T = VWL

Supplementary results on the LPTC response fields

The Vl1-cell (Fig. 2C) shows a strong response to downward image motion over most of its
frontolateral visual field, which rotates to become a preference for back-to-front image motion in
the upper part of its caudolateral visual field (90° < y < 150°), with vanishing sensitivity below the
equator. This qualitative combination of response properties suggests that V1 will be most active
during nose-up rotation. The V2-cell (Fig. 2D) responds strongly to upward image motion in the

lateral visual field (45° < y < 150°), which gradually changes into a preference for back-to-front
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image motion in the dorsofrontal visual field (0° < y < 45°) and downwards image motion in the
zone of binocular overlap (-30° < y < 0°)(Fig. 2D). The right V2-cell will therefore be active
during righthanded roll, with its preferred rotation axis directed ventral relative to the longitudinal
roll axis (Fig. 2B). The Vx-cell (Fig. 2E) displays a preference for oblique upward image motion in
the upper part of the frontal visual field (-30° < y < 30°), which gradually changes into horizontal
front-to-back motion (30° < y < 105°) and becomes maximally sensitive to downward motion in
the caudolateral visual field (105° < y < 180°). Its preferred rotation axis is directed between the
roll and pitch axes and tipped slightly ventrally, responding to rotations of the opposite sense to
those that activate the ipsilateral V1- and V2-cells (Fig. 2G).

The response fields of the V1, V2 and Vx-cells in Fig. 2 plot only the ipsilateral parts of
their response fields, including the narrow zone of binocular overlap. Some heterolateral LPTCs
including V1 may respond to stimuli presented to the contralateral eye (28, 37), depending on the
internal state of the fly (32). The same holds true for some of the VS-cells including VS6, which
responds in a directionally-selective manner to stimuli presented to the contralateral eye (Fig. 2B).
Though weaker than its ipsilateral motion sensitivity, this contralateral motion sensitivity enhances
the cell’s response to roll motion. Inspection of the V1, V2 and Vx response fields (Fig. 2C-E)
suggests that this is most likely to be attributable to excitatory input from the contralateral V2-
cell. Along similar lines, simultaneous recordings have already established electrical connections
between VS1-3 and the contralateral V1-cell (87), and ipsilateral inhibition of the VS1-cell by
the Vx-cell (=Vi) (28). Simultaneous recordings have also demonstrated electrical coupling of

neighbouring VS cells (82).

60


https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.29.587347; this version posted August 9, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figures (SM)
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Figure S1: Geometry for spherical optic flow. (A) The azimuth Qy and elevation Q g components
of the optic flow vector are the projected relative velocities w and v of visual contrasts or objects
in the environment into the tangent space 75> of the imaging surface, modeled here as a sphere
approximating the nearly 47 visual field of the compound eyes. (B) The function d(y, 8, q) is the

distance from the imaging surface (r) to the nearest point in the environment.
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Figure S2: Reynolds Averaged Navier-Stokes (RANS) simulations for Calliphora wing motions.
(A) Coordinate systems for analysis include the head (visual) axes ‘H = {%®j, .21}, the body
(principal) axes B = {X, ¥, 2»}, and the stability axes S = {X;, ¥, Z;}. (B) Instantaneous wing
wake structures are shown using i1so-Q Criterion surfaces (Q = 0.001) and colored by vorticity at
the end of the upstroke. (C) Simulations utilized an overset grid system for a body-fitted structured
wing mesh and a Cartesian background mesh. (D-E) Example regressed wingstroke averaged

aerodynamic moments and forces as a function of perturbation states and inputs for the right wing.
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Hankel Singular Values (Cube Environment)
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Figure S3: Robustness of Hankel singular values to environment perturbations. The dimen-
sions (gn, gs, g, aw, hy, hgy) of two different nominal environment configurations with equal
volume (cube, ellipsoid) are randomly selected from a uniform distribution (100 different con-
figurations each) up to 50% and used to generate the system’s Hankel singular values. These
distributions are compared to 1000 sets of randomly selected 19 left-right symmetric pairs from
a uniform distribution on R8. (A) Geometry of the cube environment. (B) Comparison of Han-
kel singular values for 100 randomly selected cube environment configurations. (C) Geometry of
the ellipsoid environment. (D) Comparison of Hankel singular values for 100 randomly selected

ellipsoid environment configurations.
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Figure S3: Robustness of Hankel singular values to environment perturbations. The dimen-
sions (gn, gs,ag,aw, hy, hg) of two different nominal environment configurations with equal
volume (cube, ellipsoid) are randomly selected from a uniform distribution (100 different con-
figurations each) up to 50% and used to generate the system’s Hankel singular values. These
distributions are compared to 1000 sets of randomly selected 19 left-right symmetric pairs from
a uniform distribution on R®. (A) Geometry of the cube environment. (B) Comparison of Han-
kel singular values for 100 randomly selected cube environment configurations. (C) Geometry of
the ellipsoid environment. (D) Comparison of Hankel singular values for 100 randomly selected

ellipsoid environment configurations.
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Figure S5: Putative synaptic coupling diagram of VS- and V-cells. Illustration of known (83)
and hypothesized connections between the 10 VS-cells (VS1-VS10) and heterolateral V-cells (V1,
V2, Vx) of the left and right lobula plate of the blowfly Calliphora. Colour coding corresponds to
the proposed functional clusters shown in Fig. 2. Spherical and triangular symbols at the endpoints
of connecting lines indicate inhibitory(-) and excitatory (+) outputs of the cells. Resistance symbols
between cells refer to electrical synapses. Grey arrows indicate main sensitivity to vertical downward

and upward motion of the LPTCs in the three clusters.
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Tables (SM)

Table S1: Moments of inertia about the principal axes of Calliphora vicina estimated from uCT

images.
Insect m (1073 kg) I, (107%kgm?) | L (1079kgm?) | I3 (107'° kg m?)
male 1 6.792 5.802 5.730 1.457
male 2 7.543 6.410 6.368 1.594
female 1 7.953 6.924 6.883 1.822

Table S2: Calliphora vicina flapping wing simulation parameters.

Freestream velocity Uy, (m s™) 0.8509
Body pitch angle (°) 6, 30.365
Nominal wing beat frequency (Hz) | 166.188
Wing span (mm) 10.1781
Mean chord (mm) 2.714
Reynolds number 1,746

Table S3: CFD Simulation setup parameters.

Total timesteps 2,880 (720 steps per cycle)

Flow condition Laminar

Spatial reconstruction 5t order WENO scheme

Temporal scheme 2" order backward difference (BDF2)
Low-Mach precondition Yes

Overset grid node points Wing (2.98 M) and Background (8.21 M)

Table S4: Estimated stability derivatives (S.I. units).
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X Force (1073)

Z Force (1079)

M Moment (1077)

X, = —8.3476
X,, = 12.690
X, = -0.0286

Z, = —14.009
Z,, = —13.499
Z, = —0.0345

M, =2.2833
M, =1.4421
M, = -0.0202

Y Force (107°)

L Moment (10~7)

N Moment (1077)

Y, = -11.244
Y, = —0.0298
Y, = 0.0159

L, =0.7428
L, = -0.0884
L, =0.0968

N, =3.1378
N, = —0.0523
N, =-0.0132

Table S5: Estimated control derivatives (S.I. units).

X Force (1077)

Z Force (1079)

M Moment (1077)

X,,, = 0.4825
X, = —0.9232
X, = 1.8744
X, = —1.6088
X, = —4.3350

Z,, = —0.4428
Z,, =0.2194
Z,, =0.9314
Zuy = 2.5656
Z,, = —0.5456

M,, = -0.0216
M,, =1.7264
M,, = 0.0312
M, = 0.6669

M,, = —0.9728

Y Force (107°)

L Moment (1077)

N Moment (1077)

Yu, = —2.6166
Yu, = —0.6990
Yu, = —0.2323
Yy, = —4.0104

Ly =0.0387
Ly, =0.8287
Ly, =0.9588
Ly, =0.5929

Ny = 1.6863
Ny = -2.1978
Ny, = 1.0856
Ny, =2.5151

Table S6: Eigenstructure of the symmetric and asymmetric modes of the system matrix A = Ag,
showing the eigenvalues (4;) and eigenvectors for the symmetric and asymmetric parts, Xjong =

[6u Sw 8g 66]T and X1 = [6v Sp d¢ 6r]T, of the state vector x (S.I. units).
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symmetric mode 1 mode 2 mode 3 asymmetric mode 4 mode 5 | mode 6
Aj -19.89 6.77 £ 14.92j -2.28 || 4; —-63.38 -20.16 +21.72 15.51
ou 0.0215 | —0.0172 +0.0244 0.0317 ov —-0.0017 0.0012 +£0.01495 | 0.0285
ow 0.0506 | —0.0200 +0.0417; | —0.9042 op 0.9539 —0.9927 £0.0005 | 0.9852
op —-0.9972 —0.9966 + 0.000 0.3900 5o —-0.0202 0.0306 + 0.0330;5 | 0.0853
60 0.0501 | —0.0251 £0.0554; | -0.1710 or —0.2993 | —0.0891 £0.0658; | 0.1458
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Table S7: State encoding of the LPTC response fields expressed in the stability axes S for the
baseline enclosed rectangular prism. The rows of the unilateral output matrix C” are formed from
the elements corresponding to the motion state variables {dug, Owy, dq;, 005, 0V, Ops, Os, OFg}

scaled in S.I. units.
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LPTC Sug Swg dqs 06 Ovs Ops Sps ors

Right VS1 | -0.3882 | -0.3847 | 0.6656 0.0155 0.0926 | -0.2436 | 0.0263 0.4352
Left VS1 -0.3882 | -0.3847 | 0.6655 0.0155 | -0.0926 | 0.2436 | -0.0278 | -0.4352
Right VS2 | -0.1966 | -0.6143 | 0.6590 0.0243 | -0.0344 | -0.3628 | 0.0092 0.1270
Left VS2 -0.1966 | -0.6143 | 0.6590 0.0243 0.0344 0.3628 | -0.0100 | -0.1270
Right VS3 | -0.1572 | -0.5994 | 0.4783 0.0049 | -0.0947 | -0.6119 | 0.0100 0.0605
Left VS3 -0.1572 | -0.5994 | 0.4783 0.0049 0.0947 0.6119 | -0.0106 | -0.0605
Right VS4 | -0.1305 | -0.5970 | 0.2558 | -0.0027 | -0.1574 | -0.7287 | 0.0066 0.0724
Left VS4 -0.1305 | -0.5970 | 0.2558 | -0.0027 | 0.1574 0.7287 | -0.0070 | -0.0724
Right VS5 | -0.0818 | -0.5786 | 0.1327 | -0.0042 | -0.1619 | -0.7835 | 0.0054 0.0282
Left VS5 -0.0818 | -0.5786 | 0.1327 | -0.0042 | 0.1619 0.7835 | -0.0056 | -0.0282
Right VS6 | -0.0857 | -0.5795 | 0.0278 | -0.0016 | -0.1661 | -0.7890 | -0.0019 | 0.0774
Left VS6 -0.0857 | -0.5795 | 0.0278 | -0.0016 | 0.1661 0.7890 0.0016 | -0.0774
Right VS7 | -0.0300 | -0.5467 | -0.2919 | -0.0017 | -0.1561 | -0.7680 | -0.0108 | 0.0279
Left VS7 -0.0300 | -0.5467 | -0.2919 | -0.0017 | 0.1561 0.7680 0.0106 | -0.0279
Right VS8 0.0588 | -0.4579 | -0.5541 | -0.0007 | -0.1987 | -0.6625 | -0.0204 | -0.0314
Left VS8 0.0588 | -0.4579 | -0.5541 | -0.0007 | 0.1987 0.6625 0.0204 0.0314
Right VS9 0.0396 | -0.4505 | -0.6167 | 0.0033 | -0.1783 | -0.6160 | -0.0252 | 0.0578
Left VS9 0.0396 | -0.4505 | -0.6167 | 0.0033 0.1783 0.6160 0.0250 | -0.0578
Right VS10 | 0.0864 | -0.4344 | -0.7056 | 0.0014 | -0.1169 | -0.5397 | -0.0280 | -0.0133
Left VS10 0.0864 | -0.4344 | -0.7056 | 0.0014 0.1169 0.5397 0.0281 0.0133
Right V1 -0.1406 | -0.5839 | 0.5757 0.0109 | -0.1149 | -0.5412 | 0.0154 0.0374
Left V1 -0.1406 | -0.5839 | 0.5757 0.0109 0.1149 0.5412 | -0.0158 | -0.0374
Right V2 -0.1420 | 0.5568 0.1317 0.0023 0.2150 0.7581 0.0082 0.1776
Left V2 -0.1420 | 0.5568 0.1317 0.0023 | -0.2150 | -0.7581 | -0.0087 | -0.1776
Right Vx 0.2817 | -0.3518 | -0.6441 | -0.0025 | -0.1877 | -0.5295 | -0.0288 | -0.2562
Left Vx 0.2817 | -0.3518 | -0.6441 | -0.0025 | 0.1877 0.5295 0.0297 0.2562
Right HSN | 0.4641 | -0.1110 | -0.4483 | -0.0039 | -0.2614 | -0.2605 | -0.0121 | -0.6595
Left HSN 0.4641 | -0.1110 | -0.4483 | -0.0039 | 0.2614 0.2605 0.0142 0.6595
Right HSE | 0.4962 | -0.0399 | -0.0582 | 0.0005 | -0.2442 | -0.0527 | -0.0018 | -0.8285
Left HSE 0.4962 | -0.0399 | -0.0582 | 0.0005 0.2442 0.0527 0.0045 0.8285
Right HSS 0.5806 | -0.1195 | 0.4274 | -0.0081 | -0.2723 | 0.0501 0.0198 | -0.6236
Left HSS 0.5807 | -0.1195 | 0.4274 | -0.0081 | 0.2723 | -0.0501 | -0.0172 | 0.6236
Right H1 -0.5286 | -0.0947 | 0.0477 0.0037 0.2108 | -0.1116 | 0.0026 0.8077
Left H1 -0.5286 | -0.0947 | 0.0477 0.0037 | -0.2108 | 0.1116 | -0.0055 | -0.8077
Right H2 -0.4037 | -0.0828 | 0.0765 | -0.0011 | 0.3953 | -0.0662 | 0.0028 0.8147
Left H2 -0.4037 | -0.0828 | 0.0765 | -0.0011 | -0.3953 | 0.0662 | -0.0053 | -0.8147
Right Hx -0.5577 | -0.0341 | -0.0482 | -0.0087 | 0.4890 | -0.1166 | 0.0027 0.6578
Left Hx -0.5577 | -0.0341 | -0.0482 | -0.0087 | -0.4890 | 0.1166 | -0.0047 | -0.6578
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