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Insects achieve agile flight using a sensor-rich control architecture whose em-

bodiment eliminates the need for complex computation. For example, their visual

systems are tuned to detect the optic flow associated with specific self-motions,

but what functional principle does this tuning embed and how does it facilitate

motor control? Here we test the hypothesis that evolution co-tunes physics and

physiology by aligning an insect’s sensors to its dynamically-significant modes of

self-motion. Specifically, we show that the tuning of the blowfly motion vision sys-

tem maximizes the flow of signal energy from gust disturbances and control inputs

to sensor outputs, jointly optimizing observability and controllability. This evo-

lutionary principle differs from the conventional engineering-design paradigm of

optimizing state estimation, with implications for novel robotic systems combining

high performance with low power-consumption.

Main text

Like fifth-generation fighter aircraft and small multi-rotors, flies and other insects are inherently

unstable in flight. This makes them highly maneuverable, but demands exquisite control. Technolog-

ical and biological systems alike achieve this by combining information on motor input and sensor

output (1) with an internal model of their dynamics (2), enabling them to observe and control their

motion state in the face of disturbances. But whereas modern fly-by-wire control systems operate a

computationally-intensive control architecture with recursive state estimation and a small number

of sensors and actuators, insects have evolved a computationally-efficient control architecture with

parallel processing and many sensors and actuators (3). For instance, the blowfly Calliphora fuses

the output of ∼105 sensory cells to provide information on its self-motion, and uses at least 26

steering muscles to control its wingbeat. Yet, it weighs a mere 10−4 kg and consumes only 10−2

W of metabolic power in flight. The sensor-rich control architecture of insects may therefore point

to a novel flight control paradigm in which specialised sensing avoids the need for generalised
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computation (4), but the underlying functional principle has yet to be identified (5).

One possibility is that an insect’s sensors are tuned to produce signals that directly correspond

to excitation of the natural modes of motion characterising its flight dynamics (3). This principle,

called the “mode-sensing hypothesis” (3, 5), might serve to reduce computational complexity

through the use of embodied sensing. Under this hypothesis, an insect’s sensors need only detect

the characteristic patterns of self-motion that are excited by gust disturbances and control inputs (6),

rather than having to provide a calibrated measurement of some general physical quantity such as

angular velocity or airspeed (3). The mode-sensing hypothesis accords with the broader observation

that biological sensors are exquisitely sensitive to change but poor at measuring absolutes (3), even

varying their gain according to the behavioral state of the animal (7). It might also explain why the

descending neurons that relay sensory information downstream to the flight motor fuse information

from multiple sensory modalities, because an insect’s flight dynamics are characterised by coupled

rotational and translational motions that stimulate multiple sensory systems simultaneously (3).

Here we test whether the mode-sensing hypothesis explains the tuning of the fly motion vision

system, which is currently the best-understood example of a deep neural network in nature (8–10).

Visually-oriented animals including flies detect the wide-field optic flow stimuli experienced during

self-motion by correlating local changes in luminance across neighboring photoreceptors before

pooling this information globally. In flies, this operation is implemented by an array of elementary

movement detectors whose responses are pooled by the lobula plate tangential cells (LPTCs)

that form the output layer of the motion vision pathway. The LPTCs’ response characteristics are

best known for Calliphora (11), functioning as matched filters (12–14) tuned to detect specific

patterns of optic flow associated with particular combinations of rotational and translational self-

motion (15, 16). Any global tuning principle relating to the fly’s self-motion must therefore be

embedded in the synaptic distribution and weighting of the dendritic inputs to its LPTCs, which

are the unique level of the network at which information is pooled from across the optical array.

Each LPTC is tuned to detect some specific combination of rotation and translation defining a

preferred direction of self-motion, which the mode-sensing hypothesis predicts should correspond
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to one or more dynamically-significant directions in the insect’s state space (3). In principle, this

hypothesis can be tested by analyzing a suitable model of the insect’s flight dynamics (5), but no

such model has yet been elaborated for Calliphora. Moreover, although rigid-body flight dynamics

models (17) have been successfully developed for several other insect species (18), they do not

usually attempt to model the output of the insect’s sensory system and do not accurately capture

the detailed changes in wing kinematics involved in its flight control. Likewise, although recent

neuromechanical models of insects are expressly designed to model the sensorimotor control of their

behavior in a lifelike fashion (19, 20), few have yet attempted to model flight in a biomechanically

accurate manner (21). Even then, as simulation models, these neuromechanical models are not

designed to enable the abstraction of control-theoretic principles as is our aim here.

Our approach is therefore as follows: (i) to capture the dynamic mapping from mechanical input

to sensor output analytically, which we achieve by creating a novel state-space model of blowfly flight

dynamics and control; (ii) to identify the most dynamically-significant directions in the insect’s state

space, which we accomplish by analyzing our state-space model using advanced control-theoretic

tools called Gramians; and (iii) to test whether the preferred directions of the LPTCs correspond to

these dynamically-significant directions more closely than expected by chance. Based on the strong

correspondences that we identify, we conclude that blowfly motion vision is tuned to maximize

the transfer of signal energy from control inputs and gust disturbances to sensor outputs via the

system state (Fig. 1). This end-to-end tuning principle optimizes the observability of the system

state jointly with its controllability and disturbance-sensitivity, which differs from the conventional

engineering-design paradigm of placing sensors so as to optimize state estimation by maximizing

observability alone (22,23). The evolutionary principle that we identify of tuning sensors to optimize

observability jointly with controllability and disturbance sensitivity has important applications to

the design of vehicles and robotic systems combining high performance with low computational

load and low power consumption (24).
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Figure 1: Signal energy transfer in insect flight. The mechanistic relationships illustrated on the right of the

figure (blue arrows) are summarised by the signal energy flows shown on the left (red arrows). We characterise

these mechanistic relationships by developing a state-space model of insect flight (Eqs. 1-2), and characterise

the associated signal energy flows using the special matrix structures called Gramians that we derive from this

model (Eqs. 3–4). Blue arrows: Control inputs u(𝑡) and gust disturbances d(𝑡) produce changes in the insect’s

motion state x(𝑡) described by the differential equations characterising its flight dynamics. This self-motion

generates sensory stimuli including an optic flow field. The output layer of the blowfly motion vision system

comprises a set of lobula plate tangential cells (LPTCs), each of which is matched to detect an optic flow

field associated with a specific self-motion, yielding a sensor output y(𝑡) related to the motion state x(𝑡) of

the fly. Red arrows: Signal energy from control inputs and gust disturbances is stored in the system state, so

the system’s controllability and disturbance-sensitivity are maximized by maximizing signal energy storage.

Stored signal energy is released through the evolution of the system state and retrieved at the sensor outputs,

so the system’s observability is maximized by maximizing signal energy retrieval. A system that balances

signal-energy storage/retrieval jointly maximizes observability and controllability or disturbance-sensitivity,

and thereby maximizes the flow of signal energy from control inputs or gust disturbances to sensor outputs

via the system state. Neuroanatomical image of LPTCs adapted from (25).
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Modeling approach

We begin by elaborating the novel flight dynamics model that we develop to characterize observ-

ability, controllability and disturbance-sensitivity in blowfly flight (Fig. 1). The simplest possible

state-space model describing the dynamic mapping from mechanical input to sensor output lin-

earizes an insect’s six degrees of freedom of rigid-body motion about some equilibrium flight

condition (17) to yield the linear time-invariant equations:

state equation: ¤x(𝑡) = Ax(𝑡) + Bu(𝑡) + Gd(𝑡) (1)

output equation: y(𝑡) = Cx(𝑡). (2)

Here, all the forces and moments are assumed to be represented by their wingbeat averages, which

is reasonable if the characteristic timescales of any unstable or oscillatory modes of motion are

at least an order of magnitude longer than the wingbeat (17). This assumption is true of other

flies (18), and we validate it directly here for Calliphora having first parameterized the model.

The state equation (Eq. 1) models the insect’s flight mechanics, and is parameterized by the

system matrix A characterizing the insect’s natural response to perturbations in its motion state x.

The control matrix B and disturbance matrix G characterize the insect’s forced response to control

inputs u and aerodynamic disturbances d, respectively. The output equation (Eq. 2) models how the

resulting self-motions map to the insect’s sensor output, and is parameterized by the output matrix

C characterizing the physiological mapping from the insect’s motion state x to its sensor outputs y.

Together, these two matrix equations describe the transfer of signal energy from control inputs and

disturbances to sensor outputs via the system state (Fig. 1). Simplified versions of the state equation

have been parameterized for a few other species (18), but these have not been coupled to an output

equation modeling the resulting sensory output and they have not been founded on an accurate

model of the kinematic inputs used in flight control. Moreover, to the best of our knowledge, there

is no existing flight dynamics model for Calliphora. Given our model’s novelty and its centrality

to the conclusions that follow, we therefore begin by detailing how we parameterize Eqs. 1-2

empirically in relation to a blowfly’s visual physiology and flight physics. We then analyze this
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model using advanced control-theoretic methods to identify the functional principle that the tuning

of the blowfly’s motion vision system embodies.

Visual physiology

We begin by characterizing the motion vision system whose tuning we aim to explain, providing

the reader with a brief description of its anatomy and physiology, before using new and published

electrophysiological recordings to parameterize the output equation (Eq. 2).

Visual output vector. The output layer of the fly motion vision system is formed by a set of

wide-field optic-flow sensitive neurons called the lobula plate tangential cells (LPTCs). A subset

of the LPTCs in Calliphora is tuned to respond specifically to self-motion stimuli, including the

ten vertical system (VS) cells {VS1–VS10} and three horizontal system (HS) cells {HSN, HSS,

HSE} of each optic lobe (11, 15, 26, 27). The VS- and HS-cells arborize ipsilaterally, yet some

of their response fields extend across both visual hemispheres (Fig. 2B), which is important to

distinguishing rotational from translational self-motion (3). This binocularity is made possible

by a complex coupling arrangement (Fig. S5) in which heterolateral LPTCs called V-cells {V1,

V2, Vx} and H-cells {H1, H2, Hx} relay output from the contralateral optic lobe (11, 27, 28).

The binocular VS- and HS-cell outputs are ultimately combined with output from other sensory

modalities involved in flight control by descending neurons that relay sensory information to the

wing, leg, and neck motor systems (29, 30). Hence, whereas the VS- and HS-cells form the output

layer of each optic lobe, the heterolateral V- and H-cells form a shallow hidden layer that is critical

to the function of this bilaterally symmetric deep neural network (Fig. S5). To allow us to analyse

their respective functions, we use the characteristic responses of all 19 cells in each of the two

mirror-symmetric optic lobes to form the 38 elements of the output vector y. To enable us to model

this output vector y we must quantify the LPTC responses using a combination of new and existing

electrophysiological recordings, as described in the next section.
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Figure 2: The fly motion vision system. (A) A flying insect has six degrees of freedom in rotation {𝑝, 𝑞, 𝑟}

and translation {𝑢, 𝑣, 𝑤}. Its compound eyes sense self-motion using a deep network comprising an array

of repeated elementary motion detectors whose outputs are pooled by the lobula plate tangential cells

(LPTCs), comprising an output layer of 13 pairs of VS- and HS-cells connected by a hidden layer of at

least 6 pairs of V- and H-cells coupling the left and right optic lobes. (B) Binocular response field of the

left VS6-cell as a function of azimuth (𝛾) and elevation (𝛽) in retinal coordinates. This closely resembles

the optic flow associated with left-handed roll motion (28), and as the LPTCs only arborize ipsilaterally,

the weak contralateral response visible here must be due to coupling by the heterolateral V-cells. (C,D,E)

Newly-measured response fields of the right V-cells, where N denotes the number of individuals from which

the recordings were pooled. (F,G) Preferred rotation axes of the left VS- (15, 26) and V-cells (new data);

cells of the right optic lobe have responses that are mirror-symmetric to those of the left optic lobe.
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Electrophysiological measurements. Characterization of the LPTCs’ electrophysiological re-

sponses to local image motion (Fig. 2B-E) reveals that each cell’s response field (i.e., the vector

field describing its local motion sensitivity and local preferred directions) resembles a coherent

optic flow stimulus associated with some specific combination of rotational and translational self-

motion (16). For example, it is well known that the VS-cells signal combinations of heave translation

and roll or pitch rotation (15, 26) (Fig. 2F), whereas the HS-cells signal combinations of yaw rota-

tion and sideslip or forward translation (27). The responses of the heterolateral LPTCs have been

less well studied, so to complete our model of the blowfly motion vision system, we characterised

the V1, V2, and Vx response fields of male and female flies experimentally (Fig. 2C-E). We did so

by making extracellular recordings of the cells’ activity in response to local image motion, which

we used to determine the spatial distribution of their local preferred directions and local motion

sensitivity across the visual field (see Methods). These new data from both sexes complement and

complete existing recordings made extracellularly from the V- and H-cells (27,31,32) and intracel-

lularly from the VS, HS and Hx cells of females only (15, 26–28). Our results show no functional

differences between males and females, and demonstrate that the preferred rotation axes of V1, V2

and Vx (Fig. 2G) each coincide with different subsets of the VS-cells (Fig. 2F; see also Fig. S5).

The correspondence between the response fields of the LPTCs and the optic flow fields associated

with specific combinations of rotational and translational self-motion is striking, but the dynamical

significance of these patterns has only been examined qualitatively to date (3).

Physiological modeling of the output equation. The response fields {F𝑖} of the 𝑖 = 1, . . . , 38

LPTCs of the left and right optic lobes are defined in retinal azimuth and elevation coordinates {𝛾, 𝛽}

whose equatorial plane 𝛽 = 0 is assumed to be held horizontal at equilibrium. The retinal coordinate

system is assumed to rotate with the body such that the ray defining its origin coincides with the

𝑥-axis used in our flight dynamics modeling (Fig. 3). This approximation is valid for the small

perturbations that we model, and is reasonable to the extent that compensatory head movements

are driven optokinetically (33, 34) and therefore lag the body’s motion (35). The magnitude of
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the optic flow experienced during translational self-motion varies inversely with distance to the

visual environment. To determine how the LPTCs are expected to respond to rigid-body motion, we

assume that the insect is flying at the centre of a 2 m cube, although we relax this assumption later.

To parameterize the output equation (Eq. 2) in this environment, we compute the partial derivative

of the optic flow field ¤Q with respect to each element of the state vector x (see Methods). We then

take the inner products of these matrices with the LPTC response fields {F𝑖}, and use these to form

the elements of the unilateral output matrix C′, whose 38 normalized rows describe the preferred

directions of self-motion of the 19 mirror-symmetric pairs of LPTCs, treating the outputs of the left

and right optic lobes separately (Table S7). Finally, because symmetric and asymmetric motions

can be treated separately in our linearized flight dynamics model (see Fig. 3F), we restructure C′ to

form a bilateral output matrix C whose 38 normalized rows represent the summed and differenced

responses of the 19 mirror-symmetric pairs of LPTCs (see Fig. 4A below). This pairwise approach to

combining the output of the left and right optic lobes is intended to represent the fact that each LPTC

pair carries separable information on symmetric versus asymmetric motions, and makes no explicit

assumptions on the actual downstream connections of the LPTCs, which is necessary because our

knowledge of how the descending neurons combine this information remains incomplete (36–38).

Flight physics

The parameterized output equation (Eq. 2) models how the insect’s six degrees of freedom of rigid-

body motion motion are represented in the 38-dimensional output of its motion vision system. To

understand how this sensor output responds to control inputs and aerodynamic disturbances, we

must also model the insect’s flight dynamics by parameterizing the state equation (Eq. 1). Previous

state-space models of insect flight control (18) have not attempted to identify the detailed control

inputs that are available to the insect, so building a biologically-meaningful model requires the

development of new analytical modeling approaches, as described in the sections below.
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State and disturbance vector. The insect’s rigid-body flight dynamics (Fig. 2A) are described by

the Newton-Euler equations of motion relating its linear and angular acceleration to the gravitational

and aerodynamic forces and moments (17). For convenience, these vector quantities are defined

in body-fixed stability axes whose 𝑥-axis is aligned to the flight velocity vector at equilibrium and

whose 𝑦-axis is normal to the insect’s symmetry plane. It follows that the insect’s state vector x must

contain complete information on its linear velocity v = [𝑢 𝑣 𝑤]𝑇 and angular velocity 𝝎 = [𝑝 𝑞 𝑟]𝑇

with respect to an inertial reference frame, together with information on the roll and pitch angles

of the body {𝜙, 𝜃}, which is needed to keep track of gravity as the insect rotates. For the linearized

system in Eqs 1–2, these 8 elements of the state vector x are treated as small perturbations (𝛿)

from level symmetric rectilinear flight at equilibrium, and are separated into their symmetric and

asymmetric parts xlong = [𝛿𝑢 𝛿𝑤 𝛿𝑞 𝛿𝜃]𝑇 and xlat = [𝛿𝑣 𝛿𝑝 𝛿𝜙 𝛿𝑟]𝑇 , describing longitudinal and

lateral motions, respectively. Bulk motion of the surrounding air mass produces the same relative

airflow as translational or rotational self-motion, so we use analogous perturbation quantities to

form the aerodynamic disturbances in the disturbance vector d.
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Figure 3: Modeling of blowfly flight physics. (A) We estimated the fly’s inertia tensor using synchrotron-

based X-ray microtomography: images show a 3D rendering and longitudinal/transverse slices of a male

blowfly. (B,C) We used high-speed videography to record the wing kinematics of free-flying blowflies over

a range of flight speeds, and used functional principal components analysis to define a set of control inputs

summarising the coupled variation in wing-twist (B) and tip (C) kinematics: phase portraits illustrate the

reference wing kinematics (black) ±1 S.D. (cyan/magenta) in the first principal component (PC1). Note that

PC1 involves coupled changes in stroke plane, stroke amplitude, and wing twist, which we may conceptualize

as characterizing the result of the fly’s limit-cycle control of its wingbeat oscillation (39). (D) We used a

Reynolds-averaged Navier Stokes solver to model how the aerodynamics vary with the kinematics; this image

of the wing and wake shows vortex shedding at the end of the downstroke, visualized using iso-𝑄 criterion

surfaces (𝑄 = 0.001) colored by vorticity. (E) We estimated the fly’s stability and control derivatives by

regressing the wingbeat-averaged aerodynamic forces and moments on the perturbed states or control inputs

for a single wing; this plot shows the zero-intercept regression of the change in lateral force with respect to

the change in lateral velocity; control derivatives were estimated similarly by modeling the changes in the

aerodynamic forces with respect to each modeled control input. (F) Eigenstructure of the system matrix:

the eigenvalues of A are plotted in the complex plane, with labels denoting the dominant components of

self-motion for the associated eigenvectors; note that there is a pair of unstable modes with positive real

parts, indicating that the fly’s flight dynamics are inherently unstable.
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Reference wing kinematics. A blowfly’s wingbeat is a complex three-dimensional limit cycle

motion involving substantial aeroelastic deformation, driven by muscular forces applied at the

wing root through one of the most complex linkages in the natural world (40). To capture this

complexity, we used four high-speed video cameras to record the deforming wing kinematics of

N=28 individuals over 274 flights at 3,800 fps, and used a voxel carving method (41) to identify the

three-dimensional outline of the wings and estimate the pose of the body (Fig. 3B); see Methods.

We measured the angular position of the wing tips in a body-fixed coordinate system (Fig. 3C),

and estimated the torsional deformation of the wings under a linear twist distribution (Fig. 3B).

We then fitted a Fourier series with linear trend to each of the 2,708 wingbeats that we recorded

for either wing. We defined a set of reference wing kinematics for our aerodynamic modeling by

averaging the Fourier coefficients over three wingbeats representing near-equilibriun flight. These

three wingbeats were centered on the wingbeat that most nearly achieved level flight from within

the subset of wingbeats associated with near-zero body acceleration (< 0.5 m s-2). For generality,

we set the reference wingbeat frequency ( 𝑓𝑒 = 166 Hz), reference flight speed (𝑢𝑒 = 0.85 m s-1),

and reference body pitch angle (𝜃𝑒 = 30◦) to their mean values over all of the wingbeats we had

measured, and used these to model a reference condition of level forward flight.

Control input vector. Whereas the control inputs of an aircraft are known by design, and in-

clude simple mechanical quantities such as throttle settings and control surface deflection angles,

insect wings are passive structures that lack discrete control surfaces. This makes it challenging

to identify what inputs an insect’s control vector u should contain, but defining this in a biologi-

cally meaningful way is essential to any meaningful analysis of controllability. We therefore used

functional principal components analysis (42) to summarize the empirical variation in the Fourier

coefficients describing each of the 2,708 wingbeats that we had measured. This analysis decom-

posed the observed aeroelastic variation in the wing kinematics into a set of principal components

(PCs) characterizing the dominant kinematic couplings (Fig. 3B-C; see Methods). The first four

PCs define an orthonormal basis for the control vector u that is sufficient to capture 61% of the
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measured variation in the Fourier coefficients. We assumed that the four PCs could be controlled

independently on each wing, and used them together with the wingbeat frequency 𝑓 to define the 9

elements of the control vector u. It is an open question whether this approach is sufficient to describe

all of the important kinematic variation in blowfly flight control, but our use of these four PCs is a

pragmatic choice to ensure that the dimension of the resulting control input vector u is the same as

that of the state vector x, resulting in a fully-actuated, rather than under- or over-actuated, system.

Furthermore, in a qualitative sense, the first four PCs already capture the key kinematic control

inputs that are known to be important in insect flight control (43), including coupled changes in

stroke amplitude and stroke plane (Fig. 3C), and changes in the timing and extent of wing rotation

at or around stroke reversal (Fig. 3B).

Physical modeling of the state equation. We used synchrotron-based X-ray microtomography

(Fig. 3A) to estimate the inertia tensor of Calliphora for N=3 freshly-killed individuals, and used

a Reynolds-averaged Navier-Stokes (RANS) solver (Fig. 3D) to model the aerodynamic forces and

moments acting at the wing hinge under the reference kinematics. Because the flight dynamics model

is linearized about equilibrium, we adjusted the assumed body mass, body drag, and wing hinge

moment arm so that the aerodynamic forces and moments balanced the gravitational force when

integrated over the reference wingbeat kinematics. We then ran a computational experiment (44)

in which we simulated the aerodynamic effect of small perturbations to the insect’s motion state

in x. These perturbations are aerodynamically equivalent to the gust disturbances in d, so having

estimated the partial derivatives of the wingbeat-averaged aerodynamic forces and moments using

a zero-intercept regression model (Fig. 3E), we were able to parameterize the system matrix A and

disturbance matrix G. We parameterized the control matrix B in a similar manner for symmetric

versus asymmetric control inputs, thereby completing our modeling of the state equation (Eq. 1).
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Co-tuning of Physics & Physiology

Having fully parameterized our state-space model of blowfly flight (Eqs. 1-2), it remains to iden-

tify the functional principle that underpins the physiological tuning of the LPTCs. We begin by

examining the natural dynamics of the physical system, as a prerequisite for the more advanced

control-theoretic analyses that follow.

Eigenstructure of the flight dynamics. The system matrix A has a similar eigenstructure (Fig. 3F)

to most other models of insect flight dynamics (18), describing a characteristic set of symmetric

versus asymmetric, stable versus unstable, and oscillatory versus monotonic motions. We summarise

these by reporting the non-dimensional period (𝑇) and/or time constant (𝜏) of each mode expressed

relative to the insect’s wingbeat period. The symmetric modes are dominated by coupled pitch-

heave motions, comprising a pair of fast (𝜏 = 8.4) and slow (𝜏 = 72.9) stable monotonic subsidence

modes, and a slow unstable oscillatory mode (𝑇 = 70.0; 𝜏 = 24.6). The asymmetric modes are

dominated by coupled roll-yaw motions, comprising a slow but heavily-damped oscillatory mode

(𝑇 = 48.1; 𝜏 = 8.2), a fast stable monotonic subsidence mode (𝜏 = 2.6), and a fast unstable

monotonic divergence mode (𝜏 = 10.7). The time constants of the unstable modes are large enough

that the instability they describe will develop on a timescale of tens of wingbeats in the absence of

closed-loop control. As the period of each oscillatory mode is also an order of magnitude longer

than the wingbeat period, these results validate our earlier assumption that the aerodynamic forces

and moments may be replaced by their wingbeat averages when modeling the rigid-body flight

dynamics (Eq. 1). Moreover, as blowfly flight is inherently unstable in respect of both symmetric

and asymmetric motions, it follows that the insect must use the output of its sensors to command

closed-loop flight stabilization. That being so, how has evolution tuned the visual physiology of the

blowfly in relation to its flight dynamics?

Formalization of the mode-sensing hypothesis. The tuning of the LPTCs is characterised by the

normalized row vectors of the bilateral output matrix C, each of which represents a specific direction
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of symmetric or asymmetric self-motion that the LPTCs are best-tuned to detect (5). The mode-

sensing hypothesis predicts that these physiologically-preferred directions of self-motion should

be matched to certain dynamically-significant directions of self-motion determined by the animal’s

flight dynamics (3). For the unstable system described by Eqs. 1-2, those dynamically-significant

directions are characterised by a set of real symmetric matrix structures called Gramians, which

are defined in the frequency (𝜔) domain as:

Observability Gramian: Y𝑜 =
1

2𝜋

∫ ∞

−∞
(− 𝑗𝜔I − A𝑇 )−1C𝑇C( 𝑗𝜔I − A)−1 𝑑𝜔 (3)

Controllability Gramian: X𝑐 =
1

2𝜋

∫ ∞

−∞
( 𝑗𝜔I − A)−1BB𝑇 (− 𝑗𝜔I − A𝑇 )−1 𝑑𝜔, (4)

where I is the identity matrix (45). The disturbance-sensitivity Gramian X𝑑 is composed similar to

the controllability Gramian X𝑐, replacing B with G. These Gramians are evaluated as solutions to a

combined pair of Riccati and Lyapunov equations (see Supplementary Materials), but it is clear by

inspection of Eqs. 3-4 that they relate to the interaction between the natural response of the system

described by the system matrix A, and either the output matrix C, the control matrix B, or the

disturbance matrix G. Each Gramian therefore relates to one of the distinct flows of signal energy

summarised by the red arrows in Fig. 1.

To explain their dynamical significance more formally, we note that the orthonormal eigen-

vectors {v̂ 𝑗 } and ordered eigenvalues {𝜆 𝑗 } of each Gramian define the principal axes of an 𝑛-

dimensional ellipsoid with semi-axis lengths
√︁
𝜆 𝑗 , the longest axes of which represent the most

dynamically-significant directions in the insect’s state space (46). For example, the eigenvectors

and eigenvalues of the controllability Gramian X𝑐 define the principal axes of the controllability

ellipsoid E𝑐 = {x ∈ R𝑛; x𝑇X−1
𝑐 x ≤ 1}. The dynamical significance of this structure can be seen by

noting that the controllability Gramian X𝑐 is defined (45) such that the quantity ∥uopt∥2 = x0
𝑇X−1

𝑐 x0

represents the minimum control input energy required to: (i) evolve the stable portion of the system

to a given state x = x0; and (ii) regulate the unstable portion of the system to the origin x = 0.

It follows that the longest axes of the controllability ellipsoid E𝑐 encode the most-controllable

directions in the insect’s state space, representing those specific self-motions that can be produced
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with the least input energy ∥uopt∥2 at the controls.

The observability and disturbance-sensitivity ellipsoids are constructed similarly, such that the

observability ellipsoid E𝑜 encodes the most-observable directions (i.e., those self-motions that

characteristically yield the most output energy at the sensors), and the disturbance-sensitivity

ellipsoid E𝑑 encodes the most-sensitive directions (i.e. those self-motions that can be excited with

the least input energy in a gust). These three ellipsoids thereby describe the specific self-motions that

the insect is best-able to drive (E𝑐), best-equipped to estimate (E𝑜), and most-prone to experience

(E𝑑). Aligning the sensors to any of these sets of dynamically-significant directions would therefore

reflect a different optimization principle associated with signal energy flow through the system

(Fig. 1). Comparing these dynamically-significant directions with the preferred directions of the

LPTCs (Fig. 4B-D) allows a formal test of the mode-sensing hypothesis, and the identification

of any underlying optimality principle within the control-theoretic framework of observability,

controllability and disturbance-sensitivity (47).
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Figure 4: Functional principles of blowfly sensorimotor design. (A) Each LPTC pair carries separable in-

formation on symmetric versus asymmetric motion, which we illustrate by taking the sum (blue) or difference

(red) of their response fields, shown here for VS7. (B,C) These response fields encode the cells’ preferred

directions of rotational and translational self-motion, which the mode-sensing hypothesis predicts will be

aligned to dynamically-significant directions in the insect’s state space. To test this, we quantified their align-

ment to the ordered symmetric (blue) or asymmetric (red) eigenvectors of the controllability and observability

Gramians {v1, . . . , v8}, ranked by their dynamical significance. Collectively, the VS-cells strongly encode all

of the most-controllable directions of symmetric/asymmetric motion, whereas the HS-cells strongly encode

only the most-observable direction of symmetric motion. (D) Averaging over each LPTC sub-population, the

V- and VS-cells strongly encode the directions that maximize controllability or disturbance-sensitivity both

independently and jointly with observability; stars (∗) denote statistical significance controlling the overall

Type I error at 𝛼 = 0.05. Note that no LPTC sub-population is aligned to the most-observable directions

of motion, as would be conventional in engineering design. (E) To assess overall system performance, we

computed three measures (the Hankel norm, the Frobenius-Hankel norm, and the Hankel Nuclear norm)

of the Hankel singular values {ℎ1, . . . , ℎ8} characterizing signal energy flow through the system for all 19

LPTC pairs (red points) and compared these to the Hankel singular values of 100,000 randomly-generated

sets of preferred directions (blue box plot; whiskers extend ± 2.7 S.D.). The blowfly’s Hankel singular values

are far higher than expected by chance, demonstrating that the LPTCs’ tuning maximizes signal energy flow

through the system. The first Hankel singular value provides an upper bound on signal energy flow from

input to output, and is higher for the blowfly than for any of the randomly-generated systems.
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Directional tuning of the LPTCs. We quantified the alignment of the preferred directions of

the LPTCs to the dynamically-significant directions of self-motion by taking their absolute inner

products 𝜅𝑖 𝑗 = |⟨ĉ𝑖, v̂ 𝑗 ⟩|. However, as the inner product of any symmetric-asymmetric pairing is

identically zero, we use 𝜅∗
𝑖 𝑗

to distinguish symmetric-symmetric or asymmetric-asymmetric pairings

for which 𝜅∗
𝑖 𝑗
∈ [0, 1]. This analysis shows that the differenced responses of the three V-cells and

VS2–10 are very strongly aligned (𝜅∗
𝑖 𝑗
≥ 0.9) with the most-controllable direction of asymmetric

motion, whilst the differenced response of VS1 is similarly strongly aligned with the second most-

controllable direction of asymmetric motion (Fig. 4B). Likewise, the summed responses of the

subset {V1, Vx, VS1-2, VS8–10} are strongly aligned (𝜅∗
𝑖 𝑗

≥ 0.7) with the most-controllable

direction of symmetric motion (Fig. 4B). The same holds true for the disturbance-sensitivity

directions, but the summed and differenced responses of the vertical system cells are only weakly

aligned with the most-observable directions of symmetric and asymmetric motion (𝜅∗
𝑖 𝑗
≤ 0.5). In

contrast, the summed responses of the HS and H-cells are all strongly aligned (𝜅∗
𝑖 𝑗
≥ 0.7) with the

most-observable direction of symmetric motion (Fig. 4C), with those of the subset {HSE, H1, H2,

Hx} being especially so (𝜅∗
𝑖 𝑗
> 0.9).

Overall tuning of LPTC sub-populations. To assess the tuning of each sub-population of LPTCs

to each set of dynamically-significant directions, we defined their weighted mean alignment (𝜂) as:

𝜂 =

∑2𝑛
𝑖=1

∑8
𝑗=1 𝜅𝑖 𝑗

√︁
𝜆 𝑗

𝑛
∑8
𝑗=1

√︁
𝜆 𝑗

, (5)

which measures the extent to which the preferred direction vectors of an entire sub-population of

LPTCs encode the longest axes of a given ellipsoid, and generalizes to the case where the preferred

directions of the LPTCs used to calculate the {𝜅𝑖 𝑗 } are replaced with a mirrored set of randomized

direction vectors drawn from a uniform distribution on the unit sphere inR8. A Monte Carlo analysis

run over 100,000 such sets yields an expected weighted mean alignment of 𝜂 = 0.42 under the null

hypothesis. Applying a Bonferroni correction to control the Type I error rate at 𝛼 = 0.05 (Fig. 4D),

we find that the VS-cells encode the most-controllable and most-sensitive directions much more

strongly than expected by chance (𝜂 = 0.73 and 𝜂 = 0.76, respectively; two-tailed 𝑝 < .0025) and

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2025. ; https://doi.org/10.1101/2024.03.29.587347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/


the most-observable directions more weakly (𝜂 = 0.17; two-tailed 𝑝 < .0025). The V-cells display

similar properties, also encoding the most-controllable and most-sensitive directions much more

strongly than expected by chance (𝜂 = 0.75 and 𝜂 = 0.80, respectively; two-tailed 𝑝 < .0025). In

contrast, the HS-cells do not encode any set of dynamically-significant directions any more strongly

than expected by chance (𝜂 ≤ 0.42), and the H-cells encode the most-sensitive directions much

more weakly (𝜂 = 0.07; two-tailed 𝑝 < .0025). It follows that the VS- and V-cells are tuned to

encode the effects of control inputs and gust disturbances, whereas the H-cells are tuned to observe

characteristics of the optic flow field that are comparatively insensitive to disturbances.

Joint optimization of sensing & control. The properties of controllability, observability, and

disturbance-sensitivity relate to signal energy flow to or from the system state, so depend upon our

choice of coordinate system for the state vector x. That choice is meaningful for a technological

system whose internal state is represented explicitly in its programming, but is ambiguous for a

biological system whose internal state cannot be directly observed. This ambiguity is eliminated

by the alternative hypothesis that instead of being tuned to optimize any one such property in a

given state space, the preferred directions of the LPTCs are matched to the directions of self-motion

that jointly optimize controllability and observability, or disturbance-sensitivity and observability.

A system that implemented this principle would be globally optimal in the sense that it would

maximize the transfer of signal energy from input to output, and hence unique in the sense that

it would not depend on our choice of coordinate system for the state. For example, if evolution

has tuned the vertical system cells to detect the effects of control inputs, then we should expect

them to be strongly aligned to the joint most-controllable/observable directions. Conversely, if

evolution has tuned the horizontal system cells to observe characteristics of the optic flow field

that are robust to gust disturbances, then we should expect them to be weakly aligned to the joint

most-sensitive/observable directions.

The jointly-optimized directions of self-motion are given by the normalized column vectors

{t̂ 𝑗 } of the transformation matrix T−1, where x̆ = Tx is a balancing transform that equalizes and

20

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2025. ; https://doi.org/10.1101/2024.03.29.587347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/


simultaneously diagonalizes the transformed Gramians. Applying this balancing transform, which

is unique up to multiplication by a sign matrix, we have either X̆𝑐 = Y̆𝑜 or X̆𝑑 = Y̆𝑜, where

Y̆𝑜 = (T−1)𝑇Y𝑜T−1 is a diagonal matrix. The diagonal entries of this matrix are the system’s

Hankel singular values, which may be calculated directly as ℎ 𝑗 =
√︁
𝜆 𝑗 where {𝜆 𝑗 } are the ordered

eigenvalues of Y𝑜X𝑐 or Y𝑜X𝑑 . The Hankel singular values are similarity invariants that do not

depend on the choice of coordinate system for x, and they measure the degree of joint observability

and controllability or disturbance-sensitivity in the directions {t̂ 𝑗 } in the original coordinate system.

Importantly, whilst the eigenvectors of the balanced Gramians in the new coordinates are orthogonal,

the directions that they define in the original state space are not.

To assess the overall tuning of the LPTCs to these jointly-optimized directions, we calculated

their absolute inner products as 𝜅𝑖 𝑗 = |⟨ĉ𝑖, t̂ 𝑗 ⟩|, reporting their weighted mean 𝜂 using the Hankel

singular values ℎ 𝑗 =
√︁
𝜆 𝑗 as the weights in Eq. 5. This analysis (Fig. 4D; see also Fig. 5A,B)

confirms that the VS and V-cells encode the most-controllable/observable (𝜂 ≥ 0.75) and most-

sensitive/observable directions (𝜂 ≥ 0.74) much more strongly than expected by chance (two-tailed

𝑝 < .0025). The VS- and V-cells thereby embed the principle of encoding the directions in state

space for which signal energy flow through the system is maximized. In other words, they are tuned

to sense those modes of motion whose excitation yields the greatest sensor output for a given input

of energy at the controls or in a gust. In contrast, the H-cells encode the most-sensitive/observable

directions much more weakly than expected by chance (𝜂 = 0.13; two-tailed 𝑝 < .0025). In other

words, they are tuned to be insensitive to those modes of motion that are most readily excited by

aerodynamic disturbances.

A functional principle of visuomotor tuning. The preceding analyses compare the randomly-

generated directions or preferred directions of the LPTCs against the biological ground truth of

the parameterized state space model (Eqs. 1–2). This approach enables us to draw conclusions on

the directional tuning of the individual LPTCs, but risks circular reasoning because their preferred

directions also define the output matrix C that is used to generate the observability Gramian Y𝑜
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(Eq. 3). This circularity can be avoided altogether by composing a semi-random observability

Gramian Ỹ𝑜 from the original system matrix A and a random output matrix C̃ formed by generating

19 random direction vectors, mirroring these to yield 19 mirror-symmetric pairs, and taking their

sums and differences to yield a bilateral output matrix with 38 rows. We then use Ỹ𝑜 to compute

the randomized Hankel singular values as ℎ̃ 𝑗 =
√︁
𝜆 𝑗 , where the {𝜆 𝑗 } are the ordered eigenvalues of

Ỹ𝑜X𝑐 or Ỹ𝑜X𝑑 .

Fig. 4E shows three measures of the Hankel singular values associated with the fly’s joint

controllability/observability directions fall at the upper extreme of the null distribution of 100,000

randomly-generated sets. The first measure is the Hankel norm for the open loop system, or the

largest Hankel singular value ℎ1. The second is the Hankel-Frobenius norm,
√︃∑

𝑖 ℎ
2
𝑖
, and the third

is the Hankel Nuclear norm,
∑
𝑖 ℎ𝑖. This confirms our conclusion that the preferred directions of the

blowfly motion vision system are specifically adapted to maximize the flow of signal energy from

control inputs to sensor outputs, where signal energy is defined for an arbitrary vector signal w(𝑡)

as

signal energy: ∥w(𝑡)∥2
𝐿2 [0,∞) =

∫ ∞

0
∥w(𝑡)∥2

2 𝑑𝑡, (6)

and ∥ · ∥2 is the Euclidean vector norm. Moreover, the first Hankel singular value provides an upper

bound on signal energy flow from input to output, and is higher for the biological ground truth

than for any of the randomly-generated systems in Fig. 4E. Similar conclusions hold for the fly’s

joint disturbance-sensitivity/observability directions, and hence for the flow of signal energy from

gust disturbances to sensor outputs (Fig. S4B,D). Finally, as the neck motor neurons that drive

optokinetic head movements display similar response properties to the VS and HS cells (33), we

infer that the same principle of maximizing signal energy transfer is also likely to apply at the level

of the neck motor system driving any compensatory head movements.

Robustness of conclusions. To avoid making any assumptions on how the LPTC outputs are

combined, we verified that the same conclusions hold when the Hankel singular values are calculated

for the unilateral output matrix C′ as opposed to the bilateral output matrix C (Fig. S4). We also tested
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how the assumed nearness distribution of the visual environment influences the fly’s Hankel singular

values, by synthesizing 100 perturbed output matrices and observability Gramians with respect to

two different environmental configurations: a cuboid environment generated by perturbing the 2 m

cube used in the analyses above, and a segmented ellipsoid environment generated by perturbing

a sphere of equal nominal volume (Fig. S3A,C). The parameters defining each configuration were

selected at random from a uniform distribution with 50% variation from their nominal values to

generate variability and asymmetry in the assumed visual environment. The resulting distributions

of perturbed Hankel singular values again remain at the extreme upper end of the null distribution

(Fig. S3B,D). We conclude that the directional tuning of the LPTCs maximizes signal energy

transfer between the inputs and outputs of the system, as opposed to maximizing conventional

design criteria such as the accuracy of state estimation.

Discussion

How does the LPTCs’ tuning embed the functional principle of maximizing signal energy transfer

from input to output? As we have shown (Fig. 4), the vertical system LPTCs are strongly aligned to

the insect’s most-controllable/observable directions of self-motion. But more than this, their align-

ment is high for all 8 of the joint controllability/observability directions — not just those which

are the most controllable/observable (Fig. 5A,B). Specifically, every one of the joint controllabil-

ity/observability directions is strongly aligned (𝜅∗
𝑖, 𝑗

≥ 0.75) with at least one VS-cell and at least one

V-cell (Fig. 5A,B), and the same result holds true for the joint disturbance-sensitivity/observability

directions. In contrast, the horizontal system cells encode the joint controllability/observability

directions much less strongly (Fig. 4D), effectively encoding a region of state space that is of lesser

dynamical significance to the insect, and which is likely to be of greater significance in guidance

and navigation tasks.
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Figure 5: Tuning of the vertical system LPTCs to the fly’s jointly controllable/observable directions

of self-motion. (A,B) Signal energy flow is maximized when a system’s sensors are matched to its most-

controllable/observable directions of self-motion. To demonstrate the closeness of this tuning in the blowfly,

we first quantified the alignment of the preferred directions of the LPTCs to the ordered symmetric (blue) or

asymmetric (red) column vectors {t1, . . . , t8} of the inverse balancing transformation matrix. These vectors

span the entire controllable/observable subspace of the insect, and the bilaterally summed and differenced

response fields of the VS- and V-cell pairs are shown to be strongly aligned with them all. (C-E) To

demonstrate this visually, we also computed the re-projected optic flow fields corresponding to: (C) the

top three most controllable/observable directions of symmetric (blue) or asymmetric (red) self-motion; and

(D) the preferred directions of symmetric (blue) or asymmetric (red) self-motion for the three V-cell pairs.

Note the closeness of the match. (E) The summed and differenced response fields of the V-cell pairs also

resemble the re-projected optic flow fields corresponding to the joint most-controllable/observable directions

of motion, but do so less closely owing to spatial variation in the cells’ local motion sensitivity, which is

expected to embed a nearness distribution corresponding to a natural environment (16).
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How is this combination of breadth and specificity possible? In principle, the 10 pairs of

VS-cells have sufficient redundancy to encode any set of 8 directions strongly, but the same

cannot be said of the 3 pairs of V-cells. The strength of the V-cells’ alignment to all of the joint

controllability/observability directions instead reflects the fact that these 8 directions are highly

non-orthogonal, describing a narrow region of the insect’s state space that is dominated by the

same rotational motions as dominate the VS- and V-cell responses (Fig. 2B-E). Specifically, the

natural modes of motion of a blowfly (Fig. 3F) are dominated by pitch-heave and roll-yaw dynamics

(Table S6), which are the same self-motions that the vertical system LPTCs are tuned to sense.

This is the region of state space that is of the greatest dynamical significance to the insect, and the

hidden layer of V-cells embeds it in its entirety (Fig. 5B).

The strength of this embedding can be visualised by comparing the summed and differenced

response fields of the V-cells (Fig. 5E) to the optic flow fields corresponding to their preferred

directions of self-motion (Fig. 5D) and to the optic flow fields corresponding to the top three

most-controllable/observable directions for the insect (Fig. 5C). The closeness of the match is

striking, and this together with the broader correspondence between the vertical system LPTCs and

the joint controllability/observability and disturbance-sensitivity/observability directions makes the

VS- and V-cells well-suited to modulating flight stabilization/control. In contrast, the horizontal

system LPTC responses are dominated by forward motion and yaw-sideslip. With the exception of

yaw, these motions are of lesser dynamical significance, but they include the equilibrium forward-

flight condition about which the dynamics are linearized. It follows that the horizontal system cells

are better suited to encoding steady-state properties of the insect’s self-motion associated with its

navigational state and guidance behaviors, which are also the directions of self-motion that are most

robust to disturbance.

What are the functional benefits of structuring a system in this way? Intuitively, it makes sense

to optimize a system’s sensors in relation to the endogenous inputs and exogenous disturbances

that excite its motion, but how does this work in the context of closed-loop control? The transfer of

signal energy from input to output is maximized by optimizing the storage and retrieval of signal
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energy to and from the system state. For an open-loop system, signal energy stored in the state

x is released through the evolution of the natural modes of the system matrix A, which may be

shaped arbitrarily through closed-loop control. Applying the principle of maximizing the Hankel

singular values by tuning the sensing directions in C to the actuation directions of B through the

natural modes of A balances the open-loop system so that it is optimized for maximum achievable

closed-loop performance. This approach of tuning an open-loop system to maximize potential

closed-loop performance, independent of the feedback architecture, is well documented and has

significant precedent in the sensor placement and selection literature (48).

The evolutionary principle that we have identified of maximizing signal energy transfer from

motor input to sensor output represents a radical departure from the design of current technological

systems. In conventional engineering practice, sensor placement is usually optimized at a late

stage of platform design, and typically aims to maximize the accuracy of state estimation. This

is achieved by maximizing the signal-to-noise ratio at the sensors, which means placing them

to optimize observability (23, 49). Tuning the LPTC response fields in this manner would yield

sensor outputs with the best possible signal-to-noise ratio, but if the system was rarely excited in

those directions by its own actions or by disturbances, then it would not be energetically efficient

to encode them. In contrast, natural selection tends to produce neural architectures that prioritize

energetic and hence computational efficiency (50), so it is reasonable to suppose that the principle

of maximizing signal energy throughput might also extend to the sensorimotor systems of other

organisms.

As the field of robotics transitions from platforms with sensorimotor architectures composed

of small numbers of discrete sensors and actuators to architectures with continuum sensing and ac-

tuation, new design principles will be required. In order to achieve optimal performance, synthesis

approaches that simultaneously consider the specification of sensors, actuators, and platform dy-

namics will be critical. Embodied design principles that have produced nature’s most effective and

agile organisms (51), like the joint maximization of signal energy storage/retrieval uncovered here,

have the potential to revolutionize the early stage design process and maximize the performance of
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future engineering systems. Such bio-informed design principles will prove especially relevant in

applications that—like living organisms—are resource-constrained by computational capacity and

power or energy density.

Materials and Methods

Electrophysiological characterisation of LPTC response fields

Animals and dissection method. Adult male and female blowflies (Calliphora vicina) were

taken from a laboratory colony at Imperial College London where they were kept on a 12:12 hour

light:dark cycle. Flies were dissected following a standardized procedure (52): after removing the

legs, proboscis, and wings, the resulting wounds were sealed with beeswax before fixing the animal

to a dedicated holder, with the thorax tilted 45◦ down relative to the head. The rear head capsule

was opened using a micro-scalpel, and fat tissue, air sacs, and some tracheae were removed to

enable placement of extracellular electrodes in the lobula plate. Saline solution (53) was added to

keep the neural tissue moist. The centre of the head was positioned at the centre of a goniometric

visual stimulation device, and aligned using the symmetrical deep pseudo-pupil method (54) at a

precision of ±1◦ in head roll, pitch and yaw.

Animals and dissection method. Adult male and female blowflies (Calliphora vicina) were

taken from a laboratory colony at Imperial College London where they were kept on a 12:12 hour

light:dark cycle. Flies were dissected following a standardized procedure (52): after removing the

legs, proboscis, and wings, the resulting wounds were sealed with beeswax before fixing the animal

to a dedicated holder, with the thorax tilted 45◦ down relative to the head. The rear head capsule

was opened using a micro-scalpel, and fat tissue, air sacs, and some tracheae were removed to

enable placement of extracellular electrodes in the lobula plate. Saline solution (53) was added to

keep the neural tissue moist. The centre of the head was positioned at the centre of a goniometric

visual stimulation device, and aligned using the symmetrical deep pseudo-pupil method (54) at a
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precision of ±1◦ in head roll, pitch and yaw.

Extracellular recording and visual stimulation method. We used extracellular tungsten elec-

trodes with 3 MΩ impedance (FHC Inc., Bowdoin, ME, USA; product code: UEWSHGSE3N1M)

to record the neural activity of the V1, V2, and Vx heterolateral LPTCs. The electrodes were

placed within different target areas depending on the recorded cell type using the tracheal branch-

ing patterns of the lobula plate as landmarks. Neuronal signals were amplified using a custom-built

differential amplifier with a nominal gain of 10k, sampled and digitized at 20 kHz using a NI-

DAQ board (USB-6211), and stored on the hard drive of a PC. Response fields were characterized

only when the signal-to-noise ratio between recorded LPTC spikes and background noise was

greater than 2:1, in which case a simple threshold-based method was sufficient to reliably detect

time-stamped spikes of the recorded cell.

We used a custom-built automated goniometric recording platform to present a moving visual

stimulus at any specified azimuth (𝛾) and elevation (𝛽) in the fly’s retinal coordinates. An LCD

monitor (AOC AGON AG251FZ) was placed 0.3 m in front of the animal, running at a refresh rate

of 240 Hz. We presented square-wave visual gratings (minimum, maximum intensity: 0.28, 265.70

cd m−2; Michelson contrast: 0.9979) moving perpendicular to their orientation typically at 1 or

3 Hz temporal frequency behind a circular aperture subtending 24◦. Experiments where different

temporal frequencies between 0.3 - 3 Hz were applied did not affect the self-motion preferences of

the cells. To assess a cell’s local preferred direction (LPD) and local motion sensitivity (LMS), the

grating was moved in 8 different directions at a spacing of 45◦. Each motion stimulus was presented

for 1 s, followed by a brief period of 0.5 s during which a homogeneous screen was presented at the

mean luminance level. In total, the motion stimulus was presented at 84 positions over both eyes,

covering nearly the entire 4𝜋 visual field.

Local preferred directions and local motion sensitivities. At any given stimulus position we

calculated the vector sum from the responses to the 8 different stimulus directions. Magnitude

and direction of the resulting vector were taken to indicate the LMS and LPD, respectively. Those
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response parameters were plotted as a function of azimuth (𝛾) and elevation (𝛽) in a cylindrical

projection of the fly’s spherical visual field to reveal the recorded cell’s global response field

properties (Fig. 2B-E). Within each response field, all vectors were normalized to the maximum

response measured. To facilitate recognition of the global response field organization, the measured

data in Fig. 2B-E (black vectors) are complemented by interpolated data (colored vectors). The data

collected using this method are in line with those previously gathered using a local stimulus that

changed its motion direction continuously (33,52,53). Although we presented the motion stimulus

at 84 positions over both eyes, the response fields plotted for the heterolateral LPTCs in Fig. 2C-E

show only the data obtained upon visual stimulation within the visual hemisphere that results in

the highest motion sensitivity (i.e., strongest directional-selective response), which is typically the

visual hemisphere ipsilateral to the dendritic input region of the recorded cell.

modeling of LPTC response properties

Preferred self-motion parameters. We estimated each cell’s preferred self-motion parameters

using an iterative least squares algorithm (KvD) proposed by Koenderink and van Doorn (55).

The KvD algorithm is applied to retrieve the angular velocity 𝝎, translational velocity v, and the

local distance distribution 𝑑 of self-motion that induces an optic flow field that best fits the global

response field organization of the studied cell. Hence, if we consider a given LPTC to act as a

matched-filter for optic flow (16), the KvD algorithm enables us to estimate which self-motion

components of a moving fly would most strongly stimulate the cell. We applied a slightly modified

version of the KvD algorithm in which we assumed a homogeneous distance distribution to obtain

the preferred rotation axes of the V1, V2, and Vx-cells (Fig. 2G); the preferred rotation axes of the

VS-cells (Fig. 2F) were computed using a similar method by (26). There were no significant sex

differences in the preferred rotation axes of the three heterolateral LPTCs, and we therefore pooled

the response field data across sexes.
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Encoding of motion state by the LPTCs. The matched filter hypothesis proposed in (16) suggests

that each LPTC’s output can be considered as a comparison between the cell’s response field and

the optic flow fields generated during the animal’s self-motion, where each cell is tuned to sense a

specific flow field and hence some specific combination of rotational and translational self-motion.

Mathematically, this comparison can be modeled as an inner product on a discrete (16, 56, 57) or

continuous (58–60) spatial domain. Here we define a spatial inner product between the instantaneous

pattern of optic flow ¤Q and a given tangential cell’s response field F𝑖 as:

y𝑖 = ⟨ ¤Q,F𝑖⟩ =
∫
𝑆2

¤Q · F𝑖 𝑑Ω, 𝑖 = 1, . . . , 𝑚, (7)

where 𝑚 is the number of LPTC response fields under consideration.

The optic flow pattern ¤Q is the vector field of the relative velocity of visual contrast from objects

in the environment projected into the tangent space 𝑇r𝑆
2 of the imaging surface (Fig. S1A). Its

global structure depends primarily on the observer’s rotational velocity 𝝎 and translational velocity

v. The translational contribution at each viewing direction r = (𝛾, 𝛽) is inversely scaled by the

distance 𝑑 (𝛾, 𝛽) from the imaging surface to the nearest object in the environment (Fig. S1B).

Since 𝑑 can be unbounded, the nearness function 𝜇(𝛾, 𝛽) = 1/𝑑 (𝛾, 𝛽) is commonly used in the

formulation. The instantaneous optic flow pattern ¤Q on a spherical imaging surface 𝑆2 for an

arbitrary distribution of objects can be expressed as (55):

¤Q = −𝝎 × r − 𝜇 [v − ⟨v, r⟩r] . (8)

In order to formulate the optic flow pattern in closed form for the calculation of the spatial inner

product ⟨ ¤Q,F𝑖⟩, the shape of the nearness function and its dependence on the relative pose variables

q = {𝑥, 𝑦, 𝑧, 𝜙𝑠, 𝜃𝑠, 𝜓𝑠} of the animal needs to be specified. Here {𝑥, 𝑦, 𝑧} are the coordinates of

the vantage point with respect to the inertial frame F = {𝒙̂ 𝑓 , 𝒚̂ 𝑓 , 𝒛̂ 𝑓 } and {𝜓𝑠, 𝜃𝑠, 𝜙𝑠} are the

3-2-1 Euler angles of the stability frame S relative to the inertial frame F . For the analysis here,

two classes of environment structure were considered, which included an enclosed rectangular

prism and a segmented ellipsoid (Fig. S4). For each of these cases, the nearness 𝜇(𝛾, 𝛽, q) is a

piecewise-continuous function and the methodology for their derivation can be found in (60).
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Formulation of the output matrix. For a given set of unilateral response fields {F𝑖}, the col-

lection of LPTC outputs form a nonlinear output equation y = h(x). To characterize the rigid

body state information encoded by the selected set of measured response fields, each output is

linearized about the reference flight equilibrium x̄. The resulting matrix entries in the unilateral

output equation y = C′x (Eq. 2) are given by

C′
𝑖 𝑗 =

𝜕ℎ𝑖

𝜕𝑥 𝑗

����
x̄
=
𝜕⟨ ¤Q,F𝑖⟩
𝜕𝑥 𝑗

����
x̄
=

〈
𝜕 ¤Q
𝜕𝑥 𝑗

, F𝑖
〉����

x̄
. (9)

In this form, each row of the associated C′ matrix represents the state information present in the

signal from a specific LPTC response field: that is, the direction it encodes in state space.

To develop the output matrix for the measured set of 19 left and right LPTC cell response

fields, the raw data was first converted into stability frame coordinates according to the axis

definitions of Fig. S2A. Note that (𝛾, 𝛽) = (0◦, 90◦) in the plotted response fields (Fig. 2B-E, 4A)

corresponds to the ray line along the 𝒙̂𝑏 axis in Fig. S1B. The recorded LPD and LMS distributions

within the response fields were smoothed with a 2D Gaussian filter and then approximated with

up to 8th degree spherical harmonics in the azimuth and elevation directions to facilitate an

accurate numerical spatial integration. For our baseline calculation, an enclosed rectangular prism

environment (Fig. S4A) was assumed with scaling parameters (𝑔𝑁 , 𝑔𝑆, 𝑎𝐸 , 𝑎𝑊 , ℎ𝐷 , ℎ𝑈) all set to a

distance of 1 m, and as before the reference flight condition was set to the mean forward flight speed

of 𝑢𝑠 = 0.8509 m s-1 that we had measured (see below), such that x̄ = [𝑢𝑠 𝑤𝑠 𝑞𝑠 𝜃𝑠 𝑣𝑠 𝑝𝑠 𝜙𝑠 𝑟𝑠]𝑇 =

[0.8509 0 0 0 0 0 0 0]𝑇 in the stability axes. The corresponding patterns of partial derivatives of

the optic flow 𝜕 ¤Q/𝜕𝑥𝑖 were computed by systematically perturbing each of the rigid body states

and taking finite differences.

The results were used to compute the inner products numerically, resulting in the estimated

response field state encoding shown in Table S7. To perform the subsequent analysis, we extract

the entries according to the rigid body state vector from the flight dynamics model formulation,

x = [𝛿𝑢𝑠 𝛿𝑤𝑠 𝛿𝑞𝑠 𝛿𝜃𝑠 𝛿𝑣𝑠 𝛿𝑝𝑠 𝛿𝜙𝑠 𝛿𝑟𝑠]𝑇 . The states {𝛿𝑥𝑠, 𝛿𝑦𝑠, 𝛿𝑧𝑠, 𝛿𝜓𝑠} typically are not included

in the linearized dynamics since a homogeneous atmosphere assumption is employed. In the

resulting matrix C′
𝑖 𝑗

, consecutive odd and even indices {𝑖 = 1, . . . , 38} correspond to the left and
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right cells of an LPTC pair. Finally, because the flight dynamics model (Eq. 1) splits into symmetric

and asymmetric parts, we form the 38 normalized rows ĉ𝑖 of the bilateral output matrix C (Eq. 2) by

summing or differencing the responses of the 𝑘 = 1, . . . , 19 mirror-symmetric pairs of LPTCs such

that ĉ+
𝑘
= (c′2𝑘 + c′2𝑘−1)/∥c′2𝑘 + c′2𝑘−1∥ and ĉ−

𝑘
= (c′2𝑘 − c′2𝑘−1)/∥c′2𝑘 − c′2𝑘−1∥ as shown in Fig. 4A.

Re-projected optic flow fields. Any given direction of self-motion will produce a specific op-

tic flow field in a given visual environment. We re-projected the optic flow fields ¤Qĉ𝑖 (𝛾, 𝛽)

and ¤Qt̂𝑖 (𝛾, 𝛽) corresponding the specific self-motion directions x = ĉ𝑖 or x = t̂𝑖 in state space

(Fig. 5C-E) by substituting the expressions of the vectors 𝝎 = [𝑝 𝑞 𝑟]𝑇 , v = [𝑢 𝑣 𝑤]𝑇 , and

r = [cos 𝛾 sin 𝛽 sin 𝛾 sin 𝛽 cos 𝛽]𝑇 in the stability frame S, along with an analytical expression

for the nearness of the environment 𝜇(𝛾, 𝛽, q) into the representation for ¤Q above. The resulting

azimuth 𝛾 and elevation 𝛽 components (Fig. S1) of ¤Q are given by

¤𝑄𝛾 = 𝑝 cos 𝛽 cos 𝛾 + 𝑞 cos 𝛽 sin 𝛾 − 𝑟 sin 𝛽 + 𝜇(𝑢 sin 𝛾 − 𝑣 cos 𝛾)

¤𝑄𝛽 = 𝑝 sin 𝛾 − 𝑞 cos 𝛾 + 𝜇(−𝑢 cos 𝛽 cos 𝛾 − 𝑣 cos 𝛽 sin 𝛾 + 𝑤 sin 𝛽), (10)

as plotted in Fig. 5C-E.

Measurement and modeling of free-flight kinematics

Animals and experimental protocol. Larval C. vicina were reared on red meat at 20◦C until

pupation; the adult flies were fed on a combination of milk powder formula and mashed banana,

and were flown from 2–3 days post-eclosion. Individuals were allowed to fly freely within a 1

m diameter opaque acrylic sphere with diffuse overhead lighting. The interior of the sphere was

decorated with pieces of card to provide visual contrast, and an ultraviolet light was placed at

the top to stimulate loitering flight maneuvers. High-speed video sequences were captured using

four synchronized Photron SA3 cameras (Photron Ltd, West Wycombe, UK) with 180 mm macro

lenses (Sigma Imaging Ltd, Welwyn Garden City, UK) viewing the insect through clear portholes

in the upper hemisphere, recording at 3,800 fps and 768×640 pixels. Backlighting was provided by
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four infrared LED lights (Dragon1IR PowerStars LED, Intelligent LED Solutions, Thatcham, UK)

operating at wavelengths well beyond the visible spectrum of the insect (61) (centroid wavelength:

850 nm; spectral bandwidth at 50% intensity: 30 nm full width at half maximum). Recordings were

triggered as the insect passed through the centre of the sphere, capturing forward flight punctuated

by fast saccadic maneuvers. In total, we recorded 𝑁 = 2, 708 wingbeats from 205 maneuvering

flights made by 28 individual blowflies, involving a broad range of wing kinematics including

symmetric and asymmetric variation in stroke amplitude, stroke plane angle, and wing twist.

Kinematic reconstruction. The cameras were calibrated using a nonlinear least squares bundle

adjustment routine (62) in Matlab (The Mathworks, Inc., Natick, MA), using images of a calibra-

tion grid presented in a wide range of positions and orientations. For the main analysis, we used

background subtraction and automatic thresholding to segment the pixels, and used a shape-carving

method to identify the set of voxels containing the wings and body (41). We reprojected the wing

voxels as a mask for tracing the outline of the wing in each frame, and used the shape-carving

algorithm on this linear feature to reconstruct the leading and trailing edges in three dimensions.

We used the major axis of the body voxels to define the insect’s 𝑥-axis, and the line connecting

the wing roots to define the insect’s transverse 𝑦-axis. We constructed a right-handed body axis

system in which to measure the kinematics of the right wing, and a left-handed body axis system

in which to measure the kinematics of the left wing. These were measured by defining an extrinsic

𝑦-𝑥-𝑧 rotation sequence bringing the 𝑥-axis of a set of rotating axes initially aligned with the body

axes into alignment with the wing chord connecting the trailing edge to the leading edge at some

given spanwise position (𝑟). The local pitch angle of the wing (𝜔), is defined as the first angle

in this rotation sequence, and was measured at 6 evenly-spaced spanwise stations on the interval

𝑟 ∈ [0.3, 0.8], where 𝑟 is expressed as a proportion of wing length. We summarised the instan-

taneous spanwise variation in 𝜔 by fitting the regression model 𝜔[𝑟] = 𝜔0 + 𝜔𝑟𝑟 + 𝜖 [𝑟], where

𝜖 [𝑟] is a Gaussian error term. We call 𝜔0 the twist offset, and 𝜔𝑟 the twist gradient. The deviation

angle 𝜃𝑤 and stroke angle 𝜙𝑤 represent the second and third angles in the extrinsic 𝑦-𝑥-𝑧 rotation
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sequence, and describe the elevation and azimuth of the wingtip in a set of body axes originating at

the wing root. It follows that the insect’s wing kinematics are measured by estimating 𝜙𝑤 [𝑡], 𝜃𝑤 [𝑡],

𝜔0 [𝑡], 𝜔𝑟 [𝑡] for the right and left wings separately at every sample time 𝑡.

Fourier series representations of wing kinematics. For each flight sequence, we fitted quintic

smoothing splines modeling 𝜙𝑤 [𝑡], 𝜃𝑤 [𝑡], 𝜔0 [𝑡], and 𝜔𝑟 [𝑡] for each wing as analytical functions

of continuous time 𝑡. The spline tolerance that we used for each kinematic variable was chosen to

preserve information up to the 3rd harmonic of wingbeat frequency for 𝜙𝑤 and 𝜃𝑤, and up to the 5th

harmonic for 𝜔0 and 𝜔𝑟 . We then used a piecewise linear transform to map continuous time 𝑡 onto

wingbeat phase 𝜑(𝑡), by taking the turning point of the summed angular velocity of both wingtips

in the stroke plane to define 𝜑 = 0 as the start of the downstroke. Finally, we evaluated the splines at

101 evenly-spaced phases of each wingbeat on the interval 𝜑 ∈ [0, 2𝜋], so that all wingbeats were

directly comparable despite variability in the wingbeat period. Fitting each wingbeat separately, we

used multiple regression with time-linear and time-periodic predictor variables to model the four

primary kinematic variables 𝜙𝑤 [𝜑], 𝜃𝑤 [𝜑], 𝜔0 [𝜑], and 𝜔𝑟 [𝜑] as de-trended Fourier series of the

form:

ℎ[𝜑] = 𝐾𝐿
(
𝜑 − 𝜋

)
+ 𝐾0 +

𝑃∑︁
𝑘=1

(
𝐾2𝑘−1 cos(𝑘𝜑) + 𝐾2𝑘 sin(𝑘𝜑)

)
+ 𝜖 [𝜑], (11)

where 𝜖 [𝜑] is a Gaussian error term, and where 𝐾𝐿 and 𝐾0 . . . 𝐾2𝑃 are fitted coefficients. The

time-linear coefficient 𝐾𝐿 accounts for the fact that any actual wingbeat cycle is unlikely to begin

and end in exactly the same kinematic state, and multiplies
(
𝜑 − 𝜋

)
rather than 𝜑 so that this term

has zero mean over the wingbeat cycle. The Fourier coefficients 𝐾0 . . . 𝐾2𝑃 are fitted with 𝑃 = 3

for 𝜙𝑤 and 𝜃𝑤, and with 𝑃 = 5 for 𝜔0 and 𝜔𝑟 , to capture all of the harmonic content preserved by

the quintic smoothing splines.

Functional principal components analysis . Collecting the Fourier coefficients for a single

wingbeat together as K𝜙𝑤 = [𝐾𝜙𝑤0 . . . 𝐾
𝜙𝑤
2𝑃 ] for the stroke angle 𝜙𝑤, and similarly for the other

primary kinematic variables, we may summarise the time-periodic variation for all 𝑁 wingbeat
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pairs in the matrix:

ZP =


1K𝜙𝑤 1K𝜃𝑤 1K𝜔𝑟 1K𝜔0

...
...

...
...

2𝑁K𝜙𝑤 2𝑁K𝜃𝑤 2𝑁K𝜔𝑟 2𝑁K𝜔0


. (12)

We used functional principal components analysis to decompose this matrix into a new set of time-

periodic basis functions characterising the key kinematic couplings available for flight control. This

was implemented by subtracting the column means from the matrix of Fourier coefficients ZP to

yield the centered matrix Z = ZP − Z̄P, and computing its singular value decomposition:

Z = UΣV𝑇 , (13)

where Σ is a diagonal matrix containing the singular values of Z, which are the positive square roots

of the eigenvalues of Z𝑇Z arranged in descending order. The columns of V contain the right-singular

vectors of Z, which are the eigenvectors of Z𝑇Z, normalized such that V𝑇V = I. Because Z𝑇Z is a

scalar multiple of the covariance matrix of Z, the orthonormal basis V that its eigenvectors define

is aligned with the principal directions of the kinematic variation between wingbeats. Because each

row of the principal component (PC) matrix V corresponds to one of the Fourier coefficients, each

of its columns defines a distinct time-periodic kinematic coupling, which we refer to as PC1, PC2,

etc.

Aerodynamic modeling of stability and control derivatives

Computational fluid dynamics modeling. We performed three-dimensional Reynolds-averaged

Navier-Stokes (RANS) simulations of the aerodynamics of the right wing of Calliphora using

the OVERTURNS solver (63, 64). We simulated a reference condition of level symmetric forward

flight with a freestream velocity of 𝑈∞ = 0.8509 m s-1 and a wingbeat frequency of 𝑓 = 166.188

Hz, corresponding to the mean values measured for these variables over the 2,708 wingbeats

whose kinematics we had recorded (see above). We used a mean body pitch angle 𝜃𝑒 = 30.365◦,

and defined a set of reference wing kinematics by taking the mean of ZP over three consecutive

wingbeats centered on the wingbeat most nearly achieving level flight among the subset of wingbeats
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for which the body acceleration was near-zero (< 0.5 m s-2). We assumed a pure laminar boundary

layer based on the measured mean chord length of 2.7 mm and chord Reynolds number of 1,746.

We used 720 time steps per wingbeat cycle with 12 sub-iterations, which allowed us to capture the

unsteady flow characteristics with reasonable computational time. Tables S2 and S3 summarize

the simulation parameters and input setup. The dimensions of the structured wing mesh were 195

(chordwise), 201 (spanwise), and 76 (wall-normal), and the initial wall normal spacing was 1×10−5

mean chord. Combined with the background mesh, this gave a total of 1.12 × 107 node points.

Computational experiments. We perturbed the reference kinematics to simulate the aerody-

namic effect of control inputs and small perturbations to the motion state of the body. We used the

three components of translational velocity {𝑢, 𝑣, 𝑤} and angular velocity {𝑝, 𝑞, 𝑟} referred to the

body axes B as the perturbed states, and used the wingbeat frequency 𝑓 together with principal

components PC1–4 of the time-periodic wingbeat kinematics as control perturbations. Among the

six perturbed states variables {𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟}, the perturbation level was set at ±10% and ±20% of

freestream velocity𝑈∞ for the three flight velocities {𝑢, 𝑣, 𝑤}, and at ±2.5% and ±5% of wingbeat

frequency 𝑓 for the three angular rates {𝑝, 𝑞, 𝑟}. Among the five control variables, we perturbed

PC1–4 by ±0.5 and ±1.0 standard deviations, and perturbed the wingbeat frequency 𝑓 by ±1.5%

and ±3%, corresponding to ±2.5 and ±5.0 Hz respectively. We computed the three components

of aerodynamic force {𝑋,𝑌, 𝑍} and moment {𝐿, 𝑀, 𝑁} referred to the body axes B (Fig. S2A).

The time-averaged forces and moments had already converged reasonably by the start of the 3rd

wingbeat cycle, so we obtained their wingbeat-averaged values by taking the mean of the forces

and moments over the 3rd and 4th wingbeat cycles of each simulation.

Aerodynamic derivatives. In order to estimate the stability and control derivatives for our lin-

earized flight dynamics model, we first subtracted the total aerodynamic forces and moments in each

perturbed condition from those obtained in the reference flight condition, then fitted a zero-intercept

linear regression through the origin to estimate the corresponding partial derivative of the aerody-

namic forces and moments (Fig. 3B; Fig. S2D-E). The resulting aerodynamic derivatives are defined
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for the right wing using forces and moments resolved at the right wing hinge, and were mirrored

to model the aerodynamic forces and moments on the left wing under the equivalent kinematics.

The results for the left and right wings were then combined to estimate the stability derivatives

(Table S4) and control derivatives (Table S5) resolved at the centre of mass, in a model enforcing

equilibrium under the reference wing kinematics (see Supplementary Information for details). We

used the unilateral control inputs to form sets of symmetric control inputs {𝑢0, 𝑢1, 𝑢2, 𝑢3, 𝑢4} and

asymmetric control inputs {𝑢′1, 𝑢
′
2, 𝑢

′
3, 𝑢

′
4} through symmetric changes in wingbeat frequency 𝑓 and

symmetric or asymmetric application of perturbations in PC1–4.

Microtomographic estimation of inertia tensor

Animals and tomographic method. Two male and one female C. vicina from the Imperial

College London colony were sealed in 0.5 mL Eppendorf tubes, having been fed and watered to

satiation and then weighed. The tubes were placed individually in the TOMCAT beamline of the

Swiss Light Source synchrotron facility and were irradiated at 12 keV beam energy until the flies

were dead and no further motion artefacts occurred. A 100 𝜇m thick, Ce-doped LuAG scintillator

was placed at a distance of 272 mm behind the sample to convert the transmitted X-rays into

visible light. The resulting image was magnified 2-fold using an Edge 5.5 Microscope, and 1501

projection images were collected at 60 ms exposure time whilst the sample was rotated through

180◦. To image the entirety of each fly, it was necessary to image three overlapping volumes in this

way. Phase retrieval was performed using the Paganin algorithm (65), setting the real and imaginary

parts of the deviation from one of the complex refractive index of the material to 1 × 10−7 and

1× 10−9 respectively. Tomographic reconstruction was performed using a Fourier transform-based

algorithm, resulting in voxels with an isotropic spacing of 3.25 𝜇m.

Estimation of inertia tensor. We segmented the tomograms automatically, using thresholding

and morphological operations to mask voxels corresponding to the cross-section of the Eppendorf

tube and any exterior voxels. The tomograms were then combined into one continuous stack across

37

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2025. ; https://doi.org/10.1101/2024.03.29.587347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/


the three samples for each specimen, using unique cross-sectional features such as hairs to align the

image stacks manually along their common longitudinal axis. The complete image stack was loaded

into Fiji (66), and the BoneJ plugin (67) was used to calculate the mass moments of inertia about

the principal axes of the specimen, assuming a uniform density of 1.1 g cm−3 appropriate to insect

cuticle and muscle. The mass (𝑚) estimates arrived at using this method (Table S1) were identical

to the weights taken at the start of the experiment to within the 0.01 g readability of the balance.

Because the moments of inertia about the first and second principal axes were identical to within

±1% (Table S1), we set 𝐼𝑦 = 𝐼𝑧 for the purposes of the flight dynamics modeling, and set 𝐼𝑥 equal to

the moment of inertia about the third principal axis. Assuming isometry, we non-dimensionalized

the moments of inertia by dividing through by 𝑚5/3, then rescaled these using the value of 𝑚

assumed in the flight dynamics model.
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Supplementary materials

Flight dynamics modeling

As outlined in the main text, we have parameterized a linear time-invariant (LTI) flight dynamics

model:

[ ¤x]B (𝑡) = AB [x]B (𝑡) + BBu(𝑡) + GB [d]B (𝑡), (14)

where the state vector [x]B = [𝛿𝑢 𝛿𝑤 𝛿𝑞 𝛿𝜃 𝛿𝑣 𝛿𝑝 𝛿𝜙 𝛿𝑟]𝑇 is sufficient to describe the 6-DoF rigid

body motions of the insect insofar as these motions influence the wingbeat-averaged aerodynamic

forces {𝑋,𝑌, 𝑍} and moments {𝐿, 𝑀, 𝑁} resolved in the principal axes of the body B = {𝒙̂𝑏, 𝒚̂𝑏, 𝒛̂𝑏}

as described in Fig. S2A. Here, 𝛿 denotes a small perturbation from equilibrium, where {𝑢, 𝑣, 𝑤}

are the components of translational velocity along the principal axes of the body, where {𝑝, 𝑞, 𝑟}

are the components of angular velocity about these body axes, and where {𝜃, 𝜙} are the pitch and

bank angles of the insect. These Euler angles are defined as the second and third rotations in an

intrinsic 3-2-1 rotation sequence bringing the body axes to their final orientation, starting from an

initial configuration in which the 𝑧-axis is vertical. Note that the first Euler angle describing the

azimuth 𝜓 about the body 𝑧-axis is not included in the system state, because it has no influence on

the flight physics.

The linearization of the equations of motion for a rigid flying body using small perturbation

theory is dealt with in most flight dynamics texts, so is not repeated here. In brief, we modeled the

insect as a symmetric rigid body subject to wingbeat-averaged aerodynamic forces and moments.

These are described as linear functions of the motion state variables {𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟} and longitudi-

nal and lateral control input variables ulong = [𝑢0 𝑢1 𝑢2 𝑢3 𝑢4]𝑇 and ulat = [𝑢′1 𝑢
′
2 𝑢

′
3 𝑢

′
4]
𝑇 for small

perturbations from a symmetric rectilinear equilibrium flight condition. See (17,18,68) for discus-

sion of this approach in the context of insect flight dynamics, including the wingbeat-averaging of

the aerodynamic forces and moments, which is an approach borrowed from simplified helicopter

flight dynamics modeling. In the following, we assume that the relevant quantities are all expressed

in the body frame B, and therefore drop the coordinate frame notation B hereafter.
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With these definitions and assumptions, we model the longitudinal flight dynamics ¤xlong(𝑡) =

Alongxlong(𝑡) + Blongulong(𝑡) as



𝛿 ¤𝑢

𝛿 ¤𝑤

𝛿 ¤𝑞

𝛿 ¤𝜃


=



𝑋𝑢

𝑚

𝑋𝑤

𝑚

𝑋𝑞

𝑚
− 𝑤𝑒 −𝑔 cos 𝜃𝑒

𝑍𝑢

𝑚

𝑍𝑤

𝑚

𝑍𝑞

𝑚
+ 𝑢𝑒 −𝑔 sin 𝜃𝑒

𝑀𝑢

𝐼𝑦

𝑀𝑤

𝐼𝑦

𝑀𝑞

𝐼𝑦
0

0 0 1 0





𝛿𝑢

𝛿𝑤

𝛿𝑞

𝛿𝜃


+



𝑋𝑢0

𝑚

𝑋𝑢1

𝑚
· · ·

𝑋𝑢4

𝑚

𝑍𝑢0

𝑚

𝑍𝑢1

𝑚
· · ·

𝑍𝑢4

𝑚

𝑀𝑢0

𝐼𝑦

𝑀𝑢1

𝐼𝑦
· · ·

𝑀𝑢4

𝐼𝑦

0 0 · · · 0





𝑢0

𝑢1
...

𝑢4


,

where {𝑢𝑒, 𝑤𝑒, 𝜃𝑒} are the values of {𝑢, 𝑤, 𝜃} at equilibrium, where 𝑔 is gravitational acceleration,

𝑚 is body mass, and 𝐼𝑦 is the moment of inertia about the body 𝑦-axis. Here the control input 𝑢0

denotes a change of wingbeat frequency with respect to equilibrium, whilst the remaining control

inputs {𝑢1, · · · , 𝑢4} denote mirror-symmetric application of the time-periodic kinematic couplings

in the directions defined by PC1 through to PC4 (see Methods). Quantities of the form 𝑋𝑢, 𝑍𝑤,

𝑀𝑞, etc. are stability derivatives, denoting the partial derivatives 𝜕𝑋/𝜕𝑢, 𝜕𝑍/𝜕𝑤, 𝜕𝑀/𝜕𝑞, etc.

Likewise, quantities of the form 𝑋𝑢𝑜 , 𝑍𝑢1 , 𝑀𝑢4 , etc., are control derivatives, denoting the partial

derivatives 𝜕𝑋/𝜕𝑢0, 𝜕𝑍/𝜕𝑢1, 𝜕𝑀/𝜕𝑢4, etc. Derivatives were estimated by regressing the wingbeat-

averaged forces and moments predicted using CFD on the relevant state variables and control input

variables (see Methods). Note that for the purposes of the flight dynamics modeling described here,

we regress the perturbed forces and moments on the perturbed state variables and control input

variables, and therefore force the regressions through the origin.

If we assume that external gusts d(𝑡) = {𝑢𝑑 , 𝑣𝑑 , 𝑤𝑑 , 𝑝𝑑 , 𝑞𝑑 , 𝑟𝑑} are acting on the animal, then

we may replace the motion state variables {𝑢, 𝑣, 𝑤, 𝑝, 𝑞, 𝑟} used to calculate the aerodynamic

forces and moments (Δ𝑋,Δ𝑀, etc.) with an inertial perturbation and a disturbance term, such that

𝛿𝑢𝑎 = 𝛿𝑢 − 𝑢𝑑 , 𝛿𝑟𝑎 = 𝛿𝑟 − 𝑟𝑑 , etc. Under this assumption, the forces and moments on the insect are

now a function of both the inertial and the gust components. For instance,

Δ𝑋 =
𝜕𝑋

𝜕𝑢
𝛿𝑢𝑎 =

𝜕𝑋

𝜕𝑢
(𝛿𝑢 − 𝑢𝑑) =

𝜕𝑋

𝜕𝑢
𝛿𝑢 − 𝜕𝑋

𝜕𝑢
𝑢𝑑 .

Therefore the way the gust 𝑢𝑑 influences the dynamics ¤x is through the term −𝜕𝑋/𝜕𝑢, which is the

negative of the aerodynamic portions of the A matrix. The longitudinal flight dynamics model with
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gusts are then modeled as ¤x = Alongx(𝑡) + Glongdlong(𝑡) with

Glong =



−𝑋𝑢
𝑚

−𝑋𝑤
𝑚

−
𝑋𝑞

𝑚

−𝑍𝑢
𝑚

−𝑍𝑤
𝑚

−
𝑍𝑞

𝑚

−𝑀𝑢

𝐼𝑦
−𝑀𝑤

𝐼𝑦
−
𝑀𝑞

𝐼𝑦

0 0 0


and dlong =


𝑢𝑑

𝑤𝑑

𝑞𝑑


.

The lateral flight dynamics ¤xlat(𝑡) = Alatxlat(𝑡) + Blatulat(𝑡) are modeled as



𝛿 ¤𝑣

𝛿 ¤𝑝

𝛿 ¤𝜙

𝛿 ¤𝑟


=



𝑌𝑣

𝑚

𝑌𝑝

𝑚
+ 𝑤𝑒 𝑔 cos 𝜃𝑒

𝑌𝑟

𝑚
− 𝑢𝑒

𝐿𝑣

𝐼𝑥

𝐿𝑝

𝐼𝑥
0

𝐿𝑟

𝐼𝑥

0 1 0 tan 𝜃𝑒
𝑁𝑣

𝐼𝑧

𝑁𝑝

𝐼𝑧
0

𝑁𝑟

𝐼𝑧





𝛿𝑣

𝛿𝑝

𝛿𝜙

𝛿𝑟


+



𝑌𝑢′1

𝑚

𝑌𝑢′2

𝑚

𝑌𝑢′3

𝑚

𝑌𝑢′4

𝑚

𝐿𝑢′1

𝐼𝑥

𝐿𝑢′2

𝐼𝑥

𝐿𝑢′3

𝐼𝑥

𝐿𝑢′4

𝐼𝑥

0 0 0 0
𝑁𝑢′1

𝐼𝑧

𝑁𝑢′2

𝐼𝑧

𝑁𝑢′3

𝐼𝑧

𝑁𝑢′4

𝐼𝑧





𝑢′1

𝑢′2

𝑢′3

𝑢′4


,

where the notation is similar, save that the control inputs {𝑢′1, · · · , 𝑢
′
4} denote anti-symmetric

application of the time-periodic kinematic couplings in the directions defined by PC1 through to

PC4 (see Methods). The lateral flight dynamics model with gusts ¤xlat(𝑡) = Alatxlat(𝑡) + Glatdlat(𝑡)

is derived in the same way as its longitudinal counterpart, with

Glat =



−𝑌𝑣
𝑚

−
𝑌𝑝

𝑚
−𝑌𝑟
𝑚

−𝐿𝑣
𝐼𝑥

−
𝐿𝑝

𝐼𝑥
−𝐿𝑟
𝐼𝑥

−𝑁𝑣
𝐼𝑧

−
𝑁𝑝

𝐼𝑧
−𝑁𝑟
𝐼𝑧

0 0 0


and dlat =


𝑣𝑑

𝑝𝑑

𝑟𝑑


.

Note that these equations of motion are linearized about a symmetric rectilinear equilibrium flight

condition with 𝑣𝑒 = 𝑝𝑒 = 𝑞𝑒 = 𝑟𝑒 = 𝜙𝑒 = 0, and neglect any gyroscopic forces on the beating wings.

They further assume that the fastest natural modes of the system have a characteristic timescale

much longer than the period of the wingbeat, such that there is no significant coupling between

the time-periodic oscillations of the aerodynamic forces and the body’s motion. It is important to

note that their simplified form reflects the fact that all of the forces and moments are resolved with
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respect to the principal axes of the insect. Finally, although we do not derive the LTI model of the

flight dynamics explicitly above, another key feature of this model is that it is linearized about a

state of equilibrium, which is a necessary condition for time-invariant equations of motion to result

from the linearization.

Whilst it is reasonable to assume that the reference flight condition associated with the mean

wingbeat in the functional principal components analysis will be close to equilibrium, there is no

reason to expect that it will be exactly so. To guarantee the internal consistency of the model, we

therefore enforce equilibrium, subject to the assumption: (i) that 𝑣𝑒 = 𝑝𝑒 = 𝑞𝑒 = 𝑟𝑒 = 𝜙𝑒 = 0

on grounds of symmetry; and (ii) that {𝑢𝑒, 𝑤𝑒, 𝜃𝑒} are each equal to the reference conditions

assumed in the CFD modeling. We achieve this by making three assumptions. First, we assume that

the magnitude of the vertical aerodynamic force predicted by the CFD under the reference flight

conditions is exactly balanced by the insect’s body weight. We therefore solve for the value of body

mass at which this assumption holds and set 𝑚 equal to this value (5.7686 × 10−5 kg) in the flight

dynamics model. Second, we assume that the net thrust predicted by the CFD under the reference

flight conditions is exactly balanced by body drag in forward flight. This body drag does not feature

explicitly in the flight dynamics model, because it is implicit in the treatment of the reference flight

conditions from the CFD as an equilibrium condition. Third, noting that the aerodynamic moments

predicted by the CFD are resolved at the root of the wing, we assume that any non-zero pitching

moment about the wing root is balanced at the centre of mass by the vertical aerodynamic force.

We therefore solve for the horizontal lever arm in the 𝑥𝑧-plane for which this assumption holds

and assume that the wing root is located on a known transverse lever arm along the 𝑦-axis that we

measure directly from the tomograms (see Methods). Finally, we resolve all of the aerodynamic

moments at the centre of mass prior to taking the stability and control derivatives above.

With these assumptions and parameterizations, the longitudinal and lateral A, B, and G matrices

for a freestream velocity of𝑈∞ = 0.8509 m/s and a body pitch angle 𝜃𝑒 = 30.365◦ expressed in the
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body frame B for Calliphora vicina are as follows, in S.I. units:

Along =



−1.4471 2.1998 −0.4351 −8.4614

−2.4284 −2.3400 0.7282 −4.9573

547.09 345.54 −4.8501 0

0 0 1 0


Alat =



−1.9492 0.4250 8.4614 −0.7314

697.24 −83.067 0 90.875

0 1 0 0.5859

751.82 −12.546 0 −3.1760



Blong =



0.0837 −0.1600 0.3249 −0.2789 −0.7515

−0.0768 0.0380 0.1615 0.4448 −0.0946

−5.1932 413.65 74.900 159.80 −233.11

0 0 0 0 0


Blat =



−0.4536 −0.1212 −0.0403 −0.6952

36.391 777.94 900.06 556.56

404.05 −526.60 260.11 602.64

0 0 0 0



Glong =



1.4471 −2.1998 0.0050

2.4284 2.3400 0.0060

−547.09 −345.54 4.8501

0 0 0


Glat =



1.9492 0.0051 −0.0028

−697.24 83.067 −90.875

0 0 0

−751.82 12.546 3.1760


Writing the equations of motion in the body frame B as above results in a simpler form than

that which is obtained when using an axis system that is not necessarily aligned with the principal
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axes of the body. On the other hand, the visual axes of the head H do not in general coincide with

the principal axes of the body at equilibrium, and it is more reasonable to assume that the head is

held level at equilibrium such that the retinal coordinates (0,0) coincide with the insect’s velocity

vector in level flight at equilibrium. The set of body-fixed axes whose 𝑥-axis is aligned with the

insect’s velocity vector at equilibrium, and whose transverse 𝑦-axis is normal to the insect’s plane of

symmetry, is called the stability axis system S. In a final step, we therefore transform the equations

of motion above from the body axes B into the stability axes S, which simplifies the analysis in the

main text. The details of these coordinate transformations are described further below.

Coordinate Frames

Three different coordinate frames are employed in the preceding analyses (Fig. S2A): (i) the head

(visual) axes H = {𝒙̂ℎ, 𝒚̂ℎ, 𝒛̂ℎ}, (ii) the body (principal) axes B = {𝒙̂𝑏, 𝒚̂𝑏, 𝒛̂𝑏}, and the stability

axes S = {𝒙̂𝑠, 𝒚̂𝑠, 𝒛̂𝑠}. The visual H axes and the body B axes are defined anatomically, whereas

the stability S axes are specified by orienting the 𝒙𝑠 direction along the relative velocity vector for

the given reference flight condition. The body axes B are the natural coordinate frame in which to

calculate the variations in the aerodynamic forces {𝑋,𝑌, 𝑍} and moments {𝐿, 𝑀, 𝑁}, as the results

can be straightforwardly transformed to stability axes S for an arbitrary reference flight condition.

Furthermore, because it assumed that the directions of the visual axes H and the stability axes S

are aligned, the natural coordinate frame in which to express the flight dynamics and sensor outputs

(Eqs. 1-2) is the stability frame S:

[ ¤x]S (𝑡) = AS [x]S (𝑡) + BSu(𝑡) + GS [d]S (𝑡) (15)

y(𝑡) = CS [x]S (𝑡). (16)

Bracket notation and subscripts are used to denote the coordinate frame for which a specific vector

or matrix is expressed. In particular, [x]𝑆 = [𝛿𝑢𝑠 𝛿𝑤𝑠 𝛿𝑞𝑠 𝛿𝜃𝑠 𝛿𝑣𝑠 𝛿𝑝𝑠 𝛿𝜙𝑠 𝛿𝑟𝑠]𝑇 is the perturbation

state expressed in stability coordinates, [d]𝑆 = [𝑢𝑑,𝑠 𝑤𝑑,𝑠 𝑞𝑑,𝑠 𝑣𝑑,𝑠 𝑝𝑑,𝑠 𝑟𝑑,𝑠]𝑇 are the gust inputs in

stability coordinates, and the entries of the AS , BS , GS , and CS system matrices are relative to the

54

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2025. ; https://doi.org/10.1101/2024.03.29.587347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/


stability axes.

The electrophysiological characterization of LPTC response field properties was performed

relative to the visual (head) axes H , whose directions correspond to the stability axes S, therefore

CS = CH . The CFD characterizations of perturbation forces and moments (matrices AB , BB , and

GB) were generated relative to the body axes B, so a transformation of the [x]B and [d]B vectors

into stability axes S is required to put the system into the form of Eqn. 15 to perform a comparison

between the directions encoded by the LPTCs and the dynamically-significant directions defined

by the Gramians.

To derive these transformations, we first consider the relationship between the velocity v and

angular velocity 𝝎 in these two coordinate frames, which differ by a rotation 𝜃𝑒 about the pitch axis

(Fig. S2):

𝑅BS (𝜃𝑒) =
©­­­­«
cos 𝜃𝑒 0 − sin 𝜃𝑒

0 1 0

sin 𝜃𝑒 0 cos 𝜃𝑒

ª®®®®¬
(17)

Hence, the velocity of the animal in body coordinates [v]𝐵 is related to its velocity in stability

coordinates [v]𝑆 via

[v]𝐵 =

©­­­­«
𝑢

𝑣

𝑤

ª®®®®¬
= 𝑅BS (𝜃𝑒) [v]𝑆 =

©­­­­«
cos 𝜃𝑒 0 − sin 𝜃𝑒

0 1 0

sin 𝜃𝑒 0 cos 𝜃𝑒

ª®®®®¬
©­­­­«
𝑢𝑠

𝑣𝑠

𝑤𝑠

ª®®®®¬
. (18)

Similarly, the angular velocity of the animal in body coordinates [𝝎]𝐵 is related to its velocity in

stability coordinates [𝝎]𝑆 via

[𝝎]𝐵 =

©­­­­«
𝑝

𝑞

𝑟

ª®®®®¬
= 𝑅BS (𝜃𝑒) [𝝎]𝑆 =

©­­­­«
cos 𝜃𝑒 0 − sin 𝜃𝑒

0 1 0

sin 𝜃𝑒 0 cos 𝜃𝑒

ª®®®®¬
©­­­­«
𝑝𝑠

𝑞𝑠

𝑟𝑠

ª®®®®¬
. (19)

The full 8-dimensional state vector expressed in the body frame also contains two attitude angles,

𝜃 and 𝜙. In the linearized flight dynamics these are actually perturbation angles from equilibrium,

hence 𝜃 = 𝜃𝑠 since the 𝒚̂𝑏 and 𝒚̂𝑠 coordinate axes are colinear. To develop the relationship between
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𝜙 and 𝜙𝑠, we take the axis-angle form for a rotation 𝜙𝑠 about the 𝒙̂𝑠 axis expressed in the B =

{𝒙̂𝑏, 𝒚̂𝑏, 𝒛̂𝑏} coordinate frame, convert this to its equivalent rotation matrix, then back out the

equivalent 3-2-1 Euler angles {𝜙, 𝜃, 𝜓} referred to the body B frame. The axis-angle form is angle

𝜙𝑠 about axis ê = (cos 𝜃𝑒, 0, sin 𝜃𝑒). If we equate the corresponding rotation matrix for 𝜙𝑠 and ê

with the 3-2-1 Euler angle parameterization in body axes {𝜙, 𝜃, 𝜓} of the same rotation, a ratio of

the (3,2) and (3,3) entries results in

tan 𝜙 =
cos 𝜃𝑒 sin 𝜙𝑠

(1 − cos 𝜙𝑠) sin2 𝜃𝑒 + cos 𝜙𝑠
. (20)

Hence for small 𝜙𝑠 and small 𝜙, this reduces to 𝜙 ≈ (cos 𝜃𝑒)𝜙𝑠.

Therefore, the longitudinal state transformation from stability S to body axes B is [xlong]B =

𝑅long [xlong]S is given by

©­­­­­­­«

𝑢

𝑤

𝑞

𝜃

ª®®®®®®®¬
=

©­­­­­­­«

cos 𝜃𝑒 − sin 𝜃𝑒 0 0

sin 𝜃𝑒 cos 𝜃𝑒 0 0

0 0 1 0

0 0 0 1

ª®®®®®®®¬

©­­­­­­­«

𝑢𝑠

𝑤𝑠

𝑞𝑠

𝜃𝑠

ª®®®®®®®¬
, (21)

and the lateral state transformation from stability to body axes [xlat]B = 𝑅lat [xlat]S is given by

©­­­­­­­«

𝑣

𝑝

𝜙

𝑟

ª®®®®®®®¬
=

©­­­­­­­«

1 0 0 0

0 cos 𝜃𝑒 0 − sin 𝜃𝑒
0 0 cos 𝜃𝑒 0

0 sin 𝜃𝑒 0 cos 𝜃𝑒

ª®®®®®®®¬

©­­­­­­­«

𝑣𝑠

𝑝𝑠

𝜙𝑠

𝑟𝑠

ª®®®®®®®¬
. (22)

The transformation for the full state [x]B = 𝑅[x]S (longitudinal and lateral states combined) is

𝑅 =
©­«
𝑅long 0

0 𝑅lat

ª®¬ . (23)

Since the disturbance vector d has six components compared to the eight components of the state

vector x, we also define a transformation 𝑅𝐺 which maps components of vectors expressed in the

S frame to the B frame. This transformation is essentially the 𝑅 matrix with the rows and columns

associated with the 𝜃 and 𝜙 variables removed.
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To express the AB , BB , and GB matrices relative to the stability axes S, we substitute [x]B =

𝑅[x]S , [ ¤x]B = 𝑅[ ¤x]S , and [d]B = 𝑅𝐺 [d]S into [ ¤x]B = AB [x]B + BBu + GB [d]B ,

[ ¤𝒙]S = 𝑅−1AB𝑅[x]S + 𝑅−1BBu + 𝑅−1GB𝑅𝐺 [d]S . (24)

The final system matrices A = AS , B = BS , and G = GS (Eqn. 1), expressed in the stability axes

S, are then AS = 𝑅−1AB𝑅, BS = 𝑅−1BB , and GS = 𝑅−1GB𝑅𝐺 . To simplify our notation, we have

omitted these S subscripts in the main text.

Dynamically significant directions in state space

The Gramians constructed from the A, B, G, and C system matrices encode the dynamic properties

of a system. These matrices have been widely used in testing for controllability and observability

(69–71), in model reduction (46, 70, 72, 73), in sensor and actuator placement (22, 74–76), in

disturbance rejection (77, 78), and in joint sensor and actuator design (79, 80). When the system

matrix A is stable, the controllability and observability gramians are defined in the time domain as:

X𝑐 =

∫ ∞

0
𝑒A𝜏BB𝑇𝑒A𝑇𝜏𝑑𝜏 (25)

Y𝑜 =

∫ ∞

0
𝑒A𝑇𝜏C𝑇C𝑒A𝜏𝑑𝜏. (26)

The disturbance sensitivity Gramian X𝑑 is constructed similar to X𝑐, by swapping the B with the

G matrix in Eqn. 25. The Gramians are generated by computing the solutions to the Lyanunov

equations,

AX𝑐 + X𝑐A𝑇 + BB𝑇 = 0 (27)

A𝑇Y𝑜 + Y𝑜A + C𝑇C = 0. (28)

The controllability Gramian is related to the minimum signal energy required to reach a given

state x0, which is given by ∥uopt∥2 = x𝑇0 Xc
−1x0. This is captured by the controllability ellipsoid

E𝑐 = {x ∈ R𝑛; x𝑇X−1
𝑐 x ≤ 1} which defines the region of state space that can be reached by applying

unit norm ∥u∥2 ≤ 1 input. The principal axes directions and lengths of E𝑐 are calculated as the
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eigenvectors and square roots of the eigenvalues of X𝑐. Therefore, its larger axes represent the

directions in state space requiring the lesser control effort to move along. Similarly, the disturbance

sensitivity ellipsoid (E𝑑) is constructed in an identical fashion, but with X𝑑 interchanged with X𝑐.

Its longest axes represent the directions of motion that are most readily excited by gusts. These

most-sensitive directions characterise the worst-case disturbances that the insect may have to reject.

The observability Gramian is related to output energy for a given initial condition x0, since

the energy of the output signal y(𝑡) for an arbitrary x0 can be expressed as ∥y∥2 = x𝑇0 Yox0. If we

consider the set of initial conditions where ∥y∥2 ≤ 1, this generates the sensed directions in state

space that have the smallest output norm. The observability ellipsoid E𝑜 = {x ∈ R𝑛; x𝑇Y−1
𝑜 x ≤ 1}

is created by replacing Y𝑜 with its inverse Y−1
𝑜 , the covariance for the best unbiased estimate. Its

principal axes correspond to directions in state space with the largest output norm, representing the

specific self-motions that the insect is best-able to sense.

For system matrices A that are unstable, the integrals in Eqns. 25 and 26 are unbounded and

X𝑐 and Y𝑜 are undefined. Generalizations to the controllability and observability Gramians were

introduced in (45), corresponding to Eqns. 4 and 3 in the main text. For (A,B) stabilizable, (C,A)

detectable, and no eigenvalues of A on the imaginary axis, the generalized Gramians are calculated

as follows. First compute the solutions P and Q to the Riccati equations,

A𝑇P + PA − PBB𝑇P = 0 (29)

QA𝑇 + AQ − QC𝑇CQ = 0. (30)

Next define F = −B𝑇P and L = −QC𝑇 , and the generalized Gramians are the solutions to the

Lyapunov equations,

(A + BF)X𝑐 + X𝑇
𝑐 (A + BF) + BB𝑇 = 0 (31)

(A + LC)𝑇Y𝑜 + Y𝑜 (A + LC) + C𝑇C = 0. (32)

If the A matrix is stable, then P = 0 and Q = 0, and Eqns. 31 and 32 reduce to Eqns. 27 and

28. The authors in (45) also provide time domain interpretations of the generalized Gramians, and
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show they can be similarly related to the minimum control input energy x𝑇0 Xc
−1x0, and average

estimation error Tr(Y−1
𝑜 ).

Balanced realization theory for stable linear systems introduced by (46) provides additional

tools for understanding the signal energy flow properties of a dynamical system. In particular,

one can quantify the joint controllability and observability of a system that has been transformed

into balanced coordinates x̆ = Tx, where {t̂𝑖} denote the columns of T−1. In these new coordi-

nates the controllability and observability Gramians (Eqns. 25 and 26) are equal and diagonal,

X̆𝑐 = Y̆𝑜 = diag(ℎ1, · · · , ℎ𝑛), where the Hankel singular values ℎ𝑖 =
√︁
𝜆𝑖 (Y𝑜X𝑐) rank the joint

controllability/observability of the direction t̂𝑖 in original coordinates. In particular, directions with

small ℎ𝑖 correspond to directions in state space that are simultaneously difficult to reach and observe,

and contribute little to the overall behavior of the system. An extension to the unstable case was

provided in (45), who showed that the same tools could be applied through the introduction of the

generalized controllability Gramian X𝑐 and observability Gramian Y𝑜 as in Eqns. 4 and 3 in the main

text. In particular, the Hankel singular values (HSVs) for an unstable system with no eigenvalues on

the imaginary axis are the union of the HSVs for the partitioned stable and anti-stable subsystems,

with the A matrix for the anti-stable partition replaced with −A, and these are computed similarly

as ℎ𝑖 =
√︁
𝜆𝑖 (Y𝑜X𝑐). The transformation x̆ = Tx that was used to balance the system was based on

the Cholesky factorization of X𝑐 = WW∗. The eigenvalue decomposition of W∗Y𝑜W = V𝚺V∗ is

performed, with the resulting balancing transform computed as T = 𝚺
1
2 V∗W−1.

Supplementary results on the LPTC response fields

The V1-cell (Fig. 2C) shows a strong response to downward image motion over most of its

frontolateral visual field, which rotates to become a preference for back-to-front image motion in

the upper part of its caudolateral visual field (90◦ ≤ 𝛾 ≤ 150◦), with vanishing sensitivity below the

equator. This qualitative combination of response properties suggests that V1 will be most active

during nose-up rotation. The V2-cell (Fig. 2D) responds strongly to upward image motion in the

lateral visual field (45◦ ≤ 𝛾 ≤ 150◦), which gradually changes into a preference for back-to-front
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image motion in the dorsofrontal visual field (0◦ ≤ 𝛾 ≤ 45◦) and downwards image motion in the

zone of binocular overlap (−30◦ ≤ 𝛾 ≤ 0◦)(Fig. 2D). The right V2-cell will therefore be active

during righthanded roll, with its preferred rotation axis directed ventral relative to the longitudinal

roll axis (Fig. 2B). The Vx-cell (Fig. 2E) displays a preference for oblique upward image motion in

the upper part of the frontal visual field (−30◦ ≤ 𝛾 ≤ 30◦), which gradually changes into horizontal

front-to-back motion (30◦ ≤ 𝛾 ≤ 105◦) and becomes maximally sensitive to downward motion in

the caudolateral visual field (105◦ ≤ 𝛾 ≤ 180◦). Its preferred rotation axis is directed between the

roll and pitch axes and tipped slightly ventrally, responding to rotations of the opposite sense to

those that activate the ipsilateral V1- and V2-cells (Fig. 2G).

The response fields of the V1, V2 and Vx-cells in Fig. 2 plot only the ipsilateral parts of

their response fields, including the narrow zone of binocular overlap. Some heterolateral LPTCs

including V1 may respond to stimuli presented to the contralateral eye (28, 31), depending on the

internal state of the fly (32). The same holds true for some of the VS-cells including VS6, which

responds in a directionally-selective manner to stimuli presented to the contralateral eye (Fig. 2B).

Though weaker than its ipsilateral motion sensitivity, this contralateral motion sensitivity enhances

the cell’s response to roll motion. Inspection of the V1, V2 and Vx response fields (Fig. 2C-E)

suggests that this is most likely to be attributable to excitatory input from the contralateral V2-

cell. Along similar lines, simultaneous recordings have already established electrical connections

between VS1-3 and the contralateral V1-cell (81), and ipsilateral inhibition of the VS1-cell by

the Vx-cell (=Vi) (28). Simultaneous recordings have also demonstrated electrical coupling of

neighbouring VS cells (82).
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Figures (SM)

A B

Figure S1: Geometry for spherical optic flow. (A) The azimuth ¤𝑄𝛾 and elevation ¤𝑄𝛽 components

of the optic flow vector are the projected relative velocities 𝝎 and v of visual contrasts or objects

in the environment into the tangent space 𝑇r𝑆
2 of the imaging surface, modeled here as a sphere

approximating the nearly 4𝜋 visual field of the compound eyes. (B) The function 𝑑 (𝛾, 𝛽, q) is the

distance from the imaging surface (r) to the nearest point in the environment.
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Figure S2: Reynolds Averaged Navier-Stokes (RANS) simulations for Calliphora wing motions.

(A) Coordinate systems for analysis include the head (visual) axes H = {𝒙̂ℎ, 𝒚̂ℎ, 𝒛̂ℎ}, the body

(principal) axes B = {𝒙̂𝑏, 𝒚̂𝑏, 𝒛̂𝑏}, and the stability axes S = {𝒙̂𝑠, 𝒚̂𝑠, 𝒛̂𝑠}. (B) Instantaneous wing

wake structures are shown using iso-𝑄 Criterion surfaces (𝑄 = 0.001) and colored by vorticity at

the end of the upstroke. (C) Simulations utilized an overset grid system for a body-fitted structured

wing mesh and a Cartesian background mesh. (D-E) Example regressed wingstroke averaged

aerodynamic moments and forces as a function of perturbation states and inputs for the right wing.
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Figure S3: Robustness of Hankel singular values to environment perturbations. The dimen-

sions (𝑔𝑁 , 𝑔𝑆, 𝑎𝐸 , 𝑎𝑊 , ℎ𝑢, ℎ𝑑) of two different nominal environment configurations with equal

volume (cube, ellipsoid) are randomly selected from a uniform distribution (100 different con-

figurations each) up to 50% and used to generate the system’s Hankel singular values. These

distributions are compared to 1000 sets of randomly selected 19 left-right symmetric pairs from

a uniform distribution on R8. (A) Geometry of the cube environment. (B) Comparison of Han-

kel singular values for 100 randomly selected cube environment configurations. (C) Geometry of

the ellipsoid environment. (D) Comparison of Hankel singular values for 100 randomly selected

ellipsoid environment configurations.
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Figure S3: Robustness of Hankel singular values to environment perturbations. The dimen-

sions (𝑔𝑁 , 𝑔𝑆, 𝑎𝐸 , 𝑎𝑊 , ℎ𝑢, ℎ𝑑) of two different nominal environment configurations with equal

volume (cube, ellipsoid) are randomly selected from a uniform distribution (100 different con-

figurations each) up to 50% and used to generate the system’s Hankel singular values. These

distributions are compared to 1000 sets of randomly selected 19 left-right symmetric pairs from

a uniform distribution on R8. (A) Geometry of the cube environment. (B) Comparison of Han-

kel singular values for 100 randomly selected cube environment configurations. (C) Geometry of

the ellipsoid environment. (D) Comparison of Hankel singular values for 100 randomly selected

ellipsoid environment configurations.

64

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 9, 2025. ; https://doi.org/10.1101/2024.03.29.587347doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.29.587347
http://creativecommons.org/licenses/by/4.0/


+

VS1

V2 V2

V1VS2

VS3

VS4

VS5

VS6

VS7

VS8

VS9

VS10

VS1

VS2

VS3

VS4

VS5

VS6

VS7

VS8

VS9

VS10

+

- -

--

+

+

- -

left 

lobula

plate

Vx Vx

V1

right

lobula

plate

Figure S5: Putative synaptic coupling diagram of VS- and V-cells. Illustration of known (83)

and hypothesized connections between the 10 VS-cells (VS1-VS10) and heterolateral V-cells (V1,

V2, Vx) of the left and right lobula plate of the blowfly Calliphora. Colour coding corresponds to

the proposed functional clusters shown in Fig. 2. Spherical and triangular symbols at the endpoints

of connecting lines indicate inhibitory(-) and excitatory (+) outputs of the cells. Resistance symbols

between cells refer to electrical synapses. Grey arrows indicate main sensitivity to vertical downward

and upward motion of the LPTCs in the three clusters.
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Tables (SM)

Table S1: Moments of inertia about the principal axes of Calliphora vicina estimated from 𝜇CT

images.

Insect 𝑚 (10−5 kg) 𝐼1 (10−10 kg m2) 𝐼2 (10−10 kg m2) 𝐼3 (10−10 kg m2)

male 1 6.792 5.802 5.730 1.457

male 2 7.543 6.410 6.368 1.594

female 1 7.953 6.924 6.883 1.822

Table S2: Calliphora vicina flapping wing simulation parameters.

Freestream velocity𝑈∞ (m s-1) 0.8509

Body pitch angle (◦) 𝜃𝑒 30.365

Nominal wing beat frequency (Hz) 166.188

Wing span (mm) 10.1781

Mean chord (mm) 2.714

Reynolds number 1,746

Table S3: CFD Simulation setup parameters.

Total timesteps 2,880 (720 steps per cycle)

Flow condition Laminar

Spatial reconstruction 5th order WENO scheme

Temporal scheme 2nd order backward difference (BDF2)

Low-Mach precondition Yes

Overset grid node points Wing (2.98 M) and Background (8.21 M)

Table S4: Estimated stability derivatives (S.I. units).
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𝑋 Force (10−5) 𝑍 Force (10−5) 𝑀 Moment (10−7)

𝑋𝑢 = −8.3476 𝑍𝑢 = −14.009 𝑀𝑢 = 2.2833

𝑋𝑤 = 12.690 𝑍𝑤 = −13.499 𝑀𝑤 = 1.4421

𝑋𝑞 = −0.0286 𝑍𝑞 = −0.0345 𝑀𝑞 = −0.0202

𝑌 Force (10−5) 𝐿 Moment (10−7) 𝑁 Moment (10−7)

𝑌𝑣 = −11.244 𝐿𝑣 = 0.7428 𝑁𝑣 = 3.1378

𝑌𝑝 = −0.0298 𝐿𝑝 = −0.0884 𝑁𝑝 = −0.0523

𝑌𝑟 = 0.0159 𝐿𝑟 = 0.0968 𝑁𝑟 = −0.0132

Table S5: Estimated control derivatives (S.I. units).

𝑋 Force (10−5) 𝑍 Force (10−5) 𝑀 Moment (10−7)

𝑋𝑢0 = 0.4825 𝑍𝑢0 = −0.4428 𝑀𝑢0 = −0.0216

𝑋𝑢1 = −0.9232 𝑍𝑢1 = 0.2194 𝑀𝑢1 = 1.7264

𝑋𝑢2 = 1.8744 𝑍𝑢2 = 0.9314 𝑀𝑢2 = 0.0312

𝑋𝑢3 = −1.6088 𝑍𝑢3 = 2.5656 𝑀𝑢3 = 0.6669

𝑋𝑢4 = −4.3350 𝑍𝑢4 = −0.5456 𝑀𝑢4 = −0.9728

𝑌 Force (10−5) 𝐿 Moment (10−7) 𝑁 Moment (10−7)

𝑌𝑢′1 = −2.6166 𝐿𝑢′1 = 0.0387 𝑁𝑢′0
= 1.6863

𝑌𝑢′2 = −0.6990 𝐿𝑢′2 = 0.8287 𝑁𝑢′1
= −2.1978

𝑌𝑢′3 = −0.2323 𝐿𝑢′3 = 0.9588 𝑁𝑢′2
= 1.0856

𝑌𝑢′4 = −4.0104 𝐿𝑢′4 = 0.5929 𝑁𝑢′3
= 2.5151

Table S6: Eigenstructure of the symmetric and asymmetric modes of the system matrix A = AS ,

showing the eigenvalues (𝜆𝑖) and eigenvectors for the symmetric and asymmetric parts, xlong =

[𝛿𝑢 𝛿𝑤 𝛿𝑞 𝛿𝜃]𝑇 and xlat = [𝛿𝑣 𝛿𝑝 𝛿𝜙 𝛿𝑟]𝑇 , of the state vector x (S.I. units).
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symmetric mode 1 mode 2 mode 3 asymmetric mode 4 mode 5 mode 6

𝜆 𝑗 −19.89 6.77 ± 14.92 𝑗 −2.28 𝜆 𝑗 −63.38 −20.16 ± 21.72 15.51

𝛿𝑢 0.0215 −0.0172 ± 0.0244 𝑗 0.0317 𝛿𝑣 −0.0017 0.0012 ± 0.0149 𝑗 0.0285

𝛿𝑤 0.0506 −0.0200 ± 0.0417 𝑗 −0.9042 𝛿𝑝 0.9539 −0.9927 ± 0.000 𝑗 0.9852

𝛿𝑝 −0.9972 −0.9966 ± 0.000 𝑗 0.3900 𝛿𝜙 −0.0202 0.0306 ± 0.0330 𝑗 0.0853

𝛿𝜃 0.0501 −0.0251 ± 0.0554 𝑗 −0.1710 𝛿𝑟 −0.2993 −0.0891 ± 0.0658 𝑗 0.1458
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Table S7: State encoding of the LPTC response fields expressed in the stability axes S for the

baseline enclosed rectangular prism. The rows of the unilateral output matrix C′ are formed from

the elements corresponding to the motion state variables {𝛿𝑢𝑠, 𝛿𝑤𝑠, 𝛿𝑞𝑠, 𝛿𝜃𝑠, 𝛿𝑣𝑠, 𝛿𝑝𝑠, 𝛿𝜙𝑠, 𝛿𝑟𝑠}

scaled in S.I. units.
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LPTC 𝛿𝑢𝑠 𝛿𝑤𝑠 𝛿𝑞𝑠 𝛿𝜃𝑠 𝛿𝑣𝑠 𝛿𝑝𝑠 𝛿𝜙𝑠 𝛿𝑟𝑠

Right VS1 -0.3882 -0.3847 0.6656 0.0155 0.0926 -0.2436 0.0263 0.4352

Left VS1 -0.3882 -0.3847 0.6655 0.0155 -0.0926 0.2436 -0.0278 -0.4352

Right VS2 -0.1966 -0.6143 0.6590 0.0243 -0.0344 -0.3628 0.0092 0.1270

Left VS2 -0.1966 -0.6143 0.6590 0.0243 0.0344 0.3628 -0.0100 -0.1270

Right VS3 -0.1572 -0.5994 0.4783 0.0049 -0.0947 -0.6119 0.0100 0.0605

Left VS3 -0.1572 -0.5994 0.4783 0.0049 0.0947 0.6119 -0.0106 -0.0605

Right VS4 -0.1305 -0.5970 0.2558 -0.0027 -0.1574 -0.7287 0.0066 0.0724

Left VS4 -0.1305 -0.5970 0.2558 -0.0027 0.1574 0.7287 -0.0070 -0.0724

Right VS5 -0.0818 -0.5786 0.1327 -0.0042 -0.1619 -0.7835 0.0054 0.0282

Left VS5 -0.0818 -0.5786 0.1327 -0.0042 0.1619 0.7835 -0.0056 -0.0282

Right VS6 -0.0857 -0.5795 0.0278 -0.0016 -0.1661 -0.7890 -0.0019 0.0774

Left VS6 -0.0857 -0.5795 0.0278 -0.0016 0.1661 0.7890 0.0016 -0.0774

Right VS7 -0.0300 -0.5467 -0.2919 -0.0017 -0.1561 -0.7680 -0.0108 0.0279

Left VS7 -0.0300 -0.5467 -0.2919 -0.0017 0.1561 0.7680 0.0106 -0.0279

Right VS8 0.0588 -0.4579 -0.5541 -0.0007 -0.1987 -0.6625 -0.0204 -0.0314

Left VS8 0.0588 -0.4579 -0.5541 -0.0007 0.1987 0.6625 0.0204 0.0314

Right VS9 0.0396 -0.4505 -0.6167 0.0033 -0.1783 -0.6160 -0.0252 0.0578

Left VS9 0.0396 -0.4505 -0.6167 0.0033 0.1783 0.6160 0.0250 -0.0578

Right VS10 0.0864 -0.4344 -0.7056 0.0014 -0.1169 -0.5397 -0.0280 -0.0133

Left VS10 0.0864 -0.4344 -0.7056 0.0014 0.1169 0.5397 0.0281 0.0133

Right V1 -0.1406 -0.5839 0.5757 0.0109 -0.1149 -0.5412 0.0154 0.0374

Left V1 -0.1406 -0.5839 0.5757 0.0109 0.1149 0.5412 -0.0158 -0.0374

Right V2 -0.1420 0.5568 0.1317 0.0023 0.2150 0.7581 0.0082 0.1776

Left V2 -0.1420 0.5568 0.1317 0.0023 -0.2150 -0.7581 -0.0087 -0.1776

Right Vx 0.2817 -0.3518 -0.6441 -0.0025 -0.1877 -0.5295 -0.0288 -0.2562

Left Vx 0.2817 -0.3518 -0.6441 -0.0025 0.1877 0.5295 0.0297 0.2562

Right HSN 0.4641 -0.1110 -0.4483 -0.0039 -0.2614 -0.2605 -0.0121 -0.6595

Left HSN 0.4641 -0.1110 -0.4483 -0.0039 0.2614 0.2605 0.0142 0.6595

Right HSE 0.4962 -0.0399 -0.0582 0.0005 -0.2442 -0.0527 -0.0018 -0.8285

Left HSE 0.4962 -0.0399 -0.0582 0.0005 0.2442 0.0527 0.0045 0.8285

Right HSS 0.5806 -0.1195 0.4274 -0.0081 -0.2723 0.0501 0.0198 -0.6236

Left HSS 0.5807 -0.1195 0.4274 -0.0081 0.2723 -0.0501 -0.0172 0.6236

Right H1 -0.5286 -0.0947 0.0477 0.0037 0.2108 -0.1116 0.0026 0.8077

Left H1 -0.5286 -0.0947 0.0477 0.0037 -0.2108 0.1116 -0.0055 -0.8077

Right H2 -0.4037 -0.0828 0.0765 -0.0011 0.3953 -0.0662 0.0028 0.8147

Left H2 -0.4037 -0.0828 0.0765 -0.0011 -0.3953 0.0662 -0.0053 -0.8147

Right Hx -0.5577 -0.0341 -0.0482 -0.0087 0.4890 -0.1166 0.0027 0.6578

Left Hx -0.5577 -0.0341 -0.0482 -0.0087 -0.4890 0.1166 -0.0047 -0.6578
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