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Abstract

Understanding complex cellular niches and neighborhoods have provided new insights
into tissue biology. Thus, accurate neighborhood identification is crucial, yet existing
methodologies often struggle to detect informative neighborhoods and generate cell-
specific neighborhood profiles. To address these limitations, we developed hoodscanR,
a Bioconductor package designed for neighborhood identification and downstream
analyses using spatial data. Applying hoodscanR to breast and lung cancer datasets,
we showcase its efficacy in conducting detailed neighborhood analyses and identify
subtle transcriptional changes in tumor cells from different neighborhoods. Such
analyses can help researchers gain valuable insights into disease mechanisms and

potential therapeutic targets.

Keywords

Spatial transcriptomics, Cellular neighborhood, Cancer micro-environment,

Bioconductor package.
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Background

Spatial transcriptomics stands out as a powerful technology, offering a distinctive
perspective that goes beyond traditional bulk RNA-seq and single-cell RNA-seq
(scRNA-seq) methods. Since it conserves the spatial information of a tissue, it yields
valuable insights into the complex molecular and cellular landscapes, uncovering spatial
variations and relationships often overlooked by conventional approaches. Recent
advancements in spatial-omics platforms, including Nanostring CosMx Spatial
Molecular Imager [1], 20X Genomics Xenium [2], Vizgen Merscope [3], Akoya CODEX
[4, 5], and others, have facilitated the generation of single-cell level spatial data.
However, despite the potential of spatial transcriptomics, the field is still in its early
stages, with many analyses resembling conventional scRNA-seq-like approaches.
These analyses often disregard the rich spatial context of the data, failing to harness the
cellular coordinates. Thus, this shift towards high-resolution spatial profiling and the lack
of appropriate methods has created a pressing demand for innovative analytical tools
capable of fully exploiting these datasets. Cellular neighborhood analysis, a powerful
approach to fully utilize cell spatial information, becomes particularly important when
applied to single-cell level spatial transcriptomics data. Bioinformatics tools are needed
to identify and characterize the niches or neighborhoods in which cells reside, as these
regions may harbor crucial tissue micro-environment (TME) biology that influences the
fundamental tissue biology, physiology as well as responses to therapy and disease
progression. Therefore, understanding these neighborhoods is key for the full utilization

of the spatial data and to provide researchers with novel insights into cellular
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interactions and communications within the TME, offering a nuanced understanding of
the complex biological processes at play. Such insights hold the potential to enhance
our understanding of complex diseases like cancer and contribute to the development of

more effective therapies.

In recent years, there has been a growing trend in the development of methods
dedicated to conducting neighborhood analyses to interpret complex cellular
neighborhoods within spatial transcriptomics data (Table 1). These methods range from
clustering-based approaches that leverage frequency matrices of k-nearest cells [1] to
graph network-based strategy that is built into interactive viewer [6]. Widely used toolkits
Squidpy [7] and Giotto [8] have made substantial contributions to the field by facilitating
neighborhood analysis via enrichment tests using a graph-based approaches
compatible across multiple spatial technology platforms. Additionally, many tools have
been developed to detect spatial domains from spatial transcriptomics datasets by
accounting for the spatial information, i.e. cellular neighborhood when clustering data
via various approaches, including BuildNicheAssay from Seurat [9], MERINGUE [10],
BANKSY [11], BayesSpace [12], STAGATE [13], SpaGCN [14] and UTAG [15].
Nevertheless, despite these advancements, there are critical gaps in existing
methodologies. Most notably, while some existing tools can detect spatial domains that
comprise multiple cell types, such as UTAG, SpaGCN and Giotto’s HMRF-based
approach, they do not provide partial membership at a single-cell level. For example,
when cells reside in neighborhoods characterized by a mixture of B cells and stromal

cells, current methods tend to categorize such neighborhoods as either exclusively B


https://doi.org/10.1101/2024.03.26.586902
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586902; this version posted July 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

84  cell or stromal cell neighborhoods, failing to capture the nuanced composition of cellular
85 environments. Furthermore, current tools lack the capability to provide cell-level
86  neighborhood annotations, meaning detailed neighborhood profiles for individual cells
87 are unavailable. This critical feature is essential for a comprehensive characterization of
88 the spatial context surrounding each cell. In response to these unaddressed challenges,
89 we developed hoodscanR, a Bioconductor R package designed to perform
90 comprehensive neighborhood analyses on spatial transcriptomics data. Unlike existing
91  methods, hoodscanR aims to bridge critical gaps by enabling per-cell partial
92  membership across multiple neighborhoods, providing a more precise and detailed
93 understanding of the tissue microenvironments. Additionally, hoodscanR generates cell-
94 level neighborhood profiles, a unique feature that allows for an in-depth summarization
95 of the spatial context at a single-cell resolution. Moreover, hoodscanR can identify
96 neighborhood-based spatial domains, offering insights into the higher-order organisation
97  of tissues. In this study, we introduce the functionalities and capabilities of hoodscanR
98 and demonstrate its utility in investigating the cellular neighborhoods within publicly
99 available spatial transcriptomics datasets.

100

101

102
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107 Tablel. Features of existing neighborhood/domain identification methods for spatial

108 transcriptomics data.

Features Giotto[8] |Squidpy[7]| Seurat | Banksy |BayesSpace MERINGUE |SpaGCN| Stagate | Utag |hoodscanR
Language R Python R R/Python R R Python | Python | Python R
Infrastructure G'Qtto AnnData Se_urat Spa_tlal Spa_tlal NA AnnData|AnnData|AnnData Spa_tlal
object object |Experiment| Experiment Experiment

Multi-platforms

. Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

compatible
Co-localization Yes Yes No No No No No No No Yes

Multi-neighborhood
membership No No No No No No No No No Yes
Cell-level
neighborhood No No No No No No No No No Yes
profiles

Spatial domain Yes No Yes Yes Yes Yes Yes Yes Yes Yes

detection

109
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110 Results

111

112  Development of hoodscanR

113

114  hoodscanR uses an efficient computational pipeline to investigate spatial neighborhood
115  relationships among cells within spatial transcriptomics datasets (Figure 1). At the core
116  of hoodscanR, the searching process for nearest cells is initiated using an Approximate
117  Nearest Neighbor (ANN) search algorithm [16], which uses k-dimensional tree to

118  efficiently manage the two-dimensional spatial coordinates of spatial transcriptomics

119  data, providing rapid identification of nearest neighbors while maintaining high accuracy.
120  This facilitates the identification of the k-nearest neighboring cells for each cell in the
121  dataset. This process outputs a list of indices representing the nearest neighbors of

122 each cell, denoted as:
ANN('X) = {Xl, X2, ---;xk}

123 Following the identification of nearest neighbors, hoodscanR calculates the distance

124  between each cell and its k-nearest neighbors. Here Euclidean distance is used due to
125 its simplicity and effectiveness in measuring distances between points in a two-

126  dimensional space. This results in a distance matrix D, where each element D;;

127  represents the distance between cell x; and its neighbor x; from ANN (x) (Figure 1).

128  Simultaneously, cell-level annotations provided by users, such as cell types, are used to

129  construct a cell annotation matrix A, which describes the organisation of cells based on
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130 their distances to neighboring cells. Each entry A indicates whether cell x; belongs to

131  annotation group j:

A= {1 if cell x; € {x1,%,, ..., X} belongs to annotation group j
0 otherwise

132 The fundamental function of hoodscanR is to identify cellular neighborhoods within

133  spatial transcriptomics data. It achieves this by using the SoftMax function, enhanced by
134  a hyperparameter t (tau), which governs the shape of the resulting probability

135  distribution and provides control over the influence of neighboring cells. The algorithm is

136  expressed as follows:

Y, 1y, (x;) - exp {_ M}

SR

Phj(x; T) =

137  where x,x; € {x;,x5, ..., X}, and

1 if Ali,jlis 1
ﬂ i L) =

hj (1) {O otherwise
138  Where:

139 pp, (x; T) denotes the probability of cell x residing within the local neighborhood h;.

140  d(x,x;) signifies the spatial Euclidean distance between cell x and its neighboring cell

141 x;.

142  t stands as the hyperparameter, facilitating fine-tuned modulation of the impact of

143 neighboring cells.
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144 h; denotes the cell neighborhood a, defined by the cell-level annotations provided by

145  users. For example, if cell types were provided, h; means cell type j neighborhood.

146  1(.) is the indicator function, which checks whether cell x; belongs to the neighborhood

147  h; as per the annotation matrix A.

148  Upon the aggregation of probabilities by user-defined cell-level annotation groups, such
149  as cell type annotations, hoodscanR generates a comprehensive probability matrix P,
150  where each value represents the probability of each cell belonging to a specific cell

151  neighborhood (Figure 1). This matrix describes the cellular neighborhood profiles for all
152  cells, serves as the backbone for downstream analyses, enabling researchers to delve

153 into spatial patterns and relationships.
154

155  To investigate how the hyperparameter k and t affects the results generated by

156  hoodscanR, we conducted an extensive examination of the probability matrix across a
157  range of k and 7 values (see Methods). This analysis revealed that different k values
158  generate highly similar results, with a mean Pearson correlation coefficient of 0.93

159  (Additional file 1 — supplementary figure 1). Regarding 7, smaller values assign greater
160  weights to nearby cells, while larger t values consider more distant cells as contributors
161  to the neighborhood (Additional file 1 — supplementary figure 2). Thus, the choice of T
162  becomes essentially linked to the specific biological questions being addressed. For
163 example, smaller T values, such as one-fifth of the median of the distance matrix, which
164 is set to the default T value in the hoodscanR package, are more suitable for analyses

165 focused on local interactions, where nearby cells have stronger influence on the
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166  neighborhood calculation. In contrast, larger T values, such as the median of the
167  distance matrix, are ideal for capturing more global spatial relationships, incorporating

168  cells that are further away as significant components of the neighborhood.

169

170  After neighborhood identification, hoodscanR extends its capabilities to offer a diverse
171 suite of downstream neighborhood analysis tools (Figure 1). Users can apply these

172  tools to visualize spatial relationships, evaluate co-localization patterns, perform spatial
173 neighborhood clustering of cells, and obtain cell-level neighborhood annotations. These
174  functionalities allow researchers to gain insights within the spatial transcriptomic

175 landscape, facilitating the discovery of novel biological knowledge. Last but not least,
176  one of the hallmark features of hoodscanR is using the Bioconductor spatialExperiment
177  infrastructure as the backbone of the analysis. This significantly increases the

178  compatibility of intermediate results from hoodscanR with diverse Bioconductor

179  packages tailored for preprocessing, quality control, normalization, cell type annotation,
180  and various downstream analyses specifically crafted for spatial transcriptomics data. In
181  conclusion, hoodscanR provides a powerful and flexible method for spatial

182  neighborhood identification and analysis.

183

10
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185  Figure 1. Schematic visualization showing the main components and computational workflow of
186  the hoodscanR package. The process begins with inputting a SpatialExperiment object, which
187  contains spatial data and associated metadata. Next, the package calculates the k-nearest cells
188  based on spatial proximity. This step follows by generating a neighborhood probability matrix,
189  which quantifies the likelihood of cell interactions within their local neighborhood. Finally, the
190 package performs visualizations and downstream neighborhood-based analyses to provide

191  insights into spatial patterns and relationships.

192

193  Benchmarking hoodscanR in spatial domains identification

194

195  Building upon the foundation of cell-level neighborhood probability matrix (Figure 1),
196  hoodscanR allows users to perform unsupervised clustering, grouping cells with similar
197  neighborhood distribution patterns into cohesive clusters. This data-driven approach
198 enables the classification of cells based on their spatial relationships within the tissue

199  slide, identifying neighborhood-driven spatial domains.

200 To evaluate the effectiveness and robustness of the neighborhood-based spatial

201 domain identification function in hoodscanR, and compared with other tools, we

202  conducted a benchmarking experiment against several state-of-the-art methods (see
203  Methods). This benchmark experiment involved detecting spatial domains of 16 publicly
204 available datasets, covering a range of spatial platforms and tissue types, including

205 CosMx NSCLC [1], MERFISH mouse colon [17], STARmap mouse cortex [18] and

206  Xenium breast cancer [2, 19]. The datasets were chosen because the tissue is well-

207  annotated with region labels or there are pathological annotataion that can be served as

12


https://doi.org/10.1101/2024.03.26.586902
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586902; this version posted July 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

208  ground truth of spatial domains. hoodscanR was benchmarked against seven other
209 methods that can perform spatial domain detection: BuildNicheAssay from Seurat,
210 Banksy, BayesSpace, MERINGUE, SpaGCN, Stagate and Utag (Figure 2A and

211 additional file 1 - supplementary figure 3-7). As a result from these 128 experiments,
212 hoodscanR, Banksy and Utag exhibit the best performance by achieving the highest
213 performance score on average across all tested datasets (Figure 2B). However and
214  importantly, hoodscanR outperforms all others in computing efficiency (Figure 2C),
215  being approximately 21-fold faster on average than Banksy, which ranks second in
216  speed. This advantage in computational speed is particularly important as increasingly
217  large and high-resolution datasets will be generated with the advancements in spatial
218  transcriptomics technologies. Additionally, hoodscanR can recapitulate tissue spatial
219  architecture in a biologically coherent manner. For example, in the MERFISH mouse
220 colon dataset (Figure 2A), hoodscanR accurately delineates four concentric layers,
221 mucosa (MU), submucosa (SM), muscularis externa (ME), and other, all of which

222 contain multiple cell types. This result closely mirrors the ground truth. By clustering
223 cells with similar neighborhood distributions, hoodscanR captures subtle boundaries
224  more effectively than many alternative methods, preserving the colon’s characteristic
225  concentric organisation, such as the ME structure. Taken together, these results

226  highlight strengths of hoodscanR in domain identification across large-scale spatial

227  transcriptomics datasets.

228  Additionally, to evaluate the robustness of hoodscanR across different resolutions of cell
229 type annotations, we conducted an experiment using high-resolution, medium-resolution,

230 and low-resolution annotations as inputs. The high-resolution annotations included

13
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231 detailed cell types, such as CD4+ T cells, CD8+ T cells, and macrophages. The

232 medium-resolution annotations combined all T cells into a single category, and the low-
233 resolution annotations further grouped all immune cells into a single “Immune” category.
234  Despite the reduction in annotation resolution, the identified neighborhood-based spatial
235 domains have a Normalized Mutual Information (NMI) score of greater than 0.8 when
236 comparing using the high-resolution results as the reference (Additional file 1 -

237  supplementary figure 8). Taken together, these results showcase the power of

238 hoodcanR in accurately identifying neighborhood-based spatial domains in a scalable
239 and efficient manner. They also indicate that hoodscanR is robust to variations in

240  annotation granularity, maintaining the integrity of the spatial relationships even when
241  the resolution of cell type annotations is reduced.
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244  Figure 2. Benchmarking hoodscanR against other methods in detecting spatial domains. A:
245  Spatial maps of the MERFISH mouse colon data, colored by the spatial domains detected from
246  different methods compared to the ground truth domain annotations, including muscularis

247  externa (ME), mucosa (MU), submucosa (SM) and other (top left corner). B: Violin plots

248  showing the performance score of each method across all tested datasets. Round-crosses

249  indicates the mean performance score for each method. C: Computational efficiency of each
250 method, plotted as the log10-scaled time (in seconds) required to process datasets. Shapes
251  represent the platform of the dataset, colors denote the methods, and the lines are generalized

252 linear smooths indicating overall trends for each method.

253

254 hoodscanR identifies celluar neighborhoods in cancer

255

256  To demonstrate the power of hoodscanR in detecting spatial cellular neighborhoods, we
257  performed neighborhood identification on two publicly available spatial transcriptomics
258 datasets obtained from different in situ transcriptomic platforms: breast cancer data

259  obtained from the 10X Genomics Xenium (Figure 3A) and non-small cell lung cancer
260 (NSCLC) data acquired from the Nanostring CosMx Spatial Molecular Imager (Figure
261  3B). We first applied hoodscanR onto the breast cancer dataset using the default

262  parameters (k=100 and t=median(dist*2)/5). hoodscanR allows us to perform

263  neighborhood identification by profiling neighborhood distributions for each cell within 6
264  seconds, representing the probability of a cell being situated within each distinct cell-

265  type neighborhood (Figure 3C and 3F).

266

15


https://doi.org/10.1101/2024.03.26.586902
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586902; this version posted July 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

267  To validate the accuracy of hoodscanR in characterizing these cellular neighborhoods,
268  we focus on one randomly selected cell for each dataset by exploring the distribution of
269  cell types within their spatial area (Figure 3D, E, G, and H). For instance, we examined
270  aductal carcinoma in situ (DCIS) grade 2 cell, an early form of breast cancer cells, from
271 the Xenium data (Figure 3C and D: cell ID 27620), where we observed 47 DCIS grade 2
272 cells and 21 ACTA2+ myoepithelial cells from the nearest 100 neighboring cells (Figure
273  3D). Consistently, hoodscanR assigned probabilities of 61.02% for residing in the DCIS
274  grade 2 neighborhood and 30.96% for the ACTA2+ myoepithelial neighborhood for this
275  specific cell (Figure 3E). Similarly, when assessing a stromal cell within the CosMx

276  NSCLC data (Figure 3F: cell ID 6_1099), we observed that hoodscanR assigned

277  probabilities of 68.2% for the B cell neighborhood and 19.67% for the plasma cell

278  neighborhood while there are 66 and 11 B cells and regulatory T cells in the nearest
279 100 neighboring cells (Figure 3G and H). These examples demonstrate the power of
280 hoodscanR in accurately characterizing cellular neighborhoods within spatial

281  transcriptomics data, regardless of the platform, and its capacity to accommodate

282  scenarios where cells may belong to neighborhoods of multiple cell types. The

283 identification of B cell neighborhoods is particularly noteworthy in the context of cancer
284  therapy responses. B cell neighborhoods serve as crucial sites for antibody production,
285  contributing to the immune response against tumor cells and influencing therapeutic
286  efficacy [20]. Furthermore, in lung cancer, the presence of tertiary lymphoid structures
287  (TLS), characterized by highly organized T and B lymphocyte colonies within

288  nonlymphoid tissues, has been associated with favorable clinical outcomes in non-small

289  cell lung cancer (NSCLC) [21]. These structures, resembling secondary lymphoid

16
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290 organs, play an important role in regulating antitumor immune responses and are

291 emerging as potential targets for novel therapeutic interventions. By delineating cellular
292  neighborhoods, including B-cell-rich TME, hoodscanR offers the potential for

293 investigating the relationship between immune cells and tumor cells within the TME,

294  providing insights that could inform the development of more effective cancer therapies.

295

296  Furthermore, hoodscanR introduces an additional analytical dimension by enabling the
297  computation of uncertainty, which is measured by perplexity, and performing

298  permutation test for each cell (see Methods). Perplexity is calculated from the

299  probability matrix, capturing the spatial relationships among cells and their respective
300 neighborhoods. Perplexity provides overall measurement of the uncertainty and

301 complexity of cell neighborhoods (Figure 31 and K). This in turn reveals regions of the
302  TME with distinct cellular compositions and areas with complex interactions between
303 cell types. P-values of perplexity (Figure 3J and L) can be obtained via an empirical
304 permutation test (see Methods). This allows users to identify regions with significant
305 higher perplexity from tissue. Altogether, these metrics provide an understanding of the
306 heterogeneity and complexity present within tissues, allowing researchers to gain novel

307 insights and make discoveries in the spatial transcriptomics landscape.

308

309

310
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311
312  Figure 3. Neighborhood identification in 10X Xenium breast cancer data and Nanostring CosMx
313  NSCLC data. Cell type spatial distribution in the breast cancer data (A) and NSCLC data (B).
314  Neighborhood distribution visualization via heatmap of randomly selected 30 cells from breast
315 cancer data (C) and NSCLC data (F), darker color means higher probability of the cell located in
316  specific cell type neighborhood. The cell type spatial distribution in the spatial area around the
317  selected cells (marked by * in the heatmap) in breast cancer data (D & E) and NSCLC data (G &
318  H). Perplexity spatial distribution of cells in the breast cancer data () and NSCLC data (K). P-

319  value distribution of perplexity in the breast cancer data (J) and NSCLC data (L).
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hoodscanR performs neighborhood-based downstream analyses

Existing neighborhood identification methods, such as Squidpy and Giotto,
predominantly focus on neighborhood co-localization analyses. Another key function of
hoodscanR is to generate neighborhood profile at single-cell level and to carry out
neighborhood-based downstream analyses, features notably absent in other existing
tools. To demonstrate the versatility of hoodscanR, we use the CosMx NSCLC dataset

as an example.

Firstly, as with other spatial analysis tools, hoodscanR can perform neighborhood co-
localization analysis by computing Pearson correlations on the neighborhood
distribution of cells. Hence, the co-localization status of each cell type neighborhood
within this specific tissue slide can then be visualized (Figure 4A). To benchmark the
ability of hoodscanR, Squidpy and Giotto when carrying out co-localization analysis, we
subset the Xenium breast cancer data and CosMx NSCLC into different resolution,
followed by applying these tools to the subsets. As a result, hoodscanR demonstrated
superior computational performance (Additional file 1 — supplementary figure 9), while
delivering similar outcome (mean Pearson correlation coefficient of 0.781) of
neighborhood co-localization compared to both Xenium and CosMx data (Additional file
1 — supplementary figure 10 and 11). The computational efficiency gains significance,

particularly in the context of the growing spatial data resolutions and larger tissue areas.
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342  To validate the co-localization results, we present a subset of cell types alongside their
343  spatial distribution within the breast cancer tissue slide, showing that immune cell types
344 such as B cells, T cells, and macrophages exhibit co-localization, while they are

345  distinctly separated from tumor cells (Figure 4B). This observation serves as robust

346  validation of the co-localization analysis results generated by hoodscanR, thus

347  reinforcing the effectiveness and reliability of hoodscanR in revealing spatial

348  relationships within various tissue environments, particularly when dealing with complex

349  spatial transcriptomics data.

350

351  Inthe CosMx NSCLC data, we applied unsupervised clustering to delineate 10 distinct
352 clusters (see Methods), each representing a unique spatial pattern within the tissue

353  (Figure 4C), demonstrating complex spatial associations. For instance, cluster 1, a

354  candidate cluster for TLS, corresponds to a neighborhood including B cells, cDC1 cells,
355 and stromal cells (Figure 4D - 1), cluster 3 aligns with macrophages and cDC2 cells
356  (Figure 4D - 3), and cluster 6 corresponds to tumor cells (Figure 4D - 6). This

357 unsupervised clustering approach facilitates the identification of diverse cellular

358 neighborhoods and their unique spatial signatures, providing a comprehensive view of

359 the complexity of TME.

360
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Figure 4. Neighborhood-based downstream analyses in CosMx NSCLC data performed by
hoodscanR. A: heatmap representing the co-localization status of cell type neighborhood in this
tissue slide. Colors denote positive (dark red) and negative (blue) correlations. B: Spatial
location plot of a subset of cell types in this slide. Colors denote cell types. C: Spatial location
plot of the slide with colors stratified by neighborhood-based clusters. D: The neighborhood

distribution profiles of each neighborhood-based cluster identified in the tissue slide.
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370 hoodscanR detects changes between tumor cells from different neighborhoods

371

372 Building on these findings, we then used uniform manifold approximation and projection
373  (UMAP) to perform dimension reduction visualization on the expression data of the

374 CosMx NSCLC data, enabling the projection of gene expression profiles into a lower-
375 dimensional space. This facilitates the visualization of cell lineage (Figure 5A) alongside
376  identified neighborhood-based clusters (Figure 5B). A distinctive feature observed is the
377  dispersion of cells of the same cell type across different neighborhood clusters,

378  signifying diverse spatial neighborhood profiles. For example, a substantial proportion
379  (76.14%) of macrophages (pink points in Figure 5A) are distributed across various

380 neighborhood clusters, including cluster 3 (43.63%), indicative of the macrophage +

381  ¢DC2 + tumor neighborhood, clusters 7 (12.31%), and cluster 9 (20.2%), representing

382 the stromal + cDC2 neighborhood (Figure 3D and 5B).
383

384  An important aspect of hoodscanR lies in its ability to investigate the relationship

385  between spatial neighborhoods and transcriptional changes. To demonstrate this, we
386 conducted a nuanced analysis by extracting and pseudo-bulking tumor cells from two
387 distinct neighborhood clusters: the stromal cluster and the macrophage cluster across
388 three consecutive slides (Additional file 1 — supplementary figure 12). Interestingly,
389 different spatial neighborhoods contribute significantly to the variation observed in the

390 first dimension from a principal component analysis (PCA) of expression of pseudo-bulk
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391  samples (Figure 5C). This signifies that hoodscanR can capture transcriptional changes

392  attributed to diverse spatial neighborhoods.

393

394  Subsequently, we performed a differential expression (DE) analysis using the limma-
395 voom pipeline [22], identifying 220 DE genes from 832 genes, including 73 up-regulated
396 and 147 down-regulated genes when comparing tumor cells from the macrophage

397 neighborhood to those from the stromal neighborhood (Figure 5D and additional file 2).
398  Additionally, we performed gene-set enrichment analysis on the identified DE genes
399  with MSigDB gene-sets [23, 24], detecting 384 significantly enriched gene-sets

400 (Additional file 3). We further perform unsupervised clustering on gene-sets using VissE
401  [25], identifying clusters of gene-sets networks (Figure 5E and additional file 1 -

402  supplementary figure 13, middle panel). Notably, we observe pathways enriched in

403 down-regulated DE genes related to collagen, such as collagen-activated tyrosine

404  kinase receptor signalling pathway and collagen metabolic and catabolic process

405  (Figure 5E left panel). These pathways are accompanied by the differential expression
406  of key collagen-related genes, such as COL1A1, COL11A1 and COL5A1 (Figure 5E
407  right panel). Previous studies have found that the overexpression of collagen genes
408 such as COL11A1 [26] and COL3A1 [27] in NSCLC may indicate poor prognosis and
409  drug resistance, and COL1AL1 is correlated with immune infiltration in NSCLC [28]. Our
410 finding of these genes that are expressed significantly more in the tumor cells from the
411  macrophage neighborhood than tumor cells from the stromal neighborhood can

412  potentially lead a more detailed investigation of the biological mechanism about

413  transcriptional changes within the context of cancer spatial TME studies. In essence,
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hoodscanR introduces a novel perspective in spatial transcriptomics, allowing the
identification of transcriptomic changes across subtly different spatial neighborhoods

and providing insights into the spatial organisation within the TME.
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Figure 5. Neighborhood-based transcriptomics analysis in CosMx NSCLC data. A: UMAP of
expression of cells in the data, colors denote cell types. B: UMAP of expression of cells in the
data, colors denote the identified neighborhood-based clusters. C: PCA of pseudo-bulk samples
of tumor cells from two different neighborhood clusters across three consecutive slides. Colors
denote clusters and shapes denote replicates. D: MA plot describing the outcome of the DE
analysis. Colors indicate up- (red) or down-regulated (blue) genes. E: vissE visualization of

significantly enriched gene-sets from the down-regulated DE genes in the comparison between
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425  tumor cells from macrophage neighborhood and tumor cells from stromal neighborhood. Left
426  panel are word cloud plots describing gene-set clusters of different biological themes, middle
427  panel is the gene-set overlap network graph of gene-sets, and right panel is the fold-change

428  (log2-scaled) for genes belonging to each gene-set cluster.

429

430 hoodscanR supports different gene annotations

431

432  The accuracy of cell type-based cellular neighborhoods, as identified in the previous
433  case, is inherently tied to the accuracy of cell type annotation. Thus, we built

434  hoodscanR to be flexible and capable to detect various cellular neighborhoods based
435  on different gene annotation inputs. A particularly valuable application is gene

436  expression-based neighborhoods detection. To showcase this, we utilised a breast
437  cancer tissue, where we can focus on breast cancer-related hormone receptor genes,
438  including androgen receptor gene (AR), estrogen receptor gene (ESR1), and

439  progesterone receptor gene (PGR). By assessing if these genes are expressed or not,
440 we classified 574,527 cells from a Xenium Invasive ductal carcinoma (IDC) dataset into
441  eight distinct groups (Figure 6A). Similar to the previous neighborhood identification
442  based on cell types, hoodscanR can identify spatial domains based on gene

443  expression-specific neighborhoods (Figure 6B and additional file 1 - supplementary
444  figure 14). These analyses lead to a nuanced understanding which adeptly discover
445  tumor cells located within neighborhoods characterized by varying combinations of
446  hormone receptors. This not only suggests a spatial perspective on the progression of

447  DCIS, influenced by distinct combinations of hormone receptors but also sheds light on
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448  the higher-order spatial structure of cells with different hormone receptor expression

449  profiles.

450

451  Moreover, interesting insights can be observed by comparing the pathological

452  annotations (Figure 6C) of this slide [19], where invasive and non-invasive (DCIS)

453  cancer phenotype regions were annotated, with the identified neighborhood clusters.
454  Invasive tumors exhibit a distinctive pattern with cells from cluster 3 scattered

455  throughout, accompanied by cells from cluster 6 (Figure 6D). Both clusters are

456  associated with ESR1+PGR+ and ESR1-PGR+ cell neighborhoods, respectively. This
457  finding aligns with previous findings indicating that nearly 80% of invasive breast

458  cancers are ER-positive, and PR is overexpressed in ER+ tumors [29]. Conversely,
459  DCIS regions are notably associated with cells from cluster 5, which form the inner layer
460  surrounded by cells from cluster 3, comprising the outer layer (Figure 6D). Cluster 5
461 includes cells expressing AR, which is consistent with previous findings showing AR
462  expression in DCIS components adjacent to invasive cancer [30]. Additionally, the

463  expression of AR has been reported to decrease as the disease progresses from DCIS
464  to invasive cancer [31]. These observations suggest a potential relationship between
465 the tumor type (non-invasive or invasive) and the higher-order spatial organisation of

466  cells with diverse hormone receptor expression profiles.

467
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469  Figure 6. Gene expression-based neighborhood analysis in 10X Xenium IDC (A-D) and

470  VisiumHD mouse brain (E-H) data using hoodscanR. A: spatial plot showing the hormone gene
471  expression-based cell grouping on the tissue slide. B: gene expression-based domains in IDC
472  tissue. C: pathological annotation of regions on the tissue. D: spatial plot showing specific

473  neighborhood clusters, including cluster 3, 5 and 6. E: spatial plot showing the selected gene
474  expression-based cell grouping. F: gene expression-based domains in mouse brain tissue. G:
475  neurons spatial distribution in different gene-expression neighborhoods. H: a dimension

476  reduction UMAP visualization of the neurons from different neighborhoods.

477

478  To further demonstrate the broad application of hoodscanR beyond cancer and human
479  data, we analysed the publicly available Visium HD mouse brain data. In this case, we
480  selected five marker genes that can divide the brain into different regions: Calb2 for
481  paraventricular nucleus of the thalamus (PVT) [32], Neurod6 for deeper layers of the

482  cortex [33], Penk for striatal medium spiny neuron [34], Cux1 for upper layer of the
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483  cortex [35] and Pvalb for hippocampus [36]. Additionally, we included the gene Rbfox3,
484  which is exclusively expressed in neuron cells [37]. The spatial map of these cells

485 reveals their distinct regional expression patterns within the brain tissue (Figure 6E and
486  additional file 1 - supplementary figure 15). Applying hoodscanR, we can identify

487 neighborhood-based clusters (Figure 6F and additional file 1 — supplementary figure 16).
488  These clusters largely correspond to specific brain regions (Additional file 1-

489  supplementary figure 17), reflecting the well-structured nature of the brain tissue, with

490 each cluster predominately associated with one of the maker genes.

491

492  Focusing on neuron cells by filtering the dataset for cells expression Rbfox3, we

493  explored how these neurons are distributed across different neighborhoods (Figure 6G).
494 By conducting dimension reduction via UMAP on the expression data of these neurons
495  (Figure 6H), we can visualise the neurons from different neighborhoods tend to cluster
496 differently, indicating variance in expression between these neurons, especially

497  between those within Neurod6+ neighborhoods and Calb2+ neighborhoods (Additional
498 file 1 - supplementary figure 18). Moreover, performing a differential expression analysis
499  between neurons from these two neighborhoods revealed a set of genes that are

500 significantly upregulated in the Neurod6+ region compared to the Calb2+ region

501 (Additional file 1 - supplementary figure 19), indicating distinct microenvironmental

502 influences and potential functional specialization. For example, Nrgn, Hpca, and

503 Rasgrpl, which are all involved in regulating intracellular calcium signalling and synaptic
504 plasticity, are up-regulated in the neurons from the Neurod6+ neighborhood,

505 predominantly localized to the hippocampal area. This observation aligns with previous
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506 studies showing that these genes are critical for synaptic plasticity [38-41], which

507 underlies learning and memory. Taken together, these patterns illustrate how local

508  spatial neighborhood composition can shape neuronal identity and function, highlighting
509 hoodscanR’s ability to detect spatially restricted transcriptional differences even in

510 highly structured tissues like the brain.

511

512  In summary, these findings highlight hoodscanR’s capability to identify subtle spatial
513 changes in expression-based cellular neighborhoods, providing novel insights into the
514 complex spatial dynamics of gene expression in both cancerous and non-cancerous

515  tissues.

516 DIisScussion

517

518  Spatial technologies are pushing the limits toward profiling spatial transcriptomics at

519  single-cell level. To make the best use of these cutting-edge technologies, we

520 developed hoodscanR, a powerful yet user-friendly Bioconductor package for revealing
521  spatial cellular relationships within high-dimensional spatial transcriptomics datasets via
522  spatial cellular neighborhoods identification and neighborhood-based downstream

523 analyses. In our benchmarking experiments, hoodscanR demonstrated robust accuracy
524 and computation efficiency compared to several state-of-the-art methods, further

525 validating its utility in diverse spatial transcriptomics applications.

526

29


https://doi.org/10.1101/2024.03.26.586902
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.26.586902; this version posted July 2, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

527  While we have shown hoodscanR can identify biologically meaningful cellular

528 neighborhoods, as with all methods it is not without limitations. Firstly, although

529 hoodscanR is flexible in relation to gene annotations, the preprocessing of spatial

530 transcriptomics data is essential. Current quality control procedures of spatial

531 transcriptomics data predominantly operate at cell level, potentially missing crucial

532  details detectable only at a transcript (subcellular) level. A more comprehensive strategy
533 for data preprocessing, accounting for information at transcript level, filtering out

534 uninformative cells accurately and enhancing the precision of neighborhood

535 identification, becomes imperative. Secondly, hoodscanR is a cell-based method,

536 emphasizing the critical role of accurate cell segmentation, which hoodscanR depends
537 upon other methods. The segmentation process, which determines how individual cells
538 are identified and their spatial coordinates are established, is fundamental to the

539  accurate detection of cellular neighborhoods. Variations in segmentation methods, such
540 as differences in how cell boundaries are defined or how centroids are calculated, can
541 lead to significant differences in cell type distributions and spatial relationships within
542  the tissue. Such variations can impact the neighborhood detection results produced by
543  hoodscanR, potentially leading to different biological interpretations. A systematic

544  review of existing segmentation methods is lacking, necessitating future research to

545 evaluate and compare methods under diverse spatial transcriptomic platforms. Lastly,
546  while hoodscanR enables exploration of spatial gene expression patterns, users must
547 interpret results cautiously. Recognizing that spatial context alone may not capture the
548  full complexity of molecular interactions within a tissue. Integrating multi-omics data can

549  provide a more comprehensive understanding, ensuring spatial analyses are embedded
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550  within a broad molecular context. Strategically addressing these considerations allows
551 researchers to fine-tune the utilization of hoodscanR, strengthening the integrity of their

552 analyses and facilitating the discovery of novel insights.

553

554  Three of the major strengths of hoodscanR are its compatibility, adaptability and

555  flexibility. Developed based on the Bioconductor SpatialExperiment infrastructure,

556  hoodscanR exhibits compatibility with many other spatial and single-cell RNA-seq-

557  based tools from Bioconductor, amplifying its utility for downstream analyses.

558 Importantly, its adaptability makes it platform agnostic, demonstrated by successful

559  applications on Nanostring CosMx, 10X Genomics Xenium, MERFISH and STARmap.
560  Spatial datasets from various platforms, including Vizgen MERSCOPE, 10X Visium HD,
561 BGI STOmics, and Akoya Biosciences CODEX, can also undergo comprehensive

562  analysis using hoodscanR, given the availability of cell-based coordinates. The flexibility
563 of hoodscanR is demonstrated by the types of annotations it can use. With the Xenium
564  breast cancer data, hoodscanR showcased this by not only using cell type annotations
565 but also accommodating gene expression level grouping of cells, suggesting the

566  potential for exploring additional annotation options such as ligand-receptor or growth
567 factor-receptor annotations. This design provides researchers the flexibility to generate
568 hypotheses on the basis of integrating spatial localization and gene expression before
569 testing statistical associations between these. Lastly, while hoodscanR is not designed
570 for direct cell-cell communication analysis, it plays a crucial role in accurately identifying
571  and characterizing spatial neighborhoods. This capability can complement existing cell-

572  cell communication tools, such as COMMOT [42], CellChat [43] or CellPhoneDB [44],
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573 by providing a more refined spatial context that may enhance the accuracy and
574  robustness of cell-cell communication network identification in complex tissue

575  environments.

576

577  The significance of hoodscanR in identifying and analyzing neighborhoods becomes
578  particularly crucial in the context of complex diseases, notably in cancer research.
579  Neighborhood information is indispensable for unraveling complex disease etiology,
580 especially so for understanding disease progression. In cancer research, where the
581  TME plays an important role in dictating therapy responses, the ability offered by

582 hoodscanR to identify neighborhoods offers a unique perspective to investigate novel
583 mechanisms underlying the transition of cancer cells at both transcriptomic and

584  proteomic level. Notably, our findings from the Nanostring CosMx NSCLC dataset
585 identified cellular neighborhoods that are potentially associated with the presence of
586  TLS, which correlated with positive clinical results [21]. This capability offers the

587  potential to contribute valuable insights into the progression of cancer, paving the way

588  for the development of novel therapeutic strategies.
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589 Conclusions

590 In conclusion, our study introduces hoodscanR, a Bioconductor package designed for
591 comprehensive neighborhood analysis in spatial transcriptomics datasets. Through its
592 integration with the SpatialExperiment infrastructure and efficient algorithms,

593 hoodscanR offers fine-tuned control over neighborhood identification, allowing

594 researchers to investigate complex cellular relationships within spatially resolved

595 datasets. By demonstrating hoodscanR's efficacy on the 10X Genomics Xenium breast
596 cancer and Nanostring Technologies CosMx non-small cell lung cancer datasets, we
597 showcase its ability in identifying cellular neighborhoods and elucidating spatial gene
598  expression patterns. Furthermore, our findings emphasize the significance of

599 neighborhood analysis in understanding the complex TME of cancer tissues, which can
600 potentially lead to the identification of novel biological mechanisms underlying disease
601  progression and therapeutic responses. Importantly, hoodscanR's flexibility in handling
602  diverse spatial datasets and its ability to accommodate different types of cell

603  annotations enhance its utility for a wide range of spatial transcriptomic studies. Overall,
604  hoodscanR contributes to advancing the field of spatial transcriptomics by providing
605 researchers with a powerful tool, thereby paving the way for deeper insights into tissue

606  biology and disease mechanisms.
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607 Methods

608

609 Data pre-processing

610 Both CosMx and Xenium datasets underwent a rigorous quality control process to

611  ensure the inclusion of high-quality cells in the neighborhood analysis. For the CosMx
612  data, thresholds were set at the 0.1 quantile to filter out cells with low transcript count or
613 low gene detection count across all cells per tissue slide. Additionally, genes with mean
614  expression (log-scaled count per million) and variance lower than the negative probes
615  were excluded from further analyses. In the case of the Xenium data, filtering followed
616  the guidelines outlined in the Squidpy[7] toolkit tutorial. Cells with a transcript count less
617 than 10 and genes detected in fewer than 5 cells were removed from the neighborhood
618 and downstream analyses. As a result, almost 90,000 cells per slide with 870 genes

619 and 156,224 cells with 313 genes were kept for the NSCLC and breast cancer datasets,

620  respectively.
621

622  Cell type annotation

623  Cell type annotations for the Nanostring CosMx NSCLC data was carried out with

624  modifications as previosuly described in Tan et al 2024 [45]. Briefly, specific

625 modifications include using SCTransform from the Seurat package [46] to normalise
626 filtered counts from the quality control step. By modelling negative probe detection as a
627 fixed factor, we regressed out the confounding effects caused by background. The

628  annotation process of the data were performed using InSituType [47], with the Single-
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629  cell Lung Cancer Atlas (LUCA)[48] as the reference. In terms of 10X Xenium data, cell

630 type annotation was obtained from the Janesick A, et al paper [2].

631

632  Metrics calculation for neighborhood probability distribution

633  Perplexity serves as a fundamental metrics for summarizing the neighborhood

634  probability distribution generated by hoodscanR. It provides a measure of effective

635 diversity of complexity within a cell's neighborhood. The perplexity P(x) for a given cell

636 x is calculated as:
P(x) = 2H™

637  Where H(x) represents the Shannon entropy [49] of the neighborhood probability

638  distribution of cell x, defined as:

H(x) = — Z p(x;) log, p(x;)

639  Where p(x;) is the probability of cell x located in the i-th neighborhood and n is the total
640 number of distinct neighborhoods. Higher perplexity values indicate greater diversity or
641  complexity within the cellular neighborhoods, suggesting that a larger number of distinct
642  cell types are contributing to the neighborhood. In hoodscanR, perplexity can be

643  calculated using the calcMetrics function.

644  To assess the statistical significance of the observed perplexity values within cell
645 neighborhoods, we employed an empirical permutation test. For each neighborhood, we

646  generated a distribution of perplexity values by randomly shuffling the spatial
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647  coordinates of cells and recalculating the perplexity across 1,000 permutations. The
648  empirical p-value for each neighborhood was then calculated as the proportion of
649  permuted perplexity values that were greater than or equal to the observed perplexity

650 value, adjusted for the finite number of permutations:

21 1(Pops 2 P) +1
Pempirical = N+1

651  where P,,. is the observed perplexity for a given neighborhood, P; represents the

652  perplexity from the i-th permutation, 1(.) is an indicator function that equals 1 when the
653  condition inside is true and 0 otherwise, and N is the total number of permutations. This
654  correction ensures that the empirical p-values are properly calibrated, even with a

655 limited number of permutations, thus providing a robust measure of statistical

656  significance.

657
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658 Hyperparameter k and 7 testing

659 In order to test the effect different parameter k values have on the results of hoodscanR,
660  we first test a range of k values (10, 50, 100, 200, 500, 1000), using the default T setting
661  from the scanHoods function. We then computed the Pearson correlation between the
662  resulting probability matrices to assess consistency of the outcomes across different k.
663  For testing the T parameter, we fixed k = 100 and examined a range of t values, which
664  were derived from different scaling of the distance matrix (see Availability of data and

665  materials).
666

667 Benchmarking of co-localization analysis

668  Both 10X Xenium breast cancer and Nanostring CosMx datasets were utilized for

669 benchmarking the co-localization analysis among hoodscanR, Squidpy, and Giotto. To
670 ensure robustness, the data were randomly subset into ten different sizes ranging from
671 0.1to 1, after which each package's respective methodologies were applied.

672  Specifically, for hoodscanR, neighborhood identification and co-localization analysis
673  were conducted using the plotColocal function. In contrast, Squidpy and Giotto

674  performed network graph construction using the gr.spatial_neighbors and

675 createSpatialDelaunayNetwork functions, followed by co-localization analysis using the

676  gr.nhood_enrichment and cellProximityEnrichment functions, respectively.
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677
678 Benchmarking spatial domain identification

679  To benchmark hoodscanR against other state-of-the-art methods in identifying spatial
680 domains from spatial transcriptomics datasets, we selected 12 publicly available

681 datasets. These included 3 CosMx NSCLC, 6 MERFISH mouse colon, 1 STARmap
682  mouse cortex, and 2 Xenium breast cancer slides. Due to the large size of the Xenium
683  breast cancer datasets (555,579 cells and 353,783 cells, respectively), some tools were
684  unable to process these datasets efficiently. To address this, we downsampled these
685  slides to 10,000 and 50,000 cells, while maintaining the original cell type proportion
686  distributions, resulting in a total of 16 datasets. This was achieved by randomly

687  sampling cells from each cell type cluster based on their proportional weighting (see
688  Availability of data and materials). Annotated region labels or pathological annotations
689 in these datasets were used as the ground truth for spatial domains.

690 Normalization of the gene expression data was handled differently depending on the
691 dataset. For the MERFISH dataset, we directly used the provided log-normalized

692  counts. For all other datasets, we used the quickCluster and calculateSumFactors

693  functions from the scran R package [50] to estimate size factors, followed by the

694  logNormCounts function from the scuttle R package [51] to normalize the counts.

695 We compared hoodscanR against seven other methods capable of performing spatial
696 domain detection: BuildNicheAssay from Seurat, Banksy, BayesSpace, MERINGUE,
697 SpaGCN, Stagate, and Utag. For each method, we calculated a composite performance

698  score to assess the accuracy of spatial domain identification. This score was computed
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699 as the mean of four key metrics: Adjusted Rand Index (ARI), Normalized Mutual

700 Information (NMI), purity, and homogeneity. It is defined as:

Score = mean(ARI + NMI + Purity + Homogeneity)

701  These metrics were chosen for their ability to quantify different aspects of clustering
702 accuracy. ARI measures the similarity between the predicted and true clusters,

703  adjusting for chance. It is defined as:

RI — Expected RI
Max Rl — Expected RI

ARI =

704  Where RI is the Rand Index, which counts the number of correct pairwise classifications
705  between the predicted and true labels. ARI in this paper is calculated using the aricode

706 R package.

707 NMI quantifies the amount of information shared between the predicted and true

708 clusters. It is defined as:

N = 2% I1(U,V)
~ HWU)+HY)

709  where I(U,V) is the mutual information between clusters U and V, and H(U) and H (V)
710 are the entropies of the true and predicted clusters, respectively. NMI in this paper is

711 calculated using the aricode R package.

712 Purity measures the extent to which each cluster contains only members of a single

713  class. It is calculated as:

K
1

Purity = —z max |G, N Tj|
Nk=1 g
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714 where C, are the predicted clusters, T; are the true clusters, and N is the total number of
715  samples.

716  Homogeneity ensures that all the clusters contain only data points which are members
717  of a single class. It is defined as:
H(C|T)

H(C)

Homogeneity =1 —
718  where H(C|T) is the conditional entropy of the true clusters given the predicted clusters,

719 and H(C) is the entropy of the predicted clusters.

720 To ensure fairness in the benchmarking process, all methods were executed using their
721  default settings (see Availability of data and materials). Additionally, a time penalty was
722  applied: if a method failed to complete the processing of a dataset within 24 hours, the
723  process was terminated. This ensures that the comparison accounts not only for

724  accuracy but also for computational efficiency.

725

726  Unsupervised clustering of neighborhood distribution

727  To perform unsupervised clustering of the neighborhood distribution, the identified
728 neighborhood distribution of each cell was utilized as input data. The K-means

729  clustering algorithm, a widely used method for partitioning data into distinct clusters
730 based on dissimilarity, were used. Specifically, we set the parameters for K-means
731  clustering as iter_max = 1000, nstart = 5, and algo = "Hartigan-Wong". The iter_max
732  parameter determines the maximum number of iterations allowed to converge to a
733 solution, while nstart specifies the number of initial cluster centers to use in the

734  algorithm. Additionally, the "Hartigan-Wong" algorithm was chosen as the method for
735  center initialization. To determine the optimal number of clusters (k) for the K-means

736  clustering algorithm, we used the elbow method. In a nutshell, we first calculated the
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737  within-cluster sum of squares for a range of k values and then identified the point at

738  which the distortion or inertia starts decreasing in a linear fashion.
739

740  Differential expression analysis

741 To conduct the differential expression (DE) analysis on the CosMx NSCLC dataset and
742 identify DE genes among tumor cells from distinct cellular neighborhoods, pseudo-bulk
743 via summation samples were initially generated from cells within the identified

744  neighborhood-based clusters using summarizeAssayByGroup function from the scuttle
745 R package [51]. Subsequently, the standR package [52] was used to assess relative log
746  expression (RLE) and perform principal component analysis (PCA) to explore the

747  technical and biological variation in the pseudo-bulk data. Following this, the limma-
748  voom pipeline [22] was utilized for DE analysis with TMM normalisation [53],

749  incorporating slide information as a covariate in the linear model to account for slide-
750 related variations. The resulting statistic was an empirical Bayes moderated t-statistic.
751  Multiple testing adjustment using the Benjamini—-Hochberg procedure was then applied
752  to identify DE genes that reached statistical significance (FDR < 0.05). To identify DE
753  genes in the 10X VisiumHD mouse brain dataset, we first extracted neurons from the
754  Neurod6+ and Calb2+ neighborhoods and then applied Seurat’s FindAlIMarkers

755  function [9]. We retained only genes meeting two criteria: a log2 fold change greater
756  than 1 and an adjusted p-value less than 0.05. The top ten genes from each group,

757  based on these filters, were subsequently selected for heatmap visualization using the

758  DoHeatmap function from Seurat.
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759  Gene-set enrichment analysis and visualization

760  Gene-sets from the Molecular Signatures Database (MsigDB, v7.2), including

761  Hallmarks, C2 (curated gene-sets), and C5 (gene ontology terms) categories, along with
762  KEGG pathway gene-sets, were obtained using the getMisgdb and appendKEGG

763  functions from the msigdb R package (v1.1.5). Gene-set enrichment analysis (GSEA)
764  was performed using fry from the limma package (v3.58.1). A false discovery rate of

765 0.05 was used as the threshold for determining significantly enriched gene-sets. The
766  results of GSEA were systematically examined and visualized using an unbiased

767  approach through the novel network enrichment and visualization R package vissE [25].
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774

775  Availability of data and materials
776 The Nanostring CosMx non-small cell lung cancer (NSCLC) data utilized in this study
777 was sourced from the official Nanostring website:

778  https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/nsclc-ffpe-

779  dataset/. The CosMx dataset was generated from FFPE NSCLC tissue samples using a
780  960-plex CosMx RNA panel. The 10X Xenium breast cancer datasets used in this study
781  were retrieved from the 10X publicly available database at

782  https://www.10xgenomics.com/datasets. The Xenium in situ dataset comprises human

783  breast cancer FFPE sections and utilizes a 280-gene Xenium Human Breast Gene
784  Expression Panel supplemented with 33 additional custom genes. The MERFISH

785 mouse colon data was downloaded from https://doi.org/10.5061/dryad.rjdfn2zh3,

786  originated from Cadinu et al., 2024 [17]. The STARmMap mouse cortex data was sourced
787  from the Wang et al., 2018 study [18]. The 10X VisiumHD mouse brain dataset was

788  sourced from the official 10X Genomics website:
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789  https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-libraries-

790 of-mouse-brain-he.

791  The code used for performing the described analyses is available in GitHub at
792  https://github.com/ningbioinfo/hoodscanR_manuscript_code. The hoodscanR package
793 is freely available in Bioconductor (release > 3.18) at

794  https://bioconductor.org/packages/release/bioc/html/hoodscanR.html.
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