

1 hoodscanR: profiling single-cell neighborhoods in 2 spatial transcriptomics data

3 Ning Liu^{1,2,3,4,*}, Jarryd Martin^{2,3}, Dharmesh D Bhuva^{1,2,3}, Jinjin Chen^{2,3}, Mengbo Li^{2,3},
4 Samuel C. Lee^{2,3}, Malvika Kharbanda¹, Jinming Cheng^{2,3}, Ahmed Mohamed^{2,3}, Arutha
5 Kulasinghe⁵, Jose M Polo^{4,6}, Yunshun Chen^{2,3}, Chin Wee Tan^{2,3,5}, Melissa J Davis^{1,2,3}

6

7 ¹South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and
8 Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia

9 ²Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville,
10 Melbourne, Victoria 3052, Australia

11 ³Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University
12 of Melbourne, Parkville, VIC 3010, Australia.

13 ⁴Adelaide Centre for Epigenetics, School of Biomedicine, Faculty of Health and Medical
14 Sciences, The University of Adelaide, SA 5005, Australia

15 ⁵Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland
16 4102, Australia.

17 ⁶Department of Anatomy and Developmental Biology, Monash University, Wellington Road,
18 Clayton, VIC 3800, Australia

19 * whom correspondence should be addressed. Email: ning.liu@adelaide.edu.au

20

21

22

23 **Abstract**

24 Understanding complex cellular niches and neighborhoods have provided new insights
25 into tissue biology. Thus, accurate neighborhood identification is crucial, yet existing
26 methodologies often struggle to detect informative neighborhoods and generate cell-
27 specific neighborhood profiles. To address these limitations, we developed hoodscanR,
28 a Bioconductor package designed for neighborhood identification and downstream
29 analyses using spatial data. Applying hoodscanR to breast and lung cancer datasets,
30 we showcase its efficacy in conducting detailed neighborhood analyses and identify
31 subtle transcriptional changes in tumor cells from different neighborhoods. Such
32 analyses can help researchers gain valuable insights into disease mechanisms and
33 potential therapeutic targets.

34 **Keywords**

35 Spatial transcriptomics, Cellular neighborhood, Cancer micro-environment,
36 Bioconductor package.

37

38 **Background**

39

40 Spatial transcriptomics stands out as a powerful technology, offering a distinctive

41 perspective that goes beyond traditional bulk RNA-seq and single-cell RNA-seq

42 (scRNA-seq) methods. Since it conserves the spatial information of a tissue, it yields

43 valuable insights into the complex molecular and cellular landscapes, uncovering spatial

44 variations and relationships often overlooked by conventional approaches. Recent

45 advancements in spatial-omics platforms, including Nanostring CosMx Spatial

46 Molecular Imager [1], 10X Genomics Xenium [2], Vizgen Merscope [3], Akoya CODEX

47 [4, 5], and others, have facilitated the generation of single-cell level spatial data.

48 However, despite the potential of spatial transcriptomics, the field is still in its early

49 stages, with many analyses resembling conventional scRNA-seq-like approaches.

50 These analyses often disregard the rich spatial context of the data, failing to harness the

51 cellular coordinates. Thus, this shift towards high-resolution spatial profiling and the lack

52 of appropriate methods has created a pressing demand for innovative analytical tools

53 capable of fully exploiting these datasets. Cellular neighborhood analysis, a powerful

54 approach to fully utilize cell spatial information, becomes particularly important when

55 applied to single-cell level spatial transcriptomics data. Bioinformatics tools are needed

56 to identify and characterize the niches or neighborhoods in which cells reside, as these

57 regions may harbor crucial tissue micro-environment (TME) biology that influences the

58 fundamental tissue biology, physiology as well as responses to therapy and disease

59 progression. Therefore, understanding these neighborhoods is key for the full utilization

60 of the spatial data and to provide researchers with novel insights into cellular

61 interactions and communications within the TME, offering a nuanced understanding of
62 the complex biological processes at play. Such insights hold the potential to enhance
63 our understanding of complex diseases like cancer and contribute to the development of
64 more effective therapies.

65

66 In recent years, there has been a growing trend in the development of methods
67 dedicated to conducting neighborhood analyses to interpret complex cellular
68 neighborhoods within spatial transcriptomics data (Table 1). These methods range from
69 clustering-based approaches that leverage frequency matrices of k-nearest cells [1] to
70 graph network-based strategy that is built into interactive viewer [6]. Widely used toolkits
71 Squidpy [7] and Giotto [8] have made substantial contributions to the field by facilitating
72 neighborhood analysis via enrichment tests using a graph-based approaches
73 compatible across multiple spatial technology platforms. Additionally, many tools have
74 been developed to detect spatial domains from spatial transcriptomics datasets by
75 accounting for the spatial information, i.e. cellular neighborhood when clustering data
76 via various approaches, including BuildNicheAssay from Seurat [9], MERINGUE [10],
77 BANKSY [11], BayesSpace [12], STAGATE [13], SpaGCN [14] and UTAG [15].
78 Nevertheless, despite these advancements, there are critical gaps in existing
79 methodologies. Most notably, while some existing tools can detect spatial domains that
80 comprise multiple cell types, such as UTAG, SpaGCN and Giotto's HMRF-based
81 approach, they do not provide partial membership at a single-cell level. For example,
82 when cells reside in neighborhoods characterized by a mixture of B cells and stromal
83 cells, current methods tend to categorize such neighborhoods as either exclusively B

84 cell or stromal cell neighborhoods, failing to capture the nuanced composition of cellular
85 environments. Furthermore, current tools lack the capability to provide cell-level
86 neighborhood annotations, meaning detailed neighborhood profiles for individual cells
87 are unavailable. This critical feature is essential for a comprehensive characterization of
88 the spatial context surrounding each cell. In response to these unaddressed challenges,
89 we developed hoodscanR, a Bioconductor R package designed to perform
90 comprehensive neighborhood analyses on spatial transcriptomics data. Unlike existing
91 methods, hoodscanR aims to bridge critical gaps by enabling per-cell partial
92 membership across multiple neighborhoods, providing a more precise and detailed
93 understanding of the tissue microenvironments. Additionally, hoodscanR generates cell-
94 level neighborhood profiles, a unique feature that allows for an in-depth summarization
95 of the spatial context at a single-cell resolution. Moreover, hoodscanR can identify
96 neighborhood-based spatial domains, offering insights into the higher-order organisation
97 of tissues. In this study, we introduce the functionalities and capabilities of hoodscanR
98 and demonstrate its utility in investigating the cellular neighborhoods within publicly
99 available spatial transcriptomics datasets.

100

101

102

103

104

105

106

107 Table1. Features of existing neighborhood/domain identification methods for spatial
108 transcriptomics data.

Features	Giotto[8]	Squidpy[7]	Seurat	Banksy	BayesSpace	MERINGUE	SpaGCN	Stagate	Utag	hoodscanR
Language	R	Python	R	R/Python	R	R	Python	Python	Python	R
Infrastructure	Giotto object	AnnData	Seurat object	Spatial Experiment	Spatial Experiment	NA	AnnData	AnnData	AnnData	Spatial Experiment
Multi-platforms compatible	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Co-localization	Yes	Yes	No	No	No	No	No	No	No	Yes
Multi-neighborhood membership	No	No	No	No	No	No	No	No	No	Yes
Cell-level neighborhood profiles	No	No	No	No	No	No	No	No	No	Yes
Spatial domain detection	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

109

110 **Results**

111

112 **Development of hoodscanR**

113

114 hoodscanR uses an efficient computational pipeline to investigate spatial neighborhood
115 relationships among cells within spatial transcriptomics datasets (Figure 1). At the core
116 of hoodscanR, the searching process for nearest cells is initiated using an Approximate
117 Nearest Neighbor (ANN) search algorithm [16], which uses k-dimensional tree to
118 efficiently manage the two-dimensional spatial coordinates of spatial transcriptomics
119 data, providing rapid identification of nearest neighbors while maintaining high accuracy.
120 This facilitates the identification of the k-nearest neighboring cells for each cell in the
121 dataset. This process outputs a list of indices representing the nearest neighbors of
122 each cell, denoted as:

$$ANN(x) = \{x_1, x_2, \dots, x_k\}$$

123 Following the identification of nearest neighbors, hoodscanR calculates the distance
124 between each cell and its k-nearest neighbors. Here Euclidean distance is used due to
125 its simplicity and effectiveness in measuring distances between points in a two-
126 dimensional space. This results in a distance matrix D , where each element D_{ij}
127 represents the distance between cell x_i and its neighbor x_j from $ANN(x)$ (Figure 1).
128 Simultaneously, cell-level annotations provided by users, such as cell types, are used to
129 construct a cell annotation matrix A , which describes the organisation of cells based on

130 their distances to neighboring cells. Each entry A indicates whether cell x_i belongs to
131 annotation group j :

$$A = \begin{cases} 1 & \text{if cell } x_i \in \{x_1, x_2, \dots, x_k\} \text{ belongs to annotation group } j \\ 0 & \text{otherwise} \end{cases}$$

132 The fundamental function of hoodscanR is to identify cellular neighborhoods within
133 spatial transcriptomics data. It achieves this by using the SoftMax function, enhanced by
134 a hyperparameter τ (tau), which governs the shape of the resulting probability
135 distribution and provides control over the influence of neighboring cells. The algorithm is
136 expressed as follows:

$$p_{h_j}(x; \tau) = \frac{\sum_{i=1}^k \mathbb{1}_{h_j}(x_i) \cdot \exp\left\{-\frac{d^2(x, x_i)}{\tau}\right\}}{\sum_{i=1}^k \exp\left\{-\frac{d^2(x, x_i)}{\tau}\right\}}$$

137 where $x, x_i \in \{x_1, x_2, \dots, x_k\}$, and

$$\mathbb{1}_{h_j}(x_i) = \begin{cases} 1 & \text{if } A[i, j] \text{ is 1} \\ 0 & \text{otherwise} \end{cases}$$

138 Where:

139 $p_{h_j}(x; \tau)$ denotes the probability of cell x residing within the local neighborhood h_j .

140 $d(x, x_i)$ signifies the spatial Euclidean distance between cell x and its neighboring cell
141 x_i .

142 τ stands as the hyperparameter, facilitating fine-tuned modulation of the impact of
143 neighboring cells.

144 h_j denotes the cell neighborhood a , defined by the cell-level annotations provided by
145 users. For example, if cell types were provided, h_j means cell type j neighborhood.

146 $\mathbb{1}(\cdot)$ is the indicator function, which checks whether cell x_i belongs to the neighborhood
147 h_j as per the annotation matrix A .

148 Upon the aggregation of probabilities by user-defined cell-level annotation groups, such
149 as cell type annotations, hoodscanR generates a comprehensive probability matrix P ,
150 where each value represents the probability of each cell belonging to a specific cell
151 neighborhood (Figure 1). This matrix describes the cellular neighborhood profiles for all
152 cells, serves as the backbone for downstream analyses, enabling researchers to delve
153 into spatial patterns and relationships.

154

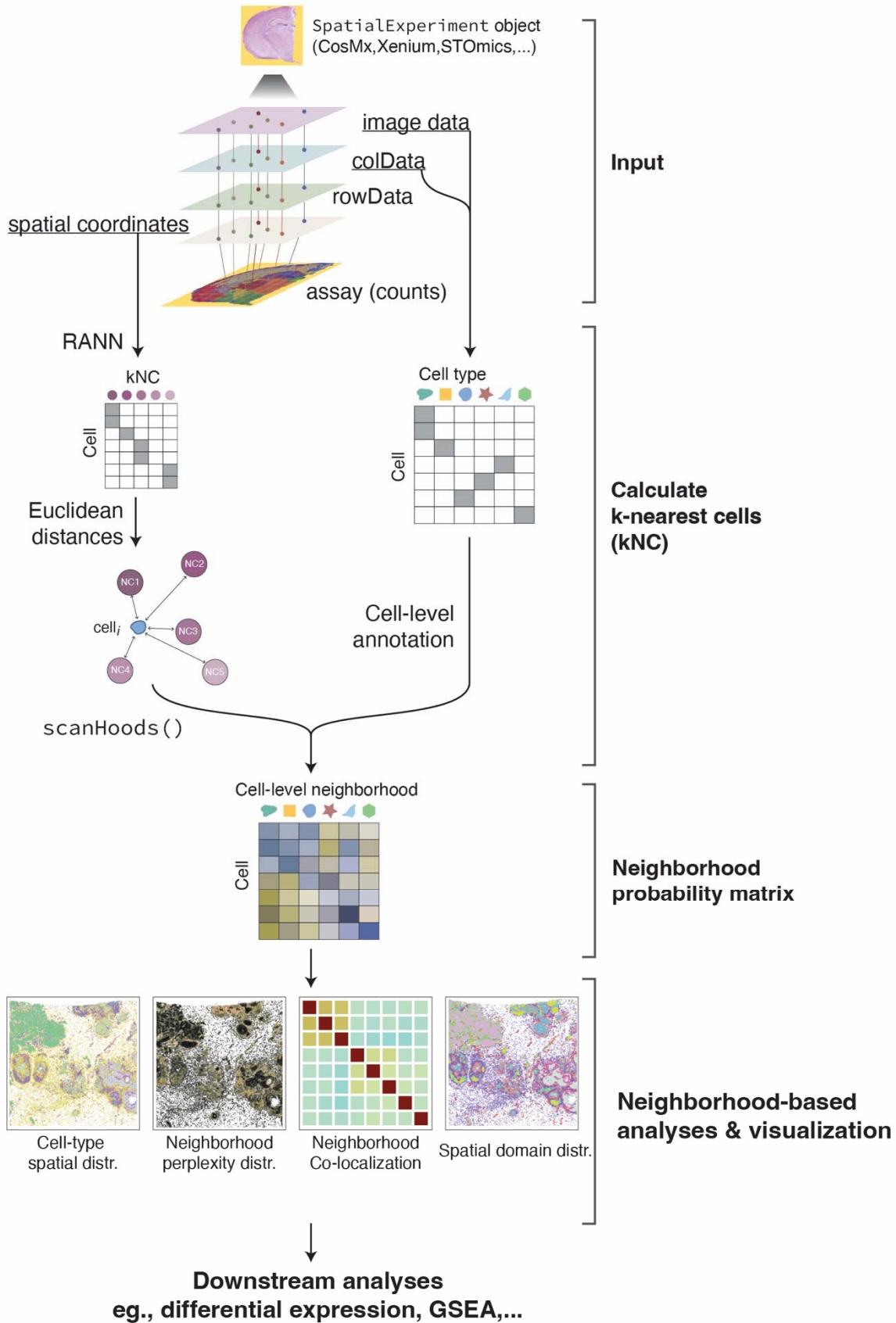
155 To investigate how the hyperparameter k and τ affects the results generated by
156 hoodscanR, we conducted an extensive examination of the probability matrix across a
157 range of k and τ values (see Methods). This analysis revealed that different k values
158 generate highly similar results, with a mean Pearson correlation coefficient of 0.93
159 (Additional file 1 – supplementary figure 1). Regarding τ , smaller values assign greater
160 weights to nearby cells, while larger τ values consider more distant cells as contributors
161 to the neighborhood (Additional file 1 – supplementary figure 2). Thus, the choice of τ
162 becomes essentially linked to the specific biological questions being addressed. For
163 example, smaller τ values, such as one-fifth of the median of the distance matrix, which
164 is set to the default τ value in the hoodscanR package, are more suitable for analyses
165 focused on local interactions, where nearby cells have stronger influence on the

166 neighborhood calculation. In contrast, larger τ values, such as the median of the
167 distance matrix, are ideal for capturing more global spatial relationships, incorporating
168 cells that are further away as significant components of the neighborhood.

169

170 After neighborhood identification, hoodscanR extends its capabilities to offer a diverse
171 suite of downstream neighborhood analysis tools (Figure 1). Users can apply these
172 tools to visualize spatial relationships, evaluate co-localization patterns, perform spatial
173 neighborhood clustering of cells, and obtain cell-level neighborhood annotations. These
174 functionalities allow researchers to gain insights within the spatial transcriptomic
175 landscape, facilitating the discovery of novel biological knowledge. Last but not least,
176 one of the hallmark features of hoodscanR is using the Bioconductor spatialExperiment
177 infrastructure as the backbone of the analysis. This significantly increases the
178 compatibility of intermediate results from hoodscanR with diverse Bioconductor
179 packages tailored for preprocessing, quality control, normalization, cell type annotation,
180 and various downstream analyses specifically crafted for spatial transcriptomics data. In
181 conclusion, hoodscanR provides a powerful and flexible method for spatial
182 neighborhood identification and analysis.

183



185 Figure 1. Schematic visualization showing the main components and computational workflow of
186 the hoodscanR package. The process begins with inputting a SpatialExperiment object, which
187 contains spatial data and associated metadata. Next, the package calculates the k-nearest cells
188 based on spatial proximity. This step follows by generating a neighborhood probability matrix,
189 which quantifies the likelihood of cell interactions within their local neighborhood. Finally, the
190 package performs visualizations and downstream neighborhood-based analyses to provide
191 insights into spatial patterns and relationships.

192

193 Benchmarking hoodscanR in spatial domains identification

194

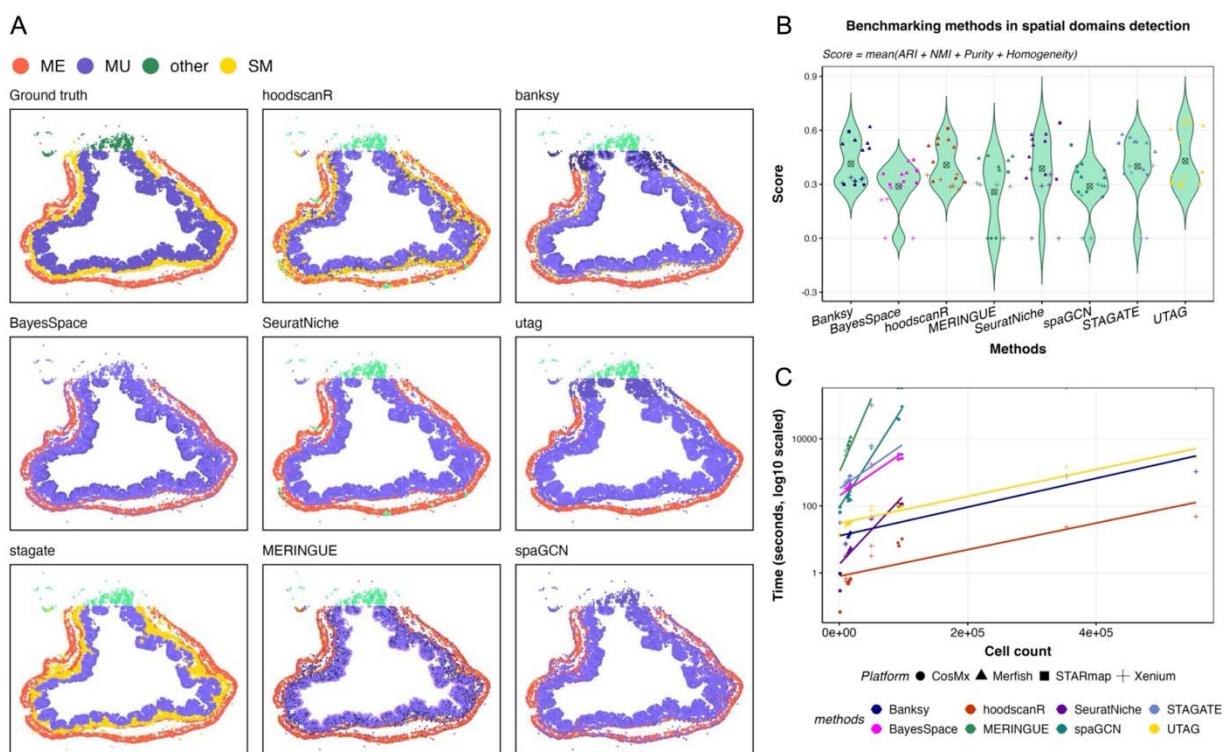
195 Building upon the foundation of cell-level neighborhood probability matrix (Figure 1),
196 hoodscanR allows users to perform unsupervised clustering, grouping cells with similar
197 neighborhood distribution patterns into cohesive clusters. This data-driven approach
198 enables the classification of cells based on their spatial relationships within the tissue
199 slide, identifying neighborhood-driven spatial domains.

200 To evaluate the effectiveness and robustness of the neighborhood-based spatial
201 domain identification function in hoodscanR, and compared with other tools, we
202 conducted a benchmarking experiment against several state-of-the-art methods (see
203 Methods). This benchmark experiment involved detecting spatial domains of 16 publicly
204 available datasets, covering a range of spatial platforms and tissue types, including
205 CosMx NSCLC [1], MERFISH mouse colon [17], STARmap mouse cortex [18] and
206 Xenium breast cancer [2, 19]. The datasets were chosen because the tissue is well-
207 annotated with region labels or there are pathological annotation that can be served as

208 ground truth of spatial domains. hoodscanR was benchmarked against seven other
209 methods that can perform spatial domain detection: BuildNicheAssay from Seurat,
210 Banksy, BayesSpace, MERRINGUE, SpaGCN, Stagate and Utag (Figure 2A and
211 additional file 1 - supplementary figure 3-7). As a result from these 128 experiments,
212 hoodscanR, Banksy and Utag exhibit the best performance by achieving the highest
213 performance score on average across all tested datasets (Figure 2B). However and
214 importantly, hoodscanR outperforms all others in computing efficiency (Figure 2C),
215 being approximately 21-fold faster on average than Banksy, which ranks second in
216 speed. This advantage in computational speed is particularly important as increasingly
217 large and high-resolution datasets will be generated with the advancements in spatial
218 transcriptomics technologies. Additionally, hoodscanR can recapitulate tissue spatial
219 architecture in a biologically coherent manner. For example, in the MERFISH mouse
220 colon dataset (Figure 2A), hoodscanR accurately delineates four concentric layers,
221 mucosa (MU), submucosa (SM), muscularis externa (ME), and other, all of which
222 contain multiple cell types. This result closely mirrors the ground truth. By clustering
223 cells with similar neighborhood distributions, hoodscanR captures subtle boundaries
224 more effectively than many alternative methods, preserving the colon's characteristic
225 concentric organisation, such as the ME structure. Taken together, these results
226 highlight strengths of hoodscanR in domain identification across large-scale spatial
227 transcriptomics datasets.

228 Additionally, to evaluate the robustness of hoodscanR across different resolutions of cell
229 type annotations, we conducted an experiment using high-resolution, medium-resolution,
230 and low-resolution annotations as inputs. The high-resolution annotations included

231 detailed cell types, such as CD4+ T cells, CD8+ T cells, and macrophages. The
232 medium-resolution annotations combined all T cells into a single category, and the low-
233 resolution annotations further grouped all immune cells into a single “Immune” category.
234 Despite the reduction in annotation resolution, the identified neighborhood-based spatial
235 domains have a Normalized Mutual Information (NMI) score of greater than 0.8 when
236 comparing using the high-resolution results as the reference (Additional file 1 -
237 supplementary figure 8). Taken together, these results showcase the power of
238 hoodcanR in accurately identifying neighborhood-based spatial domains in a scalable
239 and efficient manner. They also indicate that hoodscanR is robust to variations in
240 annotation granularity, maintaining the integrity of the spatial relationships even when
241 the resolution of cell type annotations is reduced.



244 Figure 2. Benchmarking hoodscanR against other methods in detecting spatial domains. A:
245 Spatial maps of the MERFISH mouse colon data, colored by the spatial domains detected from
246 different methods compared to the ground truth domain annotations, including muscularis
247 externa (ME), mucosa (MU), submucosa (SM) and other (top left corner). B: Violin plots
248 showing the performance score of each method across all tested datasets. Round-crosses
249 indicates the mean performance score for each method. C: Computational efficiency of each
250 method, plotted as the log10-scaled time (in seconds) required to process datasets. Shapes
251 represent the platform of the dataset, colors denote the methods, and the lines are generalized
252 linear smooths indicating overall trends for each method.

253

254 **hoodscanR identifies cellular neighborhoods in cancer**

255
256 To demonstrate the power of hoodscanR in detecting spatial cellular neighborhoods, we
257 performed neighborhood identification on two publicly available spatial transcriptomics
258 datasets obtained from different *in situ* transcriptomic platforms: breast cancer data
259 obtained from the 10X Genomics Xenium (Figure 3A) and non-small cell lung cancer
260 (NSCLC) data acquired from the Nanostring CosMx Spatial Molecular Imager (Figure
261 3B). We first applied hoodscanR onto the breast cancer dataset using the default
262 parameters ($k=100$ and $\tau=\text{median}(\text{dist}^2)/5$). hoodscanR allows us to perform
263 neighborhood identification by profiling neighborhood distributions for each cell within 6
264 seconds, representing the probability of a cell being situated within each distinct cell-
265 type neighborhood (Figure 3C and 3F).

266

267 To validate the accuracy of hoodscanR in characterizing these cellular neighborhoods,
268 we focus on one randomly selected cell for each dataset by exploring the distribution of
269 cell types within their spatial area (Figure 3D, E, G, and H). For instance, we examined
270 a ductal carcinoma in situ (DCIS) grade 2 cell, an early form of breast cancer cells, from
271 the Xenium data (Figure 3C and D: cell ID 27620), where we observed 47 DCIS grade 2
272 cells and 21 ACTA2+ myoepithelial cells from the nearest 100 neighboring cells (Figure
273 3D). Consistently, hoodscanR assigned probabilities of 61.02% for residing in the DCIS
274 grade 2 neighborhood and 30.96% for the ACTA2+ myoepithelial neighborhood for this
275 specific cell (Figure 3E). Similarly, when assessing a stromal cell within the CosMx
276 NSCLC data (Figure 3F: cell ID 6_1099), we observed that hoodscanR assigned
277 probabilities of 68.2% for the B cell neighborhood and 19.67% for the plasma cell
278 neighborhood while there are 66 and 11 B cells and regulatory T cells in the nearest
279 100 neighboring cells (Figure 3G and H). These examples demonstrate the power of
280 hoodscanR in accurately characterizing cellular neighborhoods within spatial
281 transcriptomics data, regardless of the platform, and its capacity to accommodate
282 scenarios where cells may belong to neighborhoods of multiple cell types. The
283 identification of B cell neighborhoods is particularly noteworthy in the context of cancer
284 therapy responses. B cell neighborhoods serve as crucial sites for antibody production,
285 contributing to the immune response against tumor cells and influencing therapeutic
286 efficacy [20]. Furthermore, in lung cancer, the presence of tertiary lymphoid structures
287 (TLS), characterized by highly organized T and B lymphocyte colonies within
288 nonlymphoid tissues, has been associated with favorable clinical outcomes in non-small
289 cell lung cancer (NSCLC) [21]. These structures, resembling secondary lymphoid

290 organs, play an important role in regulating antitumor immune responses and are
291 emerging as potential targets for novel therapeutic interventions. By delineating cellular
292 neighborhoods, including B-cell-rich TME, hoodscanR offers the potential for
293 investigating the relationship between immune cells and tumor cells within the TME,
294 providing insights that could inform the development of more effective cancer therapies.

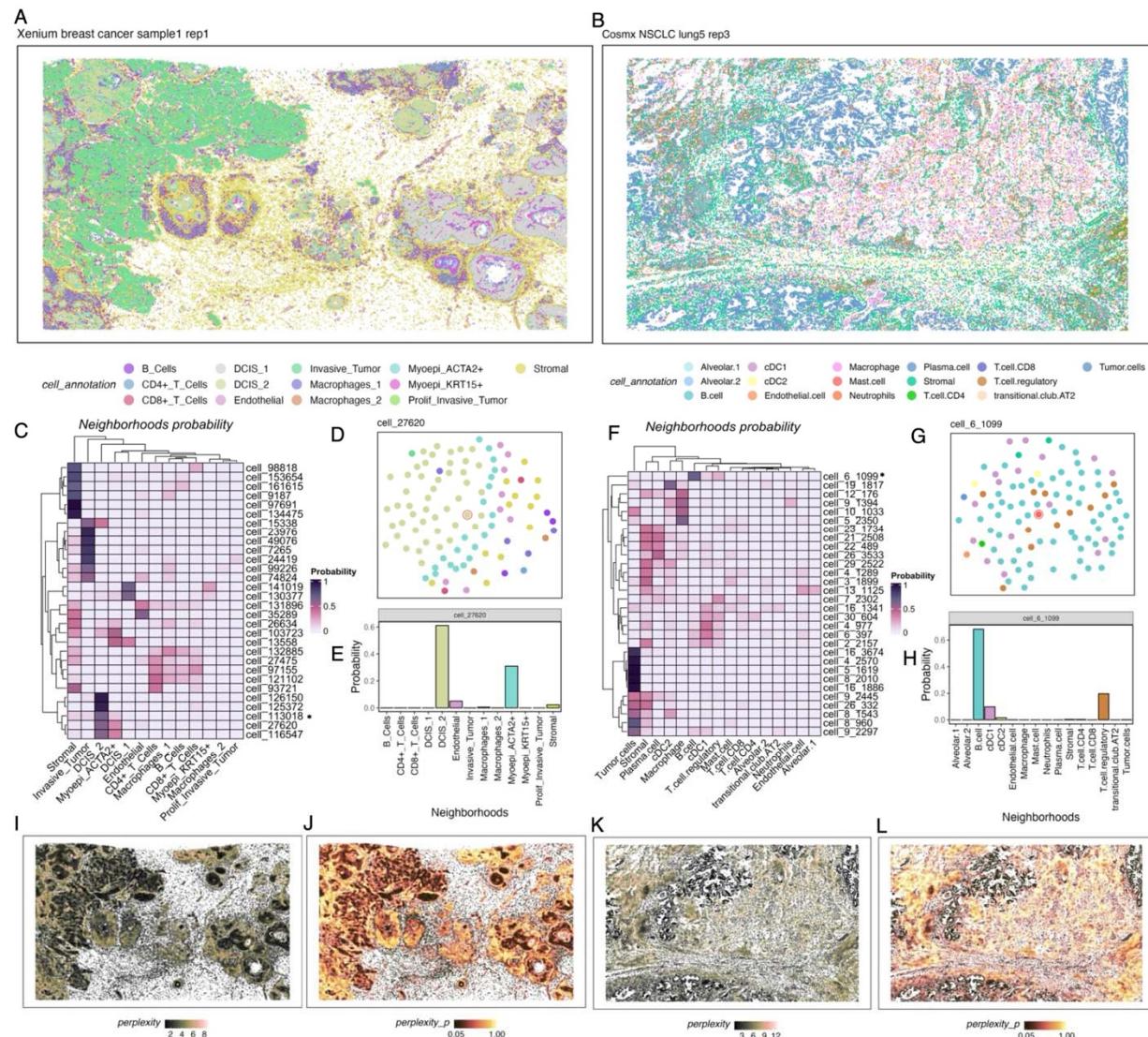
295

296 Furthermore, hoodscanR introduces an additional analytical dimension by enabling the
297 computation of uncertainty, which is measured by perplexity, and performing
298 permutation test for each cell (see Methods). Perplexity is calculated from the
299 probability matrix, capturing the spatial relationships among cells and their respective
300 neighborhoods. Perplexity provides overall measurement of the uncertainty and
301 complexity of cell neighborhoods (Figure 3I and K). This in turn reveals regions of the
302 TME with distinct cellular compositions and areas with complex interactions between
303 cell types. P-values of perplexity (Figure 3J and L) can be obtained via an empirical
304 permutation test (see Methods). This allows users to identify regions with significant
305 higher perplexity from tissue. Altogether, these metrics provide an understanding of the
306 heterogeneity and complexity present within tissues, allowing researchers to gain novel
307 insights and make discoveries in the spatial transcriptomics landscape.

308

309

310



311

312 Figure 3. Neighborhood identification in 10X Xenium breast cancer data and Nanostring CosMx
 313 NSCLC data. Cell type spatial distribution in the breast cancer data (A) and NSCLC data (B).
 314 Neighborhood distribution visualization via heatmap of randomly selected 30 cells from breast
 315 cancer data (C) and NSCLC data (F), darker color means higher probability of the cell located in
 316 specific cell type neighborhood. The cell type spatial distribution in the spatial area around the
 317 selected cells (marked by * in the heatmap) in breast cancer data (D & E) and NSCLC data (G &
 318 H). Perplexity spatial distribution of cells in the breast cancer data (I) and NSCLC data (K). P-
 319 value distribution of perplexity in the breast cancer data (J) and NSCLC data (L).

320

321 hoodscanR performs neighborhood-based downstream analyses

322

323 Existing neighborhood identification methods, such as Squidpy and Giotto,
324 predominantly focus on neighborhood co-localization analyses. Another key function of
325 hoodscanR is to generate neighborhood profile at single-cell level and to carry out
326 neighborhood-based downstream analyses, features notably absent in other existing
327 tools. To demonstrate the versatility of hoodscanR, we use the CosMx NSCLC dataset
328 as an example.

329

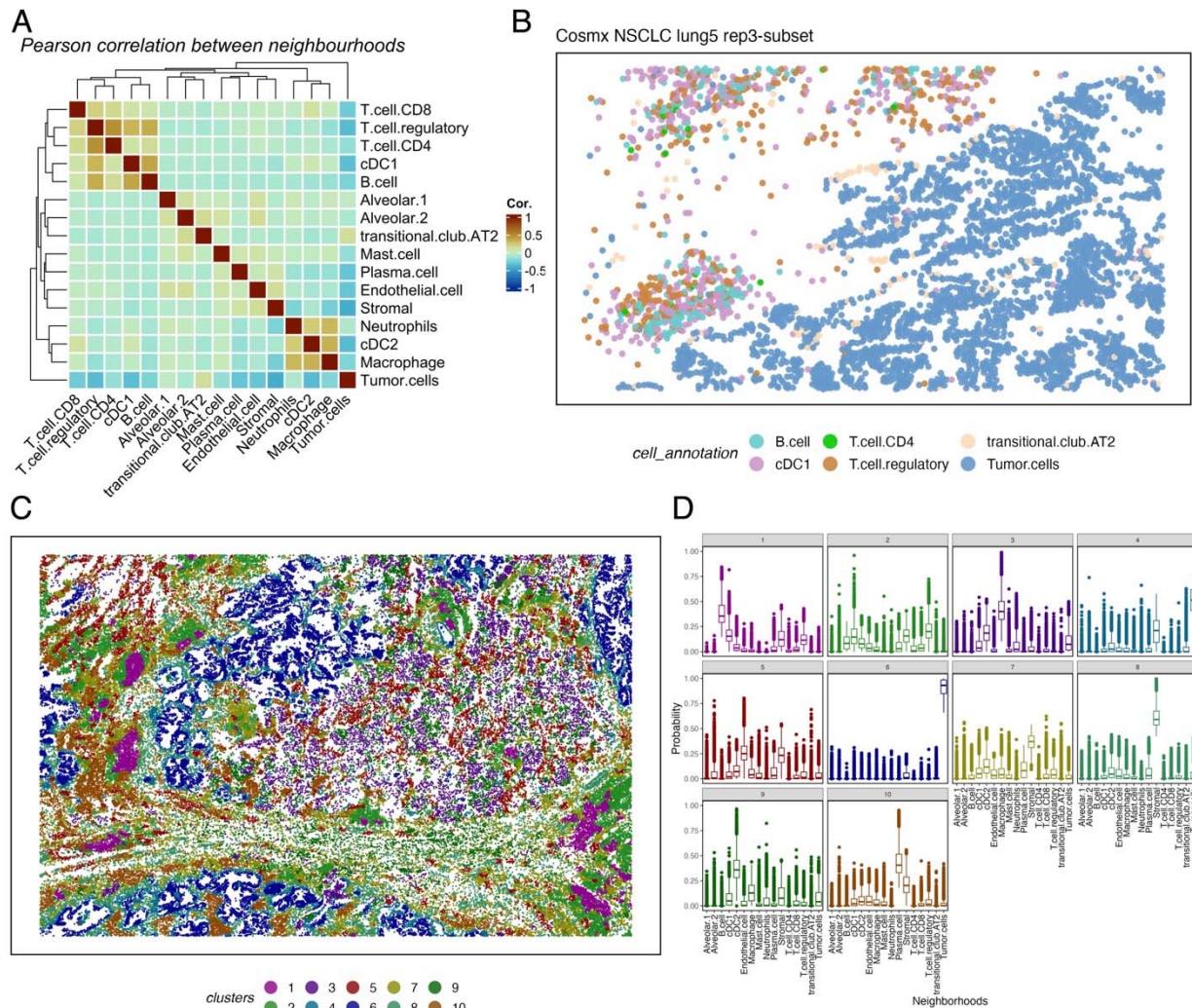
330 Firstly, as with other spatial analysis tools, hoodscanR can perform neighborhood co-
331 localization analysis by computing Pearson correlations on the neighborhood
332 distribution of cells. Hence, the co-localization status of each cell type neighborhood
333 within this specific tissue slide can then be visualized (Figure 4A). To benchmark the
334 ability of hoodscanR, Squidpy and Giotto when carrying out co-localization analysis, we
335 subset the Xenium breast cancer data and CosMx NSCLC into different resolution,
336 followed by applying these tools to the subsets. As a result, hoodscanR demonstrated
337 superior computational performance (Additional file 1 – supplementary figure 9), while
338 delivering similar outcome (mean Pearson correlation coefficient of 0.781) of
339 neighborhood co-localization compared to both Xenium and CosMx data (Additional file
340 1 – supplementary figure 10 and 11). The computational efficiency gains significance,
341 particularly in the context of the growing spatial data resolutions and larger tissue areas.

342 To validate the co-localization results, we present a subset of cell types alongside their
343 spatial distribution within the breast cancer tissue slide, showing that immune cell types
344 such as B cells, T cells, and macrophages exhibit co-localization, while they are
345 distinctly separated from tumor cells (Figure 4B). This observation serves as robust
346 validation of the co-localization analysis results generated by hoodscanR, thus
347 reinforcing the effectiveness and reliability of hoodscanR in revealing spatial
348 relationships within various tissue environments, particularly when dealing with complex
349 spatial transcriptomics data.

350

351 In the CosMx NSCLC data, we applied unsupervised clustering to delineate 10 distinct
352 clusters (see Methods), each representing a unique spatial pattern within the tissue
353 (Figure 4C), demonstrating complex spatial associations. For instance, cluster 1, a
354 candidate cluster for TLS, corresponds to a neighborhood including B cells, cDC1 cells,
355 and stromal cells (Figure 4D - 1), cluster 3 aligns with macrophages and cDC2 cells
356 (Figure 4D - 3), and cluster 6 corresponds to tumor cells (Figure 4D - 6). This
357 unsupervised clustering approach facilitates the identification of diverse cellular
358 neighborhoods and their unique spatial signatures, providing a comprehensive view of
359 the complexity of TME.

360



361

362 Figure 4. Neighborhood-based downstream analyses in CosMx NSCLC data performed by
363 hoodscanR. A: heatmap representing the co-localization status of cell type neighborhood in this
364 tissue slide. Colors denote positive (dark red) and negative (blue) correlations. B: Spatial
365 location plot of a subset of cell types in this slide. Colors denote cell types. C: Spatial location
366 plot of the slide with colors stratified by neighborhood-based clusters. D: The neighborhood
367 distribution profiles of each neighborhood-based cluster identified in the tissue slide.

368

369

370 hoodscanR detects changes between tumor cells from different neighborhoods

371

372 Building on these findings, we then used uniform manifold approximation and projection
373 (UMAP) to perform dimension reduction visualization on the expression data of the
374 CosMx NSCLC data, enabling the projection of gene expression profiles into a lower-
375 dimensional space. This facilitates the visualization of cell lineage (Figure 5A) alongside
376 identified neighborhood-based clusters (Figure 5B). A distinctive feature observed is the
377 dispersion of cells of the same cell type across different neighborhood clusters,
378 signifying diverse spatial neighborhood profiles. For example, a substantial proportion
379 (76.14%) of macrophages (pink points in Figure 5A) are distributed across various
380 neighborhood clusters, including cluster 3 (43.63%), indicative of the macrophage +
381 cDC2 + tumor neighborhood, clusters 7 (12.31%), and cluster 9 (20.2%), representing
382 the stromal + cDC2 neighborhood (Figure 3D and 5B).

383

384 An important aspect of hoodscanR lies in its ability to investigate the relationship
385 between spatial neighborhoods and transcriptional changes. To demonstrate this, we
386 conducted a nuanced analysis by extracting and pseudo-bulking tumor cells from two
387 distinct neighborhood clusters: the stromal cluster and the macrophage cluster across
388 three consecutive slides (Additional file 1 – supplementary figure 12). Interestingly,
389 different spatial neighborhoods contribute significantly to the variation observed in the
390 first dimension from a principal component analysis (PCA) of expression of pseudo-bulk

391 samples (Figure 5C). This signifies that hoodscanR can capture transcriptional changes
392 attributed to diverse spatial neighborhoods.

393

394 Subsequently, we performed a differential expression (DE) analysis using the limma-
395 voom pipeline [22], identifying 220 DE genes from 832 genes, including 73 up-regulated
396 and 147 down-regulated genes when comparing tumor cells from the macrophage
397 neighborhood to those from the stromal neighborhood (Figure 5D and additional file 2).

398 Additionally, we performed gene-set enrichment analysis on the identified DE genes
399 with MSigDB gene-sets [23, 24], detecting 384 significantly enriched gene-sets

400 (Additional file 3). We further perform unsupervised clustering on gene-sets using vissE
401 [25], identifying clusters of gene-sets networks (Figure 5E and additional file 1 -
402 supplementary figure 13, middle panel). Notably, we observe pathways enriched in

403 down-regulated DE genes related to collagen, such as *collagen-activated tyrosine*
404 *kinase receptor signalling pathway* and *collagen metabolic and catabolic process*
405 (Figure 5E left panel). These pathways are accompanied by the differential expression

406 of key collagen-related genes, such as *COL1A1*, *COL11A1* and *COL5A1* (Figure 5E

407 right panel). Previous studies have found that the overexpression of collagen genes

408 such as *COL11A1* [26] and *COL3A1* [27] in NSCLC may indicate poor prognosis and

409 drug resistance, and *COL1A1* is correlated with immune infiltration in NSCLC [28]. Our

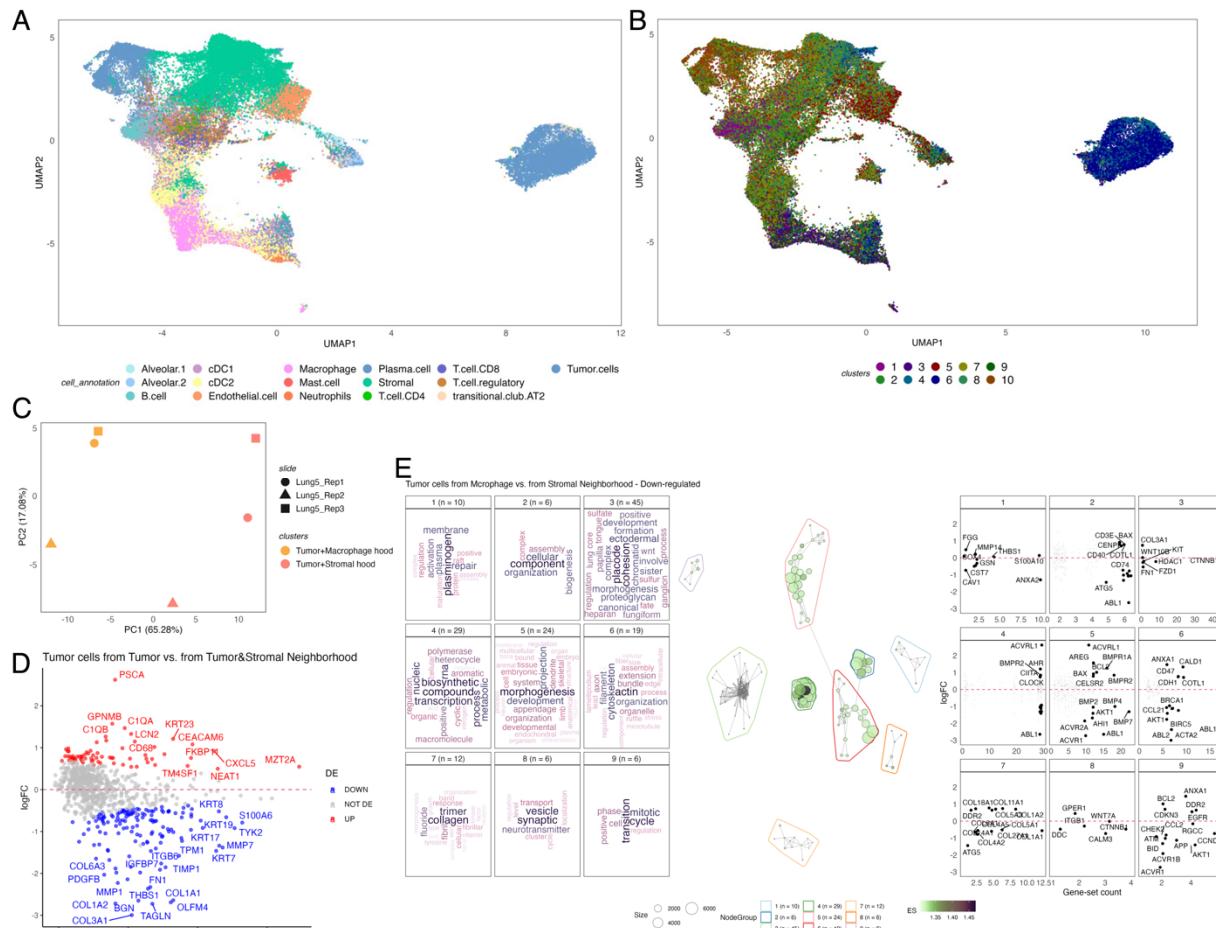
410 finding of these genes that are expressed significantly more in the tumor cells from the

411 macrophage neighborhood than tumor cells from the stromal neighborhood can

412 potentially lead a more detailed investigation of the biological mechanism about

413 transcriptional changes within the context of cancer spatial TME studies. In essence,

414 hoodscnR introduces a novel perspective in spatial transcriptomics, allowing the
 415 identification of transcriptomic changes across subtly different spatial neighborhoods
 416 and providing insights into the spatial organisation within the TME.



417

418 Figure 5. Neighborhood-based transcriptomics analysis in CosMx NSCLC data. A: UMAP of
 419 expression of cells in the data, colors denote cell types. B: UMAP of expression of cells in the
 420 data, colors denote the identified neighborhood-based clusters. C: PCA of pseudo-bulk samples
 421 of tumor cells from two different neighborhood clusters across three consecutive slides. Colors
 422 denote clusters and shapes denote replicates. D: MA plot describing the outcome of the DE
 423 analysis. Colors indicate up- (red) or down-regulated (blue) genes. E: vissE visualization of
 424 significantly enriched gene-sets from the down-regulated DE genes in the comparison between

425 tumor cells from macrophage neighborhood and tumor cells from stromal neighborhood. Left
426 panel are word cloud plots describing gene-set clusters of different biological themes, middle
427 panel is the gene-set overlap network graph of gene-sets, and right panel is the fold-change
428 (log2-scaled) for genes belonging to each gene-set cluster.

429

430 [hoodscanR supports different gene annotations](#)

431

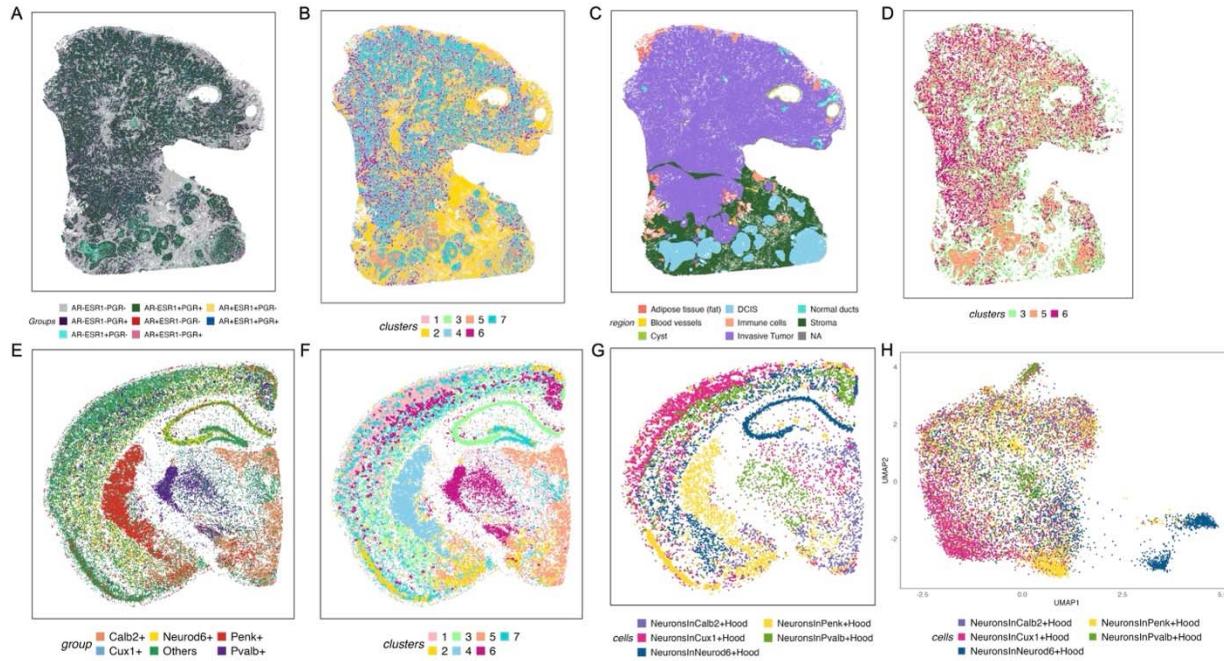
432 The accuracy of cell type-based cellular neighborhoods, as identified in the previous
433 case, is inherently tied to the accuracy of cell type annotation. Thus, we built
434 hoodscanR to be flexible and capable to detect various cellular neighborhoods based
435 on different gene annotation inputs. A particularly valuable application is gene
436 expression-based neighborhoods detection. To showcase this, we utilised a breast
437 cancer tissue, where we can focus on breast cancer-related hormone receptor genes,
438 including androgen receptor gene (*AR*), estrogen receptor gene (*ESR1*), and
439 progesterone receptor gene (*PGR*). By assessing if these genes are expressed or not,
440 we classified 574,527 cells from a Xenium Invasive ductal carcinoma (IDC) dataset into
441 eight distinct groups (Figure 6A). Similar to the previous neighborhood identification
442 based on cell types, hoodscanR can identify spatial domains based on gene
443 expression-specific neighborhoods (Figure 6B and additional file 1 - supplementary
444 figure 14). These analyses lead to a nuanced understanding which adeptly discover
445 tumor cells located within neighborhoods characterized by varying combinations of
446 hormone receptors. This not only suggests a spatial perspective on the progression of
447 DCIS, influenced by distinct combinations of hormone receptors but also sheds light on

448 the higher-order spatial structure of cells with different hormone receptor expression
449 profiles.

450

451 Moreover, interesting insights can be observed by comparing the pathological
452 annotations (Figure 6C) of this slide [19], where invasive and non-invasive (DCIS)
453 cancer phenotype regions were annotated, with the identified neighborhood clusters.
454 Invasive tumors exhibit a distinctive pattern with cells from cluster 3 scattered
455 throughout, accompanied by cells from cluster 6 (Figure 6D). Both clusters are
456 associated with *ESR1+PGR+* and *ESR1-PGR+* cell neighborhoods, respectively. This
457 finding aligns with previous findings indicating that nearly 80% of invasive breast
458 cancers are ER-positive, and PR is overexpressed in ER+ tumors [29]. Conversely,
459 DCIS regions are notably associated with cells from cluster 5, which form the inner layer
460 surrounded by cells from cluster 3, comprising the outer layer (Figure 6D). Cluster 5
461 includes cells expressing *AR*, which is consistent with previous findings showing *AR*
462 expression in DCIS components adjacent to invasive cancer [30]. Additionally, the
463 expression of *AR* has been reported to decrease as the disease progresses from DCIS
464 to invasive cancer [31]. These observations suggest a potential relationship between
465 the tumor type (non-invasive or invasive) and the higher-order spatial organisation of
466 cells with diverse hormone receptor expression profiles.

467



468

469 Figure 6. Gene expression-based neighborhood analysis in 10X Xenium IDC (A-D) and
470 VisiumHD mouse brain (E-H) data using hoodscanR. A: spatial plot showing the hormone gene
471 expression-based cell grouping on the tissue slide. B: gene expression-based domains in IDC
472 tissue. C: pathological annotation of regions on the tissue. D: spatial plot showing specific
473 neighborhood clusters, including cluster 3, 5 and 6. E: spatial plot showing the selected gene
474 expression-based cell grouping. F: gene expression-based domains in mouse brain tissue. G:
475 neurons spatial distribution in different gene-expression neighborhoods. H: a dimension
476 reduction UMAP visualization of the neurons from different neighborhoods.

477

478 To further demonstrate the broad application of hoodscanR beyond cancer and human
479 data, we analysed the publicly available Visium HD mouse brain data. In this case, we
480 selected five marker genes that can divide the brain into different regions: *Calb2* for
481 paraventricular nucleus of the thalamus (PVT) [32], *Neurod6* for deeper layers of the
482 cortex [33], *Penk* for striatal medium spiny neuron [34], *Cux1* for upper layer of the

483 cortex [35] and *Pvalb* for hippocampus [36]. Additionally, we included the gene *Rbfox3*,
484 which is exclusively expressed in neuron cells [37]. The spatial map of these cells
485 reveals their distinct regional expression patterns within the brain tissue (Figure 6E and
486 additional file 1 - supplementary figure 15). Applying hoodscanR, we can identify
487 neighborhood-based clusters (Figure 6F and additional file 1 – supplementary figure 16).
488 These clusters largely correspond to specific brain regions (Additional file 1-
489 supplementary figure 17), reflecting the well-structured nature of the brain tissue, with
490 each cluster predominately associated with one of the maker genes.

491

492 Focusing on neuron cells by filtering the dataset for cells expression *Rbfox3*, we
493 explored how these neurons are distributed across different neighborhoods (Figure 6G).
494 By conducting dimension reduction via UMAP on the expression data of these neurons
495 (Figure 6H), we can visualise the neurons from different neighborhoods tend to cluster
496 differently, indicating variance in expression between these neurons, especially
497 between those within Neurod6+ neighborhoods and Calb2+ neighborhoods (Additional
498 file 1 - supplementary figure 18). Moreover, performing a differential expression analysis
499 between neurons from these two neighborhoods revealed a set of genes that are
500 significantly upregulated in the Neurod6+ region compared to the Calb2+ region
501 (Additional file 1 - supplementary figure 19), indicating distinct microenvironmental
502 influences and potential functional specialization. For example, *Nrgn*, *Hpca*, and
503 *Rasgrp1*, which are all involved in regulating intracellular calcium signalling and synaptic
504 plasticity, are up-regulated in the neurons from the Neurod6+ neighborhood,
505 predominantly localized to the hippocampal area. This observation aligns with previous

506 studies showing that these genes are critical for synaptic plasticity [38-41], which
507 underlies learning and memory. Taken together, these patterns illustrate how local
508 spatial neighborhood composition can shape neuronal identity and function, highlighting
509 hoodscanR's ability to detect spatially restricted transcriptional differences even in
510 highly structured tissues like the brain.

511

512 In summary, these findings highlight hoodscanR's capability to identify subtle spatial
513 changes in expression-based cellular neighborhoods, providing novel insights into the
514 complex spatial dynamics of gene expression in both cancerous and non-cancerous
515 tissues.

516 Discussion

517

518 Spatial technologies are pushing the limits toward profiling spatial transcriptomics at
519 single-cell level. To make the best use of these cutting-edge technologies, we
520 developed hoodscanR, a powerful yet user-friendly Bioconductor package for revealing
521 spatial cellular relationships within high-dimensional spatial transcriptomics datasets via
522 spatial cellular neighborhoods identification and neighborhood-based downstream
523 analyses. In our benchmarking experiments, hoodscanR demonstrated robust accuracy
524 and computation efficiency compared to several state-of-the-art methods, further
525 validating its utility in diverse spatial transcriptomics applications.

526

527 While we have shown hoodscanR can identify biologically meaningful cellular
528 neighborhoods, as with all methods it is not without limitations. Firstly, although
529 hoodscanR is flexible in relation to gene annotations, the preprocessing of spatial
530 transcriptomics data is essential. Current quality control procedures of spatial
531 transcriptomics data predominantly operate at cell level, potentially missing crucial
532 details detectable only at a transcript (subcellular) level. A more comprehensive strategy
533 for data preprocessing, accounting for information at transcript level, filtering out
534 uninformative cells accurately and enhancing the precision of neighborhood
535 identification, becomes imperative. Secondly, hoodscanR is a cell-based method,
536 emphasizing the critical role of accurate cell segmentation, which hoodscanR depends
537 upon other methods. The segmentation process, which determines how individual cells
538 are identified and their spatial coordinates are established, is fundamental to the
539 accurate detection of cellular neighborhoods. Variations in segmentation methods, such
540 as differences in how cell boundaries are defined or how centroids are calculated, can
541 lead to significant differences in cell type distributions and spatial relationships within
542 the tissue. Such variations can impact the neighborhood detection results produced by
543 hoodscanR, potentially leading to different biological interpretations. A systematic
544 review of existing segmentation methods is lacking, necessitating future research to
545 evaluate and compare methods under diverse spatial transcriptomic platforms. Lastly,
546 while hoodscanR enables exploration of spatial gene expression patterns, users must
547 interpret results cautiously. Recognizing that spatial context alone may not capture the
548 full complexity of molecular interactions within a tissue. Integrating multi-omics data can
549 provide a more comprehensive understanding, ensuring spatial analyses are embedded

550 within a broad molecular context. Strategically addressing these considerations allows
551 researchers to fine-tune the utilization of hoodscanR, strengthening the integrity of their
552 analyses and facilitating the discovery of novel insights.

553

554 Three of the major strengths of hoodscanR are its compatibility, adaptability and
555 flexibility. Developed based on the Bioconductor SpatialExperiment infrastructure,
556 hoodscanR exhibits compatibility with many other spatial and single-cell RNA-seq-
557 based tools from Bioconductor, amplifying its utility for downstream analyses.
558 Importantly, its adaptability makes it platform agnostic, demonstrated by successful
559 applications on Nanostring CosMx, 10X Genomics Xenium, MERFISH and STARmap.
560 Spatial datasets from various platforms, including Vizgen MERSCOPE, 10X Visium HD,
561 BGI STOmics, and Akoya Biosciences CODEX, can also undergo comprehensive
562 analysis using hoodscanR, given the availability of cell-based coordinates. The flexibility
563 of hoodscanR is demonstrated by the types of annotations it can use. With the Xenium
564 breast cancer data, hoodscanR showcased this by not only using cell type annotations
565 but also accommodating gene expression level grouping of cells, suggesting the
566 potential for exploring additional annotation options such as ligand-receptor or growth
567 factor-receptor annotations. This design provides researchers the flexibility to generate
568 hypotheses on the basis of integrating spatial localization and gene expression before
569 testing statistical associations between these. Lastly, while hoodscanR is not designed
570 for direct cell-cell communication analysis, it plays a crucial role in accurately identifying
571 and characterizing spatial neighborhoods. This capability can complement existing cell-
572 cell communication tools, such as COMMOT [42], CellChat [43] or CellPhoneDB [44],

573 by providing a more refined spatial context that may enhance the accuracy and
574 robustness of cell-cell communication network identification in complex tissue
575 environments.

576

577 The significance of hoodscanR in identifying and analyzing neighborhoods becomes
578 particularly crucial in the context of complex diseases, notably in cancer research.
579 Neighborhood information is indispensable for unraveling complex disease etiology,
580 especially so for understanding disease progression. In cancer research, where the
581 TME plays an important role in dictating therapy responses, the ability offered by
582 hoodscanR to identify neighborhoods offers a unique perspective to investigate novel
583 mechanisms underlying the transition of cancer cells at both transcriptomic and
584 proteomic level. Notably, our findings from the Nanostring CosMx NSCLC dataset
585 identified cellular neighborhoods that are potentially associated with the presence of
586 TLS, which correlated with positive clinical results [21]. This capability offers the
587 potential to contribute valuable insights into the progression of cancer, paving the way
588 for the development of novel therapeutic strategies.

589 Conclusions

590 In conclusion, our study introduces hoodscanR, a Bioconductor package designed for
591 comprehensive neighborhood analysis in spatial transcriptomics datasets. Through its
592 integration with the SpatialExperiment infrastructure and efficient algorithms,
593 hoodscanR offers fine-tuned control over neighborhood identification, allowing
594 researchers to investigate complex cellular relationships within spatially resolved
595 datasets. By demonstrating hoodscanR's efficacy on the 10X Genomics Xenium breast
596 cancer and Nanostring Technologies CosMx non-small cell lung cancer datasets, we
597 showcase its ability in identifying cellular neighborhoods and elucidating spatial gene
598 expression patterns. Furthermore, our findings emphasize the significance of
599 neighborhood analysis in understanding the complex TME of cancer tissues, which can
600 potentially lead to the identification of novel biological mechanisms underlying disease
601 progression and therapeutic responses. Importantly, hoodscanR's flexibility in handling
602 diverse spatial datasets and its ability to accommodate different types of cell
603 annotations enhance its utility for a wide range of spatial transcriptomic studies. Overall,
604 hoodscanR contributes to advancing the field of spatial transcriptomics by providing
605 researchers with a powerful tool, thereby paving the way for deeper insights into tissue
606 biology and disease mechanisms.

607 **Methods**

608

609 **Data pre-processing**

610 Both CosMx and Xenium datasets underwent a rigorous quality control process to
611 ensure the inclusion of high-quality cells in the neighborhood analysis. For the CosMx
612 data, thresholds were set at the 0.1 quantile to filter out cells with low transcript count or
613 low gene detection count across all cells per tissue slide. Additionally, genes with mean
614 expression (log-scaled count per million) and variance lower than the negative probes
615 were excluded from further analyses. In the case of the Xenium data, filtering followed
616 the guidelines outlined in the Squidpy[7] toolkit tutorial. Cells with a transcript count less
617 than 10 and genes detected in fewer than 5 cells were removed from the neighborhood
618 and downstream analyses. As a result, almost 90,000 cells per slide with 870 genes
619 and 156,224 cells with 313 genes were kept for the NSCLC and breast cancer datasets,
620 respectively.

621

622 **Cell type annotation**

623 Cell type annotations for the Nanostring CosMx NSCLC data was carried out with
624 modifications as previously described in Tan et al 2024 [45]. Briefly, specific
625 modifications include using *SCTransform* from the Seurat package [46] to normalise
626 filtered counts from the quality control step. By modelling negative probe detection as a
627 fixed factor, we regressed out the confounding effects caused by background. The
628 annotation process of the data were performed using InSituType [47], with the Single-

629 cell Lung Cancer Atlas (LuCA)[48] as the reference. In terms of 10X Xenium data, cell
630 type annotation was obtained from the Janesick A, *et al* paper [2].

631

632 Metrics calculation for neighborhood probability distribution

633 Perplexity serves as a fundamental metrics for summarizing the neighborhood
634 probability distribution generated by hoodscanR. It provides a measure of effective
635 diversity of complexity within a cell's neighborhood. The perplexity $P(x)$ for a given cell
636 x is calculated as:

$$P(x) = 2^{H(x)}$$

637 Where $H(x)$ represents the Shannon entropy [49] of the neighborhood probability
638 distribution of cell x , defined as:

$$H(x) = - \sum_{i=1}^n p(x_i) \log_2 p(x_i)$$

639 Where $p(x_i)$ is the probability of cell x located in the i -th neighborhood and n is the total
640 number of distinct neighborhoods. Higher perplexity values indicate greater diversity or
641 complexity within the cellular neighborhoods, suggesting that a larger number of distinct
642 cell types are contributing to the neighborhood. In hoodscanR, perplexity can be
643 calculated using the *calcMetrics* function.

644 To assess the statistical significance of the observed perplexity values within cell
645 neighborhoods, we employed an empirical permutation test. For each neighborhood, we
646 generated a distribution of perplexity values by randomly shuffling the spatial

647 coordinates of cells and recalculating the perplexity across 1,000 permutations. The
648 empirical p-value for each neighborhood was then calculated as the proportion of
649 permuted perplexity values that were greater than or equal to the observed perplexity
650 value, adjusted for the finite number of permutations:

$$P_{empirical} = \frac{\sum_{i=1}^N \mathbb{1}(P_{obs} \geq P_i) + 1}{N + 1}$$

651 where P_{obs} is the observed perplexity for a given neighborhood, P_i represents the
652 perplexity from the i -th permutation, $\mathbb{1}(\cdot)$ is an indicator function that equals 1 when the
653 condition inside is true and 0 otherwise, and N is the total number of permutations. This
654 correction ensures that the empirical p-values are properly calibrated, even with a
655 limited number of permutations, thus providing a robust measure of statistical
656 significance.

657

658 **Hyperparameter k and τ testing**

659 In order to test the effect different parameter k values have on the results of hoodscanR,
660 we first test a range of k values (10, 50, 100, 200, 500, 1000), using the default τ setting
661 from the *scanHoods* function. We then computed the Pearson correlation between the
662 resulting probability matrices to assess consistency of the outcomes across different k.
663 For testing the τ parameter, we fixed k = 100 and examined a range of τ values, which
664 were derived from different scaling of the distance matrix (see Availability of data and
665 materials).

666

667 **Benchmarking of co-localization analysis**

668 Both 10X Xenium breast cancer and Nanostring CosMx datasets were utilized for
669 benchmarking the co-localization analysis among hoodscanR, Squidpy, and Giotto. To
670 ensure robustness, the data were randomly subset into ten different sizes ranging from
671 0.1 to 1, after which each package's respective methodologies were applied.
672 Specifically, for hoodscanR, neighborhood identification and co-localization analysis
673 were conducted using the *plotColocal* function. In contrast, Squidpy and Giotto
674 performed network graph construction using the *gr.spatial_neighbors* and
675 *createSpatialDelaunayNetwork* functions, followed by co-localization analysis using the
676 *gr.nhood_enrichment* and *cellProximityEnrichment* functions, respectively.

677

678 Benchmarking spatial domain identification

679 To benchmark hoodscanR against other state-of-the-art methods in identifying spatial

680 domains from spatial transcriptomics datasets, we selected 12 publicly available

681 datasets. These included 3 CosMx NSCLC, 6 MERFISH mouse colon, 1 STARmap

682 mouse cortex, and 2 Xenium breast cancer slides. Due to the large size of the Xenium

683 breast cancer datasets (555,579 cells and 353,783 cells, respectively), some tools were

684 unable to process these datasets efficiently. To address this, we downsampled these

685 slides to 10,000 and 50,000 cells, while maintaining the original cell type proportion

686 distributions, resulting in a total of 16 datasets. This was achieved by randomly

687 sampling cells from each cell type cluster based on their proportional weighting (see

688 Availability of data and materials). Annotated region labels or pathological annotations

689 in these datasets were used as the ground truth for spatial domains.

690 Normalization of the gene expression data was handled differently depending on the

691 dataset. For the MERFISH dataset, we directly used the provided log-normalized

692 counts. For all other datasets, we used the *quickCluster* and *calculateSumFactors*

693 functions from the *scran* R package [50] to estimate size factors, followed by the

694 *logNormCounts* function from the *scuttle* R package [51] to normalize the counts.

695 We compared hoodscanR against seven other methods capable of performing spatial

696 domain detection: BuildNicheAssay from Seurat, Banksy, BayesSpace, MERINGUE,

697 SpaGCN, Stagate, and Utag. For each method, we calculated a composite performance

698 score to assess the accuracy of spatial domain identification. This score was computed

699 as the mean of four key metrics: Adjusted Rand Index (ARI), Normalized Mutual
700 Information (NMI), purity, and homogeneity. It is defined as:

$$Score = \text{mean}(ARI + NMI + Purity + Homogeneity)$$

701 These metrics were chosen for their ability to quantify different aspects of clustering
702 accuracy. ARI measures the similarity between the predicted and true clusters,
703 adjusting for chance. It is defined as:

$$ARI = \frac{RI - \text{Expected } RI}{\text{Max } RI - \text{Expected } RI}$$

704 Where RI is the Rand Index, which counts the number of correct pairwise classifications
705 between the predicted and true labels. ARI in this paper is calculated using the *aricode*
706 R package.

707 NMI quantifies the amount of information shared between the predicted and true
708 clusters. It is defined as:

$$NMI = \frac{2 \times I(U, V)}{H(U) + H(V)}$$

709 where $I(U, V)$ is the mutual information between clusters U and V , and $H(U)$ and $H(V)$
710 are the entropies of the true and predicted clusters, respectively. NMI in this paper is
711 calculated using the *aricode* R package.

712 Purity measures the extent to which each cluster contains only members of a single
713 class. It is calculated as:

$$Purity = \frac{1}{N} \sum_{k=1}^K \max_j |C_k \cap T_j|$$

714 where C_k are the predicted clusters, T_j are the true clusters, and N is the total number of
715 samples.

716 Homogeneity ensures that all the clusters contain only data points which are members
717 of a single class. It is defined as:

$$\text{Homogeneity} = 1 - \frac{H(C|T)}{H(C)}$$

718 where $H(C|T)$ is the conditional entropy of the true clusters given the predicted clusters,
719 and $H(C)$ is the entropy of the predicted clusters.

720 To ensure fairness in the benchmarking process, all methods were executed using their
721 default settings (see Availability of data and materials). Additionally, a time penalty was
722 applied: if a method failed to complete the processing of a dataset within 24 hours, the
723 process was terminated. This ensures that the comparison accounts not only for
724 accuracy but also for computational efficiency.

725

726 Unsupervised clustering of neighborhood distribution

727 To perform unsupervised clustering of the neighborhood distribution, the identified
728 neighborhood distribution of each cell was utilized as input data. The K-means
729 clustering algorithm, a widely used method for partitioning data into distinct clusters
730 based on dissimilarity, were used. Specifically, we set the parameters for K-means
731 clustering as `iter_max = 1000`, `nstart = 5`, and `algo = "Hartigan-Wong"`. The `iter_max`
732 parameter determines the maximum number of iterations allowed to converge to a
733 solution, while `nstart` specifies the number of initial cluster centers to use in the
734 algorithm. Additionally, the "Hartigan-Wong" algorithm was chosen as the method for
735 center initialization. To determine the optimal number of clusters (k) for the K-means
736 clustering algorithm, we used the elbow method. In a nutshell, we first calculated the

737 within-cluster sum of squares for a range of k values and then identified the point at
738 which the distortion or inertia starts decreasing in a linear fashion.

739

740 **Differential expression analysis**

741 To conduct the differential expression (DE) analysis on the CosMx NSCLC dataset and
742 identify DE genes among tumor cells from distinct cellular neighborhoods, pseudo-bulk
743 via summation samples were initially generated from cells within the identified
744 neighborhood-based clusters using *summarizeAssayByGroup* function from the *scuttle*
745 R package [51]. Subsequently, the *standR* package [52] was used to assess relative log
746 expression (RLE) and perform principal component analysis (PCA) to explore the
747 technical and biological variation in the pseudo-bulk data. Following this, the limma-
748 voom pipeline [22] was utilized for DE analysis with TMM normalisation [53],
749 incorporating slide information as a covariate in the linear model to account for slide-
750 related variations. The resulting statistic was an empirical Bayes moderated t-statistic.
751 Multiple testing adjustment using the Benjamini–Hochberg procedure was then applied
752 to identify DE genes that reached statistical significance (FDR < 0.05). To identify DE
753 genes in the 10X VisiumHD mouse brain dataset, we first extracted neurons from the
754 *Neurod6+* and *Calb2+* neighborhoods and then applied Seurat's *FindAllMarkers*
755 function [9]. We retained only genes meeting two criteria: a log2 fold change greater
756 than 1 and an adjusted p-value less than 0.05. The top ten genes from each group,
757 based on these filters, were subsequently selected for heatmap visualization using the
758 *DoHeatmap* function from Seurat.

759 **Gene-set enrichment analysis and visualization**

760 Gene-sets from the Molecular Signatures Database (MsigDB, v7.2), including

761 Hallmarks, C2 (curated gene-sets), and C5 (gene ontology terms) categories, along with

762 KEGG pathway gene-sets, were obtained using the *getMsigdb* and *appendKEGG*

763 functions from the msigdb R package (v1.1.5). Gene-set enrichment analysis (GSEA)

764 was performed using *fry* from the limma package (v3.58.1). A false discovery rate of

765 0.05 was used as the threshold for determining significantly enriched gene-sets. The

766 results of GSEA were systematically examined and visualized using an unbiased

767 approach through the novel network enrichment and visualization R package vissE [25].

768 **Declarations**

769 **Ethics approval and consent to participate**

770 Not Applicable.

771

772 **Consent for publication**

773 Not Applicable.

774

775 **Availability of data and materials**

776 The Nanostring CosMx non-small cell lung cancer (NSCLC) data utilized in this study

777 was sourced from the official Nanostring website:

778 <https://nanostring.com/products/cosmx-spatial-molecular-imager/ffpe-dataset/nsclc-ffpe->

779 [dataset/](#). The CosMx dataset was generated from FFPE NSCLC tissue samples using a

780 960-plex CosMx RNA panel. The 10X Xenium breast cancer datasets used in this study

781 were retrieved from the 10X publicly available database at

782 <https://www.10xgenomics.com/datasets>. The Xenium *in situ* dataset comprises human

783 breast cancer FFPE sections and utilizes a 280-gene Xenium Human Breast Gene

784 Expression Panel supplemented with 33 additional custom genes. The MERFISH

785 mouse colon data was downloaded from <https://doi.org/10.5061/dryad.rjdfn2zh3>,

786 originated from Cadinu et al., 2024 [17]. The STARmap mouse cortex data was sourced

787 from the Wang et al., 2018 study [18]. The 10X VisiumHD mouse brain dataset was

788 sourced from the official 10X Genomics website:

789 <https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-libraries-of-mouse-brain-he>.

791 The code used for performing the described analyses is available in GitHub at
792 https://github.com/ningbioinfo/hoodscanR_manuscript_code. The hoodscanR package
793 is freely available in Bioconductor (release > 3.18) at
794 <https://bioconductor.org/packages/release/bioc/html/hoodscanR.html>.

795

796 **Competing interests**

797 The authors declare that they have no competing interests.

798

799 **Funding**

800 Ning Liu and Dharmesh Bhuva are supported by the South Australian
801 immunoGENomics Cancer Institute (SAiGENCI) received grant funding from the
802 Australian Government. WEHI acknowledges the support of the Operational
803 Infrastructure Program of the Victorian Government.

804

805 **Authors' contributions**

806 Conceptualization: N.L., J.M., C.W.T. and M.J.D. Method development: N.L., D.D.B.,
807 A.M., M.L. Writing – original draft: N.L. Writing – draft revision: N.L., J.C., S.C.L., M.K.,
808 J.C., A.K., Y.C., C.W.T., J.M.P.

809

810 **Acknowledgements**

811 The authors thank both Nanostring Technologies and 10X Genomics for releasing

812 publicly available CosMx and Xenium datasets, respectively.

813

814

815

816 **Reference**

817

- 818 1. He S, Bhatt R, Brown C, Brown EA, Buhr DL,
819 Chantranuvatana K, Danaher P, Dunaway D, Garrison RG,
820 Geiss G, et al: **High-plex imaging of RNA and proteins at**
821 **subcellular resolution in fixed tissue by spatial**
822 **molecular imaging.** *Nat Biotechnol* 2022, **40**:1794-1806.
- 823 2. Janesick A, Shelansky R, Gottscho AD, Wagner F, Williams
824 SR, Rouault M, Beliakoff G, Morrison CA, Oliveira MF,
825 Sicherman JT, et al: **High resolution mapping of the**
826 **tumor microenvironment using integrated single-cell,**
827 **spatial and in situ analysis.** *Nat Commun* 2023, **14**:8353.
- 828 3. Yao Z, van Velthoven CTJ, Kunst M, Zhang M, McMillen D,
829 Lee C, Jung W, Goldy J, Abdelhak A, Aitken M, et al: **A**
830 **high-resolution transcriptomic and spatial atlas of cell**
831 **types in the whole mouse brain.** *Nature* 2023, **624**:317-
832 332.
- 833 4. Parra ER, Francisco-Cruz A, Wistuba, II: **State-of-the-Art of**
834 **Profiling Immune Contexture in the Era of Multiplexed**
835 **Staining and Digital Analysis to Study Paraffin Tumor**
836 **Tissues.** *Cancers (Basel)* 2019, **11**.
- 837 5. Jhaveri N, Ben Cheikh B, Nikulina N, Ma N, Klymyshyn D,
838 DeRosa J, Mihani R, Pratapa A, Kassim Y, Bommakanti S:
839 **Mapping the spatial proteome of head and neck tumors:**
840 **key immune mediators and metabolic determinants in**
841 **the tumor microenvironment.** *GEN Biotechnology* 2023,
842 **2**:418-434.
- 843 6. Warchol S, Krueger R, Nirmal AJ, Gaglia G, Jessup J, Ritch
844 CC, Hoffer J, Muhlich J, Burger ML, Jacks T, et al: **Visinity:**
845 **Visual Spatial Neighborhood Analysis for Multiplexed**
846 **Tissue Imaging Data.** *IEEE Trans Vis Comput Graph* 2023,
847 **29**:106-116.
- 848 7. Palla G, Spitzer H, Klein M, Fischer D, Schaar AC,
849 Kuemmerle LB, Rybakov S, Ibarra IL, Holmberg O, Virshup

850 I, et al: **Squidpy: a scalable framework for spatial omics**
851 **analysis.** *Nat Methods* 2022, **19**:171-178.

852 8. Dries R, Zhu Q, Dong R, Eng CL, Li H, Liu K, Fu Y, Zhao T,
853 Sarkar A, Bao F, et al: **Giotto: a toolbox for integrative**
854 **analysis and visualization of spatial expression data.**
855 *Genome Biol* 2021, **22**:78.

856 9. Hao Y, Stuart T, Kowalski MH, Choudhary S, Hoffman P,
857 Hartman A, Srivastava A, Molla G, Madad S, Fernandez-
858 Granda C, Satija R: **Dictionary learning for integrative,**
859 **multimodal and scalable single-cell analysis.** *Nat*
860 *Biotechnol* 2024, **42**:293-304.

861 10. Miller BF, Bambah-Mukku D, Dulac C, Zhuang X, Fan J:
862 **Characterizing spatial gene expression heterogeneity in**
863 **spatially resolved single-cell transcriptomic data with**
864 **nonuniform cellular densities.** *Genome research* 2021,
865 **31**:1843-1855.

866 11. Singhal V, Chou N, Lee J, Yue Y, Liu J, Chock WK, Lin L,
867 Chang YC, Teo EML, Aow J, et al: **BANKSY unifies cell**
868 **typing and tissue domain segmentation for scalable**
869 **spatial omics data analysis.** *Nat Genet* 2024, **56**:431-441.

870 12. Zhao E, Stone MR, Ren X, Guenthoer J, Smythe KS,
871 Pulliam T, Williams SR, Uytingco CR, Taylor SE, Nghiem P:
872 **Spatial transcriptomics at subspot resolution with**
873 **BayesSpace.** *Nature biotechnology* 2021, **39**:1375-1384.

874 13. Dong K, Zhang S: **Deciphering spatial domains from**
875 **spatially resolved transcriptomics with an adaptive**
876 **graph attention auto-encoder.** *Nat Commun* 2022,
877 **13**:1739.

878 14. Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, Lee
879 EB, Shinohara RT, Li M: **SpaGCN: Integrating gene**
880 **expression, spatial location and histology to identify**
881 **spatial domains and spatially variable genes by graph**
882 **convolutional network.** *Nat Methods* 2021, **18**:1342-1351.

883 15. Kim J, Rustam S, Mosquera JM, Randell SH, Shaykhiev R,
884 Rendeiro AF, Elemento O: **Unsupervised discovery of**

885 **tissue architecture in multiplexed imaging.** *Nat Methods*
886 2022, **19**:1653-1661.

887 16. Arya S, Mount DM, Netanyahu NS, Silverman R, Wu AY: **An**
888 **optimal algorithm for approximate nearest neighbor**
889 **searching fixed dimensions.** *Journal of the ACM (JACM)*
890 1998, **45**:891-923.

891 17. Cadinu P, Sivanathan KN, Misra A, Xu RJ, Mangani D, Yang
892 E, Rone JM, Tooley K, Kye YC, Bod L, et al: **Charting the**
893 **cellular biogeography in colitis reveals fibroblast**
894 **trajectories and coordinated spatial remodeling.** *Cell*
895 2024, **187**:2010-2028 e2030.

896 18. Wang X, Allen WE, Wright MA, Sylwestrak EL, Samusik N,
897 Vesuna S, Evans K, Liu C, Ramakrishnan C, Liu J, et al:
898 **Three-dimensional intact-tissue sequencing of single-**
899 **cell transcriptional states.** *Science* 2018, **361**.

900 19. Bhuva DD, Tan CW, Salim A, Marceaux C, Pickering MA,
901 Chen J, Kharbanda M, Jin X, Liu N, Feher K, et al: **Library**
902 **size confounds biology in spatial transcriptomics data.**
903 *Genome Biol* 2024, **25**:99.

904 20. Tokunaga R, Naseem M, Lo JH, Battaglin F, Soni S, Puccini
905 A, Berger MD, Zhang W, Baba H, Lenz HJ: **B cell and B**
906 **cell-related pathways for novel cancer treatments.**
907 *Cancer Treat Rev* 2019, **73**:10-19.

908 21. Ren F, Xie M, Gao J, Wu C, Xu Y, Zang X, Ma X, Deng H,
909 Song J, Huang A, et al: **Tertiary lymphoid structures in**
910 **lung adenocarcinoma: characteristics and related**
911 **factors.** *Cancer Med* 2022, **11**:2969-2977.

912 22. Law CW, Chen YS, Shi W, Smyth GK: **voom: precision**
913 **weights unlock linear model analysis tools for RNA-seq**
914 **read counts.** *Genome Biology* 2014, **15**.

915 23. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H,
916 Tamayo P, Mesirov JP: **Molecular signatures database**
917 **(MSigDB) 3.0.** *Bioinformatics* 2011, **27**:1739-1740.

918 24. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert
919 BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR,

920 Lander ES, Mesirov JP: **Gene set enrichment analysis: A**
921 **knowledge-based approach for interpreting genome-**
922 **wide expression profiles.** *Proceedings of the National*
923 *Academy of Sciences of the United States of America* 2005,
924 **102:15545-15550.**

925 25. Bhuva DD, Tan CW, Liu N, Whitfield HJ, Papachristos N,
926 Lee SC, Kharbanda M, Mohamed A, Davis MJ: **vissE: a**
927 **versatile tool to identify and visualise higher-order**
928 **molecular phenotypes from functional enrichment**
929 **analysis.** *Bmc Bioinformatics* 2024, **25**.

930 26. Shen L, Yang M, Lin Q, Zhang Z, Zhu B, Miao C: **COL11A1**
931 **is overexpressed in recurrent non-small cell lung cancer**
932 **and promotes cell proliferation, migration, invasion and**
933 **drug resistance.** *Oncology reports* 2016, **36**:877-885.

934 27. Wang L, Sun Y, Guo Z, Liu H: **COL3A1 Overexpression**
935 **Associates with Poor Prognosis and Cisplatin**
936 **Resistance in Lung Cancer.** *Balkan Med J* 2022, **39**:393-
937 400.

938 28. Geng Q, Shen Z, Li L, Zhao J: **COL1A1 is a prognostic**
939 **biomarker and correlated with immune infiltrates in lung**
940 **cancer.** *PeerJ* 2021, **9**:e11145.

941 29. Wei S: **Hormone receptors in breast cancer: An update**
942 **on the uncommon subtypes.** *Pathol Res Pract* 2023,
943 **250**:154791.

944 30. Yu Q, Niu Y, Liu N, Zhang J, Liu T, Zhang R, Wang S, Ding
945 X, Xiao X: **Expression of androgen receptor in breast**
946 **cancer and its significance as a prognostic factor.**
947 *Annals of oncology* 2011, **22**:1288-1294.

948 31. Salvi S, Bonafe M, Bravaccini S: **Androgen receptor in**
949 **breast cancer: A wolf in sheep's clothing? A lesson from**
950 **prostate cancer.** *Semin Cancer Biol* 2020, **60**:132-137.

951 32. Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ,
952 Penzo MA: **Molecular and spatial profiling of the**
953 **paraventricular nucleus of the thalamus.** *Elife* 2023,
954 **12**:e81818.

955 33. Tutukova S, Tarabykin V, Hernandez-Miranda LR: **The Role**
956 **of Neurod Genes in Brain Development, Function, and**
957 **Disease.** *Front Mol Neurosci* 2021, **14**:662774.

958 34. Yang L, Su Z, Wang Z, Li Z, Shang Z, Du H, Liu G, Qi D,
959 Yang Z, Xu Z, Zhang Z: **Transcriptional profiling reveals**
960 **the transcription factor networks regulating the survival**
961 **of striatal neurons.** *Cell Death Dis* 2021, **12**:262.

962 35. Cubelos B, Sebastian-Serrano A, Beccari L, Calcagnotto
963 ME, Cisneros E, Kim S, Dopazo A, Alvarez-Dolado M,
964 Redondo JM, Bovolenta P, et al: **Cux1 and Cux2 regulate**
965 **dendritic branching, spine morphology, and synapses of**
966 **the upper layer neurons of the cortex.** *Neuron* 2010,
967 **66**:523-535.

968 36. Xia F, Richards BA, Tran MM, Josselyn SA, Takehara-
969 Nishiuchi K, Frankland PW: **Parvalbumin-positive**
970 **interneurons mediate neocortical-hippocampal**
971 **interactions that are necessary for memory**
972 **consolidation.** *Elife* 2017, **6**:e27868.

973 37. Lin YS, Wang HY, Huang DF, Hsieh PF, Lin MY, Chou CH,
974 Wu IJ, Huang GJ, Gau SS, Huang HS: **Neuronal Splicing**
975 **Regulator RBFOX3 (NeuN) Regulates Adult**
976 **Hippocampal Neurogenesis and Synaptogenesis.** *PLoS*
977 **One** 2016, **11**:e0164164.

978 38. Chiu S-L, Diering GH, Ye B, Takamiya K, Chen C-M, Jiang
979 Y, Niranjan T, Schwartz CE, Wang T, Huganir RL: **GRASP1**
980 **regulates synaptic plasticity and learning through**
981 **endosomal recycling of AMPA receptors.** *Neuron* 2017,
982 **93**:1405-1419. e1408.

983 39. Zhong L, Gerges NZ: **Neurogranin and synaptic plasticity**
984 **balance.** *Commun Integr Biol* 2010, **3**:340-342.

985 40. Palmer CL, Lim W, Hastie PG, Toward M, Korolchuk VI,
986 Burbidge SA, Banting G, Collingridge GL, Isaac JT, Henley
987 JM: **Hippocalcin functions as a calcium sensor in**
988 **hippocampal LTD.** *Neuron* 2005, **47**:487-494.

989 41. Neves G, Cooke SF, Bliss TV: **Synaptic plasticity, memory**
990 **and the hippocampus: a neural network approach to**
991 **causality.** *Nat Rev Neurosci* 2008, **9**:65-75.

992 42. Cang Z, Zhao Y, Almet AA, Stabell A, Ramos R, Plikus MV,
993 Atwood SX, Nie Q: **Screening cell-cell communication in**
994 **spatial transcriptomics via collective optimal transport.**
995 *Nat Methods* 2023, **20**:218-228.

996 43. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R,
997 Kuan CH, Myung P, Plikus MV, Nie Q: **Inference and**
998 **analysis of cell-cell communication using CellChat.** *Nat*
999 *Commun* 2021, **12**:1088.

1000 44. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo
1001 R: **CellPhoneDB: inferring cell-cell communication from**
1002 **combined expression of multi-subunit ligand-receptor**
1003 **complexes.** *Nat Protoc* 2020, **15**:1484-1506.

1004 45. Tan CW, Chen J, Liu N, Bhuva DD, Blick T, Monkman J,
1005 Cooper C, Kharbanda M, Feher K, Phipson B, et al: **In situ**
1006 **single-cell profiling sheds light on IFI27 localisation**
1007 **during SARS-CoV-2 infection.** *EBioMedicine* 2024,
1008 **101**:105016.

1009 46. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng
1010 S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M, et al:
1011 **Integrated analysis of multimodal single-cell data.** *Cell*
1012 2021, **184**:3573-3587 e3529.

1013 47. Danaher P, Zhao E, Yang Z, Ross D, Gregory M, Reitz Z,
1014 Kim TK, Baxter S, Jackson S, He S: **Insitutype: likelihood-**
1015 **based cell typing for single cell spatial transcriptomics.**
1016 *bioRxiv* 2022:2022.2010. 2019.512902.

1017 48. Salcher S, Sturm G, Horvath L, Untergasser G, Kuempers C,
1018 Fotakis G, Panizzolo E, Martowicz A, Trebo M, Pall G, et al:
1019 **High-resolution single-cell atlas reveals diversity and**
1020 **plasticity of tissue-resident neutrophils in non-small cell**
1021 **lung cancer.** *Cancer Cell* 2022, **40**:1503-1520 e1508.

1022 49. Shannon CE: **The mathematical theory of**
1023 **communication.** 1963. *MD Comput* 1997, **14**:306-317.

1024 50. Lun AT, McCarthy DJ, Marioni JC: **A step-by-step**
1025 **workflow for low-level analysis of single-cell RNA-seq**
1026 **data with Bioconductor.** *F1000Res* 2016, **5**:2122.

1027 51. McCarthy DJ, Campbell KR, Lun AT, Wills QF: **Scater: pre-**
1028 **processing, quality control, normalization and**
1029 **visualization of single-cell RNA-seq data in R.**
1030 *Bioinformatics* 2017, **33**:1179-1186.

1031 52. Liu N, Bhuva DD, Mohamed A, Bokelund M, Kulasinghe A,
1032 Tan CW, Davis MJ: **standR: spatial transcriptomic**
1033 **analysis for GeoMx DSP data.** *Nucleic Acids Res* 2024,
1034 **52**:e2.

1035 53. Robinson MD, Oshlack A: **A scaling normalization method**
1036 **for differential expression analysis of RNA-seq data.**
1037 *Genome Biology* 2010, **11**.

1038
1039