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Abstract 23 

Understanding complex cellular niches and neighborhoods have provided new insights 24 

into tissue biology. Thus, accurate neighborhood identification is crucial, yet existing 25 

methodologies often struggle to detect informative neighborhoods and generate cell-26 

specific neighborhood profiles. To address these limitations, we developed hoodscanR, 27 

a Bioconductor package designed for neighborhood identification and downstream 28 

analyses using spatial data. Applying hoodscanR to breast and lung cancer datasets, 29 

we showcase its efficacy in conducting detailed neighborhood analyses and identify 30 

subtle transcriptional changes in tumor cells from different neighborhoods. Such 31 

analyses can help researchers gain valuable insights into disease mechanisms and 32 

potential therapeutic targets. 33 

Keywords 34 

Spatial transcriptomics, Cellular neighborhood, Cancer micro-environment, 35 

Bioconductor package.  36 
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Background 38 

 39 

Spatial transcriptomics stands out as a powerful technology, offering a distinctive 40 

perspective that goes beyond traditional bulk RNA-seq and single-cell RNA-seq 41 

(scRNA-seq) methods. Since it conserves the spatial information of a tissue, it yields 42 

valuable insights into the complex molecular and cellular landscapes, uncovering spatial 43 

variations and relationships often overlooked by conventional approaches. Recent 44 

advancements in spatial-omics platforms, including Nanostring CosMx Spatial 45 

Molecular Imager [1], 10X Genomics Xenium [2], Vizgen Merscope [3], Akoya CODEX 46 

[4, 5], and others, have facilitated the generation of single-cell level spatial data. 47 

However, despite the potential of spatial transcriptomics, the field is still in its early 48 

stages, with many analyses resembling conventional scRNA-seq-like approaches. 49 

These analyses often disregard the rich spatial context of the data, failing to harness the 50 

cellular coordinates. Thus, this shift towards high-resolution spatial profiling and the lack 51 

of appropriate methods has created a pressing demand for innovative analytical tools 52 

capable of fully exploiting these datasets. Cellular neighborhood analysis, a powerful 53 

approach to fully utilize cell spatial information, becomes particularly important when 54 

applied to single-cell level spatial transcriptomics data. Bioinformatics tools are needed 55 

to identify and characterize the niches or neighborhoods in which cells reside, as these 56 

regions may harbor crucial tissue micro-environment (TME) biology that influences the 57 

fundamental tissue biology, physiology as well as responses to therapy and disease 58 

progression. Therefore, understanding these neighborhoods is key for the full utilization 59 

of the spatial data and to provide researchers with novel insights into cellular 60 
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interactions and communications within the TME, offering a nuanced understanding of 61 

the complex biological processes at play. Such insights hold the potential to enhance 62 

our understanding of complex diseases like cancer and contribute to the development of 63 

more effective therapies.  64 

 65 

In recent years, there has been a growing trend in the development of methods 66 

dedicated to conducting neighborhood analyses to interpret complex cellular 67 

neighborhoods within spatial transcriptomics data (Table 1). These methods range from 68 

clustering-based approaches that leverage frequency matrices of k-nearest cells [1] to 69 

graph network-based strategy that is built into interactive viewer [6]. Widely used toolkits 70 

Squidpy [7] and Giotto [8] have made substantial contributions to the field by facilitating 71 

neighborhood analysis via enrichment tests using a graph-based approaches 72 

compatible across multiple spatial technology platforms. Additionally, many tools have 73 

been developed to detect spatial domains from spatial transcriptomics datasets by 74 

accounting for the spatial information, i.e. cellular neighborhood when clustering data 75 

via various approaches, including BuildNicheAssay from Seurat [9], MERINGUE [10], 76 

BANKSY [11], BayesSpace [12], STAGATE [13], SpaGCN [14] and UTAG [15]. 77 

Nevertheless, despite these advancements, there are critical gaps in existing 78 

methodologies. Most notably, while some existing tools can detect spatial domains that 79 

comprise multiple cell types, such as UTAG, SpaGCN and Giotto’s HMRF-based 80 

approach, they do not provide partial membership at a single-cell level. For example, 81 

when cells reside in neighborhoods characterized by a mixture of B cells and stromal 82 

cells, current methods tend to categorize such neighborhoods as either exclusively B 83 
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cell or stromal cell neighborhoods, failing to capture the nuanced composition of cellular 84 

environments. Furthermore, current tools lack the capability to provide cell-level 85 

neighborhood annotations, meaning detailed neighborhood profiles for individual cells 86 

are unavailable. This critical feature is essential for a comprehensive characterization of 87 

the spatial context surrounding each cell. In response to these unaddressed challenges, 88 

we developed hoodscanR, a Bioconductor R package designed to perform 89 

comprehensive neighborhood analyses on spatial transcriptomics data. Unlike existing 90 

methods, hoodscanR aims to bridge critical gaps by enabling per-cell partial 91 

membership across multiple neighborhoods, providing a more precise and detailed 92 

understanding of the tissue microenvironments. Additionally, hoodscanR generates cell-93 

level neighborhood profiles, a unique feature that allows for an in-depth summarization 94 

of the spatial context at a single-cell resolution. Moreover, hoodscanR can identify 95 

neighborhood-based spatial domains, offering insights into the higher-order organisation 96 

of tissues. In this study, we introduce the functionalities and capabilities of hoodscanR 97 

and demonstrate its utility in investigating the cellular neighborhoods within publicly 98 

available spatial transcriptomics datasets. 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 
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Table1. Features of existing neighborhood/domain identification methods for spatial 107 

transcriptomics data. 108 

  109 

Features Giotto[8] Squidpy[7] Seurat Banksy BayesSpace MERINGUE SpaGCN Stagate Utag hoodscanR 

Language R Python R R/Python R R Python Python Python R 

Infrastructure 
Giotto 
object AnnData 

Seurat 
object 

Spatial 
Experiment 

Spatial 
Experiment NA AnnData AnnData AnnData 

Spatial 
Experiment 

Multi-platforms 
compatible 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Co-localization Yes Yes No No No No No No No Yes 

Multi-neighborhood 
membership No No No No No No No No No Yes 

Cell-level 
neighborhood 

profiles 
No No No No No No No No No Yes 

Spatial domain 
detection 

Yes No Yes Yes Yes Yes Yes Yes Yes Yes 
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Results 110 

 111 

Development of hoodscanR 112 

 113 

hoodscanR uses an efficient computational pipeline to investigate spatial neighborhood 114 

relationships among cells within spatial transcriptomics datasets (Figure 1). At the core 115 

of hoodscanR, the searching process for nearest cells is initiated using an Approximate 116 

Nearest Neighbor (ANN) search algorithm [16], which uses k-dimensional tree to 117 

efficiently manage the two-dimensional spatial coordinates of spatial transcriptomics 118 

data, providing rapid identification of nearest neighbors while maintaining high accuracy. 119 

This facilitates the identification of the k-nearest neighboring cells for each cell in the 120 

dataset. This process outputs a list of indices representing the nearest neighbors of 121 

each cell, denoted as: 122 

������ � ���, ��, … , ��
 

Following the identification of nearest neighbors, hoodscanR calculates the distance 123 

between each cell and its k-nearest neighbors. Here Euclidean distance is used due to 124 

its simplicity and effectiveness in measuring distances between points in a two-125 

dimensional space. This results in a distance matrix �, where each element ��� 126 

represents the distance between cell �� and its neighbor �� from ������ (Figure 1). 127 

Simultaneously, cell-level annotations provided by users, such as cell types, are used to 128 

construct a cell annotation matrix �, which describes the organisation of cells based on 129 
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their distances to neighboring cells. Each entry � indicates whether cell �� belongs to 130 

annotation group �: 131 

� �  �1 �� ���� �� � ���, ��, … , ��
 ������� �� ���������� ����� �
0 ��!��"��� # 

The fundamental function of hoodscanR is to identify cellular neighborhoods within 132 

spatial transcriptomics data. It achieves this by using the SoftMax function, enhanced by 133 

a hyperparameter $ (tau), which governs the shape of the resulting probability 134 

distribution and provides control over the influence of neighboring cells. The algorithm is 135 

expressed as follows: 136 

�����; $� �
∑ ���

���� · ��� () *���, ���$ +�
���

∑ ��� () *���, ���$ +�
���

  

where �, �� � ���, ��, … , ��
, and 137 

���
���� �  �1 �� �,�, �- �� 1

0 ��!��"��� # 

Where: 138 

�����; $� denotes the probability of cell � residing within the local neighborhood !�. 139 

*��, ��� signifies the spatial Euclidean distance between cell � and its neighboring cell 140 

��. 141 

$ stands as the hyperparameter, facilitating fine-tuned modulation of the impact of 142 

neighboring cells. 143 
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!� denotes the cell neighborhood �, defined by the cell-level annotations provided by 144 

users. For example, if cell types were provided, !� means cell type � neighborhood. 145 

.�. � is the indicator function, which checks whether cell �� belongs to the neighborhood 146 

!� as per the annotation matrix �. 147 

Upon the aggregation of probabilities by user-defined cell-level annotation groups, such 148 

as cell type annotations, hoodscanR generates a comprehensive probability matrix 0, 149 

where each value represents the probability of each cell belonging to a specific cell 150 

neighborhood (Figure 1). This matrix describes the cellular neighborhood profiles for all 151 

cells, serves as the backbone for downstream analyses, enabling researchers to delve 152 

into spatial patterns and relationships. 153 

 154 

To investigate how the hyperparameter k and $ affects the results generated by 155 

hoodscanR, we conducted an extensive examination of the probability matrix across a 156 

range of k and $ values (see Methods). This analysis revealed that different k values 157 

generate highly similar results, with a mean Pearson correlation coefficient of 0.93 158 

(Additional file 1 – supplementary figure 1). Regarding $, smaller values assign greater 159 

weights to nearby cells, while larger $ values consider more distant cells as contributors 160 

to the neighborhood (Additional file 1 – supplementary figure 2). Thus, the choice of $ 161 

becomes essentially linked to the specific biological questions being addressed. For 162 

example, smaller $ values, such as one-fifth of the median of the distance matrix, which 163 

is set to the default $ value in the hoodscanR package, are more suitable for analyses 164 

focused on local interactions, where nearby cells have stronger influence on the 165 
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neighborhood calculation. In contrast, larger $ values, such as the median of the 166 

distance matrix, are ideal for capturing more global spatial relationships, incorporating 167 

cells that are further away as significant components of the neighborhood.  168 

 169 

After neighborhood identification, hoodscanR extends its capabilities to offer a diverse 170 

suite of downstream neighborhood analysis tools (Figure 1). Users can apply these 171 

tools to visualize spatial relationships, evaluate co-localization patterns, perform spatial 172 

neighborhood clustering of cells, and obtain cell-level neighborhood annotations. These 173 

functionalities allow researchers to gain insights within the spatial transcriptomic 174 

landscape, facilitating the discovery of novel biological knowledge. Last but not least, 175 

one of the hallmark features of hoodscanR is using the Bioconductor spatialExperiment 176 

infrastructure as the backbone of the analysis. This significantly increases the 177 

compatibility of intermediate results from hoodscanR with diverse Bioconductor 178 

packages tailored for preprocessing, quality control, normalization, cell type annotation, 179 

and various downstream analyses specifically crafted for spatial transcriptomics data. In 180 

conclusion, hoodscanR provides a powerful and flexible method for spatial 181 

neighborhood identification and analysis. 182 

 183 
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Figure 1. Schematic visualization showing the main components and computational workflow of 185 

the hoodscanR package. The process begins with inputting a SpatialExperiment object, which 186 

contains spatial data and associated metadata. Next, the package calculates the k-nearest cells 187 

based on spatial proximity. This step follows by generating a neighborhood probability matrix, 188 

which quantifies the likelihood of cell interactions within their local neighborhood. Finally, the 189 

package performs visualizations and downstream neighborhood-based analyses to provide 190 

insights into spatial patterns and relationships. 191 

 192 

Benchmarking hoodscanR in spatial domains identification 193 

 194 

Building upon the foundation of cell-level neighborhood probability matrix (Figure 1), 195 

hoodscanR allows users to perform unsupervised clustering, grouping cells with similar 196 

neighborhood distribution patterns into cohesive clusters. This data-driven approach 197 

enables the classification of cells based on their spatial relationships within the tissue 198 

slide, identifying neighborhood-driven spatial domains. 199 

To evaluate the effectiveness and robustness of the neighborhood-based spatial 200 

domain identification function in hoodscanR, and compared with other tools, we 201 

conducted a benchmarking experiment against several state-of-the-art methods (see 202 

Methods). This benchmark experiment involved detecting spatial domains of 16 publicly 203 

available datasets, covering a range of spatial platforms and tissue types, including 204 

CosMx NSCLC [1], MERFISH mouse colon [17], STARmap mouse cortex [18] and 205 

Xenium breast cancer [2, 19]. The datasets were chosen because the tissue is well-206 

annotated with region labels or there are pathological annotataion that can be served as 207 
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ground truth of spatial domains. hoodscanR was benchmarked against seven other 208 

methods that can perform spatial domain detection: BuildNicheAssay from Seurat, 209 

Banksy, BayesSpace, MERINGUE, SpaGCN, Stagate and Utag (Figure 2A and 210 

additional file 1 - supplementary figure 3-7). As a result from these 128 experiments, 211 

hoodscanR, Banksy and Utag exhibit the best performance by achieving the highest 212 

performance score on average across all tested datasets (Figure 2B). However and 213 

importantly, hoodscanR outperforms all others in computing efficiency (Figure 2C), 214 

being approximately 21-fold faster on average than Banksy, which ranks second in 215 

speed. This advantage in computational speed is particularly important as increasingly 216 

large and high-resolution datasets will be generated with the advancements in spatial 217 

transcriptomics technologies. Additionally, hoodscanR can recapitulate tissue spatial 218 

architecture in a biologically coherent manner. For example, in the MERFISH mouse 219 

colon dataset (Figure 2A), hoodscanR accurately delineates four concentric layers, 220 

mucosa (MU), submucosa (SM), muscularis externa (ME), and other, all of which 221 

contain multiple cell types. This result closely mirrors the ground truth. By clustering 222 

cells with similar neighborhood distributions, hoodscanR captures subtle boundaries 223 

more effectively than many alternative methods, preserving the colon’s characteristic 224 

concentric organisation, such as the ME structure. Taken together, these results 225 

highlight strengths of hoodscanR in domain identification across large-scale spatial 226 

transcriptomics datasets. 227 

Additionally, to evaluate the robustness of hoodscanR across different resolutions of cell 228 

type annotations, we conducted an experiment using high-resolution, medium-resolution, 229 

and low-resolution annotations as inputs. The high-resolution annotations included 230 
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detailed cell types, such as CD4+ T cells, CD8+ T cells, and macrophages. The 231 

medium-resolution annotations combined all T cells into a single category, and the low-232 

resolution annotations further grouped all immune cells into a single “Immune” category. 233 

Despite the reduction in annotation resolution, the identified neighborhood-based spatial 234 

domains have a Normalized Mutual Information (NMI) score of greater than 0.8 when 235 

comparing using the high-resolution results as the reference (Additional file 1 - 236 

supplementary figure 8). Taken together, these results showcase the power of 237 

hoodcanR in accurately identifying neighborhood-based spatial domains in a scalable 238 

and efficient manner. They also indicate that hoodscanR is robust to variations in 239 

annotation granularity, maintaining the integrity of the spatial relationships even when 240 

the resolution of cell type annotations is reduced. 241 

 242 

 243 
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Figure 2. Benchmarking hoodscanR against other methods in detecting spatial domains. A: 244 

Spatial maps of the MERFISH mouse colon data, colored by the spatial domains detected from 245 

different methods compared to the ground truth domain annotations, including muscularis 246 

externa (ME), mucosa (MU), submucosa (SM) and other (top left corner). B: Violin plots 247 

showing the performance score of each method across all tested datasets. Round-crosses 248 

indicates the mean performance score for each method. C: Computational efficiency of each 249 

method, plotted as the log10-scaled time (in seconds) required to process datasets. Shapes 250 

represent the platform of the dataset, colors denote the methods, and the lines are generalized 251 

linear smooths indicating overall trends for each method. 252 

 253 

hoodscanR identifies celluar neighborhoods in cancer 254 

 255 

To demonstrate the power of hoodscanR in detecting spatial cellular neighborhoods, we 256 

performed neighborhood identification on two publicly available spatial transcriptomics 257 

datasets obtained from different in situ transcriptomic platforms: breast cancer data 258 

obtained from the 10X Genomics Xenium (Figure 3A) and non-small cell lung cancer 259 

(NSCLC) data acquired from the Nanostring CosMx Spatial Molecular Imager (Figure 260 

3B). We first applied hoodscanR onto the breast cancer dataset using the default 261 

parameters (k=100 and $=median(dist^2)/5). hoodscanR allows us to perform 262 

neighborhood identification by profiling neighborhood distributions for each cell within 6 263 

seconds, representing the probability of a cell being situated within each distinct cell-264 

type neighborhood (Figure 3C and 3F). 265 

 266 
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To validate the accuracy of hoodscanR in characterizing these cellular neighborhoods, 267 

we focus on one randomly selected cell for each dataset by exploring the distribution of 268 

cell types within their spatial area (Figure 3D, E, G, and H). For instance, we examined 269 

a ductal carcinoma in situ (DCIS) grade 2 cell, an early form of breast cancer cells, from 270 

the Xenium data (Figure 3C and D: cell ID 27620), where we observed 47 DCIS grade 2 271 

cells and 21 ACTA2+ myoepithelial cells from the nearest 100 neighboring cells (Figure 272 

3D). Consistently, hoodscanR assigned probabilities of 61.02% for residing in the DCIS 273 

grade 2 neighborhood and 30.96% for the ACTA2+ myoepithelial neighborhood for this 274 

specific cell (Figure 3E). Similarly, when assessing a stromal cell within the CosMx 275 

NSCLC data (Figure 3F: cell ID 6_1099), we observed that hoodscanR assigned 276 

probabilities of 68.2% for the B cell neighborhood and 19.67% for the plasma cell 277 

neighborhood while there are 66 and 11 B cells and regulatory T cells in the nearest 278 

100 neighboring cells (Figure 3G and H). These examples demonstrate the power of 279 

hoodscanR in accurately characterizing cellular neighborhoods within spatial 280 

transcriptomics data, regardless of the platform, and its capacity to accommodate 281 

scenarios where cells may belong to neighborhoods of multiple cell types. The 282 

identification of B cell neighborhoods is particularly noteworthy in the context of cancer 283 

therapy responses. B cell neighborhoods serve as crucial sites for antibody production, 284 

contributing to the immune response against tumor cells and influencing therapeutic 285 

efficacy [20]. Furthermore, in lung cancer, the presence of tertiary lymphoid structures 286 

(TLS), characterized by highly organized T and B lymphocyte colonies within 287 

nonlymphoid tissues, has been associated with favorable clinical outcomes in non-small 288 

cell lung cancer (NSCLC) [21]. These structures, resembling secondary lymphoid 289 
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organs, play an important role in regulating antitumor immune responses and are 290 

emerging as potential targets for novel therapeutic interventions. By delineating cellular 291 

neighborhoods, including B-cell-rich TME, hoodscanR offers the potential for 292 

investigating the relationship between immune cells and tumor cells within the TME, 293 

providing insights that could inform the development of more effective cancer therapies. 294 

 295 

Furthermore, hoodscanR introduces an additional analytical dimension by enabling the 296 

computation of uncertainty, which is measured by perplexity, and performing 297 

permutation test for each cell (see Methods). Perplexity is calculated from the 298 

probability matrix, capturing the spatial relationships among cells and their respective 299 

neighborhoods. Perplexity provides overall measurement of the uncertainty and 300 

complexity of cell neighborhoods (Figure 3I and K). This in turn reveals regions of the 301 

TME with distinct cellular compositions and areas with complex interactions between 302 

cell types. P-values of perplexity (Figure 3J and L) can be obtained via an empirical 303 

permutation test (see Methods). This allows users to identify regions with significant 304 

higher perplexity from tissue. Altogether, these metrics provide an understanding of the 305 

heterogeneity and complexity present within tissues, allowing researchers to gain novel 306 

insights and make discoveries in the spatial transcriptomics landscape. 307 

 308 

 309 

 310 
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 311 

Figure 3. Neighborhood identification in 10X Xenium breast cancer data and Nanostring CosMx 312 

NSCLC data. Cell type spatial distribution in the breast cancer data (A) and NSCLC data (B). 313 

Neighborhood distribution visualization via heatmap of randomly selected 30 cells from breast 314 

cancer data (C) and NSCLC data (F), darker color means higher probability of the cell located in 315 

specific cell type neighborhood. The cell type spatial distribution in the spatial area around the 316 

selected cells (marked by * in the heatmap) in breast cancer data (D & E) and NSCLC data (G & 317 

H). Perplexity spatial distribution of cells in the breast cancer data (I) and NSCLC data (K). P-318 

value distribution of perplexity in the breast cancer data (J) and NSCLC data (L). 319 
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 320 

hoodscanR performs neighborhood-based downstream analyses 321 

 322 

Existing neighborhood identification methods, such as Squidpy and Giotto, 323 

predominantly focus on neighborhood co-localization analyses. Another key function of 324 

hoodscanR is to generate neighborhood profile at single-cell level and to carry out 325 

neighborhood-based downstream analyses, features notably absent in other existing 326 

tools. To demonstrate the versatility of hoodscanR, we use the CosMx NSCLC dataset 327 

as an example. 328 

 329 

Firstly, as with other spatial analysis tools, hoodscanR can perform neighborhood co-330 

localization analysis by computing Pearson correlations on the neighborhood 331 

distribution of cells. Hence, the co-localization status of each cell type neighborhood 332 

within this specific tissue slide can then be visualized (Figure 4A). To benchmark the 333 

ability of hoodscanR, Squidpy and Giotto when carrying out co-localization analysis, we 334 

subset the Xenium breast cancer data and CosMx NSCLC into different resolution, 335 

followed by applying these tools to the subsets. As a result, hoodscanR demonstrated 336 

superior computational performance (Additional file 1 – supplementary figure 9), while 337 

delivering similar outcome (mean Pearson correlation coefficient of 0.781) of 338 

neighborhood co-localization compared to both Xenium and CosMx data (Additional file 339 

1 – supplementary figure 10 and 11). The computational efficiency gains significance, 340 

particularly in the context of the growing spatial data resolutions and larger tissue areas. 341 
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To validate the co-localization results, we present a subset of cell types alongside their 342 

spatial distribution within the breast cancer tissue slide, showing that immune cell types 343 

such as B cells, T cells, and macrophages exhibit co-localization, while they are 344 

distinctly separated from tumor cells (Figure 4B). This observation serves as robust 345 

validation of the co-localization analysis results generated by hoodscanR, thus 346 

reinforcing the effectiveness and reliability of hoodscanR in revealing spatial 347 

relationships within various tissue environments, particularly when dealing with complex 348 

spatial transcriptomics data.  349 

 350 

In the CosMx NSCLC data, we applied unsupervised clustering to delineate 10 distinct 351 

clusters (see Methods), each representing a unique spatial pattern within the tissue 352 

(Figure 4C), demonstrating complex spatial associations. For instance, cluster 1, a 353 

candidate cluster for TLS, corresponds to a neighborhood including B cells, cDC1 cells, 354 

and stromal cells (Figure 4D - 1), cluster 3 aligns with macrophages and cDC2 cells 355 

(Figure 4D - 3), and cluster 6 corresponds to tumor cells (Figure 4D - 6). This 356 

unsupervised clustering approach facilitates the identification of diverse cellular 357 

neighborhoods and their unique spatial signatures, providing a comprehensive view of 358 

the complexity of TME. 359 

 360 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2025. ; https://doi.org/10.1101/2024.03.26.586902doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 361 

Figure 4. Neighborhood-based downstream analyses in CosMx NSCLC data performed by 362 

hoodscanR. A: heatmap representing the co-localization status of cell type neighborhood in this 363 

tissue slide. Colors denote positive (dark red) and negative (blue) correlations. B: Spatial 364 

location plot of a subset of cell types in this slide. Colors denote cell types. C: Spatial location 365 

plot of the slide with colors stratified by neighborhood-based clusters. D: The neighborhood 366 

distribution profiles of each neighborhood-based cluster identified in the tissue slide. 367 

 368 

 369 
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hoodscanR detects changes between tumor cells from different neighborhoods 370 

 371 

Building on these findings, we then used uniform manifold approximation and projection 372 

(UMAP) to perform dimension reduction visualization on the expression data of the 373 

CosMx NSCLC data, enabling the projection of gene expression profiles into a lower-374 

dimensional space. This facilitates the visualization of cell lineage (Figure 5A) alongside 375 

identified neighborhood-based clusters (Figure 5B). A distinctive feature observed is the 376 

dispersion of cells of the same cell type across different neighborhood clusters, 377 

signifying diverse spatial neighborhood profiles. For example, a substantial proportion 378 

(76.14%) of macrophages (pink points in Figure 5A) are distributed across various 379 

neighborhood clusters, including cluster 3 (43.63%), indicative of the macrophage + 380 

cDC2 + tumor neighborhood, clusters 7 (12.31%), and cluster 9 (20.2%), representing 381 

the stromal + cDC2 neighborhood (Figure 3D and 5B). 382 

 383 

An important aspect of hoodscanR lies in its ability to investigate the relationship 384 

between spatial neighborhoods and transcriptional changes. To demonstrate this, we 385 

conducted a nuanced analysis by extracting and pseudo-bulking tumor cells from two 386 

distinct neighborhood clusters: the stromal cluster and the macrophage cluster across 387 

three consecutive slides (Additional file 1 – supplementary figure 12). Interestingly, 388 

different spatial neighborhoods contribute significantly to the variation observed in the 389 

first dimension from a principal component analysis (PCA) of expression of pseudo-bulk 390 
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samples (Figure 5C). This signifies that hoodscanR can capture transcriptional changes 391 

attributed to diverse spatial neighborhoods. 392 

 393 

Subsequently, we performed a differential expression (DE) analysis using the limma-394 

voom pipeline [22], identifying 220 DE genes from 832 genes, including 73 up-regulated 395 

and 147 down-regulated genes when comparing tumor cells from the macrophage 396 

neighborhood to those from the stromal neighborhood (Figure 5D and additional file 2). 397 

Additionally, we performed gene-set enrichment analysis on the identified DE genes 398 

with MSigDB gene-sets [23, 24], detecting 384 significantly enriched gene-sets 399 

(Additional file 3). We further perform unsupervised clustering on gene-sets using vissE 400 

[25], identifying clusters of gene-sets networks (Figure 5E and additional file 1 - 401 

supplementary figure 13, middle panel). Notably, we observe pathways enriched in 402 

down-regulated DE genes related to collagen, such as collagen-activated tyrosine 403 

kinase receptor signalling pathway and collagen metabolic and catabolic process 404 

(Figure 5E left panel). These pathways are accompanied by the differential expression 405 

of key collagen-related genes, such as COL1A1, COL11A1 and COL5A1 (Figure 5E 406 

right panel). Previous studies have found that the overexpression of collagen genes 407 

such as COL11A1 [26] and COL3A1 [27] in NSCLC may indicate poor prognosis and 408 

drug resistance, and COL1A1 is correlated with immune infiltration in NSCLC [28]. Our 409 

finding of these genes that are expressed significantly more in the tumor cells from the 410 

macrophage neighborhood than tumor cells from the stromal neighborhood can 411 

potentially lead a more detailed investigation of the biological mechanism about 412 

transcriptional changes within the context of cancer spatial TME studies. In essence, 413 
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hoodscanR introduces a novel perspective in spatial transcriptomics, allowing the 414 

identification of transcriptomic changes across subtly different spatial neighborhoods 415 

and providing insights into the spatial organisation within the TME. 416 

417 

Figure 5. Neighborhood-based transcriptomics analysis in CosMx NSCLC data. A: UMAP of 418 

expression of cells in the data, colors denote cell types. B: UMAP of expression of cells in the 419 

data, colors denote the identified neighborhood-based clusters. C: PCA of pseudo-bulk samples 420 

of tumor cells from two different neighborhood clusters across three consecutive slides. Colors 421 

denote clusters and shapes denote replicates. D: MA plot describing the outcome of the DE 422 

analysis. Colors indicate up- (red) or down-regulated (blue) genes. E: vissE visualization of 423 

significantly enriched gene-sets from the down-regulated DE genes in the comparison between 424 

4

 

s 
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tumor cells from macrophage neighborhood and tumor cells from stromal neighborhood. Left 425 

panel are word cloud plots describing gene-set clusters of different biological themes, middle 426 

panel is the gene-set overlap network graph of gene-sets, and right panel is the fold-change 427 

(log2-scaled) for genes belonging to each gene-set cluster. 428 

 429 

hoodscanR supports different gene annotations 430 

 431 

The accuracy of cell type-based cellular neighborhoods, as identified in the previous 432 

case, is inherently tied to the accuracy of cell type annotation. Thus, we built 433 

hoodscanR to be flexible and capable to detect various cellular neighborhoods based 434 

on different gene annotation inputs. A particularly valuable application is gene 435 

expression-based neighborhoods detection. To showcase this, we utilised a breast 436 

cancer tissue, where we can focus on breast cancer-related hormone receptor genes, 437 

including androgen receptor gene (AR), estrogen receptor gene (ESR1), and 438 

progesterone receptor gene (PGR). By assessing if these genes are expressed or not, 439 

we classified 574,527 cells from a Xenium Invasive ductal carcinoma (IDC) dataset into 440 

eight distinct groups (Figure 6A). Similar to the previous neighborhood identification 441 

based on cell types, hoodscanR can identify spatial domains based on gene 442 

expression-specific neighborhoods (Figure 6B and additional file 1 - supplementary 443 

figure 14). These analyses lead to a nuanced understanding which adeptly discover 444 

tumor cells located within neighborhoods characterized by varying combinations of 445 

hormone receptors. This not only suggests a spatial perspective on the progression of 446 

DCIS, influenced by distinct combinations of hormone receptors but also sheds light on 447 
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the higher-order spatial structure of cells with different hormone receptor expression 448 

profiles.  449 

 450 

Moreover, interesting insights can be observed by comparing the pathological 451 

annotations (Figure 6C) of this slide [19], where invasive and non-invasive (DCIS) 452 

cancer phenotype regions were annotated, with the identified neighborhood clusters. 453 

Invasive tumors exhibit a distinctive pattern with cells from cluster 3 scattered 454 

throughout, accompanied by cells from cluster 6 (Figure 6D). Both clusters are 455 

associated with ESR1+PGR+ and ESR1-PGR+ cell neighborhoods, respectively. This 456 

finding aligns with previous findings indicating that nearly 80% of invasive breast 457 

cancers are ER-positive, and PR is overexpressed in ER+ tumors [29]. Conversely, 458 

DCIS regions are notably associated with cells from cluster 5, which form the inner layer 459 

surrounded by cells from cluster 3, comprising the outer layer (Figure 6D). Cluster 5 460 

includes cells expressing AR, which is consistent with previous findings showing AR 461 

expression in DCIS components adjacent to invasive cancer [30]. Additionally, the 462 

expression of AR has been reported to decrease as the disease progresses from DCIS 463 

to invasive cancer [31]. These observations suggest a potential relationship between 464 

the tumor type (non-invasive or invasive) and the higher-order spatial organisation of 465 

cells with diverse hormone receptor expression profiles.  466 

 467 
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 468 

Figure 6. Gene expression-based neighborhood analysis in 10X Xenium IDC (A-D) and 469 

VisiumHD mouse brain (E-H) data using hoodscanR. A: spatial plot showing the hormone gene 470 

expression-based cell grouping on the tissue slide. B: gene expression-based domains in IDC 471 

tissue. C: pathological annotation of regions on the tissue. D: spatial plot showing specific 472 

neighborhood clusters, including cluster 3, 5 and 6. E: spatial plot showing the selected gene 473 

expression-based cell grouping. F: gene expression-based domains in mouse brain tissue. G: 474 

neurons spatial distribution in different gene-expression neighborhoods. H: a dimension 475 

reduction UMAP visualization of the neurons from different neighborhoods. 476 

 477 

To further demonstrate the broad application of hoodscanR beyond cancer and human 478 

data, we analysed the publicly available Visium HD mouse brain data. In this case, we 479 

selected five marker genes that can divide the brain into different regions: Calb2 for 480 

paraventricular nucleus of the thalamus (PVT) [32], Neurod6 for deeper layers of the 481 

cortex [33], Penk for striatal medium spiny neuron [34], Cux1 for upper layer of the 482 
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cortex [35] and Pvalb for hippocampus [36]. Additionally, we included the gene Rbfox3, 483 

which is exclusively expressed in neuron cells [37]. The spatial map of these cells 484 

reveals their distinct regional expression patterns within the brain tissue (Figure 6E and 485 

additional file 1 - supplementary figure 15). Applying hoodscanR, we can identify 486 

neighborhood-based clusters (Figure 6F and additional file 1 – supplementary figure 16). 487 

These clusters largely correspond to specific brain regions (Additional file 1- 488 

supplementary figure 17), reflecting the well-structured nature of the brain tissue, with 489 

each cluster predominately associated with one of the maker genes. 490 

 491 

Focusing on neuron cells by filtering the dataset for cells expression Rbfox3, we 492 

explored how these neurons are distributed across different neighborhoods (Figure 6G). 493 

By conducting dimension reduction via UMAP on the expression data of these neurons 494 

(Figure 6H), we can visualise the neurons from different neighborhoods tend to cluster 495 

differently, indicating variance in expression between these neurons, especially 496 

between those within Neurod6+ neighborhoods and Calb2+ neighborhoods (Additional 497 

file 1 - supplementary figure 18). Moreover, performing a differential expression analysis 498 

between neurons from these two neighborhoods revealed a set of genes that are 499 

significantly upregulated in the Neurod6+ region compared to the Calb2+ region 500 

(Additional file 1 - supplementary figure 19), indicating distinct microenvironmental 501 

influences and potential functional specialization. For example, Nrgn, Hpca, and 502 

Rasgrp1, which are all involved in regulating intracellular calcium signalling and synaptic 503 

plasticity, are up-regulated in the neurons from the Neurod6+ neighborhood, 504 

predominantly localized to the hippocampal area. This observation aligns with previous 505 
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studies showing that these genes are critical for synaptic plasticity [38-41], which 506 

underlies learning and memory. Taken together, these patterns illustrate how local 507 

spatial neighborhood composition can shape neuronal identity and function, highlighting 508 

hoodscanR’s ability to detect spatially restricted transcriptional differences even in 509 

highly structured tissues like the brain. 510 

 511 

In summary, these findings highlight hoodscanR’s capability to identify subtle spatial 512 

changes in expression-based cellular neighborhoods, providing novel insights into the 513 

complex spatial dynamics of gene expression in both cancerous and non-cancerous 514 

tissues. 515 

Discussion 516 

 517 

Spatial technologies are pushing the limits toward profiling spatial transcriptomics at 518 

single-cell level. To make the best use of these cutting-edge technologies, we 519 

developed hoodscanR, a powerful yet user-friendly Bioconductor package for revealing 520 

spatial cellular relationships within high-dimensional spatial transcriptomics datasets via 521 

spatial cellular neighborhoods identification and neighborhood-based downstream 522 

analyses. In our benchmarking experiments, hoodscanR demonstrated robust accuracy 523 

and computation efficiency compared to several state-of-the-art methods, further 524 

validating its utility in diverse spatial transcriptomics applications. 525 

 526 
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While we have shown hoodscanR can identify biologically meaningful cellular 527 

neighborhoods, as with all methods it is not without limitations. Firstly, although 528 

hoodscanR is flexible in relation to gene annotations, the preprocessing of spatial 529 

transcriptomics data is essential. Current quality control procedures of spatial 530 

transcriptomics data predominantly operate at cell level, potentially missing crucial 531 

details detectable only at a transcript (subcellular) level. A more comprehensive strategy 532 

for data preprocessing, accounting for information at transcript level, filtering out 533 

uninformative cells accurately and enhancing the precision of neighborhood 534 

identification, becomes imperative. Secondly, hoodscanR is a cell-based method, 535 

emphasizing the critical role of accurate cell segmentation, which hoodscanR depends 536 

upon other methods. The segmentation process, which determines how individual cells 537 

are identified and their spatial coordinates are established, is fundamental to the 538 

accurate detection of cellular neighborhoods. Variations in segmentation methods, such 539 

as differences in how cell boundaries are defined or how centroids are calculated, can 540 

lead to significant differences in cell type distributions and spatial relationships within 541 

the tissue. Such variations can impact the neighborhood detection results produced by 542 

hoodscanR, potentially leading to different biological interpretations. A systematic 543 

review of existing segmentation methods is lacking, necessitating future research to 544 

evaluate and compare methods under diverse spatial transcriptomic platforms. Lastly, 545 

while hoodscanR enables exploration of spatial gene expression patterns, users must 546 

interpret results cautiously. Recognizing that spatial context alone may not capture the 547 

full complexity of molecular interactions within a tissue. Integrating multi-omics data can 548 

provide a more comprehensive understanding, ensuring spatial analyses are embedded 549 
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within a broad molecular context. Strategically addressing these considerations allows 550 

researchers to fine-tune the utilization of hoodscanR, strengthening the integrity of their 551 

analyses and facilitating the discovery of novel insights. 552 

 553 

Three of the major strengths of hoodscanR are its compatibility, adaptability and 554 

flexibility. Developed based on the Bioconductor SpatialExperiment infrastructure, 555 

hoodscanR exhibits compatibility with many other spatial and single-cell RNA-seq-556 

based tools from Bioconductor, amplifying its utility for downstream analyses. 557 

Importantly, its adaptability makes it platform agnostic, demonstrated by successful 558 

applications on Nanostring CosMx, 10X Genomics Xenium, MERFISH and STARmap. 559 

Spatial datasets from various platforms, including Vizgen MERSCOPE, 10X Visium HD, 560 

BGI STOmics, and Akoya Biosciences CODEX, can also undergo comprehensive 561 

analysis using hoodscanR, given the availability of cell-based coordinates. The flexibility 562 

of hoodscanR is demonstrated by the types of annotations it can use. With the Xenium 563 

breast cancer data, hoodscanR showcased this by not only using cell type annotations 564 

but also accommodating gene expression level grouping of cells, suggesting the 565 

potential for exploring additional annotation options such as ligand-receptor or growth 566 

factor-receptor annotations. This design provides researchers the flexibility to generate 567 

hypotheses on the basis of integrating spatial localization and gene expression before 568 

testing statistical associations between these. Lastly, while hoodscanR is not designed 569 

for direct cell-cell communication analysis, it plays a crucial role in accurately identifying 570 

and characterizing spatial neighborhoods. This capability can complement existing cell-571 

cell communication tools, such as COMMOT [42], CellChat [43] or CellPhoneDB [44], 572 
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by providing a more refined spatial context that may enhance the accuracy and 573 

robustness of cell-cell communication network identification in complex tissue 574 

environments. 575 

 576 

The significance of hoodscanR in identifying and analyzing neighborhoods becomes 577 

particularly crucial in the context of complex diseases, notably in cancer research. 578 

Neighborhood information is indispensable for unraveling complex disease etiology, 579 

especially so for understanding disease progression. In cancer research, where the 580 

TME plays an important role in dictating therapy responses, the ability offered by 581 

hoodscanR to identify neighborhoods offers a unique perspective to investigate novel 582 

mechanisms underlying the transition of cancer cells at both transcriptomic and 583 

proteomic level. Notably, our findings from the Nanostring CosMx NSCLC dataset 584 

identified cellular neighborhoods that are potentially associated with the presence of 585 

TLS, which correlated with positive clinical results [21]. This capability offers the 586 

potential to contribute valuable insights into the progression of cancer, paving the way 587 

for the development of novel therapeutic strategies.   588 
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Conclusions 589 

In conclusion, our study introduces hoodscanR, a Bioconductor package designed for 590 

comprehensive neighborhood analysis in spatial transcriptomics datasets. Through its 591 

integration with the SpatialExperiment infrastructure and efficient algorithms, 592 

hoodscanR offers fine-tuned control over neighborhood identification, allowing 593 

researchers to investigate complex cellular relationships within spatially resolved 594 

datasets. By demonstrating hoodscanR's efficacy on the 10X Genomics Xenium breast 595 

cancer and Nanostring Technologies CosMx non-small cell lung cancer datasets, we 596 

showcase its ability in identifying cellular neighborhoods and elucidating spatial gene 597 

expression patterns. Furthermore, our findings emphasize the significance of 598 

neighborhood analysis in understanding the complex TME of cancer tissues, which can 599 

potentially lead to the identification of novel biological mechanisms underlying disease 600 

progression and therapeutic responses. Importantly, hoodscanR's flexibility in handling 601 

diverse spatial datasets and its ability to accommodate different types of cell 602 

annotations enhance its utility for a wide range of spatial transcriptomic studies. Overall, 603 

hoodscanR contributes to advancing the field of spatial transcriptomics by providing 604 

researchers with a powerful tool, thereby paving the way for deeper insights into tissue 605 

biology and disease mechanisms.  606 
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Methods 607 

 608 

Data pre-processing 609 

Both CosMx and Xenium datasets underwent a rigorous quality control process to 610 

ensure the inclusion of high-quality cells in the neighborhood analysis. For the CosMx 611 

data, thresholds were set at the 0.1 quantile to filter out cells with low transcript count or 612 

low gene detection count across all cells per tissue slide. Additionally, genes with mean 613 

expression (log-scaled count per million) and variance lower than the negative probes 614 

were excluded from further analyses. In the case of the Xenium data, filtering followed 615 

the guidelines outlined in the Squidpy[7] toolkit tutorial. Cells with a transcript count less 616 

than 10 and genes detected in fewer than 5 cells were removed from the neighborhood 617 

and downstream analyses. As a result, almost 90,000 cells per slide with 870 genes 618 

and 156,224 cells with 313 genes were kept for the NSCLC and breast cancer datasets, 619 

respectively. 620 

 621 

Cell type annotation 622 

Cell type annotations for the Nanostring CosMx NSCLC data was carried out with 623 

modifications as previosuly described in Tan et al 2024 [45]. Briefly, specific 624 

modifications include using SCTransform from the Seurat package [46] to normalise 625 

filtered counts from the quality control step. By modelling negative probe detection as a 626 

fixed factor, we regressed out the confounding effects caused by background. The 627 

annotation process of the data were performed using InSituType [47], with the Single-628 
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cell Lung Cancer Atlas (LuCA)[48] as the reference. In terms of 10X Xenium data, cell 629 

type annotation was obtained from the Janesick A, et al paper [2]. 630 

 631 

Metrics calculation for neighborhood probability distribution 632 

Perplexity serves as a fundamental metrics for summarizing the neighborhood 633 

probability distribution generated by hoodscanR. It provides a measure of effective 634 

diversity of complexity within a cell’s neighborhood. The perplexity ���� for a given cell 635 

� is calculated as: 636 

���� � 2���� 

Where ���� represents the Shannon entropy [49] of the neighborhood probability 637 

distribution of cell �, defined as: 638 

���� �  	 
 ����� log� �����
�

��	

 

Where ����� is the probability of cell � located in the �-th neighborhood and � is the total 639 

number of distinct neighborhoods. Higher perplexity values indicate greater diversity or 640 

complexity within the cellular neighborhoods, suggesting that a larger number of distinct 641 

cell types are contributing to the neighborhood. In hoodscanR, perplexity can be 642 

calculated using the calcMetrics function.  643 

To assess the statistical significance of the observed perplexity values within cell 644 

neighborhoods, we employed an empirical permutation test. For each neighborhood, we 645 

generated a distribution of perplexity values by randomly shuffling the spatial 646 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 2, 2025. ; https://doi.org/10.1101/2024.03.26.586902doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.26.586902
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36

coordinates of cells and recalculating the perplexity across 1,000 permutations. The 647 

empirical p-value for each neighborhood was then calculated as the proportion of 648 

permuted perplexity values that were greater than or equal to the observed perplexity 649 

value, adjusted for the finite number of permutations: 650 

���������� �  ∑ ���	
� � ��� � 1�
�
�


 � 1  

where �
�� is the observed perplexity for a given neighborhood, �� represents the 651 

perplexity from the �-th permutation, ��. � is an indicator function that equals 1 when the 652 

condition inside is true and 0 otherwise, and � is the total number of permutations. This 653 

correction ensures that the empirical p-values are properly calibrated, even with a 654 

limited number of permutations, thus providing a robust measure of statistical 655 

significance. 656 

 657 
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Hyperparameter k and � testing 658 

In order to test the effect different parameter k values have on the results of hoodscanR, 659 

we first test a range of k values (10, 50, 100, 200, 500, 1000), using the default � setting 660 

from the scanHoods function. We then computed the Pearson correlation between the 661 

resulting probability matrices to assess consistency of the outcomes across different k. 662 

For testing the � parameter, we fixed k = 100 and examined a range of � values, which 663 

were derived from different scaling of the distance matrix (see Availability of data and 664 

materials).  665 

 666 

Benchmarking of co-localization analysis 667 

Both 10X Xenium breast cancer and Nanostring CosMx datasets were utilized for 668 

benchmarking the co-localization analysis among hoodscanR, Squidpy, and Giotto. To 669 

ensure robustness, the data were randomly subset into ten different sizes ranging from 670 

0.1 to 1, after which each package's respective methodologies were applied. 671 

Specifically, for hoodscanR, neighborhood identification and co-localization analysis 672 

were conducted using the plotColocal function. In contrast, Squidpy and Giotto 673 

performed network graph construction using the gr.spatial_neighbors and 674 

createSpatialDelaunayNetwork functions, followed by co-localization analysis using the 675 

gr.nhood_enrichment and cellProximityEnrichment functions, respectively. 676 
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 677 

Benchmarking spatial domain identification 678 

To benchmark hoodscanR against other state-of-the-art methods in identifying spatial 679 

domains from spatial transcriptomics datasets, we selected 12 publicly available 680 

datasets. These included 3 CosMx NSCLC, 6 MERFISH mouse colon, 1 STARmap 681 

mouse cortex, and 2 Xenium breast cancer slides. Due to the large size of the Xenium 682 

breast cancer datasets (555,579 cells and 353,783 cells, respectively), some tools were 683 

unable to process these datasets efficiently. To address this, we downsampled these 684 

slides to 10,000 and 50,000 cells, while maintaining the original cell type proportion 685 

distributions, resulting in a total of 16 datasets. This was achieved by randomly 686 

sampling cells from each cell type cluster based on their proportional weighting (see 687 

Availability of data and materials). Annotated region labels or pathological annotations 688 

in these datasets were used as the ground truth for spatial domains. 689 

Normalization of the gene expression data was handled differently depending on the 690 

dataset. For the MERFISH dataset, we directly used the provided log-normalized 691 

counts. For all other datasets, we used the quickCluster and calculateSumFactors 692 

functions from the scran R package [50] to estimate size factors, followed by the 693 

logNormCounts function from the scuttle R package [51] to normalize the counts. 694 

We compared hoodscanR against seven other methods capable of performing spatial 695 

domain detection: BuildNicheAssay from Seurat, Banksy, BayesSpace, MERINGUE, 696 

SpaGCN, Stagate, and Utag. For each method, we calculated a composite performance 697 

score to assess the accuracy of spatial domain identification. This score was computed 698 
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as the mean of four key metrics: Adjusted Rand Index (ARI), Normalized Mutual 699 

Information (NMI), purity, and homogeneity. It is defined as: 700 

����� � �������� � � � � �!��"# � ����$����"#� 

These metrics were chosen for their ability to quantify different aspects of clustering 701 

accuracy. ARI measures the similarity between the predicted and true clusters, 702 

adjusting for chance. It is defined as: 703 

��� �  �� 	 %����"�& ��
 �� �� 	 %����"�& �� 

Where RI is the Rand Index, which counts the number of correct pairwise classifications 704 

between the predicted and true labels. ARI in this paper is calculated using the aricode 705 

R package. 706 

NMI quantifies the amount of information shared between the predicted and true 707 

clusters. It is defined as: 708 

� � �  2 ' ��(, *�
��(� � ��*� 

where ��(, *� is the mutual information between clusters ( and *, and ��(� and ��*� 709 

are the entropies of the true and predicted clusters, respectively. NMI in this paper is 710 

calculated using the aricode R package.  711 

Purity measures the extent to which each cluster contains only members of a single 712 

class. It is calculated as: 713 

���
�� �  1

 � max

�
|�� � ��|

�

�
�
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where �� are the predicted clusters, �� are the true clusters, and 
 is the total number of 714 

samples. 715 

Homogeneity ensures that all the clusters contain only data points which are members 716 

of a single class. It is defined as: 717 

����$����"# � 1 	 ��,|.�
��,�  

where ��,|.� is the conditional entropy of the true clusters given the predicted clusters, 718 

and ��,� is the entropy of the predicted clusters. 719 

To ensure fairness in the benchmarking process, all methods were executed using their 720 

default settings (see Availability of data and materials). Additionally, a time penalty was 721 

applied: if a method failed to complete the processing of a dataset within 24 hours, the 722 

process was terminated. This ensures that the comparison accounts not only for 723 

accuracy but also for computational efficiency. 724 

 725 

Unsupervised clustering of neighborhood distribution 726 

To perform unsupervised clustering of the neighborhood distribution, the identified 727 

neighborhood distribution of each cell was utilized as input data. The K-means 728 

clustering algorithm, a widely used method for partitioning data into distinct clusters 729 

based on dissimilarity, were used. Specifically, we set the parameters for K-means 730 

clustering as iter_max = 1000, nstart = 5, and algo = "Hartigan-Wong". The iter_max 731 

parameter determines the maximum number of iterations allowed to converge to a 732 

solution, while nstart specifies the number of initial cluster centers to use in the 733 

algorithm. Additionally, the "Hartigan-Wong" algorithm was chosen as the method for 734 

center initialization. To determine the optimal number of clusters (k) for the K-means 735 

clustering algorithm, we used the elbow method. In a nutshell, we first calculated the 736 
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within-cluster sum of squares for a range of k values and then identified the point at 737 

which the distortion or inertia starts decreasing in a linear fashion. 738 

 739 

Differential expression analysis 740 

To conduct the differential expression (DE) analysis on the CosMx NSCLC dataset and 741 

identify DE genes among tumor cells from distinct cellular neighborhoods, pseudo-bulk 742 

via summation samples were initially generated from cells within the identified 743 

neighborhood-based clusters using summarizeAssayByGroup function from the scuttle 744 

R package [51]. Subsequently, the standR package [52] was used to assess relative log 745 

expression (RLE) and perform principal component analysis (PCA) to explore the 746 

technical and biological variation in the pseudo-bulk data. Following this, the limma-747 

voom pipeline [22] was utilized for DE analysis with TMM normalisation [53], 748 

incorporating slide information as a covariate in the linear model to account for slide-749 

related variations. The resulting statistic was an empirical Bayes moderated t-statistic. 750 

Multiple testing adjustment using the Benjamini–Hochberg procedure was then applied 751 

to identify DE genes that reached statistical significance (FDR < 0.05). To identify DE 752 

genes in the 10X VisiumHD mouse brain dataset, we first extracted neurons from the 753 

Neurod6+ and Calb2+ neighborhoods and then applied Seurat’s FindAllMarkers 754 

function [9]. We retained only genes meeting two criteria: a log2 fold change greater 755 

than 1 and an adjusted p-value less than 0.05. The top ten genes from each group, 756 

based on these filters, were subsequently selected for heatmap visualization using the 757 

DoHeatmap function from Seurat. 758 
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Gene-set enrichment analysis and visualization 759 

Gene-sets from the Molecular Signatures Database (MsigDB, v7.2), including 760 

Hallmarks, C2 (curated gene-sets), and C5 (gene ontology terms) categories, along with 761 

KEGG pathway gene-sets, were obtained using the getMisgdb and appendKEGG 762 

functions from the msigdb R package (v1.1.5). Gene-set enrichment analysis (GSEA) 763 

was performed using fry from the limma package (v3.58.1). A false discovery rate of 764 

0.05 was used as the threshold for determining significantly enriched gene-sets. The 765 

results of GSEA were systematically examined and visualized using an unbiased 766 

approach through the novel network enrichment and visualization R package vissE [25]. 767 
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dataset/. The CosMx dataset was generated from FFPE NSCLC tissue samples using a 779 

960-plex CosMx RNA panel. The 10X Xenium breast cancer datasets used in this study 780 

were retrieved from the 10X publicly available database at 781 

https://www.10xgenomics.com/datasets. The Xenium in situ dataset comprises human 782 

breast cancer FFPE sections and utilizes a 280-gene Xenium Human Breast Gene 783 

Expression Panel supplemented with 33 additional custom genes. The MERFISH 784 

mouse colon data was downloaded from https://doi.org/10.5061/dryad.rjdfn2zh3, 785 
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https://www.10xgenomics.com/datasets/visium-hd-cytassist-gene-expression-libraries-789 

of-mouse-brain-he. 790 

The code used for performing the described analyses is available in GitHub at 791 

https://github.com/ningbioinfo/hoodscanR_manuscript_code. The hoodscanR package 792 

is freely available in Bioconductor (release > 3.18) at 793 

https://bioconductor.org/packages/release/bioc/html/hoodscanR.html.  794 
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