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Abstract 
Mass spectrometry is a cornerstone of untargeted metabolomics, enabling the characterization of 
metabolites in both positive and negative ionization modes. However, comparisons across ionization 
modes have remained a substantial challenge due to the distinct fragmentation patterns produced by 
each polarity. To overcome this barrier, we present MS2DeepScore 2.0, a machine learning-based 
model to predict chemical similarity between mass fragmentation spectra, which works both between 
different and the same ionization modes. We demonstrate the utility of MS2DeepScore 2.0 in three 
case studies, where MS2DeepScore enabled cross-ionization mode molecular networking, enhancing 
data exploration and metabolite annotation. To ensure robustness, we have implemented a quality 
estimation method that flags spectra with low information content or those dissimilar to the training 
data, thereby minimizing false predictions. Altogether, MS2DeepScore 2.0 extends our current 
capabilities in organizing, exploring, and annotating untargeted metabolomics profiles.  
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Introduction 
Mass spectrometry is widely used to map the chemical contents of natural extracts and other biological 
mixtures. In untargeted metabolomics, tandem mass spectrometry (or mass spectrometry 
fragmentation, MS/MS, MS2) is typically used to support structural annotation of metabolite features 
detected in metabolomics profiles. Interpretation of tandem mass spectra is increasingly done with 
the help of computational tools that assist with structurally annotating mass spectra, such as SIRIUS1, 
MS-Finder2 and MS2Query3. Furthermore, mass spectral similarity scores, like the cosine score, 
modified cosine score4, Spec2Vec5, MS2DeepScore6 and others7-9, play a crucial role in in silico 
annotation and organization approaches like library matching, analogue searching, and organizing 
spectra by molecular networking. 

The most widely used classical spectrum similarity measure, the cosine score, evaluates similarity 
based on visual equivalence in fragmentation patterns, making it effective for identifying (near-
)identical molecules under strict conditions. The so-called modified cosine score considers both neutral 
losses and direct matching fragments during signal alignment. Thereby, it can account for a single 
structural modification and is used for searching structurally similar molecules4, 10, 11. Nevertheless, 
both scores fail to serve as general proxies for chemical similarity, as they struggle to account for more 
complex fragmentation relationships arising from multiple structural modifications5. Additionally, both 
metrics assume similar experimental conditions, making them sensitive to variations in ionization 
mode, instrument type, collision energy, and data processing pipelines. Consequently, they identify 
only a tiny fraction of the dense chemical relationships found in complex samples5, 12.  

Mass spectrometry can be performed in two ionization modes: positive and negative. How suitable a 
particular ionization mode is for detecting a metabolite, largely depends on the metabolite’s 
structure13, 14. Consequently, mass spectrometry data is often acquired in both ionization modes to 
cover a larger fraction of the metabolome of the measured samples. While mass fragmentation spectra 
are highly similar for the same molecule when recorded in the same ionization mode with the same 
acquisition parameters, this is often not the case when comparing to a mass spectrum recorded in the 
other ionization mode15. By design, both cosine and modified cosine scores are in these cases not 
suitable to compare spectra across different ionization modes. As a result, positive and negative 
ionization mode mass spectra are mostly analyzed separately, for instance, by searching in separate 
reference libraries and creating two separate molecular networks16-18. Where approaches like 
MolNotator19 and Ion Identity Molecular Networking20 can merge positive and negative mode spectra 
into one network, they require adduct identification based on well-aligned retention times and the 
recognition of specific mass differences between mass features. Achieving retention time alignment 
can be cumbersome and necessitates using the same chromatography column for both positive and 
negative ionization modes. A cross-ionization mode MS2 similarity metric could alleviate these 
challenges by enabling streamlined computational workflows that align positive and negative 
ionization mode data. 

Here, we developed a mass spectral similarity metric that can predict chemical similarity between mass 
spectra of not only the same, but also different ionization modes. The approach for this new similarity 
metric is based on the Siamese neural network architecture used in the previous version of 
MS2DeepScore6. The original MS2DeepScore model was able to predict chemical similarities with good 
overall accuracy, but it has several shortcomings. First, separate models had to be trained for positive 
and negative ionization mode data which meant less training data for each model and no cross-
ionization mode applications. Secondly, the former MS2DeepScore models were trained on MS2 
fragments only; however, spectral metadata like precursor m/z, ionization mode, or other acquisition 
parameters could become valuable information for improving prediction quality. In the present work, 
we explore and evaluate the addition of metadata to the model input and show that using ionization 
mode and precursor m/z as input improves model performance. Thirdly, we introduce a new pair 
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sampling algorithm that reduces biases introduced during model training. Finally, we introduce a 
method that can estimate the mass spectral embedding quality for each input spectrum. This allows 
users to filter out spectra for which the MS2DeepScore predictions are unreliable, e.g., due to low 
spectral quality or when spectra differ substantially from the training data. This further improves the 
reliability of MS2DeepScore results.  

Our latest model is now also available in mzmine21, seamlessly integrating MS2DeepScore molecular 
networking of thousands of spectra in seconds with mzmine’s feature detection workflows and 
statistical analysis dashboards. The interactive network visualizer facilitates exploring the chemical 
space by combining multiple spectral similarity metrics. This local deployment offers scientists without 
programming expertise easy access to MS2DeepScore molecular networks. In addition to the above-
mentioned key aspects, this work also contains hyperparameter optimization which lead to better 
chemical similarity prediction. In addition we added a training pipeline that makes training new models 
easier, more streamlined an more robust.  

 
We demonstrate the utility of our model through three case studies, showcasing its ability to integrate 
positive and negative ionization mode spectra into an unified analysis. We found cross-ionization mode 
clusters in a molecular network, thereby finding more chemical relations between metabolite features. 
We also highlight the possibility of directly visualizing MS2Deepscore embeddings using UMAP22 and 
provide an interactive plot for intuitive exploration of both positive and negative ionization mode 
spectra of the case study. Annotation by experts confirmed the validity of the discovered links between 
positive and negative ionization mode spectra. By enabling cross-ionization mode molecular 
networking and embedding visualizations, our model paves the way for extracting deeper insights from 
untargeted metabolomics data. 
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Results 
Cross-ionization mode models 
MS2DeepScore 2.0 models are trained on mass fragmentation spectra in both ionization modes (see 
Figure 1). This resulted in a model that performs well for predicting chemical similarity between spectra 
acquired in the same ionization mode, but also for predicting chemical similarity between positive and 
negative ionization mode spectra. By using these predicted similarities by MS2DeepScore, both 
positive and negative ionization mode spectra can be visualized in one unified molecular network.  

 

Figure 1: a) Training MS2DeepScore. MS2DeepScore is trained on annotated mass spectra from public 
libraries. The model is trained to predict chemical similarity between pairs of mass spectra. By training 
the model on both ionization modes at the same time, the model is trained to predict chemical similarity 
within and across ionization modes. New models can be trained with additional in-house annotated 
mass spectra to further improve model accuracies. A Siamese neural network architecture is used. The 
input layer comprises scan metadata and fragment data after binning the m/z axis and applying square 
root transformation to the signal intensities. A single dense layer converts the input to a numerical 
vector (embedding) of length 500. The model is trained to create embeddings for which the cosine 
similarity between two embeddings correlates well with chemical similarity (Tanimoto score). b) Using 
MS2DeepScore. MS2DeepScore predicts chemical similarity both within and across ionization modes. 
By using these predicted similarities to define edges, a unified molecular network can be constructed 
that connects spectra from both ionization modes. Visualizing the chemical space of a sample helps 
with data exploration, prioritization of spectra in clusters of interest and annotation propagation.  
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To test the performance of MS2DeepScore, a test set of annotated spectra is created, which is not 
used during the training of the model. The performance of the model is assessed by comparing the 
predicted chemical similarity by MS2DeepScore with the known true chemical similarity. Figure 2 
shows the predicted MS2DeepScore scores between pairs of test spectra, showing a clear correlation 
between true chemical similarity and predicted chemical similarity. Figure 2b shows that even for 
predictions across ionization modes there is a strong correlation between the predicted chemical 
similarity and the true chemical similarity.  
 
 

 
Figure 2: Dual-ionization mode MS2DeepScore model predicts chemical similarity between and 
across ionization modes. A test set of 32052 spectra is used, which were not used to train the model. 
Predictions are made between all test spectra, followed by taking the average per unique molecule 
pair. The violin plots show the kernel density estimation (KDE) of the predicted values, the black lines 
represent the median and the 1st and 99th percentile for each bin. The bar plot on the top shows the 
log-scaled count of the number of unique molecule pairs in each bin with the corresponding chemical 
similarity. The metric used for chemical similarity prediction is the Tanimoto score between Daylight 
fingerprints. a) Predictions between pairs of positive ionization mode spectra. b) Predictions between 
pairs of positive and negative ionization mode spectra. c) Predictions between pairs of negative 
ionization mode spectra. 

  

a) b) c) 
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Case studies MS2DeepScore 
The new capabilities of cross-ionization mode MS2DeepScore models are illustrated with three case 
studies. One with human urine samples, one with human plasma samples and a third using samples of 
Rumex sanguineus, a wild edible plant. For both the human urine sample and human plasma sample, 
molecular networks were formed by using the predicted similarity by MS2DeepScore to create edges.  
 
In Figure 3a, multiple cross-ionization mode networks were formed linking biochemically relevant 
metabolites together in the urine case study. The highlighted clusters in Figure 3a have been manually 
curated and annotated by experts. In total, 37 spectra were manually annotated, resulting in 
annotating the structural identity of 13 different metabolites. The confidence level23 of the annotations 
can be found in Supplementary Table 1. For example the left cluster contains caffeine-related 
molecules, all part of known caffeine metabolism pathways24. This shows that MS2DeepScore was able 
to highlight cross ionization mode connections in the molecular network that correspond to real 
metabolic pathways. The results of the molecular network formed for human blood plasma samples 
are shown in Supplementary Figure 9. 
 
MS2DeepScore also enables alternative visualization methods that overcome some limitations of 
molecular networking. One limitation of molecular networking is that it does not depict relationships 
between separate clusters. A second challenge with molecular networking is choosing a hard cut-off 
for when connecting an edge. If this threshold is set too high, relevant connections are not depicted, 
while if this threshold is set too low a hairball of connections can form, which makes it challenging to 
interpret the data. An alternative visualization method is using UMAP to visualize MS2DeepScore 
embeddings, this overcomes both these limitations of molecular networking. Each datapoint in the 
UMAP represent one spectrum and spectra located closely together in the UMAP have high predicted 
chemical similarity. As an intermediate output, MS2DeepScore produces mass spectral embeddings. 
UMAP can plot these 500-dimensional embeddings in a 2D representation of the chemical space. 
Figure 3b shows the UMAP22 representation of the embeddings of the Rumex sanguineus case study. 
In this UMAP representation we combined both positive and negative ionization mode spectra into a 
single representation. We observe mixing of the embeddings of both ionization modes in 2D space and 
highlight examples of annotated structures. To highlight the difference between positive and negative 
ionization mode spectra, we have highlighted an example of a positive and negative mode spectrum 
of Rutin. Both spectra have a similar embedding and are therefore visualized closely together in the 
UMAP representation, indicating high predicted chemical similarity. The spectra of this molecule in 
different ionization modes are visually different, but still MS2DeepScore 2.0 was able to predict 
chemical similarity of 0.7, while the modified cosine score results in a similarity of 0.3 and cosine score 
a similarity of 0.0. The full UMAP representation of the embeddings is available as an interactive HTML 
file allowing for exploring the case studies further, see Data Availability section.  
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Figure 3: Visual sample representations created with MS2DeepScore cross-ionization-mode model 
predictions. By predicting chemical similarity between both the positive and negative ionization mode 
spectra, spectra of both ionization modes can be visualized together. a) A molecular network of the 
urine case study created by using MS2DeepScore similarity scores. An edge is created for an 
MS2DeepScore larger than 0.85. We highlight a few examples where MS2DeepScore was able to 
predict close chemical similarity between positive and negative ionization modes. Spectrum mirror plots 
of all cross-ionization mode pairs visualized in the molecular network can be found in Supplementary 
Figure 10.1. Spectrum mirror plots for  exact matches across ionization modes are available in 
Supplementary Figure 10.2. An interactive version of the molecular network can be loaded in Cytoscape, 
the data is available via the Data Availability section.  b) UMAP representation of the MS2DeepScore 
2.0 embeddings of the Rumex sanguineus case study. Each dot represents a spectrum and closely 
positioned spectra have high predicted chemical similarity. The molecular structure for multiple 
annotated mass spectra are visualized as examples. Two spectra are highlighted which both correspond 
to the same molecule, but were recorded in positive and negative ionization modes. MS2DeepScore 2.0 
correctly predicted very similar embeddings, while the fragments do not overlap. An interactive version 
of the full UMAP plot is available as an HTML file, see Data Availability section. 
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Figure 4: Results Embedding Evaluator. The embedding evaluator predicts if MS2Deepscore can 
make reliable chemical similarity predictions for an input spectrum. This embedding evaluator is 
trained to predict the mean squared error (MSE) for a spectrum. a) Architecture for the embedding 
evaluator. b) The predicted MSE is plotted against the true MSE for each spectrum in the test set. The 
test set contains 32052 spectra. c) Different thresholds are used to remove spectra from the test set 
with high predicted MSE. This results in 5 subsets of spectra with respectively 20, 40, 60, 80 and 100 
% of the test spectra retained. The plot shows the real MSE per bin for predicting chemical similarity 
for the selected subsets of the test set. This shows that the accuracy of MS2DeepScore improves if the 
Embedding Evaluator is used to remove spectra with high predicted MSE. The MSE is calculated by 
taking the average MSE between all spectra of two molecules, followed by taking the average per 
Tanimoto bin.  

   mbedding e aluator     rror predic on

    emo ing spectra with high predicted error
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Uncertainty evaluation 
MS2DeepScore predictions can be unreliable for some mass spectra. This could, for instance, be due 
to bad or incomplete fragmentation, fragments of multiple metabolites in one spectrum (i.e., “hybrid” 
spectra), or simply because there were no similar spectra in the training data. Here, we have developed 
and assessed our Embedding Evaluator model. This model predicts the mean squared error (MSE) from 
the embedding of a spectrum, see Figure 4a.  Figure 4b, shows that there is a strong correlation 
between predicted MSE and real MSE. Figure 4c shows the effect of removing the spectra with the 
highest predicted MSE. By filtering out spectra that have a high predicted MSE, the prediction accuracy 
between the remaining spectra increases. Additional analysis in Supplementary Figures 6.1 and 6.2 
shows that the predicted MSE correlates with features like number of fragments, precursor m/z, 
ionization mode, and signal intensities. 
 

Additional metadata input 
MS2DeepScore 2.0 allows for adding metadata as input to the neural net. Experiments with using 
additional metadata showed that adding precursor m/z, ionization mode, and adduct type as input for 
the model notably improved the performance, while one-hot encoding of the instrument type did not 
(see Supplementary Figure 1.5). Considering that the adduct type remains unknown or is annotated 
with lower accuracy in many common mass spectrometry workflows, the model used in the main text 
relies only on precursor m/z and ionization mode as metadata.  
 

Sampling algorithm 
One of the key challenges in training a model to predict Tanimoto scores is the highly non-uniform 
distribution of these scores across possible molecule pairs. Low Tanimoto scores are several orders of 
magnitude more frequent than high Tanimoto scores. The sampling algorithm is optimized to result in 
balanced sampling over Tanimoto scores and equal sampling of the different molecules. With this 
newly developed sampling algorithm we achieve a good balance of molecule sampling frequencies 
with a maximum of < 15% difference between molecules (see Supplementary Figure 2.1d) and an 
exactly equal sampling frequency over the whole Tanimoto score range grouped in 10 bins. More 
details about the sampling algorithm optimization can be found in the Supplementary Section 2. 

Comparison to the original MS2DeepScore model 
This paper introduces multiple advancements to the original MS2DeepScore paper, including adding 
metadata and the optimized sampling algorithm. To compare the performance, the original 
MS2DeepScore model (version 0.2.0) was retrained and tested on the same training and test set used 
here. Supplementary Figure 3.1 shows side by side violin plot, directly comparing the performance of 
the original MS2DeepScore model to the new MS2DeepScore model. Supplementary Figure 3.2 shows 
the average MSE per Tanimoto bin, showing that the performance is improved by the new training 
approach introduced here. 

 

Comparison with single ionization mode models 

MS2DeepScore 2.0 has the novel capability to predict chemical similarity across ionization modes. 
However, it is important that the within-ionization-mode prediction accuracy is not affected too much 
by training on both ionization modes at the same time. The comparison to the original MS2DeepScore 
model in Supplementary Figure 3.1 and 3.2 already shows an improved performance for the new dual 
ionization mode model. However, this comparison also includes the here introduced improvements to 
the model architecture and the inclusion of precursor m/z as input to the model. To only test the effect 
of training a model on both ionization modes at the same time, two additional models were trained 
on a single ionization mode using the same hyperparameters as the dual ion mode model. The results 
are summarized in Supplementary Figure 4.1-4.3. Supplementary Figure 4.3 compares the MSE for the 
within-ionization-mode predictions for a model trained on both ionization modes and a model trained 
on only a single ionization mode.  
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Models trained on only positive ionization mode spectra or on spectra of both ionization modes show 
comparable within-ionization-mode performance. The model trained on only negative ionization 
mode spectra, however, results in lower losses for lower Tanimoto bins, but a higher loss in the 0.9-
1.0 Tanimoto bin when compared to the dual-ionization-mode model. Supplementary Figure 4.2 shows 
a side by side violin plot, enabling direct comparisons between the distributions of predicted scores.  
 

Speed of training MS2DeepScore 
To achieve fast training and prediction times, the entire model was implemented using Pytorch25. The 
MS2DeepScore 2.0 model was trained in 11,2 hours on a server with Intel Xeon gold 6342 2.8Ghz, 
Nvidia A40 GPU, and 512 GB Memory. 
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Discussion 
MS2DeepScore is able to make reliable predictions between mass spectra measured under different 
conditions, even if hardly any of the fragments overlap. We show that an MS2DeepScore model trained 
on both ionization modes can predict good estimates of the chemical similarity between spectra 
measured in different ionization modes (Figure 2b). In addition, the accuracy for within-ionization-
mode predictions has also improved compared to the previously published MS2DeepScore model6.  

 
In this work, we made substantial updates to the MS2DeepScore pipeline. For example, the pair 
sampling algorithm to train MS2DeepScore was optimized. Sampling pairs during training is a crucial 
step in training MS2DeepScore, since low Tanimoto scores are orders of magnitudes more frequent 
than high Tanimoto scores. Here we introduce a new sampling algorithm that does not only balance 
the sampled pairs over equally spaced Tanimoto bins, but also balances the sampling frequency of 
each molecule and even the distribution of the Tanimoto scores per unique molecule. This new pair 
sampling algorithm reduces potential biases in the training data and makes sure the diversity in the 
training data is used well. Whilst these changes were a substantial improvement in making good use 
of the chemical diversity in the training set, we do note that our new sampling algorithm did not 
enforce balanced sampling of the different ionization mode pairs. Because more spectra were available 
in positive ionization mode (519,580) than in negative ionization mode (145,594) this resulted in 
sampling more positive ionization mode pairs compared to negative ionization mode pairs. Having 
more balanced sampling over the ionization modes might improve model performance for negative 
vs. negative ionization mode predictions. In addition, since there are differences in the Tanimoto score 
distributions for positive and negative ionization mode spectra, this might result in not having an equal 
number of pairs per Tanimoto bin for each ionization mode. For example, since there were not many 
high Tanimoto score examples between positive and negative ionization mode spectra during training, 
it is likely that this explains the observation that almost no predictions above 0.9 were made for cross-
ionization mode pairs. In future work, the sampling algorithm could be further optimized to also 
enforce balanced pair sampling for the different ionization mode pairs.  

 
In addition, allowing metadata as input to the model improves performance, see Supplementary Figure 
1.5. The model used in the main text, uses precursor m/z and ionization mode as metadata input. Using 
the adduct as input was also beneficial for model performance. There are methods to predict adduct 
information from MS1 (full) scans26; however, not all preprocessing tools generate reliable adduct 
information. Therefore, we decided to not include this in the default model, since using incorrect 
adduct information could result in reduced performance. Currently, the model does not use MS1 data 
directly. In future work it would be interesting to include MS1 data into training of MS2DeepScore 
models. However, a challenge is that public mass spectral libraries generally do not have annotated 
raw MS1 spectra available. Directly including MS1 data , or alternatively predicted adducts or molecular 
formulas as features into the model could potentially further improve MS2DeepScore performance.  

 
MS2DeepScore models are trained to predict chemical similarity scores, using the Tanimoto coefficient 
between Daylight fingerprints as the primary metric. Widely regarded as effective for fingerprint-based 
comparisons, the Tanimoto score has become a standard in cheminformatics applications27-29. 
However, molecular similarity is inherently subjective, varying by context and application30, 31. Even 
when we restrict ourselves to fingerprint-based metrics, many possible variants with different 
strengths and weaknesses exist32, 33. Future work could  explore alternative similarity metrics and 
fingerprints, leveraging the flexible architecture of MS2Deepscore to expand its applicability across 
diverse tasks. 

 
The cross-ionization mode MS2DeepScore model uses a Siamese neural network architecture similar 
to the original MS2DeepScore paper6. Hyperparameter optimization resulted in using a dense network 
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of a different size. For benchmarking, we picked the best-performing model. Smaller models are 
possible with only slight performance reductions. For details see Supplementary Figures 1.2-1.4. If 
computing time or embedding size is crucial for an application, an MS2DeepScore model with a smaller 
model architecture or embedding size can easily be trained. 
  
Fragment signals are initially binned, which might result in the loss of useful information. In 
Supplementary Figure 1.6 we show that using bins smaller than 0.1 Da did not result in improved 
performance. However, exploring alternative methods that do not require binning could potentially 
further improve model performance. For instance, the recent DreaMS model uses a transformer 
architecture, which does not require binning of spectral data34. By pretraining a DreaMS model on 
unsupervised data followed by transfer learning to create a spectral similarity prediction model, it is 
possible to train a model that works without binning. So far, the DreaMS model has only been trained 
on positive ionization spectra making it unsuitable for training a cross-ionization mode model. In future 
work, it would be valuable to attempt pretraining models on both ionization modes followed by 
transfer learning to create a chemical similarity predictor. For future work exploring new deep learning 
algorithms, we recommend building on the groundwork done in MS2DeepScore 2.0, by reusing the 
newly implemented sampling algorithm, automated training pipeline, and benchmarking methods, to 
make the results reproducible and comparable. 

 
The prediction quality of the MS2DeepScore model is sensitive to the quality and type of the input 
spectra. Poor predictions are expected for low-quality spectra with limited fragmentation, chimeric 
mass spectra from multiple precursor ions, or spectra with little similarity to our training data. In the 
original MS2DeepScore paper6, the uncertainty was estimated using a Monte-Carlo dropout 
regularization35. In later real-world applications, however, we noted that this was a subpar solution. 
For example, we noticed that spectra with little similarity to the training data as well as low-quality 
spectra often received very similar embeddings. This is very detrimental, because similar embeddings 
will lead to -mostly false- predictions of high chemical similarities. Hence, MS2DeepScore 2.0 is now 
complemented by an uncertainty estimation for individual input spectra. This model predicts the MSE 
from a spectral embedding created by MS2DeepScore. We demonstrated that the overall accuracy can 
be raised by removing the test spectra with a high predicted uncertainty, see Figure 4. We anticipate 
that other tools can use this new method  for uncertainty and spectral quality estimation.  

 
Given the enormous range of possible mass spectral datasets and applications, there remains a risk of 
our model not being well-suited for very specific tasks or chemical classes. In such cases, we 
recommend training a custom MS2DeepScore model. Training a new MS2DeepScore model is now 
relatively easy since an automatic training pipeline is available. For smaller custom datasets, we 
recommend merging them with larger available datasets, such as the here-used public libraries, before 
training a new model from scratch. We speculate that a promising alternative route could be to start 
with our pre-trained model and run additional training on the custom reference data, a common “fine 
tuning” strategy in deep learning. 

 
MS2DeepScore is available through PyPI via pip, is actively maintained and adheres to best practices 
in software development. Most code is covered by unit tests and supported by a continuous 
integration (CI) pipeline to ensure reliability and robustness. To make MS2DeepScore accessible to a 
wider audience, which is unfamiliar with using basic Python, MS2DeepScore is now also available in 
mzmine21. Within mzmine, MS2DeepScore-based molecular networking can be combined with feature 
detection, compound annotation, and interactively linked to statistical analysis. We anticipate this will 
make MS2DeepScore and cross ionization mode predictions available to a wide audience of chemists 
without programming experience. 

 
The ability to reliably predict chemical similarities across ionization modes creates entirely new options 
for mass spectral data exploration by combining positive and negative ionization mode data. Similarity-
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based graphs can now be generated independent of the ionization mode, rendering cross-ionization 
mode molecular networking feasible. Furthermore, our new model can be used as a basis to use the 
larger positive ionization mode reference spectral library as a source for annotation of the negative 
ionization mode data, and vice versa.  We expect that this will help researchers to more quickly and 
comprehensively identify new molecules and to do new chemical and biological discoveries. 
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Methods 

Metadata as input 
MS2DeepScore 1.0 uses mass fragments as an input to predict chemical similarity between mass 
spectra6. In the current work, MS2DeepScore 2.0 allows for the use of additional metadata of the 
fragmentation spectra. This is implemented in a flexible way which allows adding any type of metadata 
as an input into the model. Numerical data, e.g., precursor m/z or collision energy, is transformed to 
values closer to 1, to have input in a similar order of magnitudes, to optimize training. Textual inputs, 
like ionization mode or instrument type, are one-hot encoded. For the dual-ionization mode model 
used in the main text, precursor m/z and ionization mode were used as additional metadata input. As 
a part of the current study, other experiments were also run with instrument type and/or adduct type 
as additional input(s). An overview of the selected model architecture can be found in Figure 1. 

 

Tanimoto score 

As a metric for chemical similarity between two molecules the Tanimoto score between molecular 
fingerprints was used36. An rdkit37 daylight fingerprint (4096 bits) was generated for each unique 2D 
structure. This Tanimoto score was used for training and benchmarking and will be referred to as 
Tanimoto score. The original MS2DeepScore model used 2048 bits. Supplementary Figure 1.7 shows 
the difference in MSE when training and benchmarking a model on 2048 or 4096 fingerprint bits. Since 
the resulting accuracy is different for different fingerprint lengths, this makes direct comparisons of 
benchmarking results in the figures of the original MS2DeepScore paper impossible.  

 

Spectrum pair selection for training 
One of the key challenges in training a model to predict Tanimoto scores is the highly non-uniform 
distribution of these scores across possible molecule pairs. Low Tanimoto scores are several orders of 
magnitude more frequent than high Tanimoto scores. In our previous work6, this imbalance was partly 
mitigated by a data generator that selected a molecule pair belonging to a random Tanimoto score bin 
for each pair selection step. However, molecules in the used dataset often lacked partners in the high 
Tanimoto score ranges. As a result, even though the former data generator substantially reduced the 
bias, there was still a considerable shift towards lower Tanimoto scores. In addition, the selection of 
the second molecule in a pair was not equally distributed, leading to high variability in sampling 
frequency per unique molecule.  

 
To address these issues, we developed a new pair sampling algorithm optimized for balanced sampling 
across Tanimoto score bins and near uniform sampling frequencies for each unique molecule. During 
training, the pair sampling algorithm loops over selected molecule pairs and randomly selects two 
corresponding spectra per molecule pair, because often multiple spectra are available for a single 
molecule. In this work, two molecules were considered the same if the first 14 characters of their 
InchiKeys were equal, thereby ignoring stereochemistry. The pair sampling algorithm loops multiple 
times over the selected set of molecule pairs, but the corresponding spectra are randomly resampled 
every loop. 

 
Before training the model, a balanced set of molecule pairs was selected. The molecule pair sampling 
happened per Tanimoto bin, but during the sampling, the molecule sampling count was tracked. The 
sampling algorithm started by selecting the least frequently sampled molecule with pairs available in 
the Tanimoto bin. From the candidate pairs for this molecule, the second molecule with the lowest 
sampling count was chosen. Resampling of molecule pairs was allowed, enabling both a close-to-equal 
sampling frequency across unique molecules and a balanced distribution over Tanimoto bins. To 
minimize resampling, the algorithm prioritized least-sampled available pairs before selecting the least 
sampled second molecule. This sampling algorithm significantly improved sampling balance. However, 
some molecules were still sampled up to six times more than others. To further reduce this imbalance, 
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a maximum sampling count per molecule was introduced, limiting sampling frequency disparities to 
less than 15%. Details of the experiments conducted to optimize the sampling algorithm are provided 
in Supplementary Section 2.  

 

Binning spectra 
Before training, the fragments were binned, to make them suitable as input for the neural network. 
Binning happened by making bins of 0.1 Da between 10 ≤ m/z < 1000 Da, resulting in 9.900 bins. In the 
former MS2DeepScore work, bins were only included if they had at least one fragment in the training 
data. Instead, MS2DeepScore 2.0 uses all bins, even if none of the training spectra have a fragment in 
this bin. This reduces code complexity and reduces the risk of accidental mismatch between the 
binning method and model versions. Intensity values were transformed by square-root to reduce the 
impact of high intensity signals.  

 

Architecture improvements 
MS2DeepScore 1.0 is implemented in Tensorflow6, 38. Here, the entire MS2DeepScore 2 model was 
reimplemented using Pytorch25. This improved compatibility with GPUs and Apple M1 chips, but also 
overall code readability. A pipeline is now available that performs all steps necessary for training new 
MS2DeepScore models. The wrapper function only requires a file with annotated mass spectra and the 
settings for model training. First mass spectra are separated on ionization modes and split in test, train, 
and validation sets. After that the model is trained, and benchmarking figures are created.  

 

Model settings 
The original MS2DeepScore paper used two layers of 500 nodes with an embedding size of 200. Given 
the expanded training library and the dual-ionization mode training, it was expected that a different 
model architecture could result in better performance. Hyperparameter optimization was performed 
to determine an optimal configuration, as detailed in Supplementary Section 1. The final architecture 
consisted of a single layer with 10,000 nodes and an embedding size of 500, which was used for all 
models presented in the main text.  

 
Compared to the former MS2DeepScore models, several other adjustments were made. The final layer 
activation function was changed from ReLU to Tanh39, dropout and batch normalization were removed 
and the settings for data augmentation were changed: augment removal max was changed from 0.3 
to 0.2, augment intensity was changed from 0.4 to 0.2, and augment noise intensity was changed from 
0.01 to 0.02. The exact settings were added as a JSON file to the Zenodo entry, see Data Availability 
section. 

 

Input data filtering and splitting 
For training the models we combined multiple public libraries: the GNPS library4, the MassBank EU 
library, the MassBank of North America (MoNA) library40, and MS2 spectra of MSnLib created by Brungs 
et al.41. After combing these libraries they were first cleaned using the matchms library cleaning 
pipeline42, 43. The settings for cleaning can be found in Supplementary Settings 1. Experiments that 
assessed the model performance for different minimum signal numbers and intensity thresholds can 
be found in Supplementary Figure 1.1. After cleaning, the library consisted of 36,638 unique molecules 
and 519,580 spectra in positive ionization mode and 18,480 unique molecules and 145,594 spectra in 
negative ionization mode. A molecule was considered unique if the first block of its InChiKey identifier 
(14 letters) was equal, thereby ignoring stereochemistry. 

 
The cleaned spectrum library was split by ionization mode and divided into training, validation, and 
test set. We selected 1/20th of unique molecules for both the validation and test sets, all 
corresponding spectra to these molecules were removed from the training set. For the positive and 
negative mode set, the selection of InChIKeys to use for the validation and test sets was different, since 
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we might otherwise have introduced a bias in the validation set for spectra that were available in both 
ionization modes. The dual-ionization mode library was trained by combining the positive ionization 
mode training spectra and the negative ionization mode training spectra. The validation spectra were 
used for all experiments for the optimization of our model, like changing the filtering of input spectra, 
or adjustments to the model size. The test set was not used during any experimentation or 
hyperparameter optimization and was only used for benchmarking of the final model.  

 

Embedding and score uncertainty estimation 
The prediction quality of the MS2DeepScore model is sensitive to the quality of input spectra and the 
similarity to the training data. To detect spectra that are hard to predict for MS2DeepScore, we 
designed a new pipeline using a convolutional neural network that predicts the quality of a spectrum 
embedding. The “ mbedding   aluator” model is implemented using an Inception Time architecture44 
using Pytorch25. The embedding evaluator is trained to predict the mean squared error (MSE).  For 
each training spectrum, the MSE is calculated by randomly sampling 999 other training spectra and 
calculating the MSE over these 999 pair predictions. The model is trained to predict the MSE from the 
embedding of the spectrum. The conceptual idea here is that the Embedding Evaluator will learn to 
identify embeddings for low-quality or out-of-distribution input data. In later applications, the 
predicted embedding qualities can be used for uncertainty estimation.  

 

Benchmarking 
The mean squared error (MSE) was used as a loss function, measuring the difference between the 
predicted and actual Tanimoto score. During training, a sampling algorithm ensured equal numbers of 
spectrum pairs in each Tanimoto bin and a balanced representation of molecule pairs. However, due 
to the lower number of available validation spectra it is not suitable to use the same sampling 
algorithm for the validation spectra, since this would significantly reduce the number of pairs available 
for benchmarking. To obtain a representative MSE for the validation and test set, the average loss per 
molecule pair was calculated by averaging the losses of all available spectrum pairs for each molecule 
pair. The used mass spectral library often contains multiple mass spectra for one molecule, in some 
cases up to several hundred spectra for the same molecule. By taking the average loss per molecule 
pair we ensured that the model performance is not judged mostly on the performance of a few 
molecules with a high number of mass spectra. The average MSE per molecule pair was then used to 
calculate the average MSE per Tanimoto bin. Ten equally spaced Tanimoto bins between 0 and 1 were 
used. The final loss used was the average MSE over these 10 bins. In addition to this benchmarking we 
analyzed the performance of MS2Deepscore for different adducts and different compound classes, 
these results can be found in Supplementary Figures 7.1 and 7.2. A comparison of MS2Deepscore to 
the modified cosine score is available in Supplementary Section 5. 

 

Case studies 

To illustrate the new possibilities MS2DeepScore 2.0 introduces, we show the capabilities of the new 
model to create dual-ion-mode molecular networks and UMAP22 embedding representations using 
three case studies with experimental datasets. The case studies are performed on human urine 
samples, human blood plasma samples and a Rumex sanguineus (plant) sample.  
 
Urine case study 
The MS2 spectra used for this case study were acquired for urine fractions generated at the National 
Phenome Centre by reversed-phase liquid chromatography (RP-LC) as detailed in Albreht et al.45. Urine 
fractions were treated like intact urine samples and profiled using the previously reported UHPLC-RP-
LC assay designed for small molecule separation on a Waters 2.1 × 150 mm (1.8 μm) HSS T3 column 
maintained at 45 °C46, 47. LC-MS system was a Waters Acquity UPLC instrument coupled to Xevo G2-S 
TOF mass spectrometer (Waters Corp., Manchester, UK) via a Z-spray electrospray ionization (ESI) 
source. All LC conditions and the gradient elution programmed used are detailed in the protocols 
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associated with Lewis et al47. The mass spectrometry parameters can be found in Supplementary 
Section 8.  

Human blood plasma case study 
Lipid species present in the NIST Frozen Human Plasma standard reference material – SRM1950, were 
chromatographically separated using a UHPLC-RP-LC assay tailored for complex lipid separation on a 
2.1×100 mm BEH C8 column (maintained at 55°C) detailed in Lewis, et al.47. For this analysis, LC-MS 
system was an ACQUITY Premier UPLC (Waters Corp., Milford, MA, USA) with a Premier solvent 
manager and column/heater modules and a H-Class sample manager and organiser coupled to a Xevo 
G3 QTof mass spectrometer (Waters Corp., Manchester, UK). All details of sample preparation, LC 
conditions and gradient elution program were previously reported by de Jonge et al.3. The mass 
spectrometry parameters can be found in Supplementary Section 8.  

Rumex sanguineus case study 
Rumex sanguineus is a traditional medicinal plant of the Polygonaceae family48. Ramundi et al.48 did 
an in-depth analysis using non-targeted mass spectrometry. Mass spectra were recorded in both 
positive and negative ionization mode. Ramundi et al. were able to annotate 347 metabolites, these 
annotations are used to validate cross-ionization mode capabilities of MS2DeepScore. All methods for 
data collection and annotation are detailed in the work of Ramundi et al.48. 

Data preprocessing urine and blood plasma case studies 
MassLynx software (Waters, Manchester, U.K.) was used for data acquisition and visual inspection. The 
raw data files were converted from the Waters .RAW format to .mzML format using the msconvert 
tool from the ProteoWizard toolkit49. DDA files converted to .mzML format were peak picked and 
converted to .mgf format using MSDIAL ver.4.9.221218 Windowsx6434 using the following parameters 
for peak detection: min peak height = 1000 amplitude, mass slice width = 0.05 Da; MS2Dec: sigma 
window  alue = 0.5, MS2 abundance cutoff = 200 amplitude; Alignment:  T tolerance = 0.05 min, MS1 
tolerance = 0.01 Da. 

The peak-picked spectra were further processed by matchms42, 43. For the urine case study only MS2 
spectra were kept with more than four fragments, for the Rumex sanguineus and blood plasma case 
studies no minimum number of peaks was set. The exact processing settings and logging can be found 
in the Jupyter notebooks on GitHub. The visualized structures in Figure 2 and the annotated nodes in  
Supplementary Figure 9 have all been manually annotated. In addition putative annotations and 
analogue predictions were done using MS2Query3. Annotations with a prediction higher than 0.7 are 
included in the interactive UMAP embedding visualization.  

Molecular networking 
In Figure 3a and Supplementary Figure 9 dual-ionization mode molecular networks are visualized with 
MS2DeepScore similarity edges and MS2 as nodes. Graphml files were created using matchms. The 
graphml files were used for visualizing the molecular networks in Cytoscape50. The minimum 
MS2DeepScore cut-off used is 0.85, “top-n” is set to 20, meaning that only the top 20 highest-scoring 
similarity scores per spectrum were considered for creating edges. The link method used was mutual, 
which means only edges were added if the edge is in the top list of both nodes. For each node, the 
highest 10 scores that have a mutual link in the top 20 of bode nodes were used for creating an edge. 
These settings could still result in more than 10 edges connecting to a single node if an edge from 
another node was in the top 10 highest similarity scores with a mutual connection. 
 

To highlight the capabilities of MS2DeepScore across ionization modes, we selected a few clusters 

that included both positive and negative ionization mode spectra. The clusters were manually 

annotated by experts. Supplementary Table 1 provides the method of annotation and confidence 

levels for all structures visualized in Figure 3a.   
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Embedding UMAP visualization 

MS2DeepScore generates spectral embeddings as intermediate output. These embeddings can be 
used directly to visualize spectra in 2D space by using dimensionality reduction methods. Here we used 
UMAP to reduce the 500 embedding dimensions to two dimensions. The number of neighbours was 
set to 50, this setting influences how local or global the 2D representation is. The resulting UMAP 
representation can be found in Figure 3b and is also available as an interactive plot, see Data 
Availability section. The interactive plot can be coloured based on ionization mode or ClassyFire51 
compound class annotation of MS2Query3 analogue predictions.  

Integration into mzmine 

MS2DeepScore is available through PyPI as a pip installable Python package. Even though little 
programming knowledge is required to apply MS2DeepScore models and clear tutorials are available, 
this was still a significant hurdle for scientists without programming experience. To offer an easy local 
deployment, MS2DeepScore has been integrated into mzmine21 , a modular MS data processing 
software. Now, mzmine enables Feature-based Molecular Networking (FBMN52) and Ion identity 
Molecular Networking (IIMN20) using MS2DeepScore in an interactive network visualizer coupled with 
compound annotation and statistics dashboards. This allows users to create molecular networks and 
explore the chemical space within the mzmine graphical user interface, without requiring command 
line or scripting. A tutorial for using MS2DeepScore within mzmine can be found here: 
https://mzmine.github.io/mzmine_documentation/module_docs/group_spectral_net/molecular_net
working.html#algorithm-MS2DeepScore . 

Integration of MS2DeepScore in mzmine required converting the MS2DeepScore model to the torch 
script format which is supported by the Deep Java Library (DJL). The package 
https://github.com/niekdejonge/MS2DeepScore_java_conversion contains scripts for converting 
existing MS2DeepScore models. The latest torch script version of the MS2DeepScore model is available 
at https://doi.org/10.5281/zenodo.12628368 and can be automatically downloaded from within 
mzmine’s molecular networking module. MS2DeepScore is a ailable in mzmine starting from mzmine 
version 4.3.0.  

Code availability  
MS2DeepScore is available as PyPI package and therefore pip installable. The version used for this 
manuscript is version 2.5.3. All code is available on https://github.com/matchms/MS2DeepScore. The 
readme contains explanations on how to install and use MS2DeepScore and includes instructions for 
training an MS2DeepScore model on in-house data.  
The notebooks used for creating the benchmarking figures can be found in the folder 
https://github.com/matchms/MS2DeepScore/tree/main/notebooks/MS2DeepScore_2. Details about 
how each figure can be reproduced can be found in Supplementary Table 2 and 3. 
The mzmine source code for the PyTorch model integration via TorchScript format is available on the 
mzmine GitHub https://github.com/mzmine/mzmine/tree/master/mzmine-
community/src/main/java/io/github/mzmine/modules/dataprocessing/group_spectral_networking/
MS2DeepScore. The scripts for converting existing MS2Deepscore models to torchscript can be found 
on GitHub: https://github.com/niekdejonge/MS2DeepScore_java_conversion. 
 

Data availability  
The dual-ionization mode MS2DeepScore model and embedding evaluator model used in this study 
can be downloaded from Zenodo, https://doi.org/10.5281/zenodo.14290920. The training, validation, 
and test spectra can be downloaded from https://zenodo.org/records/13934470. All case study data 
can be found on https://zenodo.org/records/14674962, this includes an interactive version of the full 
UMAP plot as an HTML file and the required files to create the molecular networks in Cytoscape.  
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