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The dramatic decline of reef-building corals calls for a better understanding of coral adaptation 
to ocean warming. Here, we characterized genetic diversity of the widespread genus Acropora 
by building a genomic database of 595 coral samples from different oceanic regions—from the 
Great Barrier Reef to the Persian Gulf. Through genome-environment associations, we found 
that different Acropora species showed parallel evolutionary signals of heat-adaptation in the 
same genomic regions, pointing to genes associated with molecular heat shock responses and 
symbiosis.  We then projected the present and the predicted future distribution of heat-adapted 
genotypes across reefs worldwide. Reefs projected with low frequency of heat-adapted 
genotypes display higher rates of Acropora decline, indicating a potential genomic vulnerability 
to heat exposure. Our projections also suggest a transition where heat-adapted genotypes will 
spread at least until 2040. However, this transition will likely involve mass mortality of entire 
non-adapted populations and a consequent erosion of Acropora genetic diversity. This genetic 
diversity loss could hinder the capacity of Acropora to adapt to the more extreme heatwaves 
projected beyond 2040. Genomic vulnerability and genetic diversity loss estimates can be used 
to reassess which coral reefs are at risk and their conservation. 
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Introduction 
 
Climate change-induced heat waves and subsequent coral bleaching have reduced reef-building corals 
worldwide by ~14% just over the 2009–2018 decade1. As corals form the physical scaffold of the reef 
ecosystem, their decline also threatens the persistence of dependent wildlife—estimated to  be one 
quarter of all known marine species2. Despite this mass mortality, several lines of research indicated 
that coral populations are evolutionarily adapted to local environments (e.g., cross-breeding 
experiments3,4, colony genotyping from thermally contrasted reefs5–10, and experiments exposing 
corals to controlled thermal conditions8,11), suggesting that evolutionary adaptation is a possible 
escape route from heat vulnerability. However, global efforts in reef conservation monitoring and risk 
assessment are still lacking integrated indicators of coral evolution. 

Genotype-environment associations (GEA) are a promising approach for identifying genetic 
variants underlying coral adaptation to warming oceans12.  GEA assume that reefs that have survived 
past heatwaves are enriched in heat-tolerant coral genotypes. A common GEA approach leverages 
decades of satellite observations of sea surface temperature to identify reefs with contrasting thermal 
histories13. Corals are sampled from such reefs and genotyped to identify adaptive signals—genetic 
variants predominantly found in heatwave-exposed populations14. The relationship between heatwave 
trajectories and adaptive signals can then be synthesized in environmental genomics models, and these 
models can be used to generate predictive maps of adaptive genotypes distribution7. When combined 
with future climate projections, these maps help pinpoint reefs at risk of genomic 
vulnerability15—where predicted heat-adaptive genotypes distribution may not match future thermal 
exposure (also known as genomic offset or maladaptation). 

However, GEA approaches are notoriously prone to false discoveries16, making predictive 
models based on unvalidated adaptive signals potentially unreliable. These false discoveries arise 
from neutral genetic forces such as connectivity and genetic drift, which can create spatial allele 
frequency patterns that coincidentally correlate with thermal histories14. A proposed solution to this 
problem is to compare GEA results across different species; if the same adaptive signal appears in 
multiple species, it is less likely to be a random correlation17. This approach has recently been applied 
to plants, successfully identifying robust candidate core genes involved in climate adaptation18. While 
these shared signals likely represent only a subset of corals' full adaptive potential, their robustness 
could enhance the reliability of spatial predictions of heat-adaptive genotype distribution, providing 
critical insights for conservation planning12. 

Here we focus on the widespread Acropora coral genus and build a multi-species genomic 
dataset to identify evolutionary signals of parallel local adaptation to past heatwave exposure. We then 
use these signals to explain recent coral loss and build the first global map of coral genomic 
vulnerability. 
 
Results and Discussion 
 
Global patterns of Acropora sp. genomic diversity 
 

To generate a broad picture of coral genomic diversity, we compiled genomic sequencing 
datasets from over one thousand corals, of which 595 samples passed our quality controls (Text S1). 
These samples include five species of the genus Acropora sp.: A. downingi from the Persian Gulf 19, 
A. digitifera from the Ryukyu Archipelago (Japan)20, A. cervicornis from the Florida Reef Tract21, 
A. tenuis from the Australian Great Barrier Reef (GBR)10, and A. millepora from the GBR22 and New 
Caledonia5 (Fig. 1A, Table S1, see Text S1). For every dataset, researchers sampled coral colonies 
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from multiple sampling sites (5–22 sites) across a large spatial scale (> 100 km), and genotyped each 
colony with whole genome or restriction–site-associated DNA sequencing. For comparisons between 
species, we assembled a consolidated genotype matrix by mapping reads from each dataset against the 
genome of A. millepora9 (NCBI RefSeq GCF_013753865.1; v. 2.1), which was the only 
chromosome-level assembly available for the genus at the time of analysis (2022-2024). To map reads 
from different Acropora species to the A. millepora reference, we used a read mapping method 
allowing for sequence divergence23 that achieved high mapping rates in all datasets (mean percentage 
of mapped reads in each dataset were between 89% and 95%; Fig. S2B, Text S2). Next, we called 
biallelic single nucleotide polymorphisms (SNPs) after accounting for uncertainty due to low 
sequencing coverage (Text S3)24. The resulting multi-species genotype matrix was analyzed using 
three methods summarizing genetic diversity patterns across datasets. First, a Principal Coordinate 
Analysis (PCoA) on SNPs shared between datasets revealed genetic patterns coherent with taxonomy 
and geography between the Acropora sp. worldwide after correcting for batch effects (Fig. 1A, Fig. 
S7, Table S2). Specifically, the first PCoA axis separated Atlantic corals from Indo-Pacific corals 
[i.e., Florida Reef Tract A. cervicornis separated from the other samples, percentage of variance 
explained (PVE) = 44%]. The second PCoA axis separated Coral Sea A. millepora (from New 
Caledonia and GBR) from GBR A. tenuis, Japan A. digitifera, and Persian Gulf A. downingi (PVE = 
29%). Second, the mean nucleotide genetic diversity of Acropora sp. was π/bp = 0.37% (dataset 
averages ranging 0.14–0.91%; Table S1A), which was consistent with previous A. millepora 
estimates9. Third, genetic diversity within datasets followed a scaling relationship with area25 that 
confirmed decreasing gene flow with increasing geographic distance, as observed in other Acropora 
populations (Fig. S17)26,27.  
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Fig. 1 | Genome-wide scans of evolutionary signals in 595 Acropora sp. identifies overlapping signals of 
local heat adaptation.  
(A) Distribution of global coral reefs and DNA sequencing data from six Acropora sp. populations (squares). 
For every population, shown are the sampling locations across reefs exposed to contrasting thermal history [i.e., 
maximum Degree Heating Week (DHWmax) since 1985 (maps on the left)]. The inset shows the two main 
principal coordinate axes summarizing the genetic distances between the six Acropora populations. 
(B) Genomic overlap analysis of DHWmax-associated genotypes across datasets. The six Manhattan plots show 
the significance [-log(P)] of the association between DHWmax and SNP variation genome-wide (x-axis) for each 
dataset. Background lines indicate genomic windows significantly enriched (Q < 0.1) in DHWmax-associated 
SNPs across three (green), four (blue), or five (purple) datasets. (C) Results of the overlap analysis for sixteen 
heat stress descriptors. These descriptors are defined by (1) the time window covered (1985 to the sampling year 
or the ten years prior), (2) the heat stress variable measured over time (DHW = maximum annual Degree 
Heating Week, SST = maximum annual sea surface temperature, SSTA = mean annual sea surface temperature 
anomaly), and (3) the statistic used to summarize heat stress trends (mean, standard deviation [std], frequency of 
years with DHW > 4°C-week [freq], rate of yearly change [rate]). For each heat stress descriptor, the bar plot 
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shows the count of genomic windows significantly enriched (Q < 0.1) in heat-stress-associated SNPs, 
categorized by the number of datasets enriched at the same windows. (D) Six of the overlapping genomic 
regions, showing the genomic position of genetic variants associated with DHWmax (circles, colored by 
Acropora population) and annotated genes (arrows). Whether the annotated genes are known to change 
expression during heat stress from a meta-analysis of RNAseq of various Acropora species is shown next to the 
gene name28. For every significant genetic variant, shown on the right is the prevalence of heat-adapted and 
non-heat-adapted genotypes by DHWmax across Acropora populations (colors). Background maps were 
produced using the Global Relief Model from NOAA (ETOPO 202229) and the Global Distribution Map of 
Coral Reefs from the UNEP World Conservation Monitoring Center30. 
 
 
Overlapping genomic signals of heat-adaptation across Acropora sp.  
 

Given that controlled experiments exposing different Acropora individuals to heat show 
heritable differences in heat tolerance3,4,8,11, we reason that surviving colonies from reefs that suffered 
heatwaves in the past would be enriched in genotypes enabling their survival now. To test this 
hypothesis with the compiled datasets, we conducted GEA along the genome using a latent factor 
mixed model (LFMM2)31. First, we characterized past heatwaves as a proxy for the environmental 
selection using sixteen variables derived from satellite time series. These sixteen variables described 
short-term (10 years before sampling) and long-term (since 1985) trends (averages, standard 
deviations, maximal values) in Sea Surface Temperature, Degree Heating Week (DHW), and Sea 
Surface Temperature Anomaly (SSTA) (Figure S8, Text S4)32. Next, using GEA analysis, we 
characterized the association between each of these environmental variables and SNPs genome-wide, 
correcting for confounding population structure. We finally used Picmin17 to identify 10-kb genomic 
windows significantly enriched (Q < 0.1) in heat-associated SNPs in three or more datasets (Text S5). 
Such overlapping signals were detected in all datasets, with their number proportional to the SNP 
count per dataset (Tab. S1C). Of the sixteen environmental variables, long-term maximal DHW 
(measured since 1985, DHWmax; Fig. 1A) was the one resulting in the largest number of overlapping 
signals––85 in total, with 55 found in 3 datasets, 27 in 4 datasets, and 3 in 5 datasets (Fig. 1B, Fig. 
1C, Table S1C). DHW is a variable describing the accumulation of thermal stress above the local 
SST baseline, with values above 8°C-week associated with severe, widespread bleaching33. 
Genotype-environment association studies conducted on a single species are prone to false 
discoveries34. While it is not possible to entirely eliminate these false positives, the overlap across 
species makes the shared adaptive signals more robust17,18. These shared signals likely represent 
important candidate genotypes with adaptive potential and may reflect molecular convergence 
underlying heat adaptation across species17.  

 
 

Signals of heat-adaptation point to heat shock responses genes 
 

To identify molecular functions potentially impacted by these heat-associated SNPs, we 
analyzed gene annotations within the 85 genomic windows with overlapping signals of adaptation to 
DHWmax (Fig. 1D, Table S4, Text S6). We ran a gene ontology (GO) enrichment analysis of the 119 
annotated genes35, and retrieved the genes’ transcriptomic profiles during heat stress from a 
meta-analysis of different Acropora sp. experiments28. The second and third most enriched GO terms 
were  "heat shock protein binding" and "unfolded protein binding" (FDR-adjusted P = 0.002; 
Table S2). Five genes are annotated with molecular functions associated with heat shock responses 
and protein folding: Heat Shock 70 kDa protein (HSP70), Protein SSUH2 homolog, Uromodulin (all 
up-regulated in heat-exposed Acropora sp.), Protein unc-45 homolog B (down-regulated) and 
Fibronectin (non differentially expressed). HSP70 is a molecular chaperone that refolds proteins 
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misfolded by heat stress36, and higher levels of a heat shock protein 70 were found to be associated 
with bleaching resistance in field experiments37. As heat-associated bleaching causes corals to lose the 
symbiotic algae living inside their tissue that are essential for their survival, it seems plausible this 
symbiosis would be a target of selection during heatwave exposure38. Consistent with this hypothesis, 
we found two significantly enriched GO terms referring to the Inositol signalling pathway (“inositol 
monophosphate 1-phosphatase activity” and “phosphatidylinositol-4-phosphate phosphatase activity”, 
FDR-adjusted P=0.006), which has been proposed to be involved in the maintenance of a functional 
coral-algal symbiosis39,40, and that underlies key metabolomic changes in heat-exposed Acropora 
aspera41,42 and Pocillopora aliciae43. In addition, we identified three significant GO terms 
(FDR-adjusted P=0.004) referring to glutamate receptor activity, which is another relevant term for 
symbiosis since glutamate metabolism is central to coral-algal nutrient cycling and is destabilised 
under heat-exposure44. Results from GO enrichment analyses should be interpreted cautiously and not 
viewed as conclusive. Nevertheless, they can be valuable for highlighting prominent candidate genes 
for further validation. Given their association with molecular heat responses and symbiosis, the genes 
underlying these functional enrichments should be prioritized in molecular and genetic studies to 
determine their roles in heat tolerance, symbiosis, and bleaching12. 

 
 
Predicting the spatial distribution of heat-adapted Acropora 
 
We then wanted to summarize temporal patterns of heatwaves and evaluate how well these patterns 
could predict the frequency of Acropora candidate adaptive genotypes across reef regions. For each 
sampling site, DHW time series were decomposed by 5-year windows, and DHWmax was calculated 
for each window. We then built a Random Forest model45 using time-decomposed DHWmax to predict 
the frequency of candidate heat-adaptive genotypes, retrieved from the 85 genomic windows with 
overlapping adaptive signals (Fig. 2A, Text S7). This environmental genomic model can predict the 
frequency of heat-adapted genotypes in new unsampled regions with a mean absolute error (MAE) of 
13% (SD = ±6%, in a leave-one-population-out cross validation; Fig. 2B). Since the environmental 
genomics model is built on adaptive signals shared across Acropora species, it likely overlooked 
adaptive genotypes that have evolved within single species. We therefore questioned whether 
predictive power would be higher in an alternative model built on all adaptive signals, including those 
found in single species only. We found that this alternative model had lower predictive power 
(MAE = 21 ± 16%) compared to the environmental genomic model built on overlapping adaptive 
signals (Fig. S12). The lower predictive power could be due to the higher uncertainty in adaptive 
signals that are not shared across species. As coral sampling and sequencing efforts expand46, this 
environmental genomic model could be updated with data from other Acropora species to improve its 
predictive power. Analogous models could also be developed for coral taxa with different life history 
traits and thermal tolerance (e.g., Pocillopora, Porites)47,48, as these taxa might be selected differently 
by heatwave exposure. 
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Fig. 2 | Acropora environmental genomic model for candidate heat-adaptive genotypes.  
(A) Environmental genomic model predicting the expected frequency of candidate heat-adaptive genotypes 
from patterns of past heatwave exposure, described by maximal Degree Heating Week (DHWmax) measured 
across 5-year windows. The environmental genomic model was based on five populations. For each population, 
the figure shows the frequency of candidate heat-adaptive genotypes for each reef (left side) and the reef thermal 
history (right side), represented by DHWmax values aggregated into 5-year windows spanning from 25 years 
before sampling to the year of sampling. (B) Spatial predictions of the frequency of candidate heat-adaptive 
genotypes across the reefs of five Acropora populations. For every population, predictions were made using the 
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environmental genomic model trained on data from the other four populations (i.e., leave-one-out cross 
validation). The mean absolute error (MAE) of the predicted genotype frequencies is shown in the top right 
corner of each map. Circles represent real genotype frequencies at sampling sites. Background maps were 
produced using the Global Relief Model from NOAA (ETOPO 2022 29) and the Global Distribution Map of 
Coral Reefs from the UNEP World Conservation Monitoring Center 30. 
 
 
Spatial predictions of heat adaptation explain local Acropora decline 
 

Although there is considerable interest in monitoring the conservation status of reefs, the 
observed variation in recent coral cover loss is notoriously challenging to interpret with heatwave data 
alone49,50. We thus asked whether predictions from our environmental genomic model could help 
explain local Acropora decline49,50. For this proof-of-concept analysis, we leveraged in situ data from 
166 sites across the Indo-Pacific, where Acropora cover had been repeatedly surveyed between 
2012-2018 (Fig. 3A) 51 (Text S8).  We first checked how well spatial autocorrelation and heat stress 
data (without genetic information) explained changes in Acropora cover (Fig. 3B; Table S5A). We 
found that a mixed model accounting for heatwave exposure (DHWmax) between surveys explained a 
small portion of the spatial variation in cover change (marginal R2=0.02)52. Adding information about 
past heatwave exposure significantly improved the model fit, but still explained limited spatial 
variation (marginal R2=0.07; P < 2.2 x 10-16 under a Mann-Whitney-Wilcoxon test of jackknife 
resampled marginal R2). In contrast, spatial variation in Acropora cover change was explained 
substantially better when considering heatwave exposure between surveys and the expected 
frequencies of heat-adaptive genotypes (predicted from the environmental genomic model; marginal 
R2 = 0.25; Mann-Whitney-Wilcoxon P < 2.2 x 10-16; Fig. 3B). The increase in the model fit is likely 
due to the separation of Acropora decline rates between reefs by expected frequency of heat-adaptive 
genotypes (Fig. 3C; Table S5C). For example, reefs with an adaptive-genotype frequency of 0% are 
expected to undergo an average Acropora decline of 2.7% per °C-week of heat exposure. As the 
predicted frequency of heat-adaptive genotypes increases, this decline is expected to weaken and 
become non-significant at a genotype frequency of ~70%. Notably, we observed a decline in model fit 
(marginal R2 = 0.11) when the model accounted for the expected frequency of all candidate adaptive 
genotypes, including those not shared across species (Fig. S13). These results suggest that better 
predictions of the vulnerability of reefs to future heatwaves could be generated by including robust 
genetic information of past local adaptation from a few coral colonies interpolated at larger scales.   
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Fig. 3 | Adaptive genotype predictions explain spatial patterns of Acropora decline by heat exposure. 
(A) Map displaying the number of survey sites with repeated measurements of Acropora cover across marine 
provinces of the Indo-Pacific (symbols). Shown is also the period covered by surveys in every marine 
province51. (B) The distributions of marginal coefficients of determination (marginal R2) for models explaining 
the change in Acropora cover using different explanatory variables: marine province of the survey site (Spatial 
Autocorrelation), maximal heat stress measured between surveys (Max-DHW btw. surveys), maximal historical 
heat stress (Max-DHW since 1985), and expected frequency of heat-adaptive genotypes––derived from the 
environmental genomic model. Gray lines represent marginal R2 estimations from distinct jackknife subsamples. 
(C) The model with the highest marginal R2 from (B): the relative change in Acropora cover is represented as a 
function of maximal heat stress between surveys for sites with different expected frequencies of heat-adaptive 
genotypes (red: 0–0.42%, orange: 0.42–0.52%, yellow: 0.52–0.63; green: 0.63–1). Plot symbols correspond to 
marine provinces of survey site [as displayed in (A)]. The shaded areas show the confidence intervals of the 
regression lines. Background map was produced using the Global Relief Model from NOAA (ETOPO 202229) 
and the Global Distribution Map of Coral Reefs from the UNEP World Conservation Monitoring Center30. 
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Acropora heat adaptation and genomic vulnerability under future climate  
 

Global predictive models of coral decline and real-time detection of coral bleaching are 
primarily guided by remote sensing of sea surface temperature13, and do not yet account for the past 
local evolutionary adaptation and genetic differences between corals from different reefs. As 
Acropora is a geographically widespread reef-building coral taxa (Fig. S14)53, we used our 
environmental genomic model to project the spatial distribution of candidate heat-adaptive genotypes 
at worldwide scale under both present and forecasted heat stress (Fig. 4). The projections spanned 
2010-2040 and were based on global DHWmax-time series, with forecasts predicted using a 
combination of five climate change models under a moderate emission scenario (SSP2-4.5; similar 
results under a high emission scenario, see Text S9; Fig. S16)54. We then computed a year-by-year 
categorization of reefs worldwide by heat exposure and probability of heat adaptation. We classified 
reefs as severely heat exposed when their annual DHWmax exceeded 8°C-week33, and as 
non-heat-adapted when their expected frequency of heat-adaptive genotypes was below 70%–––as 
suggested by the Acropora cover change analysis (Fig. 3C). Non-heat-adapted reefs that were 
severely heat-exposed were deemed to be under genomic vulnerability. 

The global proportion of reefs experiencing severe heat exposure is expected to rise sharply 
under future climate, whereas genomic vulnerability is predicted to increase until around 2030, after 
which it will stabilize (Fig. 4C). During 2020-2024, for example, 37% of the reefs worldwide were 
projected to be severely heat-exposed, with 67% of these reefs (25% globally) classified under 
genomic vulnerability (Fig. 4A). The regions projected with highest proportions of genomic 
vulnerable reefs were the Caribbean (75%) and the Red Sea (67%). By 2036-2040, the global fraction 
of reefs under severe heat exposure is expected to reach 72%, with about 51% of these reefs (37% 
globally) under genomic vulnerability (Fig. 4B). Importantly, a considerable fraction of global reefs 
(27%) was forecasted with thermal conditions beyond the predictable range of our environmental 
genomic model, making regional projections in the Red Sea, the Persian Gulf, the Caribbean 
unattainable. Among the predictable regions, the Western Indian Ocean  showed the largest proportion 
of reefs under genomic vulnerability (92%). These projections suggest that although more coral reefs 
will be exposed to heatwaves in the coming decade, Acropora adaptive potential from pre-existing 
presumably adaptive genotypes could keep pace with forecasted heat stress in most of the 
Indo-Pacific––at least until 2040. 

While encouraging, these results should not suggest that coral reefs will remain unaffected in 
the coming years. In heat-exposed Acropora, selection for thermally tolerant colonies will likely 
involve widespread mortality and recolonisation from a few remnant populations, as observed 
recently in Caribbean Acropora palmata55. Such turnover is likely to disrupt reef ecosystem functions, 
especially if other reef-building taxa respond similarly to Acropora. Moreover, further research is 
needed to determine whether local adaptation can happen under heat stress levels that exceed those 
observed globally today. In this regard, the only reliable solution to maintain healthy coral reefs in the 
long term is to limit heat stress increase by reducing carbon emissions56. 
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Fig. 4 | Present and future projections of genomic vulnerability across global reefs. 
(A) Global map of coral reefs colored by expected frequency of heat-adaptive genotypes based on heat stress 
before 2020 (0–50%: red, 50–70%: yellow, 70–100% green). The intensity of colors represents the intensity of 
heat stress [maximal Degree Heating Week (DHWmax)] during 2020–2024 (low: <4°C-week, significant: ≥4 and 
<8°C-week, severe: ≥8°C-week). In grey, reefs exposed to heat stress levels beyond the predictable range of the 
environmental genomics model. (B) Global map of expected frequency of heat-adaptive genotypes based on 
heat stress before 2035. Intensity of colors represent the intensity of forecasted heat stress during 2036-2040. 
(C) Year-by-year projected proportions of reefs exposed to severe heatwaves (top graph), of reefs with an 
expected frequency of heat-adaptive genotypes above 70% (middle graph) and of reefs under genomic 
vulnerability (i.e., reefs exposed to severe heatwaves and having an expected frequency of heat-adaptive 
genotypes below 70%; bottom graph). Full lines represent projections from past heat stress data, and dotted lines 
from forecasted heat stress under a moderate climate change scenario (SSP2-4.5)54. Shaded areas in the 
background display the range of projections across ten oceanic regions. (D) Estimated mutations-area 
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relationship (MAR) of the Acropora populations (black line, shaded area as interval of confidence). Points 
represent the genetic diversity loss by area loss, as observed in stochastic simulations of extinction. Solid arrows 
indicate the proportion of global reef area at risk of extinction according to heatwave exposure (blue) and 
genomic vulnerability (purple)–––based on 2020-2024 projections. For these potential losses of reef area, 
dashed lines indicate the corresponding genetic loss. (E) Proportion of reefs with expected frequency of 
heat-adaptive genotype above 70% inside (black) and outside (grey) marine protected areas (MPA), globally and 
by oceanic region (genotype frequencies predicted in 2024).  Background map was produced using the Global 
Relief Model from NOAA (ETOPO 202229) and the Global Distribution Map of Coral Reefs from the UNEP 
World Conservation Monitoring Center30. 
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Loss of genetic diversity in Acropora under global change 
 
Future adaptation to the unprecedented heat forecasted after 2040 will likely be fueled by 

standing genetic diversity. However, the high mortality induced by some extreme heatwaves might 
cause the loss of entire Acropora populations and the erosion of associated genetic diversity. 
Consequently, Acropora might enter a feedback loop that prevents further adaptation and increases 
population extinction risk57. To estimate the amount of Acropora genetic diversity at risk by reef area 
loss, we used the mutations-area relationship (MAR) framework25, which characterizes the scaling 
relationship between the number of genetic variants (SNPs) and geographical range across the six 
Acropora datasets (Text S10). We first applied the MAR framework to each of the six Acropora 
datasets (Fig. S17), and then used a linear mixed model to summarize scaling mutation-area 
relationships across species (Fig. S18). Validated through stochastic simulations under different 
extinction scenarios (Fig. S20), this scaling relationship was summarized in an Acropora zMAR 
parameter of 0.31 that can be used to predict the percentage of Acropora genetic diversity at risk by 
reef loss  (95% CI = [0.20, 0.42]) (Fig. S20). For example, during 2020–2024, the global proportion 
of severely heat-exposed reefs was 37%, a reef area estimated to harbor 13% of the global Acropora 
genetic diversity. Accounting for genomic vulnerability, the proportion of at-risk reefs for the same 
period is reduced to 25%, corresponding to an instantaneous loss of 8% of the global Acropora 
genetic diversity. These results suggest that quantifying the spread of heat-adapted corals under future 
heat will be key for accurately estimating genetic loss and anticipating long-term coral decline.  

 
 

Conservation strategies for heat-adapted corals   
 

Our temporal projections suggest that approximately three quarters of the reefs classified as 
putatively heat-adapted in 2024 originate from heatwave selection events experienced after 2015 
(Fig. 4C), meaning that such reefs may still be recovering reef cover after the recent loss of unadapted 
corals. However, this recovery might be hampered by local stressors (e.g., destructive fishing or 
coastal development58,59). We therefore compared the 2024 projected distribution of heat-adapted reefs 
with worldwide proxies of human pressure on reefs—such as the Human Pressure Index (HPI)58 and 
maps of marine protected areas60. At global scale, heat-adapted reefs were less exposed to local 
human stressors than non-heat-adapted ones (∆HPI = –0.076, 95% CI = [–0.080, –0.071], ANOVA 
P < 2.2 x 10-16; Fig. S22A), and their proportion was significantly higher inside MPAs (26%), 
compared to outside (17%; Chi-square test P < 2.2 x 10-16; Fig. 4E). Some regions differed from this 
global trend: heat-adapted reefs were less protected in the Persian Gulf, and as protected as 
non-heat-adapted reefs in Australia, East Asia, South Asia (Fig. 4E). Heat-adapted reefs may be the 
most likely to survive future climate change and thus should be a priority for protection from human 
impacts by global reef conservation efforts. Recent research proposed that coral conservation efforts 
should focus on a portfolio of climate refugia (i.e., reef regions escaping heatwaves and cyclones, and 
with a strong potential for larval dispersal)61. As these refugia are by definition regions not impacted 
by climate change, heat-adapted coral reefs are drastically underrepresented in the climate refugia 
portfolio (7% heat-adapted reefs inside refugia compared to 27% outside of refugia; Fig. S22C). Our 
results solidify the notion that evolutionary adaptation is a key component to understanding global 
change-driven risks and reef losses. Because adaptation depends on standing genetic diversity, it is 
essential not only to protect heat-adapted genotypes but also to conserve a broad genetic diversity 
portfolio to support future adaptive potential. We thus advocate that reef conservation priorities should 
include indicators of coral genomic vulnerability and genetic diversity loss.  
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Methods 
  
A visual summary of methods and data used is shown in Figure S1. 
 
 
Datasets selection 
 
We identified genomic datasets from NCBI meeting the following criteria: (1) genotyped at least 50 
individual Acropora colonies; (2) genotyped colonies collected from at least five distinct sampling 
locations; (3) sampled locations precisely geo-located and spread across a spatial range of at least 100 
km; (4) collected during a temporal window of a maximum of two years; (5) genotyped via high 
throughput sequencing techniques (whole genome sequencing or restriction sites associated DNA 
sequencing). We identified seven datasets meeting these criteria: PRJNA593014 (Acropora millepora 
from central Australian Great Barrier Reef - GBR)9, PRJNA702071 (Acropora millepora from New 
Caledonia)5, PRJNA665778 (Acropora cervicornis from the Florida Reef Tract)21,62, PRJDB4188 
(Acropora digitifera from the Ryukyu Archipelago, Japan)20, PRJEB37470 (Acropora tenuis from the 
central GBR)10, PRJNA434194 (Acropora millepora from the GBR)22, PRJNA750412 (Acropora 
downingi from the Persian Gulf)19. Detailed information on the datasets is reported in Table S1A. 
 
 
Sequencing reads quality filtering, mapping  and SNPs calling 
 
Raw sequencing reads from each of these seven datasets were downloaded using the fastq-dump tool 
(SRA toolkit, v. 3.0.0) from the SRA database63. We analyzed the quality of raw sequencing reads 
from every dataset using FastQC (v. 0.11.9)64 and performed read trimming and adapters clipping 
using Trim Galore (v. 0.6.1)65. Trimmed sequencing reads from every dataset were then mapped to the 
chromosome-level assembly of Acropora millepora (NCBI Refseq: GCF_013753865.1; v. 2.1)9. Read 
mapping was performed using NextGenMap (v. 0.5.2)23, a software designed for the alignment of 
reads even under substantial divergence between the query and the reference genome (e.g., the 
reference genome of a different species). We ran NextGenMap using the default settings, and then 
evaluated the mapping statistics using Samtools (v. 1.15.1; Fig. S2B)66. 
Aligned reads from every dataset were processed using tools from the ANGSD suite (v. 0.938)24. 
First, we estimated the genotype likelihood of polymorphic loci (P threshold of 10-6) using the GATK 
model67, then we computed the posterior genotype probabilities and called hard genotypes for biallelic 
single nucleotide polymorphisms (SNPs, probability calling threshold: 95%). For every dataset, we 
investigated the distribution of variant sites along the genome by counting the number of SNPs per 50 
kbs genomic windows. The  low coverage WGS Acropora millepora dataset from central GBR9 
showed a highly heterogeneous distribution of SNPs across the genome and was excluded from 
downstream analyses (Fig. S3). The number of variant sites yielded by the four RADseq datasets was 
substantially lower (9,303 to 64,947 SNPs per dataset), compared to WGS datasets (A. tenuis: 1.3 M 
SNPs, A. digitifera: 23 M SNPs). To facilitate downstream comparisons between datasets, we reduced 
the WGS datasets to 100,000 SNPs using a custom Python script that applied a stratified subsampling 
of SNPs across the genome. Detailed statistics of sequencing read filtering and SNP calling are 
reported in Fig. S2 and Table S1B. 
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Genotype matrices filtering 
 
We removed outlier samples from every dataset using a three-step procedure. The first step focused on 
identifying outliers based on sequencing and alignment statistics (i.e., number of reads, percentage of 
mapped reads, genome coverage, sequencing depth, base quality score, mapping score, number of 
duplicate reads and GC content; Fig. S2, Fig. S4). The second step of the filtering procedure was 
based on a PCA of the genotype matrices (Fig. S5), aiming to identify groups of outliers that might 
correspond to groups of genetically isolated individuals (e.g., cryptic species, isolated reefs). In the 
third step of the filtering procedure we filtered out highly correlated samples (R>0.9; Fig. S9), which 
might correspond to clones. Table S1B summarizes the number of outliers samples filtered out at 
every step. 
Pairwise nucleotide diversity (π) was calculated for every sampling site (minimum number of samples 
per site >5) using ANGSD, focusing on 10 kbs genomic windows having reads in at least 3 datasets. 
We then used a generalized random factor model (R-package glmmTMB, v. 1.1.2)68 to describe 
nucleotide diversity while accounting for variation across datasets, sampling sites and genomic 
windows. Rarefied allelic richness was calculated on the filtered genotype matrices using the 
R-package hierfstat (v. 0.5)69. 
We evaluated the degree of genetic relatedness among samples from all datasets using a two step 
approach.  First, we retrieved the number of SNPs shared between any pair of datasets (median 
number of shared SNPs: 45 [IQR=30], Fig. S4). Second, we computed the genetic distance between 
samples from all datasets–––i.e., the percentage of non-identical genotypes across the shared SNPs ( 
Fig. S4). The genetic distance across all samples was then summarized in a principal coordinate 
analysis (PCoA) (Fig. 1A). Finally, we assessed how geography, taxonomy and dataset explained the 
variation across the genetic PCoA axes (Table S2) using linear mixed models in the glmmTMB R 
package (v. 1.1.2)68. 
 
 
Environmental data 
 
We characterized heat stress gradients by processing three environmental variables from the Coral 
Reef Watch (CRW)33: maximal annual Sea Surface Temperature, maximal annual Degree Heating 
Week (DHW) and mean annual Sea Surface Temperature Anomaly (SSTA). These variables are 
commonly used to explain geographical patterns of coral bleaching and decline49,50,70. DHW represents 
the accumulation of thermal stress (i.e., temperature >1°C above the climatological maximal mean 
temperature) over a 12-weeks period. DHW above 4°C-week is associated with significant coral 
bleaching, and DHW above 8°C-week with severe, widespread bleaching71. SSTA is the difference 
between SST measured at a given reef on a specific day of the year, and the reef’s climatological SST 
for that day of the year. For every sampling site in the genomic datasets, we extracted the year-by-year 
values of the three CRW variables from 1985 until the year of sampling. We then summarized the 
temporal trends of these variables using a total of eight statistics: 
-  For SST, we calculated the overall temporal average and standard deviation, as well as the average 
rate of SST change per year. 
- For DHW, we calculated the overall temporal average and maximum value, and the frequency of 
years with a DHW>4°C-week. 
- For SSTA, we calculated the overall temporal average and standard deviation. 
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In addition to these long-term environmental descriptors, we created a set of short-term descriptors by 
applying the same calculations on a temporal window of ten years prior to sampling. The variation of 
the eight long-term and eight short-term variables across datasets is shown in Figure S8.  
 
Genotype-environment association analyses 
 
Genotype-environment association (GEA) analyses were run using a two-step framework. This 
framework was repeated independently for each of the 16 variables characterizing historical patterns 
of heat stress, as described below. In the first step we ran GEA analysis within each dataset. We first 
applied standard filters to the genotype matrices to remove SNPs with rare allelic variants (minor 
allele frequency < 5%), SNPs with one genotype having very high frequency (major genotype 
frequency > 95%), and we also discarded SNPs and samples with high missing rates (>20%; Fig. S9). 
The GEA analysis was then run using the Latent Factors Mixed Models approach (LFMM)31. The 
optimal number of latent factors was estimated for every dataset using the SNMF function of the LEA 
R package (v. 2.8.0; 5 repetitions, optimal number of latent factors reported in Table S1C, Fig. S10)72. 
We then used the impute function of the LEA package to impute missing SNPs in the genotype matrix 
of every dataset. Finally, we associated SNPs variation across individuals with heat stress variables at 
sampling sites using the lfmm function of the lfmm R package (v. 1.1)31. In the second step of the 
framework, the results of the GEA analyses were compared between datasets using PicMin17. PicMin 
compared the genome-wide distribution of LFMM-adjusted P (i.e., calibrated to control for genomic 
inflation factor; Tab S1C) across datasets. Specifically, 10-kb genomic windows were ranked in each 
dataset based on their LFMM-adjusted P (with top ranks corresponding to windows containing SNPs 
with low, i.e., significant, P). PicMin then tested for enrichment of top-ranked windows across 
datasets and assigned an enrichment P to each genomic window, which was then corrected for false 
discoveries (q-value method73). Genomic windows with significant overlap were those showing (1) an 
enrichment Q < 0.1 and (2) overlap of significant GEA associations in at least three datasets. 

Validation of GEA on an independent dataset 
 
We retrieved the genotype matrix characterizing central GBR A. millepora, sampled from 12 reefs in 
20179. This genotype matrix includes 6,386,121 SNPs resulting from the genome-wide imputation of 
190 low-coverage samples. We retrieved maximal DHW characterizing past heat stress at every 
sampling site using the methods described in the Environmental Data section. Next, we computed the 
association between SNPs within the 85 overlapping genomic windows and maximal DHW using a 
standard linear regression. Since this A. millepora population did not show particular genetic 
structure9, correction in the GEA analysis was not necessary. We focused on the 85 genomic windows 
with overlapping adaptive signals for DHWmax, and identified the SNP with the lowest GEA P in 
every window. As a comparison, we identified the lowest GEA P in 1,000 randomly selected genomic 
windows of the same size. We finally used a Wilcoxon rank sum test to compare the distribution of 
GEA P in the overlapping windows versus the random windows (Fig. S11). 
 
 
Candidate genes annotation 
 
We retrieved the predicted protein sequences of every gene annotated in the A. millepora reference 
genome and conducted a similarity search (blastp; v. 2.7.1)74 against the Uniprot database75 (as 
accessed on December 1st, 2022). The targets of the similarity search were manually reviewed and 
annotated metazoan proteins (i.e., labeled with status “Swiss-Prot”). We then focused on the 85 
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genomic windows with overlapping adaptive signals for long-term maximal DHW, and identified 
genes located within each window (Table S3). Heat stress expression data for these genes was 
retrieved from an Acropora sp. transcriptomics meta-analysis28 (differential expression threshold: P = 
0.01). Enrichment analysis of gene annotations was performed using the R package SetRank (v. 1.1)35, 
and focused on the Gene Ontology terms describing Molecular Functions. We ran the enrichment 
analysis with a P threshold of 0.05 and a FDR-adjusted P threshold of 0.05 (Table S4). 
 
Environmental genomic model 
 
The environmental genomic model focused on candidate heat-adaptive genotypes from the 85 
genomic windows repeatedly associated with maximal DHW. For each of these genomic windows, we 
first retrieved the SNP the most strongly associated with maximal DHW (i.e., lowest LFMM P), and 
identified the SNP’s genotype that was prevalent at the highest levels of maximal DHW (that is, the 
candidate heat-adaptive genotype). Repeated for every dataset, this procedure identified a total of 288 
candidate heat-adaptive genotypes. For each of these genotypes, we calculated the frequency of 
occurrence by sampling site. Next, we split measurements of maximal historical DHW by five-year 
windows (0-5 years, 5-10 years, 10-15 years, 15-20 years, and 20-25 years before sampling; Fig. 2A). 
We then build the following random forest model: 

  
AGTrgd = rf(d, g, DHWr

0-5, DHWr
5-10, DHWr

10-15, DHWr
15-20, DHWr

20-25) 
  

where: 
- AGTrgd is the frequency of an adaptive genotype from a specific genomic window (g), a specific 
sampling site (r), and a specific dataset (d), 
- rf is the Random Forest function built from the ensemble of decision trees using as predictors the 
dataset (d), the genomic window (g), and time-decomposed DHWmax at the sampling site for 5-year 
temporal windows (DHWr

0-5, DHWr
5-10, DHWr

10-15, DHWr
15-20, DHWr

20-25). 
The model was built on genetic and environmental data from all the Acropora datasets, except the A. 
millepora dataset from the GBR22––which was excluded because sampled in 2002 and therefore not 
allowing us to reconstruct the previous 25 years of heat exposure. We evaluated the predictive power 
of the model using a leave-one-dataset-out cross validation: we iteratively trained the model using 
data from all datasets except one, and estimated the predicted frequency of heat-adaptive genotypes in 
the dataset excluded from the training set. The predictive power was calculated as the mean absolute 
error (MAE) between real and predicted frequencies of adaptive genotypes at every sampling site 
(Fig. 2B; Fig. S7). 
Finally, we investigated whether these models could achieve similar predictive power when built 
using candidate adaptive genotypes identified solely through single genotype-environment association 
studies, without overlap analyses across datasets. To do this, we extracted SNPs associated with 
significant genotype-environment relationships from each dataset, applying three different LFMM 
FDR thresholds (0.01, 0.1, and 0.2). Models built on these SNP sets consistently exhibited 
significantly higher MAE (ANOVA p < 0.01) compared to the random forest model based on 
overlapping adaptive signals (Fig. S12). 
 
 
Linking environmental genomic predictions with Acropora cover change 
 
Acropora cover data across the Indo-Pacific was accessed from the standardized reef surveys of the 
Catlin Seaview project51. We retrieved 166 transects with repeated Acropora cover surveys during the 
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2012-2018 period, spread across 66 distinct reefs from 7 marine provinces [Central Indian Ocean 
Islands (26 transects), Northeast Australian Shelf (64 transects), South China Sea (2 transects), South 
Kuroshio (9 transects), Sunda Shelf (17 transects), Tropical Southwestern Pacific (9 transects), 
Western Coral Triangle (36 transects); Fig. 3A]. For every transect, we then calculated the relative 
change in Acropora cover between the first and the last survey (performed 2 to 5 years apart, 
depending on the region). Using the same methods described in the “Environmental data” section, we 
retrieved year-by-year maximal DHW values since 1985 for every transect site. For every transect 
site, we then calculated: 
(1) the maximal DHW between the years of the first and the last survey, 
(2) the historical maximal DHW between 1985 and the year of the first survey, and 
(3) the 5-years windows time-decomposed maximal DHW for the 25 years before the first survey, 
then converted into the expected frequency of heat-adaptive genotypes using the environmental 
genomic model. 
The variation of Acropora cover over time was assessed using a set of linear mixed models built using 
the R package glmmTMB (v. 1.1.2)68. We first constructed null models where relative change in 
Acropora cover was explained by variables not related to heat stress, such as the number of years 
between surveys, or by random factors characterizing spatial autocorrelation at different geographical 
scales: reef, marine ecoregion, marine province and marine realm76. We then built three alternative 
models including different combinations of heat-related variables (Fig. 3B): 
Model 1)      ​ ACCsrp = ß0 + ß1DHWs + ur + vp 

Model 2)      ​ ACCsrp = ß0 + ß1DHWs + ß2DHWs
past + ß3DHWsDHWs

past+ ur + vp 

Model 3)      ​ ACCsrp = ß0 + ß1DHWs + ß2AGTs
 + ß3DHWs AGTs+ ur + vp 

where: 
- ACCsrp: is the relative change in Acropora cover between at given survey site (s), located on a 
specific reef (r) , and on a specific marine province (p); 
- ß0 is the fixed intercept; 
- ß1DHWs is the effect of recent heat stress–––i.e.,  DHWmax measured between surveys at the sampling 
site (s); 
- ß2DHWs

past is the effect of historical heat stress–––i.e., DHWmax measured between 1985 and the first 
survey at sampling site s; 
-  ß3DHWsDHWs

past 
 is the interaction effect between recent and historical heat stress at sampling site s; 

 - ß2AGTs
  is the effect of the expected frequency of heat-adaptive genotypes at sampling site s; 

-  ß3DHWs AGTs
 
 is the interaction effect between recent heat stress and the expected frequency of heat 

adaptive genotypes at sampling site s; 
-  ur  is the intercept random effect of reef r; 
-  vp is the intercept random effect of marine province p. 
In addition, we built an alternative version of Model 3, where AGT was estimated from candidate 
adaptive genotypes identified as significant SNPs (LFMM FDR < 0.2) in any dataset (without overlap 
analysis).  
The quality of fit of the different models was assessed by using a jackknife resampling approach 
(MuMIn R package, v. 1.43)77 to estimate the distributions of the Akaike Information Criterion (AIC), 
and of the coefficients of determination [marginal (mR2); .i.e., variation explained by fixed factors, 
and conditional (cR2); .i.e., variation explained by fixed and random factors]52. AIC and R2 

distributions were compared across models using the Mann-Whitney-Wilcoxon test78, and are reported 
in Figure S13. The three alternative models showed conditional R² values (~0.3) similar to those of 
the null models, suggesting that incorporating thermal histories and genotype frequencies does not 
provide additional explanatory power for the spatial autocorrelation between reefs and marine 
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provinces. However, the models differed in their marginal R² values, indicating that certain variables 
are better at explaining spatial variability in Acropora cover change. 
 
 
 
 
Global projections of genomic vulnerability 
 
We retrieved the geographical distribution of coral reefs reported to a 5 km2 cells grid79 using the Reef 
Environment Centralized Information System32. We excluded reef cells where Acropora corals are not 
present [according to the Ocean Biodiversity Information System (OBIS), accessed via the R package 
robis (v. 2.11.3)80; Fig. S14]. Past heat stress conditions across the reef cells were characterized using 
the same methods described in the “Environmental Data” section, using Coral Reef Watch maximal 
annual DHW from 1985 to 2024. Future heat stress conditions (2025-2100) were accessed from the 
Coral Reef Bleach Risk Prediction Portal (https://coralbleachrisk.net)54, which provides worldwide 
year-by-year forecasts to 2100 of annual maximal DHW. We extracted reef cells' future DHW 
predictions from a multimodel-averaged forecasts (called “ensemble-5”) under two Shared 
Socioeconomic Pathways (SSP) scenarios: SSP2-4.5 and SSP5-8.5. The environmental genomic 
model was then used to predict year-by-year expected frequency of heat-adaptive genotypes across 
reef cells worldwide. We chose 2010 as the starting year of our projections because the environmental 
genomic model requires 25 years of past heat stress records (CRW data is available since 1985). We 
chose 2040 as the end year for our projections because, by that time, most of the world's reefs are 
expected to experience heat stress levels beyond the range used to train the environmental genomic 
model (Fig. S15). For every year between 2010 and 2040, we calculated: 
(1) the fraction of reef cells exposed to severe heatwaves (annual maximal DHW>8°C-week); 
(2) the fraction of reef cells with a high expected frequency of heat-adaptive genotypes (≥70%, 
hereafter referred to as heat-adapted reef cells); 
(3) the fraction of reef cells under genomic vulnerability (annual maximal DHW>8°C-week and 
expected frequency of heat-adaptive genotypes <70%), and; 
(4) the year-by-year fraction of reef cells that were available for predictions (i.e., reef cells not 
exceeding the model’s DHW training range). 
All these fractions were calculated under both SSP scenarios at global and regional scale (Fig. S16). 
 
 
Mutations area relationship 
 
Mutations-Area Relationship (MAR) were calculated using the methods described in Exposito-Alonso 
(2020)25, applied separately to the six Acropora datasets. In brief, the raw genotype matrix was 
preliminarily filtered for missing observations (filtering threshold:  20%, by individual and by SNP; 
Table S1D)–––but not for allele frequencies. Focusing on 100 randomly selected SNPs from the 
genotype matrix, we repeated 50 times a subsampling procedure that consisted in: 
(1) drawing a square of random size across the spatial range of the dataset, 
(2) retrieving the sampling sites falling within this square region, and 
(3) calculating the number of mutations across the colonies from such sampling sites. 
The subsampling procedure was then replicated with ten different subsets of SNPs, yielding at total of 
500 subsamples per dataset (Fig. S7). We then summarized the mutation-area scaling across datasets 
using the following a Bayesian linear mixed model [R-package MCMCglmm (v. 2.30)81]: 
  

log(M)dgs = ß0 + zMARlog(A)s + tSDd + ud + vg + ws 

19 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 11, 2025. ; https://doi.org/10.1101/2024.03.25.586253doi: bioRxiv preprint 

https://paperpile.com/c/dpqA4e/tfes9
https://paperpile.com/c/dpqA4e/o7DHT
https://paperpile.com/c/dpqA4e/xABxx
https://coralbleachrisk.net/
https://paperpile.com/c/dpqA4e/czuM
https://paperpile.com/c/dpqA4e/kRSqR
https://paperpile.com/c/dpqA4e/UrViB
https://doi.org/10.1101/2024.03.25.586253
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

  
where: 
- log(M) is the mutations count in the spatial subsample (s) of a given dataset (d), under a given 
genomic subsample (g); 
- ß0 is the fixed intercept; 
- zMARlog(A) is the effect of the log-transformed area of the spatial subsample (s) on the mutations 
count; 
- tSDd is the effect of the mean sequencing depth of the dataset (d) on the mutations count; 
- ud  is the intercept random effect of the dataset (d); 
- vg  is the intercept random effect of genomic subsample (g); 
- ws is the intercept random effect of the geographic position of the spatial subsample (s). 
We then corrected the estimated Acropora zMAR for the potential bias due to uneven number of 
sampling sites between datasets. This correction was performed using a rarefaction analysis in the 
nlme R-package (v. 3.1)82 (see Supplemental Text 1; Fig. S20). We used the corrected zMAR to estimate 
theoretical rates of Acropora genetic loss by reef habitat loss. To validate these theoretical predictions, 
we computed stochastic simulations of extinction, where sampling locations were progressively 
removed from every dataset following distinct spatial patterns (Fig. S21). The validated Acropora zMAR 
was then used to estimate the potential genetic loss at reefs at risk of local extinction, according to the 
2020-2024 projections of genomic vulnerability (Fig. 4A). 
 
 
Linking genomic vulnerability with global conservation 
 
Reef-cells from our global projections were compared with a set of global descriptors of reef 
conservation status: 
- The local human pressure on coral reefs (HPI), previously estimated by Andrello and colleagues58. 
- The global distribution of Marine Protected Areas from the World Database of Protected Areas60 

- The global portfolio of proposed coral reefs climate refugia61. 
Focusing on reefs with high probability of heat-adaptation according to our 2020 projections, we 
evaluated the variation of HPI (analysis of variance) and compared the proportion of reefs inside and 
outside Marine Protected Areas and climate refugia (Chi-square test; Fig. S22). 
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