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Abstract1

Diverse types of GABAergic projection neurons and interneurons of the telencephalon2

derive from progenitors in a ventral germinal zone, called the ganglionic eminence.3

Using single-cell transcriptomics, chromatin accessibility profiling, lineage tracing,4

birthdating, heterochronic transplantation, and perturbation sequencing in mouse5

embryos, we investigated how progenitor competence influences the maturation and6

di�erentiation of these neurons. We found that the progression of neurogenesis over7

developmental time shapes maturation competence in ganglionic eminence progenitors,8

influencing how they progress into mature states. In contrast, di�erentiation competence,9

which defines the ability to produce diverse transcriptomic identities, remains largely10

una�ected by the stages of neurogenesis. Chromatin remodeling alongside a NFIB-11

driven regulatory gene module influences maturation competence in late-born neurons.12

These findings provide key insights into how transcriptional programs and chromatin13

accessibility govern neuronal maturation and the diversification of GABAergic neuron14

subtypes during neurodevelopment.15

Introduction16

The development of diverse neuronal types is orchestrated with temporal, spatial, and numerical17

precision (Bandler and Mayer, 2023). It depends on the competence of neuronal progenitor cells,18
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regulated by gene regulatory programs that govern cell di�erentiation and maturation (Bonnefont19

and Vanderhaeghen, 2021; Farnsworth and Doe, 2017). This study dissects two key aspects20

of progenitor competence: maturation competence and di�erentiation competence (Fig. 1a).21

Maturation competence, as defined here, refers to the potential of progenitors to generate postmitotic22

progeny with di�erent maturation states. Di�erentiation competence describes the potential of23

progenitors to produce a diverse array of neuronal types, each characterized by di�erent gene24

expression profiles. How these facets of progenitor competence are regulated and coordinated25

during neurogenesis remains an important question in neuronal development.26

Excitatory neurons of the mammalian cerebral cortex are developmentally derived from27

proliferative zones in the dorsal telencephalon (Puelles et al., 2000). During neurogenesis, the28

competence of progenitors that give rise to excitatory neurons changes over time, influencing the29

sequence of neuronal di�erentiation events and guiding these neurons toward their final fate (Di Bella30

et al., 2021; Telley et al., 2019; Vitali et al., 2018). Less is known about how mitotic progenitor31

competence regulates the development of inhibitory neurons, which originate from the ganglionic32

eminences (GE) in the ventral telencephalon (Wonders and Anderson, 2006; Gelman et al., 2011;33

Anderson et al., 2001). During neurogenesis, mitotic progenitors in the ventricular zone (VZ) of the34

GE divide to produce postmitotic precursors. These precursors begin to mature and di�erentiate35

in the GE, and these processes continue as they migrate to di�erent regions of the telencephalon36

and integrate into neuronal circuits. While there has been progress in correlating gene expression37

dynamics with chromatin accessibility (Allaway et al., 2021; Fleck et al., 2021; Janssens et al., 2021;38

Gonzalez-Blas et al., 2023), the impact of mitotic progenitor competence on the di�erentiation and39

maturation of inhibitory neurons remains poorly understood.40

Here, we explored the role of progenitor competence in forebrain inhibitory neuron development41

using a range of techniques, including FlashTag (FT) birth labeling (Govindan et al., 2018),42

perturbation sequencing (Dvoretskova et al., 2024), and single-cell lineage analysis (Bandler43

et al., 2022). We show that, in contrast to progenitors in the cortex, progenitors in the GE44

maintain their competence to generate a consistent set of postmitotic cell states, as demonstrated45
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by lineage tracing and the comparisons of isochronic cohorts of early and late-born inhibitory46

neurons. However, early and late born cohorts di�er in the progression rate at which they move47

through maturation. These stage-specific di�erences originated from variations in chromatin48

accessibility profiles, as demonstrated by enhancer-driven gene regulatory networks (eGRNs).49

NFIB emerged as a key transcription factor (TF) in regulatory gene modules active in late-born50

progenitors, likely driving the observed changes in competence, as confirmed by perturbation51

sequencing and cleavage under target and release under nuclease (CUT&RUN) experiments. Finally,52

heterochronic transplantations revealed that maturation competence is influenced by the extrinsic53

environment. An interactive web-based resource is available for exploring scRNA-seq, scATAC-seq,54

and eGRN datasets, including comparisons between the GE and dorsal cortical neurogenesis55

(http://141.5.108.55:3838/mind_shiny/). Our findings demonstrate that both maturation56

and di�erentiation competence of progenitors are key determinants of neuronal development, with57

distinct roles in shaping dorsal and ventral neuronal lineages.58

Results59

To investigate how progenitor competence influences neuronal maturation and di�erentiation in60

GABAergic lineages, we analyzed neuronal populations generated at di�erent stages of neurogenesis61

(embryonic day (e) 12.5–e16.5) using distinct approaches, including scRNA-seq (¢), barcode lineage62

tracing (N) (Bandler et al., 2022), and fluorescent birthdating (⌅; Fig. 1a,b, Extended Data Fig. 1a,b,63

Supplementary Fig. 1a,b) (Govindan et al., 2018).64

For scRNA-seq (¢), we collected embryos from Dlx5/6-Cre::tdTomato mice at e12.5, e14.5,65

and e16.5, in which GABAergic neurons are labeled with a fluorescent reporter (Monory et al.,66

2006). From the same brains, cortical and striatal regions were manually dissected, dissociated67

and tdTomato-positive (tdTomato+) cells were enriched by fluorescence-activated cell sorting68

(FACS). Cells from the GE (without FACS enrichment) and tdTomato+ cells from the cortex and69

striatum (with FACS enrichment) were pooled to capture developmental states ranging from mitotic70

3

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2024.03.18.585524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.18.585524
http://creativecommons.org/licenses/by-nc-nd/4.0/


progenitors to postmitotic precursors and subjected to scRNA-seq (Extended Data Fig. 1c).71

For barcode lineage tracing (N), we devised a published method called TrackerSeq, which uses72

heritable DNA barcodes to label individual progenitors and their progeny followed by multiplexed73

scRNA-seq (Bandler et al., 2022; Dvoretskova et al., 2024). We targeted progenitors in the GE at74

e16.5 with TrackerSeq plasmids via in utero electroporation (IUE), FACS-enriched electroporated75

cells 96 h later, and performed scRNA-seq (TrackerSeqe16.5 + 96h). In our analysis, we also included76

a published TrackerSeq dataset, in which TrackerSeq plasmids were electroporated at e12.5, and77

the targeted cells were collected 96 h later (TrackerSeqe12.5 + 96h; Extended Data Fig. 1d)(Bandler78

et al., 2022). For birthdating (⌅), we used a technique called FlashTag (FT), which labels isochronic79

cohorts of cells with the fluorescent dye carboxyfluorescein succinimidyl ester (CFSE) (Govindan80

et al., 2018). In this method, mitotic cells layering the ventricle are labelled during the M phase of81

the cell cycle and maintain high fluorescence when leaving the cell cycle.82

We injected CFSE into the ventricles of e12.5 and e16.5 wild-type embryos. Six hours later, we83

anatomically dissected the GE, FACS enriched FT labelled (FT+) cells and performed scRNA-seq84

(FTe12.5 + 6h and FTe16.5 + 6h respectively) (Extended Data Fig. 1e). At the same time point, coronal85

sections revealed CFSE+ cells in the VZ and subventricular zone (SVZ) (Govindan et al., 2018),86

representing isochronic cohorts transitioning through mitotic progenitor, intermediate progenitor87

(Ascl1), and postmitotic precursor stages (Gad2), as shown by RNAscope (Extended Data Fig. 1f-h).88

We also injected CFSE into the ventricles of e12.5 Dlx5/6-Cre::tdTomato mouse embryos, allowing89

for the collection of inhibitory neurons 96h post-injection from anatomically dissected cortical and90

striatal tissue following their migration. TdTomato+ and FT+ cells were enriched by FACS and91

scRNA-seq was performed (FTe12.5 + 96h; Extended Data Fig. 1e-h).92

We pre-processed and merged datasets from all three methods (¢, N, ⌅), using Seurat (Stuart93

et al., 2019), aligned the batches using Monocle3 (Trapnell et al., 2014; Haghverdi et al., 2018), and94

projected the data into a low-dimensional UMAP space (Fig. 1c). We then performed clustering95

(Fig. 1d, Extended Data Fig. 2a,b) and trajectory analyses using Monocle3 (Extended Data Fig. 2c),96

which learns the sequence of gene expression changes and uses a di�usion pseudotime algorithm97
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to identify developmental trajectories. Consistent with previous work, clusters, and trajectories98

represented a continuum of cell state transitions during cellular maturation and di�erentiation99

(Extended Data Fig. 2d) (Mayer et al., 2018; Bandler et al., 2022; Lee et al., 2022; Rhodes100

et al., 2022; Lim et al., 2018). We manually annotated clusters based on marker gene expression,101

identifying them as mitotic apical progenitors (APs; Fabp7), mitotic basal progenitors (BPs; Fabp7,102

Ccnd1, Top2a, and Ube2c), GABAergic projection neuron precursors (PNs: Abracl, Tshz1, Six3,103

Gucy1a3, Ebf1, and Isl1), and GABAergic interneuron precursors (INs: Nkx2-1, Npy, Maf, Sst, and104

Snhg11; Fig. 1d; Extended Data Fig. 2e). After cell cycle exit, a common trajectory diverged, giving105

rise to distinct precursor states of PNs and INs. Each of these trajectories underwent subsequent106

divisions, resulting in multiple postmitotic precursor states that have been shown in previous studies107

to be linked to adult cell types (Mayer et al., 2018; Bandler et al., 2022) (see Methods) (Extended108

Data Fig. 2e,f; Supplementary Fig. 2a,b).109

To dissect neuronal maturation and di�erentiation during early stages of development, we first110

explored the scRNA-seq (¢) data in our combined single cell trajectory (Fig. 1e) and calculated the111

sequential patterns of gene expression along the Monocle3 pseudotime trajectory. Surprisingly, the112

dynamic expression of TFs along the pseudotime trajectory was highly conserved across di�erent113

stages of neurogenesis (e12.5, e14.5 and e16.5; Supplementary Fig. 2c).114

The di�erentiation competence di�ers between dorsal and ventral lineages115

The identified developmental progression di�ers from dorsal lineages (Di Bella et al., 2021; Telley116

et al., 2019). To investigate this, we focused on di�erences in neurogenesis between dorsal and ventral117

lineages. We merged and aligned the scRNA-seq (¢) datasets and published data of GABAergic118

neurons from e13.5 and e15.5 (Bandler et al., 2022) and glutamatergic neurons from e12.5 to119

e16.5 (Di Bella et al., 2021) using Monocle3 (Fig. 1f, Supplementary Fig. 3a). In the UMAP120

representation, dorsal and ventral lineages overlapped at the level of APs but separated into distinct121

trajectories at the stage of BPs and postmitotic precursors (Supplementary Fig. 3b) (Moreau et al.,122

2021). When comparing successive developmental stages, cells of the dorsal lineage showed a123
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sequential shift in the UMAP positioning, consistent with findings from previous studies (Telley124

et al., 2016; Di Bella et al., 2021). In contrast, cells of the ventral lineage largely overlapped across125

developmental stages (Fig. 1f). We identified genes associated with the emergence of inhibitory126

and excitatory neurons by selecting dynamic genes across pseudotime in the two lineages (see127

Methods). Only few genes overlapped between inhibitory and excitatory lineages, primarily at the128

initial pseudotime scores (Supplementary Fig. 3c,d; Supplementary Fig. 4a–d).129

To quantify the temporal progression of dorsal and ventral progenitors, we calculated Pearson130

correlation coe�cients between APs from each group, using highly variable genes (see Methods).131

Ventral progenitors showed higher correlation coe�cients between successive stages of neuroge-132

nesis than dorsal progenitors, indicating less change in their gene expression profiles (Fig. 1g;133

Supplementary Fig. 3e). Furthermore, di�erential gene expression analysis of ventral progenitors134

across stages revealed that only a few genes were upregulated at later stages of neurogenesis135

(Supplementary Fig. 5a). Genes that were downregulated at later stages were primarily related to136

self-renewal (Supplementary Fig. 5a,b), in line with a change in balance between cell proliferation137

and di�erentiation during neurogenesis (Götz and Huttner, 2005). Next, we annotated postmitotic138

cells based on marker gene expression (ventral lineage) or published data (dorsal lineage) and139

quantified the proportion of cells in postmitotic precursor states across di�erent developmental140

stages (Supplementary Fig. 5c). While the relative distribution of precursor states was similar141

across stages in ventral cells, it sequentially shifted in dorsal cells (subcerebral PN (SCPN) !142

corticothalamic PN (CThPN) ! deep-layer callosal PN (DL CPN) ! upper-layer callosal PN143

(UP CPN); Fig. 1h). Furthermore, we observed a similar trend when using fine-grained cluster144

annotation, that was inferred from the integrated dataset (Supplementary Fig. 5d,e).145

In dorsal progenitors of the cortical VZ, bioelectrical processes have been shown to coordinate146

the temporal progression of developmental competence, despite these cells being nonexcitable147

(Vitali et al., 2018). Using whole-cell patch-clamp recordings in e12.5 to e15.5 cortical slices, Vitali148

et al. revealed a progressive membrane hyperpolarization over this period, regulating the timing of149

AP competence and associated neuronal diversity. To test whether a similar membrane potential150
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progression occurs in VZ progenitors of the GE, we conducted whole-cell patch-clamp recordings151

from both cortical and GE progenitors at e13.5 and e15.5 (Fig. 1i). Our recordings confirmed the152

hyperpolarization in dorsal progenitors observed by Vitali et al., while the membrane potential of153

ventral progenitors in the GE remained stable between e13.5 and e15.5 (Fig. 1j, Supplementary Fig.154

6a), highlighting a di�erence in developmental regulation between these regions.155

Taken together, our findings reveal several marked di�erences between dorsal and ventral156

progenitors. While dorsal progenitors exhibit a temporal progression in di�erentiation competence157

and undergo hyperpolarization, ventral progenitors show more stable di�erentiation competence and158

unvaried membrane potential throughout neurogenesis, with GABAergic precursor states generated159

independently of developmental stages.160

Clonal divergence is maintained across neurogenesis161

Our results so far suggest that, at the population level, progenitors in the GE can give rise to a162

similar set of precursor states throughout neurogenesis. To investigate whether the clonal progeny163

of individual progenitors can diverge into distinct precursor states, we next analyzed the barcode164

lineage tracing (N) data in our combined dataset (Fig. 1k). We selected multicellular clones —165

i.e., clones containing multiple cells derived from a single progenitor — with cells located at the166

branch tips of the Monocle3 trajectory, where branch tips represent distinct developmental endpoints167

of the di�erentiation path (Fig. 1l-n, Supplementary Fig. 7a–d). We then grouped these clones168

based on whether their members were located within a single branch tip (non-dispersing clones) or169

across multiple branch tips (dispersing clones). Consistent with previous studies, a subset of the170

TrackerSeqe12.5 + 96h clones dispersed into multiple branch tips (Bandler et al., 2022; Dvoretskova171

et al., 2024). Notably, a similar proportion of dispersing clones was found in TrackerSeqe16.5 + 96h172

(Fig. 1m,n,o). The true proportion of dispersing clones is likely higher than observed, as TrackerSeq173

only partially recovers clones due to cell loss during sample preparation (Bandler et al., 2022).174

Clonal resolution enables linking individual mitotic progenitor cells to the fate of their postmitotic175

progeny. We tested whether the transcriptome of mitotic cells correlates with the transcriptome176
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of their postmitotic daughter cells (see Methods). Mitotic progenitor cells from non-dispersing177

clones did not show a stronger correlation with the transcriptomic profiles of their clonal progeny178

compared to randomly selected progenitor cells (Supplementary Fig. 8a–d).179

Overall, the single-cell clonal analysis indicates that progenitor cells maintained a stable level of180

di�erentiation competence throughout neurogenesis, a conclusion that aligns with the results of the181

population-level analysis.182

Maturation dynamics di�er between early and late born neurons183

Next, we examined the maturation and di�erentiation of postmitotic cells at di�erent stages of184

neurogenesis, using the fluorescent birthdating (⌅) data in our combined single-cell trajectory185

(Fig. 2a). FT+ cohorts collected six hours after CFSE application (FTe12.5 + 6h and FTe16.5 + 6h)186

contained mitotic progenitors as well as early postmitotic neuronal precursors. Ninety-six hours187

after CFSE application (FTe12.5 + 96h), FT+ cohorts exclusively contained postmitotic cells (Extended188

Data Fig. 3a), consistent with the notion that FT marks isochronic cohorts of cells that exit the189

cell cycle shortly after CFSE application (Telley et al., 2016; Mayer et al., 2018). The postmitotic190

fractions across all three conditions (FTe12.5 + 6h, FTe12.5 + 96h, FTe16.5 + 6h) included cells from the191

same precursor states, but with di�erences in their relative population sizes (Fig. 2b). The rarity192

of some states in our analysis likely reflects the varying maturation stages of isochronic cohorts193

at the time of capture. For example, cells in the FTe12.5 + 6h cohort appear to be transitioning194

towards branch tips, as indicated by their intermediate positions on the UMAP-embedding (Extended195

Data Fig. 3b). States with a low abundance of cells in a particular cohort shared consistent196

gene-expression profiles with corresponding states in other cohorts (Extended Data Fig. 3c). Next,197

we quantified the Monocle3 pseudotime scores as a proxy for the degree of maturation acquired198

by the di�erent FT+ cohorts. As expected, given its later collection, FTe12.5 + 96h showed higher199

pseudotime scores than FTe12.5 + 6h. Strikingly, the pseudotime score of FTe16.5 + 6h was markedly200

higher than that of FTe12.5 + 6h, even though both were collected after six hours (Fig. 2c). Next, we201

performed a di�erential gene expression (DGE) analysis between postmitotic cells of the six-hour202
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cohorts (FTe12.5 + 6h vs. FTe16.5 + 6h; Fig. 2d). Genes upregulated in FTe16.5 + 6h overlapped with203

those upregulated in FTe12.5 + 96h (Fig. 2e, Extended Data Fig. 3d,e). The intersection analysis of204

cohort marker genes (see Methods) further supported this result, revealing a higher overlap between205

FTe16.5 + 6h and FTe12.5 + 96h marker genes (Extended Data Fig. 3e). These findings suggest that206

late-born neurons reach a similar gene expression profile within six hours as early-born neurons207

within 96 hours. Many of the genes upregulated in FTe16.5 + 6h were associated with the promotion208

of neuronal proliferation and migration (Table S1). Some of these genes were specifically linked209

to neuronal signalling pathways. Overall, our results using FT birthdating suggest that although210

newborn neurons at di�erent stages transition into similar precursor states, the rate and extent of their211

maturation di�er, with late-born neurons maturing more rapidly compared to early-born neurons.212

The observed maturation shift in the production of GABAergic neurons during neurogenesis213

may help adapt newly born neurons to the varying time available for network integration between214

early- and late-born neurons. We tested this hypothesis using electrophysiological recordings at P8,215

but were unable to definitively confirm or disprove it (Supplementary Results Supplementary Fig.216

21 and Supplementary Fig. 22).217

Maturation shift is paralleled by changes in chromatin accessibility218

To explore whether the di�erent maturation dynamics we observed at embryonic stages are associated219

with changes at the chromatin level, we profiled chromatin accessibility using scATAC–seq220

(Buenrostro et al., 2015) on samples derived from FT+ cohorts in the GE (Extended Data Fig. 4a).221

We injected CFSE into the ventricles of e12.5 and e16.5 wild-type embryos, anatomically dissected222

the GE six hours later (FTe12.5 + 6h, FTe16.5 + 6h, respectively), enriched FT+ cells via FACS, and223

performed scATAC-seq (Extended Data Fig. 4b). Following sequencing, we mapped the paired-end224

reads to a reference genome and employed the ArchR framework (Granja et al., 2021) for quality225

control, as well as data processing steps such as dimensionality reduction, clustering and peak226

calling. Cell annotations were determined based on gene body accessibility patterns of cell state227

marker genes (Fig. 2f; Extended Data Fig. 4c,d).228
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In contrast to the scRNA-seq experiments (Fig. 1e), the isochronic cohorts FTe12.5 + 6h and229

FTe16.5 + 6h in the scATAC-seq experiment occupied distinct regions on the UMAP plot, both in230

mitotic and postmitotic cell states (Fig. 2f, Extended Data Fig. 4d). To identify and quantify the231

cis-regulatory elements (CREs) responsible for this separation, we independently conducted peak232

calling on FTe12.5 + 6h and FTe16.5 + 6h. We then categorized the resulting peaks to identify genomic233

sites with e12.5-enriched peaks, e16.5-enriched peaks, and shared sites that were not stage-specific234

(’e12.5-sites’, ’e16.5-sites’, and ’overlapping-sites’, respectively; see Methods; Supplementary235

Fig. 9a). Subsequently, we computed the scATAC-seq fragment distribution and displayed the236

results in coverage plots. At e12.5-sites, we observed higher accessibility in FTe12.5 + 6h than in237

FTe16.5 + 6h. Conversely, e16.5-sites had higher accessibility in FTe16.5 + 6h than FTe12.5 + 6h (Fig. 2g).238

The peak sets were divided by genomic region into promoters, distal, exonic, and intergenic regions239

(Extended Data Fig. 4e). At e12.5-sites and e16.5-sites, distal and intergenic regions represented240

the largest proportion of peaks. Together, this indicates that the chromatin accessibility undergoes241

marked changes between di�erent stages of development, implying a dynamic process of chromatin242

remodeling that predominantly occurs at distal and intronic regions. To further categorize the243

identified sites as poised-active distal regulatory elements, we analyzed the distribution of H3K4me1244

fragments, a well-established enhancer mark (Heintzman et al., 2007), utilizing forebrain ChIP-seq245

data from ENCODE (Gorkin et al., 2020). H3K4me1 profiles closely aligned with chromatin246

accessibility profiles (Fig. 2g). Specifically, e12.5-sites exhibited a stronger H3K4me1 signal at247

e12.5 compared to e16.5, and the contrary was observed for e16.5-sites. These observations suggest248

that distal regulatory elements are potentially maintained in a poised-active state and likely drive the249

stage-specific dynamics in chromatin accessibility.250

To complement our earlier analysis (Fig. 2g) that identified e12.5- or e16.5-enriched sites,251

we performed a di�erential peak analysis (see Methods). This analysis resulted in 11,957 peaks252

di�erentially accessible at e12.5, 14,825 peaks di�erentially accessible at e16.5, and 122,129 non-253

significant peaks (Extended Data Fig. 4f). To visualize changes in chromatin accessibility, coverage254

plots were generated, revealing trends consistent with those observed using the previous peak set255
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(Extended Data Fig. 4g), further validating the stage-specific changes in chromatin accessibility256

between e12.5 and e16.5.257

To explore how the stage-specific accessibility of CREs relates to the maturation process, we258

used ArchR to assign a pseudotime score to cells, capturing their position along the maturation259

trajectory (from APs to BPs to precursor cells; Fig. 2h). We used ArchR to perform peak calling260

along the inferred trajectory and grouped the identified CREs into three main phases based on their261

accessibility profiles along pseudotime: "initial," "intermediate," and "late" CREs, corresponding262

broadly to APs, BPs, and precursor cells. We found more peaks in "initial" CREs at FTe16.5 + 6h263

in respect to FTe12.5 + 6h, suggesting an early opening of additional regulatory elements in e16.5264

progenitors (Supplementary Fig. 9b). To identify associated TFs, we subsequently conducted motif265

scanning on the peaks that were specific to the "initial", "intermediate", and "late" CREs at both266

stages. From this analysis, we identified both common and stage-specific motifs (Fig. 2h). Motifs267

of TFs associated with inhibitory neuron development, such as TCF4, MEIS2, EBF1, and ISL1268

(Supplementary Fig. 2b), were detected at both stages. Conversely, several motifs from the NFI269

family (NFIA, NFIB, NFIC) were linked exclusively to "initial" CREs in FTe16.5 + 6h. The NFI270

TFs are known for regulating key steps during brain development (Zenker et al., 2019b), such as271

neural and glial cell di�erentiation (Bunt et al., 2017), neuronal migration (Heng et al., 2012), and272

maturation (Hickey et al., 2019).273

DNA-binding proteins, like TFs, protect genomic regions from Tn5 integration during scATAC-274

seq sample preparation, creating a measurable "footprint" that indicates the binding patterns of275

TFs on chromatin. These footprints, thus predict the strength of TF binding (i.e. TF activity)276

and binding locations. We conducted a footprint analysis on the FT+ cohorts, using TOBIAS277

(Bentsen et al., 2020), and performed a di�erential binding analysis. Among the di�erential TFs,278

the NFI family demonstrated the most substantial and statistically significant increase of TF binding279

activity in FTe16.5 + 6h (Fig. 2i). To visualize and evaluate this finding, we generated stage-specific280

aggregate footprint profiles for select TFs (Fig. 2j, Extended Data Fig. 4h). NFIX, NFIC, and NFIA281

displayed TF activity only in FTe16.5 + 6h while NFIB displayed TF activity already in FTe12.5 + 6h,282
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which significantly increased in FTe16.5 + 6h (Fig. 2j; Extended Data Fig. 4h). This aligns with the283

gradual increase in gene expression patterns of NFI family TFs observed in the transcriptomic284

data (Supplementary Fig. 9c). Next, to assess whether sites where NFI family TFs bind (footprint285

sites) exhibit dynamic changes in accessibility, we calculated the fragment distribution within these286

regions. Coverage plots displayed a temporal increase in accessibility from FTe12.5 + 6h to FTe16.5 + 6h287

at NFIB, NFIA, NFIC and NFIX footprint sites (Fig. 2k, Supplementary Fig. 9d). Our findings288

suggest a link between specific TFs and the observed chromatin dynamics, underscoring their289

potential role in chromatin remodeling.290

Taken together, these findings demonstrate that isochronic FT+ cohorts exhibit stage-specific291

chromatin accessibility, driven mainly at CREs. Furthermore, the NFI family of TFs plays a crucial292

role in characterizing FTe16.5 + 6h cells based on their expression and early activation of regulatory293

elements.294

NFIB modulates the network underlying maturation competence295

Our analysis of scATAC-seq profiles between FTe12.5 + 6h and FTe16.5 + 6h revealed that CREs, such as296

enhancers, are the primary source of heterogeneity. To infer enhancer-driven regulatory interactions,297

we applied SCENIC+ (Gonzalez-Blas et al., 2023) to integrate scRNA-seq and scATAC-seq data298

from FTe12.5 + 6h and FTe16.5 + 6h. This approach enables the identification of genomic binding events299

(i.e., TFs binding to regulatory sites) and their links to downstream target genes. We grouped cells300

by collection stage (e12.5 and e16.5) and broad states (APs, BPs, and precursors), obtaining six301

groups in total (Extended Data Fig. 10a). After running the SCENIC+ pipeline with standard302

filtering, the resulting eGRN contained 147 TFs that bound on average 168 sites, with each site303

regulating one to three target genes (mean = 1.1; Supplementary Fig. 10b–d). The activity of304

regulatory modules (i.e., expression of TF and associated target genes) was scored in each cell using305

a previously established method (Aibar et al., 2017), and enriched modules for each group were306

identified (Supplementary Fig. 10e). Modules of canonical cell state markers were enriched in their307

respective groups: Hes5, Hes1, and Pax6 modules in APs (Ohtsuka et al., 2001; Thakurela et al.,308
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2016); Ascl1 and Dlx2 modules in BPs (Raposo et al., 2015; Lindtner et al., 2019); and Dlx5 or309

Lhx6 modules in neuronal precursors (Lindtner et al., 2019; Liodis et al., 2007). We also found310

modules exhibiting patterns that were specific to certain cell states or developmental stages. For311

example, Nkx2-1 was active in BPs and precursor states, yet remained restricted to FTe12.5 + 6h. In312

contrast, modules of NFI family TFs were active across all cell states in FTe16.5 + 6h, with the highest313

activity in APs compared to BPs and precursor cells (Supplementary Fig. 10e).314

Next, we inferred active gene regulatory interactions specific to the six groups by filtering the315

eGRNs for modules active in over 50% of cells within each group and applying an additional316

filter on the target genes based on expression level (see Methods). We obtained six subnetworks,317

each containing state and stage-specific modules of active TFs and target genes. We compared318

subnetworks of APs, BPs, and precursors across stages to infer dynamic modules and the regulatory319

interactions between them (see Methods). Specifically, we focused on subnetworks of APs to identify320

modules that maintain or modulate progenitor competence. Modules of canonical inhibitory neuron321

markers like Dlx1, Dlx2, and Arx (Lindtner et al., 2019; Colasante et al., 2015) were maintained322

throughout both stages, whereas modules linked to progenitor self-renewal, like Hmga2, Nr2f1, and323

Nr2f2 (Nishino et al., 2008; Bertacchi et al., 2020), were enriched in e12.5 APs (Fig. 3a). APs324

at e16.5 were characterized by enriched activity of Nfib, together with Nfia, Nfix, Pou3f2, Meis2325

and Tcf4. In line with previous studies, NFIB acts as an upstream regulator of NFIX (Matuzelski326

et al., 2017), but also as an upstream regulator of NFIA, POU3F2, MEIS2, and TCF4 (Fig. 3a). The327

NFIB-led regulatory module was consistently enriched in BPs and precursors at e16.5 (Extended328

Data Fig. 5a-c), suggesting a role of NFIB as a central regulator.329

Of particular interest to us were the interactions between NFIB with MEIS2 and TCF4, which are330

TFs specific to the development of inhibitory PNs and INs, respectively (Su et al., 2022; Wang et al.,331

2022; Dvoretskova et al., 2024). Moreover, these TFs share common direct target genes in di�erent332

cell states of FTe16.5 + 6h (Supplementary Fig. 11a), suggesting combinatorial binding of NFIB333

with TCF4 or MEIS2. To test this hypothesis, we used TFCOMB, a tool for identifying enriched334

TF binding motifs in chromatin accessibility data (Bentsen et al., 2022), to analyze peaks from335
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FTe12.5 + 6h and FTe16.5 + 6h scATAC-seq datasets. Interestingly, NFIB was found to collaborate with336

these TFs at both stages, with higher cosine scores and increased binding events for NFIB-TCF4 and337

NFIB-MEIS2 in e16.5 peaks, suggesting a stage-specific enhancement of regulatory interactions that338

may drive late-stage maturation processes (Extended Data Fig. 5d,e). Next, using SCENIC+, we339

identified direct downstream target genes shared between NFIB, MEIS2, and TCF4 (Fig. 3b). Gene340

Ontology (GO) enrichment analysis of these downstream genes revealed roles in brain development,341

neuron fate specification, and the positive regulation of cell proliferation (Supplementary Fig. 11b).342

We then identified a group of genes exhibiting dynamic expression across the maturation trajectory343

and inferred their upstream TFs in FT+ cohorts, sorting TFs by the number of regulated maturation344

genes. Temporally conserved TFs such as DLX1 and LHX2, along with e16.5-specific TFs like345

NFIB and NFIX, regulated the largest number of genes, further supporting our previous observations346

(Extended Data Fig. 5g-h). To assess the functional relevance of the e12.5- and e16.5-enriched347

peaks, we quantified the proportion of these peaks that are contained in the eGRN. This analysis348

revealed substantial overlap: 71.43% of e12.5-enriched peaks and 70.93% of e16.5-enriched peaks349

were predicted to be part of TF – enhancer – target gene interactions (Supplementary Fig. 11c),350

suggesting that the majority of peaks are likely to have functional relevance.351

Next, we performed CUT&RUN on unfixed, dissociated cells from the GE of e16.5 mice using an352

NFIB antibody, with IgG and H3K4me3 as controls, to identify and validate genomic targets of NFIB353

in vivo. Mapping and sample processing were carried out using widely used tools and pipelines (see354

Methods). MACS2 peak calling identified approximately 21,000 narrow peaks (p-value cuto� of355

1 ⇥ 10
�4) corresponding to NFIB binding relative to the IgG control. To investigate the relationship356

between NFIB binding and chromatin accessibility during development, we plotted signal intensities357

at NFIB-binding sites for NFIB, H3K4me3, and FTe12.5 + 6h and FTe16.5 + 6h scATAC-seq datasets358

(Fig. 3c). K-means clustering of these binding sites revealed three distinct clusters, all characterized359

by strong NFIB binding. Cluster 2 lacked H3K4me3 enrichment, suggesting these regions may360

represent non-promoter elements with increased chromatin accessibility at e16.5 relative to e12.5361

(Supplementary Fig. 12b). In contrast, Clusters 1 and 3 showed intermediate to high levels362
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of H3K4me3, indicating that many of these regions are promoters. To further examine NFIB363

binding at temporally dynamic peaks, we compared NFIB and H3K4me3 signal intensities at364

e12.5- and e16.5-enriched sites identified in our scATAC-seq data. NFIB binding was significantly365

higher at e16.5-enriched sites, whereas e12.5 sites showed markedly lower or no signal (Fig. 3d,366

Supplementary Fig. 12c,d). These findings support our hypothesis that NFIB is associated with367

chromatin remodeling at e16.5.368

We validated predicted eGRN interactions of NFIB (e.g., NFIB-Tcf4, NFIB-Meis2) by confirming369

NFIB binding at predicted enhancers (Fig. 3e). Additionally, we observed NFIB binding at promoters370

of TFs involved in inhibitory neuron development, such as Dlx2 and Dlx5 (Fig. 3e). Furthermore,371

we quantified the fraction of eGRN predicted target regions of NFIB that was validated by NFIB372

CUT&RUN, by calculating the fraction of target regions with a binding event (43.7%). Motif373

analysis of NFIB peaks using HOMER (Heinz et al., 2010) displayed significant enrichment of374

additional TF motifs associated with inhibitory neuron development including DLX1/2/5, ISL1,375

SOX2, ASCL1, MEIS1/2 and TCF4 (Fig. 3f).376

In summary, we observed gene-regulatory interactions that drive cell state- and stage- specific377

dynamics, with NFIB playing a leading role in late-born progenitors through direct and combinatorial378

binding at genes involved in maturation and di�erentiation.379

Influence of extrinsic environment on maturation competence380

To investigate whether extrinsic environment influences maturation competence in APs at di�erent381

stages, we conducted homo- and heterochronic transplantation experiments, assessing cell’s382

pseudotime scores and expression of genes downstream of NFIB, TCF4, and MEIS2. We injected383

CFSE into the ventricles of donor mouse embryos at e12.5 and e16.5. One hour later, we dissected384

and dissociated the GE, obtaining a cell suspension that included FT-labelled APs, unlabelled BPs,385

and unlabelled precursor cells. The cell suspension was transplanted homo- and hetero-chronically386

into host embryos via intraventricular injection (APe12.5 ! e12.5, APe12.5 ! e16.5, APe16.5 ! e16.5,387

and APe16.5 ! e12.5), as described by Oberst et al. (Oberst et al., 2019). Forty-eight hours after388
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transplantation, we collected the GE from host embryos, isolated FT+ cells by FACS, and assessed389

their transcriptome using bulk RNA-seq (Fig. 4a; Extended Data Fig. 6a,b). By the time of390

collection, cells had already entered the tissue and begun migrating away from the VZ (Extended391

Data Fig. 6c).392

Using clusters from our combined scRNA-seq data as a reference, we applied Bisque (Jew et al.,393

2020) to estimate the proportions of di�erent neuronal states within the transplantation-derived394

datasets (Extended Data Fig. 6d,e; Supplementary Fig. 13a). We then assigned a maturation395

score to each replicate by using the average pseudotime score per reference cluster and weighted it396

according to the inferred cell state proportions (see Methods). The pseudotime scores were higher397

when APs were transplanted into an e16.5 environment (APe12.5 ! e16.5, APe16.5 ! e16.5) compared398

to an e12.5 environment (APe12.5 ! e12.5, APe16.5 ! e12.5; Fig. 4b, Extended Data Fig. 6f). To399

identify transcriptomic di�erences induced by transplantation, we filtered the count matrix by highly400

variable genes from our combined scRNA-seq datasets and used DeSeq2 (Love et al., 2014) for401

di�erential expression analysis (Fig. 4c, Extended Data Fig. 6g). Notably, Nfib and many of its402

downstream genes (among other genes) exhibited increased expression in APe12.5 ! e16.5 compared to403

APe12.5 ! e12.5. We did not observe significantly downregulated genes (Fig. 4c). Furthermore, only404

two genes downstream of NFIB (Mlc1 and Aldoc) were significantly downregulated in APe16.5 ! e12.5405

compared to APe16.5 ! e16.5. These findings indicate an involvement of the extrinsic environment406

in shaping the maturation competence of transplanted cells. The patterns of pseudotime and407

gene expression were reminiscent of the recipient stage. The gene expression changes observed408

after transplantation suggest that maturation competence may be more closely associated with the409

acquisition of specific genes rather than their loss, though this remains to be further explored.410

Nfib knockout inhibits while overexpression promotes maturation in inhibitory411

neurons412

To functionally validate the influence of NFIB on maturation competence, we employed two413

experimental approaches: in vivo CRISPR perturbation using tCROP-seq (Dvoretskova et al., 2024)414
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to knockout Nfib and Nfix (Nfib/x KO), and overexpression of Nfib (Nfib OE). For the tCROP-seq415

experiment, we performed in-utero electroporation (IUE) at e12.5 to introduce single-guide RNAs416

(sgRNAs) and Cas9 vectors targeting progenitor cells in the GE of wild-type mouse embryos417

(C57BL/6). To maximize perturbation e�ciency, we employed a combination of sgRNAs targeting418

both Nfib and Nfix (sgNfib and sgNfix), as Nfix is part of the same downstream transcriptional419

program through which NFIB coordinates maturation (Matuzelski et al., 2017) (Supplementary Figs.420

20 and 11a) and may compensate for Nfib loss. This dual-target approach aimed to ensure robust421

perturbation of the NFIB pathway. Control embryos were targeted with sgRNAs for LacZ (sgLacZ).422

Cortices, striata, and olfactory bulbs were dissected at e16.5, and cells were enriched by FACS423

based on TdTomato fluorescence, which labeled sgRNA-expressing cells, and GFP fluorescence,424

which labeled Cas9-expressing cells (see Methods). To minimize batch e�ects, we pooled cells from425

several embryos which received either sgNfib and sgNfix or sgLacZ and then performed multiplexed426

scRNA-seq (Extended Data Fig. 7a). In total we acquired four replicates for the Nfib/x knockout,427

consisting of two biological replicates, each with two technical replicates.428

The Nfib overexpression experiments were conducted in a similar manner by targeting progenitor429

cells in the GE at e12.5 via IUE. A pCAG vector encoding Nfib-GFP was used, along with an430

additional pCAG vector encoding RFP to facilitate e�cient sorting, due to the low GFP signal431

produced by the Nfib overexpression vector. Control embryos were electroporated with the pCAG-432

eGFP vector. At e14.5, cortices and striata were dissected, and RFP+ cells were enriched by FACS433

for Nfib OE, while GFP+ cells were used as controls (Extended Data Fig. 7b). We acquired two434

biological replicates for Nfib OE and control. To confirm the production of functional protein from435

the exogenous Nfib OE vector, Nfib overexpression was performed in Neuro2A cells (see Methods).436

Detection of NFIB and the HA tag was carried out by western blot using anti-HA and anti-NFIB437

antibodies (Extended Data Fig. 7c).438

The transcriptomic landscape of cells collected from Nfib/x KO and Nfib OE was profiled439

using scRNA-seq and analyzed using a standard Seurat pipeline (see Methods). For Nfib/x KO, the440

filtered dataset contained 47,079 cells with 5,887 cells containing sgNfib and/or sgNfix and 30,328441
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cells containing sgLacZ. Cells were clustered and annotated by their top 2 marker genes (Fig. 4d;442

Supplementary Fig. 14a). Our dataset contained a fraction of excitatory precursors expressing the443

marker genes Neurod2 and Neurod6 (Supplementary Fig. 17). This likely reflects that targeting GE444

progenitors via IUE also labels some progenitors of excitatory neurons, presumably located at the445

interface of ventral and dorsal progenitor domains (Bandler et al., 2022; Dvoretskova et al., 2024).446

For inferring pseudotime scores we used Monocle 3 on subsetted precursors of inhibitory neurons447

and their progenitors (see Methods) (Fig. 4e; Extended Data Fig. 7d) (Haghverdi et al., 2018).448

Cells from Nfib OE experiments were processed using a workflow similar to Nfib/x KO. To449

address batch-specific variability, including contributions from ambient RNA observed in one450

replicate, we excluded cells containing hemoglobin transcripts and performed batch correction using451

Harmony (Korsunsky et al., 2019). The filtered dataset included 30,019 cells, comprising 5,859452

Nfib-GFP+ cells and 7,702 eGFP+ control cells. We applied label transfer, using the integrated453

dorso-ventral scRNA-seq dataset as a reference, labelling cells as ’not assigned’ when their maximum454

prediction score was below 0.5, thus minimizing the impact of low-confidence assignments on455

downstream analyses (Fig. 4f; Supplementary Fig. 14b,d). Pseudotime scores were calculated using456

Monocle3 (Fig. 4g).457

We aggregated clusters (in Nfib/x KO) or predicted labels (in Nfib-OE) into broad groups458

consisting of mitotic cells, INs, PNs, and excitatory precursors (Supplementary Fig. 14c,d), and459

calculated the proportional changes in these cell states following Nfib/x KO or Nfib OE (see460

Methods). Across both experiments, the relative fraction of mitotic cells remained stable (Extended461

Data Fig. 7e,f). However, the overall fraction of post-mitotic inhibitory neurons decreased with462

Nfib/x KO and increased with Nfib OE (Extended Data Fig. 7e,f).463

The decrease in inhibitory neuron precursors following Nfib/x KO was not uniform across464

finer-grain clusters of INs and PNs, with only some clusters being a�ected (Fig. 4h,i). To refine465

our understanding of cell state shifts, we utilized Milo (Dann et al., 2022), a computational tool466

designed to infer di�erential abundance within neighborhoods of single cells. Milo identified467

localized changes in population structure, showing decreased abundances of inhibitory precursors468
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in neighborhoods corresponding to clusters of both INs and PNs (Adarb2_Npas3, Nxph1_Sst,469

Ebf1_Pou3f1, and Cntn5_Cdh8) (Supplementary Fig. 15a,b). This finding was consistent with cell470

proportion changes observed across clusters (Fig. 4h).471

Additionally, we analyzed the e�ect of the perturbation on postmitotic precursors of excitatory472

neurons, finding an increased abundance in Nfib/x KO and a decreased abundance in Nfib OE473

(Extended Data Fig. 7e,f). Changes in abundance were further explored using Milo for Nfib/x474

KO, with some cell states being more a�ected than others. Detailed results are provided in the475

Supplementary Data (Supplementary Fig. 16a-c).476

In addition to changes in cell state proportions, we also observed alterations in gene expression477

and pseudotime trajectories. To assess the transcriptional impact of Nfib/x KO or Nfib OE, we478

performed DGE analyses between conditions within each cluster (see Methods) and quantified the479

number of di�erentially expressed (DE) genes. In Nfib/x KO and Nfib OE, pronounced changes in480

cell state abundance were not always accompanied by a high number of DE genes. For example,481

APs in both Nfib/x KO and Nfib OE displayed a relatively high number of DE genes despite minimal482

changes in cell proportions (Extended Data Fig. 7g,h). Next, we aimed to determine whether the483

a�ected genes were direct targets of NFIB. We overlapped DE genes from Nfib/x KO or Nfib OE484

with genes whose promoters were bound by NFIB in CUT&RUN data (Supplementary Fig. 15c,d).485

We observed that more than half of the DE genes were directly bound by NFIB (62.9% for Nfib/x486

KO and 60.1% for Nfib OE). The true proportion of direct NFIB targets is likely higher, as genes487

regulated via enhancer regions were not considered.488

To infer maturation shifts along the pseudotime trajectory following perturbation, we compared489

pseudotime scores across conditions, with APs showing significantly reduced scores in Nfib/x KO490

and significantly increased scores in Nfib OE (Wilcoxon rank-sum test) (Fig. 4j). However, this491

e�ect did not extend to more mature cell states, as only BPs in the Nfib OE showed a significant492

increase in pseudotime scores (Fig. 4j).493

Next, we focused on genes with various functional roles during neurogenesis and visualized494

their aggregated expression di�erences across conditions in each cluster for both the Nfib/x KO and495

19

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted January 8, 2025. ; https://doi.org/10.1101/2024.03.18.585524doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.18.585524
http://creativecommons.org/licenses/by-nc-nd/4.0/


Nfib OE experiments (Fig. 4k). A detailed analysis of gene expression changes, including validation496

using in situ hybridization images from the Allen Brain Institute’s Developing Mouse Brain Atlas497

(Henry and Hohmann, 2012) and insights into the regulation of cytoskeleton, progenitor markers,498

migration genes, and markers of post-mitotic cell states, is provided in the Supplementary Data499

(Supplementary Fig. 19).500

Taken together, the shift in pseudotime maturation scores of APs, changes in post-mitotic501

precursor abundance, and alterations in gene expression underscore NFIB’s regulatory influence.502

However, not all post-mitotic cell states were equally a�ected, highlighting a complex, cell503

state-dependent regulatory landscape.504

Discussion505

We describe the regulatory mechanisms that govern progenitor competence during the development506

of inhibitory neurons. Our results show that the competence of GABAergic progenitors is closely507

tied to the timing of neurogenesis. This timing primarily influences the maturation of their neuronal508

progeny, with little impact on their di�erentiation. Both cell-intrinsic attributes (including TF509

expression, chromatin remodeling, and reorganization of the gene-regulatory network) as well as510

cell-extrinsic cues collectively define stage-specific maturation competence. The results suggest511

a mechanism that may compensate for variations in the time available for migration and network512

integration between early- and late-born neurons. Data presented in this study are accessible through513

an interactive online platform, enabling users to explore scRNA-seq, scATAC-seq, and eGRN514

datasets (http://141.5.108.55:3838/mind_shiny/).515

The birthmark of maturation is likely passed from GABAergic mitotic progenitors to their516

progeny and is primed in chromatin at regulatory regions. In particular, NFIB, a member of the517

NFI family of TFs, exhibited extensive genomic binding and high regulatory activity at late stages518

of neurogenesis. NFI TFs are known to regulate both neuronal and glial lineages during central519

nervous system development (Bunt et al., 2017). Furthermore, they function as cofactors for FOXP2520
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to facilitate chromatin opening and activate neuronal maturation genes in human subplate and deep521

layer cortical neurons (Hickey et al., 2019). NFI TFs have been shown to regulate chromatin through522

various mechanisms, such as binding to nucleosomes (Chávez and Beato, 1997) and chromatin523

modifiers (Liu et al., 2001), opening chromatin (Adam et al., 2020), controlling chromatin loop524

boundaries (Pjanic et al., 2013), and by directly altering histone modifications (Pjanic et al., 2013).525

Furthermore, NFIX has been shown to regulate the timely generation of intermediate progenitor526

cells from radial glia, partly through the transcriptional upregulation of Insc (Harris et al., 2016).527

In our data, NFIB promotes and forms partnerships with essential regulators of GABAergic IN528

and PN development, such as TCF4 and MEIS2 (Wang et al., 2022; Su et al., 2022; Dvoretskova529

et al., 2024), and binds to promoters of the Dlx family of genes, known to promote the identity530

and expansion of GABAergic neurons (Panganiban and Rubenstein, 2002). We propose that NFIB531

may prime enhancer regions in APs of the GE, initiating chromatin remodeling and leading to532

stage-specific maturation competence.533

We found that the overexpression of Nfib in GE progenitors accelerated the acquisition of534

postmitotic neuronal identity, whereas knockout of Nfib and Nfix delayed maturation. Although535

these findings highlight NFIB’s regulatory role, the mechanisms remain unclear. Knockout studies536

in mice have revealed that deficiency in these genes leads to overlapping brain defects, such as537

hydrocephalus, corpus callosum abnormalities, and enlarged ventricles (Driller et al., 2007), while538

neuronal progenitors in the mouse cortex and retina fail to di�erentiate (Betancourt et al., 2014;539

Harris et al., 2016; Clark et al., 2019). In humans, haploinsu�ciency of NFI genes results in540

overlapping neurodevelopmental phenotypes, including intellectual disability, macrocephaly, and541

brain anomalies (Zenker et al., 2019a).542

The decrease in inhibitory neuron precursors observed after Nfib/x knockout was not uniform543

across all IN and PN branches (Fig. 4h,i; Supplementary Fig. 15a,b). This suggests that NFIs544

specifically regulate the maturation of certain GABAergic neuron lineages, rather than uniformly545

a�ecting all inhibitory neuron subtypes.546

Other mechanisms have been proposed to govern neuronal maturation, such as the rate of547
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metabolic activity in mitochondria (Iwata et al., 2023) or selective translation of epigenetic modifiers548

(Wu et al., 2022). The release of epigenetic barriers sets the timing of maturation in neural progenitor549

cells, with key factors including EZH2, EHMT1/2, and DOT1L (Ciceri et al., 2024; Appiah et al.,550

2023). In our study, we observed that Ezh2, a member of the polycomb repressive complex 2551

(PRC2), is depleted in APs following Nfib/x knockout in inhibitory neurons. Interestingly, in Nfib552

knockout mice, Ezh2 showed upregulated expression within hippocampus and neocortex (Piper553

et al., 2014). Together, this suggests an interaction between NFIB and members of PRC2, albeit554

following di�erent regulatory rules in GE and neocortex.555

The maturation shift may involve an interplay of extrinsic and intrinsic factors, as GABAergic556

progenitors in heterochronic transplantation adjust to the host environment by acquiring new gene557

expression patterns. Potential extrinsic contributors include feedback from newborn cells (Reillo558

et al., 2017), extracellular vesicle exchange (Pipicelli et al., 2023), and tissue sti�ness (Ryu et al.,559

2021).560

While multiple studies described temporal and spatial di�erentiation patterns in GABAergic561

neurons (Kelly et al., 2018; Inan et al., 2012; Wonders et al., 2008; Butt et al., 2008; Flames et al.,562

2007; Fogarty et al., 2007; Miyoshi et al., 2007), there is little evidence of a fate birthmark transmitted563

from APs to their daughter cells. By contrast, glutamatergic neurons display a birthdate-dependent564

generation of transcriptomically distinct postmitotic cells that is linked to a progression in the565

di�erentiation competence of their progenitors (Di Bella et al., 2021; Telley et al., 2019; Vitali566

et al., 2018; Yoon et al., 2018). If not through a sequential mechanism, what drives diversity567

within the GE? Other factors, such as the mode of cell-division (Petros et al., 2015; Kelly et al.,568

2018), cell-cycle length (Glickstein et al., 2007; Lodato et al., 2011; Zong et al., 2022), progenitor569

heterogeneity (van Heusden et al., 2021), TFs that transduce patterning signals (Rubenstein and570

Puelles, 1994; Shimamura et al., 1995; Wichterle et al., 2001; Nery et al., 2002; Xu et al., 2004;571

Wonders and Anderson, 2006; Flames et al., 2007; Fragkouli et al., 2009; Flandin et al., 2010;572

Sandberg et al., 2016; Dvoretskova et al., 2024), and di�erential enhancer activation across spatial573

regions (Dvoretskova et al., 2024), have been shown to underlay the generation of diverse GABAergic574
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types.575

This study contributes to the broader discourse on neuronal maturation, o�ering insights into576

the plasticity and commitment of GABAergic progenitors.577
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Main Figures617

Figure 1: Stable di�erentiation competence in GABAergic progenitors. a, Schematic illustrating the
di�erence between maturation and di�erentiation. b, Summary of methods used to investigate the competence
of progenitors located in the GE. c, UMAP plot showing single cells derived from scRNA-seq, TrackerSeq,
and FlashTag datasets aligned in Monocle3; Di�erent symbols and colors corresponding to datasets. d,
UMAP plot showing GABAergic cells; each color representing a di�erent cluster; mt: mitotic; pn: projection
neuron; in: interneuron. e, UMAP plot showing scRNA-seq datasets, with colors indicating various collection
stages. f, UMAP plot showing single cells from ventral (GABAergic lineage) and dorsal (glutamatergic
lineage) telencephalon, with colors indicating various collection stages. g, Pearson’s correlation plot between
dorsal and ventral progenitors at di�erent developmental stages; * P<0.05, ** P<0.01.
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Figure 1:
h, Line plot showing relative cell number of dorsal (left) and ventral (right) postmitotic neuronal states across
stages. The annotation of dorsal cell states is derived from the original publication. SCPN: subcerebral
projection neuron; CThPN: corticothalamic projection neuron; DL CPN: deep layer callosal projection neuron;
UL CPN: upper layer callosal projection neuron. i, Schematic illustrating whole-cell recording for resting
membrane potential. j, Box plots showing the membrane potential in cortical and GE progenitors at e13.5 and
e15.5 (two-sided t-test). k, UMAP plot showing TrackerSeq barcoded cells, each color representing a stage of
IUE; IUE at e12.5 and e16.5, scRNA-seq after 96 hours. l, UMAP plot showing cell states at the branches
used for clone grouping. m, Upset plot showing clonal intersections in TrackerSeqe12.5 + 96h. n, Upset plot
showing clonal intersections in TrackerSeqe16.5 + 96h. o, Barplot showing the frequency of dispersing and
non-dispersing clones in TrackerSeqe12.5 + 96h and TrackerSeqe16.5 + 96h.
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Figure 2: Timing of neurogenesis influences maturation competence. a, UMAP plot showing FlashTag
(FT) datasets coloured by injection and collection stage; injection at e12.5 and e16.5, scRNA-seq after six hours
or 96 hours. b, Barplot showing relative cell number of postmitotic neuronal states in FTe12.5 + 6h, FTe16.5 + 6h

and FTe12.5 + 96h. c, Violin plots showing the distribution of FT+ cells along the combined pseudotime
trajectory, displayed for each condition; two-sided Wilcoxon rank sum test (**** adjusted P<0.001). The
central point within the plot represents the median (50th percentile), the box represents the range between the
first and third quartile (25th–75th percentile). d, Volcano plot displaying di�erential gene expression (DGE)
in postmitotic cells of FTe12.5 + 6h and FTe16.5 + 6h; | log2(FC) | > 1, adjusted % < 0.05. e, Heatmap showing
average scaled expression of di�erential genes in FTe12.5 + 6h and FTe16.5 + 6h postmitotic cells; visualized in
all FT+ conditions. f, UMAP plot showing scATAC-seq datasets; FT injection at e12.5 and e16.5, followed
by scATAC-seq after 6 hours. g, Coverage plot displaying scATAC-seq and H3K4me1 signal intensity for
peak categories. X-axis is relative position (base pairs) and y-axis is counts per million (mean). h, Heatmap
displaying the accessibility of cis-regulatory elements across pseudotime for FTe12.5 + 6h and FTe16.5 + 6h.
Peaks are divided into "initial", "intermediate" and "late" based on accessibility profiles along pseudotime
bins. Overlapping peaks are annotated in gray and unique peaks are annotated by stage-specific colors.
Overlapping motifs are colored in gray and unique motifs are colored in blue. i Volcano plot displaying
–log10(p-value) (x-axis) and di�erential binding score (y-axis) of significant transcription factors. Each dot
represents a motif.j, Aggregate footprint profiles of NFIB in FTe12.5 + 6h and FTe16.5 + 6h k, Coverage plot
showing chromatin accessibility dynamics at NFIB footprint sites for FTe12.5 + 6h and FTe16.5 + 6h datasets.
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Figure 3: Nfib regulates a shift in gene-regulatory programs. a, An eGRN graph displaying positive
interactions between TFs active in APs. Node color indicates enrichment score by stage and node size
indicates the number of direct targets per TF. Select TFs are annotated. Direct interactions originating from
Nfib are highlighted. b, An eGRN subgraph highlighting downstream targets of Nfib, Tcf4 and Meis2 at
e16.5. Nfib, Tcf4 and Meis2 nodes are indicated by node shape. Interactions between Nfib, Tcf4 and Meis2 are
highlighted. Node color reflects the enrichment score by stage. c, Heatmap displaying signal enrichment of
NFIB peaks across datasets: NFIB and H3K4me3 CUT&RUN at e16.5 GE, and scATAC-seq at e12.5 and
e16.5. d, Heatmap displaying signal enrichment of e12.5 and e16.5 enriched peaks across datasets: NFIB
and H3K4me3 CUT&RUN at e16.5 GE, and scATAC-seq at e12.5 and e16.5.e, Genome browser tracks of
putative enhancer regions for Tcf4 and Meis2 and gene loci for Dlx2 and Dlx5, featuring NFIB CUT&RUN
and scATAC-seq at e12.5 and e16.5. f, Enriched TF-motifs in NFIB CUT&RUN peaks. TFs are ordered by
their p-value. For each TF, the motif logo, target- and background percentage and the resulting enrichment
are shown. The dendrogram on the left shows the sequence similarity of motif logos.
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Figure 4: Intrinsic and extrinsic factors regulating progenitor competence. a, Schematic overview
of donor and host stages for homo- and heterochronic transplantation experiments. b, Distribution of
transplanted cells along pseudotime in APe12.5 ! e12.5 and APe12.5 ! e16.5; two-sided Wilcoxon rank sum test
(**** P<0.001). c, Di�erentially expressed genes between APe12.5 ! e12.5 and APe12.5 ! e16.5; 1<log2FC<–1,
P<0.05. Only genes downstream of Nfib, Meis2 and Tcf4 are labelled.
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Figure 4:
d, UMAP-embedding of cells collected in Nfib/x KO. Cells are annotated by broad cell state and the cluster’s
top 2 marker genes; mt: mitotic, in: interneuron precursor, i-pn: inhibitory projection neuron precursor,
e-pn: excitatory projection neuron precursor. e, UMAP-embedding of subsetted inhibitory neuron precursors
and their progenitors in Nfib/x KO. Cells are colored by inferred pseudotime scores. f, Cells from Nfib OE
shown in UMAP-embedding. Cell labels were predicted using label transfer. Cells with low prediction score
are labelled as ’not assigned’ (na). g, UMAP-embedding of cells in Nfib OE. Cells are colored by inferred
pseudotime scores. h, Proportion change per cluster in Nfib/x KO. For each biological replicate, the fraction
of cells containing sgNfib/x was compared to the fraction of cells containing sgLacZ. i, Proportion change
per predicted label in Nfib OE. For each biological replicate, the fraction of cells containing NFIB-GFP
plasmid was compared to the fraction of cells containing EGFP control plasmid. j, Distribution of pseudotime
scores between conditions across broad cell states in Nfib/x KO (upper row) and Nfib OE (bottom row). Dot
shows median of corresponding distribution. Two-sided Wilcoxon rank-sum test, *** P<0.001, ** P<0.01, *
P<0.05. k, Change in gene expression upon perturbation for selected genes. Average gene expression was
calculated per cluster and condition. Expression change was calculated by dividing average expression in
cells containing sgNfib/x by sgLacZ (for Nfib/x KO) or by dividing cells containing Nfib-GFP plasmid by
control plasmid (for Nfib OE). Rows are annotated by broad cell state and experiment, columns are annotated
by gene list. Stars indicate di�erential expression which was inferred using Seurat’s FindMarker-function
with default parameters; * adjusted p-value < 0.01.
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Extended Data Figures618

Extended Data Fig. 1: Experimental workflow and dataset characteristics. a, Table with dataset type,
collection stage, number of replicates, and number of collected embryos per replicate. b, Violin plot illustrating
the number of genes per cell, counts per cell and mitochondrial gene fraction per cell for each replicate. c,
Schematic representation of the experimental procedure to generate the scRNAseq datasets. d, Schematic
representation of the experimental procedure to generate the TrackerSeq datasets. e, Schematic representation
of the experimental procedure to generate FlashTag datasets. f, FT+ cells, injected with CFSE. Injection at
e12.5 and e16.5, collection after six hours; coronal sections of ganglionic eminences (GE). g, FACS plot
showing high-intensity FT+ cells. h, Coronal sections of the GE at e12.5 (left) and e16.5 (right). Cells are
labelled with CFSE (in green), RNAscope hybridization probes for Ascl1 (in yellow), and for Gad2 (in red).
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Extended Data Fig. 2: Cell type characterization in the GABAergic lineage. a, Heatmap of top five
di�erentially expressed genes in GABAergic cell clusters. b, UMAP plot of combined datasets with cells
colored by cluster identity. Clusters are annotated by one or two top marker genes. c, UMAP plot of combined
datasets with inferred Monocle3 trajectory. Cells are colored by pseudotime. d, Expression of marker genes
in the combined dataset. Nes and Fabp7 label APs, Ascl1 and Ccnd2 are markers for BPs. Post-mitotic
inhibitory neurons express Gad2 and Dlx6os1. Meis2 labels PNs and Tcf4 labels INs. e, UMAP plot of
combined datasets, with cells colored by broad cell states. f, UMAP plot of combined datasets colored by cell
cycle phases.
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Extended Data Fig. 3: Comparison of early- and late-born cohorts. a, Barplot showing the cell ratio in
di�erent cell-cycle states for the FTe12.5 + 6h, FTe16.5 + 6h, and FTe12.5 + 96h datasets. b, Post-mitotic cells of
FTe12.5 + 6h, FTe16.5 + 6h, and FTe12.5 + 96h highlighted in the UMAP-embedding of the merged dataset. Color
indicates whether cells are part of branch-clusters or in post-mitotic trunk. Comparison of isochronic cohorts
displayed side by side shows that cells from the FTe12.5 + 6h cohort predominantly occupy intermediate positions,
indicating progression toward the branch tip (Snhg11), whereas cells from FTe16.5 + 6h and FTe12.5 + 96h cohorts
have reached the branch tips. c, Heatmap of marker gene expression for branch tips split by isochronic cohorts
demonstrates that low-abundance states exhibit gene-expression profiles consistent with other cells at the
branch tips, supporting their correct classification. d, Detailed heatmap of di�erentially expressed genes
between FTe12.5 + 6h and FTe16.5 + 6h; 1<log2FC<–1, adjusted P<0.05. Expression is visualized in FTe12.5 + 6h,
FTe16.5 + 6h and FTe12.5 + 96h datasets. e, Venn diagram showing the intersection of FTe12.5 + 6h, FTe16.5 + 6h,
and FTe12.5 + 96h marker genes; FC > 0.25, pval < 0.05.
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Extended Data Fig. 4: Transcription factor activity and chromatin remodeling in early and late cohorts.
a, Overview of FT+ scATAC-seq datasets: collection stage, number of replicates, and number of embryos per
replicate. b, Schematic representation of the experimental procedure to generate FT+ scATAC-seq datasets.
c, UMAP depiction of gene body accessibility for marker genes. Fabp7 for APs, Ccnd2 for BPs, Dlx5 and
Gad2 for postmitotic inhibitory neurons, Maf for INs and Ebf1 for PNs. d, UMAP-embedding of cells in FT+

scATAC-seq datasets. Cells are grouped and colored by broad cell state and stage. e, Barplot quantifying
peak types (distal, exonic, intronic, and promoter) at e12.5, e16.5, and overlapping sites. f. Volcano plot
displaying di�erentially accessible peaks between stages, with x-axis showing fold-change and y-axis showing
–log10(p-value). Significant TFs are highlighted (Pval <= 0.1 and 1<log2FC<–1. g. Coverage plots of
e12.5-enriched sites (top) and e16.5-enriched sites (bottom). Aggregated coverage was calculated for each
stage separately. h, Aggregate footprint profiles of select transcription factors in FTe12.5 + 6h and FTe16.5 + 6h.
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Extended Data Fig. 5: Transcription factor interaction analysis in subnetworks. Subnetwork for APs (a),
BPs (b) and precursors (c). Each subnetwork is merged across e12.5 and e16.5, with node color indicating
the di�erence in expression between stages. The size of nodes reflects the number of downstream targets per
TF. Subnetworks show only interaction between TFs. d, Dot plot showing cosine score on the y-axis and TF
pairs on the x-axis. Color and size indicate the stage and the number of occurrences of TF1-TF2, respectively.
e, Genomic view of transcription factor binding sites for Nfib-Meis2 and Nfib-Tcf4. f, TF interaction network
of TFs that regulate genes dynamic along the maturation trajectory in e12.5. Nodes are colored by their
average expression at e12.5. g, TF interaction network showing transcription factors (TFs) regulating genes
with dynamic expression along the maturation trajectory at e16.5. Nodes are colored based on their average
expression levels at e16.5. h, Number of bound genes per TF (out-degree) at e12.5 and e16.5; subsetted for
genes dynamic along the maturation trajectory and their upstream TFs. TFs with an out-degree higher or
equal than eight are labelled.
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Extended Data Fig. 6: Homo- and hetero-chronic transplantation datasets. a, Overview table of homo-
and hetero-chronic transplantation experiment datasets: donor, host, and collection stages, number of replicates
and number of embryos for each condition. b, Schematic representation of the experimental procedure for
AP labeling and homo- and heterochronic transplantation. c, Images of coronal brain sections after FT+

APs transplantation. APs labelled with CFSE; GE, ganglionic eminence. d, UMAP plot of the combined
dataset utilized for cluster reference. e, Predicted cell state composition in each replicate. f, Distribution
of transplanted cells along pseudotime in APe16.5 ! e16.5 and APe16.5 ! e12.5; two-sided Wilcoxon rank sum
test (**** adjusted P<0.001). g, Di�erentially expressed genes between APe16.5 ! e16.5 and APe16.5 ! e12.5;
1<log2FC<–1, P<0.05. Only genes downstream of Nfib, Meis2 and Tcf4 are labelled.
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Extended Data Fig. 7: Experimental perturbation of Nfib and associated phenotype. a, Design of
sgRNAs for tCROP-seq experiments and overview of experimental procedure. b, Design of plasmids for
Nfib OE experiments and overview of experimental procedure. c, Western plot showing increased expression
of exogenous NFIB in Neuro2A-cells. d, UMAP embedding of inhibitory precursors and their progenitors
in Nfib/x KO. Cells are colored by clusters, which are annotated based on broad cell states and the top two
marker genes; mt: mitotic; in: interneuron precursor; i-pn: inhibitory projection neuron precursor; na: not
assigned. e, Proportion change in Nfib/x KO. Cells were grouped into broad cell states, by aggregating
clusters. f, Proportion change in Nfib OE. Cells were grouped into broad cell states by aggregating predicted
labels. g, Number of DE genes per cluster between conditions in Nfib/x KO. Color indicates positive or
negative enrichment. h, Number of DE genes per cluster between conditions in Nfib OE. Color indicates
positive or negative enrichment.
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Methods619

Animals620

All experiments were conducted according to institutional guidelines of the Max Planck Society and621

the regulations of the local government ethical committee (Beratende Ethikkommission nach §15622

Tierschutzgesetz, Regierung von Oberbayern). All mouse colonies were maintained in accordance623

with protocols approved by the Bavarian government. Mice were group housed in isolated ventilated624

cages (room temperature 22 ± 1
�C, relative humidity 55 ± 5%) under a 12 h dark/light cycle with ad625

libitum access to food and water. Mouse strains used are the following: wild type C57BL/6NRj,626

Tg(dlx6a-cre)1Mekk (Dlx6-Cre; JAX:008199) (Monory et al., 2006), Rosa26LSL-tdTomato (Ai9;627

JAX:007909) (Madisen et al., 2010), Tg(Nes-flpo/ERT2)1Alj (Nes-FlpoER; MGI:5532191) (Lao628

et al., 2012), Gad2<tm1(cre/ERT2)Zjh> (Gad2-CreER, JAX:010702) (Taniguchi et al., 2011),629

Ai65(RCFL-tdT)-D (Ai65D, JAX:021875) (Madisen et al., 2015). Embryos were staged in days630

post-coitus, with e0.5 defined as 12:00 of the day a vaginal plug was detected after overnight mating.631

Cell line632

Mouse Neuro2a neuroblastoma cells (ECACC, 89121404) were cultured in Dulbecco’s modified633

Eagle medium (DMEM, Sigma, D6429) supplemented with 10% (v/v) fetal bovine serum (FBS,634

Sigma, F9665) and containing 1% (v/v) antibiotics (100 U/mL penicillin, 100 mg/mL streptomycin,635

Sigma, P0781). Neuro2a cells were incubated at 37 � in a 5% CO2 humidified atmosphere and636

passaged twice a week. Cell passage numbers were limited to no more than 10.637

scRNA-seq (¢) datasets: sample and library preparation638

Three to six brains from Dlx5/6-Cre::tdTomato mouse embryos were collected at e12.5, e14.5 or639

e16.5 in ice-cold L-15 medium containing 5% FBS. Ganglionic eminences were manually dissected640

and dissociated with the Miltenyi Bio Tech Neural Tissue Dissociation Kit (P) (#130-092-628) on a641
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gentleMACS Dissociator according to the manufacturer’s protocol. From the same brains, cortical642

and striatal regions were dissected, dissociated, and FACS-enriched for tdTomato-positive cells643

using a SY3200 Cell Sorter (software WinList3D version 8.0.2) or BD FACSAria III Cell Sorter644

(BD FACSDiva Software, version 8.0.2) with a 100 µm nozzle. TdTomato-positive neurons from645

the cortex and striatum were pooled with neurons from the GEs, and scRNA-seq was performed.646

For experiments employing the 10x Genomics platform, Chromium Single Cell 3’ Library & Gel647

Bead Kit v3 (PN-1000075), Chromium Single Cell 3’ Chip Kit v3 (PN-1000073), and Chromium i7648

Multiplex Kit (PN-120262) were used according to the manufacturer’s instructions. Additionally,649

Chromium Single Cell 3’ Library & Gel Bead Kit v3.1 (PN-1000268), Chromium Single Cell 3’650

Chip Kit v3.1 (PN-1000127), and Dual Index Kit TT Set A (PN-1000215) were used according651

to the manufacturer’s instructions in the Chromium Single Cell 3’ Reagents Kits v3.1 User Guide652

(Dual Index). Libraries were quantified using a BioAnalyzer (Agilent) and sequenced either on653

an Illumina NextSeq500 or Novaseq at the Genomics Core Facility of the Helmholtz Center, at654

the Next Generation Facility of the Max Planck Institute of Biochemistry, or at MLL Münchner655

Leukämielabor GmbH.656

TrackerSeq (N) datasets: sample and library preparation657

Timed pregnant mice were anesthetized with isoflurane (5% induction, 3% during the surgery) and658

treated with the analgesic Metamizol (WDT). In utero electroporation (IUE) of the TrackerSeq library659

was performed at e16.5 as previously described in Bandler et al. (Bandler et al., 2022). Embryos660

were injected unilaterally in the lateral ventricle with 700 nL of DNA plasmid solution made of 0.5661

µg µL�1 pEF1a-pBase (piggyBac-transposase) and the TrackerSeq library 0.5 µg µL�1, diluted in662

endo-free TE bu�er and 0.002% Fast Green FCF (Sigma). Embryos were then electroporated with663

5 electric pulses (50 V, 50 ms at 1 Hz) with a square-wave electroporator (BTX, ECM 830). The664

transcriptome libraries were prepared utilizing the 10x Genomics platform as previously described.665

The lineage barcode library retrieved from RNA was amplified with a standard NEB protocol for666

Q5 Hot Start High-Fidelity 2X Master Mix (#M094S) in a 50 µL reaction, using 10 µL of cDNA667
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as a template. Specifically, each PCR contained the following: 25 µL Q5 High-fidelity 2X Master668

Mix, 2.5 µL 10 µmol P7 indexed reverse primer, 2.5 µL 10 µmol i5 indexed forward primer, 10 µL669

molecular-grade H2O, 10 µL cDNA. The PCR protocol for amplifying TrackerSeq lineage libraries670

was: (1) 98 °C for 30 s, (2) 98 °C for 10 s, (3) 63 °C for 20 s, (4) 72 °C for 10 s, (5) repeat steps 2–4671

for 11 to 18 times, (6) 72 °C for 2 min, and (7) 4 °C hold. Libraries were purified with a dual-sided672

SPRI selection using Beckman Coulter Agencourt RNAClean XP beads (Beckman Coulter, A63987)673

and quantified with a BioAnalyzer.674

FlashTag (⌅) transcriptome datasets: sample and library preparation675

Timed pregnant mice were anaesthetised with isoflurane and treated with the analgesic Metamizol676

as previously described. A CFSE working solution was prepared by adding 8 µL of DMSO and 1677

µL of Fast Green to one vial of CellTrace CFSE (CellTraceTM CFSE, Life Technologies, #C34554)678

for a final concentration of 10 mM, following the instructions from Govindan et al. (Govindan679

et al., 2018). For FTe12.5 + 6h and FTe16.5 + 6h, 500 nL of CFSE working solution was injected into680

ventricles of wild-type C57BL/6NRj embryos at e12.5 and e16.5 respectively. The abdominal wall681

was then closed, and the embryos were left to develop until collection. After six hours, ganglionic682

eminences were manually dissected and dissociated on the gentleMACS Dissociator according to the683

manufacturer’s protocol. FlashTag positive cells with high intensity (> 105) were sorted using FACS684

(Fig. S1g) and scRNA-seq was performed. For FTe12.5 + 96h, 500 nL of CFSE working solution was685

injected into ventricles of Dlx5/6-Cre::tdTomato embryos at e12.5. After 96 hours, the striatum686

and cortex were dissected and dissociated on the gentleMACS Dissociator. FlashTag and tdTomato687

positive cells were sorted using FACS, and scRNA-seq was performed.688

FlashTag (⌅) chromatin accessibility datasets: sample and library preparation689

Sample preparation followed the same protocol described for FTe12.5 + 6h and FTe16.5 + 6h in the690

previous sections. Single-cell ATAC-seq was performed according to the Chromium Single Cell691

ATAC Reagent Kits v1 user guide (10x Genomics). FACS sorted cells were centrifuged at 500 rcf for692
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5 min at 4 °C and resuspended in 100 µL chilled diluted lysis bu�er and incubated for 5 min at 4 °C.693

1 ml of chilled wash bu�er was added to the lysed cells and mixed five times with a pipette, followed694

by centrifugation at 500 rcf for 5 min at 4°C. The isolated nuclei were counted (using a c-chip695

hemocytometer) and resuspended in an appropriate volume of chilled diluted nuclei bu�er to reach696

the desired final nuclei concentration. The nuclei were immediately used to generate single-cell697

ATAC libraries, followed by paired-end sequencing on the Illumina NextSeq 500 platform.698

Electrophysiological analysis of membrane potential in progenitors699

After decapitation, the brain was placed in an ice-cold cutting solution saturated with a mixture of700

95% O2 and 5% CO2 containing (in mM): 30 NaCl, 4.5 KCl, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4,701

10 glucose, 194 sucrose. The brain was cut at a thickness of 350 µm on a vibratome (Leica VT1000S,702

Germany), and the slices were transferred into an artificial cerebrospinal fluid (aCSF) solution703

containing (in mM): 124 NaCl, 4.5 KCl, 1 MgCl2, 26 NaHCO3, 1.2 NaH2PO4, 10 glucose, and704

2 CaCl2 (310–320 mOsm), saturated with 95% O2/5% CO2 at approximately 32 °C for 1 hour705

before being moved to room temperature. Finally, the brain slices were transferred to a recording706

chamber continuously perfused with aCSF solution saturated with 95% O2/5% CO2 at 30 °C to707

32 °C. Patch pipettes were prepared from filament-containing borosilicate micropipettes (World708

Precision Instruments) using a P-1000 micropipette puller (Sutter Instruments, Novato, CA), with a709

resistance of 10M⌦ to 12M⌦. The intracellular solution contained 130 mM potassium gluconate,710

10 mM KCl, 2 mM MgCl2, 10 mM HEPES, 2 mM Na-ATP, 0.2 mM Na2GTP, pH 7.35, and711

290 mOsm. Slices were visualized with a fluorescence microscope equipped with IR–DIC optics712

(Olympus BX51). Data were obtained using a MultiClamp 700B amplifier, Digidata 1550 digitizer713

(Molecular Devices), and the software Clampex 10.3 (Molecular Devices, Sunnyvale, CA). Data714

were sampled at 10 kHz, filtered at 2 kHz, and analyzed with Clampfit (Molecular Devices). For715

resting membrane potential recordings, when stable, the membrane potential was recorded for 2min716

and the average obtained every 30 s was used.717
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RNAscope on FlashTag labelled cells718

FlashTag labelling of the cells was performed as for FTe12.5 + 6h and FTe16.5 + 6h, by injecting CFSE719

in the mouse brain ventricles at e12.5 and e16.5 and collecting 6h later. The brains were fixed720

overnight in 4% PFA solution in 1X PBS at 4 °C. After two washes with 1X PBS, the brains were721

treated in a series of sucrose solutions (10%, 20%, and 30%) for 12 hours each. The brains were722

then embedded in OCT. Coronal slices of 10 µm thickness were obtained using a cryostat (Leica CM723

3050), placed on Superfrost™ Plus slides, and washed three times with 1X PBS to remove OCT724

residues. Sample pretreatment and hybridization steps were executed according to the manufacturer725

protocol (RNAscope® Multiplex Fluorescent Reagent Kit v2 - Cat. No. 323100 from Advanced Cell726

Diagnostics). Akoya Biosciences Opal fluorophores 570 (1:1500) and 690 (1:5000) and Bio-Techne727

RNAscope® Probes for Ascl1 (313291) and Gad2 (439371) were utilized for signal detection. The728

slides were mounted with Prolong Gold Antifade Mountant (P10144 from Invitrogen), stored in the729

dark at room temperature overnight, and visualized using a Zeiss AxioScan Z.1.730

Transplantation datasets: sample and library preparation731

To generate the APe12.5 ! e12.5, APe12.5 ! e16.5, APe16.5 ! e16.5, and APe16.5 ! e13.5 datasets, timed732

pregnant mice were anaesthetised with isoflurane and treated with the analgesic Metamizol as733

previously described. To target APs, injection of CFSE working solution was performed into wild734

type C57BL/6NRj embryos at e12.5 and e16.5. One hour later, FT+ APs were collected from three735

to six embryonic brains. After manual dissection of the ganglionic eminences in ice-cold L-15736

medium containing 5% FBS, the tissue was dissociated on a gentleMACS dissociator according737

to the manufacturer’s protocol. Cells were resuspended in ice-cold HBSS containing 10mmol738

EGTA and 0.1% Fast Green to a final concentration of 40000 cells/µL to 80000 cells/µL. The cell739

suspension was split into two separate pools, and 1 µL was injected homo- or hetero-chronically into740

the ventricles of embryonic brains at e12.5 or e16.5. Forty-eight hours later, ganglionic eminences741

were dissected and dissociated as described above. CFSE-labelled cells were isolated with flow742
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cytometry and centrifuged 500 rpm, 5min, 4°C. Total RNA-seq libraries were prepared using743

the SMART-Seq® Stranded Kit (634442, Takara), according to standard manufacturer’s protocol744

(Low-input Workflow, PCR 1: 5 cycles and PCR 2: 12–15 cycles). The library quality was assessed745

by using a Qubit™ Flex Fluorometer (Q33327, Thermo Fisher Scientific) and a 4200 TapeStation746

(G2991BA, Agilent). A total of 10 samples were multiplexed and sequenced in a lane of a NovaSeq747

6000 SP flow cell with the 100 cycles kit for paired-end sequencing (2◊ 60 bp) to reduce sequencing748

batch e�ects (100 pM final loading, 42 M reads per sample on average). BCL raw data were749

converted to FASTQ data and demultiplexed by the bcl2fastq Conversion Software (Illumina).750

Cut&Run sample and library prep751

CUT&RUN was performed using the EpiCypher CUTANA CUT&RUN protocol. Two biological752

replicates were included for each antibody condition: Anti-NFIB, Anti-H3K4me3, and Anti-IgG.753

Ganglionic eminences were manually dissected from the brains of C57BL/6N mouse embryos754

collected at e16.5 in ice-cold L-15 medium supplemented with 5% fetal bovine serum (FBS). Tissue755

dissociation was performed using the Neural Tissue Dissociation Kit (P) (Miltenyi Biotec, #130-756

092-628) on a gentleMACS Dissociator, following the manufacturer’s protocol. For each sample,757

750,000 cells were processed with the following antibodies: Anti-NFIB (Sigma, HPA003956), Anti-758

H3K4me3 (EpiCypher,#13-0041), and Anti-IgG (EpiCypher, #13-0042), according to manufacturer’s759

protocols. Library preparation was carried out using the NEB Next Ultra II DNA Library Prep Kit760

for Illumina (New England Biolabs, #E7645).761

Nfib/x tCROP-seq sample and library preparation762

gRNA selection and vector construction763

The sgRNAs were designed using CRISPick for CRISPRko (Doench et al., 2016; Sanson et al.,764

2018) and validated with inDelphi (Shen et al., 2018) for high frame shift e�ciency. At least 3765

sgRNAs per gene were cloned into the backbone using ssDNAs oligo (IDT) and NEBuilder HiFi766
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DNA Assembly (NEB, E5520). The backbone is a piggyBac plasmid, which encodes TdTomato and767

sgRNA under the human U6 promoter and has a capture sequence at the sca�old of sgRNA for 10x768

feature barcode retrieval (cs1 incorporated at the 3’ end; (Replogle et al., 2020). The e�ciency of769

the sgRNAs was measured in Neuro2A cells. Cells were transfected with pCAG-Cas9-EGFP (gift of770

Randy Platt) and sgRNA plasmids using FuGENE 6 Transfection Reagent (Promega, E2691). After771

48 h, cells were sorted with Beckman Coulter Cytoflex SRT for TdTomato and EGFP. Genomic772

DNA was extracted using the Quick-DNA Miniprep Plus Kit (Zymo, D4068), and the region around773

the sgRNA target was amplified using Q5 polymerase (NEB, M094S) with primers listed in (Table774

S2), and subsequently sent to Microsynth Seqlab GmbH for Sanger sequencing. Knockout e�ciency775

was quantified using TIDE software (Brinkman et al, Nucl. Acids Res. (2014)). The results for776

selected sgRNAs are shown in (Table S2).777

Mice and in utero surgeries778

C57BL/6NRj wild-type females (from inhouse breeding) were crossed to wild-type males. Embryos779

were staged in days post coitus, with E0.5 defined as 12:00 of a day that a vaginal plug was detected780

after overnight mating. Timed pregnant mice were anesthetized with isoflurane (5% induction,781

2.5% during the surgery) and treated with the analgesic Metamizol (WDT). A microsyringe pump782

(Nanoject III Programmable Nano-liter Injector, DRUM3-000-207) was used to inject 700 nL of783

DNA plasmid solution made of 0.6 µL of pEF1a-pBase (piggyBac transposase) and pCAG-Cas9-784

EGFP (both a gift from R. Platt); and the sgRNA plasmid 0.5-8 µL, diluted in sterile 0.9% NaCl785

solution and 0.002% Fast Green FCF (Sigma, F7252), into the lateral ventricle. Embryos were786

then electroporated by holding the head between platinum-plated tweezer electrodes (5 mm in787

diameter, BTX, 45-0489) across the uterine wall, while five electric pulses (35 V, 50 ms at 1 Hz)788

were delivered with a square-wave electroporator (BTX, ECM830) (Saito, 2006). We used these789

relatively large electrodes to target all areas of the GE (MGE, CGE and LGE). Before preparing790

brain tissue for scRNA-seq, each brain was examined under a stereo microscope and only brains791

that met the following criteria were processed for scRNA-seq: (1) Dispersed tdTomato positive792
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neurons throughout the neocortex. (2) Dense tdTomato positive neurons throughout the striatum.793

(3) TdTomato positive neurons in the OB794

Sample collection and sequencing795

We collected electroporated brains from mouse embryos at E16.5 in ice-cold Leibovitz’s L-15796

Medium (ThermoFisher, 11415064) with 5% FBS (Sigma, F9665). The same media was used797

during flow cytometry sorting. Papain dissociation system (Wortington, LK003150) was carried798

out according to the protocol described in Jin et al. (Jin et al., 2020) on the gentleMACS™ Octo799

Dissociator (Miltenyi Biotec). To isolate positive cells for TdTomato and EGFP, flow cytometry800

was done using a Beckman Coulter Cytoflex SRT with a 100-µm nozzle. After sorting 16,000801

individual cells per sample, in PBS (Lonza) with 0.02% BSA (ThermoFisher), were loaded onto802

a 10X Genomics Chromium platform for Gel Beads-in-emulsion (GEM) and cDNA generation803

carrying cell- and transcript-specific barcode using the Chromium Single Cell 3’ Reagent Kit804

v3.1 with Feature Barcoding technology (PN-1000121) following manufacture protocol (document805

number CG000205, 10X Genomics). We generated 3’ gene expression and sgRNA libraries806

according to the manufacturer’s manual using the Chromium Library v.3.1 kit (PN-1000121),807

Feature Barcode Library Kit (PN-1000079) and Single Index Kit (PN-1000213) from 10X Genomics.808

The quantification of the libraries was performed with the 4200 TapeStation809

Nfib overexpression sample and library preparation810

Mice and in utero surgeries811

Timed pregnant mice were anaesthetised with isoflurane and treated with the analgesic Metamizol812

as previously described. In utero electroporation was performed at e12.5. Embryos were injected813

unilaterally in the lateral ventricles with 700nL of DNA plasmid solution. For the Nfib overexpression814

(OE) samples, the plasmids used were pCAGG-NFIB2 (Addgene, #112700) and pBCAG-mRFP815

(Addgene, #40996). The target concentrations for each embryo were 1.5 µg of pCAGG-NFIB2, 1816
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µg of pBCAG-mRFP, and 0.1% Fast Green to aid injections. For control embryos, the plasmid817

pBCAG-eGFP (Addgene, #40973) was used at a concentration of 1 µg with 0.1% Fast Green.The818

abdominal wall was then closed, and the embryos were left to develop until collection.819

Sample collection and library preparation820

At e14.5, electroporated brains were collected in ice-cold Leibovitz’s L-15 Medium with 5% FBS.821

Cell were dissociated on a gentleMACS Dissociator according to the manufacturer’s protocol. For822

Nfib overexpression samples, RFP-positive cells were isolated using FACS, while eGFP-positive823

cells were sorted for control samples. Cells were collected in PBS supplemented with 1% BSA.824

Libraries were prepared using the Chromium Next GEM Single Cell 3’ Reagent Kit v3.1 (10x825

Genomics), according to the manufacturer’s instructions. Quality control of the libraries was826

performed using TapeStation and qubit to ensure proper fragment distribution and concentration.827

Sequencing was carried out on an Element AVITI sequencer.828

Western Blotting829

Neuro2A cells (2◊106 cells/well) were seeded in a 10 cm dishes the day before transfection.830

The following day, cells were transfected with 8 µg of NFIB-GFP or of empty pcDNA plasmid831

using Turbofect transfection reagent (R0533, ThermoFisher). Cells were collected 72 hours after832

transfection by scraping in ice-cold PBS and centrifuging at 400 ◊ g for 5 minutes at 4 °C. Nuclei833

were extracted by suspending in 2 ml of Bu�er A (10 mM HEPES (pH 7.9), 10 mM KCl, 10834

mM EDTA, 0.5% Igepal, 1 mM DTT and complete protease inhibitor (Roche, 4693132001) and835

incubating on ice for 10 min with vortexing at maximum speed every 2 min for 10 s. Nuclei were836

then collected by centrifugation (800g, 10 min, 4 °C) and the supernatant was carefully removed.837

Nuclei were disrupted in 0.15 ml Lysis Bu�er (50 mM HEPES (pH 7.5), 150 mM NaCl, 5 mM838

EGTA, 1.5 mM MgCl2, 1% Triton X-100, 1% glycerol and complete protease inhibitor) by shaking839

at 1500 rmp in Thermomixer for 2 h at 2 °C, with vortexing at maximum speed for 10 s every half840

an hour. Samples were centrifuged (13000 rmp, 15 min, 4 °C) and the supernatant was collected.841
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Cell lysates were diluted to 1x in 4x NuPAGE™ LDS Sample Bu�er (ThermoFisher, NP0007)842

with NuPAGE™ Sample Reducing Agent (ThermoFisher, NP0009). Samples were then boiled843

for 7 minutes at 90°C, 25 µL of each sample was loaded onto NuPAGE™ Bis-Tris Mini Protein844

Gels,4–12% (NP0322) for electrophoresis and transferred to PVDF membrane (ThermoFisher,845

PB5210) using a Power-Blotter Semi-dry transfer system (Thermo Fisher Scientific). Membranes846

were blocked with 5% milk, and then incubated in blocking bu�er with rabbit anti-NFIB (1: 1500,847

Atlas Antibodies, HPA003956), or anti-HA (Proteintech, 51064-2-AP, 1:5,000), and Anti-Histone848

H3 (1:10000, Sigma,H0164) overnight at 4°C. Proteins were detected using horseradish peroxidase849

(HRP)-labeled secondary anti-rabbit antibodies (Thermo Scientific, G21234) and developed using850

SuperSignal West Pico PLUS Chemiluminescent Substrate (Thermo Scientific, 34577).851

scRNA-seq (¢), TrackerSeq (N), and FlashTag (⌅) transcriptome datasets:852

pre-processing and merging853

Sequencing reads were processed using CellRanger v3.0.2 or v6.1.2 (Zheng et al., 2017), using the854

mouse reference genome mm10 v2.1.0. Resulting count matrices were analysed using the Seurat855

package v4.3.0 (Hao et al., 2021) in R v4.1.0. For each dataset, high-quality cells were filtered856

by the number of genes and mitochondrial read fraction (Extended Data Fig. 1b). Subsequently,857

counts were normalized and corrected for sequencing depth using Seurat’s NormalizeData function.858

Cell-cycle assignments for each cell were calculated using the cell-cycle gene list from (Tirosh859

et al., 2016). After identification of highly variable features as described in Butler et al. (Butler860

et al., 2018), we calculated scaled gene-expression values by applying z-normalisation to the861

2000 most variable genes, whilst simultaneously regressing out unwanted sources of variation:862

number of counts per cell, number of genes per cell, mitochondrial read fraction and estimated863

di�erence between cell-cycle phases (ScaleData function). The FindClusters function with default864

parameters was used to identify cell clusters. The FindAllMarkers function was used to identify865

cluster marker genes. Clusters with marker genes of excitatory neurons (e.g. Neurod1, Neurod6,866

Tbr2) or non-neuronal cells (e.g. Apoe, Olig1, Flt1, Pdgfra) were filtered out and excluded from867
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the following steps. Raw counts of samples from scRNA-seq, TrackerSeq, and FlashTag datasets868

were merged using the Seurat package and aligned using Monocle3 v1.0.0 (Trapnell et al., 2014;869

Qiu et al., 2017; Cao et al., 2019). For this purpose, the scaled matrix from the Seurat object870

was converted into a Monocle3 object of the cell_data_set class and preprocessed without the871

default normalisation, as the dataset was already normalised. Batch-correction was performed using872

Batchelor v1.8.1 (Haghverdi et al., 2018) followed by Leiden-clustering (using fine resolution) and873

dimensional reduction using UMAP (McInnes et al., 2020). A developmental trajectory was fitted874

as a principal graph through fine clusters based on the UMAP-embedding. The root of the trajectory875

was defined as the cells with the highest Nes gene expression, identified in the "Fabp7" cluster. A876

pseudotime score was assigned to each cell based on its projected position on the trajectory. Leiden877

clustering (using coarser resolution in Monocle3) identified distinct clusters of cell states. Marker878

genes specific to each cluster were identified by running di�erential expression analysis (in Seurat)879

using the FindAllMarkers function. Clusters were aggregated into broad cell states according to880

marker gene expression of cell states: Nes and Fabp7 for AP; Ascl1 and Ccnd2 for BP; Tcf4, Lhx6881

and Sst for INs; and Meis2, Ebf1 and Isl1 for PNs. Clusters were manually annotated based on882

broad cell state and marker gene expression. The transition between mitotic and postmitotic cells883

was defined by selecting the highest pseudotime score of mitotic clusters as the threshold.884

To relate post-mitotic precursors to mature cell types in the adult brain, we performed label-885

transfer on cells in branch tips using scRNA-seq data of GABAergic neuron populations at P10886

from Bandler et al. (Bandler et al., 2022) as a reference dataset. For label-transfer we used code887

from Mayer et al. (Mayer et al., 2018), which does a correlation-based mapping of cells with the888

possibility to not assign a label if prediction scores are low.889

scRNA-seq (¢) datasets and published datasets: analysis890

We downloaded raw counts of e13.5 and e15.5 datasets from Bandler et al. (Bandler et al.,891

2022) (GSE IDs: GSM5684874, GSM5684875, GSM5684876, GSM5684877, GSM5684878,892

and GSM5684879) and raw counts from the developing mouse somatosensory cortex (Di Bella893
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et al., 2021) at stages e12.5 to e16.5 (GSE IDs: GSM4635073, GSM4635074, GSM4635075,894

GSM4635076, and GSM4635077). The count matrices were merged with our scRNA-seq (¢)895

datasets to create a combined Seurat object. We filtered cells based on mitochondrial read fraction896

( 10%). Normalization, scaling, batch correction, dimensionality reduction, and clustering were897

performed as previously described. Clusters were manually annotated based on top marker gene898

expression. For cells originating from Di Bella et al., we utilized the annotations available from the899

original paper (Di Bella et al., 2021).900

Relative fraction of cells per cell state were calculated for each stage and tissue origin (dorsal901

vs. ventral) separately, by counting the number of cells per cell state and normalizing by the total902

number of cells. For cells from the dorsal telencephalon we used annotation from Di Bella et al.903

(Di Bella et al., 2021) for defining cell states. For cells from the ventral telencephalon we used904

transcriptomic clusters. To ensure that results were not biased by di�erent methods for defining cell905

states, we repeated our analysis based on cell types defined on fine clusters.906

We screened for genes that are variable along the pseudotime in inhibitory and excitatory lineages907

with the following steps: (1) For each lineage, we binned cells from each stage into ten sections908

based on their inferred pseudotime. (2) Enriched genes were selected based on two criteria: high909

expression and high gene abundance. High expression was inferred by calculating the fold change910

between the expression in all cells inside the bin compared to all cells outside the bin. High gene911

abundance was calculated by comparing the fraction of cells that express a gene inside versus outside912

the bin (a gene was considered to be expressed in a cell if its scaled expression value was higher than913

0.5). (3) A normal distribution was fitted to the changes in expression and abundance. Significantly914

enriched genes were selected when the di�erence in expression and abundance was higher than the915

corresponding average di�erence plus two times the standard deviation of the corresponding fitted916

distribution. (4) Steps two and three were repeated for each bin. (5) The trajectory of inhibitory917

neurons diverged as cells leave the cell cycle; therefore, we ran this algorithm for each branch918

independently and only considered genes that appeared in at least two out of five branches. (6)919

Finally, by taking the union of dynamic genes of all stages in inhibitory or excitatory lineages, we920
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created a stable set of genes that are dynamic along pseudotime, but conserved across stages.921

To compare the correlation of apical progenitors between excitatory and inhibitory datasets,922

we selected the inhibitory datasets from our study (e12.5, e14.5, e16.5) and the corresponding923

time points from the excitatory datasets. Apical progenitor cells were then subset from these924

datasets, followed by normalization and scaling. During this process, we regressed out the e�ects of925

mitochondrial genes, as well as the number of genes and gene counts per cell. Two thousand highly926

variable genes for apical progenitors were identified using the Seurat function FindVariableFeatures.927

Next, the average expression of the identified genes was calculated for each cluster: excitatory928

e12.5, e14.5, e16.5 and inhibitory e12.5, e14.5, e16.5. Pearson’s correlation analysis was performed929

based on these genes. To assess the robustness of the results, we downsampled the datasets to930

ensure comparable UMI counts across all datasets (nCount_RNA < 10,000). Despite this adjustment,931

similar correlation patterns were observed. Marker genes for excitatory (e12.5, e14.5, and e16.5)932

and inhibitory (e12.5, e14.5, and e16.5) apical progenitors were identified using the FindAllMarkers933

function in Seurat (min.pct = 0.25, logfc.threshold = 0.25). The intersection between these marker934

genes and highly variable genes revealed that 30% of the highly variable genes were also marker935

genes.936

TrackerSeq (N) datasets: analysis937

TrackerSeq barcode reads were pre-processed as described in Bandler et al. (Bandler et al., 2022).938

To assess the clonal coupling between cell states, we calculated z-scores between clusters (Wagner939

et al., 2018). The z-score is defined as the number of shared barcodes relative to randomized940

data, with values ranging from positive (coupled clusters) to negative (anticoupled clusters). We941

utilized these random permutations to calculate empirical P-values. For coupled pairs of clusters,942

the null hypothesis is that the observed coupling is not higher than random coupling. Conversely,943

for anticoupled pairs, the null hypothesis is that the observed coupling is not lower than random944

couplings. A random coupling is in contradiction to the null hypothesis when a permutation for945

one pair of clusters scores above the observed coupling (for positively coupled pairs), or below the946
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observed coupling (for negatively coupled pairs). The relative fraction is reflected in the empirical947

P-value, which was consequently corrected for multiple comparisons using the Benjamini-Hochberg948

(FDR) method (Benjamini and Hochberg, 1995).949

Clones were identified as "dispersing" or "non-dispersing" depending on whether their cells950

were distributed in multiple or just one branch tip, respectively. We tested whether the transcriptome951

of mitotic progenitors in "non-dispersing" clones was predictive of their postmitotic state. "Non-952

dispersing" clones were grouped by their postmitotic cell state in both TrackerSeqe12.5 + 96h and953

TrackerSeqe16.5 + 96h combined. Separate data frames were created for mitotic and postmitotic954

subsets of each group. Pearson correlation coe�cients were calculated between pairs of gene955

expression within di�erent subsets, generating all the possible combinations of pairs within the956

columns of the data frames. The subsets of postmitotic clones, mitotic clones, and randomly selected957

mitotic cells were all correlated to the postmitotic reference group.958

FlashTag (⌅) transcriptome datasets: analysis959

FlashTag datasets were subset from the common trajectory, and di�erences in pseudotime between960

cohorts were assessed using a two-sided Wilcoxon rank-sum test (conf.level = 0.95). Next,961

di�erential gene expression was calculated between the postmitotic fractions of FlashTage12.5 + 6h and962

FlashTage16.5 + 6h. The expression of these genes was visualized in a heatmap for FlashTage12.5 + 6h,963

FlashTage16.5 + 6h and FlashTage12.5 + 96h.964

For the Venn diagram, marker genes for each cohort (FlashTage12.5 + 6h, FlashTage16.5 + 6h and965

FlashTage12.5 + 96h) were calculated separately with the FindMarkers function in Seurat. Genes with966

average log2FC > 0.25 and adjusted pval < 0.05 were then intersected, to find common markers967

across the cohorts.968

FlashTag chromatin datasets: analysis969

The raw sequencing data (BCL files) were converted to the fastq format using Cellranger-atac970

mkfastq function from Cell Ranger ATAC v1.2.0 (Satpathy et al., 2019). The reads were aligned971
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to the mm10 (GRCm38) mouse reference genome and fragment files were generated using the972

Cellranger-atac count function. Both time points included 2 replicates and the aligned fragment files973

were converted to arrow files and analysed further using the ArchR package v1.0.1 (Granja et al.,974

2021). Dimensionality reduction was performed using latent semantic indexing (LSI), followed975

by batch correction using Harmony v0.1.1 (Korsunsky et al., 2019). To extract the trajectories of976

interest and integrate them into an ArchR project, we employed the getTrajectory and addTrajectory977

functions, respectively. To visualize enriched motifs, we generated pseudotime heatmaps.978

FlashTag chromatin datasets: temporal dynamics and coverage plots979

Peak calling was performed using addReproduciblePeakSet function, which runs MACS2 (Zhang980

et al., 2008) to identify marker peaks for FTe12.5 + 6h and FTe16.5 + 6h datasets. Peaks were classified981

by either identifying for peaks that overlap across stages, based on genomic position (e12.5- enriched,982

e16.5- enriched or non-enriched peaks); or by conducting di�erential peak analysis with p-value983

cuto� ? = 0.05 using ArchR getMarkerFeatures function. As an additional quality check we counted984

the number of reads that map to peak regions and calculated their fraction in respect to all reads985

(Supplementary Fig. 9e). For both scATAC-seq and H3K4me3 ChIP-seq datasets, we calculated986

peak coverage for each peak category using the ScoreMatrixList function.987

FlashTag chromatin datasets: transcription factor footprint analysis988

Footprint analysis was carried out on FTe12.5 + 6h and FTe16.5 + 6h datasets using transcription factor989

occupancy prediction tool: TOBIAS v0.14.0 (Bentsen et al., 2020). We employed the Jaspar990

non-redundant motif database (Castro-Mondragon et al., 2022) as the primary reference source for991

motif data. Bias correction was performed to generate corrected bigwig files using the ATACorrect992

function with default parameters. Footprint scores were calculated on corrected bigwig files using993

the FootprintScores function, and di�erential binding TFs were detected using BINDetect function.994

Predicted TFs were categorised as significant based on two criteria: their di�erential binding score995

(greater than 0.2 for e12.5 and less than –0.4 for e16.5:referred to as change) and the –log10 of the996
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p-value from the statistical test against a background model. The footprints were visualized using997

the PlotAggregate and PlotHeatmap functions.998

FlashTag chromatin datasets: co-binding analysis999

To detect co-occurring TF binding sites, we utilized TF-COMB v1.1 (Bentsen et al., 2022). A1000

distinct CombObj was created by loading unique peak sets (e12.5 and e16.5) identified previously.1001

Transcription factor binding sites were identified within the peak regions followed by market basket1002

analysis. TFs co-occurring with NFIB were then subsetted and further assessed for their co-binding1003

(cosine score) and binding events via dot plot.1004

FlashTag transcriptome and chromatin datasets: gene regulatory network1005

prediction1006

We used Scenic+ (v0.1) (Gonzalez-Blas et al., 2023) to predict GRNs for CFSE-labelled cells1007

at e12.5 and e16.5. As scRNA-seq and scATAC-seq data were unpaired we created a common1008

annotation, by defining broad cell states (AP, BP, and precursor) in the transcriptomic data, merging1009

clusters based on marker gene expression. Annotations in the scATAC-seq data were created by1010

applying label transfer, based on gene-scores predicted by ArchR. These broad cell states were1011

split by stage, resulting in 6 stage-specific cell states (Supplementary Fig. 10a). Scenic+ performs1012

co-accessibility analysis of regions and links regions to upstream TFs by searching for enriched TF1013

motifs in regions. To make this analysis more coherent with prior results, we used the previously1014

calculated peak-set from ArchR as input for Scenicplus, instead of recalculating a new peak-set1015

using pycisTopic (Bravo González-Blas et al., 2019). Following the Scenic+ workflow, we created1016

topics of co-accessible regions and performed binarization and motif enrichment of regions in the1017

20 most important topics. Networks were created by aggregating 10 cells from both modalities of1018

corresponding cell states into pseudocells and then inferring TFs and regions that are predictive of a1019

gene, based on co-accessibility and motif enrichment. The regions considered for a gene have to1020
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lie within a genomic interval of 150 kb up- and downstream of the gene. The results are so-called1021

"eRegulons", i.e. regulatory triplets of one TF, bound regions and corresponding target genes. For1022

each eRegulon the activity in each cell was calculated using AUC-scores (Aibar et al., 2017). Each1023

eRegulon was filtered using standard filtering (apply_std_filtering_to_eRegulons function) and high1024

quality eRegulons were selected by filtering for eRegulons where TF-expression and AUC scores1025

correlated more than 0.5 or less than -0.5.1026

We reconstructed cell-state specific subnetworks by running AUC-binarization (binarize_AUC-1027

function). Here, we filtered for (1) eRegulons that are active in at least 50% of cells within a1028

corresponding cell state and for (2) corresponding target genes that have a higher normalized1029

expression than 0.5 (normalized expression is log1p transformed after correcting for sequencing1030

depth). Cell state specific networks (APs, BPs and precursors) were created by merging the1031

corresponding e12.5- and e16.5-subnetwork using the igraph library v1.5.0 (Csardi and Nepusz,1032

2006). Stage specific networks (e12.5 and e16.5) are similarly created by merging subnetworks of1033

APs, BPs, and precursors of the same stage. In both approaches, the merged networks consisted1034

of the union of vertices and edges. GO-enrichment analysis of target genes was performed using1035

DAVID with default parameters (Dennis et al., 2003).1036

CUT&RUN preprocessing and analysis1037

Raw sequencing reads were mapped to the Mus musculus reference genome (mm10) using Bowtie21038

(Langmead and Salzberg, 2012) using parameters –end-to-end –very-sensitive –no-mixed –no-1039

discordant –phred33 -I 10 -X 700 for mapping of inserts 10-700 bp in length. Reads were also1040

aligned to the spike-in genome. Following alignment, duplicate were marked using Picard (1041

https://broadinstitute.github.io/picard/). Peaks were called using MACS2 (p-value cuto� of 1 ⇤ 10�4)1042

using IgG as background. Signal tracks were then generated in bigWig format for visualization1043

in genome browsers. Peak heatmaps and genome browser profiles were generated by using flu�1044

heatmap and flu� profile function (Georgiou and van Heeringen, 2016). Enriched motifs were1045

identified using findMotifsGenome.pl of HOMER (Heinz et al., 2010). Motif heatmap was generated1046
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using visualization package (Zhang, 2024). Peak heatmap signal quantification was done using1047

normalized read counts(RPKM) by averaging read coverage from peak summit +/- 500bp.1048

Transplantation datasets: analysis1049

We used the Galaxy web platform on the public server at usegalaxy.eu to analyse the data (Afgan et al.,1050

2018). Paired end reads were trimmed with the Trimmomatic tool and quality control was performed1051

with FastQC. Reads were mapped to the mouse reference genome using the HISAT2 algorithm1052

(Kim et al., 2019) and the number of reads per annotated genes was counted using featureCounts1053

(Liao et al., 2014). After Fragments Per Kilobase of transcript per Million mapped reads (FPKM)1054

normalization of the count matrices, the proportion of single cell states within each replicate was1055

inferred with Bisque v1.0.5 (Jew et al., 2020) by using the annotated combined single-cell clusters1056

as reference. A weighted pseudotime score was assigned to each replicate by calculating the median1057

of the pseudotime score per cluster from the combined single cell datasets. For di�erential gene1058

expression analysis, the count matrices were subset by variable genes of inhibitory neuron datasets1059

and DESeq2 v1.42.0 was utilized (Love et al., 2014).1060

tCROP datasets: analysis1061

Reads from transcriptome and guide libraries of all 4 replicates were mapped to the mm10 reference1062

genome and demultiplexed using C Cellranger (v8.0.1) (Zheng et al., 2017). Single-cell count1063

matrices from transcriptomic libraries of the 4 replicates were merged in Seurat (Hao et al., 2021).1064

We excluded cells with more than 10% fraction of mitochondrial reads, cells predicted to be1065

doublets according to DoubletFinder (McGinnis et al., 2019) and cells that contained both sgNfib/1066

sgNfix and sgLacZ. After cleaning the dataset, count data was log-normalized and variable features1067

were calculated using Seurat’s FindVariableFeatures function. Log-normalized expression data1068

of variable genes was scaled using Seurat’s ScaleData function, while regressing out e�ects of1069

read-depth (number of genes and number of UMIs) and fraction of mitochondrial reads. Based on the1070

scaled expression matrix, we calculated low-dimensional representations of cells (PCA and UMAP).1071
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Cells were clustered using FindNeighbors and FindClusters functions with default parameters.1072

Clusters were annotated by calculating marker genes for each cluster, using FindAllMarkers function,1073

and naming clusters by their top 2 positively enriched marker genes.1074

By counting the number of cells that contain either sgNfib and/or sgNfix or contain sgLacZ in1075

each cluster per biological replicate, we calculated proportion changes induced by Nfib/x knockout1076

in each cluster. Proportion change was calculated by dividing the number of cells that contained1077

gNfib/x per cluster by the number of cells that contained gLacZ per cluster and applying ;>6101078

transformation to the result of the division. This was repeated for broad cell states, which were1079

generated by aggregating individual clusters. To infer the e�ect of perturbation on gene expression1080

we performed DE-analysis between cells containing gNfib/x and cells containing gLacZ in each1081

cluster using Seurat’s FindMarkers function with default parameters. The number of di�erentially1082

expressed genes per cluster was inferred by setting a cut-o� of the adjusted p-value being smaller1083

than 0.01.1084

Due to spread of CRISPR constructs during IUE in the ventricle, progenitors of excitatory1085

neurons that lie dorsal of GEs were also targeted. Based on expression of marker genes for1086

excitatory precursors (Eomes, Neurod2, Neurod6) and transcriptomic clustering, we filtered the1087

dataset for inhibitory precursors and their progenitors, by removing cells belonging to 5 clusters1088

(Gm29260_Hist1h1b, Unc5d_Nrg1, Satb2_9130024F11Rik, Tafa1_Adgrl3 and Kcnip4_Nrg3).1089

Processing of the inhibitory subset, from inferring variable features to clustering, was repeated in the1090

same way as described above. We inferred pseudotime scores for the inhibitory subset by converting1091

scaled data and UMAP representation into a cell-data-set object. This was used to infer a trajectory1092

of single cells and infer pseudotime scores using Monocle3 (Haghverdi et al., 2018). We ran Milo1093

on both inhibitory and excitatory subsets after excluding cells that did not contain any guide RNA.1094

Seurat preprocessing was repeated and Milo was executed by setting : = 40 for both subsets of data.1095
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Nfib OE datasets: analysis1096

For mapping reads from Nfib OE experiments we added the sequence of Nfib-GFP, eGFP and1097

RFP to the mm10 reference genome, using Cellranger’s mkref function. Subsequently, mapping1098

and demultiplexing were performed for all four experiments using Cellranger (v8.0.1) with the1099

custom reference genome. Single-cell count matrices from all 4 experiments were merged in1100

Seurat. We detected high levels of ambient RNA (as indicated by ambient expression of hemoglobin1101

genes). Therefore, cells that expressed both Hbb-bt and Hbb-bs were removed from further analysis.1102

Additionally we also removed cells with more than 20% of mitochondrial reads and cells that were1103

predicted to be doublets according to DoubletFinder (McGinnis et al., 2019). As described above,1104

read counts were normalized, variable features were inferred, data was scaled and we performed1105

PCA. To account for di�erences in data quality between experiments, we performed batch-correction1106

using Harmony (Korsunsky et al., 2019). Based on the Harmony-corrected data we inferred clusters1107

and UMAP-embedding. Clusters were annotated by their top 2 marker genes. Assigning clusters to1108

cell states was less straightforward in this dataset, as some clusters contained marker gene expression1109

for multiple cell states. In order to circumvent this problem, we ran label transfer using our integrated1110

dorsal-ventral scRNA-seq dataset as a reference. Cells with a low prediction score (< 0.5) were1111

labelled as ’not assigned’.1112

Proportion changes of predicted cell states upon over-expression of Nfib, were calculated by1113

comparing the number of cells that express Nfib-GFP (and not eGFP) to the number of cells that1114

express only eGFP per predicted cell state. This was done twice, once for predicted clusters and once1115

for aggregated cell states following the same rationale as for Nfib/x KO. Di�erentially expressed1116

genes across conditions were inferred by running Seurat’s FindMarkers function for each predicted1117

cluster. Pseudotime scores were inferred in the same way as for tCROP experiments.1118
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Shiny-based webserver1119

Results from scRNA-seq experiments (dorsal and ventral wild type scRNA-seq datasets with CFSE1120

and lineage tracing datasets), together with results from scATAC-seq, NFIB CUT&RUN and eGRN1121

analysis were made publicly available via Shiny-based webserver (Chang et al., 2024).1122
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