

1 Convergent evolution during host range

2 expansion and virulence increase in a

3 *Salmonella* bacteriophage

4

5 Amandine Maurin¹, Marie Vasse¹, Cécile Breyton², Carlos Zarate-Chaves³, Sarah Bouzidi¹, Juliette
6 Hayer¹, Jacques Dainat¹, Margaux Mesleard-Roux¹, François-Xavier Weill⁴, Ignacio G. Bravo¹,
7 Alexandre Feugier⁵, Rémy Froissart^{1*}

8

9 1. Univ. Montpellier, CNRS, IRD (UMR 5290 MIVEGEC), Montpellier F-34394, France

10 2. Univ. Grenoble Alpes, CNRS, CEA (UMR 5075 IBS), F-38044 Grenoble, France

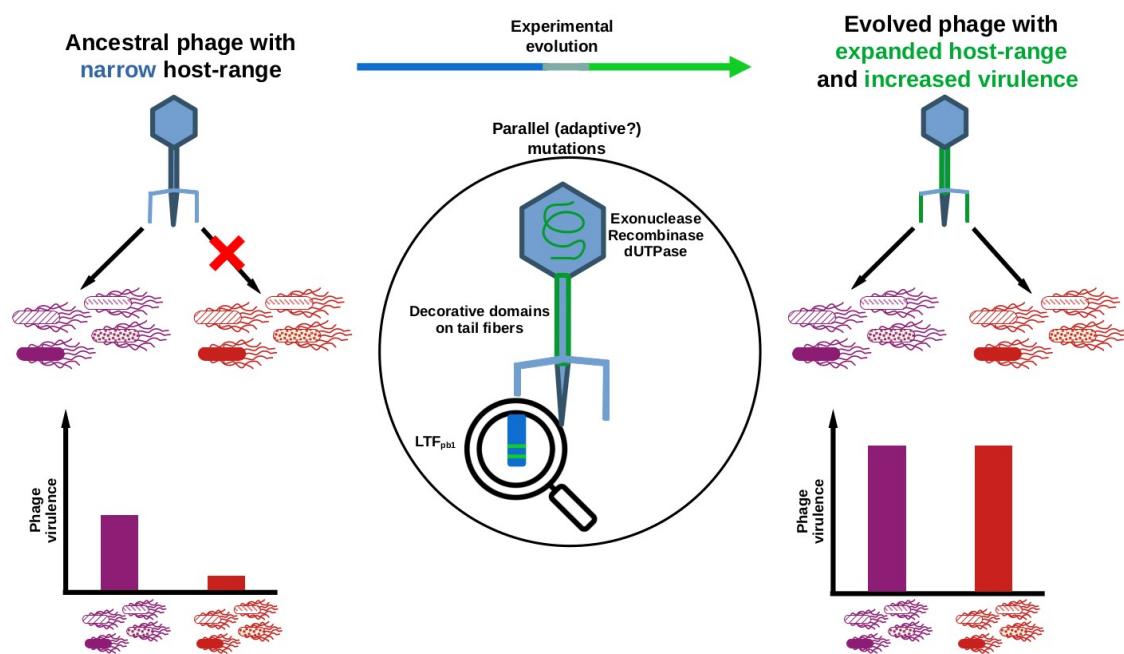
11 3. IRD, CIRAD, INRAE (UMR PHIM), F-34394 Montpellier, France

12 4. Institut Pasteur, Univ. Paris Cité (Bactéries pathogènes entériques), F-75015 Paris, France

13 5. Bokaworm Research Center, F-30310 Vergèze, France

14

16 *Corresponding author


17 Rémy Froissart,

18 ORCID ID : 0000-0001-8234-1308

19 CNRS, UMR 5290 MIVEGEC, 911 Av Agropolis 34394 Montpellier, France

20 +33 (0)467416372

21 remy.froissart@cnrs.fr

22

23 HIGHLIGHTS

24 • A phage (*Tequintavirus*) was evolved on susceptible and resistant *Salmonella enterica* strains
25 • Experimentally evolved phage populations displayed expanded host range and increased
26 virulence
27 • Convergent evolution revealed adaptive mutations modifying receptor recognition in caudal
28 proteins
29 • Reverse-genetic showed implication of two Long Tail Fibre mutations in host range expansion
30

31 IN BRIEF

32 Generalism is traditionally predicted to evolve at the cost of lower mean fitness. Contrary to this
33 textbook view, we demonstrate that generalist phages with expanded host range and increased
34 virulence can readily evolve *in vitro* and be purposely optimized for phage therapy applications.

35

36 ABSTRACT

37 Viral host range expansion is predicted to evolve at the cost of reduced mean fitness. We
38 investigated the adaptive walks of a virulent phage (*Tequintavirus*) in a spatially variable
39 environment composed of four susceptible bacterial isolates and four resistant ones (*Salmonella*
40 *enterica* serotype Tennessee, sequence types ST5018 and ST319 respectively). Starting from a
41 single ancestral phage, we evolved multiple independent populations through serial passages on non-
42 coevolving bacteria, following the Appelmans protocol. The phage populations evolved an expanded
43 host range and increased virulence. Whole-genome sequencing revealed recurrent parallel mutations
44 across populations (i.e. convergent evolution), particularly in genes encoding exo- and endo-
45 nucleases, dUTPase, and caudal proteins. Notably, two parallel mutations in the gene coding for the
46 *Long Tail Fibre* became fixed early in the evolutionary trajectories. Reverse-genetics experiments
47 introducing these mutations into the ancestral genome expanded the host range but yielded only
48 marginal increases in virulence, highlighting the effect of compensatory mutations.

49

50 KEY WORDS

51 *Salmonella*, *Tequintavirus*, biocontrol, adaptation, phage therapy

52 INTRODUCTION

53 Viruses infecting bacteria, known as bacteriophages or phages, have an enormous impact on
54 bacterial population dynamics across diverse environments ^{1,2} including oceans ^{3,4}, soils ⁵ and the
55 human gut ^{6,7,8}. Most bacterial communities consist of multiple species and genotypes, and one could
56 thus expect that the best strategy would be that phages infect and replicate in a broad range of hosts
57 ^{9,10}. Contrary to this expectation, most phages display a narrow host spectrum, typically infecting
58 only a few bacterial species ^{11,12,13,14} or genotypes within a single species ^{15,16}. The prevalence of such
59 specialist phages remains an open question ¹⁷ tied to long-standing debates about the evolution of
60 specialisation and the potential costs of generalism ^{18,19}. One hypothesis among others to explain this
61 cost is the antagonistic pleiotropy of adaptive mutations. It suggests that mutations are advantageous
62 in one environment but deleterious in another ²⁰, which limits the evolution of broad host ranges in
63 phages.

64 Several studies on phage-bacteria interactions have evaluated the impact of phage mutations on host
65 range expansion ²¹. A strong negative relationship has been reported between replication rates and
66 host range of different members of *Caudoviricetes* infecting genotypes of *Escherichia coli* ²² and as
67 well as *Klebsiella* ²³. Similarly, experimental evolution of the phage ϕ X174 (*Microviridae*) on
68 *Salmonella enterica* resulted in a reduced ability to infect *E. coli* ²⁴. Moreover, most mutations
69 conferring an expanded host range of ϕ 6 phage (*Cystoviridae*) also impose significant fitness costs
70 on the original host, presumably due to antagonistic pleiotropy ^{25,26}. These findings suggest that
71 mutations expanding phage host ranges seem to carry selective costs, potentially explaining the
72 rarity of generalist phages.

73 To bridge fundamental research seeking to understand the dynamics of selection favouring specialist
74 versus generalist organisms with a practical application of such research, we adapted a phage to
75 infect multiple genotypes of *Salmonella enterica*.

76 Nontyphoidal *Salmonella* infections are a significant public health concern, representing the second
77 most common cause of bacterial outbreaks in humans (6%) with the leading cause of enteric illness
78 in humans being direct contact with animals (46%) ²⁷. In Europe, *Salmonella* was the second most
79 reported zoonosis, with 60,050 confirmed cases in 2021 ²⁸. Unfortunately, current cleaning methods,
80 sanitation procedures and antimicrobial strategies are insufficient to eliminate pathogenic

81 *Salmonella* contaminations, particularly in the food industry, due to the development of resistant
82 phenotypes, such as those associated with biofilm formation and efflux pump expression ^{29,30}.
83 Additional methods are thus needed to control this major bacterial pathogen, and phages present a
84 promising alternative. Phages have demonstrated efficacy against *Salmonella* both as standalone
85 biocontrol agents ^{31,32} and in combination with chemical disinfectants ³³, offering potential solutions
86 for addressing these health challenges.

87 The aim of our study was to trace the adaptive walk of a phage exposed to an experimental evolution
88 procedure designed to foster changes in host range and virulence. To evaluate phage virulence, we
89 compared bacterial growth in the presence or absence of either "ancestral" or "evolved" phages. The
90 underlying rationale was that changes in life history traits of a phage (i.e. modification of burst size,
91 latency periods and/or adsorption rates) will modify bacterial population dynamics ^{34,35}. Using serial
92 passages of a virulent phage (*Tequintavirus*) with a modular genome ³⁶ following the Appelmans
93 protocol ³⁷, we generated several evolved phage populations and compared these to the ancestral
94 phage population (i.e. from before the experimental evolution process). The evolved populations
95 showed expanded host range and increased virulence compared to the ancestral phage population.
96 Through reverse-genetics, we directly demonstrated the role of two adaptive mutations in host range
97 expansion and highlighted the need of compensatory mutations to achieve higher virulence. Our
98 results pave the way for future development of phage biocontrol on pathogenic bacteria. By rapidly
99 generating phages with high efficacy across multiple host genotypes, this approach has the potential
100 to enhance biocontrol efficiency while reducing the likelihood of bacteria developing resistance, a
101 major factor contributing to biocontrol failure.

102

103 MATERIALS AND METHODS

104 *Bacterial and Phage Strains*

105 Thirty-one isolates of *S. enterica* were collected by swabbing a food processing factory in Poland,
106 over a two-year period (2017-2019). They belong to the Tennessee serotype, as determined by
107 Eurofins (Aix en Provence, France). These isolates are referred to hereafter with the prefix "SeeT"
108 followed by a number from one to thirty-one. Bacteria were routinely cultured in lysogeny broth (LB
109 Lennox, Athena Enzyme Systems; Baltimore, MD, USA) or LB agar (1,2%). Eight out of the 31

110 SeeT isolates were used in the evolution experiment described below. The isolates belonged to two
111 Sequence Types (ST), ST5018 and ST319, as determined by the French National Reference Center
112 (CNR) for *Escherichia coli*, *Shigella* and *Salmonella* at the Institut Pasteur (Paris, France).

113 To prepare stock bacterial solutions, isolated colonies grown on LB agar plates were transferred to 7
114 mL of LB in soda glass cell culture test tubes (16 mL nominal capacity; #11823370; Fisher
115 Scientific, Illkirch, France) and incubated overnight at 35°C with shaking (150 rpm; MaxQ 4000,
116 Thermo Fisher). The following day, 500 µL of overnight bacterial culture was aliquoted into each
117 well of a 96-deepwell polypropylene plate (1 mL nominal capacity; #135702, Dutscher,
118 Bernolsheim, France), mixed with 250 µL of 60% (v/v) glycerol (#G6279, BioXtra, ≥99%; Sigma-
119 Aldrich, St. Louis, MO, USA), and stored at -70 °C (CryoCube F750h, Eppendorf). This frozen
120 plate is referred to as the stock deepwell plate. For experiments, new 96-deepwell plates were filled
121 with 500 µL of LB, inoculated from the stock deepwell plate using a 96-pin replicator (#140500,
122 Boekel Scientific; Feasterville, PA, USA) and grown overnight at 35°C with shaking (450 rpm;
123 Aqualytic ventilated incubator with Titramax 101, Heidolph). After overnight growth, each well
124 contained approximately 10^8 CFU/mL $\pm 1 \times 10^8$ CFU/mL (estimation from easySpiral plater; #412
125 000, Interscience, Saint-Nom-la-Bretèche, France). These plates, stored at 4°C, are referred to as the
126 inoculation deepwell plates.

127 The phage used in this study was isolated from Marseille's wastewater (November 2017), filtered
128 through a 0.22 µm Minisart polyethersulfone (PES) filter (#16541--K; Sartorius, Göttingen,
129 Germany), and stored in glass bottles. To amplify potential phages, 500 µL of LB in each well of a
130 96-deepwell plate was inoculated with 2 µL of an overnight culture of SeeT2 using a 96-pin
131 replicator, followed by the addition of 50 µL of filtered wastewater. The plate was incubated
132 overnight at 37°C with shaking (450 rpm, 1.5 mm orbital; Titramax 101 #544-11300-00; Heidolph
133 Instruments, Schwabach, Germany). The following day, 50 µL of chloroform was added to each
134 well and the plate was incubated at 4°C for at least four hours. From the supernatant, 2 µL were
135 transferred to a new 96-well polystyrene plate (PS, #82.1581001; Sarstedt, Nümbrecht, Germany),
136 containing 200 µL of LB supplemented in 10mM CaCl₂ (Sigma-Aldrich, #C3881) and inoculated
137 with 2 µL of an overnight culture of SeeT2. Bacterial growth was monitored by evaluating turbidity
138 through the measure of Optical Density at 600 nm wave length (OD_{600nm}) over 16 to 20 hours at
139 37°C with shaking (300 rpm, spectrophotometer FLUOstar Omega, BMG Labtech, Ortenberg,
140 Germany). Solutions present in wells that showed delayed bacterial growth were transferred to

141 polypropylene tubes (Eppendorf). Residual bacteria were cleared by adding 10% chloroform and
142 centrifuged (10 min at 15,871 Relative Centrifugal Force or rcf, Eppendorf 5415 R) to keep only the
143 phages.

144 To purify a phage, we used the double-layer method ³⁸. This involved mixing 100 μ L of the
145 appropriate dilution of the phage solution with top LB agar (6g/L; #LF611001 Liofilchem, Italy)
146 previously mixed with 100 μ L of SeeT2 overnight culture. After an overnight incubation at 35°C,
147 we collected one isolated lysis plaque from the top agar into 200 μ L SM buffer (NaCl 100 mM,
148 MgSO₄ 10 mM, Tris-HCl 50 mM, pH = 7.4), and stored the tube at 4°C for over an hour. The phage
149 was then purified through five consecutive rounds of the double-layer method, picking one isolated
150 lysis plaque at each round. In the last round, we collected the full top LB agar layer in SM buffer,
151 centrifuged (10 min, 3,000 rcf, Eppendorf Centrifuge 5702R) and filtered it through a 0.22 μ m PES
152 filter, then stored it at 4°C in polypropylene 15 mL tubes (#352096; Falcon, Corning, Mexico). We
153 thus isolated one phage, that we named *Salmonella phage Tennessee Salten*, and hereafter called
154 Salten.

155 *Experimental Evolution*

156 To allow for the host range expansion and increased virulence of Salten, we first separately exposed
157 high concentrations of the phage to several SeeT bacterial isolates. The ones able to grow in the
158 presence of phages were considered resistant, and the ones showing no growth were considered
159 susceptible. We then picked four susceptible SeeT isolates (SeeT2, SeeT4, SeeT7 and SeeT17 from
160 ST5018) and four resistant SeeT isolates (SeeT1, SeeT3, SeeT5 and SeeT6 from ST319). Following
161 the Appelmans protocol ³⁷, the Salten phage was separately exposed to each of these eight bacterial
162 isolates. Briefly, at each passage, 200 μ L of LB with 10 mM CaCl₂ was dispensed into each well of a
163 96-well PS plate (referred to as the test plate). The wells were then each inoculated with 2 μ L of the
164 corresponding bacteria stock from the inoculation deepwell plate, as well as with 2 μ L of phages at
165 different concentrations in each well - in both cases using a 96-pin replicator. Phage dilutions were
166 prepared in a reusable 96-well polypropylene plate (#290-8353-03R; EVCORP, USA) by serial ten-
167 fold dilutions in 180 μ L of SM buffer with 20 μ L of filtrated phage solution. Note that the reusable
168 plates were prepared with bleach decontamination, washed in a dishwasher, rinsed with ionized
169 water, dried at room temperature and then autoclaved individually. The particularity of the
170 Appelmans protocol is that each bacterial isolate is submitted to different concentrations of phages at
171 each passage, in such a way that ratios of bacteria and phage vary between high to low multiplicities

172 of infection (MOI) depending on the well. Positive controls (LB with 10 mM CaCl₂ inoculated with
173 bacteria) and negative controls (LB with 10 mM CaCl₂) were included in test wells. Bacterial growth
174 kinetics were monitored at 37°C with shaking (300 rpm) and OD_{600nm} (spectrophotometer FLUOstar
175 Omega) for at least 16 hours. Wells presenting delayed to complete inhibition of bacterial growth
176 compared to positive controls were harvested, pooled into a single 15 mL polypropylene tube,
177 cleared with 500 µL chloroform, mixed, centrifuged (10 min at 3,000 rcf) and filtered through a 0.22
178 µm PES filter. The resulting phage solution was stored at 4°C. Phage concentrations between
179 passages were not measured. We performed five independent replicates - or lineages - of the full
180 experimental protocol. The first lineage involved six serial passages of the Appelmans protocol
181 (called "SaltenE1", E for "evolved"). Three additional independent lineages (SaltenE2, SaltenE3 and
182 SaltenE4) underwent seven serial passages several months later. Finally, after an 18-month pause to
183 ensure no residual Salten phages were present in the laboratory, we conducted an additional
184 evolution experiment (SaltenE5) with eight serial passages.

185 *Estimation of Host Range and Virulence*

186 We assessed the host range and virulence of the ancestral Salten and the evolved SaltenE
187 populations in liquid conditions by following bacterial growth in 96-well PS plate. Phage
188 concentrations were estimated by spot-assays ³⁸ on top-agar containing SeeT17. Test plates were
189 prepared as described for experimental evolution, with wells inoculated with either Salten or an
190 evolved SaltenE population at five multiplicities of infection (MOIs) ranging from 1 to 0.0001 (ten-
191 fold dilutions). Each experiment was replicated three times on different days.

192 Host range was further assessed in solid culture using the spot-assay method on 18 additional SeeT
193 isolates beyond those used for evolution. Presence/absence of plaques was visually evaluated the
194 next day (examples in Fig. S5). Each experiment was tested three times on different days.

195 *Phage Morphology*

196 Salten solution (15 mL at 10¹¹ PFU/mL) was concentrated into 1.5 mL tubes by two one-hour rounds
197 of centrifugation at 16,000 rcf, 4°C (Eppendorf Centrifuge 5415R). The pellet was resuspended in
198 600 µL 100 mM ammonium acetate (Sigma-Aldrich) and filtered through a 0.22 µm PES filter.
199 Phages were then adsorbed onto a Formvar/carbon 300 grid (# CU 50/BX 9012.90.0000; Electron

200 Microscopy Sciences, Hatfield, PA, USA), contrasted with 2% uranyl acetate, and visualized via
201 transmission electronic microscopy (TEM, JEM-1400Plus, JEOL, Akishima, Tokyo, Japan).

202 *DNA Sequencing*

203 Whole-genome sequencing was performed for the eight bacterial isolates used in the evolution
204 experiment (SeeT1, 2, 3, 4, 5, 6, 7 and 17) by the reference center CNR (Paris, France). Bacterial
205 DNA was purified using the Maxwell 16-cell DNA purification kit (Promega) and sequenced by
206 Illumina NovaSeq technology (paired-end). For identity verification, a region of the *cpn60* gene ³⁹
207 (Table S1) was amplified and sequenced via Sanger sequencing for all 31 SeeT isolates (PCR from
208 boiled colonies and using Roche Taq DNA polymerase [#11146165001; Merck KGaA, Darmstadt,
209 Germany]).

210 Whole-genome sequencing was conducted on the ancestral phage Salten and on four lineages of
211 evolved populations, SaltenE1, E2, E3 and E4 (SaltenE5 phage population was not sequenced
212 because it was obtained after the DNA sequencing experiment of previous lineages). DNA
213 extraction was done according to a protocol ⁴⁰ adapted by Nicolat Ginet (Bacterial chemistry
214 Laboratory, Marseille, France) after amplification of each phage population on the most susceptible
215 isolate, SeeT17. Briefly, genetic material of bacterial origin potentially surrounding the phages was
216 eliminated by adding 10 µL DNase I (1 U/µL; #D5307; Sigma-Aldrich), 5 µL RNase A
217 (10mg/mL; #EN0531; Thermo Fisher) and 2 µL Dpn I (10 U/µL; #ER1702; Thermo Fisher). Phage
218 DNA was extracted using phenol-chloroform-isoamyl acid 25/24/1 (#77617; Sigma-Aldrich). After
219 DNA quantification with NanodropOne (Thermo Fischer) and Qubit 4 Fluorometer (Invitrogen,
220 Thermo Fisher), we multiplexed the different DNA extractions using the NebNext Ultra II FS
221 Library Prep Kit (#E7805, #E6440 and #E6177; NEB). Phage DNA was fragmented with a
222 transposase enzyme and prepared for multiplexing according to the recommendations of the supplier
223 for inputs over 100 ng. Fragmented end-prepared DNA was ligated to Illumina adaptors and then
224 sorted with beads to select fragment sizes between 150-250 bp, for a final fragment size between
225 270-370 bp. Adaptor-ligated DNA was enriched by four cycles of PCR. These amplicons were then
226 cleaned and ligated with a unique pair of primers. The final library concentration was evaluated
227 through Qubit 4 and fragment sizes were checked by migration using QIAxcel Advanced Instrument
228 (QIAgen, Hilden, Germany). Fragments ready for sequencing were sized between 280 bp and 320
229 bp. DNA libraries were sequenced in paired-ends using an Illumina in-lab sequencer (iSeq100
230 instrument). Raw reads were deposited in the European Nucleotide Archive

231 (<https://www.ebi.ac.uk/ena/browser/support>) with the accession numbers ERR13191102 (Salten),
232 ERR13191103 (SaltenE1), ERR13191104 (SaltenE2), ERR13191105 (SaltenE3) and ERR13191106
233 (SaltenE4).

234 To determine the order of occurrence of mutations across serial passages, we designed primers
235 flanking the mutations of interest in the viral ORFs *pb1*, *pb2* and the recombination related
236 exonuclease encoding gene (Table S1). Amplicons were obtained using Q5 high-fidelity DNA
237 polymerase (#M0491; New England Biolabs NEB) and sent for Sanger sequencing to Eurofins
238 Genomics France (Nantes, France).

239 *Bioinformatic Analysis and Annotation*

240 Reads of the eight SeeT isolates used in our experiment were assembled by the CNR (Paris, France),
241 using SPAdes v3.15.2 ⁴¹. SeeT genomes were virtually genotyped using the Salmonella multilocus
242 sequence typing scheme based on seven housekeeping genes (MLST7) and the core genome MLST
243 (cgMLST) scheme based on the analysis of 3002 genes ⁴². Both genomes have been deposited in
244 Enterobase (<https://enterobase.warwick.ac.uk/>; barcodes SAL-QB8964AA - named Sten1 for
245 SeeT1, SAL-QB8962AA - named Sten2 for SeeT2, SAL-QB8963AA -named Sten3 for SeeT3,
246 SAL-QB8959AA - named Sten4 for SeeT4, SAL-QB8958AA -named Sten5 for SeeT5, SAL-
247 QB8957AA - named Sten6 for SeeT6, SAL-QB8960AA - named Sten7 for SeeT7 and SAL-
248 QB8961AA - named Sten 17 for SeeT17). Baargin workflow ⁴³ was used for genomic assembly and
249 annotation. PanExplorer online tool ⁴⁴ was used for core-genome visualisation and genetic diversity
250 analysis between the eight SeeT isolates, while DefenseFinder ⁴⁵ was employed to identify defense
251 mechanisms against phages. Phaster ^{46,47} was used to detect prophages within the eight SeeT
252 genomes. Phylogenetic relationships among the eight SeeT isolates were inferred using the
253 nucleotide sequences of the *cpn60* gene, aligned with Muscle ⁴⁸, checked at the codon level using
254 AliView v.1.28 ⁴⁹ and then manually curated. Jmodeltest ⁵⁰ identified JC69 as the most suitable
255 nucleotide substitution model. Maximum-likelihood phylogenetic inference was performed with
256 PHYML ⁵¹ using 1,000 bootstrap cycles.

257 After Illumina sequencing, phage read quality was assessed using FastQC v.0.12.1 ⁵². Primers were
258 trimmed with Fastp v.0.22.0 ⁵³, using default parameters. Phage genome contigs were prepared
259 following the workflow recommended in Turner et al. ⁵⁴. *De novo* phage genome assembly was

260 carried out with SPAdes v.3.14.1^{55,56} with default parameters. The Salten complete genome
261 sequence, including the two terminal repeated sequences, was generated with PhageTerm Virome
262 v.4.3⁵⁷. For the ancestral Salten phage, we obtained a single contig of 110,076 nt with high coverage
263 (average 400 reads depth), and a number of short contigs (below 1200 nt) with low coverage
264 (average 10-20 reads depth).

265 The ancestral Salten contig as well as the contigs of each evolved phage population were polished
266 with Pilon v.1.24⁵⁸, using their respective reads. The new contig of 109,999 nt was deposited in the
267 European Nucleotide Archive (<https://www.ebi.ac.uk/ena/browser/support>) with Accession Number
268 OZ075147. It was annotated thanks to the Genome Annotation online tool from the Bacterial and
269 Viral Bioinformatics Resource Center⁵⁹ (BV-BRC, <https://www.bv-brc.org/>), based on
270 Tequintavirus annotation (Taxonomy ID = 187218). Structural genes were annotated manually based
271 on Zivanovic et al (2014)⁶⁰, Linares et al (2023)⁶¹, using blastn or blastp on the NCBI platform
272 (Blast® services, available from: <https://www.ncbi.nlm.nih.gov/Blast.cgi>). The ggggenes package
273 v.0.5.0⁶² was used to generate the genome mapping of Salten. breseq v.0.38.1⁶³ was used as a
274 pipeline for calling of single nucleotide polymorphism (SNPs) and small insertions/detections
275 (indels). The associated gdtools COMPARE tool was used to visualize the nature, locations and
276 frequencies (percentage of reads containing a mutation at a position of interest) detected by breseq.

277 *Phage Mutagenesis by Reverse-Genetics*

278 The two parallel mutations identified in the Long Tail Fibre *pb1* ORF of evolved SaltenE phages
279 were introduced into the ancestral Salten *pb1* ORF by directed mutagenesis. Mutations were
280 confirmed in the *pb1* ORF in SaltenE populations by Sanger sequencing (Eurofins, Nantes, France).
281 The amplicons were obtained by PCR using Q5 high-fidelity DNA polymerase (#M0491; New
282 England Biolabs NEB) and the primers Salten-pb1-3183-F / Salten-pb1-4136-R primers (Table S1).
283 We then amplified by PCR the surrounding region of these mutations (Salten-pb1-3374-F and
284 Salten-pb1-3557-Rv), using both evolved and ancestral Salten (negative control) DNA as templates.
285 PCR products were then introduced into pBBR1-MCS2 plasmid at *Xho*I and *Hind*III sites (#R0146
286 and #R0104; New England Biolabs NEB). We heat-shock transformed *E. coli* DH10 β made
287 competent in the laboratory with the plasmid containing the amplicon, and let them grow on LB agar
288 supplemented with 50 μ g/mL kanamycin, 50 μ g/mL Xgal and 10 μ M IPTG. The transformation
289 yielded clones harbouring a plasmid with an insert presenting *pb1* partial sequence with or without
290 the two potential adaptive mutations (called pBBR1-E or pBBR1-A, respectively). To control for

any plasmid effect, we also transformed *E. coli* DH10 β with the empty vector (called pBBR1-EV). White colonies were selected and amplified, DNA extracted (Monarch Plasmid Miniprep kit, #T1010; NEB), the *pb1* target amplified (primers pBBR1-MSC2-F and Salten-3470-F; Table S1) and the products Sanger-sequenced (Eurofins, Nantes, France) to select appropriate bacterial clones. The bacterial SeeT17 isolate was then transformed with either pBBR1-A, pBBR1-E or pBBR1-EV by electroporation (~100 ng/ μ L) using a MicroPulser electroporator (Bio-Rad, Hercules, CA, USA) on the Ecoli1 program and then plated on LB agar supplemented with 50 μ g/mL kanamycin. Resistant colonies were selected and colony-PCR amplicons (primers pBBR1-MSC2-F and Salten-pb1-3470-F; Table S1) were sent for sequencing. Transformed SeeT17 with the appropriate inserts were grown in glass tubes containing LB supplemented with 50 μ g/mL kanamycin. When the culture reached OD_{600nm} = 0.2, we added the ancestral phage, Salten (MOI = 0.001), in order to allow for natural recombination between the phage and the insert present on the plasmid. After an overnight co-culture, phages were recovered by removing bacteria with centrifugation (30 min at 3,000 rcf) and filtration of the supernatant (0.22 μ m; PES #16541-K, Sartorius). Phage populations coming from overnight co-culture with SeeT17 transformed with pBBR1-E, pBBR1-A or pBBR1-EV were respectively named rE_Salten, rA_Salten and rEV_Salten.

Phage populations (rE_Salten, rA_Salten, and rEV_Salten) were tested on resistant (SeeT1, SeeT3, SeeT5, and SeeT6 from ST319) and susceptible (SeeT17 from ST5018) bacterial isolates using the double-layer method. In cases where plaques appeared, isolated plaques were picked and resuspended into 200 μ L SM buffer and cleared with 20 μ L chloroform. One microlitre was used as DNA matrix to produce PCR amplicons with Phusion High Fidelity Taq Polymerase (#M0530; NEB) and the new primers Salten-pb1-3183-F and Salten-pb1-4136-R (Table S1). To avoid any plasmid amplification, these latter primers targeted a *pb1* phage region outside the sequence inserted into the pBBR1 plasmid. We also verified the presence of the two parallel mutations within an isolated rE_Salten lysis plaque by sequencing amplicons targeting a large region of the gene *pb1* (larger than the plasmid insert). Additionally, to rule out any accidental contaminations with an evolved phage, we sequenced a region of the *pb2* ORF harbouring a specific sequence signature of either the ancestral or evolved phages (using primers Salten-pb2-8720-F and Salten-pb2-9129-R; Table S1). This verification confirmed that rE_Salten harboured the ancestral *pb2* sequence.

320

321 Statistical Analyses

322 Data were analysed using R software (2023-04-21, R Core Team, v.4.3.0⁶⁴) in Rstudio (2020-04-01,
323 RStudio team, v.1.2.5042⁶⁵). We estimated the impact of phages on bacterial growth in liquid
324 cultures using bacterial kinetic data of OD_{600nm} over at least 16h (Fig. S3). For each MOI, a virulence
325 index (Vi) was obtained following the formula⁶⁶

326
$$Vi = 1 - (AUC / AUCc)$$

327 where AUC corresponds to the area under the curve of bacterial growth in the presence of phages
328 and AUCc the area under the curve of the bacterial growth control (i.e. without phages). The AUCs
329 were computed with the linear option of the MESS package (v.0.5.9⁶⁷). For phage phenotypic
330 characterisation, we analysed the Vi data at MOI = 0.01, using a linear mixed-effect model with
331 identity of phages (Salten *versus* each of the five evolved SaltenE populations; n = 5), identity of
332 bacterial isolates (n = 8) nested into ST (n = 2) and their interactions as fixed effects, and the
333 experimental plates (three replicates per phage, n = 15) as a random effect. Reverse-genetics
334 experiments were analysed similarly, with the replicates (n = 3) treated as a random effect.

335 After an assessment of data normality, statistical models were followed by type III ANOVA
336 (package car v.3.1-2⁶⁸) and contrasts on marginal means with the Tukey method (package emmeans
337 v.1.8.7⁶⁹). When needed, a one-sample t-test against 0 with correction for multiple testing
338 (Benjamini & Hochberg correction) was done. ggplot2 package v3.4.2⁷⁰ was used to construct plots.
339 All R scripts and datasets are available on GitLab at

340 <https://src.koda.cnrs.fr/MAURINAmantine/Salten> .

341

342 RESULTS

343 Characterization of Bacterial Isolates

344 Over a two-year period, 31 isolates of *S. enterica* subspecies *enterica* serotype Tennessee (SeeT)
345 were collected from a food processing factory. Eight of these isolates were selected for a detailed

346 study of phage-bacteria interactions. Whole-genome sequencing and *in silico* serotyping confirmed
347 that all eight isolates belonged to serotype Tennessee (antigenic formula 6,7:z29). Multilocus
348 sequence typing on seven housekeeping genes (MLST7) identified two sequence types (ST): ST319
349 (SeeT1, SeeT3, SeeT5 and SeeT6) and ST5018 (SeeT2, SeeT4, SeeT7 and SeeT17). Furthermore,
350 cgMLST was used to analyse differences between 3,002 genes of the core genome in our eight
351 isolates. We identified phylogenetic divergence between ST319 and ST5018 (differences up to 900
352 alleles of the 3,002) and classified them in two clusters, HC900_139 and HC900_131799
353 respectively. Approximately ninety one percent (90.7%) of the complete genome of the eight
354 genotypes corresponded to the core genome (PanExplorer ⁴⁴). Clustering based on presence/absence
355 of genes in the accessory-genome confirmed the separation into two STs (Fig. 1A), with 300 to 354
356 present/absent genes differing between the two STs (Fig. 1B).

357 Some of the differently present genes are likely involved in defense mechanisms. DefenseFinder
358 detected defense systems common to both ST (Dpd, Lamassu-Cap4-nuclease, Shedu and RM type I
359 and III) as well as some ST-specific mechanisms: the Septu defense system was exclusive to ST319,
360 while the Mokosh type I C defense system was unique to ST5018 (Fig. 1C).

361 The ST5018 isolates were more genetically homogeneous than the ST319 isolates with ST5018
362 differing from one another by between 22 and 38 differentially present genes, and the ST319 isolates
363 differing from one another by 19 to 100 differentially present genes.

364 We then focused on genes coding for potential phage receptors such as those involved in the
365 lipopolysaccharide (LPS) synthesis. Based on the different genes encoding assembly-involved and
366 structural proteins of LPS listed in Adler et al (2021) ⁷¹, we retrieved the protein sequences of each
367 of these genes (annotated using Bakta tool ⁷² integrated into the baargin workflow) for each of the
368 eight isolates and aligned these using Uniprot ⁷³ (<https://www.uniprot.org/align>). We thus identified
369 three genes encoding amino acid polymorphisms that differentiated between ST5018 isolates and
370 ST319 isolates (where isolates from the same ST had 100% identical amino acid sequences for these
371 proteins; Fig. S1A,B). These differences were: (i) V159A (valine in ST5018 and alanine in ST319)
372 within the fepE protein, which is known to regulates LPS O-antigen chain length; (ii) D181N
373 (aspartic acid in ST5018 and asparagine in ST319) and R222K (arginine in ST5018 and lysine in
374 ST319) within waaK which is a a1,2-N-acetylglucosaminyltransferase; (iii) M463T (methionine in
375 ST5018 and threonine in ST319) within wzxC which is a translocase involved in colanic acid

376 synthesis. Analysis of FhuA, another potential phage receptor, identified two amino acid differences
377 between ST5018 and ST319, both located in the inner bacterial membrane, indicating that the amino
378 acids involved are unlikely to interact directly with phages (Fig. S1C).

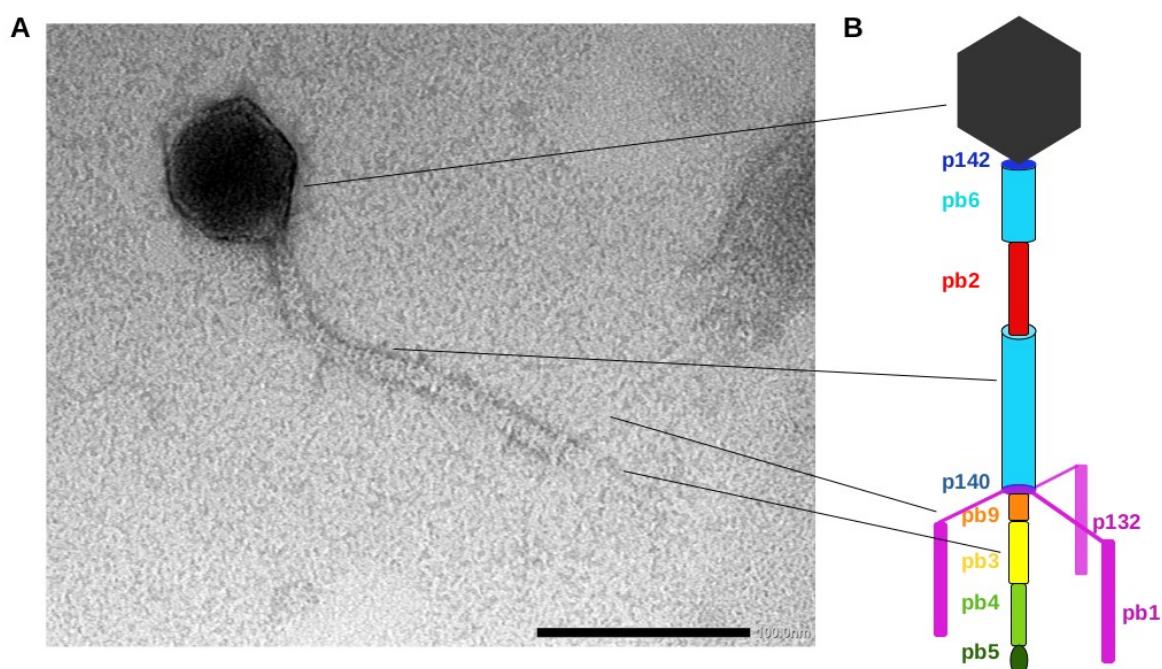
379 Finally, prophage analysis with Phaster⁴⁶ identified three intact prophages in each isolate, along
380 with three to five incomplete or questionable prophages (Fig. 1C), most classified as
381 *Enterobacteriaceae* phages (Salmophages, Coliphages, Enterophages, see Fig. S2). Functional
382 temperate phages were confirmed in the ST5018 isolate SeeT2 and the ST319 isolates SeeT3 and
383 SeeT5, as indicated by the occasional appearance of turbid plaques on their bacterial lawns.

384

385

386 **Figure 1. Genetic diversity in the accessory-genome of the eight SeeTs used for the**
387 **evolutionary training.** A Absent/present (respectively white/purple) genes clustering heatmap
388 generated by PanExplorer on the accessory-genome. Each column of the dendrogram (on the top)
389 represents a gene, and these are hierarchically clustered (each cluster is coloured green and yellow
390 alternately). The dendrogram derived from the heatmap (on the left) illustrates the genetic
391 relationships among the SeeTs. B Matrix summary of Fig. 1A, based on the presence/absence of
392 genes in the accessory-genome, between SeeTs. The SeeT17 genome was used as a reference
393 genome. SeeTs are classified according to their STs. Data should be read as follows: there are 22
394 genes that are differentially present/absent when comparing the genomes of just SeeT2 and SeeT17.
395 C Defense systems that are differentially absent/present in different isolates and the numbers of
396 prophages that are inferred to be present in each of the bacterial isolates.

397


398 *Phage characterization*

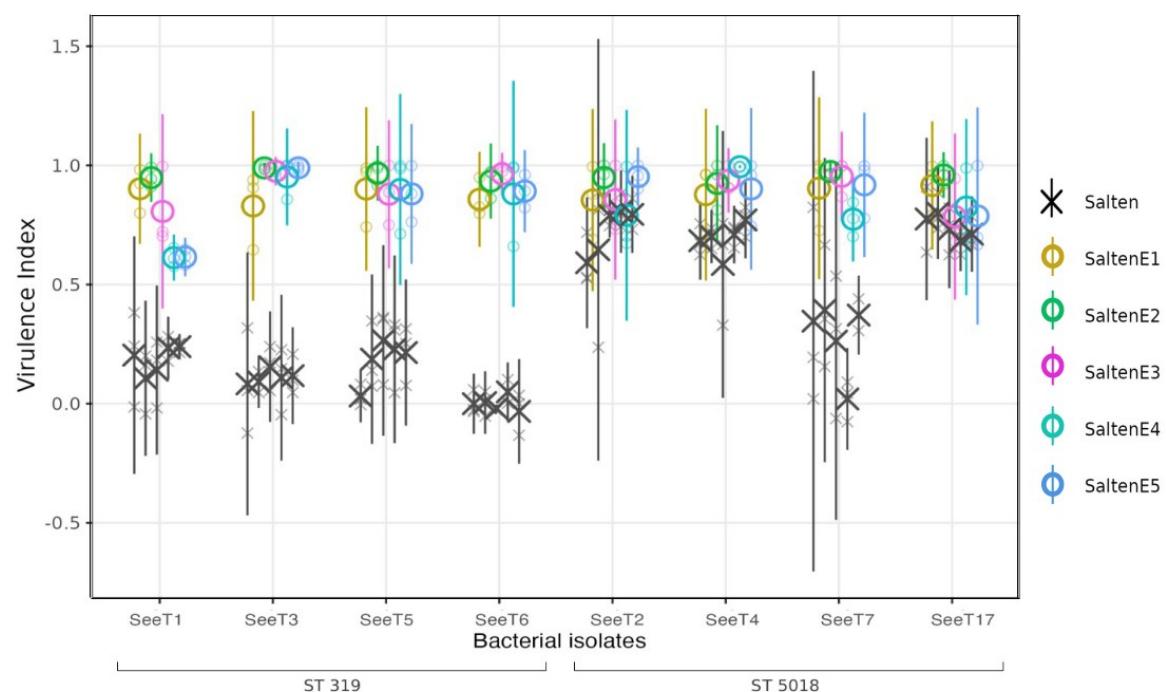
399 Transmission electron microscopy (TEM) of the ancestral phage which we named Salten, revealed a
400 T5-like Siphophage morphology, with a long non-contractile flexible tail approximately 180 nm in
401 length, attached to an icosahedral head with diameter of 60 nm (Fig. 2A).

402 The isolated phage Salten has a genome containing 109,999 base pairs (coverage min = 295x and
403 max = 1171x; after assembly by Spades, polish by Pilon and sequence consensus created by breseq)
404 with approximately 39% GC content. Based on an analysis of 94 phage genomes from the same
405 species (ANI >80%), PanExplorer⁴⁴ identified a core genome consisting of 29 genes. The Salten
406 genome contains all 29 of these core genes. The closest described phage is the *Escherichia* phage
407 HildyBeyeler strain Bas33 (GenBank accession: MZ501074.1). Salten covers 85% of the total Bas33
408 genome, with 97% nucleotide identity within this portion after a blastn analysis. Concerning the core
409 genome shared with Bas33, Salten exhibits 97% protein identity and 93% nucleotide identity. Salten
410 thus represents a member from a new species within the *Tequintavirus* genus⁷⁴.

411 Given that the structure of the T5 tail is available⁶¹ as a model, we described by analogy the caudal
412 structure of Salten (Fig. 2B). Specifically, the T5 tail of Salten is composed of a tube formed by the
413 Tail Tube Protein pb6 (TTP_{pb6}, cyan) buried under the collar which serves as an anchor for the three
414 lateral Long Tail fibres formed by pb1 (LTF_{pb1}, purple). At the extremity of the central fibre is
415 located the Receptor Binding Protein pb5 (RBP_{pb5}, dark green). The length of the tube is determined
416 by the Tape Measure Protein pb2 (TMP_{pb2}, red), which is located in the lumen of the tail as a long
417 coiled-coil. The extremity of the Long Tail Fibres have been shown to reversibly bind to the
418 polysaccharide moiety of LPS^{75,76}, promoting host recognition, whereas RBP_{pb5} irreversibly binds to
419 an outer membrane transporter, such as FhuA, FepA or BtuB, to trigger infection⁷⁷.

420

421
422 **Figure 2. Morphology of the *Tequintavirus* Salten.** A Transmission electron microscopy (TEM). B
423 Schematic structure of T5 adapted from Zivanovic et al.⁶⁰ with pb6: cyan; p142: blue; p132 and pb1: pink;
424 pb9: orange; pb3: yellow; pb4: green, pb5: dark green. The scale bar represents 100 nm.


425 Salten's host range was established against the eight SeeT bacterial isolates in liquid culture (96-well
426 plate, Fig. S3). We calculated a virulence index (Vi) to quantitatively evaluate the ability of Salten to
427 infect each bacterial isolate (black crosses in Fig. 3A), defined as follows: Vi~ 0 indicates that
428 bacterial growth was not affected by the presence of phage while Vi~ 1 indicates a complete
429 inhibition of bacterial growth in presence of the phage.

430 We first verified that the factor "plate" (one plate per day) had no effect on Vi estimates (Chisq₁₄ =
431 11.213, p.value = 0.669; type II ANOVA). We then analysed the combined data using a type III
432 ANOVA and concluded that Salten was more virulent on ST5018 isolates than on ST319 isolates
433 (post-hoc comparison by bacteria nested in ST; between ST319 and ST5018, t₉₈ = -18.300, p.value <
434 0.001), with respective marginal means of 0.121 (emmeans package; confidence interval CI 95%
435 [0.083 – 0.158]) and 0.609 (CI 95% [0.571 – 0.647]).

436 For isolates within each of the ST (ST319 or ST5018), Salten overall had similar virulence on each
437 strain, as virulence indexes were not significantly different between strains (p.value > 0.05; post-hoc
438 pairwise comparison on marginal means between bacteria and by ST). However, SeeT6 (ST319) and
439 SeeT7 (ST5018) were each an exception in their ST, since the ancestral phage Salten was not
440 infectious on SeeT6 (values of virulence index not different from 0, t₁₁₂ = 0.010, p.value = 0.992,
441 post-hoc comparison using Kenward & Roger method with Benjamini & Hochberg correction),

442 which made SeeT6 virulence index significantly different from that of SeeT1 ($t_{98} = 3.459$, $p.value =$
443 0.036) and SeeT5 ($t_{98} = 3.468$, $p.value = 0.035$). SeeT7 was unpredictably sensitive or completely
444 resistant across replicates, regardless of whether the experiments were done in liquid or in solid
445 cultures. We thus observed significant differences between SeeT7 and all the other SeeT isolates
446 belonging to ST5018 (SeeT2: $t_{98} = 8.379$, $p.value < 0.001$; SeeT4: $t_{98} = 7.713$, $p.value < 0.001$;
447 SeeT17: $t_{98} = 8.655$, $p.value < 0.001$).

448

449

450 **Figure 3. Phenotypic characterisation (host range and virulence) of the ancestral Salten and the**
451 **evolved SaltenE phage populations on the eight *S. enterica* serotype Tennessee (SeeT)**
452 **isolates.** SeeT isolates are arranged according to their sequence type with ST319 isolates on the left
453 and ST5018 isolates on the right. Phage virulence indexes were evaluated in liquid cultures with MOI
454 = 0.01 at inoculation time, in the presence of ancestral (black cross) or experimentally evolved
455 (coloured circles) phage populations.

456

457 *Phenotypic Characterization of Evolved Phage Populations*

458 Phage host range expansion depends on the ability of phages to reproduce and generate adaptive
459 mutations. We first tried to evolve the Salten ancestral phage under liquid conditions on each
460 bacterial genotype, separately. While Salten was able to inhibit growth of each bacterial genotype
461 belonging to ST5018, we did not observe any effect, even after five serial passages, on the growth of

462 each of the ST319 bacterial isolates (data not shown).

463 To expand Salten host range, we then applied the Appelmans protocol ^{78,37}, a protocol known to
464 enable host-range expansion ^{79,80}. This protocol involved repeated growth-selection-mixing cycles on
465 eight non co-evolving SeeT isolates (four ST5018, susceptible isolates; and four ST319, resistant
466 isolates). Experimental evolution was independently repeated five times over a 30-month period.
467 Each experimental evolution replicate lasted six to eight passages (one day per passage).

468 We then compared the bacterial growth inhibition potential of each of the evolved phage populations
469 (named SaltenE1 to SaltenE5) to that of the Salten ancestral phage (i.e. phage used to initiate each
470 experimental evolution replicate), in 96-well plates. This comparison was done in an absolute
471 manner by adding one or the other phage populations in respective wells of each plate. We repeated
472 each comparison three times, on different days. First, we tested for any potential effects of running
473 plates over several days (one 96-well plate per day) and found no significant effect (linear mixed-
474 effect model with plate as main effect, bacterial identity and phage identity as random factors,
475 Chisq₁₄ = 5.175, p.value = 0.983).

476 The evolved phages displayed an overall higher virulence than the ancestral Salten (respectively
477 emmean = 0.888, CI 95% [0.863 – 0.913] and emmean = 0.365, IC 95% [0.339 – 0.390]; post-hoc
478 contrast between the ancestral phage and the evolved phages, averaged over bacterial isolates; $t_{210} = -$
479 30.628, p.value < 0.001; Fig. 3A and Fig. S4). When comparing evolved SaltenE populations
480 (pairwise comparison), each SaltenE population had a similar virulence on each bacterial isolate.
481 Thus SaltenE populations displayed similar values between ST ($t_{70} = -0.450$, p.value = 0.654; post-
482 hoc comparison over the levels of phages and bacteria, following a type III ANOVA on a dataset
483 keeping only virulence indexes of SaltenE populations and a linear mixed-effect model in which
484 bacterial isolates were nested in ST). Moreover, virulence of SaltenE populations was comparable
485 between bacterial isolates within each ST (p.values between 0.778 and 1.000, post-hoc comparison
486 of phage by ST over some or all levels of bacteria).

487 The virulence of Salten and SaltenE phage populations were also tested in solid culture using a spot-
488 assay, against an additional 18 isolates of SeeT belonging to either ST319 or ST5018. The ancestral
489 Salten was able to infect 11 out of 26 isolates (i.e. it yielded clear spots in the spot-assay), while the
490 five evolved SaltenE populations were able to infect 25 out of 26 of the bacterial isolates. The
491 SaltenE populations induced only turbid spots on SeeT18. After sending this isolate to the reference
492 center CNR (Paris, France), it was attributed by MLST7 to another serotype and sequence type,

493 Mbandaka ST413 (Fig. S7).

494 *Genomic Characterization of Evolved Phage Populations*

495 To elucidate which exact mutations underlie host range expansion and increased virulence of the
496 evolved populations, we sequenced with Illumina technology the genome of both the ancestral
497 Salten and those of the four evolved populations (SaltenE1, E2, E3 and E4). We thus confirmed first
498 that the observed SaltenE genotypes were derived from the ancestral Salten genotype, in order to
499 rule out contamination or prophage excision from the bacterial hosts⁸¹. Between 95.7% and 97.5%
500 of SaltenE reads mapped against the ancestral Salten genome, after alignment using bwamem2
501 v.2.2.1⁸³, confirming that the vast majority of the evolved phage sequences were descended from the
502 ancestral Salten sequence.

503 We then compared the prevalence of mutations detected along the sequenced genotypes for each of
504 the four SaltenE populations (Fig. S6) by performing a variant calling using Breseq (see Table S2
505 for breseq output). Overall, 2% of mutated positions corresponded to indels and 98% to SNPs, with
506 a hot spot of mutations detected in ORFs upstream or within the coding structural region (in between
507 positions 75 kb to 100 kb). Identical mutations detected at the same *loci* and shared by two, three or
508 four SaltenE populations (hereafter referred to as parallel mutations) were identified in structural and
509 non-structural genes (Table 1). Notably, prevalent parallel mutations were detected in genes coding
510 for DNA modification, recombination, repair and replication enzymes. Interestingly, both SaltenE2
511 and SaltenE4 harboured similar mutations in the phage-associated recombinase (Table 1 and Table
512 S2), with a within-population frequency exceeding 50%. Additionally, several parallel mutations
513 accumulated in the ORFs encoding tail-structure proteins, which are known to influence host range
514 (detailed in Fig. S6, non-synonymous mutations detailed in Fig. 5A).

515

516

517 **Table 1.** Number of similar mutations shared by several evolved phage populations (SaltenE).

Gene	ORF length	Number of parallel mutations	Non-synonymous mutations	Number of lineages sharing these mutations
Gene coding for a ATP-dependent helicase (ortholog to uvsW protein)	1353	55	6	2
Gene coding for an ortholog to gp32 of phage T4	774	21	4	2
Gene coding for a phage-associated recombinase	978	59	17	2
Gene coding for a phage recombination related exonuclease	1839	61	11	2
		45	5	3
Gene coding for an ortholog to a type II restriction endonuclease	483	28	7	3
		13	6	2
Gene coding for endonuclease	876	62	5	3
		5	0	2
Gene coding for deoxyuridine 5'triphosphate nucleotidohydrolase (dUTPase)	447	27	3	4
		7	1 del / 1 insert	3
<i>pb6</i> (Tail Tube Protein)	1392	119	21	3
<i>pb4</i> (Central Fibre Protein)	2103	92	14	4
<i>pb3</i> (Baseplate Hub Protein)	2850	107	22	4
	2850	21	0	3
<i>p138</i>	369	20	1	3
<i>p139</i>	405	27	1	3
<i>p140</i> (Baseplate Tail Tube Protein)	897	38	16	3
<i>p132</i> (Collar Protein)	423	11	4	4
<i>pb2</i> (Tape Measure Protein)	3708	101	11	4
		89	27	3
<i>pb1</i> (lateral Long Tail Fibre)	4152	2	2	4

518

519

520 By analogy to the published T5 tail structure⁶¹, we determined the positions of the parallel mutations
521 on the protein structure (Fig. 5C,E). Synonymous substitutions are expected to induce no or little
522 change in substrate binding specificity, so we only took into account then non-synonymous
523 substitutions with dissimilar or weakly similar properties.

524 At the protein level of *pb6*, the mutation frequency (i.e. the number of non-synonymous mutations
525 detected over the total number of amino-acids concerned) in the tube domain was 3.3%, whereas it
526 went up to 20.7% in the Ig-like domain. Mutations in the Ig-like domain were mainly located in the
527 variable loops, known to be responsible for ligand binding (Fig. 5C,D).

528 Mutations in *pb4* ORF were present at high frequencies in all of the SaltenE populations (Fig. S6;
529 above 50% within SaltenE1 and SaltenE2, and between 25% and 75% within SaltenE3 and
530 SaltenE4). Interestingly, non-synonymous substitutions in the *pb4* protein were mostly concentrated

531 in the FNIII domains and in the decorative domains of the spike (Fig. 5C,D), domains that are also
532 suggested to contribute to host binding⁶¹.

533 For the *pb9* ORF, read coverage (evolved reads coming from each of the four evolved phage
534 lineages and respectively aligned against the ancestral genome) was <10x and therefore too low to
535 conclusively evaluate the frequencies of mutations.

536 Only 4% of all the caudal protein mutations were in p140 protein, which is consistent with the fact
537 that it is completely surrounded by the p132 collar and therefore does not interact with the host
538 surface.

539 Mutations in p132 protein were also concentrated in its Ig-like domain (12.1% of the total mutations
540 in this gene), and, as for pb6, mutations were mainly located in loops, which are known to interact
541 with specific ligands (Fig. 5C,D).

542 The gene in which we observed the highest numbers of non-synonymous parallel mutations was
543 *pb2*. The impact of such non-synonymous mutations on the structure of the protein pb2 is difficult to
544 predict because the pb2 protein structure has not been completely solved, and residues 420 to 891
545 appear to be highly divergent among known T5-pb2 proteins available on NCBI database. However,
546 when compared to other ORFs encoding caudal proteins, the *pb2* ORF harboured one of the highest
547 variability among our evolved SaltenE nucleotide sequences, with 101 parallel mutations shared by
548 all four SaltenE lineages and 89 more shared by three of the SaltenE lineages (Fig. 4A).

549 Intrigued by these multiple parallel mutations in *pb2* ORF, we looked at their order of appearance by
550 Sanger sequencing PCR amplicons at passages one, three and five of the experimental evolution
551 procedure. Most of the mutations appeared to become fixed in the evolved populations between
552 passages four and five in SaltenE1 and SaltenE2, and passages six and seven in SaltenE3 and
553 SaltenE4. Strikingly, we observed small differences in mutational profiles according to each evolved
554 population, such as mutations appearing fixed at passage five within SaltenE3 whereas secondary
555 peaks were observed at this *locus* in SaltenE1, E2 and E4, showing a transient co-existence of alleles
556 over time rising to fixation.

557 In order to verify whether such mutations were part of the standing genetic variation or of the
558 ancestral Salten population at the onset of the experiment, or whether they had arisen as *de novo*

559 mutations, we analysed the Salten ancestral population sequencing data. We especially focused on
560 the small contigs (< 1,200bp) present within Illumina outputs of Salten genome assemblies.
561 Originally, these small contigs were removed because of their very low coverage (less than five
562 reads of coverage) which suggested that they were artifacts or contaminants. We aligned these small
563 minor contigs with the highly mutated regions present in evolved populations, so as to determine
564 whether, under selection, the mutations observed in these contigs might have substantially
565 contributed to evolved SaltenE populations. For two different regions (base pairs 553 to 1116 and
566 1794 to 2026) of the *pb2* ORF, we found >99% identity of some of these minor contigs with the
567 SaltenE population *pb2* consensus nucleotide sequences but only 85% identity with Salten consensus
568 ancestral *pb2* sequence (Fig. S8). In order to verify whether the observed accumulation of mutations
569 within the evolved consensus sequence of *pb2* protein tended to occur in "hypervariable" zones, we
570 aligned 100 sequences of *pb2* proteins retrieved from NCBI GenBank as well as the Salten and
571 SaltenE *pb2* consensus sequences. Consistent with our hypothesis, the multiple parallel mutations
572 retrieved between consensus *pb2* protein sequences from the four evolved SaltenE populations and
573 from the ancestral Salten population (Fig. 4B; red rectangles) were located in hypervariable zones,
574 including the 420 - 891 region mentioned above which seemed to be hypervariable (Fig. 4B; dark
575 purple rectangle). The two regions matching with minor contigs obtained by sequencing the
576 ancestral Salten population were also located in these hypervariable zones on the protein (Fig. 4B;
577 blue rectangles).

578 Notably, minor contigs present in the initial Salten inoculum showed >98% identity with other
579 regions present in the evolved tail structural protein encoding sequences. For instance, the evolved
580 *p132* ORF consensus sequence from the SaltenE populations presented 100% identity with a minor
581 Salten contig, but only 73% with Salten consensus *p132* ORF (Fig. S8). We also found three regions
582 in *pb3* evolved ORF consensus sequence (base pairs 1 to 854, 1272 to 1746 and 2253 to 2701)
583 presenting 99% identity with some minor Salten contigs, but only 76% with Salten consensus *pb3*
584 ORF (Fig. S8). Two regions on *pb6* evolved ORF consensus sequence (base pairs 462 to 761 and
585 1277 to 1407) presented >98% identity with minor Salten contigs versus 81% and 76% identity with
586 Salten consensus *pb6* ORF, respectively (Fig. S8). Finally, region 205 - 957 bp of *pb4* evolved ORF
587 consensus sequence presented >99% identity with minor Salten contigs versus 74% identity with
588 Salten consensus *pb4* ORF sequence (Fig. S8). These results suggested that some phage regions are
589 hypervariable and one or another sequence might be selected and increase in frequency over time
590 (and serial passages) according to selection pressures. Our results also suggest that even after five
591 first severe bottlenecks meant to purify a phage isolated from the environment and obtain a

592 homogeneous solution of viral particles, within-population variation still remains or can be quickly
593 generated at least at some *loci* that can be qualified as hypervariable.

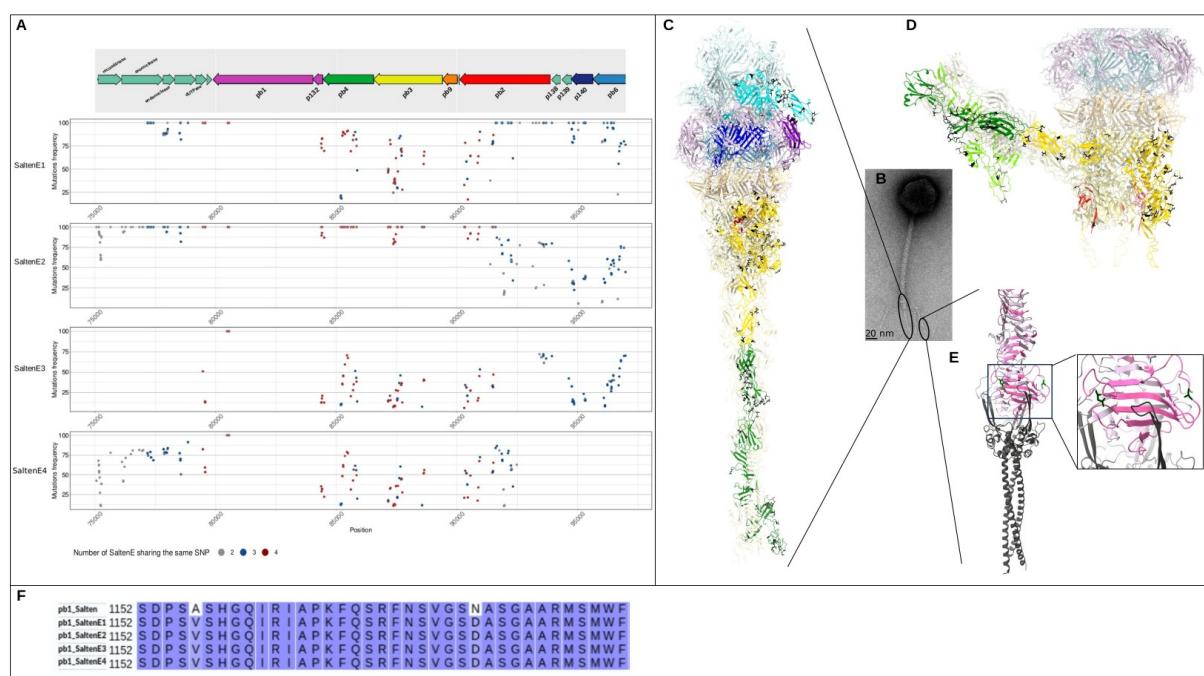
594

595
596

597 **Figure 4. Frequency of mutations in Salten pb2 ORF.** **A** Frequency of mutations accumulated in *pb2* ORFs
598 in four independent evolved populations (SaltenE1, E2, E3, E4). colours of each mutation correspond to its
599 presence over populations: yellow mutations are present in only one evolved population, gray in two, blue in
600 three and dark red in four evolved phage populations. **B** Standing diversity among 100 *pb2* proteins from
601 NCBI compared to Salten. The black histogram represents the distance to Salten consensus. The lower red
602 panel represents positions at which we observed mutations in three or four SaltenE evolved populations (pb2
603 consensus protein sequences) compared to ancestral Salten *pb2* protein. The dark purple rectangle bounds
604 the 420 - 891 hypervariable region. Blue rectangles represent SaltenE *pb2* regions with higher degrees of
605 sequence identity to minority small contigs (assembled following ancestral Salten population sequencing)
606 than to the consensus Salten sequence.

607

608 Focus on Variation within the *pb1* Gene (Long Tail Fibre)


609 The last considered gene involved in caudal structure is *pb1*. After experimental evolution, we
610 detected only two parallel mutations, which became fixed in all four evolved SaltenE populations:
611 C80453T (alanine into valine on the protein; A1157V) and A80495G (asparagine into aspartic acid
612 on the protein; N1178D). They were also fixed in the four evolved SaltenE populations (Fig. 5F),
613 despite the varying coverage across replicates (SaltenE3 and E4: ~120X and ~200X of coverage,
614 respectively; SaltenE1 and E2: <6X coverage around this particular locus position). To evaluate

615 fixation dynamics of both mutations, we Sanger-sequenced PCR amplicons (obtained through
616 primers flanking positions 80453 and 80495 of the Salten genome) at passages one, three and five of
617 our experimental evolution. Concerning the four evolved populations, the A80495G parallel
618 mutation was fixed at passage three and the C80453T parallel mutation was fixed at the fifth passage
619 of Salten's experimental evolution.

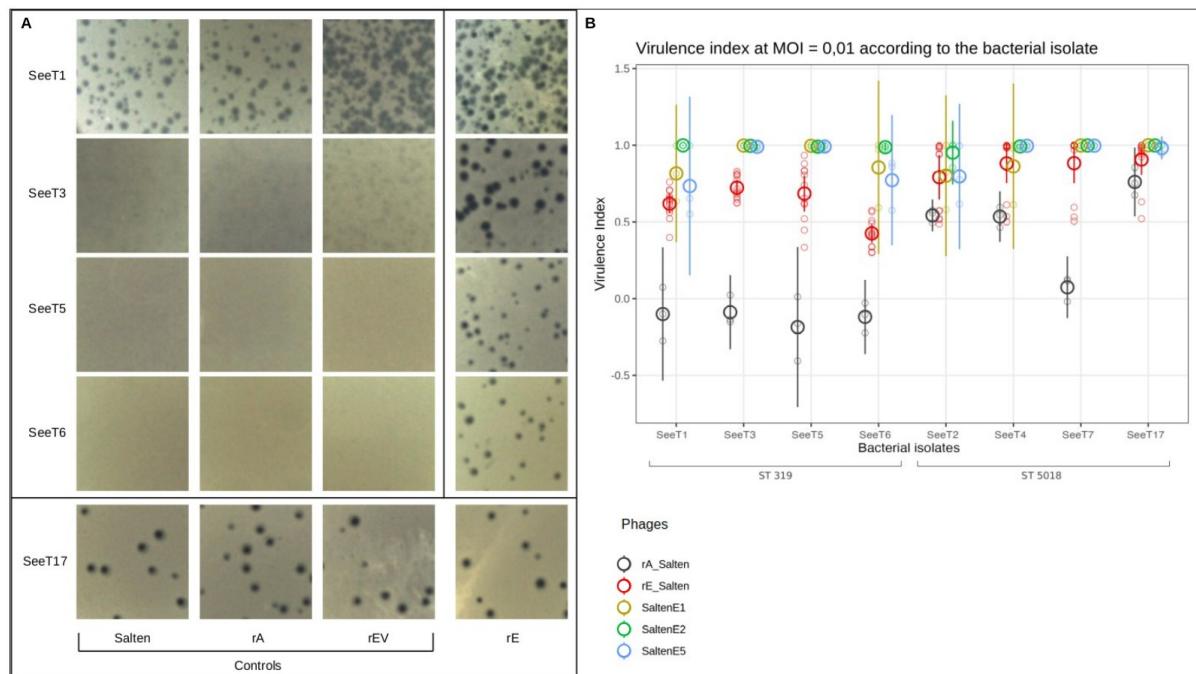
620 Interestingly, phage populations undergoing experimental evolution were able to infect the eight
621 bacterial isolates from the third passage. Even though the growth of the ST319 bacterial genotypes
622 was not yet entirely inhibited at this passage, it was almost completely inhibited by at the fifth
623 passage.

624 The C-terminal domain of T5-pb1 protein is known to point towards the curved groove at the
625 subunit interface, a region suggested to be the poly-mannose binding site of the protein and a
626 chaperone domain ⁷⁵. Because the full-length Salten-pb1 was not easily alignable to T5-pb1, the
627 structure of its C-terminal domains was predicted with AlphaFold2 ⁸² with very high confidence
628 (plDDT higher than 90%; Fig. S9). The predicted structure had a C-terminal chaperone domain with
629 a long loop, which, similarly to T5-pb1, could serve as the poly-mannose binding site. Most
630 pertinent in the context of the evolution experiment, the two parallel C80453T and A80495G
631 mutations resulted in two amino acid changes identified within this predicted binding groove (Fig.
632 5E).

633

634
635

Figure 5. Non-synonymous parallel mutations present in caudal genes of evolved phage populations SaltenE1, E2, E3, E4. **A** Frequency of non-synonymous parallel mutations according to their genomic position. Degree of parallelism of each mutation is indicated with colours as in Fig. 4A. **B** Negative stain micrograph of phage T5. **C,D,E** Mutations (indicated in black) on the different proteins contributing to the T5 tail tip structure: pb6: cyan; p140: blue; p132: purple; pb9: orange; pb3: gold; pb4: green (note that the three FNIII domains and the spike are in different shades of green); pb1: pink (note the chaperone domain in dark grey). **C** Ribbon representation of T5 tail tip structure. **D** Ribbon representation of T5 tail tip structure when injecting phage dsDNA after being adsorbed on the bacterial membrane. **E** Ribbon representation of the C-terminal tip of pb1 with its chaperone domain (4UW8⁷⁵). **F** Alignment of Salten and the four SaltenE of pb1 amino acids 1152 to 1216, corresponding to the C-terminal part of pb1.


646

647

648 Experimental Evaluation of pb1 Point-Mutations on the Phenotype

649 Given the importance of the *pb1* ORF in host range specificity^{84,75}, we aimed at experimentally
650 testing the adaptive potential of the two parallel mutations. To do so, we carried out a reverse-
651 genetics experiment by taking advantage of the naturally high recombination rate of Tequintaviruses
652 to acquire the two parallel mutations previously introduced within a plasmid⁸⁵. We thus created
653 three plasmids that we introduced into the most susceptible bacterial isolate, SeeT17, either without
654 any phage sequence (hereafter called "rEV" for "reverse empty vector"), or with the ancestral phage
655 region encompassing positions C80453 and A80495 (hereafter called "rA" as "reverse ancestral"), or
656 with the evolved sequence region encompassing T80453 and G80495 (hereafter called "rE" as
657 "reverse evolved"). After infection of each of the three transformed SeeT17 with the ancestral phage
658 Salten population, we recovered the phage progeny. PCR amplicons targeting the appropriate region

659 in *pb1* ORF were Sanger-sequenced in order to confirm the presence of evolved *pb1* mutations in
660 phages having recombined with rE plasmid (hereafter called rE_Salten) or rEV or rA plasmids
661 (hereafter called rEV_Salten and rA_Salten respectively). We then tested their phenotypes on ST319
662 bacterial lawn. As expected, ancestral Salten population as well as rEV_Salten and rA_Salten were
663 not able to create clear lysis plaques on ST319 isolates (SeeT1, SeeT3, SeeT5 and SeeT6; Fig. 6A).
664 The inability or highly reduced ability of these phages to infect SeeT3, SeeT5 and SeeT6 was
665 obvious (no plaque observed or light turbid plaques) while Salten, rEV_Salten and rA_Salten
666 induced some turbid lysis plaques on SeeT1 lawns. As expected, Salten, rEV_Salten and rA_Salten
667 were also able to create clear lysis on SeeT17, the positive control from ST5018. Confirming our
668 prediction, rE_Salten produced clear lysis plaques on all lawns produced by ST319 isolates, in
669 addition to SeeT17 bacterial lawn (Fig. 6A last column).
670

671

672 **Figure 6. host range and virulence evaluation of rE_Salten.** **A** Visualisation of the reverse-genetics
673 double-layer assay. Bacteria are represented in rows and phages in columns. SeeT17 served as positive
674 control as it is susceptible to the ancestral Salten phage infection. rEV_Salten, rA_Salten and rE_Salten
675 correspond to the ancestral phage having potentially recombined with a plasmid harbouring, respectively, no
676 insert (no recombination allowed), an insert with the ancestral sequence of the *pb1* gene, and finally the
677 insert with the evolved sequence of the *pb1* gene. **B** Virulence index (Vi) of rA_Salten (dark grey), rE_Salten
678 (red), SaltenE1 (yellow), SaltenE2 (light green) and SaltenE5 (dark blue), according to *S. enterica* isolates
679 and ST, at MOI = 0.01.

680

681 In order to evaluate whether the two parallel C80453T and A80495G mutations also enhanced
682 infection in liquid cultures, we compared the growth curves of the eight bacterial isolates in presence

683 of either rA_Salten or rE_Salten, in 96-well plates (Fig. 6B). Confirming the data obtained in solid
684 conditions, on the one hand, rA_Salten (emmean = -0.123, CI 95% [-0.210 - 0.036]) was
685 significantly less capable than rE_Salten (emmean = 0.613, CI 95% [0.556 – 0.671]) to inhibit
686 growth of ST319 bacterial isolates (post-hoc contrast by pairs of phages; $t_{164} = -16.088$, $p.value <$
687 0.001). But rA_Salten was also significantly less capable than rE_Salten to inhibit bacterial growth
688 of two isolates from ST5018 (post-hoc comparison by pairs of phage by bacteria; SeeT4: $t_{164} = -$
689 3.786, $p.value = 0.038$ and SeeT7: $t_{164} = -8.833$, $p.value < 0.001$). Overall, rE_Salten showed an
690 expanded host range as well as a higher degree of virulence than rA_Salten.

691 To evaluate whether the two parallel mutations in *pb1* ORF alone were sufficient to fully account for
692 the increased virulence of the SaltenE populations, we directly compared the capacity of rE_Salten
693 and SaltenE populations to inhibit bacterial growth in 96-well plates. On ST319 bacterial isolates,
694 SaltenE populations were significantly more virulent than rE_Salten (post-hoc contrast by ST; $t_{164} =$
695 10.034, $p.value < 0.001$; emmean = 0.850, CI 95% [0.752 - 0.948] and 0.620, CI 95% [0.533 -
696 0.706], respectively) except for SeeT1 in which SaltenE populations were marginally more virulent
697 than rE_Salten (post-hoc contrast by bacteria; $t_{164} = 3.683$, $p.value = 0.053$). On ST5018 bacterial
698 isolates, SaltenE populations were also significantly more virulent (but to a lesser degree than on
699 ST318) than rE_Salten ($t_{164} = 2.624$, $p.value = 0.026$).

700

701 DISCUSSION

702 The question of whether generalism (i.e. the ability to successfully reproduce in different
703 environments) evolves at the cost of a lower mean fitness across environments remains an open
704 fundamental question with applied dimensions^{17,9}. In the field of bacterial control using phages,
705 there is no consensus yet favouring the use of one generalist phage or a cocktail of several specialist
706 phages^{86,87}. On the one hand, if generalist phages replicate less efficiently than specialist ones,
707 resistant bacterial genotypes might appear with higher probability thanks to bigger bacterial
708 population sizes^{88,89,90,91}. On the other hand, using several specialist phages could modify phage-
709 bacteria networks due to phage-phage (antagonist) interactions, such as agglutination among phages
710 resulting in lower effective phage concentrations^{92,93}.

711 If possible, it would then be of great interest to generate generalist phages adapted to a broad host

712 range with high virulence. One aim of our study was to generate such a highly efficient generalist
713 phage by adapting it to several bacterial genotypes. Viral adaptation to hosts resides in optimizing
714 the several life cycle steps of adsorption and entry on the target cell, bypassing of cell defense,
715 followed by gene expression, genome replication, virion assembly and release ⁹⁴. In phages, the
716 determinants of host range often consist of proteins allowing for adsorption on the bacterial surface,
717 such as capsid or spike proteins in microvirid phages ^{95,96,24,97}, receptor binding proteins in the RNA
718 virus $\Phi 6$ ^{25,26} or surface polysaccharide-related traits (K-serotype, LPS outer core or O-antigen
719 serotype) in *Caudoviricetes* ⁹⁸ such as observed in fibres of phages T3 ⁹⁹, T4 ¹⁰⁰, T7 ⁹, T2 ¹⁰¹ and T5
720 ⁷⁵. Our study showed that in the *Tequintavirus* Salten, parallel mutations (revealing convergent
721 evolution) notably accumulated in *pb1* ORF, coding for the Long Tail Fibre, a caudal protein
722 involved in host recognition through LPS interaction. Interestingly, we demonstrated (by reverse-
723 genetics) the adaptive function of these parallel mutations and showed that they appeared early in
724 our experimental evolution assay, confirming that host entry is one of the primordial steps of
725 adaptation.

726 Specifically, we showed that mutations in the C-terminal region of the *pb1* protein were necessary
727 for host-recognition. We did not observe any other adaptive mutations in the rest of the protein.
728 Although, these results are not consistent with the finding that for BD13 (another recent study on a
729 *Tequintavirus*), the domain responsible for host interaction is in the N-terminal region of *pb1* protein
730 ⁸⁴. This discrepancy between results might be attributable to the predicted BD13-*pb1* protein (as
731 determined by AlphaFold2) which harboured a longer coiled-coil domain (connecting the fibre to
732 the tail tube) and a shorter fibre domain than the Salten-*pb1* protein. The predicted fibre structure of
733 the Salten-*pb1* protein aligned well with the central domain of the BD13-*pb1* protein (DALI ¹⁰² z-
734 score of 9.6 over 302 residues), but the alignment also revealed that the BD13-*pb1* protein lacked the
735 C-terminal saccharide binding domain found in Salten (Fig. S9).

736 Besides those in *pb1*, multiple parallel mutations were observed in evolved phage populations at
737 variable within-population frequencies in other phage caudal proteins: *pb6*, *p140*, *pb3*, *pb4* and
738 *p132*. These structural tail proteins present accessory/decoration or structural domains with protein
739 or oligosaccharide binding folds. These features have been proposed to increase phage infectivity
740 through specific binding to protein and/or saccharides at the surface of bacteria (e.g. Ig-like and
741 FNII domains, or Oligosaccharide-binding domain ¹⁰³). Notably, a large proportion of the parallel
742 mutations observed in our study were located in these decorative domains, and more specifically in
743 the loops responsible for binding with bacterial ligands. Such great variability of phage proteins

744 recognizing LPS as a first step of infection is thus in line with the great variability of *Salmonella* O-
745 antigens (more than 2500 registered serotypes). Indeed, we showed on the one hand that host range
746 adaptive mutations accumulated on long tail fibre involved in recognizing LPS and O-Ag. On the
747 other hand, the polymorphisms in genes involved in O-Ag processing were only present at three
748 codon sites in two genes (*waaK* and/or *wzx*^C). Further studies will be needed to determine (i) on the
749 phage side, if the mutations detected in *pb1* ORF are sufficient to expand the phage host range to
750 other serotypes and sequence types harbouring the same profiles on these two genes; and (ii) on the
751 bacterial side, if mutants resistant to Salten will involve genetic variations (mutations / deletions) in
752 the *loci* present in genes that encoded *waaK* and/or *wzx*^C or other regions as it has already been
753 described in other gram-negative bacteria ^{104,105}.

754 Interestingly, we did not observe any parallel mutation in phage receptor binding protein pb5, which
755 is known to irreversibly bind the outer-membrane transporter FhuA ⁶¹. When looking carefully at
756 bacterial genomic polymorphisms in the two sequence types involved in our study (ST319 and
757 ST5018), we noted that FhuA differed between our ST5018 and ST319 isolates by only two amino
758 acids: one located in a periplasmic loop and the other in the plug (Fig. S1C). Neither of these amino
759 acid sites are in extracellular loops that mediate the interaction with the phage RBP ⁷⁷. Therefore, it
760 was with no surprise that we did not observe any adaptive mutations accumulating within the phage
761 RBP gene.

762 One striking result of our study is the high number of mutations observed in caudal and non-
763 structural proteins. Interestingly, similar patterns have been reported in other experimental evolution
764 studies, such as in phage T7 ¹⁰⁶, where hundreds of mutations – some of them parallel – were
765 detected. Several factors may explain this high mutational diversity. First, as observed in the gene
766 coding for pb2, some parallel mutations might have been present at the beginning of the experiment
767 but at such low frequencies that they went undetected. Their subsequent increase across serial
768 passages could result from direct selection due to fitness advantages or indirect selection via
769 hitchhiking. These hyper-variable regions could arise spontaneously, particularly in proteins with
770 immunoglobulin-like structures as is frequently observed in tailed ds-DNA *Caudoviridetes* genomes
771 ^{107,108}. Second, the abundance of mutations may reflect the selection of mutator genotypes, a
772 phenomenon suggested to be transiently adaptive in fluctuating environments ^{109,110,111}. Supporting
773 this idea, some of the parallel mutations in evolved Salten occur in genes encoding endonucleases
774 and recombination exonucleases, proteins known to modulate mutation rate, as shown in myophage

775 T4¹⁰⁹, podophage T7¹¹² and SARS-CoV-2¹¹³. Moreover, Salten's recombinase and exonuclease
776 share structural similarity with the Mre11 – Rad50 complex in eukaryotes and its bacterial and
777 phage orthologs, including SbcCD (prokaryotes), gp46/gp47 (phage T4) and gpD13/gpD12 (phage
778 T5)¹¹⁴. Structural modelling of SaltenE parallel mutations further places them near the DNA
779 processing site¹¹⁵, which supports our hypothesis that these mutations may drive the selection of
780 mutators. Further studies will be needed to directly test the effects of these parallel mutations in the
781 SaltenE endo- and exonuclease on mutation rates and transient adaptation.

782 Other parallel mutations were observed within phage dUTPase, a protein primarily responsible for
783 removing excess of dUTP mistakenly incorporated into DNA by DNA polymerases. Mutations in
784 this protein may be adaptive because it is absolutely vital for the phage to supplement *E. coli*
785 dUTPase activity which is, on its own, insufficient to exclude uracil from progeny DNA¹¹⁶.
786 dUTPase seems also to be involved in mutation rate variation¹¹⁷ and in potentially additional
787 functions that have not yet been characterised¹¹⁸.

788 Further, we observed parallel mutations within proteins involved in recombination-dependent
789 replication (RDR) and DNA-repair, including an ortholog of the T4 ATP-dependent helicase uvsW.
790 These proteins are key contributors to phage counter-defense systems. Notably, phage mutants in
791 RDR and helicase genes have been suggested by Loeff et al. (2023)¹¹⁹ to contribute to the evasion of
792 the bacterial defense system Shedu, a protein complex targeting free-end ssDNA and detected in our
793 bacteria. Moreover, Wu et al. (2021)¹²⁰ found that the phage T4's recombinase, uvsX, is essential to
794 escape CRISPR bacterial defenses by removing the targeted nucleotides. To deepen our molecular
795 understanding of both phage adaptation to bacterial hosts, and bacterial resistance mechanisms
796 against phages, further studies will be necessary to experimentally test these hypotheses.

797 Finally, one of the most promising results of our study resides in our ability to rapidly evolve a
798 phage with both an expanded host range and a significantly increased degree of virulence. Indeed,
799 the evolved phage populations inhibited bacterial growth with significantly more efficiency than the
800 ancestral phage on both the ST319 and ST5018 host genotypes (Fig. 3). We subsequently showed
801 that adaptive mutations present in the *pb1* gene were not sufficient on their own to explain the
802 significant increase in virulence (Fig. 6B). We then suggested that increased virulence was due to
803 mutations allowing evolved phages to escape from the bacterial host defense system.

804 It is important to point out that our results are inconsistent with those of other experimental
805 evolution studies. We suggest three possible explanations for this. First, contrary to other studies, we

806 evolved Salten in a spatially variable environment thanks to the Appelmans protocol ³⁷, while other
807 experimental evolution studies have evolved their phages in temporally variable environments. More
808 explicitly, we argue that the nature of adaptive mutations and their interactions may vary depending
809 on the environment in which individuals evolve (temporal *versus* spatial variable environments). In
810 cases where individuals alternate between different environments (i.e. temporal variability), all
811 individuals experience simultaneously the same conditions (peaks or valleys in their fitness
812 landscape). Each genotype can thus accumulate mutations with deleterious effects in one or the other
813 environment because all competing individuals experience these costs simultaneously, maintaining
814 comparable relative fitness. Such a process might explain why alternation between *S. enterica* and *E.*
815 *coli* was accompanied by a reduced ability of Φ X174 to infect *E. coli* ²⁴. On the contrary, in cases
816 where each individual of a population is confronted with one or the other of two different
817 environments (spatial variability), all individuals experience different conditions at a given time.
818 Natural selection might then select for mutations with the lowest selective costs, due to antagonistic
819 pleiotropy imposed by adaptation to one or the other environment. Moreover, natural selection might
820 also select for other mutations compensating the selective cost(s) imposed by adaptive mutations
821 conferring a selective advantage that is exclusive to one or the other environment. In this regard, the
822 Appelmans protocol creates a spatially variable environment. Each well of a 96-well plate consists
823 of a single sub-population of phage-bacteria with a unique condition, due to different population
824 sizes, multiplicities of infection (MOI) as well as bacterial genotype present in each well (one
825 genotype out of eight in our conditions). At each transfer, all phages are thus mixed and randomly
826 dispersed into new sub-populations, each phage competing with other genotypes that previously
827 experienced different conditions.

828 Second, and contrary to other experimental evolution assays such as that described in Sant's study ⁹,
829 our ability to rapidly select for a phage with generalist behavior and high virulence might also come
830 from another peculiarity of the Appelmans protocol ³⁷, in which some sub-populations are at high
831 MOI while other are at low MOI. Thus, in wells with high MOI, both large population sizes and
832 population processes, such as amphimixy or complementation, likely promote the retention of high
833 mutational diversity within phage populations ^{121,36}. Conversely, in solutions with a low MOI, strong
834 selection favors mutants with an expanded host range and those carrying compensatory mutations,
835 eliminating the possibility of phenotypic masking of deleterious mutations ^{122,123}.

836 Third, we evolved Salten through several replication cycles (six to seven serial transfers with

837 approximately 18 hours of bacterial growth at each passage), whereas other experiments evaluated
838 virulence after as few generations as possible, without letting compensatory mutations accumulate.
839 For example, Duffy et al., (2006)²⁵ and Ferris et al., (2007)²⁶ were interested in measuring the
840 fitness cost induced by host range mutations. They thus measured $\Phi 6$ relative fitness after just one
841 replication cycle. If our hypothesis holds, we would expect these expanded host range $\Phi 6$ mutants to
842 accumulate compensatory mutations if they were evolved for longer in spatially variable
843 environments composed of different bacterial hosts.

844

845 CONCLUSION

846 We have isolated a novel species of *Tequintavirus* from an environment sample. Initially, this phage
847 was able to infect only one *Salmonella enterica* sequence type. After seven serial experimental
848 evolution passages exposing the phage to different hosts at different MOI, a phage population was
849 evolved displaying an expanded host range and increased virulence towards new *Salmonella*
850 *enterica* sequence types. Our results highlight the power of the Appelmans experimental evolution
851 protocol to exploit the high evolvability potential of phages.

852 We include in our results a warning to supporters of synthetic biology^{124,125} who suggest the
853 generation of synthetic phages with expanded host ranges via the modification of genes involved in
854 host-recognition⁹⁹. Specifically, we have shown that host range mutations are not sufficient to
855 confer efficient inhibition of bacterial growth. In fact, other mutations seem to be needed to increase
856 virulence, such as those subverting host antiviral defense mechanisms, which are advantageous to
857 the phage. A situation where engineered phages would have expanded host range but low virulence
858 may encourage the evolution of new bacterial genotypes that are resistant to the phages.

859 Finally, the question of why we do not isolate more generalist phages in natural conditions still
860 remains. To answer this question, we would like to highlight the impact of environmental
861 heterogeneity on competition among phage genotypes. Under our experimental conditions, phages
862 were pooled within the same spatially variable environment at each passage despite high degrees of
863 hosts diversity (eight bacterial genotypes belonging to two sequence types). In natural conditions,
864 bacterial host populations are mostly segregated into separate patches in which competition happens
865 and selective benefit to a generalist phage may be enhanced or reduced depending on the frequency

866 of one or the other permissive host. Generalist phages may then be favored when the hosts occur
867 only in mixed patches (with specialized phages being eliminated when environments are composed
868 of separated patches of host genotypes), as is predicted by analytical and simulation models based on
869 optimal foraging theory^{126,127}.

870

871 AUTHOR CONTRIBUTION

872 Conceptualisation, R.F. and A.M.; Methodology & Investigation, R.F. and A.M. with the help of
873 C.Z.-C. and M.M.-R. for the reverse-genetics part and F.-X.W for bacterial sequencing; Results
874 analysis, R.F., A.M., M.V., C.Z.-C., C.B., S.B., J.H., J.D., F.-X.W. and I.B; Writing, R.F. and A.M.;
875 Revision, R.F., A.M., M.V., C.Z.-C., C.B., S.B., J.H., J.D., F.-X.W., I.B. and A.F.

876 ACKNOWLEDGMENTS

877 We thank M. Ansaldi (LCB, Marseille) for providing wastewater from which we isolated our phage,
878 M-S. Vernerey (PHIM, Montpellier) for the electron microscopy, C. Mariac (DIADE, Montpellier)
879 for the library quality check before sequencing, A. Talman (MIVEGEC, Montpellier) for the help on
880 the iSeq use, O. Rossier (I2BC, Montpellier) for helpful discussion on reverse-genetics, C. Mariac
881 (PHIM, Montpellier) for QiAxl use, P. Agnew for his help on statistics, Y. Anciaux (ISEM,
882 Montpellier) for the Vi calculation, J. Garneau for PhageTerm help, M. Monot (I. Pasteur, Paris) and
883 A. Dereeper (PHIM, Montpellier) for bioinformatics advice, C. Torres-Barceló (PHIM,
884 Montpellier), C. Whittington (CED, Bordeaux) and D. Martin (UCT, South Africa) for helpful
885 commentaries and discussion of the manuscript. The authors thanks UMR MIVEGEC for providing
886 an efficient working environment and acknowledge the ISO 9001 certified IRD itrop HPC (member
887 of the South Green Platform) and the whole bioinformatics team support in Montpellier for
888 providing HPC resources that have contributed to the research results reported within this paper.
889 URL: <https://bioinfo.ird.fr/> - <http://www.southgreen.fr> This work was funded by Royal Canin
890 through the support of the CNRS (contract 245420).

891

892 DATA AND SCRIPT AVAILABILITY

893 The data and scripts that support the findings of this study are openly available at
894 <https://src.koda.cnrs.fr/MAURINAmandine/salten>.

895 CONFLICT OF INTEREST

896 The authors declare no conflict of interest.

897 REFERENCES

- 898 1. Dion, M.B., Oechslin, F., and Moineau, S. (2020). Phage diversity, genomics and phylogeny. *Nat Rev Microbiol*, 125–138. <https://doi.org/10.1038/s41579-019-0311-5>.
- 900 2. Chevallereau, A., Pons, B.J., van Houte, S., and Westra, E.R. (2022). Interactions between bacterial and
901 phage communities in natural environments. *Nat Rev Microbiol* 20, 49–62.
902 <https://doi.org/10.1038/s41579-021-00602-y>.
- 903 3. Suttle, C.A. (2007). Marine viruses — major players in the global ecosystem. *Nat Rev Microbiol* 5, 801–
904 812. <https://doi.org/10.1038/nrmicro1750>.
- 905 4. Breitbart, M. (2012). Marine Viruses: Truth or Dare. *Annual Review of Marine Science* 4, 425–448.
906 <https://doi.org/10.1146/annurev-marine-120709-142805>.
- 907 5. Roux, S., and Emerson, J.B. (2022). Diversity in the soil virosphere: to infinity and beyond? *Trends in
908 Microbiology* 30, 1025–1035. <https://doi.org/10.1016/j.tim.2022.05.003>.
- 909 6. Reyes, A., Haynes, M., Hanson, N., Angly, F.E., Heath, A.C., Rohwer, F., and Gordon, J.I. (2010). Viruses
910 in the faecal microbiota of monozygotic twins and their mothers. *Nature* 466, 334–338.
911 <https://doi.org/10.1038/nature09199>.
- 912 7. Norman, J.M., Handley, S.A., Baldridge, M.T., Droit, L., Liu, C.Y., Keller, B.C., Kambal, A., Monaco, C.L.,
913 Zhao, G., Fleshner, P., et al. (2015). Disease-Specific Alterations in the Enteric Virome in Inflammatory
914 Bowel Disease. *Cell* 160, 447–460. <https://doi.org/10.1016/j.cell.2015.01.002>.
- 915 8. Duerkop, B.A., Kleiner, M., Paez-Espino, D., Zhu, W., Bushnell, B., Hassell, B., Winter, S.E., Kyripides,
916 N.C., and Hooper, L.V. (2018). Murine colitis reveals a disease-associated bacteriophage community.
917 *Nat Microbiol* 3, 1023–1031. <https://doi.org/10.1038/s41564-018-0210-y>.
- 918 9. Sant, D.G., Woods, L.C., Barr, J.J., and McDonald, M.J. (2021). Host diversity slows bacteriophage
919 adaptation by selecting generalists over specialists. *Nat Ecol Evol* 5, 350–359.
920 <https://doi.org/10.1038/s41559-020-01364-1>.
- 921 10. Hall, J.P., Harrison, E., and Brockhurst, M.A. (2013). Viral host-adaptation: insights from evolution
922 experiments with phages. *Current Opinion in Virology* 3, 572–577.
923 <https://doi.org/10.1016/j.coviro.2013.07.001>.

924 11. Koskella, B., and Meaden, S. (2013). Understanding Bacteriophage Specificity in Natural Microbial
925 Communities. *Viruses* 5, 806–823. <https://doi.org/10.3390/v5030806>.

926 12. Hyman, P., and Abedon, S.T. (2010). Chapter 7 - Bacteriophage host range and bacterial resistance. *Adv
927 App Microbiol* 70, 217–248. [https://doi.org/10.1016/S0065-2164\(10\)70007-1](https://doi.org/10.1016/S0065-2164(10)70007-1).

928 13. de Jonge, P.A., Nobrega, F.L., Brouns, S.J.J., and Dutilh, B.E. (2019). Molecular and Evolutionary
929 Determinants of Bacteriophage Host Range. *Trends in Microbiology* 27, 51–63.
930 <https://doi.org/10.1016/j.tim.2018.08.006>.

931 14. Bono, L.M., Mao, S., Done, R.E., Okamoto, K.W., Chan, B.K., and Turner, P.E. (2021). Chapter Three -
932 Advancing phage therapy through the lens of virus host-breadth and emergence potential. In *Advances
933 in Virus Research*, M. Kielian, T. C. Mettenleiter, and M. J. Roossinck, eds. (Academic Press), pp. 63–
934 110. <https://doi.org/10.1016/bs.aivir.2021.07.004>.

935 15. Allen, R.C., Pfrunder-Cardozo, K.R., Meinel, D., Egli, A., and Hall, A.R. (2017). Associations among
936 Antibiotic and Phage Resistance Phenotypes in Natural and Clinical *Escherichia coli* Isolates. *mBio* 8,
937 10.1128/mbio.01341-17. <https://doi.org/10.1128/mbio.01341-17>.

938 16. Mathieu, A., Dion, M., Deng, L., Tremblay, D., Moncaut, E., Shah, S.A., Stokholm, J., Krogfelt, K.A.,
939 Schjørring, S., Bisgaard, H., et al. (2020). Virulent coliphages in 1-year-old children fecal samples are
940 fewer, but more infectious than temperate coliphages. *Nat Commun* 11, 378.
941 <https://doi.org/10.1038/s41467-019-14042-z>.

942 17. Bono, L.M., Draghi, J.A., and Turner, P.E. (2020). Evolvability Costs of Niche Expansion. *Trends in
943 Genetics* 36, 14–23. <https://doi.org/10.1016/j.tig.2019.10.003>.

944 18. Woolhouse, M.E.J., Taylor, L.H., and Haydon, D.T. (2001). Population Biology of Multihost Pathogens.
945 *Science* 292, 1109–1112. <https://doi.org/10.1126/science.1059026>.

946 19. Leggett, H.C., Benmayor, R., Hodgson, D.J., and Buckling, A. (2013). Experimental Evolution of Adaptive
947 Phenotypic Plasticity in a Parasite. *Current Biology* 23, 139–142.
948 <https://doi.org/10.1016/j.cub.2012.11.045>.

949 20. Gandon, S. (2004). Evolution of multihost parasites. *Evolution* 58, 455–469.
950 <https://doi.org/10.1111/j.0014-3820.2004.tb01669.x>.

951 21. Brockhurst, M.A., Koskella, B., and Zhang, Q.-G. (2017). Bacteria-Phage Antagonistic Coevolution and
952 the Implications for Phage Therapy. In *Bacteriophages: Biology, Technology, Therapy*, D. Harper, S.
953 Abedon, B. Burrowes, and M. McConville, eds. (Springer International Publishing), pp. 1–21.
954 https://doi.org/10.1007/978-3-319-40598-8_7-1.

955 22. Keen, E.C. (2014). Tradeoffs in bacteriophage life histories. *Bacteriophage* 4, e28365.
956 <https://doi.org/10.4161/bact.28365>.

957 23. Kęsik-Szeloch, A., Drulis-Kawa, Z., Weber-Dąbrowska, B., Kassner, J., Majkowska-Skrobek, G.,
958 Augustyniak, D., Łusiak-Szelachowska, M., Żaczek, M., Górska, A., and Kropinski, A.M. (2013).
959 Characterising the biology of novel lytic bacteriophages infecting multidrug resistant *Klebsiella*
960 *pneumoniae*. *Virology Journal* 10, 100. <https://doi.org/10.1186/1743-422X-10-100>.

961 24. Crill, W.D., Wichman, H.A., and Bull, J.J. (2000). Evolutionary reversals during viral adaptation to
962 alternating hosts. *Genetics* 154, 27–37. <https://doi.org/10.1093/genetics/154.1.27>.

963 25. Duffy, S., Turner, P.E., and Burch, C.L. (2006). Pleiotropic costs of niche expansion in the RNA

964 bacteriophage phi 6. *Genetics* 172, 751–757. <https://doi.org/10.1534/genetics.105.051136>.

965 26. Ferris, M.T., Joyce, P., and Burch, C.L. (2007). High Frequency of Mutations That Expand the Host
966 Range of an RNA Virus. *Genetics* 176, 1013–1022. <https://doi.org/10.1534/genetics.106.064634>.

967 27. Wikswo, M.E., Roberts, V., Marsh, Z., Manikonda, K., Gleason, B., Kambhampati, A., Mattison, C.,
968 Calderwood, L., Balachandran, N., Cardemil, C., et al. (2022). Enteric Illness Outbreaks Reported
969 Through the National Outbreak Reporting System—United States, 2009–2019. *Clinical Infectious
970 Diseases* 74, 1906–1913. <https://doi.org/10.1093/cid/ciab771>.

971 28. Authority, E.F.S. and European Centre for Disease Prevention and Control (2021). The European Union
972 One Health 2019 Zoonoses Report. *EFSA Journal* 19, e06406.
973 <https://doi.org/10.2903/j.efsa.2021.6406>.

974 29. Chapman, J.S. (2003). Disinfectant resistance mechanisms, cross-resistance, and co-resistance.
975 *International Biodeterioration & Biodegradation* 51, 271–276. [https://doi.org/10.1016/S0964-8305\(03\)00044-1](https://doi.org/10.1016/S0964-
976 8305(03)00044-1).

977 30. Bridier, A., Le Grandois, P., Moreau, M.-H., Prénom, C., Le Roux, A., Feurer, C., and Soumet, C. (2019).
978 Impact of cleaning and disinfection procedures on microbial ecology and *Salmonella* antimicrobial
979 resistance in a pig slaughterhouse. *Sci Rep* 9, 12947. <https://doi.org/10.1038/s41598-019-49464-8>.

980 31. Li, M., Lin, H., Jing, Y., and Wang, J. (2020). Broad-host-range *Salmonella* bacteriophage STP4-a and its
981 potential application evaluation in poultry industry. *Poultry Science* 99, 3643–3654.
982 <https://doi.org/10.1016/j.psj.2020.03.051>.

983 32. Woolston, J., Parks, A.R., Abuladze, T., Anderson, B., Li, M., Carter, C., Hanna, L.F., Heyse, S.,
984 Charbonneau, D., and Sulakvelidze, A. (2013). Bacteriophages lytic for *Salmonella* rapidly reduce
985 *Salmonella* contamination on glass and stainless steel surfaces. *Bacteriophage* 3, e25697.
986 <https://doi.org/10.4161/bact.25697>.

987 33. Chen, Z., Yang, Y., Li, G., Huang, Y., Luo, Y., and Le, S. (2024). Effective elimination of bacteria on hard
988 surfaces by the combined use of bacteriophages and chemical disinfectants. *Microbiology Spectrum* 0,
989 e03797-23. <https://doi.org/10.1128/spectrum.03797-23>.

990 34. Turner, P.E., Draghi, J.A., and Wilpiszeski, R. (2012). High-throughput analysis of growth differences
991 among phage strains. *Journal of Microbiological Methods* 88, 117–121.
992 <https://doi.org/10.1016/j.mimet.2011.10.020>.

993 35. Geng, Y., Nguyen, T.V.P., Homae, E., and Golding, I. (2024). Using bacterial population dynamics to
994 count phages and their lysogens. *Nat Commun* 15, 7814. <https://doi.org/10.1038/s41467-024-51913-6>.

995 36. Strobel, H.M., Stuart, E.C., and Meyer, J.R. (2022). A Trait-Based Approach to Predicting Viral Host-
996 Range Evolvability. *Annual Review of Virology* 9, 139–156. <https://doi.org/10.1146/annurev-virology-091919-092003>.

998 37. Burrowes, B.H., Molineux, I.J., and Fralick, J.A. (2019). Directed in Vitro Evolution of Therapeutic
999 Bacteriophages: The Appelmans Protocol. *Viruses* 11, 241. <https://doi.org/10.3390/v11030241>.

1000 38. Kropinski, A.M., Mazzocco, A., Waddell, T.E., Lingohr, E., and Johnson, R.P. (2009). Enumeration of
1001 Bacteriophages by Double Agar Overlay Plaque Assay. In *Bacteriophages Methods in Molecular
1002 Biology*, M. R. J. Clokie and A. M. Kropinski, eds. (Humana Press), pp. 69–76.
1003 https://doi.org/10.1007/978-1-60327-164-6_7.

1004 39. Hill, J.E., Paccagnella, A., Law, K., Melito, P.L., Woodward, D.L., Price, L., Leung, A.H., Ng, L.-K.,
1005 Hemmingsen, S.M., and Goh, S.H. (2006). Identification of *Campylobacter* spp. and discrimination from

1006 1006 Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and
1007 1007 comparison to cpnDB, a chaperonin reference sequence database. *Journal of Medical Microbiology* 55,
1008 1008 393–399. <https://doi.org/10.1099/jmm.0.46282-0>.

1009 1009 40. Gendre, J., Ansaldi, M., Olivenza, D.R., Denis, Y., Casadesús, J., and Ginet, N. (2022). Genetic Mining of
1010 1010 Newly Isolated Salmophages for Phage Therapy. *International Journal of Molecular Sciences* 23, 8917.
1011 1011 <https://doi.org/10.3390/ijms23168917>.

1012 1012 41. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko,
1013 1013 S.I., Pham, S., Prjibelski, A.D., et al. (2012). SPAdes: A New Genome Assembly Algorithm and Its
1014 1014 Applications to Single-Cell Sequencing. *Journal of Computational Biology* 19, 455–477.
1015 1015 <https://doi.org/10.1089/cmb.2012.0021>.

1016 1016 42. Zhou, Z., Alikhan, N.-F., Mohamed, K., Fan, Y., and Achtman, M. (2020). The Enterobase user's guide,
1017 1017 with case studies on *Salmonella* transmissions, *Yersinia pestis* phylogeny, and *Escherichia coli*
1018 1018 genomic diversity. *Genome Res* 30, 138–152. <https://doi.org/10.1101/gr.251678.119>.

1019 1019 43. Hayer, J., Dainat, J., Marcy, E., and Bañuls, A.-L. (2023). Baargin: a Nextflow workflow for the automatic
1020 1020 analysis of bacterial genomics data with a focus on Antimicrobial Resistance. *Journal of Open Source
1021 1021 Software* 8, 5397. <https://doi.org/10.21105/joss.05397>.

1022 1022 44. Dereeper, A., Summo, M., and Meyer, D.F. (2022). PanExplorer: a web-based tool for exploratory
1023 1023 analysis and visualization of bacterial pan-genomes. *Bioinformatics* 38, 4412–4414.
1024 1024 <https://doi.org/10.1093/bioinformatics/btac504>.

1025 1025 45. Tesson, F., Planel, R., Egorov, A.A., Georjon, H., Vaysset, H., Brancotte, B., Néron, B., Mordret, E.,
1026 1026 Atkinson, G.C., Bernheim, A., et al. (2024). A Comprehensive Resource for Exploring Antiphage
1027 1027 Defense: DefenseFinder Webservice, Wiki and Databases. *Peer Community Journal* 4.
1028 1028 <https://doi.org/10.24072/pcjournal.470>.

1029 1029 46. Arndt, D., Marcu, A., Liang, Y., and Wishart, D.S. (2019). PHAST, PHASTER and PHASTEST: Tools for
1030 1030 finding prophage in bacterial genomes. *Briefings in Bioinformatics* 20, 1560–1567.
1031 1031 <https://doi.org/10.1093/bib/bbx121>.

1032 1032 47. Zhou, Y., Liang, Y., Lynch, K.H., Dennis, J.J., and Wishart, D.S. (2011). PHAST: a fast phage search tool.
1033 1033 *Nucleic Acids Res* 39, W347–352. <https://doi.org/10.1093/nar/gkr485>.

1034 1034 48. Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput.
1035 1035 *Nucleic Acids Research* 32, 1792–1797. <https://doi.org/10.1093/nar/gkh340>.

1036 1036 49. Larsson, A. (2014). AliView: a fast and lightweight alignment viewer and editor for large datasets.
1037 1037 *Bioinformatics* 30, 3276–3278. <https://doi.org/10.1093/bioinformatics/btu531>.

1038 1038 50. Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics
1039 1039 and high-performance computing. *Nat Methods* 9, 772. <https://doi.org/10.1038/nmeth.2109>.

1040 1040 51. Guindon, S., Delsuc, F., Dufayard, J.-F., and Gascuel, O. (2009). Estimating Maximum Likelihood
1041 1041 Phylogenies with PhyML. In *Bioinformatics for DNA Sequence Analysis Methods in Molecular Biology*.,
1042 1042 D. Posada, ed. (Humana Press), pp. 113–137. https://doi.org/10.1007/978-1-59745-251-9_6.

1043 1043 52. Babraham Bioinformatics - FastQC A Quality Control tool for High Throughput Sequence Data
1044 1044 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

1045 1045 53. Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor.

1046 Bioinformatics 34, i884–i890. <https://doi.org/10.1093/bioinformatics/bty560>.

1047 54. Turner, D., Adriaenssens, E.M., Tolstoy, I., and Kropinski, A.M. (2021). Phage Annotation Guide:
1048 Guidelines for Assembly and High-Quality Annotation. PHAGE 2, 170–182.
1049 <https://doi.org/10.1089/phage.2021.0013>.

1050 55. Antipov, D., Raiko, M., Lapidus, A., and Pevzner, P.A. (2020). MetaviralSPAdes: assembly of viruses from
1051 metagenomic data. Bioinformatics 36, 4126–4129. <https://doi.org/10.1093/bioinformatics/btaa490>.

1052 56. Prjibelski, A., Antipov, D., Meleshko, D., Lapidus, A., and Korobeynikov, A. (2020). Using SPAdes De
1053 Novo Assembler. Current Protocols in Bioinformatics 70, e102. <https://doi.org/10.1002/cpbi.102>.

1054 57. Garneau, J.R., Depardieu, F., Fortier, L.-C., Bikard, D., and Monot, M. (2017). PhageTerm: a tool for fast
1055 and accurate determination of phage termini and packaging mechanism using next-generation
1056 sequencing data. Sci Rep 7, 8292. <https://doi.org/10.1038/s41598-017-07910-5>.

1057 58. Walker, B.J., Abeel, T., Shea, T., Priest, M., Aboueliel, A., Sakthikumar, S., Cuomo, C.A., Zeng, Q.,
1058 Wortman, J., Young, S.K., et al. (2014). Pilon: An Integrated Tool for Comprehensive Microbial Variant
1059 Detection and Genome Assembly Improvement. PLOS ONE 9, e112963.
1060 <https://doi.org/10.1371/journal.pone.0112963>.

1061 59. Olson, R.D., Assaf, R., Brettin, T., Conrad, N., Cucinell, C., Davis, J.J., Dempsey, D.M., Dickerman, A.,
1062 Dietrich, E.M., Kenyon, R.W., et al. (2023). Introducing the Bacterial and Viral Bioinformatics Resource
1063 Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res 51, D678–D689.
1064 <https://doi.org/10.1093/nar/gkac1003>.

1065 60. Zivanovic, Y., Confalonieri, F., Ponchon, L., Lurz, R., Chami, M., Flayhan, A., Renouard, M., Huet, A.,
1066 Decottignies, P., Davidson, A.R., et al. (2014). Insights into Bacteriophage T5 Structure from Analysis
1067 of Its Morphogenesis Genes and Protein Components. Journal of Virology 88, 1162–1174.
1068 <https://doi.org/10.1128/JVI.02262-13>.

1069 61. Linares, R., Arnaud, C.-A., Effantin, G., Darnault, C., Epalle, N.H., Boeri Erba, E., Schoehn, G., and
1070 Breyton, C. (2023). Structural basis of bacteriophage T5 infection trigger and *E. coli* cell wall
1071 perforation. Science Advances 9, eade9674. <https://doi.org/10.1126/sciadv.ade9674>.

1072 62. Wilkins, D. (2024). wilcox/gggenes.

1073 63. Barrick, J.E., Colburn, G., Deatherage, D.E., Traverse, C.C., Strand, M.D., Borges, J.J., Knoester, D.B.,
1074 Reba, A., and Meyer, A.G. (2014). Identifying structural variation in haploid microbial genomes from
1075 short-read resequencing data using breseq. BMC Genomics 15, 1039. <https://doi.org/10.1186/1471-2164-15-1039>.

1077 64. Team, R.C. (2020). R A language and environment for statistical computing, R Foundation for Statistical
1078 Computing.

1079 65. Team, R.S. (2021). RStudio: integrated development environment for R.

1080 66. Storms, Z.J., Teel, M.R., Mercurio, K., and Sauvageau, D. (2020). The Virulence Index: A Metric for
1081 Quantitative Analysis of Phage Virulence. PHAGE 1, 27–36. <https://doi.org/10.1089/phage.2019.0001>.

1082 67. Ekstrøm, C.T. (2012). MESS: Miscellaneous Esoteric Statistical Scripts.
1083 <https://doi.org/10.32614/CRAN.package.MESS>.

1084 68. Fox, J., Weisberg, S., and Price, B. (2001). car: Companion to Applied Regression.
1085 <https://doi.org/10.32614/CRAN.package.car>.

1086 69. Lenth, R. (2012). lsmeans: Least-Squares Means. <https://doi.org/10.32614/CRAN.package.lsmeans>.

1087 70. Wickham, H. (2011). ggplot2. *WIREs Computational Statistics* 3, 180–185.
<https://doi.org/10.1002/wics.147>.

1089 71. Adler, B.A., Kazakov, A.E., Zhong, C., Liu, H., Kutter, E., Lui, L.M., Nielsen, T.N., Carion, H.,
1090 Deutschbauer, A.M., Mutualik, V.K., et al. (2021). The genetic basis of phage susceptibility, cross-
1091 resistance and host-range in *Salmonella*. *Microbiology (Reading)* 167, 001126.
1092 <https://doi.org/10.1099/mic.0.001126>.

1093 72. Schwengers, O., Jelonek, L., Dieckmann, M.A., Beyvers, S., Blom, J., and Goesmann, A. (2021). Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification.
1094 *Microbial Genomics* 7, 000685. <https://doi.org/10.1099/mgen.0.000685>.

1096 73. The UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Research*
1097 47, D506–D515. <https://doi.org/10.1093/nar/gky1049>.

1098 74. Adriaenssens, E., and Brister, J.R. (2017). How to Name and Classify Your Phage: An Informal Guide.
1099 *Viruses* 9, 70. <https://doi.org/10.3390/v9040070>.

1100 75. Garcia-Doval, C., and van Raaij, M.J. (2013). Bacteriophage Receptor Recognition and Nucleic Acid
1101 Transfer. In *Structure and Physics of Viruses: An Integrated Textbook Subcellular Biochemistry*., M. G.
1102 Mateu, ed. (Springer Netherlands), pp. 489–518. https://doi.org/10.1007/978-94-007-6552-8_17.

1103 76. Heller, K., and Braun, V. (1982). Polymannose O-antigens of *Escherichia coli*, the binding sites for the
1104 reversible adsorption of bacteriophage T5+ via the L-shaped tail fibers. *Journal of Virology* 41, 222–
1105 227. <https://doi.org/10.1128/jvi.41.1.222-227.1982>.

1106 77. Degroux, S., Effantin, G., Linares, R., Schoehn, G., and Breyton, C. (2023). Deciphering Bacteriophage
1107 T5 Host Recognition Mechanism and Infection Trigger. *Journal of Virology* 97, e01584-22.
1108 <https://doi.org/10.1128/jvi.01584-22>.

1109 78. Appelmans, R. (1921). Le dosage du bactériophage. 85, 1098.

1110 79. Mapes, A.C., Trautner, B.W., Liao, K.S., and Ramig, R.F. (2016). Development of expanded host range
1111 phage active on biofilms of multi-drug resistant *Pseudomonas aeruginosa*. *Bacteriophage* 6, e1096995.
1112 <https://doi.org/10.1080/21597081.2015.1096995>.

1113 80. Loose, M., Sáez Moreno, D., Mutti, M., Hitzenhammer, E., Visram, Z., Dippel, D., Schertler, S., Tišáková,
1114 L.P., Wittmann, J., Corsini, L., et al. (2021). Natural Bred $\varepsilon 2$ -Phages Have an Improved Host Range
1115 and Virulence against Uropathogenic *Escherichia coli* over Their Ancestor Phages. *Antibiotics* 10,
1116 1337. <https://doi.org/10.3390/antibiotics10111337>.

1117 81. Peters, T.L., Schow, J., Spencer, E., Van Leuven, J.T., Wichman, H., and Miller, C. (2024). Directed
1118 evolution of bacteriophages: thwarted by prolific prophage. *Applied and Environmental Microbiology* 90,
1119 e00884-24. <https://doi.org/10.1128/aem.00884-24>.

1120 82. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates,
1121 R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold.
1122 *Nature* 596, 583–589. <https://doi.org/10.1038/s41586-021-03819-2>.

1123 83. Vasimuddin, Md., Misra, S., Li, H., and Aluru, S. (2019). Efficient Architecture-Aware Acceleration of
1124 BWA-MEM for Multicore Systems. In *2019 IEEE International Parallel and Distributed Processing
1125 Symposium (IPDPS)*, pp. 314–324. <https://doi.org/10.1109/IPDPS.2019.00041>.

1126 84. Zhang, J., Ning, H., Lin, H., She, J., Wang, L., Jing, Y., and Wang, J. (2022). Expansion of the Plaquing
1127 Host Range and Improvement of the Absorption Rate of a T5-like *Salmonella* Phage by Altering the
1128 Long Tail Fibers. *Applied and Environmental Microbiology* 0, e00895-22.
1129 <https://doi.org/10.1128/aem.00895-22>.

1130 85. Ramirez-Chamorro, L., Boulanger, P., and Rossier, O. (2021). Strategies for Bacteriophage T5
1131 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering. *Frontiers in Microbiology* 12.
1132 <https://doi.org/10.3389/fmicb.2021.667332>.

1133 86. Rohde, C., Resch, G., Pirnay, J.-P., Blasdel, B.G., Debarbieux, L., Gelman, D., Górska, A., Hazan, R.,
1134 Huys, I., Kakabadze, E., et al. (2018). Expert Opinion on Three Phage Therapy Related Topics:
1135 Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains. *Viruses*
1136 10, 178. <https://doi.org/10.3390/v10040178>.

1137 87. Borin, J.M., Lee, J.J., Gerbino, K.R., and Meyer, J.R. (2023). Comparison of bacterial suppression by
1138 phage cocktails, dual-receptor generalists, and coevolutionarily trained phages. *Evolutionary
1139 Applications* 16, 152–162. <https://doi.org/10.1111/eva.13518>.

1140 88. Oromí-Bosch, A., Antani, J.D., and Turner, P.E. (2023). Developing Phage Therapy That Overcomes the
1141 Evolution of Bacterial Resistance. *Annual Review of Virology* 10, 503–524.
1142 <https://doi.org/10.1146/annurev-virology-012423-110530>.

1143 89. Betts, A., Kaltz, O., and Hochberg, M.E. (2014). Contrasted coevolutionary dynamics between a bacterial
1144 pathogen and its bacteriophages. *PNAS* 111, 11109–11114. <https://doi.org/10.1073/pnas.1406763111>.

1145 90. Friman, V.-P., Soanes-Brown, D., Sierociński, P., Molin, S., Johansen, H.K., Merabishvili, M., Pirnay, J.-
1146 P., De Vos, D., and Buckling, A. (2016). Pre-adapting parasitic phages to a pathogen leads to
1147 increased pathogen clearance and lowered resistance evolution with *Pseudomonas aeruginosa* cystic
1148 fibrosis bacterial isolates. *Journal of Evolutionary Biology* 29, 188–198.
1149 <https://doi.org/10.1111/jeb.12774>.

1150 91. Zhang, Q.-G., Chu, X.-L., and Buckling, A. (2021). Overcoming the growth–infectivity trade-off in a
1151 bacteriophage slows bacterial resistance evolution. *Evolutionary Applications* 14, 2055–2063.
1152 <https://doi.org/10.1111/eva.13260>.

1153 92. Molina, F., Menor-Flores, M., Fernández, L., Vega-Rodríguez, M.A., and García, P. (2022). Systematic
1154 analysis of putative phage-phage interactions on minimum-sized phage cocktails. *Sci Rep* 12, 2458.
1155 <https://doi.org/10.1038/s41598-022-06422-1>.

1156 93. Jault, P., Leclerc, T., Jennes, S., Pirnay, J.P., Que, Y.-A., Resch, G., Rousseau, A.F., Ravat, F., Carsin,
1157 H., Le Floch, R., et al. (2019). Efficacy and tolerability of a cocktail of bacteriophages to treat burn
1158 wounds infected by *Pseudomonas aeruginosa* (PhagoBurn): a randomised, controlled, double-blind
1159 phase 1/2 trial. *Lancet Infect Dis* 19, 35–45. [https://doi.org/10.1016/S1473-3099\(18\)30482-1](https://doi.org/10.1016/S1473-3099(18)30482-1).

1160 94. Simmonds, P., Aiewsakun, P., and Katzourakis, A. (2019). Prisoners of war — host adaptation and its
1161 constraints on virus evolution. *Nat Rev Microbiol* 17, 321–328. [https://doi.org/10.1038/s41579-018-0120-2](https://doi.org/10.1038/s41579-018-
1162 0120-2).

1163 95. Sackman, A.M., McGee, L.W., Morrison, A.J., Pierce, J., Anisman, J., Hamilton, H., Sanderbeck, S.,
1164 Newman, C., and Rokyta, D.R. (2017). Mutation-Driven Parallel Evolution during Viral Adaptation.
1165 *Molecular Biology and Evolution* 34, 3243–3253. <https://doi.org/10.1093/molbev/msx257>.

1166 96. Bull, J.J., Badgett, M.R., Wichman, H.A., Huelsenbeck, J.P., Hillis, D.M., Gulati, A., Ho, C., and Molineux,
1167 I.J. (1997). Exceptional Convergent Evolution in a Virus. *Genetics* 147, 1497–1507.
1168 <https://doi.org/10.1093/genetics/147.4.1497>.

1169 97. Pepin, K.M., Domsic, J., and McKenna, R. (2008). Genomic evolution in a virus under specific selection
1170 for host recognition. *Infection, Genetics and Evolution* 8, 825–834.
1171 <https://doi.org/10.1016/j.meegid.2008.08.008>.

1172 98. Gaborieau, B., Vaysset, H., Tesson, F., Charachon, I., Dib, N., Bernier, J., Dequidt, T., Georjon, H.,
1173 Clermont, O., Hersen, P., et al. (2024). Prediction of strain level phage–host interactions across the
1174 *Escherichia* genus using only genomic information. *Nat Microbiol* 9, 2847–2861.
1175 <https://doi.org/10.1038/s41564-024-01832-5>.

1176 99. Yehl, K., Lemire, S., Yang, A.C., Ando, H., Mimee, M., Torres, M.D.T., De La Fuente-Nunez, C., and Lu,
1177 T.K. (2019). Engineering Phage Host-Range and Suppressing Bacterial Resistance through Phage Tail
1178 Fiber Mutagenesis. *Cell* 179, 459-469.e9. <https://doi.org/10.1016/j.cell.2019.09.015>.

1179 100. Chen, M., Zhang, L., Abdelgader, S.A., Yu, L., Xu, J., Yao, H., Lu, C., and Zhang, W. (2017). Alterations
1180 in gp37 Expand the Host Range of a T4-Like Phage. *Applied and Environmental Microbiology* 83,
1181 e01576-17. <https://doi.org/10.1128/AEM.01576-17>.

1182 101. Yoichi, M., Abe, M., Miyanaga, K., Unno, H., and Tanji, Y. (2005). Alteration of tail fiber protein gp38
1183 enables T2 phage to infect *Escherichia coli* O157:H7. *Journal of Biotechnology* 115, 101–107.
1184 <https://doi.org/10.1016/j.jbiotec.2004.08.003>.

1185 102. Holm, L. (2022). Dali server: structural unification of protein families. *Nucleic Acids Research* 50, W210–
1186 W215. <https://doi.org/10.1093/nar/gkac387>.

1187 103. Flayhan, A., Vellieux, F.M.D., Lurz, R., Maury, O., Contreras-Martel, C., Girard, E., Boulanger, P., and
1188 Breyton, C. (2014). Crystal Structure of pb9, the Distal Tail Protein of Bacteriophage T5: a Conserved
1189 Structural Motif among All Siphophages. *Journal of Virology* 88, 820–828.
1190 <https://doi.org/10.1128/JVI.02135-13>.

1191 104. Billing, E. (1960). An Association between Capsulation and Phage Sensitivity in *Erwinia amylovora*.
1192 *Nature* 186, 819–820. <https://doi.org/10.1038/186819a0>.

1193 105. Liu, M., Hernandez-Morales, A., Clark, J., Le, T., Biswas, B., Bishop-Lilly, K.A., Henry, M., Quinones, J.,
1194 Voegtly, L.J., Cer, R.Z., et al. (2022). Comparative genomics of *Acinetobacter baumannii* and
1195 therapeutic bacteriophages from a patient undergoing phage therapy. *Nat Commun* 13, 3776.
1196 <https://doi.org/10.1038/s41467-022-31455-5>.

1197 106. Bull, J.J., Badgett, M.R., Rokyta, D., and Molineux, I.J. (2003). Experimental Evolution Yields Hundreds
1198 of Mutations in a Functional Viral Genome. *J Mol Evol* 57, 241–248. <https://doi.org/10.1007/s00239-003-2470-1>.

1200 107. Fraser, J.S., Maxwell, K.L., and Davidson, A.R. (2007). Immunoglobulin-like domains on bacteriophage:
1201 weapons of modest damage? *Current Opinion in Microbiology* 10, 382–387.
1202 <https://doi.org/10.1016/j.mib.2007.05.018>.

1203 108. Fraser, J.S., Yu, Z., Maxwell, K.L., and Davidson, A.R. (2006). Ig-Like Domains on Bacteriophages: A
1204 Tale of Promiscuity and Deceit. *Journal of Molecular Biology* 359, 496–507.
1205 <https://doi.org/10.1016/j.jmb.2006.03.043>.

1206 109. Mansky, L.M., and Cunningham, K.S. (2000). Virus mutators and antimutators: roles in evolution,
1207 pathogenesis and emergence. *Trends in Genetics* 16, 512–517. [https://doi.org/10.1016/S0168-9525\(00\)02125-9](https://doi.org/10.1016/S0168-9525(00)02125-9).

1209 110. Travis, J. m. j, and Travis, E. r (2002). Mutator dynamics in fluctuating environments. *Proceedings of the*

1210 Royal Society of London. Series B: Biological Sciences 269, 591–597.
1211 <https://doi.org/10.1098/rspb.2001.1902>.

1212 111. Pennings, P.S., Ogbunugafor, C.B., and Hershberg, R. (2022). Reversion is most likely under high
1213 mutation supply when compensatory mutations do not fully restore fitness costs. *G3 Genes|Genomes|*
1214 *Genetics* 12, jkac190. <https://doi.org/10.1093/g3journal/jkac190>.

1215 112. Tabor, S., and Richardson, C.C. (1989). Selective Inactivation of the Exonuclease Activity of
1216 Bacteriophage T7 DNA Polymerase by in Vitro Mutagenesis. *Journal of Biological Chemistry* 264,
1217 6447–6458. [https://doi.org/10.1016/S0021-9258\(18\)83369-5](https://doi.org/10.1016/S0021-9258(18)83369-5).

1218 113. Amicone, M., Borges, V., Alves, M.J., Isidro, J., Zé-Zé, L., Duarte, S., Vieira, L., Guiomar, R., Gomes,
1219 J.P., and Gordo, I. (2022). Mutation rate of SARS-CoV-2 and emergence of mutators during
1220 experimental evolution. *Evolution, Medicine, and Public Health* 10, 142–155.
1221 <https://doi.org/10.1093/emph/eoac010>.

1222 114. Rojowska, A.M. (2013). Structural and functional analysis of DNA binding by the Rad50 catalytic head
1223 from *Thermotoga maritima*.

1224 115. Käshammer, L., Saathoff, J.-H., Lammens, K., Gut, F., Bartho, J., Alt, A., Kessler, B., and Hopfner, K.-P.
1225 (2019). Mechanism of DNA End Sensing and Processing by the Mre11-Rad50 Complex. *Molecular Cell*
1226 76, 382-394.e6. <https://doi.org/10.1016/j.molcel.2019.07.035>.

1227 116. Warner, H.R., Thompson, R.B., Mozer, T.J., and Duncan, B.K. (1979). The properties of a bacteriophage
1228 T5 mutant unable to induce deoxyuridine 5'-triphosphate nucleotidohydrolase. Synthesis of uracil-
1229 containing T5 deoxyribonucleic acid. *Journal of Biological Chemistry* 254, 7534–7539.
1230 [https://doi.org/10.1016/S0021-9258\(18\)35977-5](https://doi.org/10.1016/S0021-9258(18)35977-5).

1231 117. Duncan, B.K., and Weiss, B. (1982). Specific mutator effects of ung (uracil-DNA glycosylase) mutations
1232 in *Escherichia coli*. *Journal of Bacteriology* 151, 750–755. <https://doi.org/10.1128/jb.151.2.750-755.1982>.

1234 118. Glukhov, A., Marchenkov, V., Dzhus, U., Krutilina, A., Selikhanov, G., and Gabdulkhakov, A. (2024).
1235 Bacteriophage T5 dUTPase: Combination of Common Enzymatic and Novel Functions. *International*
1236 *Journal of Molecular Sciences* 25, 892. <https://doi.org/10.3390/ijms25020892>.

1237 119. Loeff, L., Walter, A., Rosalen, G.T., and Jinek, M. (2023). DNA end sensing and cleavage by the Shedu
1238 anti-phage defense system. Preprint at bioRxiv, <https://doi.org/10.1101/2023.08.10.552762>.

1239 120. Wu, X., Zhu, J., Tao, P., and Rao, V.B. (2021). Bacteriophage T4 Escapes CRISPR Attack by
1240 Minihomology Recombination and Repair. *mBio* 12, 10.1128/mbio.01361-21.
1241 <https://doi.org/10.1128/mbio.01361-21>.

1242 121. Montville, R., Froissart, R., Remold, S.K., Tenaillon, O., and Turner, P.E. (2005). Evolution of mutational
1243 robustness in an RNA virus. *PLoS Biol.* 3, e381. <https://doi.org/10.1371/journal.pbio.0030381>.

1244 122. Novella, I.S., Reissig, D.D., and Wilke, C.O. (2004). Density-dependent selection in vesicular stomatitis
1245 virus. *J Virol* 78, 5799–5804. <https://doi.org/10.1128/jvi.69.5.2869-2872.1995>.

1246 123. Froissart, R., Wilke, C.O., Montville, R., Remold, S.K., Chao, L., and Turner, P.E. (2004). Co-infection
1247 weakens selection against epistatic mutations in RNA viruses. *Genetics* 168, 9–19.
1248 <https://doi.org/10.1534/genetics.104.030205>.

1249 124. Pirnay, J.-P. (2020). Phage Therapy in the Year 2035. *Front. Microbiol.* 11, 1171.
1250 <https://doi.org/10.3389/fmicb.2020.01171>.

1251 125. Levrier, A., Karpathakis, I., Nash, B., Bowden, S.D., Lindner, A.B., and Noireaux, V. (2024). PHEIGES:
1252 all-cell-free phage synthesis and selection from engineered genomes. *Nat Commun* 15, 2223.
1253 <https://doi.org/10.1038/s41467-024-46585-1>.

1254 126. Bull, J.J. (2006). Optimality models of phage life history and parallels in disease evolution. *Journal of*
1255 *Theoretical Biology* 241, 928–938. <https://doi.org/10.1016/j.jtbi.2006.01.027>.

1256 127. Draghi, J., and Zook, E. (2024). Spatial clustering of hosts can favor specialist parasites. *Ecology and*
1257 *Evolution* 14, e70273. <https://doi.org/10.1002/ece3.70273>.

1258

1259 **SUPPLEMENTAL ONLINE MATERIALS**

1260 **Figure S1. Differences between ST5018 and ST319 in potential phage receptor proteins.** A-
1261 Amino-acid sequence alignment of fepE, waaK and wzxC between ST5018 and ST319, three
1262 proteins involved in LPS synthesis. B- FhuA protein structure and the two amino-acids differing
1263 between ST5018 and ST319, located in a periplasmic loop and in the plug.

1264

1265 **Figure S2. List of prophages present in each bacterial isolate.** Prophages detected by Phaster
1266 (Arndt et al., 2019). Complete prophages are in green (score >90), questionable in blue (score 70 -
1267 90) and incomplete prophages in red (score <70).

1268

1269 **Figure S3. Bacterial kinetics monitored during 16 h at OD600nm.** Ancestral phage Salten
1270 kinetics compared to each evolved populations SaltenE, on each bacterial isolates according to their
1271 sequence type (ST).

1272

1273 **Figure S4. Phenotypic characterization (host-range and virulence) of the ancestral Salten and**
1274 **the evolved SaltenE phage populations on the eight *S. enterica* serotype Tennessee (SeeT)**
1275 **isolates, at different Multiplicity Of Infection (MOI).** SeeT isolates are displayed according to
1276 their sequence type (ST319 or ST5018). Evaluation of phage virulence index was made in liquid, in
1277 presence of ancestral (black cross) or experimentally evolved (colored circles) phage populations.

1278

1279 **Figure S5. Visual evaluation of clear or turbid plaques.** Each image represents an example of a
1280 visual assessment assigned to clear (C) or turbid (T).

1281

1282 **Figure S6. Frequency of parallel mutations according to their genomic position.** Frequency of

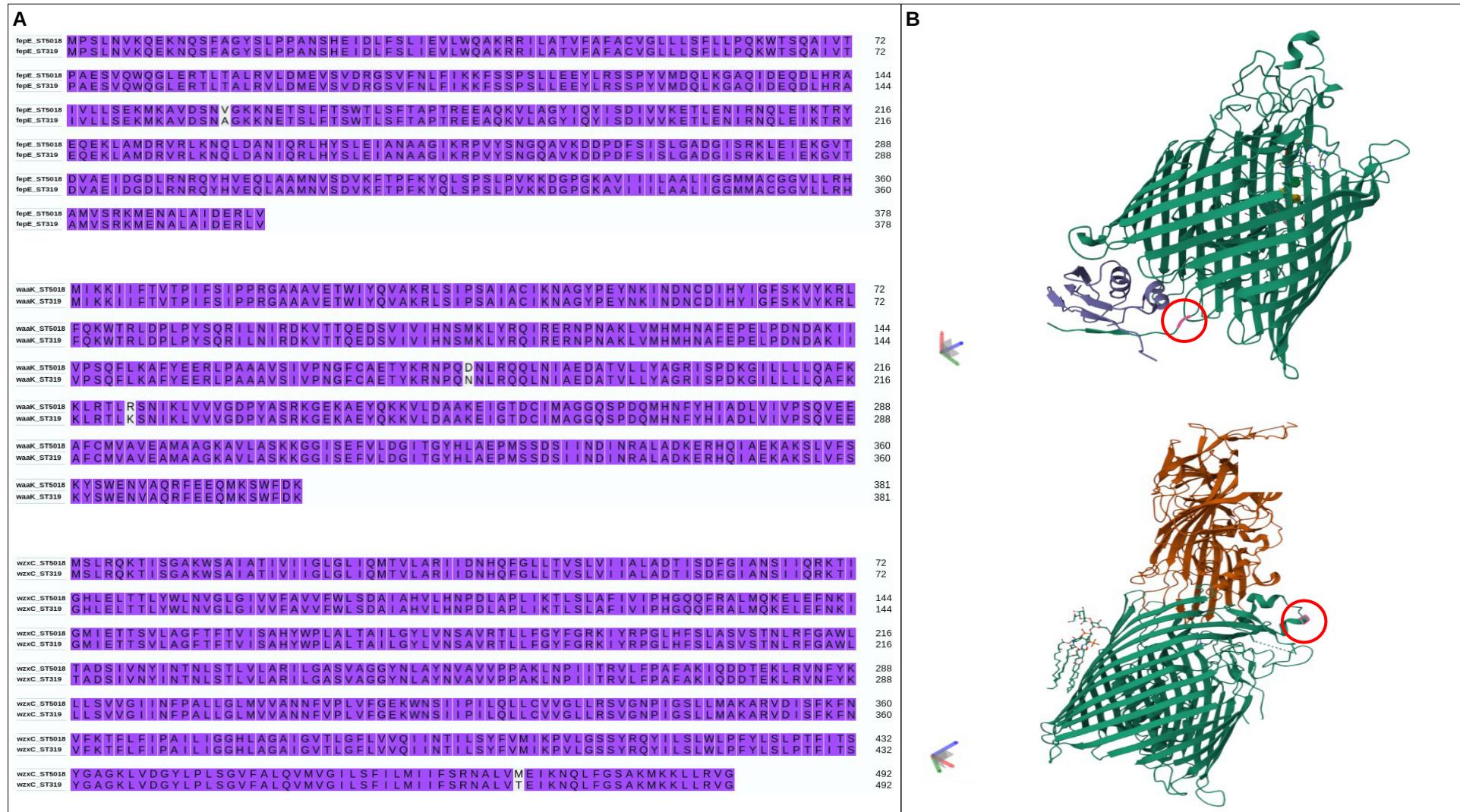
1283 mutations accumulated in four independent evolved populations (SaltenE1, E2, E3, E4). Colors of
1284 each mutation correspond to its presence over populations: yellow mutations are present in only one
1285 evolved population, gray in two, blue in three and dark red in four evolved phage populations.
1286

1287 **Figure S7. Virulence of the ancestral phage Salten and the five independent evolved**
1288 **populations SaltenE in solid condition against the 31 isolates of *S. enterica* serotype Tennessee**
1289 **(SeeT).** Plaques visual evaluation were assessed following a spot-assay. Clear plaques are
1290 represented in dark blue, turbid plaques in blue-green and no-plaque observed (resistant bacterial
1291 isolate to the phage) are represented in yellow.

1292

1293 **Figure S8. Distribution of minor Salten contigs along the Salten genome and evolved consensus**
1294 **structural genes.** Minor Salten contigs were aligned using blastn in NCBI platform (Blast®
1295 services, available from: <https://www.ncbi.nlm.nih.gov/Blast.cgi>).

1296


1297 **Figure S9. Analysis of LTFpb1.** A- Sequence alignment of T5- and Salten-LTFpb1. The chaperone
1298 domain is in bold. B- Structure of the C-terminal domains of T5-LTFpb1 (left, the chaperone
1299 domain is in dark grey, the polymannose binding domain in shades of pink) and AlphaFold2
1300 predicted structure of Salten-LTFpb1 C-terminal domains (residues 1022 to 1386), coloured
1301 according to the confidence factor pLDDT. C- DALI alignment of the AlphaFold2 predicted structure
1302 from the fibre domain of Salten-LTFpb1 (orange) and of BD13-LTFpb1 (cyan), the chaperone
1303 domain has been removed in both predicted structure for clarity.

1304

1305 **Table S1. Primer list.**

1306

1307 **Table S2. Breseq output.** List of mutations, their position on the ancestral Salten genome, their
1308 frequency along evolved reads in each evolved phage populations SaltenE and the name of the
1309 protein where they are located.

Figure S1. Differences between ST5018 and ST319 in potential phage receptor proteins.

A- Amino-acid sequence alignment of fepe, waak and wzxC between ST5018 and ST319, three proteins involved in LPS synthesis. **B**- FhuA protein structure and the two amino-acids differing between ST5018 and ST319, located in a periplasmic loop and in the plug.

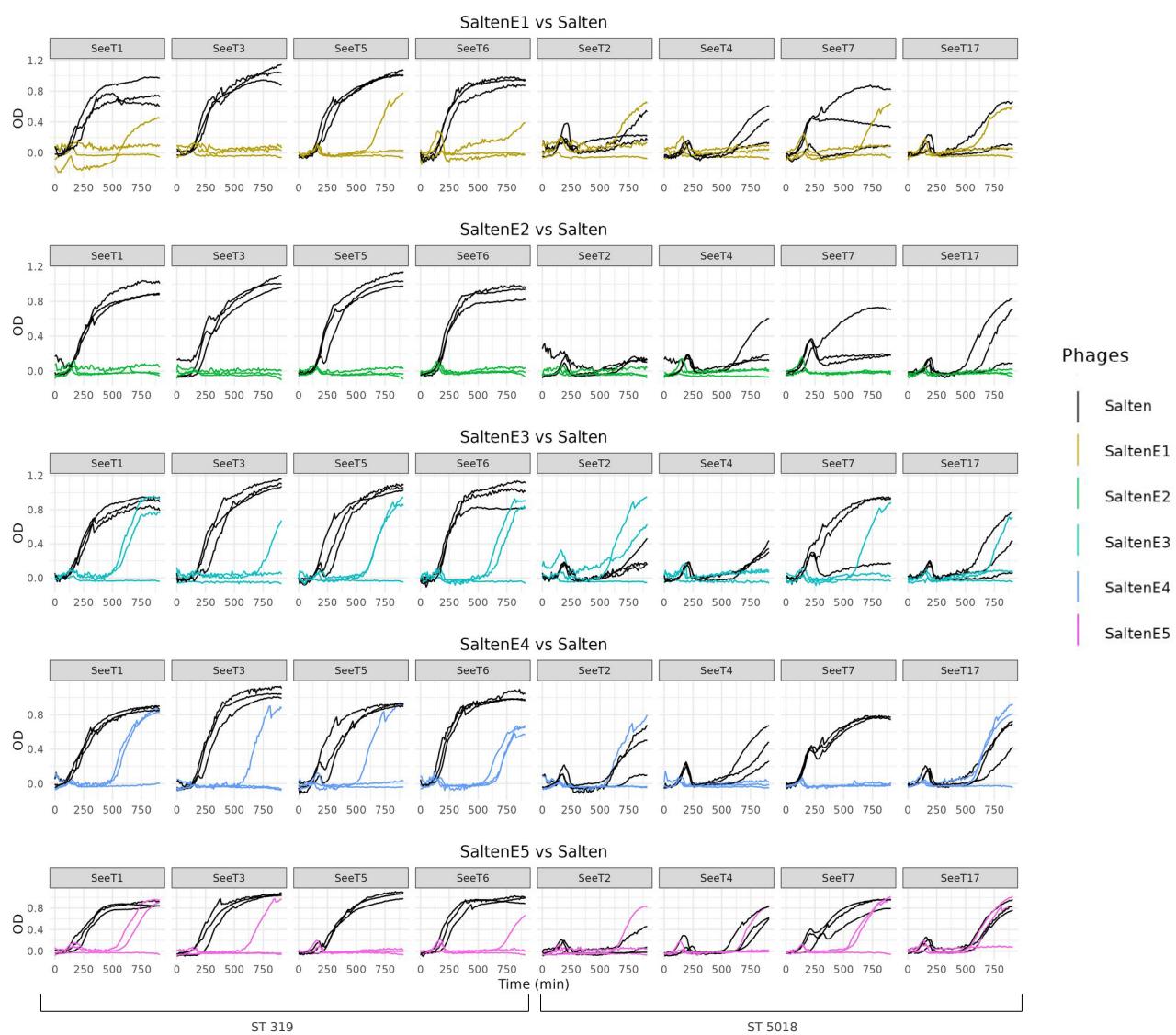
Prophages profile in the different bacterial isolates

	SeeT6	SeeT1	SeeT5	SeeT3	SeeT7	SeeT4	SeeT2	SeeT17
Phage_Salmon_g341c_NC_013059(14)		Green						
Phage_Salmon_SEN8_NC_047753(31)	Green				Green		Green	
Phage_Enterobacter_ES18_NC_006949(25)	Green		Green					
Phage_Escherichia_500465_1_NC_049342(16)	Blue	Blue						
Phage_Cronobacter_vB_CsaM_GAP32_NC_019401(1)		Red						
Phage_Enterobacter_phiP27_NC_003356(2)	Red	Red	Red		Red			
Phage_Burkholderia_BcepMu_NC_005882(14)	Red	Red	Red		Red			
Phage_Escherichia_500465_2_NC_049343(4)	Red	Red	Red	Red		Red	Red	
Phage_Salmon_ST64T_NC_004348(19)				Green	Green	Green		
Phage_Salmon_SW9_NC_049459(36)								
Phage_Escherichia_500465_1_NC_049342(12)				Blue	Blue	Blue	Blue	
Phage_Enterobacter_P1_NC_005856(1)					Red	Red	Red	
Phage_Burkholderia_phiE255_NC_009237(14)				Red		Red	Red	
Phage_Salmon_Felis_2_NC_010463(4)				Red				
Phage_Salmon_g341c_NC_013059(15)		Green	Green					
Phage_Salmon_SEN1_NC_029003(34)			Green	Green				
Phage_Escherichia_500465_1_NC_049342(15)			Blue	Blue				
Phage_Salmon_SEN1_NC_029003(36)	Green					Green		
Phage_Escherichia_500465_1_NC_049342(4)					Red			
Phage_Salmon_SW9_NC_049459(34)			Green	Green	Green			
Phage_Escherichia_RCS47_NC_042128(1)			Red					
Phage_Salmon_g341c_NC_013059(13)	Blue	Red						
Phage_Enterobacter_HK022_NC_002166(1)	Red							
Phage_Salmon_vB_SemPhi_Emek_NC_018275(7)	Red							
Phage_Halococcus_JM_2012_NC_017975(1)					Red			
Phage_Agrobacterium_Atu_ph07_NC_042013(2)								Red
Phage_Salmon_SEN1_NC_029003(1)								Red

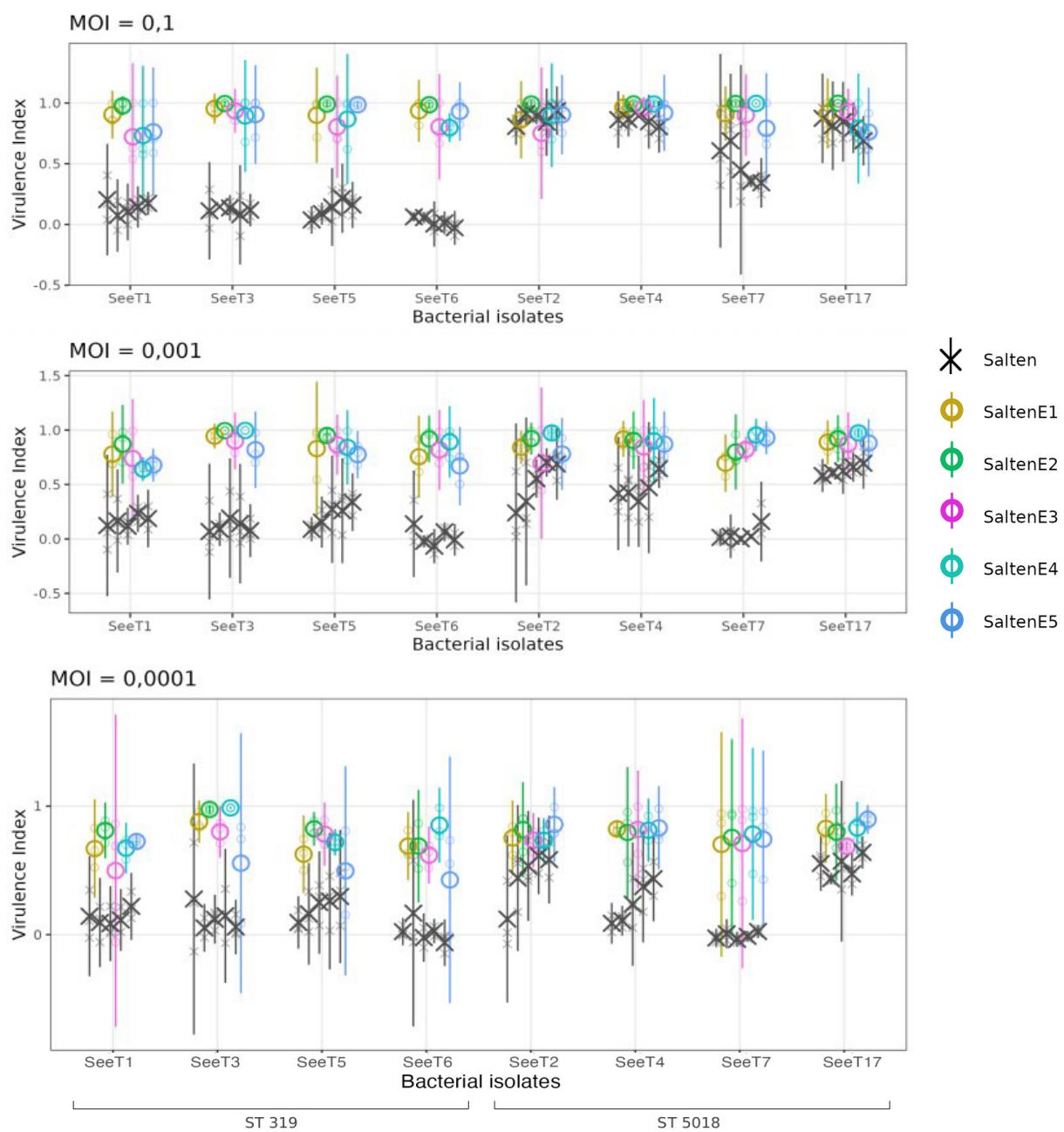
Prophages

Complete

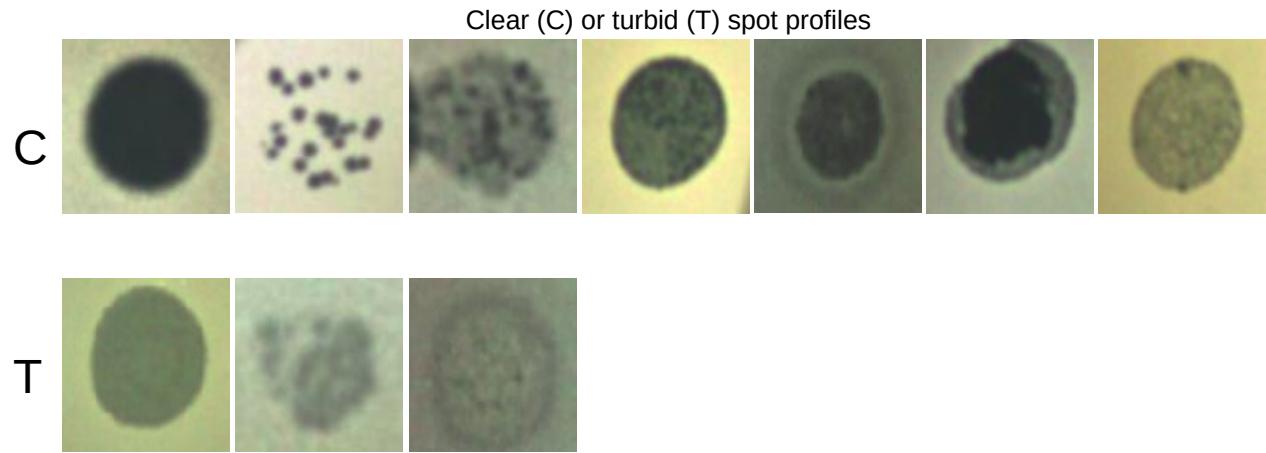
Questionable



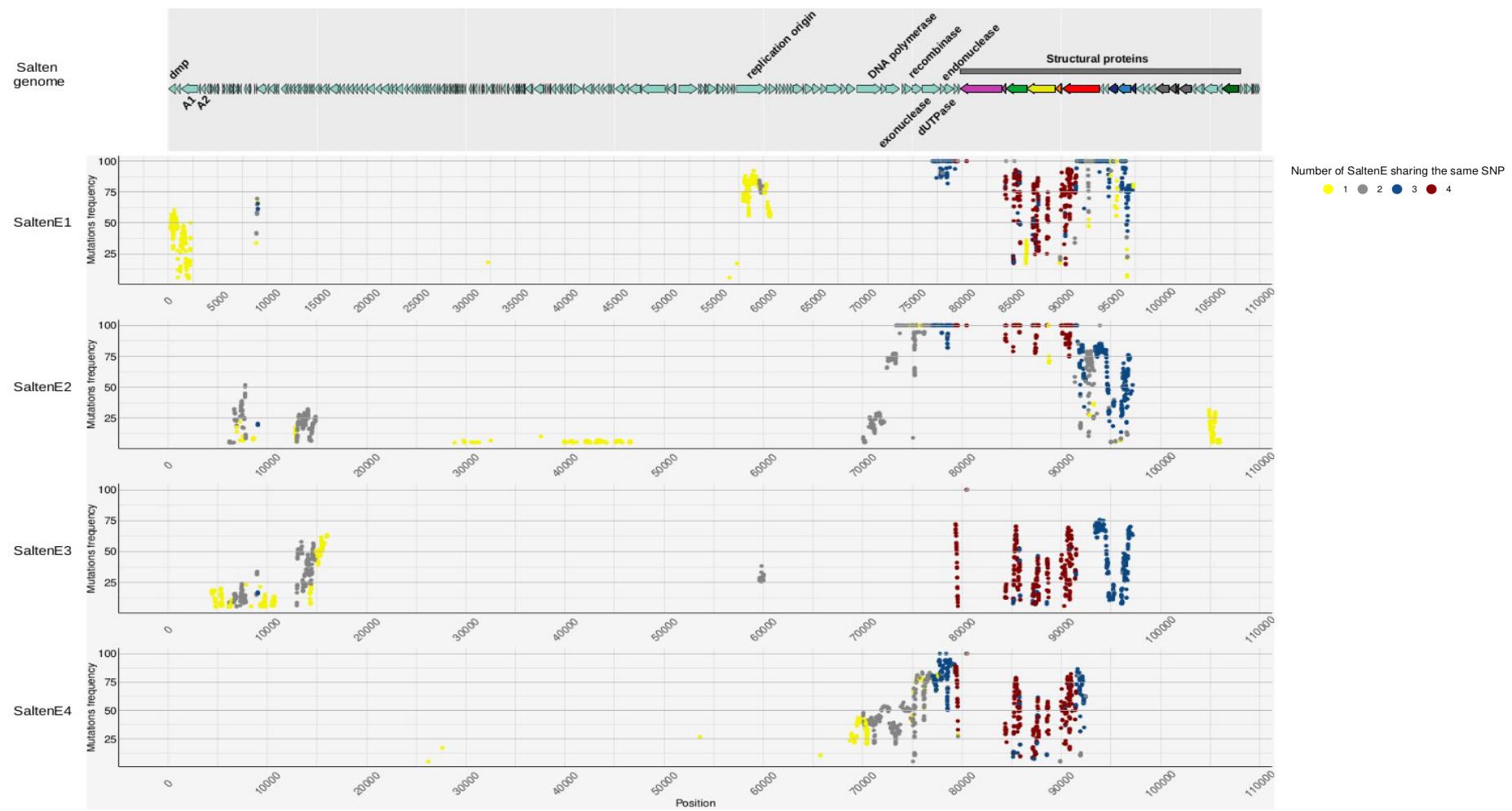
Incomplete


Figure S2. List of prophages present in each bacterial isolate.

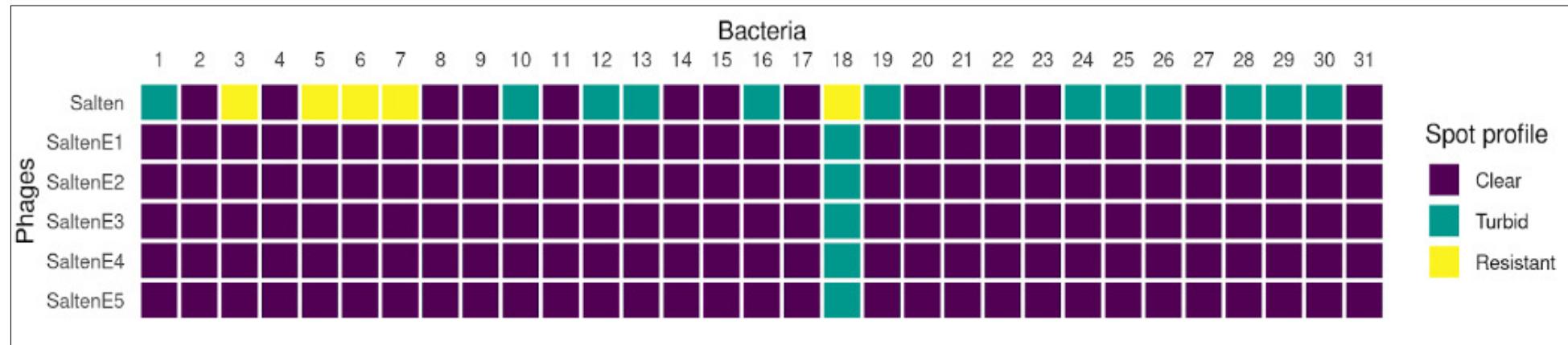
Prophages detected by Phaster ^{Arndt et al., 2019}. Complete prophages are in green (score >90), questionable in blue (score 70 - 90) and incomplete prophages in red (score <70).


Figure S3. Bacterial kinetics monitored during 16 h at OD_{600nm}.

Ancestral phage Salten kinetics compared to each evolved populations SaltenE, on each bacterial isolates according to their ST.


Figure S4. Phenotypic characterization (host-range and virulence) of the ancestral Salten and the evolved SaltenE phage populations on the eight *S. enterica* serotype Tennessee (SeeT) isolates, at different Multiplicity Of Infection (MOI).

SeeT isolates are displayed according to their sequence type (ST319 or ST5018). Evaluation of phage virulence index was made in liquid, in presence of ancestral (black cross) or experimentally evolved (colored circles) phage populations.


Figure S5. Visual evaluation of clear or turbid plaques.

Each image represents an example of a visual assessment assigned to clear (C) or turbid (T).

Figure S6. Frequency of parallel mutations according to their genomic position.

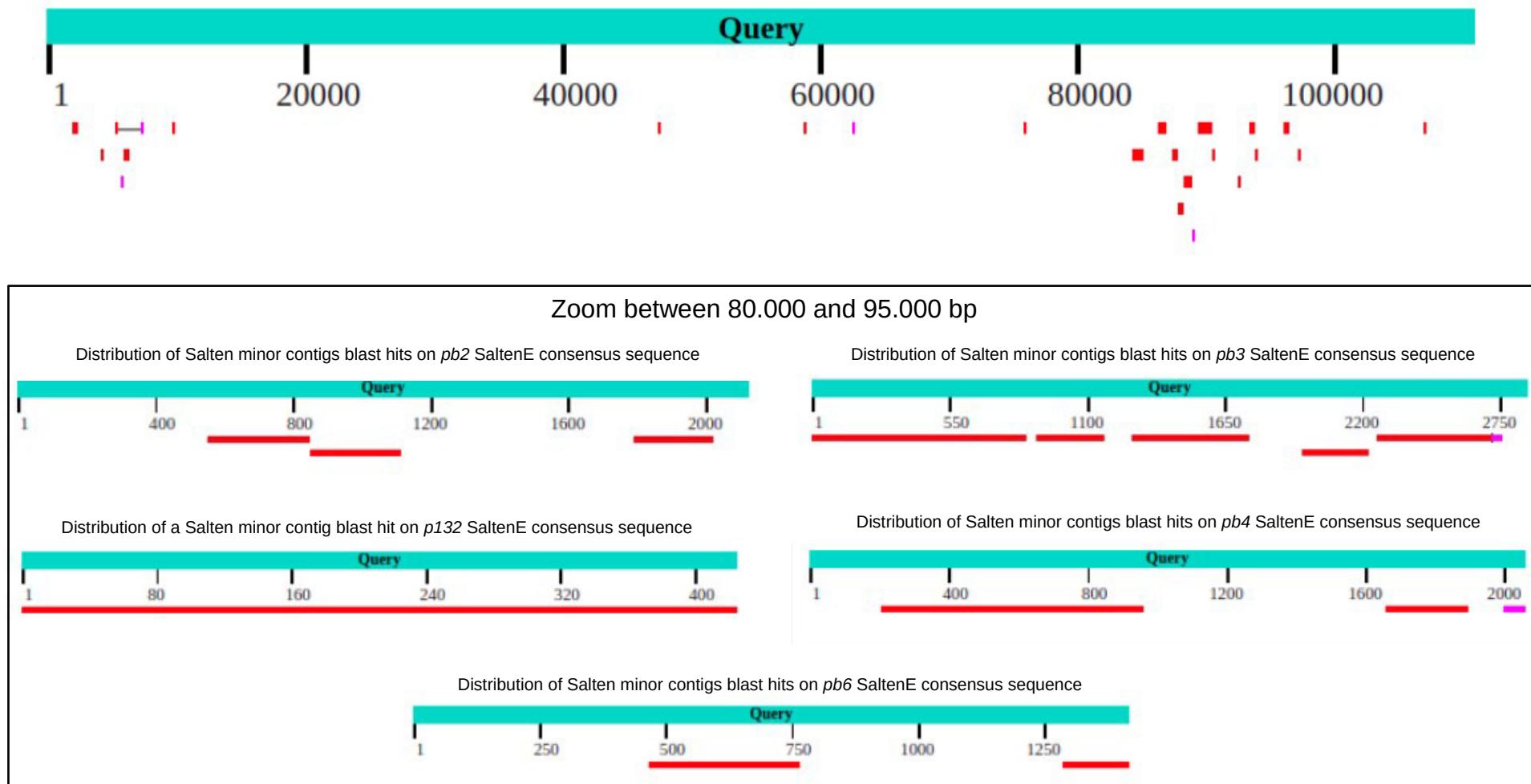

Frequency of mutations accumulated in four independent evolved populations (SaltenE1, E2, E3, E4). Colors of each mutation correspond to its presence over populations: yellow mutations are present in only one evolved population, gray in two, blue in three and dark red in four evolved phage populations.

Figure S7. Virulence of the ancestral phage Salten and the five independent evolved populations SaltenE in solid condition against the 31 isolates of *Salmonella enterica* serotype Tennessee (SeeT).

Plaques visual evaluation were assessed following a spot-assay. Clear plaques are represented in dark blue, turbid plaques in blue-green and no-plaque observed (resistant bacterial isolate to the phage) are represented in yellow.

Distribution of Salten minor contigs blast hits on Salten genome

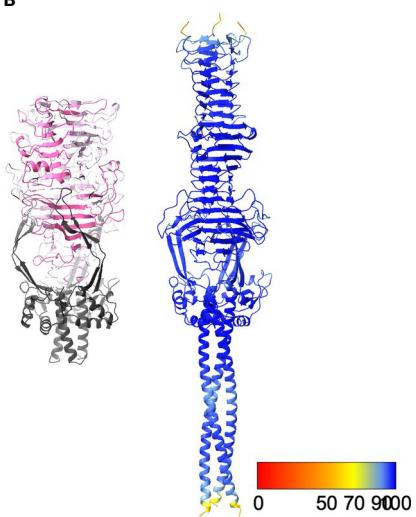
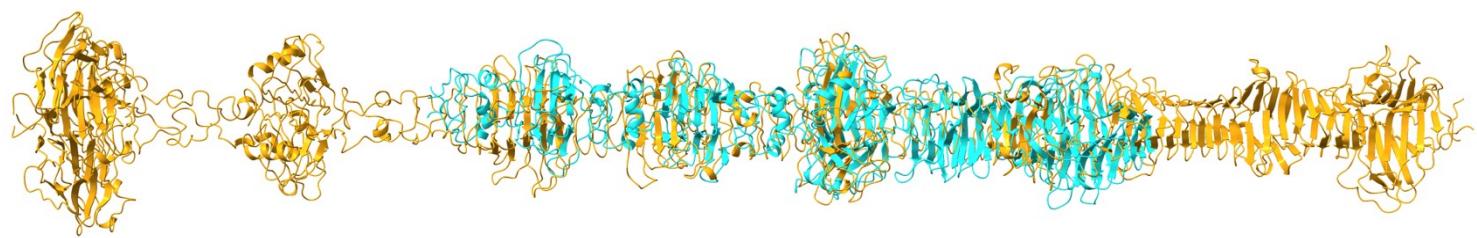


Figure S8. Distribution of minor Salten contigs along the Salten genome and evolved consensus structural genes.


Minor Salten contigs were aligned using blastn in NCBI platform (Blast® services, available from: <https://www.ncbi.nlm.nih.gov/Blast.cgi>).

A	T5-LTFpb1	MAITKIIQLQQMVTMDQNSITASKYPKYTVVLSNSISSITAAELTSIAIESKASAAAQKS	60
	Saltne-LTFpb1	MAITKIIQLQQMVTMDQNSITASKYPKYTVVLSNSISSITAGELTTAIESKASAAAQKS	*
T5-LTFPB1	Saltne-LTFpb1	EINAKQSELNAKDSENEAEISATSSQQSATQSASSATASANSAAAKTSETNANNS	116
		ETNAKQSELNAKDSENEAEISATSSQQSATQSASSATASANSAAAKTSETNANNS	120
T5-LTFPB1	Saltne-LTFpb1	-----KTSETHAKASETAAKTSETHAKASETAAASASAASKTSETNAKQSELNAKGSENRAEISA	116
		-----KTSETHAKASETAAKTSETHAKASETAAASASAASKTSETNAKQSELNAKGSENRAEISA	180
T5-LTFPB1	Saltne-LTFpb1	-----KNAAKTSETNAASSASSAS	135
		ASSQQSATQSASSATASANSAGAAKTSETNAKASETAAKTSETHAKTSETNAASSASSAS	240
T5-LTFPB1	Saltne-LTFpb1	SFATAAEENSARAAKTSETNAGNSAQADASKTAAANSATAAKTSETNAKKSETAAKTSET	195
		SSATAAENSARAAKTSETNAGNSAQADASKTAAANSATAAKTSETNAKKSETAAKTSET	300
T5-LTFPB1	Saltne-LTFpb1	NAKTSENKAKEYLDMASELVSPTQYDWPVGTNNNSVYVIAKLTDPGAVSCHLTLMTN	255
		NAKTSENKAKEYLDRASELVSPTQYDWPVGTNNNSVYVIAKLTDPGALSCHLTLMTN	360
T5-LTFPB1	Saltne-LTFpb1	GGNYGSSYGNIDFVEISARGLNDARGVTSNENITKFLSVRRLGSPNLAWDNQLRGLVEGD	315
		GGNYGSSYGNIDFVEISARGLNDARGVTSNENITKFLSVRRLGSPNLAWDNQLRGLVEGD	420
T5-LTFPB1	Saltne-LTFpb1	GYFEVWCYQRAFIKETRVAVLQATGRTELYIPEGFVSDQTPQPSFIESLAARIYDQVNKP	375
		GYFEVWCYQRAFIKETRVAVLQATGRTELYIPEGFVSDQTPQPSFIESLAARIYDQVNKP	480
T5-LTFPB1	Saltne-LTFpb1	TKADLGLENAMLVGAFGLGGNGLSYSSVQSNVDLINKLKANGQYWRAARESGANVDIND	435
		SKADLGLENAMLVGAFGLGGNGLSYSSVQSNVDLINKLKANGQYWRAARESGANVDIND	540
T5-LTFPB1	Saltne-LTFpb1	HGSGFYSHCGDTHAIAINVQYNTGIVKVLATTDRNLASDIVYANTLYGTANKPKSKSDVGLG	495
		HGSGFYSHCGDTHAIAINVQYNTGIVKVLATTDRNLASDIVYANTLYGTANKPKSKSDVGLG	600
T5-LTFPB1	Saltne-LTFpb1	NVTNDAQVKKAGDVMGSDLDIRKETPSIRLKSTQGNAHLWFMNNNDGGERGVIWSPNNNGS	555
		NVTNDAQVKKAGDVMGSDLDIRKETPSIRLKSTQGNAHLWFMNNNDGGERGVIWSPNNNGS	660
T5-LTFPB1	Saltne-LTFpb1	LGEIHIRAKTSDGTSTGDFIVRHGRIEAKDAKISYKISSRTAEFSNDDNTAATNLRLS	615
		LGEIHIRAKTGGITGGDFIVRHGRIEAKDAKIKHISRTAEFSNDDNTAATNLRLS	720
T5-LTFPB1	Saltne-LTFpb1	GKQHPTIMLVRDSDNSNVSGFKLNNMNAKLLGIDIDGDLAFAGENPDHKQNSKIVTRKMM	675
		GKQHPTIMLVRDSDNSNVSGFKLNNMNAKLLGIDIDGDLAFAGENPDHKQNSKILTQAKLD	780
T5-LTFPB1	Saltne-LTFpb1	AGFSVAG-----LMDFTNGFAGPWEAKNISQDLELDLNSLMIKSDPGSIRVYQCVSAGG	729
		SGVTGGKTFSDLAFNAGMAQPINPEYIGGAKIDLNDLVIKAFDKGSKVYQCTCSAGG	840
T5-LTFPB1	Saltne-LTFpb1	GNNITNPKSGIGGNFILYVESIRKVGDTDFTRNQRLFGTDLNREFTRYCSNGTWSAWRES	789
		GNAITNPKSGIGGNFLRVESIRKVNDSDVTNLQTVGTDTRQIYVRYCNNGTWSAWHEA	900
T5-LTFPB1	Saltne-LTFpb1	VVSGMNDQDVSVKMSMSVGRSLSGNLSVVGAGAVLNGNLGVGGGATSKMPSSDKGIVIGRGS	849
		VVSGMNDQDVSVRSLSASGRSLSGNLSVVGAGATLNGNLGVGGGATSKMPSSDKGIVIGHGS	960
T5-LTFPB1	Saltne-LTFpb1	IVREGGEGRILLSSGGTDRLLQRPAGATSLDNQVIEISCTSASAGDTKISFGQGAAIRC	909
		IVREGGEGRILLSSGGTDRLLQRPAGAMLDNQVIEISCTSASAGDTKISFGQGAAIRC	1020
T5-LTFPB1	Saltne-LTFpb1	NNAGSPIISAKAGQMIYFRPNGDGISEGQMLSPNGDLVVKGGVNSKEIDVTASQSLPLK	969
		NSTGSPPISSKAQQTIYLRPNGDEASNGQVTLSSNGDVVNGNLESTRDI-TCARLFSK-	1078
T5-LTFPB1	Saltne-LTFpb1	ETTATTGIGVNFIGDSATECSFGIENTAGGSAVFHNYTRGASNSVTKNQNLGGYGSRPW	1029
		GA-----LQTESGGIELYH-----STPF	1090
T5-LTFPB1	Saltne-LTFpb1	LGSTYTEHSNAA-LHFLGAGDTSATNHGGWIRLLVTPKGKTIISDRVPAPRLS-----DNG	1083
		IDFHFNKATSDYTRARIINDAANQLTFDCQSVRT-----L-HDFTAYGLVRGCRNDAF	1147
T5-LTFPB1	Saltne-LTFpb1	DLWLVPDGMHSGLGLVRSIETLNAVPRFNAPSIQDGRGLKIVAPQAPEIDLIAPRGS	1143
		VAWPVSDP-----SASH--GQIRIAPKF--QSRFNSVGSN	1178
T5-LTFPB1	Saltne-LTFpb1	ASAPAIRAMWCEGSLADTTRYIGATQPGSTFYIGASGHDGEKFDSMRGSVAIKSAGGWP	1202
		ASGAARMSMWFEHVGYNHRGV-----VEVGGYGA	1208
T5-LTFPB1	Saltne-LTFpb1	TSTPTQVVLCTCESGSISRLPRWGVDHNGTLMPMADNRYNLWGWSGRVKQVYAVNGTINT	1263
		P-----IQYWHFRSDGAI-----WGSAKGDVAWAG-----T	1234
T5-LTFPB1	Saltne-LTFpb1	SDARLKNDVRAMSDPTEAAKAIKEIGFWTKEQADMNDIREHCGLTVQRAIEIMES--	1321
		SDLRYKDNNVVYDGLQLS-ENIKAMNLIKFTYKDD--RKRRERRGVAQQIMEIDPCYV	1290
T5-LTFPB1	Saltne-LTFpb1	-----FGLDPFKYGFICYDKWDEHTVVSEYGPANEDGTEN-----	1356
		KKSEGAYIDANGEQVNIEKLVLDTPNLLMDALCAIKVLS---AQVGELEENELHANT	1340
T5-LTFPB1	Saltne-LTFpb1	-----PIYKTIPAGDHYFSRLEELNLFIAKGFEARLDSAEDKLM	1396
		ASREEVTALESEVSDLKKOIADETLVYVNSLLANKAO-----	1383

B

C

Figure S9. Analysis of LTF_{pb1}. **A-** Sequence alignment of T5- and Salten-LTF_{pb1}. The chaperone domain is in bold. **B-** Structure of the C-terminal domains of T5-LTF_{pb1} (left, the chaperone domain is in dark grey, the poly-mannose binding domain in shades of pink) and AlphaFold2 predicted structure of Salten-LTF_{pb1} C-terminal domains (residues 1022 to 1386), coloured according to the confidence factor pIDDT. **C-** DALI alignment of the AlphaFold2 predicted structure from the fibre domain of Salten-LTF_{pb1} (orange) and of BD13-LTF_{pb1} (cyan), the chaperone domain has been removed in both predicted structure for clarity.

Primers list

Usage	Oligo Name	Sequence (5'>3')
pBBR1-MSC2 construction	Salten-pb1-3374-F	aaaaggctcatttAAAGTGTGCGCACATTGCAT
pBBR1-MSC2 construction	Salten-pb1-3557-R	aaaaggctcagggGACATCCTGCAGCTCCAGA
Presence of insert	pBBR1-MSC2-F	TGCGCAACTGTTGGGAAG
Presence of insert	Salten-pb1-3470-F	aaaaggctcatttGTCTGTCAGCCATGGTCAGA
Presence of mutations and order of mutations arrival	Salten-pb1-3183-F	AGGCATCGAATGGTCAGGTG
Presence of mutations and order of mutations arrival	Salten-pb1-4136-R	CTAGGGCTGTGACTTGCTCC
Verification of phage contamination and order of mutations arrival	Salten-pb2-8720-F	GCAACCCGTAUTGCAAAGTC
Verification of phage contamination and order of mutations arrival	Salten-pb2-9129-R	GCGGCACCAGCAGTATCAT
Order of mutations arrival	Salten-753-exonuc-F	AGCTGTACAAGTTGCCAAC
Order of mutations arrival	Salten-1198-exonuc-R	GTTGTCGGATTCACCTGT