

1 Steppe Ancestry in Western Eurasia and the Spread of the

2 Germanic Languages

3

4 Hugh McColl^{1,2*}, Guus Kroonen^{3,4*}, J. Víctor Moreno-Mayar¹, Frederik Valeur Seersholm¹,
5 Gabriele Scorrano^{1,5}, Thomaz Pinotti^{1,6}, Tharsika Vimala¹, Søren M. Sindbæk⁷, Per
6 Ethelberg⁸, Ralph Fyfe⁹, Marie-José Gaillard¹⁰, Hanne M. Ellegård Larsen¹¹, Morten Fischer
7 Mortensen¹¹, Fabrice Demeter^{1,12}, Marie Louise S. Jørkov¹³, Sophie Bergerbrant¹⁴, Peter de
8 Barros Damgaard¹, Morten E. Allentoft^{15,1}, Lasse Vinner¹, Charleen Gaunitz¹, Abigail
9 Ramsøe¹, Isin Altinkaya¹, Rasmus Amund Henriksen¹, Evan K. Irving-Pease^{1,16}, KG
10 Sjögren², Serena Sabatini², Anders Fischer^{17,18}, William Barrie¹⁹, Andrés Ingason^{20,1}, Anders
11 Rosengren^{20,1}, Andrew Vaughn²¹, Jialu Cao¹, Jacqueline Staring¹, Jesper Stenderup¹, Fulya
12 Eylem Yediay^{1,18}, Torbjörn Ahlström²², Irakli Akhvlediani²³, Sofie Laurine Albris²⁴, Biyaslan
13 Atabiev²⁵, E.V. Balanovskaya²⁶, Pernille Bangsgaard¹, Maria Giovanna Belcastro²⁷, Nick
14 Card²⁸, Philippe Charlier^{29,30}, Elizaveta Chernykh³¹, Torben Trier Christiansen³², Alfredo
15 Coppa³³, Maura De Coster³⁴, Sean Dexter Denham³⁵, Sophie Desenne^{36,37}, Jane Downes²⁸,
16 Karin Margarita Frei³⁸, Olivér Gábor³⁹, U.B. Gadiev⁴⁰, Johan Zakarias Gårdsvoll²⁴, Zanette
17 Tsigaridas Glørstad⁴¹, Jesper Hansen⁴², Stijn Heeren⁴³, Merete Henriksen⁴⁴, Volker Heyd⁴⁵,
18 Mette Høj⁴⁶, Mads Kähler Holst⁴⁷, Rimantas Jankauskas⁴⁸, Henrik Janson², Mads Dengsø
19 Jessen²⁴, Jens Winther Johannsen⁴⁹, Torkel Johansen⁵⁰, Ole Thirup Kastholm⁴⁹, Anton
20 Kern†⁵¹, Ruslan Khaskhanov⁵², Katrine Ipsen Kjær⁴⁹, Vladimir Kolosov⁵³, Lisette M.
21 Kootker³⁴, Klaudia Kyselicová⁵⁴, Anne Christine Larsen⁵⁵, Thierry Lejars⁵⁶, Mette
22 Løvschal^{57,47}, Niels Lynnerup⁵⁸, Yvonne Magnusson⁵⁹, V. Yu. Malashev⁶⁰, Kristiina
23 Mannermaa⁴⁵, Vyacheslav Masyakin⁶¹, Anne Lene Melheim⁴¹, Inga Merkyte⁶², Vyacheslav

24 Moiseyev⁶³, Stig Bergmann Møller⁶⁴, Erika Molnár⁶⁵, Nadja Mortensen⁶⁶, Eileen Murphy⁶⁷,
25 Bjarne Henning Nielsen⁶⁸, Doris Pany-Kucera⁵¹, Bettina Schulz Paulsson², Gertjan Plets⁶⁹,
26 Marcia S Ponce de León⁷⁰, Håkon Reiersen⁷¹, Walter Reinhard⁷², Antti Sajantila^{73,74}, Birgitte
27 Skar⁴⁴, Vladimir Slavchev⁷⁵, Václav Smrčka⁷⁶, Lasse Sørensen⁷⁷, Georg Tiefengraber⁵¹, Otto
28 Christian Uldum⁷⁸, Helle Vandkilde⁵⁷, Jorge Vega⁷⁹, Daniele Vitali⁸⁰, Alexey Voloshinov⁸¹,
29 Sidsel Wåhlin^{68,82}, Holger Wendling^{83,84}, Anna Wessman⁸⁵, Helene Wilhelmson^{86,87}, Karin
30 Wiltschke⁵¹, João Zilhão⁸⁸, Christoph PE Zollikofer⁷⁰, Thorfinn Sand Korneliussen¹, Bruno
31 Chaume⁸⁹, Jean-Paul Demoule^{90,91}, Thomas Werge^{20,1,92}, Line Olsen¹, Rasmus Nielsen^{93,1},
32 Lotte Hedeager¹, Kristian Kristiansen^{1,18*} Martin Sikora¹, Eske Willerslev^{1,19,94*}

33

34

35 ¹Lundbeck Foundation GeoGenetics Center, Globe Institute, University of Copenhagen,
36 Copenhagen, Denmark, ²Department of Historical Studies, University of Gothenburg,
37 Gothenburg, Sweden, ³Leiden University Centre for Linguistics, Leiden University, Leiden,
38 The Netherlands, ⁴Department of Nordic Studies and Linguistics, University of Copenhagen,
39 Copenhagen, Denmark, ⁵Center for Molecular Anthropology for the Study of Ancient DNA,
40 Department of Biology, University of Rome Tor Vergata, Rome, Italy, ⁶Laboratório de
41 Biodiversidade e Evolução Molecular (LBEM), Universidade Federal de Minas Gerais, Belo
42 Horizonte, Brazil, ⁷Centre for Urban Network Evolutions (UrbNet), School of Culture and
43 Society, Aarhus University, Aarhus, Denmark, ⁸Museum Sønderjylland, Arkæologi,
44 Denmark, ⁹School of Geography, Earth and Environmental Sciences, University of Plymouth
45 UK, ¹⁰Department of Biology and Environmental Sciences, Linnaeus University, Kalmar,
46 Sweden, ¹¹National Museum of Denmark. Environmental Archaeology and Materials
47 Science, Denmark, ¹²Eco-anthropologie (EA), Dpt ABBA, Muséum national d'Histoire
48 naturelle, CNRS, Université Paris Cité, Musée de l'Homme 17 place du Trocadéro, 75016

49 Paris, France, ¹³Laboratory of Biological Anthropology, Globe Institute, University of
50 Copenhagen, Denmark, ¹⁴Department of Archaeology and Ancient History, Campus Gotland,
51 Uppsala University, Sweden, ¹⁵Trace and Environmental DNA (TrEnD) Laboratory, School
52 of Molecular and Life Sciences, Curtin University, Perth, Australia, ¹⁶Section for Molecular
53 Ecology and Evolution, Globe Institute, University of Copenhagen, Copenhagen, Denmark,
54 ¹⁷Sealand Archaeology, Kalundborg, Denmark, ¹⁸Department of Historical Studies,
55 University of Gothenburg, Sweden, ¹⁹Department of Genetics, University of Cambridge,
56 Cambridge, UK, ²⁰Institute of Biological Psychiatry, Mental Health Services, Copenhagen
57 University Hospital, Roskilde, Denmark, ²¹Center for Computational Biology, University of
58 California Berkeley, Berkeley, California, United States of America, ²²Department of
59 Archaeology and Ancient History, Lund University, ²³Georgian and Caucasus YDNA,
60 Family Tree DNA, Houston, Texas, USA, ²⁴National Museum of Denmark, Prehistory,
61 Middle Ages and Renaissance, ²⁵Institute for Caucasus Archaeology, Russia, ²⁶Medical
62 Genetic Research Center, Moscow, Russia, ²⁷Department of Biological, Geological and
63 Environmental Sciences - BiGeA, University of Bologna, Via Selmi 3 40126 Bologna, Italy,
64 ²⁸Archaeology Institute, University of Highlands and Islands, UK, ²⁹Laboratory
65 Anthropology, Archaeology, Biology (LAAB), UFR of Health Sciences (UVSQ / Paris
66 Saclay University), 2 avenue de la source de la Bièvre, 78180 Montigny-Le-Bretonneux,
67 France, ³⁰Department of Epidemiology and Public Health, University Hospital Raymond
68 Poincaré (APHP), Garches, France, ³¹Udmurt State University, ³²The Historical Museum of
69 Northern Jutland, ³³Department of Environmental Biology, Sapienza University of Rome,
70 ³⁴Geology & Geochemistry cluster, Department of Earth Sciences, Vrije Universiteit
71 Amsterdam, The Netherlands, ³⁵Museum of Archaeology, University of Stavanger, ³⁶Institut
72 national de recherches archéologiques préventives, ³⁷UMR 8215, CNRS, ³⁸National Museum
73 of Denmark, ³⁹Janus Pannonius Muzeum, Pécs, Hungary, ⁴⁰E.I. Krupnov Archaeological

74 Center, Ingushetia, Russia, ⁴¹Museum of Cultural History, University of Oslo, ⁴²Svendborg
75 Museum, Denmark, ⁴³Vrije Universiteit Amsterdam, the Netherlands, ⁴⁴Institute of
76 archaeology and cultural history, NTNU University Museum, Norway., ⁴⁵Department of
77 Cultures / Archaeology, University of Helsinki, Finland, ⁴⁶The Museum Organisation
78 ROMU, Collections, ⁴⁷Moesgaard Museum, ⁴⁸Vilnius University, Lithuania, ⁴⁹The Museum
79 Organisation ROMU, Archaeology, ⁵⁰NTNU University Museum, Department of
80 Archaeology and Cultural History, ⁵¹Natural History Museum Vienna, Austria, ⁵²Complex
81 Research Institute of the Russian Academy of Sciences, Grozny, Russia, ⁵³The State
82 Hermitage Museum, Russia, ⁵⁴Faculty of Medicine, Institute of Physiology, Comenius
83 University Bratislava, Slovakia, ⁵⁵National Museum of Denmark, Trelleborg, Denmark,
84 ⁵⁶CNRS, Umr 8546, ENS, PSL, Paris, France, ⁵⁷Department of Archaeology and Heritage
85 Studies, School of Culture and Society, Aarhus University, Denmark, ⁵⁸Department of
86 Forensic Medicine, University of Copenhagen, Denmark, ⁵⁹Malmö museum, 205 80 Malmö,
87 Sweden/Regionmuseet Skåne, Box 134, 291 22 Kristianstad, ⁶⁰Institute of Archeology of the
88 Russian Academy of Sciences, Moscow, Russia, ⁶¹National Academy of Sciences, Ukraine,
89 ⁶²Saxo-Instituttet, Copenhagen, ⁶³Peter the Great Museum of Anthropology and Ethnography
90 (Kunstkamera), Russian Academy of Sciences, Universitetskaya Nab. 3, St. Petersburg,
91 Russia, ⁶⁴Nordjyske Museer, Aalborg, Denmark, ⁶⁵Department of Biological Anthropology,
92 University of Szeged, Hungary, ⁶⁶The Museum Organisation ROMU, Archaeology,
93 Denmark, ⁶⁷Archaeology and Palaeoecology, School of Natural and Built Environment,
94 Queen's University Belfast, Northern Ireland, ⁶⁸Vesthimmerlands Museum, Denmark,
95 ⁶⁹Universiteit Utrecht, The Netherlands, ⁷⁰Department of Informatics, University of Zurich,
96 Switzerland, ⁷¹Museum of Archaeology, University of Stavanger, Norway, ⁷²Staatliches
97 Konservatoramt, Saarbruecken, Germany, ⁷³University of Helsinki, Finland, ⁷⁴Finnish
98 Institute of Health and Welfare, ⁷⁵Museum of Archaeology, Varna, Bulgaria, ⁷⁶Institute for

99 History of Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic,
100 ⁷⁷The National Museum of Denmark, Prehistory, Middle Ages and Renaissance, Denmark,
101 ⁷⁸The Viking Ship Museum, Roskilde, Denmark, ⁷⁹Argea Consultores SL, Madrid, Spain,
102 ⁸⁰Département de Histoire des Arts et Archéologie, University of Burgundy, France,
103 ⁸¹Institute of Archeology, Moscow, Russia, ⁸²Vendsyssel Historiske Museum, ⁸³Salzburg
104 Museum, Austria, ⁸⁴Archäologische Staatssammlung, ⁸⁵University of Bergen, Department of
105 Cultural History, Norway, ⁸⁶Lund University, Sweden, ⁸⁷Sydsvensk arkeologi, Malmö,
106 Sweden, ⁸⁸University of Lisbon - UNIARQ (Centro de Arqueologia da Universidade de
107 Lisboa), Faculdade de Letras, Alameda da Universidade, 1600-214 Lisboa, Portugal,
108 ⁸⁹UMR6298, ARTEHIS, CNRS (Centre National de la Recherche Scientifique), Dijon,
109 France, ⁹⁰University of Paris I - Panthéon-Sorbonne, France, ⁹¹UMR 8215 CNRS,
110 ⁹²Department of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen,
111 Copenhagen, Denmark, ⁹³Departments of Integrative Biology and Statistics, UC Berkeley,
112 USA, ⁹⁴MARUM, University of Bremen, Germany
113
114

115 *Corresponding authors; email: ewillerslev@sund.ku.dk, hugh.mccoll@sund.ku.dk,
116 guus@hum.ku.dk, kristian.kristiansen@archaeology.gu.se

117

118

119 **Summary**

120 **Today, Germanic languages, including German, English, Frisian, Dutch and the Nordic**
121 **languages, are widely spoken in northwest Europe. However, key aspects of the**
122 **assumed arrival and diversification of this linguistic group remain contentious¹⁻³. By**
123 **adding 712 new ancient human genomes we find an archaeologically elusive population**

124 **entering Sweden from the Baltic region by around 4000 BP. This population became**
125 **widespread throughout Scandinavia by 3500 BP, matching the contemporaneous**
126 **distribution of Palaeo-Germanic, the Bronze Age predecessor of Proto-Germanic^{4–6}.**
127 **These Baltic immigrants thus offer a new potential vector for the first Germanic**
128 **speakers to arrive in Scandinavia, some 800 years later than traditionally assumed^{7–12}.**
129 **Following the disintegration of Proto-Germanic^{13–16}, we find by 1650 BP a southward**
130 **push from Southern Scandinavia into presumed Celtic-speaking areas, including**
131 **Germany, Poland and the Netherlands. During the Migration Period (1575–1375 BP),**
132 **we see this ancestry representing West Germanic Anglo-Saxons in Britain, and**
133 **Langobards in southern Europe. We find a related large-scale northward migration**
134 **into Denmark and South Sweden corresponding with historically attested Danes and the**
135 **expansion of Old Norse. These movements have direct implications for multiple**
136 **linguistic hypotheses. Our findings show the power of combining genomics with**
137 **historical linguistics and archaeology in creating a unified, integrated model for the**
138 **emergence, spread and diversification of a linguistic group.**

139

140 **Main (531 words)**

141 The arrival of Steppe-related groups in Europe around 5000 BP (calibrated years before
142 present/1950 CE) is commonly known as the last major prehistoric migration into the
143 region^{17,18}. Archaeologically, two major European groupings of this time are the Corded
144 Ware and the Bell Beaker complexes. Linguistically, these are widely accepted as being
145 connected with the dispersals of multiple Indo-European language groups¹⁹. In Scandinavia,
146 both complexes have been specifically associated with the introduction of the Germanic
147 language group^{7–10,20}. However, this association is complicated by the significant time gap of

148 ~2-3 millennia that exists between these first waves of Steppe-related ancestry (~5000–4500
149 BP) and the appearance of the earliest Germanic written evidence (~2000–1800 BP)^{21,22}.

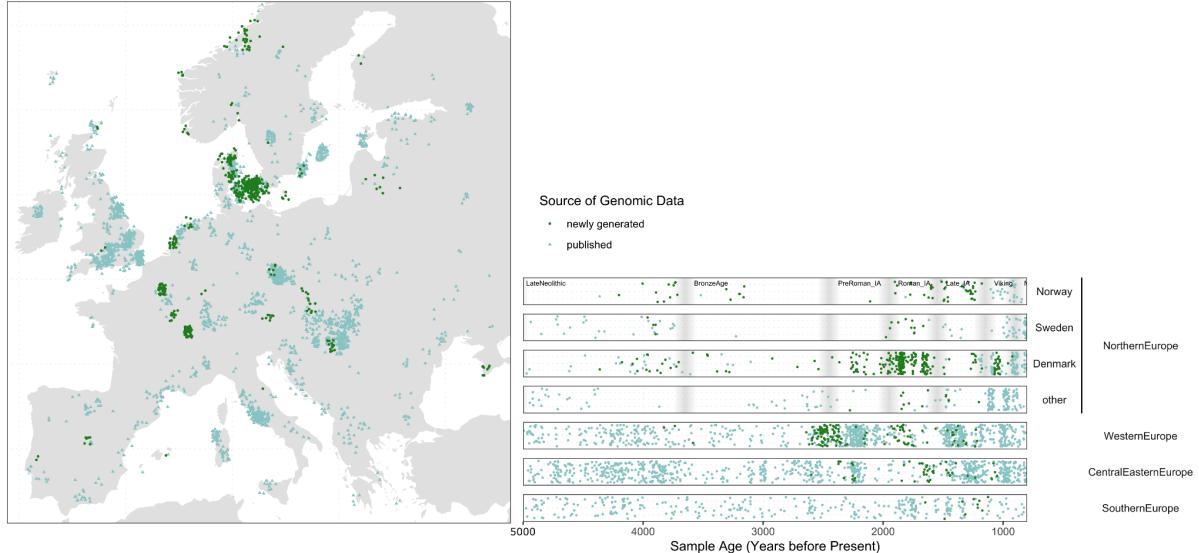
150

151 In Scandinavia, the arrival of Steppe ancestry (~4800 BP) coincides with the archaeological
152 transition from the Funnel Beaker Culture to the Corded Ware Complex²³. By ~4600 BP,
153 cultural boundaries emerged separating the Scandinavian Peninsula's Battle Axe culture from
154 the Jutlandic Single Grave culture, with these showing connections respectively to the east
155 and the south²⁴. In addition, Scandinavia had cultural links associated with Bell Beaker
156 groups of western and central Europe²⁵. At this time, no linguistic data is available on the
157 distribution of the Germanic language group. Only by the Late Bronze Age do linguistic
158 interactions with Celtic-speaking groups in the south^{4,5,26} and Finno-Saamic-speaking groups
159 in the east^{6,27} suggest that an early form of Germanic was present in the area between
160 northern Germany and the East Baltic. Despite some preliminary evidence of genetic
161 structure at this time in Scandinavia^{28,29}, its formation as well as its potential for tracing the
162 spread of Germanic remain unexplored.

163

164 By ~2000 BP, the common Germanic linguistic ancestor was diverging into several
165 subgroups, probably involving an initial East vs Northwest Germanic split^{13–16,30}. This
166 linguistic process was associated with various migrations during the Roman Iron Age (1950–
167 1575 BP) and the Migration Period (1575–1375 BP). However, at present, our understanding
168 of the relevant population dynamics is limited. Genetic studies have detected a northern
169 European origin for Late Iron Age and Migration Period individuals often ascribed by post-
170 Classical authors as Goths, Anglo-Saxons and Langobards^{31–35}, consistent with Late Antique
171 historical sources. However, these studies have not confirmed their specific regions of origin.

172 Consequently, no comprehensive model for the spread and diversification of the Germanic
173 languages currently exists.


174

175 Ancient genomics have proven a means to address historical linguistic hypotheses¹⁹ but have
176 been constrained by limited sample sizes and an inability to distinguish between closely
177 related populations. However, recent studies reveal that with dense ancient DNA sampling, at
178 sufficient sequencing depth for imputation, the detection of fine-scale population structure is
179 now possible^{28,29,36}.

180

181 To investigate the formation and diversification of Germanic-speaking populations and link
182 the findings to historical linguistic theory, we sequenced the genomes of 712 ancient
183 individuals to above 0.01X (Supplementary Note S4, Supplementary Table S1.1), with a
184 focus on the Northern European Iron Age and the bordering Celtic-speaking region of
185 western Europe²⁶ (Fig. 1). Together with published ancient genomes from around the world,
186 we selected samples with suitable average depth of coverage for imputation (~0.1X for whole
187 genomes)^{28,29,37}. After overlapping with publicly available ancient SNP capture data suitable
188 for imputation (~1X on targeted SNPs), removing close relatives and applying quality filters,
189 the final imputed dataset contained 578 new and 4,009 published individuals covering
190 690,211 SNPs (Supplementary Note S4).

191

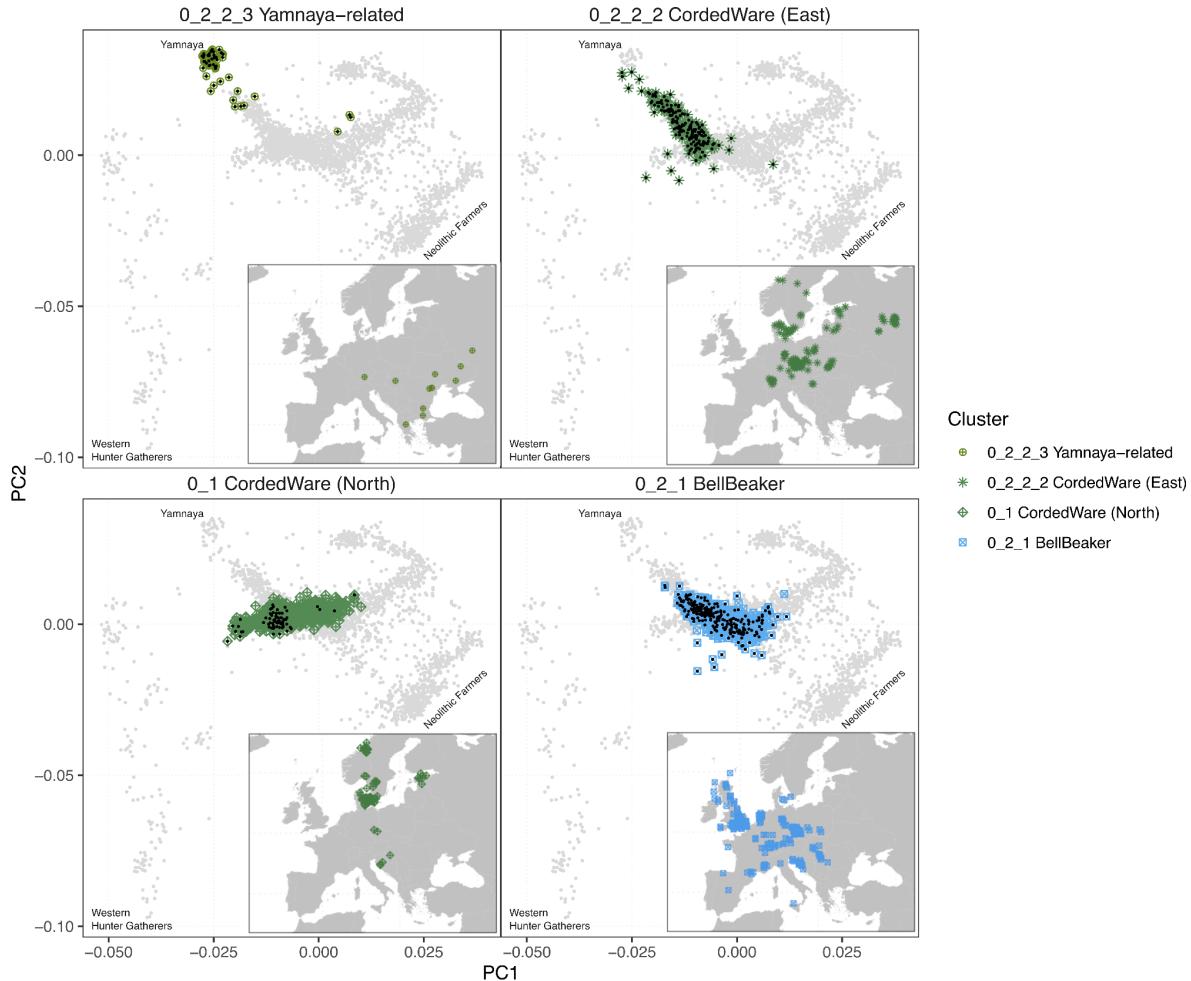
192

193 **Fig. 1. Geographic and temporal sampling of a subset of ancient individuals included in**
194 **the final dataset.** Newly generated (green) and published (light blue) ancient individuals
195 from the Late Neolithic / Early Bronze Age to the Viking Age. Grey bars on the timeline
196 represent the boundary between historical periods denoted in the top panel.

197

198

199 **Fine-scale resolution of early Steppe ancestry in Europe (5000–4000 BP)**


200 We explored the genomic affinities between all individuals in the dataset using the identity-
201 by-descent (IBD) hierarchical clustering method (Supplementary Note S5.2) and mixture
202 modelling (Supplementary Note S5.3) to discern the closely related genomic ancestries²⁸.
203 Here, clusters form on the basis of the long shared genomic segments between all pairs of
204 individuals within the dataset, rather than by proportions of the deeply diverging ancestries
205 they carry. As discrete clustering does not display the complexities of admixture, potentially
206 giving false impressions of continuity, we applied IBD mixture modelling to assess the
207 genetic structure within the clusters. In brief, we created a ‘palette’ for every individual,
208 based on the total length of IBD segments shared between that individual and all 386 clusters
209 in the dataset. We then define sets of individuals from specific clusters as ‘sources’, and

210 modelled the palettes of ‘target’ individuals as a mixture of all possible source palettes, using
211 an non-negative least squares approach, similar to chromosome painting³⁸. As a result, even
212 though a temporally distant source and target individual may share very few segments, the
213 shared segments with common intermediate populations are informative in the modelling. We
214 find this method to be effective for the sampling density and temporal distances relevant to
215 this study (Supplementary Note S5.3). To understand the general trends through time, we
216 applied ordinary spatio-temporal kriging³⁹ to the mixture modelling results (Supplementary
217 Note S5.3, Extended Data Figures 1-7).

218

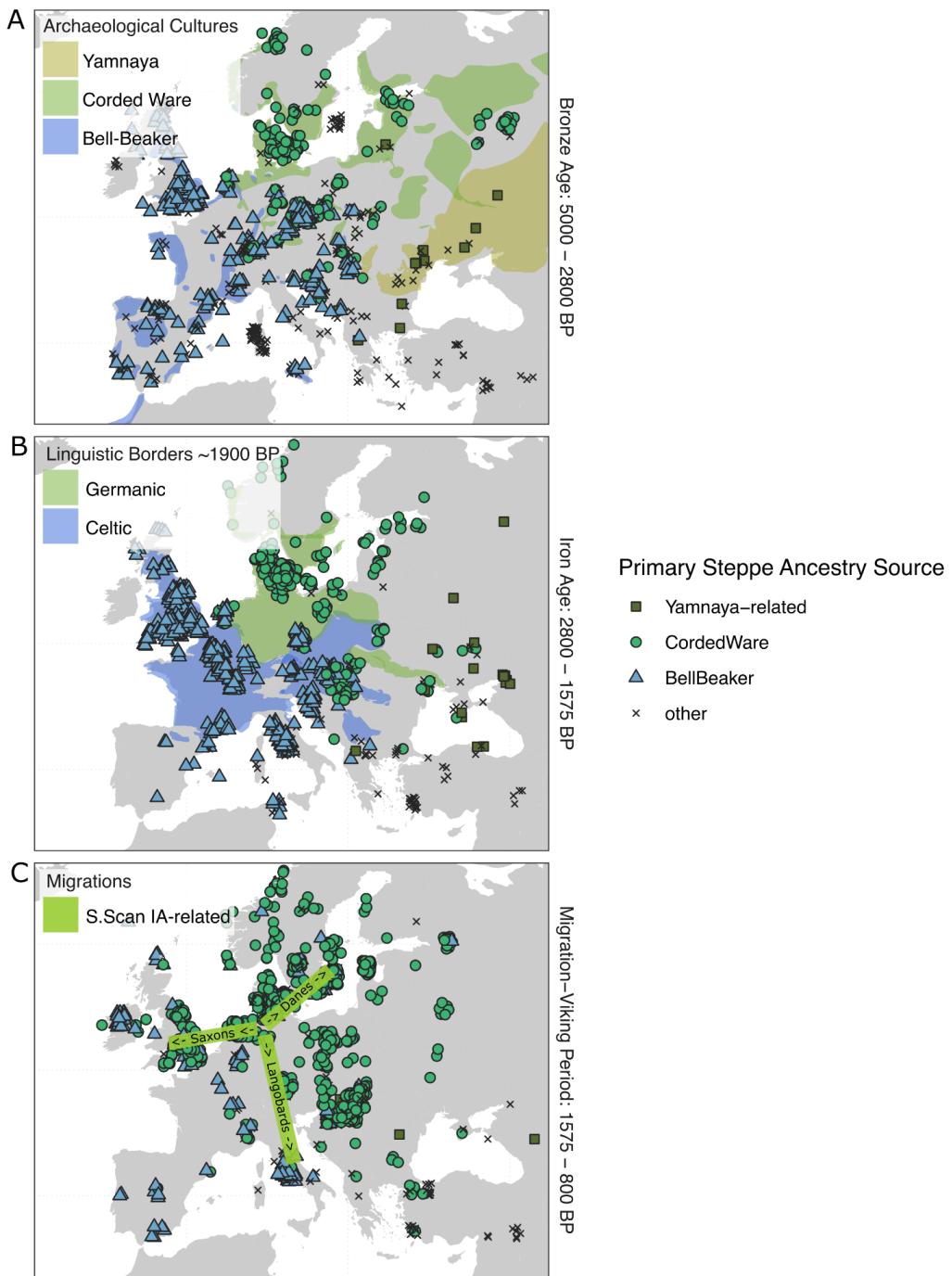
219 We focused our efforts within the last ~5000 years, commonly considered the hallmark for
220 introduction of Steppe ancestry across Europe and widely acknowledged as a likely terminus
221 post quem for the spread of the Indo-European language family^{17,18}. We find the majority of
222 European individuals over the last 5,000 years fall within four main IBD clusters, with a
223 varying geographical and cultural distinction for each (Supplementary Note S5.2.1). Based on
224 this close correspondence with individuals assigned to various archaeological groups, we
225 refer to these clusters as Yamnaya-, Corded Ware (East)-, Corded Ware (North)-, and Bell
226 Beaker-related. Notably, individuals from each cluster are placed adjacent to each other in a
227 standard western Eurasian PCA (Fig. 2, Supplementary Note S5.1), and each cluster occupies
228 different positions along the well-established cline of Steppe-Farmer ancestry that formed in
229 Europe from the Bronze Age.

230

231

232 **Fig. 2. Distribution of the main four Steppe-related clusters in Geographical (inset) and**
233 **western Eurasian PCA space.** Samples older than 2800 BP are indicated with a black point
234 on the PCA. On the map, only samples older than 2800 BP are shown.

235

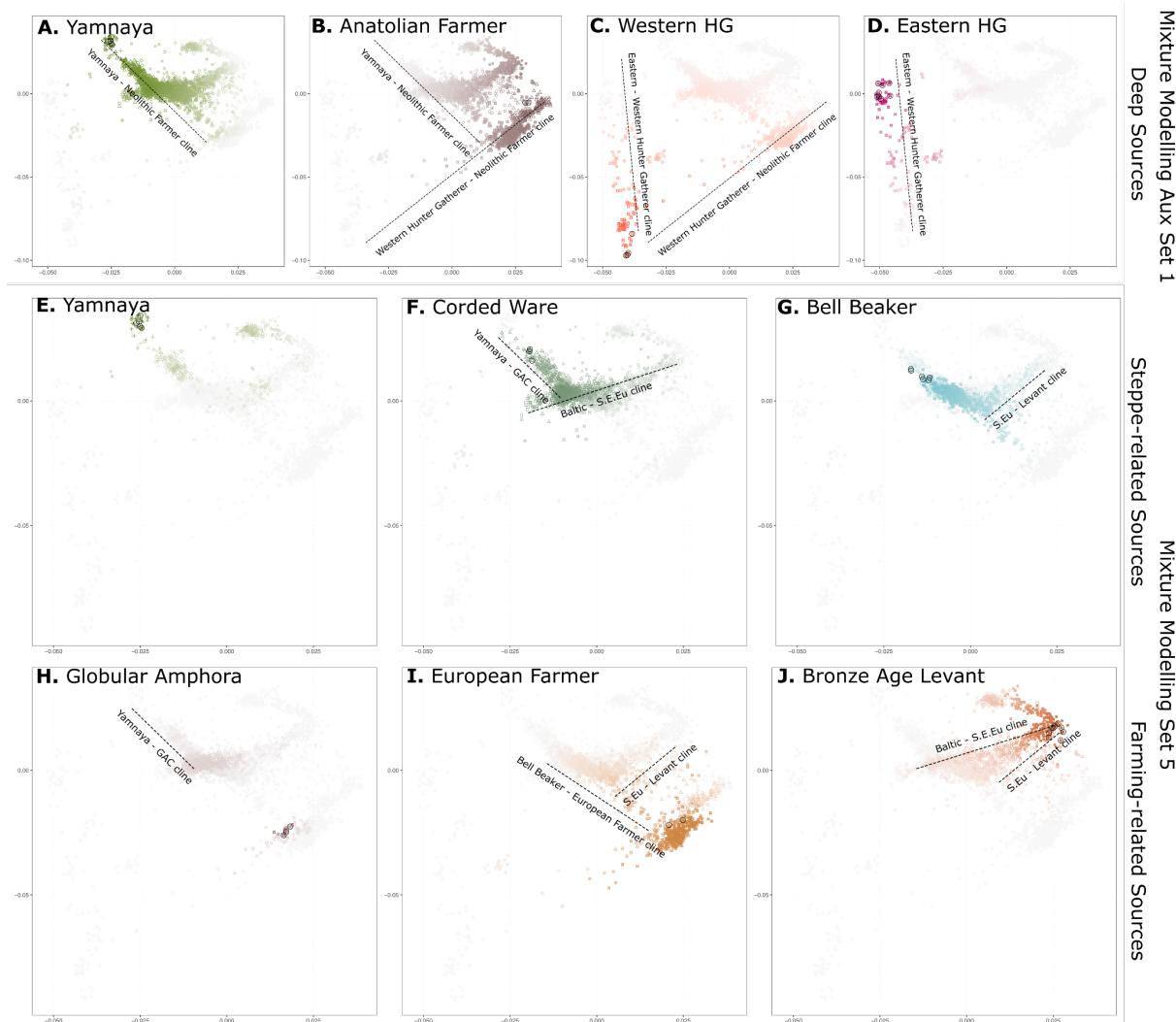

236 Importantly, our mixture modelling results show that only samples that are modelled with a
237 high proportion of Steppe ancestry fall within these clusters (Supplementary Fig. S5.16,
238 Supplementary Note S5.2.3), meaning the Steppe ancestry of many individuals is not
239 represented by the clustering. Of particular importance are many Bronze Age and later
240 southern European individuals, whose clustering is informative of their Farmer rather than
241 their Steppe ancestry. To understand how the Steppe ancestry of individuals of primarily
242 Farming ancestry are related to the structure mentioned above, we applied IBD mixture

243 modelling with sources representative of the Yamnaya, Corded Ware and Bell Beaker
244 clusters (Supplementary Note S5.3).

245
246 We find the Steppe ancestry of the majority of the more southern individuals to be modelled
247 as Bell Beaker-related (Fig. 3, Supplementary Note S5.2.3, Supplementary Fig. S5.17),
248 together with a series of previously unidentified admixture clines (Fig. 4, Extended Data Fig.-
249 8, Supplementary Note S5.3.3). For the Yamnaya, Corded Ware and Bell Beaker-related
250 source clusters, we found the difference in the mean proportion of Steppe ancestry to be
251 significantly higher for other individuals archaeologically assigned to the corresponding
252 culture, than to the other cultures (Supplementary Note S5.3.7). For many samples, an
253 archaeological assignment was not present, however we found that samples with Steppe
254 ancestry modelled primarily as Corded Ware-, Bell Beaker- or Yamnaya-related tend to
255 correspond closely with the regions ascribed to each culture in the archaeological record (Fig.
256 3).

257
258 During the Late Bronze Age (3150–2450 BP), the linguistically inferred presence of Palaeo-
259 Germanic in Southern and Eastern Scandinavia falls within the geographic boundaries of the
260 Corded Ware-related ancestries and cultures (Fig. 3). By the Roman Iron Age, Germanic-
261 speaking regions continue to fall within the broader range of individuals of Corded Ware-
262 related ancestry, bordered to the south by Celtic-speaking regions and Bell Beaker-related
263 ancestries (Fig. 3). For Iron Age regions assigned as likely Germanic- or Celtic-speaking, we
264 similarly find in all instances highly significant correlation with Corded Ware and Bell
265 Beaker ancestries (Supplementary Note S5.3.7). This correspondence and continuity suggest
266 that Germanic emerged and primarily continued to be spoken by populations of Corded
267 Ware, rather than Bell Beaker-related ancestry.

Mixture Modelling Results for Steppe Ancestry



268

269

270 **Fig. 3. Geographical distributions of major archaeological cultures, language families**
271 **and Steppe ancestry sources.** Individuals modelled with less than 10% Steppe ancestry or
272 less than 66% from one of the source groups are indicated with an 'x'. Archaeological
273 boundaries reproduced from Furholt et al.⁴⁰.

274

275

276 **Fig. 4. A subset of mixture modelling results highlighting admixture between various**
277 **Steppe and Farming-related sources displayed on the western Eurasian PCA**
278 **(Supplementary Note S5.3.1, Supplementary Fig. S5.20).** Auxiliary Set 1 highlights the
279 well-established clines representing the diversity of western Eurasian Hunter-Gatherers (C
280 and D), the arrival of Neolithic Farmers (B) in Europe admixing with the local Hunter-
281 Gatherers (C), and the arrival of Yamnaya-related ancestry (A) admixing with European
282 Farmers. Mixture modelling Set 5 further highlights the clines between various Steppe-
283 related ancestry sources: E) Yamnaya-related, F) Corded Ware-related and G) Bell Beaker-
284 related, and Farmer ancestry-related sources: H) Globular Amphora Culture-related, I)

285 European Farmer-related and J) Levant/Bronze Age Anatolia-related. Source individuals are
286 circled here and detailed in Supplementary Table S5.3 (Set 5) and S5.4 (Aux Set 1).

287 Admixture proportions follow a gradient from full colour (100%) to grey (0%).

288

289 From the Late Bronze Age onwards, irrespective of clusters, the Steppe ancestry in almost all
290 Europeans is modelled by either Corded Ware (East) or the Bell Beaker sources (Fig. 3,
291 Extended Data Fig.-4). Notable exceptions appear in the coastal region of the Netherlands
292 and in Bohemia, where the two complexes overlap (Supplementary Note S5.7.2). In the
293 Netherlands, we identify an ‘Eastern North Sea’ cluster that persists from 3700 BP to 1700
294 BP and is modelled with equal proportions of Corded Ware- and Bell Beaker-related ancestry
295 (Supplementary Fig. S5.172, Supplementary Note S5.7.2). The existence of this genetic
296 outlier has a linguistic analogue in the so-called ‘Nordwestblock’ hypothesis, which claims
297 that the Netherlands harboured an Indo-European language distinct from both Celtic and
298 Germanic⁴¹.

299

300

301 **Scandinavian population dynamics from the Late Neolithic/Bronze Age to
302 the Iron Age (4000–2500 BP)**

303 Although Corded Ware-related ancestry persisted in northern Europe from the Bronze Age to
304 the Iron Age (Fig. 3), the extent to which migrations occurred within this region is poorly
305 understood. Linguistically, this period encompasses the prehistoric evolution of the Germanic
306 branch following its split from the Indo-European proto-language and comprises two phases:
307 Palaeo- and Proto-Germanic. Lexical exchanges with Celtic in the south^{4,5} and Finno-Saamic
308 in the east^{6,27} indicate that Palaeo-Germanic was present between northern Germany and the
309 East Baltic by the Late Bronze Age. The timing of these lexical exchanges is evident in loans

310 predating the so-called Germanic sound shifts, which had happened by the beginning of the
311 Iron Age, which in Scandinavia started around 2500 BP. The entry of Germanic loans into
312 the Finnic Uralic group cannot be earlier than the putative arrival of their speakers in the
313 Baltic, which according to the latest studies coincides with the arrival of Siberian ancestry
314 after 3500 BP and likely with the cist graves from around 3150-3050 BP⁴². Some early Celtic
315 loans likewise predate the Germanic sound shifts. As a result Palaeo-Germanic can be said to
316 have been in contact with both Finnic in the east and Celtic in the south during the period
317 3200-2500 BP, a period corresponding to the Late Bronze Age. To investigate relevant
318 demographic shifts at this time, we first established the population substructure within
319 Bronze Age Scandinavia by reclustering all ancient samples older than 2800 BP
320 (Supplementary Note S5.2.2, Supplementary Table S5.2).

321
322 Within Scandinavia, three clusters are apparent (Extended Data Fig.-9): 1) an Early
323 Scandinavian cluster, including individuals from the Swedish Battle Axe Culture, some of the
324 oldest Danish individuals, and nearly all Norwegians; 2) a later ‘Southern Scandinavian’
325 cluster restricted to Denmark and the southern tip of Sweden; and 3) an even later ‘Eastern
326 Scandinavian’ cluster, spanning Sweden and geographically overlapping with the Southern
327 Scandinavia cluster. In all three clusters, we see a striking correspondence between Y-
328 haplogroups and IBD clusters (Extended Data Fig.-9A), largely driven by different
329 frequencies of haplogroups I1a (I1a-DF29), R1a1a1b1a3a (R1a-Z284) and R1b1a1b1a1a1
330 (R1b-U106), all being strongly associated with Scandinavian ancestry (Supplementary Note
331 S5.2.2). We find a large degree of geographic overlap between the Early, Southern and
332 Eastern Scandinavian clusters of the pre-2800 BP individuals and three subclusters detected
333 in the original northern Corded Ware cluster: Western, Southern and Eastern Scandinavian,
334 respectively (Extended Data Fig.-9B, Supplementary Note S5.2.2). The presence of genetic

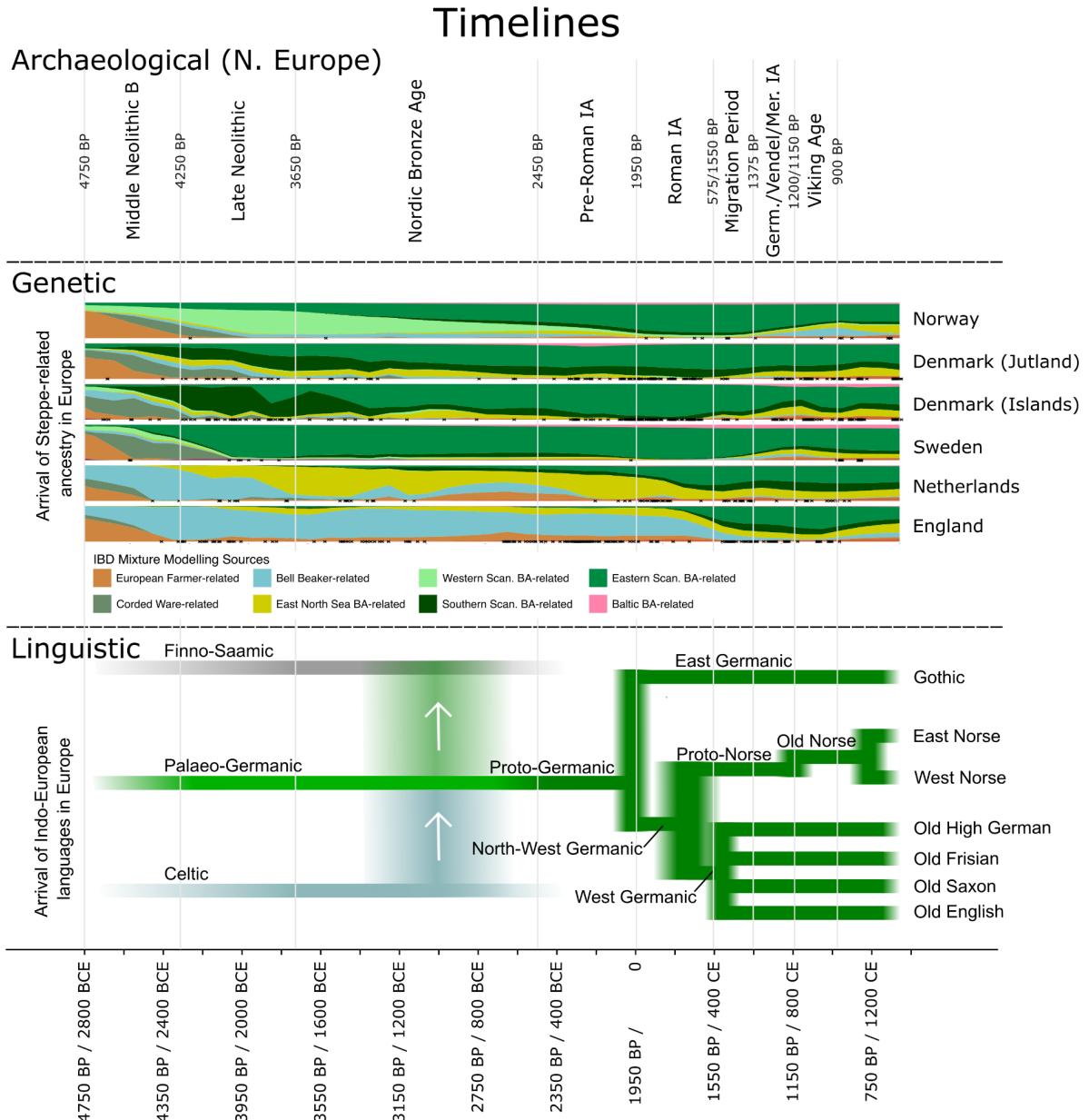
335 structure in the Bronze Age has previously been detected²⁸, however, its formation and
336 relation to the Bronze Age distribution of Palaeo-Germanic, and to the genetic structure of
337 Iron Age Scandinavia, have not been addressed.

338

339 The three pre-2800 BP clusters are found across the region in which Palaeo-Germanic is
340 assumed to have been spoken, and understanding their formation may be informative for the
341 introduction of the Germanic branch of the Indo-European language family to Scandinavia.
342 To investigate this, we applied mixture modelling, using a variety of deep Hunter-Gatherer
343 sources. We find the Yamnaya-related ancestry in the three Scandinavian clusters to be
344 modelled as Eastern Hunter-Gatherer and Caucasus Hunter-Gatherer (Supplementary Fig.
345 S5.27, Supplementary Fig. S5.23: Set 2). This is in agreement with expectations for Steppe
346 ancestry in Europe⁴³. However, the early (4100–2800 BP) Eastern Scandinavians are distinct
347 in their relatively high proportion of Eastern Hunter-Gatherer ancestry, compared to Western
348 and Southern Scandinavians (Supplementary Note S5.3.4). To identify the specific source of
349 this Hunter-Gatherer ancestry, we included additional Hunter-Gatherer sources from the
350 region (Norway, Sweden, Denmark, Latvia and Lithuania) together with Yamnaya. We find
351 that the Eastern Scandinavians' Hunter-Gatherer ancestry is modelled entirely by the
352 Latvian/Lithuanian Hunter-Gatherer source from across the Baltic, rather than the local
353 Scandinavian Hunter-Gatherers (Supplementary Note S5.3.4, Supplementary Fig. S5.23: Set
354 3). In contrast, the Southern and Western Scandinavians are modelled with additional
355 Western Hunter-Gatherer ancestry. These mixture modelling results are consistent with the
356 subtle differences in the distribution of individuals older than 2800 BP in the Scandinavian
357 clusters in the western Eurasian PCA (Supplementary Fig. S5.7, Supplementary Fig. S5.8,
358 Supplementary Fig. S5.9). To confirm these patterns, we ran rotating qpAdm models with 10
359 different Hunter-Gatherer clusters as sources, including representatives of the previously

360 identified genetic structure of Mesolithic Scandinavia^{44–46}. While an early Corded Ware
361 cluster could be modelled as only Yamnaya and Globular Amphora, the Southern and
362 Western Scandinavians each required a contribution by Hunter Gatherers from continental
363 Europe and Scandinavia respectively. Only when including a second Hunter-gatherer source
364 could the Eastern Scandinavians be well modelled, in many combinations, suggesting the true
365 source has not yet been sampled. The presence of a non-local Hunter-Gatherer ancestry
366 suggests the three clusters did not diversify from a single migration into the region. Although
367 individuals from all three clusters likely spoke Indo-European languages, the Corded-Ware
368 related Battle Axe Culture of the Scandinavian Peninsula and the Single Grave Culture of the
369 Jutlandic Peninsular are traditionally assumed to be the vectors for Indo-European dialects
370 ancestral to Germanic (Supplementary Note S7.1.3), fitting closely with the early distribution
371 of Western and Southern Scandinavian clusters respectively. However, the Eastern
372 Scandinavian cluster must also be considered as a potential vector for the arrival of
373 Germanic.

374
375 The Eastern Scandinavians first detection 6–800 years after the earliest Corded Ware
376 populations in Scandinavia (Extended Data Fig.-9A), and the presence of a Hunter-Gatherer
377 ancestry, not well represented by the three waves of Hunter-Gatherers previously identified in
378 Scandinavia, points to an additional, late arrival into Scandinavia by the ancestors of the
379 Eastern Scandinavians. The Hunter-Gatherer ancestry suggests a link across the Baltic or
380 from the northeast along the Baltic coastline. With regards to their Steppe-related ancestry,
381 the Corded Ware individuals from Lithuania (4842–4496 BP), Latvia (4833 BP) and Estonia
382 (4638–4400 BP) are not well-modelled by the Eastern Scandinavians, suggesting a source
383 region further north (Supplementary Fig. S5.28). Notably, Corded Ware and Hunter-Gatherer
384 genomes from Finland and the northeast coast of Sweden are not represented in the dataset,


385 and may also be a suitable source for the Hunter-Gatherer ancestry in Eastern Scandinavians.
386 Such a location would be consistent with strontium isotopes of the Late Neolithic Swedes of
387 Central Sweden which link with eastern and northern Sweden, Finland and possibly Karelia
388 and with similarities in pottery styles between Late Neolithic Sweden and the Kiukainen
389 culture (4500–3800 BP) of southwestern Finland and the Åland Islands^{47–50}. Combined, the
390 results point to the presence of an unsampled hunter-gatherer population, likely carrying I1
391 haplogroups, admixing with a Corded Ware-related population, similar to those of
392 Scandinavia, to form the Eastern Scandinavians somewhere between Finland and Northeast
393 Sweden. At present, no genomes from this region and time period exist.

394

395 Interestingly, the arrival of this first Eastern Scandinavian ancestry coincides with a new
396 burial rite of gallery graves in South Sweden, the Danish Isles²⁵ and Norway⁵¹, a new house
397 type^{52–54} and the first durative bronze networks⁵⁵. These events culminated at the onset of the
398 Nordic Bronze Age (3550 BP) with cultural homogenisation and the end of the east-west
399 divide in northern Europe⁵³.

400

401

402

403 **Fig. 5. A timeline showing Archaeological Periods, Spatiotemporal Kriging results with**
 404 **the general trends of the proportion of ancestries using Bronze Age European sources**
 405 **(Set 5), and relevant events in the formation of Germanic languages.** During the Late
 406 Neolithic, the highest proportions of Eastern, Western and Southern Scandinavian Bronze
 407 Age ancestry are in the local region, however some ancestry remains modelled as Corded
 408 Ware (East)-related. Throughout the Bronze Age and into the Iron Age, Eastern Scandinavian
 409 ancestry becomes widespread, coinciding with loan words passing from Celtic to Germanic,

410 and Germanic to Finno-Saamic (indicated by the arrows). Samples within 250 km of the
411 coordinates assigned to each country are indicated with an 'x', providing insight into the
412 confidence with which we can assess the timing of the transition at these coordinates. The
413 coordinates representing each country can be found in Supplementary Fig. S5.134.

414

415 The Nordic Bronze Age is key in linking the three genetic clusters of the Late Neolithic with
416 the demographic structure of the Iron Age. Archaeologically, the Nordic Bronze Age is a
417 period of strong cultural homogenisation in southern Scandinavia, starting around 3600 BP,
418 forming the so-called Nordic Cultural Zone, which lasted until the start of the Iron Age (2450
419 BP)^{56,57}. This homogenisation is mirrored genetically. At the beginning of the period, we
420 observe a number of admixed Norwegian and Danish Bronze Age outliers, each carrying
421 local and Eastern Scandinavian ancestry (Supplementary Fig. S5.29). By the Iron Age,
422 however, the population structure has become more homogenised by the widespread presence
423 of Eastern Scandinavian ancestry, the trend of which is visible in the spatio-temporal kriging
424 results produced from the mixture modelling output (Fig. 5, Supplementary Note S5.3.8). The
425 impact of this expansion is most apparent on the Danish Isles, followed by Norway and
426 finally the Jutlandic Peninsula. The least impact is seen in Jutland, where a large degree of
427 genetic structure distinguishes it from the rest of Scandinavia (Fig. 5).

428

429 To assess whether the spread of Eastern Scandinavian ancestry is compatible with being a
430 vector for Palaeo-Germanic, understanding the timing of this migration is crucial.
431 Linguistically, the Late Bronze Age is the period during which Palaeo-Germanic donated
432 vocabulary to Finno-Saamic in the east^{6,27} and adopted vocabulary from Celtic in the south^{4,5},
433 suggesting that Palaeo-Germanic was spoken within Sweden and Denmark^{4,5}. However, no
434 demographic vector has yet been identified to match this distribution. Although genomes are

435 scarce for this period due to prevalent cremation practices, we used DATES⁵⁸ to date the
436 admixture time between the Eastern Scandinavians and the Southern Scandinavians for
437 various Bronze Age and Iron Age clusters in Denmark, to confirm the formation of the Iron
438 Age populations matched that of the earliest admixed individuals we detect directly
439 (Supplementary Note S5.5). The timing of the earliest admixed individuals fits closely with
440 the point estimates from the DATES results, suggesting an admixture time of 3750–3250 BP,
441 consistent with widespread Eastern Scandinavian ancestry within the spatio-temporal range
442 proposed for Palaeo-Germanic. The admixture time for Eastern and local Bronze Age
443 ancestry in Norway (4200–2600 BP) presents a similar range, with point estimates again
444 closely matching the first direct evidence of admixed Western Scandinavian and Eastern
445 Scandinavian individuals. Conversely, at the time of the incorporation of loanwords (3200–
446 2500 BP), Western Scandinavian and Southern Scandinavian Bronze Age ancestry had
447 decreased both in geographical range and proportion. Even at its most expansive distribution,
448 Southern Scandinavian ancestry did not border the region in which Finno-Saamic was
449 spoken, and by 4200-4000, Western Scandinavian bordered neither Finno-Saamic nor Celtic.
450 Combined we find Eastern Scandinavian to be the most parsimonious vector for Palaeo-
451 Germanic.

452
453 The link between Eastern Scandinavian ancestry and Palaeo-Germanic, and the arrival of
454 Eastern Scandinavian ancestry in Norway generates the hypothesis of a dialect of Palaeo-
455 Germanic being introduced to Norway, however we note that no linguistic evidence of a
456 presence in Norway at this time exists. Moreover, the apparent formation of Eastern
457 Scandinavians from the Baltic region potentially sheds new light on the well-known problem
458 of the similarities shared between the Germanic and Balto-Slavic branches of the Indo-

459 European language family, pointing to prehistoric borrowing, a linguistic subclade or a
460 combination of both⁵⁹.

461

462

463 **Early Iron Age Scandinavia and the formation of Proto-Germanic (2450–
464 1950 BP)**

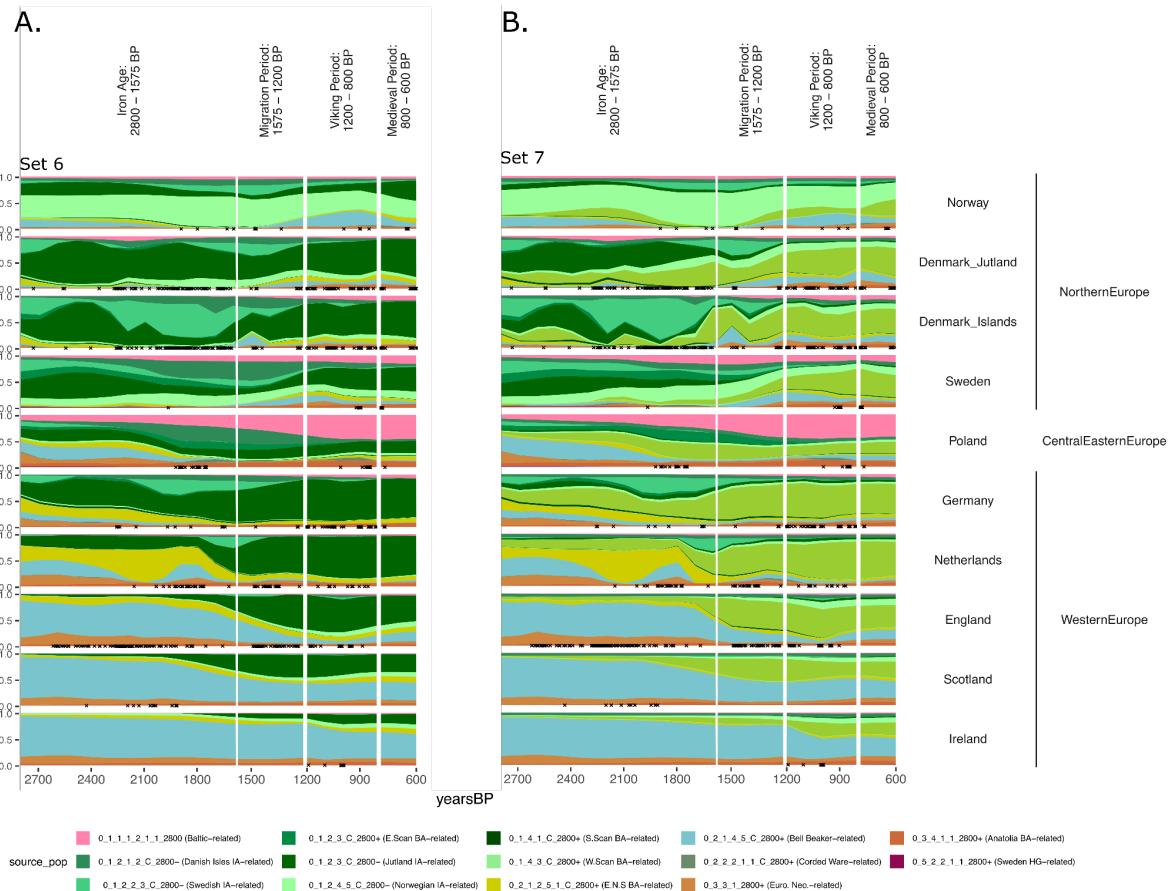
465 By the onset of the Northern European Iron Age (2450 BP), Palaeo-Germanic had
466 transitioned into Proto-Germanic, the last common ancestor of the Germanic languages,
467 through a series of defining sound changes^{60–63}. This linguistic transition has been ascribed to
468 the assimilation of speakers of an unknown language^{21,64}, potentially indicative of admixture.
469 The Proto-Germanic speech community is assumed to have been present in southern
470 Scandinavia and northern Germany throughout the Pre-Roman Iron Age (2500–1950 BP)^{65,66},
471 with the Nordic Iron Age and the Jastorf culture being likely archaeological contexts^{3,67}. To
472 date, it remains untested whether such admixture occurred.

473

474 Based on IBD mixture modelling using the admixed Bronze Age individuals as sources (Fig.
475 5, Supplementary Fig. S5.32) and the DATES results (Supplementary Note S5.5), we find
476 evidence of genetic continuity in Jutland throughout this period. In the Danish Isles,
477 additional Eastern Scandinavian ancestry is present relative to Jutland; however, the DATES
478 analysis indicates that the formation of the structure of the two regions occurred at a similar
479 time. The absence of major admixture events around the supposed transition from Palaeo- to
480 Proto-Germanic suggests this linguistic phase shift may have been induced by other factors at
481 the onset of the Iron Age, such as changes in social organisation or language-internal
482 developments.

483

484 Between 1950 and 1550 BP, the earliest runic carvings attest to relatively undiverged
485 Germanic dialects being spoken across Denmark, Norway and Sweden. At this time, although
486 Eastern Scandinavian BA ancestry was widespread across the region, the genetic structure
487 that formed during the Bronze Age still persisted between Jutland, the Danish Isles, Sweden
488 and Norway. In Iron Age Jutland, and to a lesser degree the Danish Isles and Norway,
489 individuals continue to be modelled with a minor proportion of the local Scandinavian
490 Bronze Age ancestry (Fig. 5, Supplementary Fig. S5.29: Set 5). The combined genetic and
491 linguistic insights reveal that these genetically distinct Iron Age populations were united by a
492 Germanic dialect continuum.


493

494 **Roman Iron Age and the Migration Period expansions from Scandinavia**

495 For the Roman Iron Age and Migration Period (1950–1375 BP), Late Antique historical
496 sources suggest that multiple migrations of Germanic-speaking groups occurred out of
497 Scandinavia, with precise but often contradictory homelands⁶⁸. While genetic studies have
498 confirmed a northern European origin for some individuals associated with these
499 populations^{31–34}, ascertaining precise source regions has proven challenging. To obtain more
500 precise geographical sources of migration, we included a series of the admixed Iron Age
501 clusters in the mixture modelling. These included subclusters from northern Jutland, the
502 Danish Isles, Sweden, and Norway (Supplementary Note S5.3.1, Set 6). At a broader scale,
503 we find a pattern south of the Nordic region that indicates independent migrations from
504 Jutland and the Scandinavian Peninsula. In western Europe, including present-day Germany,
505 the Netherlands and England, we find the Jutlandic Iron Age source to be the primary
506 Scandinavian ancestry (Fig 6A, Extended Data Fig.-10). In contrast, in the coastal region
507 south and east of the Baltic Sea, we find that populations are primarily mixtures of Swedish
508 Eastern Scandinavian and Baltic Bronze Age ancestries (Extended Data Fig.-10).

509

510

511

512 **Fig. 6. Spatiotemporal Kriging results showing the general trends of the proportion of**
513 **ancestries modelled for each Iron Age individual from across Europe, including Iron**
514 **Age European sources from Jutland, the Danish Isles, Sweden and Norway (Panel A,**
515 **Set 6), and also including northern Germany (Panel B, Set 7). Samples with 250 km of**
516 **these coordinates assigned to each country are indicated with an 'x'. The coordinates**
517 **representing each country can be found in Supplementary Fig. S5.134.**

518

519 Historical and archaeological evidence suggest various regions along the Eastern North Sea
520 coast, from the Netherlands to Jutland, as the sources of the migrations bringing the West
521 Germanic predecessor of Old English to Britain⁶⁹. Although genetic studies have indicated
522 that a large-scale migration indeed occurred at this time, the precise source region has

523 remained unclear, with candidates ranging from the Netherlands to southern Sweden³³. We
524 therefore added an additional Iron Age source from Mecklenburg, Northern Germany
525 (Supplementary Note S5.3.1, Set 7), to the mixture modelling. This showed ancestry in
526 Anglo-Saxons from England, Frisians from the Netherlands and Iron Age Germans to be
527 modelled as the northern German source (Fig. 6B, Extended Data Fig.-11). The observed
528 heterogeneity is consistent with the various homelands of the Angles, Saxons and Jutes along
529 the Eastern North Sea coast migrating to Britain during this period (Extended Data Fig.-12,
530 Supplementary Note S5.7.5). Prior to these expansions, individuals from northern Jutland, the
531 Danish Isles and Sweden on the contrary, are modelled primarily as the local Iron Age
532 ancestry. Therefore, we can reject Northern Jutland, the Danish Isles and Sweden as the main
533 source areas for the Anglo-Saxon migrations to Britain.

534

535 A similar cultural transition to that in Britain occurred in the Netherlands. Following the
536 Roman period, Dutch coastal areas saw a habitation hiatus around 1600 BP and the
537 subsequent appearance of a new material culture that is often referred to as Anglo-Saxon in
538 nature, and which may be related to the emergence of the Frisians⁷⁰. As in Britain, we see a
539 genetic transition occurring from local to northern German/southern Jutlandic ancestry. Here,
540 the incoming ancestry becomes dominant in the area previously dominated by the distinct
541 Eastern North Sea population (Supplementary Note S5.7.2). Although no unadmixed Eastern
542 North Sea populations are found during the Migration Period, the population replacement
543 was not complete: many later individuals from Northern and Western Europe from this time
544 onward carry small proportions of Eastern North Sea ancestry.

545

546 A third West Germanic-speaking population, the Langobards⁷¹, are historically documented
547 in the regions of today's Czech Republic, Hungary and Italy and have genetically been linked

548 to northern Europe³². However, according to post-classical origin legends, their homeland is
549 in Southern Scandinavia specifically⁷². We find that the majority of the Langobards are
550 indeed modelled by the Jutlandic Iron Age source (set 6), supporting a homeland around
551 Jutland or northern Germany (Supplementary Note S5.7.4). Notably, there are three outlier
552 Langobards from the Czech Republic and Hungary being of Eastern Scandinavian origin, and
553 a number of individuals who genetically appear to be local. This close link between Southern
554 Scandinavian ancestry and linguistically West Germanic groups is also seen in Germany
555 (Extended Data Fig.-14). Here, 56 of 76 individuals between 1650 and 775 BP fall within the
556 0_1_3_x clusters, who tend to be modelled by the Northern German source (Supplementary
557 Table S5.1).

558
559 While West Germanic groups appear closely linked with Northern German/Southern Jutland
560 ancestry, consistent with historical evidence, the genetic affiliation of East Germanic groups
561 is currently unknown. A 6th-century origin legend of the East Germanic Goths claims a
562 homeland on the Scandinavian Peninsula⁷³. The earliest evidence of plausibly East Germanic-
563 speaking populations out of Scandinavia are the individuals from the Wielbark culture of
564 present-day Poland, dated to around 1950 BP³⁴. We find these individuals to be modelled
565 primarily by Eastern Scandinavian BA and Swedish Iron Age ancestry (Supplementary Note
566 S5.7.4), supporting a migration from a region and population distinct from those of the West
567 Germanic groups – a scenario consistent with Gothic oral history⁶⁸. In contrast, later
568 individuals associated with the East Germanic-speaking groups, the Ukrainian Ostrogoths
569 and the Iberian Visigoths, are modelled with local ancestries (Supplementary Note S5.7.4).
570 Two exceptions are the Iberian Visigoths, who genetically fall on the Baltic cline, suggesting
571 an origin in North East Europe, but not specifically in Eastern Scandinavia. The genetic
572 evidence here is consistent with a two-step model on the ethnogenesis of the Goths: an initial

573 migration from Scandinavia, followed by the acculturalization of others, including Baltic and
574 Slavic groups⁷⁴.

575

576 **Migration Period expansions into Denmark and Sweden**

577 Unlike West and East Germanic, the distribution of North Germanic across Scandinavia is
578 not typically associated with population migrations. Runic inscriptions from across this area
579 testify to Germanic dialects that remained relatively similar to Proto-Germanic between 2000
580 and 1500 BP. However, from the beginning of the Migration Period to the Viking Period
581 (1575–1200 BP), accelerated linguistic change led to the formation of Old Norse⁷⁵, the
582 common language of Viking-Age Scandinavians. Following this linguistic transition, the
583 original Germanic runic script, known as the Elder Futhark, was fundamentally remodelled,
584 giving rise to the Younger Futhark, a script exclusively used to document Old Norse^{76,77}.

585

586 Interestingly, we observe a striking genetic transition in the Danish Isles and southern
587 Sweden around the time of this linguistic transition. Prior to 1575 BP, individuals in these
588 areas are modelled almost exclusively with Eastern Scandinavian Bronze Age ancestry,
589 whereas by 1250 BP, i.e. approximately 100 years before the Viking Period, and increase in
590 Southern Scandinavian and ENS ancestry is detected (Fig. 6, Extended Data Fig.-13). By
591 using the Iron Age Scandinavian sources, the extent of the impact can be seen (Extended
592 Data Fig.-10). On the Danish Isles, the local ancestry that was widespread from 2200 to 1600
593 BP essentially disappears by 1250 BP, however the rate at which this transition occurs is not
594 clear. This contrasts with nearby regions, where Jutlandic Iron Age Southern Scandinavian
595 and Swedish Iron Age Eastern Scandinavian ancestry persists through to the Viking Age,
596 despite being less prominent than before.

597

598 To understand the source of these migrations, we turned to the period from 1250 BP onwards,
599 when sampling improves as inhumation burials become more common. Here, most
600 individuals can be modelled with small proportions of ancestries that prior to 1575 BP were
601 primarily found south of Scandinavia: Eastern North Sea coast ancestry, Celtic ancestry from
602 Britain, Ireland and France, Slavic-related ancestry from Northeastern Europe
603 (Supplementary Note S5.7.6), and European Farming ancestry from western Europe
604 (Extended Data Fig.-10, Extended Data Fig.-14). While previous studies have documented an
605 influx of these more southern ancestries^{78,79}, continuity of the local Scandinavian ancestry has
606 generally been assumed.

607

608 To further investigate the transition within Denmark and southern Sweden, we again applied
609 the mixture modelling with the Southern Scandinavian Iron Age sources from northern
610 Jutland and from northern Germany (Extended Data Fig.-11). We find the Scandinavian
611 ancestry of the later Danish Isles and southern Sweden individuals to be modelled as the
612 northern German IA source ancestry rather than the more local northern Jutland IA source.
613 This suggests large-scale population movements into Denmark and southern Sweden. In
614 Jutland, we also see an influx of northern German IA ancestry. However, the impact is much
615 less pronounced than for the Danish Isles. Due to the absence of samples between northern
616 Jutland and northern Germany, we cannot rule out a southern Jutland origin as a source.

617

618 The above findings of a large-scale demographic shift have potential relevance for
619 understanding the linguistic dynamics of Iron Age Scandinavia, suggesting that the
620 emergence of Old Norse coincides with a period of social and demographic instability⁸⁰. In
621 addition, the spread of Southern Scandinavian ancestry may partially explain why the Old
622 Norse language was referred to by its speakers as *dǫnsk tunga*, i.e. the Danish tongue, even in

623 Norway, Iceland and Sweden^{81,82}. However, the close correspondence between Northern
624 German/Southern Jutlandic IA ancestry and Old Norse linguistic identity in Southern
625 Scandinavia is not seen in Norway. Here, similar social changes as in South Scandinavia
626 occurred during the same period, however, the Iron Age to Viking Age transition in Norway
627 is one of genetic continuity (Supplementary Note S5.7.3). In Norway, the cultural changes
628 occurred with limited genetic impact from populations from continental Europe. With the
629 exception of a single early Viking sample, the majority of Viking Age Norwegians display
630 either local ancestry or ancestry reflecting back-migrations from Celtic regions of Britain and
631 Ireland. Of note, the linguistic boundary between the East and West Norse dialect areas^{75,83}
632 roughly corresponds to the border between Southern Scandinavian and Western Scandinavian
633 ancestry during the Viking Age (Figures S5.108 and S5.110).

634
635 Due to cremation practices, few genomes exist from the transition period (1575–1200 BP),
636 requiring us to rely on additional lines of evidence for population dynamics during this period
637 to assess when these major transitions in Denmark and Southern Sweden may have occurred
638 (Extended Data Fig.-15). Volcanic activity (1414 and 1411 BP) and the Justinian Plague
639 (1409 BP) caused a population decline in Scandinavia, from which the populations did not
640 fully recover until around 1300 BP (Supplementary Note S7.1.4)⁸⁴. However, despite some
641 abandonment or depopulation of marginal subsistence areas⁸⁵, there was continuity in more
642 fertile and southern areas (Supplementary Note S6.4). For those who survived, the
643 subsequent improving conditions and relative abundance of resources due to a lower
644 population size would have created the opportunity for rapid expansion, as attested to in
645 historical sources in other areas (Supplementary Note S7.1.4). Despite these dramatic events,
646 the major cultural transitions began earlier, between 1550 and 1450 BP, and persisted through
647 the Viking Age (Supplementary Note S7.1.4), according to antique sources mentioning the

648 Danes living in South Scandinavia by 1450 BP^{86,87} and oral histories indicating the South
649 Scandinavian royal lineage of the Danes, Swedes and Norwegians being initiated between
650 1550 and 1500 BP⁸⁸. Based on the present archaeological and historical evidence
651 (Supplementary Note S7.1.4), we may thus conclude that the major population shift in South
652 Scandinavia between the Roman and the Viking periods was not solely driven by the climate
653 events or plague of 1450–1350 BP, but instead likely took hold between 1550 and 1450 BP,
654 coinciding with the Anglo-Saxon migrations and corresponding to a major cultural change
655 with the introduction of a new elite culture. Historical texts and legends suggest various
656 origins of the Danes^{68,86–88}, discussed in detail in Supplementary Note S7.1.4. Here we show
657 genetically that the Migration Period population influx in South Scandinavia had origins
658 around Northern Germany, with close similarity to that of the Anglo-Saxons.

659

660 This result has impacts on the interpretations of Gretzinger et al.³³ in relation to the source
661 region for Saxon migrations, and Margaryan et al.⁷⁸ in relation to the major influx of Danish
662 Viking Age ancestry into England (Supplementary Note S5.7.5.). Furthermore, the dense
663 sampling and high resolution demographic inference have allowed us to establish a baseline
664 ancestry for various regions and subsequently identify outliers (Supplementary Note S5.7.1).

665

666

667 **Conclusions**

668 Our findings constitute a fundamental revision to the formation of West Eurasian ancestry in
669 Europe. By additionally correlating these genetic findings with archaeological and linguistic
670 evidence, we complement previous interpretations of the archaeological record after the
671 Scandinavian Middle Neolithic B (4800 BP), identifying multiple populations movements,
672 and propose a new model for the emergence and spread of the Germanic languages.

673

674 Following the arrival of Steppe ancestry in Scandinavia during the Middle Neolithic B (4800
675 BP), we detect the arrival of the closely related Eastern Scandinavian ancestry during the
676 Late Neolithic with links to the North East Baltic region (4000 BP), offering a previously
677 unknown vector for the introduction of an Indo-European language to Scandinavia. We
678 cannot rule out more complex scenarios, for example, in which Palaeo-Germanic spread
679 through culture diffusion, with no genetic impact, in the opposite direction to the spread of
680 Eastern Scandinavian ancestry. However, the fact that Eastern Scandinavian ancestry was
681 widespread by the Nordic Bronze Age, encompassing the broad region where Palaeo-
682 Germanic is hypothesised to have been spoken, bordering Finno-Saamic in the east and Celtic
683 in the south, makes Eastern Scandinavians the most parsimonious vector for the spread of
684 Palaeo-Germanic. By 3500 BP, Eastern Scandinavian ancestry admixes with West and South
685 Scandinavians in Norway and Denmark, suggesting that the linguistic phase shift between
686 Palaeo- and Proto-Germanic postdated the admixture event. The genetic structure that forms
687 at this time persists until the end of the Roman Iron Age (1600 BP), encompassing the
688 Palaeo- to Proto-Germanic periods as well as the subsequent period of linguistic
689 disintegration into East, North and West Germanic. Thus, we reveal that by around 2000 BP,
690 Germanic dialects unified a region divided by clear genetic borders that had existed for a
691 thousand years. In the Polish Wielbark culture, we find support for the Late Antique Gothic
692 origin myth of an exodus from Scandinavia. At the same time, however, we observe that the
693 sampled southern European Goths carry little Eastern Scandinavian ancestry, suggesting a
694 largely cultural adoption of Gothic language and identity for these individuals. Consistent
695 with linguistic consensus on a Proto-Germanic homeland in northern Germany and Southern
696 Scandinavia during the Early Iron Age, we find the descendant North and West Germanic
697 languages across Europe to be closely linked to Southern Scandinavian ancestry, in support

698 of historical documentation of the West Germanic Anglo-Saxons and Langobards. Finally,
699 the linguistic changes leading to the formation of Old Norse appear to coincide with a back-
700 migration of Southern Scandinavians to the Danish Isles and southern Sweden, but not in the
701 more northern parts of Scandinavia, suggesting that a combination of demographic and
702 cultural mechanisms drove the evolution and transmission of this language. We later find the
703 dialectal division between Old West and Old East Norse to correspond to that of the Western
704 Scandinavian Vikings and the Southern Scandinavian Vikings.

705

706 These findings underline the potential of IBD approaches to unravel genetic, archaeological
707 and linguistic prehistories, at the same time revealing marked differences in the mechanisms
708 behind the proliferation of cultural and biological features. With the increasingly fine-scale
709 resolution of population genetics, additional sampling from along the Baltic coastline will
710 allow several unanswered questions to be addressed: 1) confirmation of the proposed Bronze
711 Age source of the Eastern Scandinavians along the Baltic coast; 2) identification of the Iron
712 Age genetic boundary between East Scandinavian and Jutlandic Iron Age ancestry in
713 continental Europe between Mecklenburg and Gdansk, potentially corresponding to the
714 linguistic border between East and Northwest Germanic; 3) determining whether the spread
715 of East Germanic dialects with Eastern Scandinavian ancestry extends beyond Poland; 4)
716 determining the more localised regions both along the Eastern North Sea coast and within
717 Britain representing each of the Angles, Saxons and Jutes; and finally 5) identifying the
718 regions in Northeast Europe related to the source of Baltic- and Slavic-speaking populations.

719

720

721 **References**

722 1. Polomé, E. C. Who are the Germanic people? in *Proto-Indo-European: The*
723 *Archaeology of a Linguistic Problem : Studies in Honor of Marija Gimbutas* (ed.
724 Gimbutas, M.) 216–244 (Institute for the Study of Man, Washington, D.C., 1987).

725 2. Mallory, J. P. *In Search of the Indo-Europeans: Language, Archaeology and Myth.*
726 (Thames and Hudson, London, 1989).

727 3. Schmidt, K. H. The Celts and the Ethnogenesis of the Germanic People. *Hist.*
728 *Sprachforsch. Hist. Linguist.* **104**, 129–152 (1991).

729 4. Koch, J. T. *Celto-Germanic: Later Prehistory and Post-Proto-Indo-European*
730 *Vocabulary in the North and West.* (University of Wales Centre for Advanced Welsh
731 and Celtic Studies, 2020).

732 5. van Sluis, P., Jørgensen, A. R. & Kroonen, G. European Prehistory between Celtic and
733 Germanic: The Celto-Germanic Isoglosses Revisited. in *The Indo-European Puzzle*
734 *Revisited: Integrating Archaeology, Genetics, and Linguistics* (eds. Willerslev, E.,
735 Kroonen, G. & Kristiansen, K.) 193–244 (Cambridge University Press, Cambridge,
736 2023). doi:10.1017/9781009261753.018.

737 6. Aikio, A. An essay on Saami ethnolinguistic prehistory. in *A Linguistic Map of*
738 *Prehistoric Northern Europe* (eds. Grünthal, R. & Kallio, P.) vol. 226 63–117 (Société
739 Finno-Ougrienne, Helsinki: Suomalais-Ugrilainen Seura, 2012).

740 7. Childe, V. G. *The Aryans: A Study of Indo-European Origins.* (K. Paul, Trench, Trubner
741 & Company, Limited, 1926).

742 8. Güntert, H. *Der Ursprung der Germanen.* (C. Winter, Heidelberg, 1934).

743 9. Anthony, D. W. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of
744 the Black Sea flood: a small audience and small effects. in *The Black Sea Flood*
745 *Question: Changes in Coastline, Climate and Human Settlement* (eds. Yanko-Hombach,

746 V., Gilbert, A. S., Panin, N. & Dolukhanov, P. M.) (Springer Science & Business
747 Media, 2006).

748 10. Kristiansen, K. *et al.* Re-theorising mobility and the formation of culture and language
749 among the Corded Ware Culture in Europe. *Antiquity* **91**, 334–347 (2017).

750 11. Iversen, R. & Kroonen, G. Talking Neolithic: Linguistic and Archaeological
751 Perspectives on How Indo-European Was Implemented in Southern Scandinavia. *Am. J.*
752 *Archaeol.* **121**, 511–525 (2017).

753 12. Glob, P. V. Studier over den jyske enkeltgravskultur. in *Fortid Og Nutid* 298–302
754 (Gyldendal, 1945).

755 13. Ringe, D. Proto-Germanic. in *From Proto-Indo-European to Proto-Germanic* (ed.
756 Ringe, D.) 0 (Oxford University Press, 2017).
757 doi:10.1093/oso/9780198792581.003.0004.

758 14. Salmons, J. 59. The evolution of Germanic. in *Handbook of Comparative and Historical*
759 *Indo-European Linguistics* vol. 2 1002–1027 (De Gruyter Mouton, 2017).

760 15. Hansen, B. S. S. & Kroonen, G. J. Germanic. in *The Indo-European Language Family*
761 (ed. Olander, T.) 152–172 (Cambridge University Press, Cambridge, 2022).
762 doi:10.1017/9781108758666.010.

763 16. Agee, J. R. Using Historical Glottometry to Subgroup the Early Germanic Languages. *J.*
764 *Ger. Linguist.* **33**, 319–357 (2021).

765 17. Allentoft, M. E. *et al.* Population genomics of Bronze Age Eurasia. *Nature* **522**, 167–
766 172 (2015).

767 18. Haak, W. *et al.* Massive migration from the steppe was a source for Indo-European
768 languages in Europe. *Nature* **522**, 207–211 (2015).

769 19. *The Indo-European Puzzle Revisited: Integrating Archaeology, Genetics, and*
770 *Linguistics*. (Cambridge University Press, 2023).

771 20. Prescott, C. Dramatic beginnings of Norway's history? Archaeology and Indo-
772 Europeanization. in *Language and Prehistory of the Indo- European Peoples: A Cross-*
773 *disciplinary Perspective* (ed. Hyllested, A.) (Museum Tusculanum Press, 2017).

774 21. Kroonen, G. Questions concerning the Indo-Europeanization of Scandinavia: The
775 Germanic languages. in *Oxford Handbook of Scandinavian Archaeology* (eds.
776 Hedeager, L., Prescott, C. & Kristiansen, K.) (Oxford University Press, Oxford, in
777 press).

778 22. Mallory, J., Dybo, A. & Balanovsky, O. The Impact of Genetics Research on
779 Archaeology and Linguistics in Eurasia. *Russ. J. Genet.* **55**, 1472–1487 (2019).

780 23. Malmström, H. *et al.* The genomic ancestry of the Scandinavian Battle Axe Culture
781 people and their relation to the broader Corded Ware horizon. *Proc. R. Soc. B Biol. Sci.*
782 **286**, 20191528 (2019).

783 24. Tornberg, A. & Vandkilde, H. Modelling age at death reveals Nordic Corded Ware
784 paleodemography. Preprint at <https://doi.org/10.21203/rs.3.rs-4125486/v1> (2024).

785 25. Müller, J. & Vandkilde, H. The Nordic Bronze Age Rose from Copper Age Diversity:
786 Contrasts in the Cimbrian Peninsula. in *Contrasts of the Nordic Bronze Age* (eds.
787 Austvoll, K. I. *et al.*) vol. 1 29–48 (Brepols Publishers, Turnhout, 2020).

788 26. Patterson, N. *et al.* Large-scale migration into Britain during the Middle to Late Bronze
789 Age. *Nature* **601**, 588–594 (2022).

790 27. Lang, V. Formation of Proto-Finnic – an archaeological scenario from the Bronze Age /
791 Early Iron Age. in *Congressus duodecimus Internationalis Fenno-Ugristarum, Oulu*
792 *2015: plenary papers* (eds. Mantila, H., Leinonen, K., Brunni, S., Palviainen, S. &
793 Sivonen, J.) 63–84 (University of Oulu, Oulu, 2015).

794 28. Allentoft, M. E. *et al.* Population genomics of post-glacial western Eurasia. *Nature* **625**,
795 301–311 (2024).

796 29. Allentoft, M. E. *et al.* 100 ancient genomes show repeated population turnovers in
797 Neolithic Denmark. *Nature* **625**, 329–337 (2024).

798 30. Heggarty, P. *et al.* Language trees with sampled ancestors support a hybrid model for
799 the origin of Indo-European languages. *Science* **381**, eabg0818 (2023).

800 31. Schiffels, S. *et al.* Iron Age and Anglo-Saxon genomes from East England reveal British
801 migration history. *Nat. Commun.* **7**, 10408 (2016).

802 32. Amorim, C. E. G. *et al.* Understanding 6th-century barbarian social organization and
803 migration through paleogenomics. *Nat. Commun.* **9**, 3547 (2018).

804 33. Gretzinger, J. *et al.* The Anglo-Saxon migration and the formation of the early English
805 gene pool. *Nature* **610**, 112–119 (2022).

806 34. Stolarek, I. *et al.* Genetic history of East-Central Europe in the first millennium CE.
807 *Genome Biol.* **24**, 173 (2023).

808 35. Vyas, D. N. *et al.* Fine-scale sampling uncovers the complexity of migrations in 5th–6th
809 century Pannonia. *Curr. Biol.* **33**, 3951-3961.e11 (2023).

810 36. Ringbauer, H. *et al.* Accurate detection of identity-by-descent segments in human
811 ancient DNA. *Nat. Genet.* **56**, 143–151 (2024).

812 37. Sousa da Mota, B. *et al.* Imputation of ancient human genomes. *Nat. Commun.* **14**, 3660
813 (2023).

814 38. Lawson, D. J., Hellenthal, G., Myers, S. & Falush, D. Inference of Population Structure
815 using Dense Haplotype Data. *PLOS Genet.* **8**, e1002453 (2012).

816 39. Racimo, F. *et al.* The spatiotemporal spread of human migrations during the European
817 Holocene. *Proc. Natl. Acad. Sci.* **117**, 8989–9000 (2020).

818 40. Furholt, M. Social Worlds and Communities of Practice: a polythetic culture model for
819 3rd millennium BC Europe in the light of current migration debates. *Préhistoires
820 Méditerranéennes* (2020) doi:10.4000/pm.2383.

821 41. Hachmann, R., Kossack, G. & Kuhn, H. *Völker zwischen Germanen und Kelten: Schriftquellen, Bodenfunde und Namengut zur Geschichte des nördlichen Westdeutschlands um Christi Geburt.* (Wachholtz, Rhine River Valley, 1962).

822 42. Saag, L. *et al.* The Arrival of Siberian Ancestry Connecting the Eastern Baltic to Uralic Speakers further East. *Curr. Biol.* **29**, 1701-1711.e16 (2019).

823 43. Lazaridis, I. *et al.* The genetic history of the Southern Arc: A bridge between West Asia and Europe. *Science* **377**, eabm4247 (2022).

824 44. Mittnik, A. *et al.* The genetic prehistory of the Baltic Sea region. *Nat. Commun.* **9**, 442 (2018).

825 45. Saag, L. *et al.* Genetic ancestry changes in Stone to Bronze Age transition in the East European plain. *Sci. Adv.* **7**, eabd6535 (2021).

826 46. Posth, C. *et al.* Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. *Nature* **615**, 117–126 (2023).

827 47. Blank, M. Mobility, Subsistence and Mortuary practices. An interdisciplinary study of Neolithic and Early Bronze Age megalithic populations of southwestern Sweden. (University of Gothenburg, Gothenburg, 2021).

828 48. Blank, M. *et al.* Mobility patterns in inland southwestern Sweden during the Neolithic and Early Bronze Age. *Archaeol. Anthropol. Sci.* **13**, 64 (2021).

829 49. Larsson, Å. M. Breaking and Making Bodies and Pots : Material and Ritual Practices in Sweden in the Third Millennium BC. (Uppsala University, Uppsala, 2009).

830 50. Brorsson, T., Lucenius, J. & Stenbäck, N. Changing perspectives Thin section and ICP analysis of Neolithic pottery from the Åland Islands. in *Helsinki Harvest: Proceedings of the 11th Nordic Conference on the Application of Scientific Methods in Archaeology.* MASF 7 vol. 7 (MASF (Monographs of the Archaeological Society of Finland), 2021).

845 51. Østmo, E. *Krigergraver: en dokumentarisk studie av senneolittiske hellekister i Norge.*
846 (Kulturhistorisk Museum, Universitet i Oslo, 2011).

847 52. Austvoll, K. I. *Seaways to Complexity: A Study of Sociopolitical Organisation Along the*
848 *Coast of Northwestern Scandinavia in the Late Neolithic and Early Bronze Age.*
849 (Equinox Publishing Limited, 2021).

850 53. Johannsen, J. W. The Late Neolithic Expansion: Ancient and new traditions 2350-1700
851 BC. *Dan. J. Archaeol.* **12**, 1–22 (2023).

852 54. Larsson, M. N. *et al.* Ancient Sheep Genomes reveal four Millennia of North European
853 Short-Tailed Sheep in the Baltic Sea region. 2023.06.26.544912 Preprint at
854 <https://doi.org/10.1101/2023.06.26.544912> (2023).

855 55. Vandkilde, H. *The Metal Hoard from Pile in Scania, Sweden: Place, Things, Time,*
856 *Metals, and Worlds around 2000 BCE.* (Aarhus Universitetsforlag, 2017).

857 56. Kristiansen, K. & Larsson, T. B. 5:3 The iconography of ruling elites: The Kivik burial
858 and the origins of the Nordic Bronze Age. in *The rise of Bronze Age society: travels,*
859 *transmissions and transformations* (Cambridge University Press, Cambridge ; New
860 York, 2005).

861 57. Kristiansen, K. *Europe Before History. Cambridge.* (Cambridge University Press,
862 Cambridge, 1998).

863 58. Narasimhan, V. M. *et al.* The formation of human populations in South and Central
864 Asia. *Science* **365**, eaat7487 (2019).

865 59. Stang, C. S. *Lexikalische Sonderübereinstimmungen zwischen dem Slavischen,*
866 *Baltischen und Germanischen.* (Univ.-Forl., 1972).

867 60. Hedeager, L. *Iron-Age Societies: From Tribe to State in Northern Europe, 500 BC to*
868 *AD 700.* (Blackwell, 1992).

869 61. Fulk, R. D. *A Comparative Grammar of the Early Germanic Languages*. (John
870 Benjamins, 2018). doi:10.1075/sigl.3.

871 62. Kümmel, M. J. Reconstructing Proto-Germanic. in *Oxford Research Encyclopedia of*
872 *Linguistics* (2023). doi:10.1093/acrefore/9780199384655.013.931.

873 63. Polomé, E. C. Methodological Aspects of Glotto-and Ethnogenesis of the Germanic
874 Peoples. *Entsteh. Von Sprachen Volkern Giotto- Ethnogenetische Aspekte Eur.*
875 *Sprachen Akten Des* 6, 45–70 (1985).

876 64. Hirt, H. Die Urheimat der Germanen: Nachwort. in *Neue Jahrbücher für das klassische*
877 *Altertum, Geschichte und deutsche Litteratur* vol. 3 570–572 (1899).

878 65. Ringe, D. A. *From Proto-Indo-European to Proto-Germanic*. (Oxford University Press,
879 2017).

880 66. Nielsen, H. F. *The Germanic Languages: Origins and Early Dialectal Interrelations*.
881 (University of Alabama Press, 1989).

882 67. Schwantes, G. Die Jastorf-Zivilisation. in *Reinecke Festschrift* (eds. Behrens, G. &
883 Werner, J.) (Mainz, 1950).

884 68. Hedeager, L. *Iron Age Myth and Materiality: An Archaeology of Scandinavia AD 400-*
885 *1000*. (Routledge, 2011).

886 69. Hines, J. *The Scandinavian Character of Anglian England in the Pre-Viking Period*.
887 (University of Oxford, 1983).

888 70. Knol, E. & IJssennagger, N. Palaeogeography and People. in *Frisians and Their North*
889 *Sea Neighbours: From the Fifth Century to the Viking Age* (eds. Hines, J. &
890 IJssennagger, N.) 5–24 (Boydell & Brewer, 2017).

891 71. Hutterer, C. J. *Die germanischen Sprachen: ihre Geschichte in Grundzügen*.
892 (Akadémiai Kiadó, 1975).

893 72. Diaconus, P. *History of the Lombards*. (University of Pennsylvania Press, 1974).

894 73. Wolfram, H. *History of the Goths*. (University of California Press, 1990).

895 74. Eiddon, I., Edwards, S. & Heather, P. Goths & Huns. in *The Cambridge Ancient History*

896 (eds. Garnsey, P. & Cameron, A.) vol. 13: The Late Empire (Cambridge University

897 Press, 1998).

898 75. Birkmann, T. 79. From Ancient Nordic to Old Nordic: Definition and delimitation of the

899 period. in 79 . *From Ancient Nordic to Old Nordic: Definition and delimitation of the*

900 *period* 691–698 (De Gruyter Mouton, 2008). doi:10.1515/9783110197051-079.

901 76. Barnes, M. P. *Runes: A Handbook*. (Boydell Press, 2012).

902 77. Schulte, M. Runology and historical sociolinguistics: On runic writing and its social

903 history in the first millennium. *J. Hist. Socioling.* **1**, 87–110 (2015).

904 78. Margaryan, A. *et al.* Population genomics of the Viking world. *Nature* **585**, 390–396

905 (2020).

906 79. Rodríguez-Varela, R. *et al.* The genetic history of Scandinavia from the Roman Iron

907 Age to the present. *Cell* **186**, 32-46.e19 (2023).

908 80. Knirk, J. E. 73. Runes : Origin, development of the futhark, functions, applications, and

909 methodological considerations. in *The Nordic Languages: Volume 1* 634–648 (De

910 Gruyter Mouton, 2008). doi:10.1515/9783110197051-073.

911 81. Ottosson, K. 90. Old Nordic: A definition and delimitation of the period. in *The Nordic*

912 *languages. An international handbook of the history of the North Germanic languages*

913 vol. 1 787–793 (De Gruyter Mouton, 2002).

914 82. Riisøy, A. I. Danish Legal Procedure and a Common Scandinavian Law. in *Viking*

915 *encounters: Proceedings of the Eighteenth Viking Congress* (eds. Pedersen, A. &

916 Sindbæk, S. M.) 220–231 (Aarhus Universitetsforlag, 2020).

917 83. Haugen, E. & Markey, T. L. INTRODUCTION. in *The Scandinavian Languages* vol.

918 154 11–13 (De Gruyter Mouton, Berlin, 1973).

919 84. Arthur, F. *et al.* The impact of volcanism on Scandinavian climate and human societies
920 during the Holocene: Insights into the Fimbulwinter eruptions (536/540 AD). *The*
921 *Holocene* 09596836231225718 (2024) doi:10.1177/09596836231225718.

922 85. Price, N. Climate change and the Fimbulwinter. in *Oxford Handbook of Scandinavian*
923 *Archaeology* (Oxford University Press, Oxford, in press).

924 86. Jordanes. Chapter 1:23. in *The Gothic History of Jordanes in English Version* (Princeton
925 University Press, 1915).

926 87. Procopius. *De Bellis [History of the Wars Book I-VIII]*. (Harvard University Press,
927 1918).

928 88. Skre, D. 3. Rulership and Ruler's Sites in 1st–10th-century Scandinavia. in *3. Rulership*
929 *and Ruler's Sites in 1st–10th-century Scandinavia* (ed. Skre, D.) 193–244 (De Gruyter,
930 2020). doi:10.1515/9783110421101-003.

931 89. Meyer, M. & Kircher, M. Illumina Sequencing Library Preparation for Highly
932 Multiplexed Target Capture and Sequencing. *Cold Spring Harb. Protoc.* **2010**,
933 pdb.prot5448 (2010).

934 90. Kapp, J. D., Green, R. E. & Shapiro, B. A Fast and Efficient Single-stranded Genomic
935 Library Preparation Method Optimized for Ancient DNA. *J. Hered.* **112**, 241–249
936 (2021).

937 91. Gansauge, M. T. *et al.* Single-stranded DNA library preparation from highly degraded
938 DNA using T4 DNA ligase. *Nucleic Acids Research* vol. 45 e79–e79 (2017).

939 92. Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L.
940 mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage
941 parameters. *Bioinformatics* **29**, 1682–1684 (2013).

942 93. Briggs, A. W. *et al.* Removal of deaminated cytosines and detection of in vivo
943 methylation in ancient DNA. *Nucleic Acids Res.* **38**, e87–e87 (2010).

944 94. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler
945 transform. *Bioinformatics* vol. 25 1754–60 (2009).

946 95. Fu, Q. *et al.* Genome sequence of a 45,000-year-old modern human from western
947 Siberia. *Nature* **514**, 445–449 (2014).

948 96. Rubinacci, S., Ribeiro, D. M., Hofmeister, R. J. & Delaneau, O. Efficient phasing and
949 imputation of low-coverage sequencing data using large reference panels. *Nat. Genet.*
950 **53**, 120–126 (2021).

951 97. Hanghøj, K., Moltke, I., Andersen, P. A., Manica, A. & Korneliussen, T. S. Fast and
952 accurate relatedness estimation from high-throughput sequencing data in the presence of
953 inbreeding. *GigaScience* **8**, giz034 (2019).

954 98. Browning, B. L. & Browning, S. R. Detecting Identity by Descent and Estimating
955 Genotype Error Rates in Sequence Data. *Am. J. Hum. Genet.* **93**, 840–851 (2013).

956 99. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-
957 connected communities. *Sci. Rep.* **9**, 5233 (2019).

958 100. Weissensteiner, H. *et al.* HaploGrep 2: mitochondrial haplogroup classification in the
959 era of high-throughput sequencing. *Nucleic Acids Res* vol. 44 W58-63 (2016).

960

961

962

963 **Methods**

964 **Data Generation**

965 All steps of generating the ancient genomes were undertaken using well established protocols
966 within ancient DNA, as described in Supplementary Note S1. In brief, samples were
967 inspected visually to identify suitable candidates. Teeth and petrous bone have previously
968 been identified as the optimal skeletal material for recovery of ancient DNA and were hence

969 selected where possible. All drilling, extractions and library builds were carried out in
970 dedicated ancient DNA clean lab facilities at the University of Copenhagen, both manually
971 and with automatisation. Double and single stranded libraries^{89–91} were built and sequenced
972 on the Illumina Hiseq 4000 and the Novaseq 6000. For the purpose of authenticating ancient
973 reads as human, non-USER treated libraries were built to allow for the detection of post-
974 mortem damage⁹². Where possible, USER treated libraries were built from the authenticated
975 extracts to minimise the effects of post-mortem damage on downstream analysis⁹³. All reads
976 were mapped to the human reference genomes (build hs37d5) using bwa aln (0.7.17)⁹⁴, and
977 duplicates were removed using picard MarkDuplicates (2.25.0). Contaminated libraries were
978 identified using contamix⁹⁵ and excluded. The final 712 samples included in this study ranged
979 from 0.01X to 32.83X in autosomal coverage.

980

981 **Imputation**

982 A set of 4,009 published ancient individuals with coverages suitable for imputation^{28,37} was
983 curated, including whole genomes and SNP capture data. The published data were merged
984 with the 712 newly generated genomes and imputed with GLIMPSE v.1.1.1⁹⁶
985 (Supplementary Note S4). As off-target capture sites have been shown to impute poorly, only
986 on-target sites were considered. In addition, sites that imputed poorly (imputation info score
987 < 0.5) or did not pass the 1000 Genomes strict mappability mask were excluded. Individuals
988 with coverage lower than recommended (0.1–0.5X for whole genome, 1.0X for captured
989 samples^{28,37}) and average genotype probability resulting from the imputation (<0.9) were also
990 excluded. First and second degree relatives were identified using ngsRelate⁹⁷ (Supplementary
991 Note S5.6), and were then excluded from later analyses. This resulted in a final set of 4517
992 individuals (including 578 new) covering 697,179 SNPs.

993

994 **IBD based analyses**

995 Segments of identity-by-descent (IBD) shared between all individuals in the final imputed set

996 of 4517 individuals were detected using IBDseq⁹⁸ (Supplementary Note S4). Potentially

997 spurious IBD segments with low LOD scores or in hotspot regions were removed as

998 described in Allentoft et al.²⁸.

999 To cluster ancient samples, a network-based hierarchical clustering⁹⁹ based on total shared

1000 IBD lengths was performed, as described in Allentoft et al.²⁸. As short segments are less

1001 informative on recent ancestry, single segments less than 2 cM in length or total shared

1002 segment lengths of less than 5cM were excluded. Clusters were then curated as described in

1003 Allentoft et al.²⁸. For the deeper clusters, individuals were plotted on a map of western

1004 Eurasia, showing clear correspondences through time and space. To better visualise IBD

1005 clusters and finer-scale patterns in the data, we carried out PCA analysis using GCTA

1006 (v1.94.1) showing the out-of-Africa and western Eurasian diversity and highlighted positions

1007 of individuals from the IBD clusters within PCA space. A second clustering run was

1008 performed containing only samples from the Bronze Age and earlier (2800+ BP), as later

1009 admixed individuals can bias clustering of the Bronze Age structure (Supplementary Note

1010 S5.2.2).

1011 To understand the relationship between and diversity within the clustering, we performed

1012 IBD mixture modelling as described in Allentoft et al.²⁸, allowing us to model target

1013 individuals as mixtures of source clusters. For every individual in the dataset, a palette is

1014 created, formed by the normalised proportion of total IBD lengths that each individual shares

1015 with all 386 clusters in the dataset. As such, the different ways in which the target and source

1016 individuals are related to non-source or target individuals are leveraged when modelling the

1017 target palette with the source palettes. Here, the single segment length cutoff was 1 cM and

1018 no total shared segment length cutoff was applied, as deeper relationships between samples

1019 were of more relevance than to clustering. We first replicated previous results for the
1020 formation of European populations before systematically including more proximal sources in
1021 a series of sets to reveal insight into the genetic structure of the ancient individuals. We then
1022 plotted the mixture modelling proportions on the PCA showing western Eurasian diversity to
1023 identify a series of novel admixture clines within the well established PCA structure
1024 (Supplementary Note S5.3.3). For some specific questions, auxiliary source sets were used
1025 (Supplementary Note S5.3.2.). To understand how the results of the IBD mixture modelling
1026 were reflected on a regional level, we applied spatio-temporal ordinary kriging ³⁹, as detailed
1027 in Supplementary Note S5.3.8. Spatiotemporal variograms were fit via a metric covariance
1028 model using the R package gstat. We used two sets of parameters, one similar to the original
1029 publication for ancestries relevant to Europe more broadly (IBD mixture modelling sets 1-4),
1030 and a second allowing for the closer proximity between populations of relevance during the
1031 Iron Age (Set 5-7) .

1032

1033 **Admixture dating**

1034 To assess the time of formation of admixed populations detected through the mixture
1035 modelling, DATES⁵⁸ was run using default settings (Supplementary Note S5.5). A mean
1036 generation time of 25 years, and the midpoint of the mean radiocarbon ages of all dated
1037 individuals in the target population were used.

1038

1039 **Y-chromosome and mitochondrial genomes analyses**

1040 Genetic sex and the presence of karyotypes 47,XXY and 47,XYY were determined from the
1041 ratios of reads mapping to the autosomes, X, and Y chromosomes (Supplementary Note
1042 S5.4.3). For individuals with an XY karyotype, we used bcftools v1.17 mpileup to call
1043 genotypes for positions located in the single-copy short-read callable 10Mb region of the Y-

1044 chromosome, excluding indels, triallelic locus and variants with less than 95% frequency in
1045 the population of non-clonal reads in a locus. Haplogroup paths were called conservatively by
1046 matching ancestral and derived calls from ISOGG 2019-2020 in a root-to-tip direction
1047 (Supplementary Note S5.4.2). For reads that mapped to rCRS mitochondrial reference
1048 genome, a consensus was called and the haplogroups classified using Haplogrep 2.0¹⁰⁰ for all
1049 samples with over 5X mitochondrial coverage. Sequences were then aligned with mafft, and
1050 a phylogenetic tree was generated using raxML (Supplementary Note S5.4.1).

1051

1052 **Dendrochronology**

1053 We used dendrochronological data based on tree-ring measurements from 654 wood samples
1054 of *Quercus* sp. from 42 sample sites in Denmark covering the years between AD 300 and AD
1055 800 (Supplementary Note S6.2). From the dendrochronological data we constructed an
1056 average growth-curve for Denmark within this time interval by use of TSAP-WinTM (version
1057 4.82b2).

1058 **Pollen data in southern Sweden**

1059 We used all available pollen data from the province of Scania to investigate the
1060 anthropogenic vegetation changes before the Viking age (Supplementary Note S6.2). The
1061 pollen records were grouped into four characteristic biogeographical regions, standardised to
1062 include the 87 most common pollen/plant taxa and the period 4000–900 BP. We applied a
1063 simplified indicator-species approach using eight pollen taxa from which changes through
1064 time are expected to be mainly due to land-use change. Pollen proportions for these pollen
1065 indicators were then summarised in 100-year intervals.

1066 **Data availability**

1067 Sequence data were deposited in the ENA under accession: xxxxxxxx

1068

1069 **Methods References**

1070 References 89 - 100

1071

1072 **Acknowledgements**

1073 The Lundbeck Foundation GeoGenetics Centre is supported by grants from the Lundbeck
1074 Foundation (R302-2018-2155, R155-2013-16338), the Novo Nordisk Foundation
1075 (NNF18SA0035006), the Wellcome Trust (WT214300), Carlsberg Foundation (CF18-0024),
1076 the Danish National Research Foundation (DNRF94, DNRF174), the University of
1077 Copenhagen (KU2016 programme) and Ferring Pharmaceuticals A/S to EW.. GK was
1078 supported by Maritime encounters, Riksbankens Jubileumsfond, grant M21-0018. JVMM
1079 was supported by European Research Council (101078151) and VILLUM FONDEN
1080 (VIL53099). GS and SS were supported by Riksbankens Jubileumsfond, grant P22-0641 Italy
1081 before Rome. MDC, SH, and LK were supported by 'Constructing the Limes: Employing
1082 citizen science to understand borders and border systems from the Roman period until today'
1083 (NWA, 2021-2026, project number: NWA.1292.19.364). KM was supported by ERC 864358
1084 (AMI). AW was supported by Emil Aaltonen Foundation. TW was supported by Lundbeck
1085 Foundation. KK was supported by Riksbankens Jubileumsfond M16-0455:1, Rise II.

1086

1087 **Author contributions**

1088 EW initiated the study. HMC, EW led the study. HMC, GK, TW, RN, LH, KK, MS, EW
1089 conceptualised the study. LV, TW, LO, LH, KK, MS, EW supervised the research. GS,
1090 PBD, SS, AS, CPEZ, TW, RN, EW acquired funding for research. HMC, GS, PE, FD, MLSJ,
1091 SB, PBD, MEA, KGS, AF, TA, IAk, SLA, BA, PB, NC, PC, EC, TTC, ACp, SDD, SD, JD,
1092 KMF, OG, UBG, ZTG, JH, SH, MHe, VH, MHø, MHø, RJ, MDJ, JWJ, TJ, OTK, AK, RK,

1093 KKj, LK, KK, ACL, TL, ML, NL, YM, VYM, KM, VMa, ALM, IM, VMo, EMo, NM, EMu,
1094 BHN, DPK, GP, MSPdL, HR, WR, AS, BS, VS1, VSa, LS, OCU, HV, JV, DV, AVo, SW,
1095 HWe, AW, HWi, KW, JZ, BC, JPD, LO, RN were involved in sample collection. HMC,
1096 MLSJ, PBD, AF, EVB, PC, EC, RJ, TJ, RK, LK, KK, NL, VMa, VMo, EMo, EMu, BHN,
1097 DPK, GP, MSPdL, WR, VSa, AVo, SW, HWi, KW, JZ curated bioarchaeological data.
1098 HMC, FVS, GS, PBD, MEA, LV, CG, JC, JaS, JeS, FEY, ML, SBM, BSP, MSPdL, SW,
1099 TSK, LO were involved in data generation. HMC, GK, JVMM, FVS, TP, TV, SMS, PBD,
1100 ARa, IAI, RAH, EKIP, WB, AI, ARo, AVa, ML, CPEZ, TSK, BC, JPD, RN, MS were
1101 involved in data analysis. HMC, GK, PE, LH, KK, EW drafted the main text. HMC, JVMM,
1102 FVS, TP, TV, SMS, PE, RF, MJG, HMEL, MFM, MLSJ, SB, ARa, KGS, SS, AF, IAk, SLA,
1103 EVB, EC, MDC, UBG, JZG, ZTG, SH, MHe, MHø, RJ, MDJ, JWJ, TJ, OTK, KKj, VK, LK,
1104 KK, ACL, ML, VYM, KM, VMa, ALM, VMo, EMo, NM, EMu, DPK, HR, WR, AS, BS,
1105 VSa, LS, GT, HV, JV, AVo, SW, HWe, AW, HWi, KW, JZ, TSK, LH drafted suppl notes
1106 and materials. HMC, GK, JVMM, FVS, GS, TP, TV, SMS, PE, RF, MJG, HMEL, MFM,
1107 FD, MLSJ, SB, MEA, LV, CG, ARa, IAI, RAH, EKIP, KGS, SS, AF, WB, AI, ARo, JC,
1108 FEY, SLA, MGB, JD, JZG, ZTG, VH, MHø, MHø, RJ, HJ, MDJ, JWJ, OTK, KKj, VK, LK,
1109 ML, NL, KM, ALM, NM, EMu, BHN, DPK, HR, AS, VSa, LS, GT, HV, SW, AW, KW, JZ,
1110 CPEZ, TSK, TW, LO, RN, LH, KK, MS, EW involved in reviewing and editing drafts.
1111

1112 **Ethics declarations**

1113 The authors declare no competing interests

1114

1115 **Additional Information**

1116 Supplementary Information is available for this paper.

1117

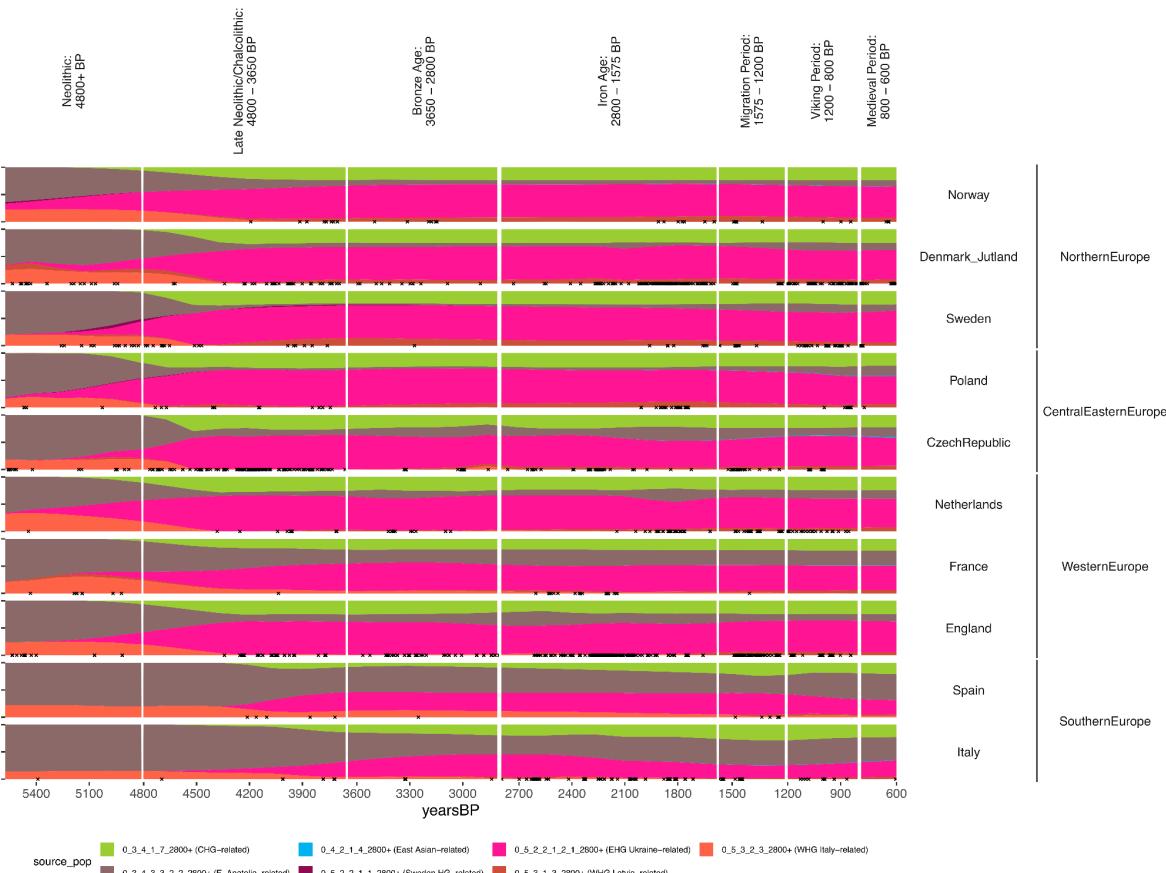
1118 Correspondence and requests for materials should be addressed to: ewillerslev@sund.ku.dk,

1119 hugh.mccoll@sund.ku.dk, guus@hum.ku.dk, kristian.kristiansen@archaeology.gu.se

1120

1121 Reprints and permissions information is available at www.nature.com/reprints.

1122

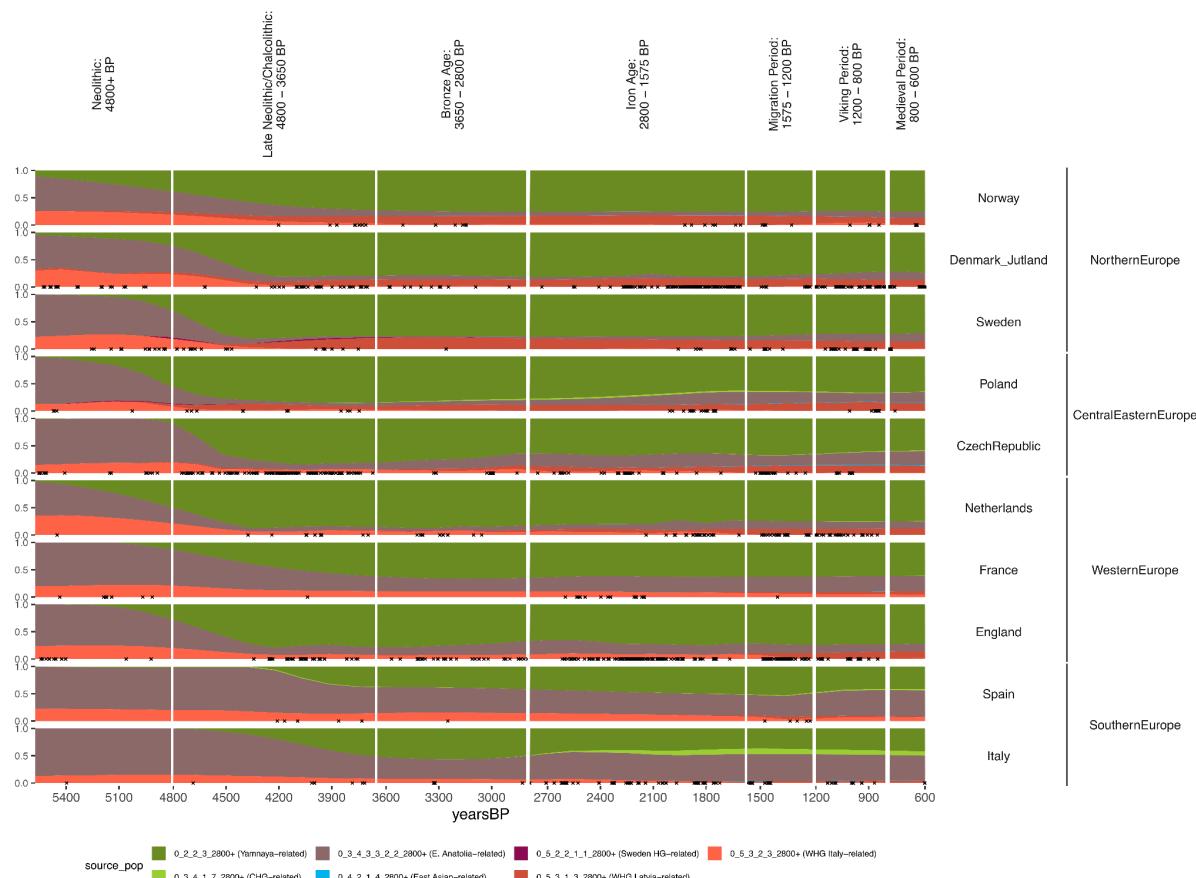

1123

1124

1125 **Extended Data Figures**

1126

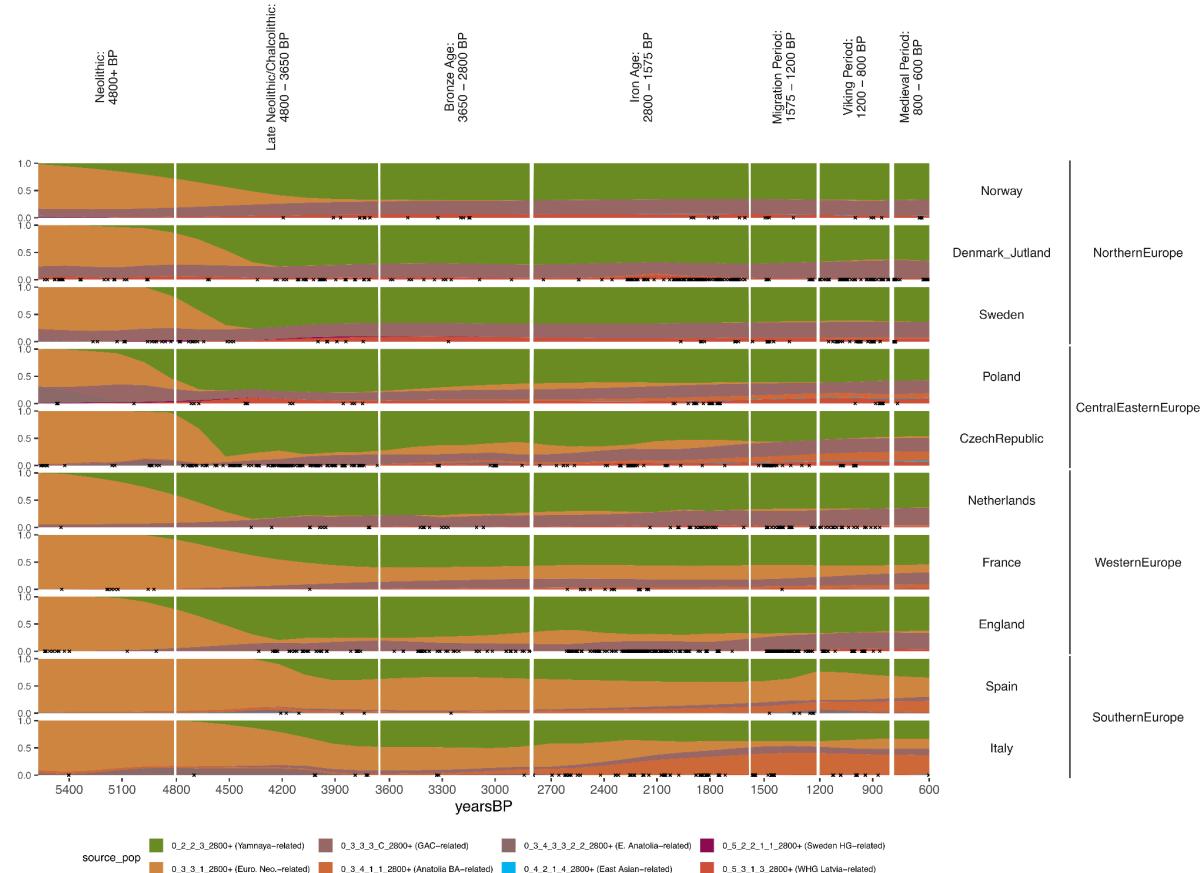
1127


1128

1129 **Extended Data Fig. 1. Spatiotemporal Kriging results showing the general trends of the**

1130 **proportion of ancestries using Hunter Gatherer and Early Neolithic Farming Sources**

1131 (Set 1). The arrival of Steppe Ancestry, modelled as EHG (pink) and CHG (light green), onto
1132 a backdrop of Farming related ancestry, modelled as Early Anatolian Farming (brown) and
1133 Western Hunter-Gatherer (orange) is apparent. The ‘Europe-wide’ kriging parameters are
1134 applied here. Individuals within 250 km of the point used for each country (Supplementary
1135 Fig. S5.134) are indicated with an ‘x’. While these results represent the general trends, they
1136 do not capture the heterogeneity present in many regions, and hence should be interpreted
1137 together with the full mixture modelling results (Supplementary Fig. S5.18).

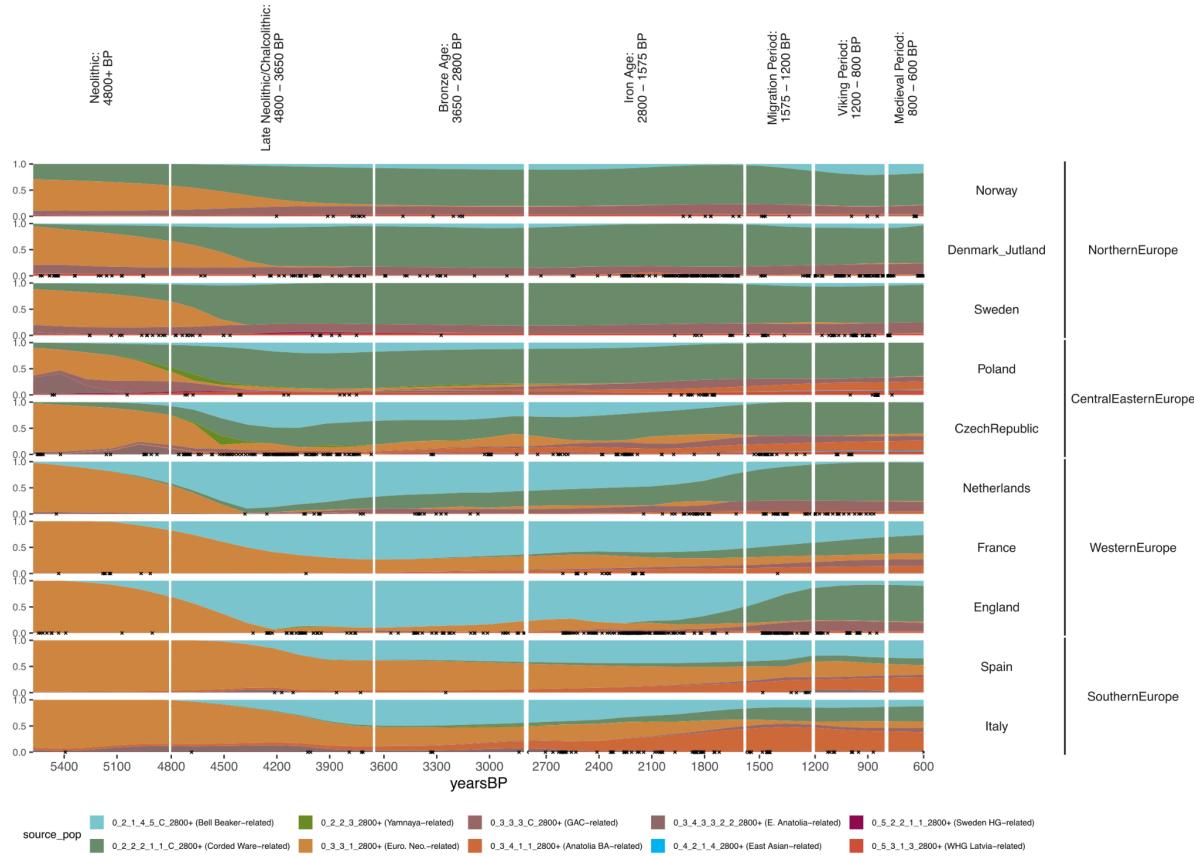

1138

1140 **Extended Data Fig. 2. Spatiotemporal Kriging results showing the general trends of the**
1141 **proportion of ancestries when adding a ‘Yamnaya-related’ source (Set 2).** Here, Steppe
1142 Ancestry that was previously modelled as EHG (pink) and CHG (light green), is now
1143 modelled directly (darker green). The ‘Europe-wide’ kriging parameters are applied here.
1144 Individuals within 250 km of the point used for each country (Supplementary Fig. S5.134)

1145 are indicated with an 'x'. While these results represent the general trends, they do not capture
1146 the heterogeneity present in many regions, and hence should be interpreted together with the
1147 full mixture modelling results (Supplementary Fig. S5.18).

1148

1149

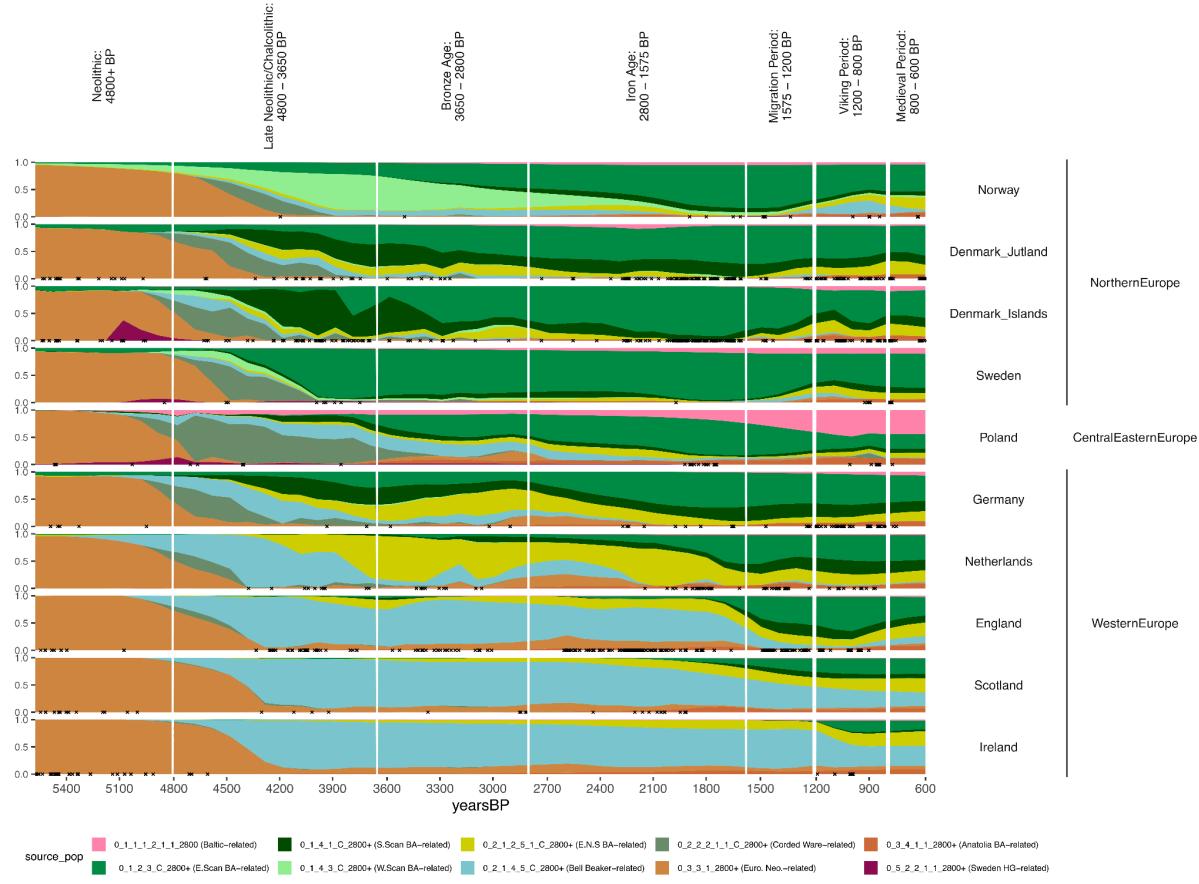

1150 **Extended Data Fig. 3. Spatiotemporal Kriging results showing the general trends of the**
1151 **proportion of ancestries of when including additional Farming-related sources (Set 3).**
1152 To the north, Bronze Age populations are modelled only as Yamnaya and Globular Amphora,
1153 whereas in the south, some European Farming ancestry persists. The 'Europe-wide' kriging
1154 parameters are applied here. Individuals within 250 km of the point used for each country
1155 (Supplementary Fig. S5.134) are indicated with an 'x'. While these results represent the
1156 general trends, they do not capture the heterogeneity present in many regions, and hence
1157 should be interpreted together with the full mixture modelling results (Supplementary Fig.
1158 S5.18).

1159

1160

1161

A. Genetic structure



1162

1163 **Extended Data Fig. 4. Spatiotemporal Kriging results showing the general trends of the**
1164 **proportion of ancestries when including additional Corded Ware and Bell Beaker-**
1165 **related sources (Set 4).** Steppe Ancestry from the Bronze Age populations are modelled only
1166 as Corded Ware-related to the North, and Bell Beaker-related in the south. The expansion of
1167 Bronze Age Anatolian-related ancestry in Italy during the Iron Age, and to lesser degrees
1168 Czech Republic, France and England is apparent. The ‘Europe-wide’ kriging parameters are
1169 applied here. Individuals within 250 km of the point used for each country (Supplementary
1170 Fig. S5.134) are indicated with an ‘x’. While these results represent the general trends, they
1171 do not capture the heterogeneity present in many regions, and hence should be interpreted
1172 together with the full mixture modelling results (Supplementary Fig. S5.18).

1173

1174

1175

1176 **Extended Data Fig. 5. Spatiotemporal Kriging results showing the general trends of the proportion of ancestries when including additional Bronze Age Scandinavian and Baltic-related sources (Set 5).** In the Late Neolithic / Chalcolithic, the regions of Northern Europe are distinct and modelled by various sources. Throughout the Bronze Age and Iron Age, Eastern Scandinavian ancestry becomes widespread, despite the persistence of some local Bronze Age ancestry. During the Migration Period, individuals from England and the Netherland experience an increase in Scandinavian ancestry reflecting Iron Age Jutland. Individuals from Denmark and Sweden experience an increase in East North Sea ancestry. Norway experiences an increase in Bell Beaker-related ancestry during the Viking Period. The transition in Poland from Iron Age (East Germanic) to Medieval (Slavic) coincides with the arrival of ‘Baltic BA’-related ancestry. The ‘North / West Europe’ kriging parameters are

1177

1178

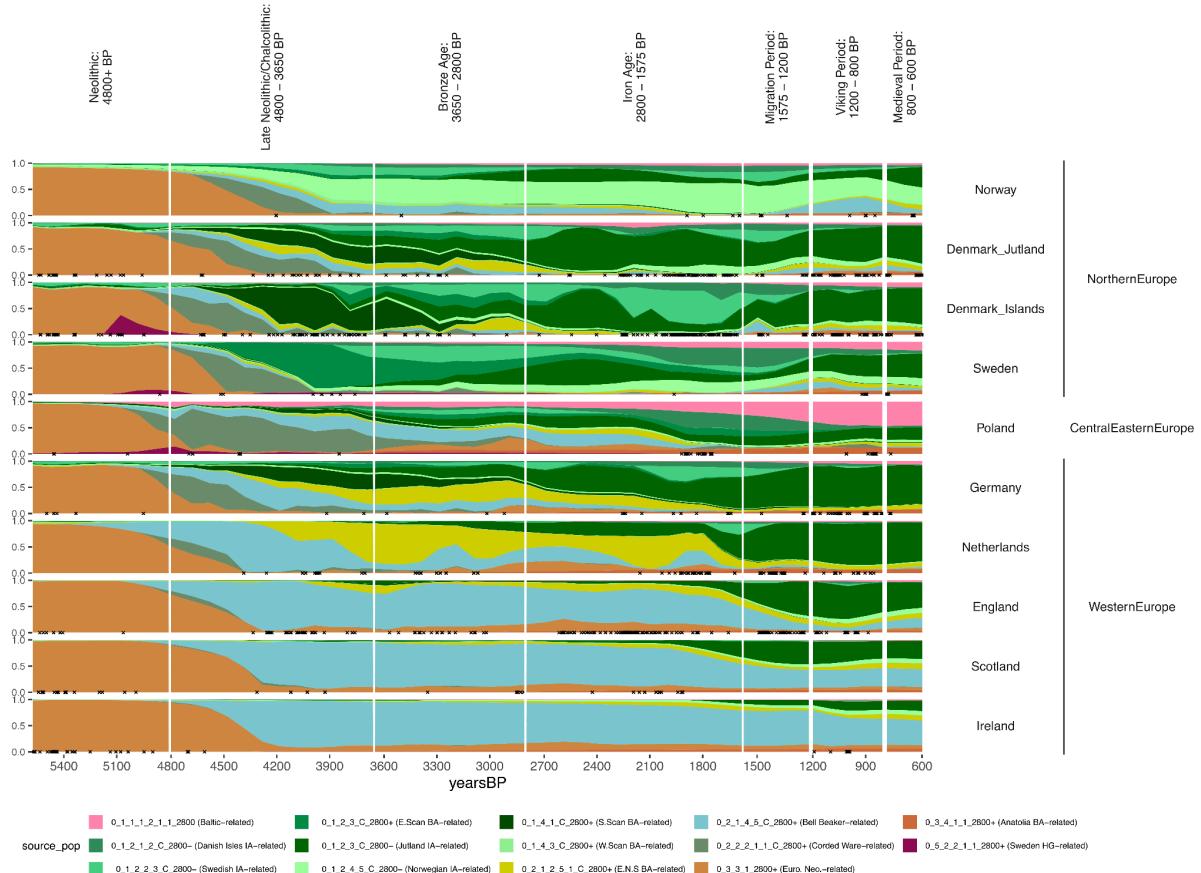
1179

1180

1181

1182

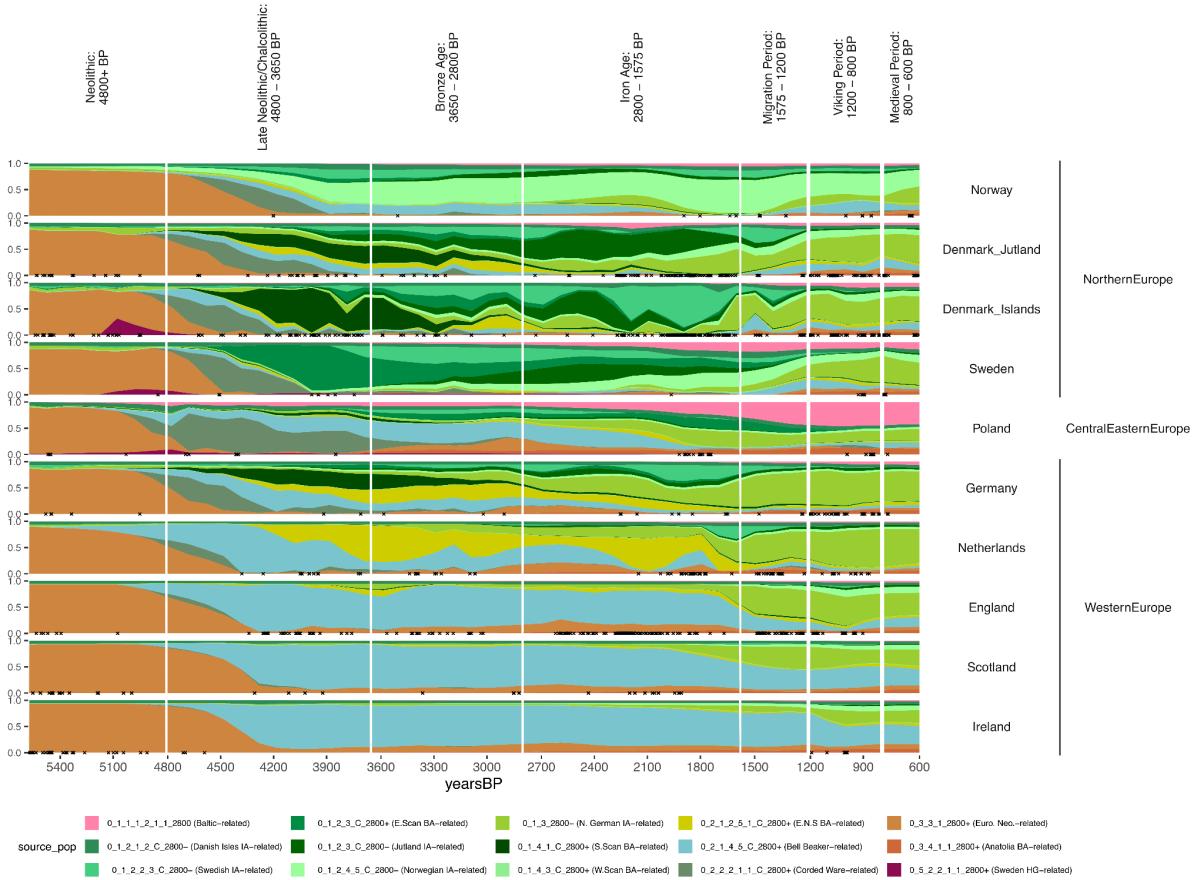
1183


1184

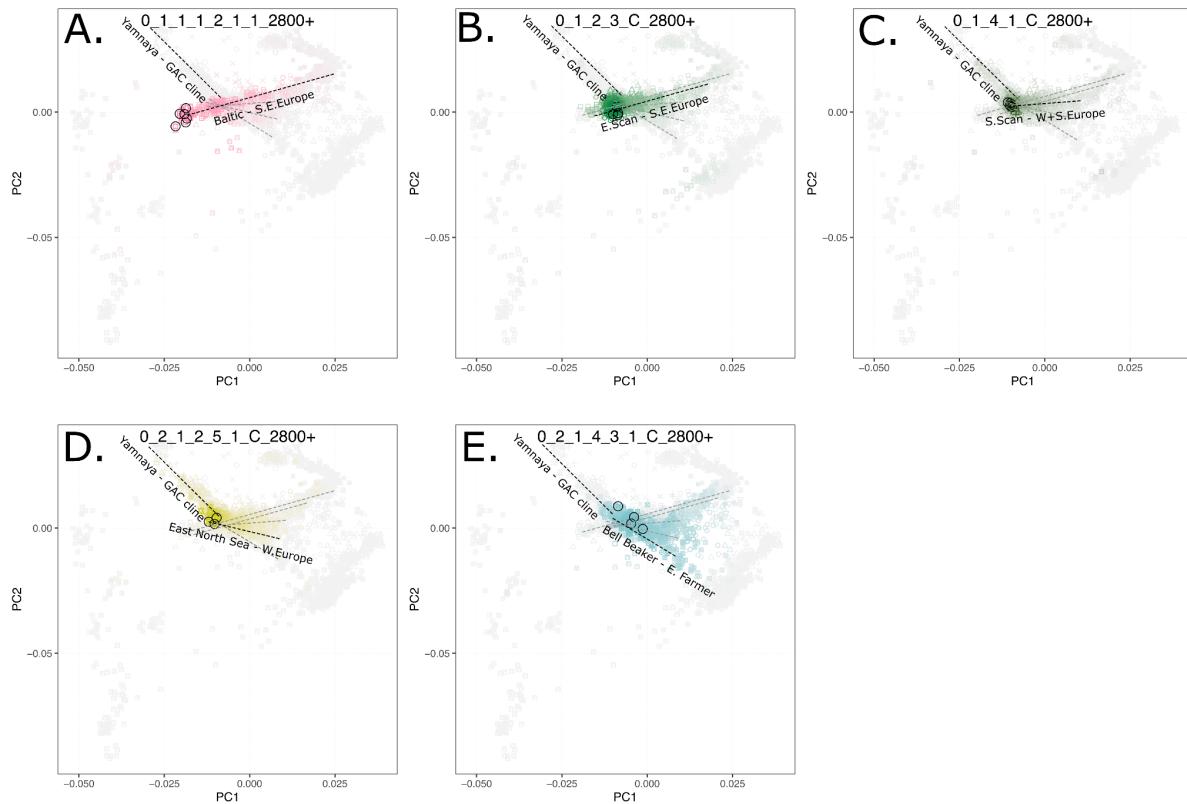
1185

1186

1187 applied here. Individuals within 200 km of the point used for each country (Supplementary
1188 Fig. S5.134) are indicated with an 'x'. While these results represent the general trends, they
1189 do not capture the heterogeneity present in many regions, and hence should be interpreted
1190 together with the full mixture modelling results (Supplementary Fig. S5.18).

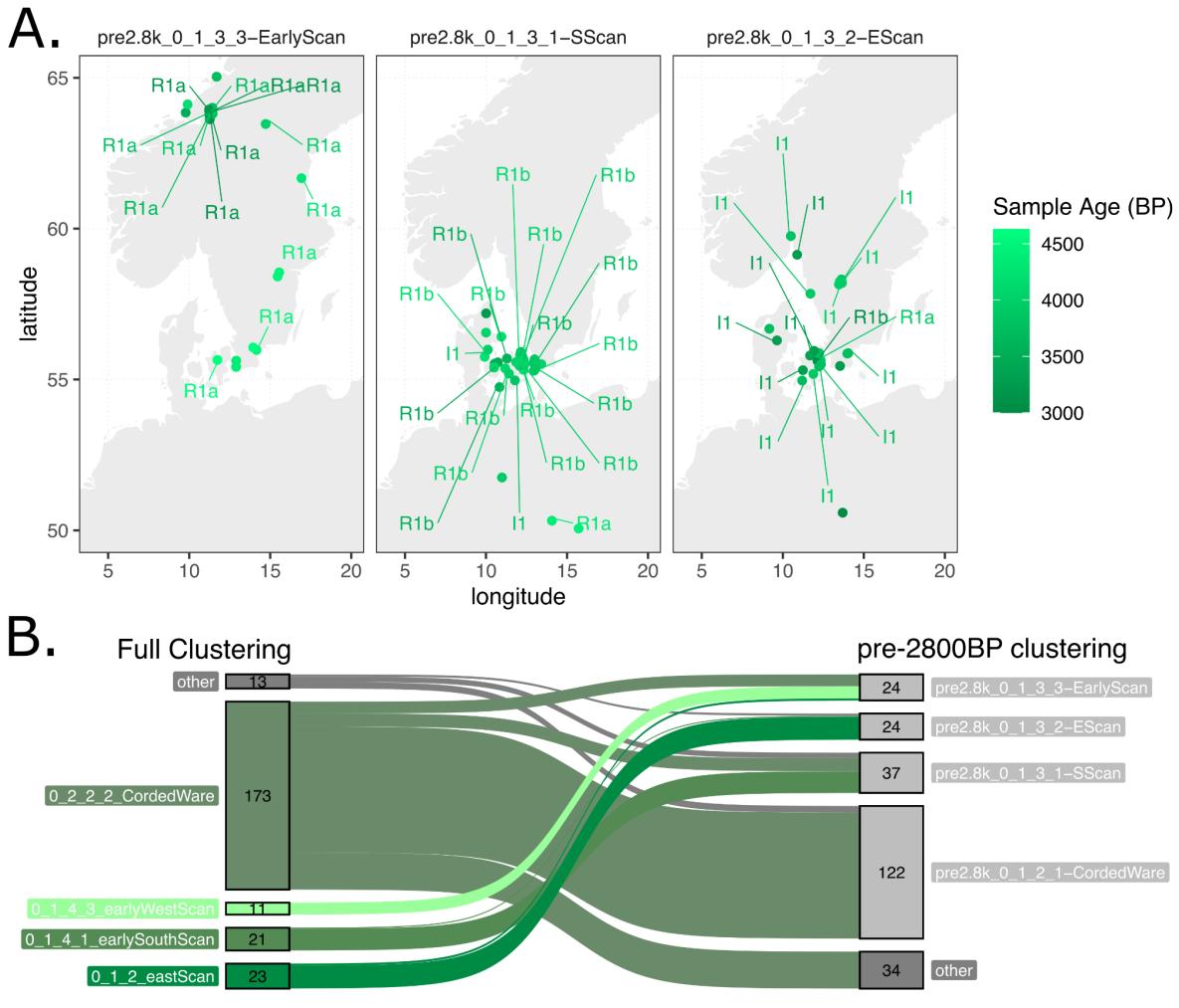

1191

1192


1193 **Extended Data Fig. 6. Spatiotemporal Kriging results showing the general trends of the**
1194 **proportion of ancestries when including Iron Age sources from Norway, Sweden, the**
1195 **Danish Isles and Jutland (Set 6).** Here, the migration period shows an increase of 'Jutland'
1196 IA'-related ancestry in England, the Netherlands, the Danish Isles. The 'North / West Europe'
1197 kriging parameters are applied here. Individuals within 200 km of the point used for each
1198 country (Supplementary Fig. S5.134) are indicated with an 'x'. While these results represent
1199 the general trends, they do not capture the heterogeneity present in many regions, and hence

1200 should be interpreted together with the full mixture modelling results (Supplementary Fig.
1201 S5.18).
1202

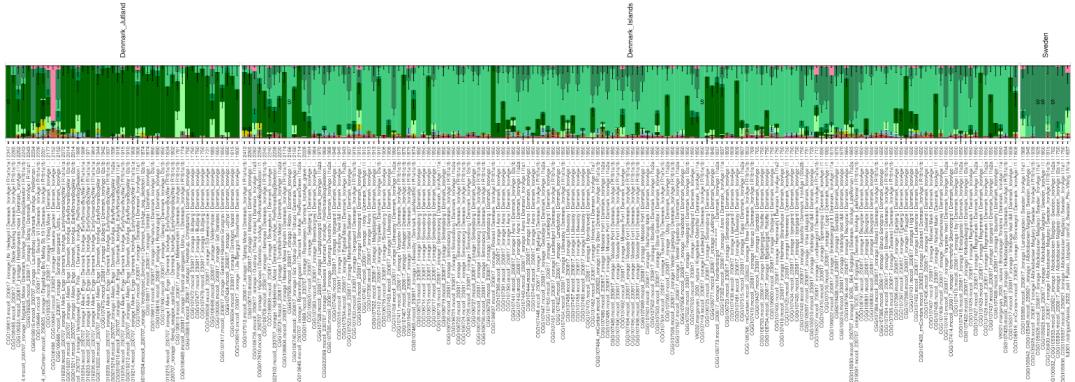
1203
1204 **Extended Data Fig. 7. Spatiotemporal Kriging results showing the general trends of the**
1205 **proportion of ancestries when including an additional Iron Age source from Northern**
1206 **Jutland (Set 7).** Here, we show migration period migrations transitions mentioned in Set 6
1207 are better modelled by the Northern/Germany Southern Jutland source. In addition, Jutland
1208 sees a transition from local to Northern Germany/Southern Jutland ancestry. Individuals
1209 within 200 km of the point used for each country (Supplementary Fig. S5.134) are indicated
1210 with an 'x'. While these results represent the general trends, they do not capture the
1211 heterogeneity present in many regions, and hence should be interpreted together with the full
1212 mixture modelling results (Supplementary Fig. S5.18).
1213


1214

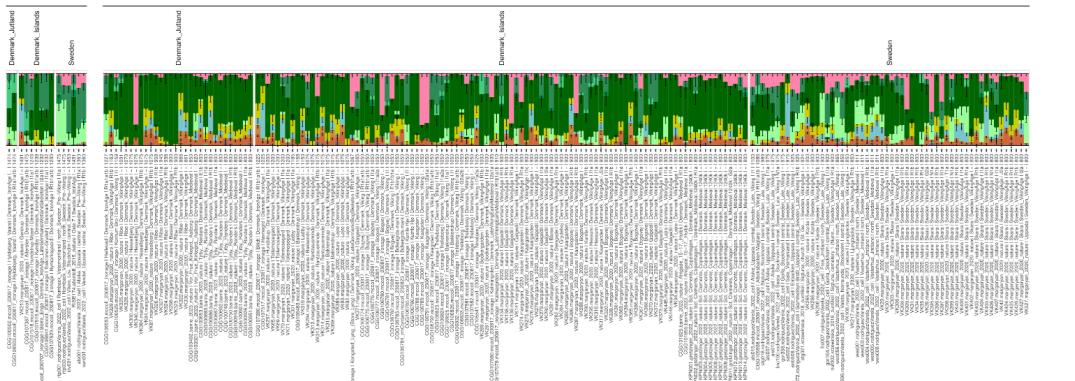
1215

1216 **Extended Data Fig.-8. A subset of mixture modelling results from Set 5 displayed on the**
1217 **western Eurasian PCA, (Supplementary Note S5.3.1, Supplementary Fig. S5.20),**
1218 **showing mixture modelling proportions for a series of subclusters from the Corded**
1219 **Ware (North) (A, B, C) and Bell Beaker (D, E) clusters, revealing clines admixing with**
1220 **groups of varying European Farmer- and Bronze Age western Mediterranean-related**
1221 **ancestry.** Source individuals are circled, and admixture proportions follow a cline from full
1222 colour (100%) to grey (0%).

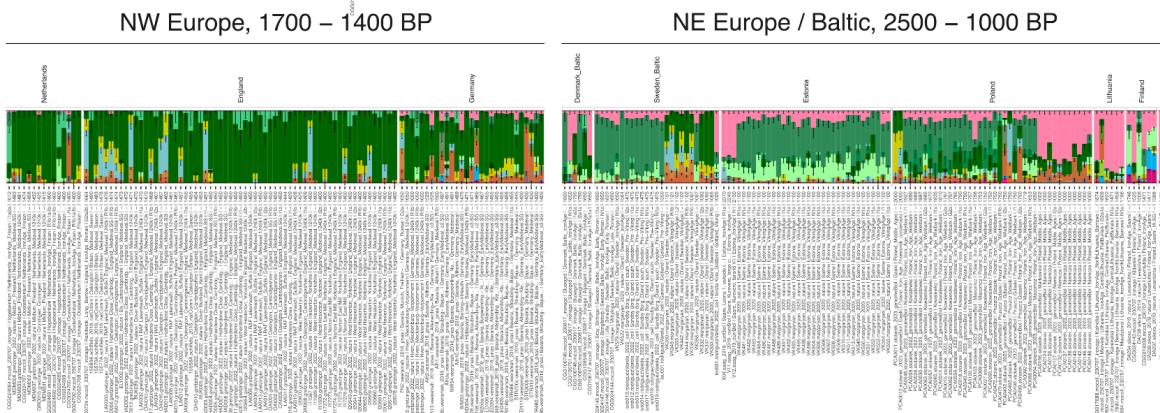
1223



Extended Data Fig.-9. Scandinavian IBD clusters from pre-2800BP clustering. (A)


1228 Geographical distribution of individuals within the Scandinavian sub-clusters from the pre-
 1229 2800 BP re-clustering. For males with sufficient coverage, major Y-haplogroups are noted.
 1230 (B) Sankey diagram showing the correspondence between the three main Scandinavian
 1231 clusters and the Eastern Corded Ware clusters in the Full and pre-2800 BP clustering.
 1232
 1233
 1234

Source population: 0.1.1.1.2.1.1.2600+ 0.1.2.2.3.2.2600- 0.1.2.3.2.2600- 0.1.4.1.2.5.1.2.2600+ 0.2.2.2.1.1.2.2600+ 0.3.3.1.2600+ 0.3.4.1.1.2.2600+ 0.3.4.1.7.2600+ 0.4.2.1.4.2600+ 0.5.2.2.1.2.1.2600+ 0.5.3.1.3.2600- 0.6.3.2600-


1. DenmarkSweden, 2500 – 1575 BP

2. DenmarkSweden, 1575 – 1230 BP

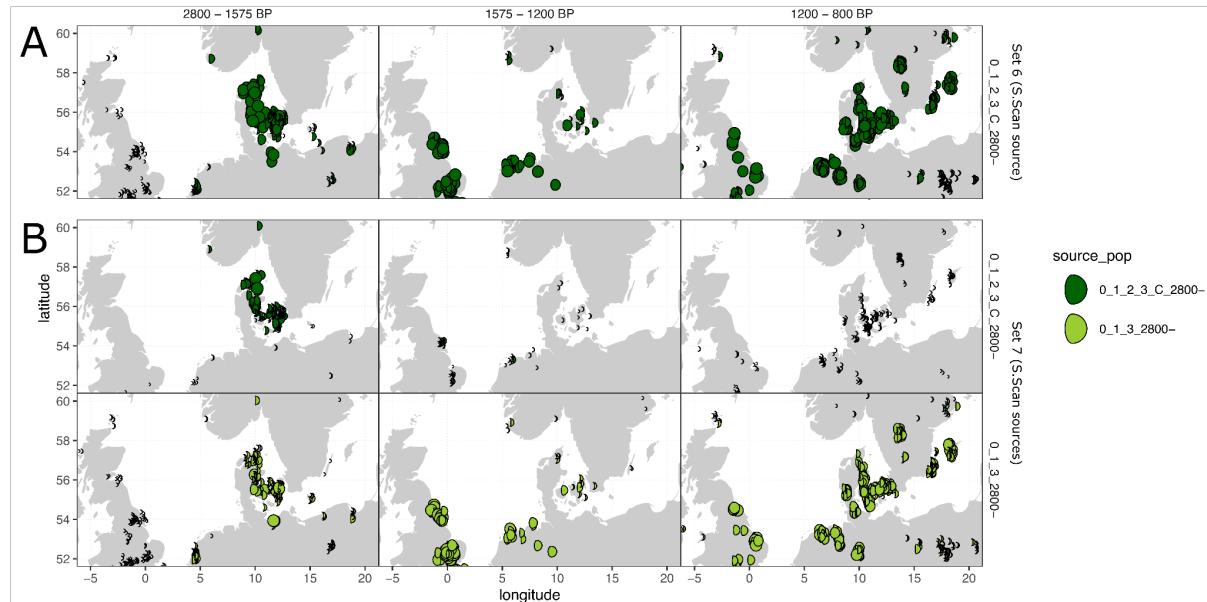
3. DenmarkSweden, 1230 – 800 BP

1235

1236

1237 **Extended Data Fig.-10. A northern European subset of IBD mixture modelling results**

1238 **for Iron Age sources (Set 6).** Row 1 shows variation from Denmark_Jutland to the Islands

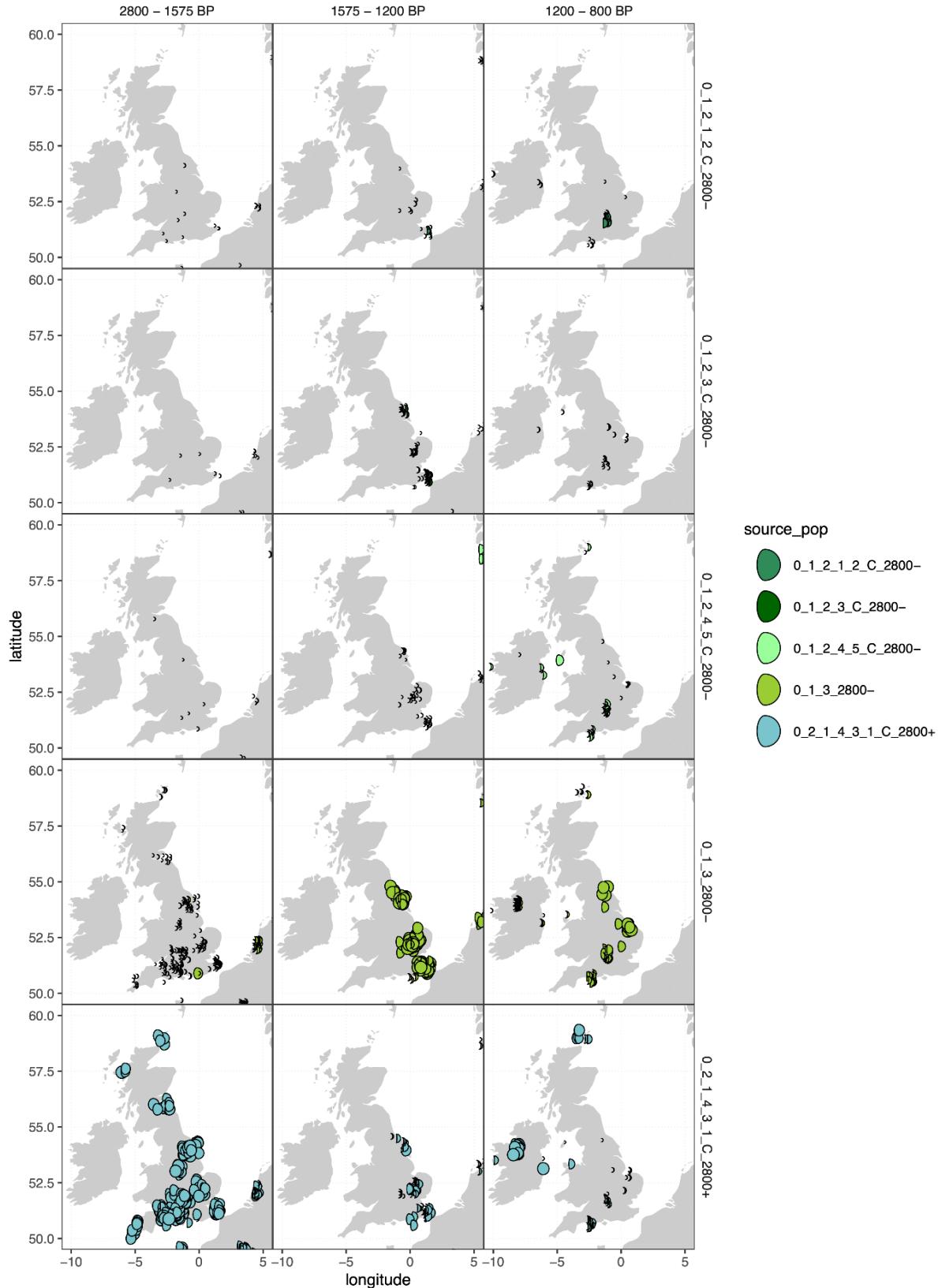

1239 of Denmark, to southern Sweden. Row 2 shows Denmark and Sweden during the Migration

1240 Period (1575–1200 BP, left) to the Viking Age (1200–800 BP, right). Row 3 shows the

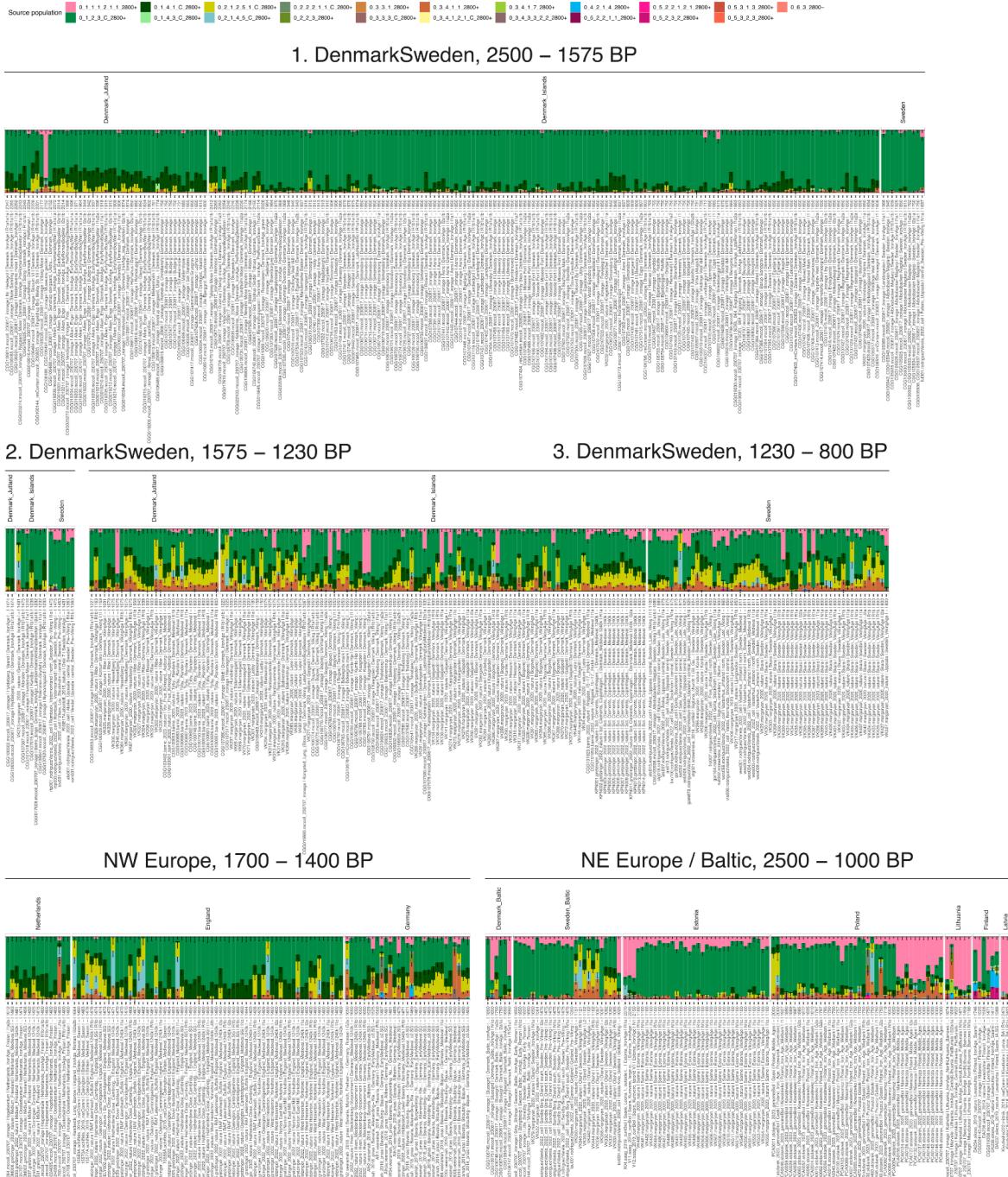
1241 surrounding regions to the west (left) and east (right). Subset from Supplementary Note S5.3,

1242 Supplementary Fig. S5.18.

1243



1244


1245 **Extended Data Fig.-11. A subset of IBD mixture modelling results showing the**
1246 **proportion of Southern Scandinavian Iron Age ancestry for northern Europe with**
1247 **varying source sets. A) Set 6, which contains a single Southern Scandinavian Iron Age**
1248 **source (0_1_2_3_C_2800-, northern Jutland), in comparison to B) Set 7, with two Southern**
1249 **Scandinavian Iron Age sources (0_1_2_3_C_2800-, northern Jutland and 0_1_3_2800-**
1250 **Mecklenburg (northern Germany). The proportion of ancestry modelled is indicated by the**
1251 **proportion filled and the size of each circle. Full mixture modelling results for northern**
1252 **Europe are shown in Supplementary Fig. S5.25 and Supplementary Fig. S5.26**

1253

1254

1256 **Extended Data Fig.-12. A subset of IBD mixture modelling results showing the**
1257 **proportion of ancestry in Britain and Ireland (Set 7).** In column 1 (2800–1575 BP), the
1258 dominant ancestry modelled is 0_2_1_1_2 Celtic Bronze Age. In column 2 (1575–1200 BP)
1259 during the Anglo-Saxon period, a transition causing individuals to be modelled primarily as
1260 0_1_3_2800- Southern Scandinavian Iron Age (Mecklenburg, northern Germany) has
1261 occurred, with small proportions of 0_1_2_3_C_2800- Southern Scandinavian Iron Age
1262 (northern Jutland, Denmark). In column 3 (1200–800 BP), the appearance of other
1263 Scandinavian ancestries (cluster 0_1_3_2_2_2 Eastern Scandinavian Iron Age (Sweden) and
1264 cluster 0_1_6_2 Western Scandinavian Iron Age (Norway)) is apparent during the Viking
1265 Age. Full mixture modelling results for northern Europe are shown in Fig. S5.26.
1266

1267

1268

1269

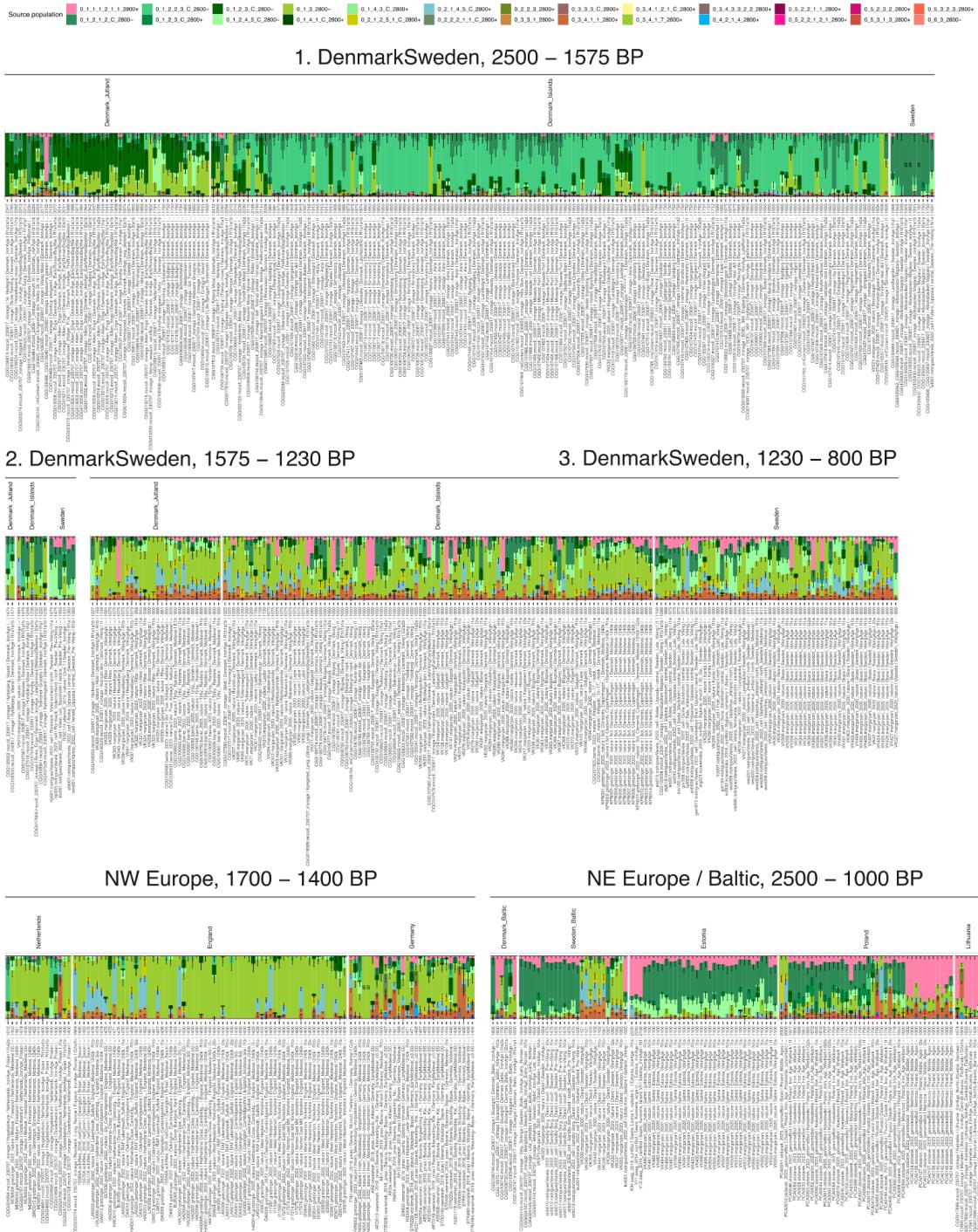
1270 **Extended Data Fig.-13. A northern European subset of IBD mixture modelling results**

1271 **for Bronze Age sources (Set 5).** Row 1 shows the decreasing proportion of Southern

1272 Scandinavian ancestry from Denmark_Jutland to the Islands of Denmark, to southern

1273 Sweden. Row 2 shows Denmark and Sweden from the Migration Period (1575–1200 BP,

1274 left) to the Viking Age (1200–800 BP, right). Row 3 shows the surrounding regions to the


1275 west (left) and east (right). Subset from Supplementary Note S5.3, Fig. S5.18

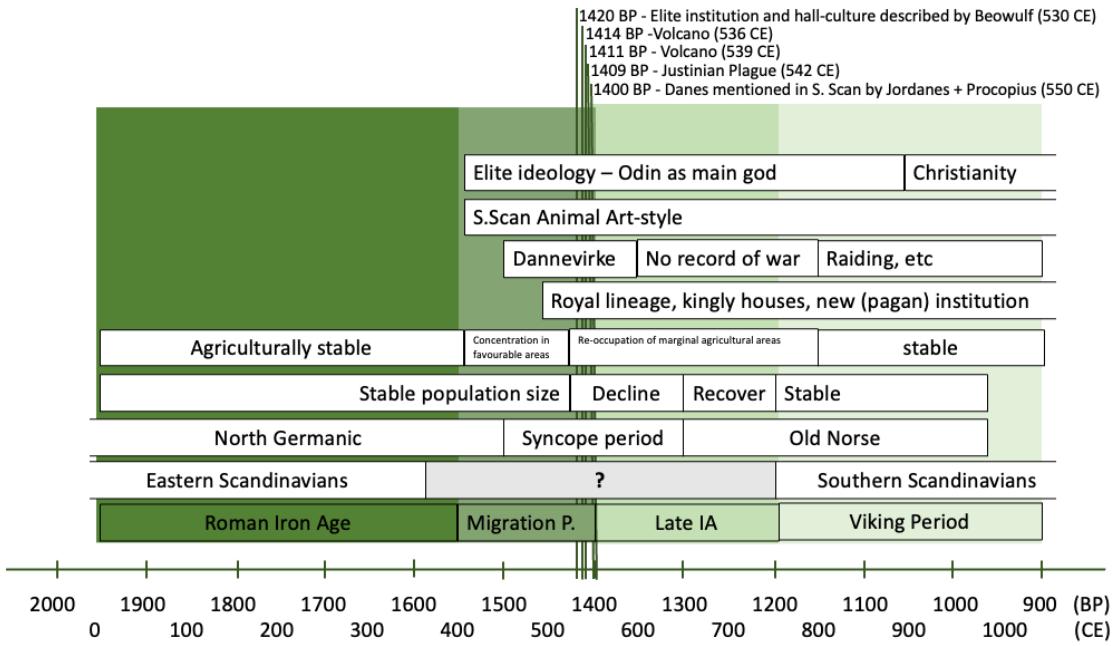
1276

1277

1278

1279

1280


1281 **Extended Data Fig.-14. A northern European subset of IBD mixture modelling results**
 1282 **for Iron Age sources, when including two Southern Scandinavian Iron Age sources (Set**
 1283 **7). Row 1 shows variation from Denmark_Jutland to the Islands of Denmark, to southern**
 1284 **Sweden. Row 2 shows Denmark and Sweden during the Migration Period (1575–1200 BP,**

1285 left) to the Viking Age (1200–800 BP, right). Row 3 shows the surrounding regions to the

1286 west (left) and east (right). Subset from Supplementary Note S5.3, Fig. S5.18.

1287

1288

1289

1290 **Extended Data Fig.-15. Timeline showing climatic events, and social, demographic, linguistic and genetic shifts in the Danish Isles and southern Sweden from the Migration Period to the Viking Age.**

1293

1294

1295

1296

1297