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Abstract  
Transposable elements (TEs) are powerful drivers of genome evolution, in part through their 

ability to rapidly rewire the host regulatory network by creating transcription factor binding sites 

that can potentially be turned to the host’s advantage in a process called exaptation. However, 

the effects on the host phenotype vary widely among different TEs. Here, we classify TEs based 

on their contribution to the human host phenotypes at both molecular and macroscopic scales. 

TE contributions to chromatin accessibility, gene expression, and the heritability of complex 

traits are strongly correlated to each other, confirming that the main mechanism through which 

TEs affect the host phenotype is through the rewiring of the regulatory network. TE sequence 

and evolutionary features are able to explain a large fraction of the variance in phenotypic 

relevance, and in particular more than 50% of the variance of their contribution to the heritability 

of complex traits. A conspicuous exception to this pattern is represented by TEs of the ERV1 

family, whose phenotypic impact cannot be explained by our model: In particular, this family 

includes a set of relatively young TEs whose phenotypic relevance is much larger than would be 

expected based on their sequence and evolutionary parameters. These TEs are involved in 

fast-evolving biological processes related to the interaction of the organism with its environment. 

In conclusion, our results confirm quantitatively that TE insertions affect the host phenotype 

mostly through the rewiring of its regulatory network; identify a signature of phenotypic 

relevance based on sequence and conservation properties; and highlight several TEs as 

promising candidates for functional studies. 
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Introduction​ 
Transposable elements (TEs) have been shown to provide raw material for the rapid evolution 

of genomes, and specifically of gene regulation, by creating quickly dispersing genetic elements 

potentially exploitable by the host as binding sites for factors involved in regulating transcription 

and three-dimensional genome conformation (see [1–3] for recent reviews), in a phenomenon 

called TE exaptation. Human regulatory network rewiring by TE exaptation has been recently 

shown to be relevant to a variety of biological processes, including immune response [4–7], 

germ cell development [8,9], longevity [10], pluripotency [11], and 3D genome conformation [12]. 

  

TE exaptation can be used by the host not only to rewire the regulatory network by providing 

new regulatory targets of transcription factors (TFs), but also to increase the robustness of the 

existing regulatory network by creating additional, redundant binding sites near existing ones 

[13–15]. This fact suggests that methods based on the analysis of TE sequence and the 

selective pressure acting on it might usefully complement those based on genetic perturbations, 

as the latter might be prone to false negatives when the role of the exapted TEs is to provide 

redundancy. Analytical approaches based on sequence properties and evolutionary 

conservation have the added advantage of bypassing the need to identify the tissue, cell type, 

or biological condition in which the role of the exapted TEs is exerted.  

 

In this work we first classify TEs based on their phenotypic effects on the host at both the 

molecular and the macroscopic levels, and investigate the relationships between these levels. 

At the molecular level, we consider chromatin accessibility and gene expression as phenotypes, 

while at the macroscopic level we investigate the heritability of complex traits. We then 

identify sequence and conservation features that are predictive of such effects.  

Results 

Macroscopic phenotypic effects of TEs are driven by regulatory 

intermediate molecular phenotypes  

We considered three measures of phenotypic relevance that can be associated with each TE. 

Two of them refer to molecular phenotypes (chromatin accessibility and gene expression), while 
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one refers to macroscopic traits, namely complex traits as measured in genome-wide 

association studies (GWASs).  

 

Specifically (see Methods for details) we considered, for each TE, its effect on 

 

●​ Chromatin accessibility, evaluated as the fraction of TE sequence in the genome that 

overlaps an ENCODE candidate cis-reguatory element (cCRE). 

●​ Gene expression, evaluated as the number of genes with at least one expression 

quantitative trait locus (eQTL) residing inside a copy of the TE in at least one GTEx 

tissue, divided by the number of common variants found in the TE. 

●​ Complex trait heritability, evaluated as the heritability enrichment as computed in [16] 

through a meta-analysis of dozens of GWAS studies. 

 

We first asked to what degree these measures of phenotypic relevance agree with each other. 

As shown in Fig. 1A, all pairwise correlations between the three measures are positive and 

highly significant (all P < 2.2 * 10-16). As expected, the two molecular phenotypes show high 

concordance (Spearman's ρ = 0.59), confirming that the effect of TE exaptation on gene 

expression is largely driven by the creation of regulatory elements.  

 

Perhaps less obvious is the high correlation between effects at the molecular and macroscopic 

levels (ρ = 0.57 and 0.63 of complex trait heritability with chromatin accessibility and gene 

expression, respectively). These results generally apply to all TE families (Fig. 1B-E), and 

suggest that the contribution of TEs to complex trait variability is largely driven by their effects 

on the regulatory network. Macroscopic traits are the targets of selection, and complex traits in 

particular are known to be subjected to stabilizing selection [17]. We therefore followed up by 

assessing whether TEs with consensus (i.e. ancestral) sequence suitable to assume a 

regulatory role in the human host would be subjected to purifying selective pressure.  

Consensus sequence composition predicts evolutionary 

conservation and contemporary selective pressure  

To classify TEs based on their ability to create regulatory elements, we used gkmSVM [18] to 

train a support vector machine (SVM) model able to predict the cCRE status of a sequence from 

its k-mer composition (see Methods). To avoid circularity, the model was trained on ENCODE 
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cCREs not overlapping TEs, and, in cross-validation, achieved good predictive performance 

(area under the ROC curve [AUC] = 0.793). The model was then applied to the consensus 

sequence of each TE (derived from the Dfam database [19], with some modifications, see 

Methods). The score assigned by gkmSVM to each TE, henceforth referred to as the cCRE 

score, showed good correlation with the fraction of TE sequence overlapping ENCODE cCREs 

(Spearman ρ = 0.60, P < 2.2 * 10-16), confirming that the sequence determinants of chromatin 

accessibility are similar for TE-derived and non-TE-derived genomic regions. Having been 

obtained from the consensus, i.e. ancestral, sequence, this result confirms that for most TEs the 

regulatory potential is present immediately upon insertion in the genome, as argued in [13].  

 

To investigate the relationship between cCRE score and selection, we evaluated three 

measures of purifying selective pressure on each TE (see Methods for details): 

 

●​ Sequence age, namely the oldest human ancestor in which the sequence was 

incorporated in the genome, as determined in [20]. For each TE we considered the 

median age across all copies. This evaluation of TE sequence age was in excellent 

agreement with that derived in [16] based on the divergence of individual copies from the 

consensus sequence (see Suppl. Fig. 1). 

●​ phyloP score [21] based on the alignment of 241 mammalian genomes [22], which 

measures the degree of conservation of each TE copy among the mammals that share 

it. For each TE we considered the average phyloP score over all bases covered. 

●​ The depletion rank score (DRS) [23], measuring the depletion of variants in a modern 

population. Also this measure was averaged over all bases covered by each TE class. 

Throughout the paper we use DRS’, defined as 1-DRS/100, so that higher values of 

DRS’ correspond to greater conservation (greater depletion of variants) in agreement 

with the other two measures. 

 

These three measures can be considered as representing purifying selective pressure at 

different time scales: Sequence age refers to the oldest ancestor that can be still inferred as 

having carried each specific copy of a TE; the phyloP score measures the degree to which the 

sequence of such copies has been conserved; while DRS’ measures the degree of purifying 

selection acting on each genomic region in modern human populations.  
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As expected, the three measures were positively correlated with each other (Fig. 1A). Perhaps 

surprisingly, the strongest correlation was observed between DRS’ and sequence age, showing 

that, at least in the case of TEs, the oldest sequences are the ones currently experiencing the 

highest degree of purifying selective pressure.  

 

Selective pressure was moderately and positively associated with the cCRE score (ρ of the 

selection measures between 0.12 and 0.28). Stratifying by TE family we observe that such 

correlation is driven in particular by LINE elements (Fig. 1C). Thus the TEs that have been 

conserved during mammalian evolution and are still subject to selective pressure in modern 

humans tend to be those whose sequence is more favorable to an open chromatin state. 
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Fig. 1. A: Spearman correlation between measures of phenotypic impact and 
sequence/conservation features. B-E: Same by TE class. 

Sequence composition and conservation patterns explain the 

variance of phenotypic relevance among TE classes 

Having defined these measures of sequence composition and conservation, and assessed their 

mutual relationships, we asked to what extent they were predictive of the molecular and 
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macroscopic phenotypic effects of TE insertions defined above. We first evaluated separately 

the cCRE score and the three measures of conservation as predictors of phenotypic relevance, 

using univariable linear regression. This revealed that (Tab. 1, Suppl. Tab. 1-2): 

 

●​ phyloP scores were consistently the weakest predictors of every measure of phenotypic 

relevance. 

●​ As expected, the cCRE score was the strongest predictor of chromatin accessibility, 

explaining by itself ~31% of its variance among TEs.  

●​ DRS’ was the best predictor of the effect on gene expression, explaining ~30% of its 

variance. 

●​ Finally, sequence age was the strongest predictor of enrichment in complex trait 

heritability, as previously suggested [16], explaining ~44% of its variance. 

 

While the four predictors of phenotypic relevance are correlated to each other (see Fig. 1A), 

their variance inflation factors are all below 2, so that a multivariable regression model using 

them as multiple regressors can be interpreted without problems arising from multicollinearity. 

We thus fitted such a multivariable model to predict each of the three measures of phenotypic 

relevance, using the cCRE score and the three measures of selection as regressors, and 

including all the pairwise interactions between them. The models achieved high fractions of 

variance explained, with adjusted R2 values ranging from 0.44 for gene expression to 0.58 for 

complex trait heritability. Tab. 1 shows coefficients and P-values for the significant predictors of 

complex trait heritability. The strongly significant interaction terms between selection measures 

suggest a complex interplay of selection patterns at different time scales in predicting complex 

trait heritability. The corresponding results for the gene expression and chromatin accessibility 

are shown in Suppl. Tab. 1 and Suppl. Tab. 2.  
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  βUNI PUNI βMULTI PMULTI 

sequence age 0.6665 3.889 10-102 0.3959 5.006 10-26 

DRS’ 0.489 1.683 10-48 0.3945 6.111 10-19 

phyloP 0.3115 3.745 10-19 -0.4966 5.967 10-14 

cCRE score 0.3214 2.342 10-20 0.1921 5.19110-12 

sequence age:DRS’   0.1704 9.327 10-12 

sequence age:phyloP   0.2137 1.299 10-6 

phyloP:DRS’   0.2314 2.344 10-6 

cCRE score:phyloP   0.08076 0.01888 

cCRE score:DRS’   -0.07438 0.03166 

cCRE score:sequence age   -0.0619 0.1188 
 
Tab. 1. Regression coefficients and P-values of linear models predicting complex trait heritability 
enrichment from sequence features and measures of conservation. The adjusted R2 of the 
multivariable model is 0.58. UNI: univariable model. MULTI: multivariable model including all 
pairwise interactions.  

Older TEs of all classes contribute to complex trait heritability by rewiring 

developmental regulatory networks 

Fig. 2A shows the prediction of the model for heritability enrichment vs. its actual (inverse 

normal transformed) value. The top 10 TEs by predicted heritability enrichment are labelled in 

the figure and listed in Tab. 2. In agreement with the dominant role played by sequence age in 

predicting heritability enrichment, these are all older TEs whose origin can be traced to shortly 

after the origin of mammals. We used GREAT [24] to investigate the functional characterization 

(Gene Ontology Biological Process, GO:BP) of these TEs, by merging together the respective 

genomic regions. The top GO:BP terms, after redundancy reduction [25],  are represented in 

Fig. 2B and are largely dominated by developmental processes. Complete enrichment results 

are reported in Suppl. Data 1, while the results of enrichment analyses for the individual TEs are 

reported in Suppl. Data 2.  Beside cases already examined in the literature (see Discussion), we 

highlight two novel functional associations with members of the Tigger family, namely, Tigger14a 

and Tigger16b, that show their strongest enrichment in developmental processes related, 

respectively, to pigmentation and the eye (see Suppl. Data 2). 
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Fig. 2: A: Linear model predictions (x axis) vs actual heritability enrichments (after inverse 
normal transformation) of TEs. The labels indicate the top 10 TEs by predicted value. B: Gene 
Ontology terms enriched in top 10 TEs by predicted value.  
 
 
 
 
TE fitted repFamily repClass clade 

MER121 3.89 hAT DNA therians 

AmnSINE1 3.583 5S-Deu-L2 SINE therians 

MamRep434 3.137 TcMar-Tigger DNA eutherians 

Mam_R4 2.947 Dong-R4 LINE eutherians 

Plat_L3 2.743 CR1 LINE eutherians 

MER94B 2.501 hAT-Blackjack DNA eutherians 

LFSINE_Vert 2.387 tRNA SINE therians 

Tigger16b 2.145 TcMar-Tigger DNA eutherians 

LTR90A 2.05 LTR LTR eutherians 

Tigger14a 2.02 TcMar-Tigger DNA eutherians 
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Tab. 2. The 10 top TEs in terms of predicted complex trait heritability enrichment (“fitted” 
column). The clade of origin corresponds to the median sequence age of the TE copies 
(Methods)   

Younger LTRs disproportionately contribute to complex trait heritability by 

rewiring regulatory networks involved in the interaction with the 

environment 

As discussed above, the model we developed explains a large fraction of the heritability 

enrichment. However, Fig. 2A clearly shows a large group of TEs of the LTR class with 

heritability enrichment higher than what is predicted by the model. In Fig. 3A, where LTR 

families are highlighted, it is evident how LTRs specifically belonging to the ERV1 family show a 

behavior that deviates from the model predictions. The top 10 TEs by model residual (labelled in 

Fig. 3A) are shown in Tab. 3. These results suggest the existence of a set of LTRs, mostly 

belonging to the ERV1 family and whose insertion can be traced to after the origin of primates, 

whose effect on heritable traits is much higher than can be predicted from their sequence and 

evolutionary properties. 

 
TE residual repFamily repClass clade 

LTR2B 2.548 ERV1 LTR apes 

LTR10B1 2.48 ERV1 LTR catarrhini 

MER61F 2.448 ERV1 LTR simians 

LTR19C 2.323 ERV1 LTR catarrhini 

LTR21A 2.051 ERV1 LTR catarrhini 

MER41B 2.027 ERV1 LTR simians 

LTR13A 2.026 ERVK LTR catarrhini 

LTR76 2.003 ERV1 LTR catarrhini 

LTR15 1.971 ERV1 LTR catarrhini 

LTR10E 1.91 ERV1 LTR catarrhini 
 
Tab. 3: The 10 top TEs in terms of model residual. 
 
The GO:BP enrichments of these TEs, considered together, were less prominent, in terms of 

both number of significant terms and P-values, than those found for the top predicted heritability 
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enrichment TEs. The most significant GO terms are shown in Fig. 3B, and complete enrichment 

results are found in Suppl. Data 3. Many of these GO:BP terms refer to fast-evolving traits 

related to the organism/environment interaction, such as immune response and metabolism. 

Among the strongest GO:BP enrichments of these individual TEs (Suppl. Data 4), we mention 

that LTR76 appears to be associated with many virus- and interferon-related processes, 

LTR19C to inflammation, and MER61F to the metabolism of uronic acid.  

 
Hence, the model we developed to predict heritability enrichment from sequence composition 

and conservation patterns does not apply to the ERV1 family of TEs. Indeed, while the model 

with all TEs explained 58% of the variance in complex trait heritability enrichment, the same 

model restricted to ERV1 TEs predicted just 13% of the same variance; conversely, when the 

ERV1 family was removed from the dataset, the fraction of variance explained increased to 

75%. 

 

Analyzing top-predicted and top-residual TEs for the molecular measures of phenotypic 

relevance (gene expression and open chromatin) we obtained qualitatively similar results, 

shown in Suppl. Tabs. 3-6, Suppl. Figs. 2-5, and Suppl. Data 5-8.  

 
 

​  
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Fig. 3. A: Same as Fig. 2A, except that the labels now indicate the top 10 TEs by model 
residual. B: Gene Ontology terms enriched in the top 10 TEs by model residual.  
 

Discussion 
 
We have shown that sequence and evolutionary features of TEs predict their phenotypic 

relevance at the macroscopic and molecular level. Our results confirm quantitatively that the 

effects of TEs on the human host’s phenotype are largely driven by their exaptation as 

regulatory elements and the ensuing changes in gene expression. The most important 

predictors are sequence age and the density of variants in modern populations, representing the 

opposite ends of the selection time scale. The TEs with the greatest impact on human 

phenotype are thus those that inserted themselves in the genome shortly after the origin of 

mammals, and are depleted in genetic variation in modern humans. Enrichment analysis shows 

these TEs to be mostly involved in the regulation of developmental pathways.  

 

Among these TEs, MER121 is particularly intriguing, since it was identified in [26] as an 

example of a repeated element subject to extreme selective pressure, although, to the best of 

our knowledge, its function has not been further elucidated. Enrichment analysis (see Suppl. 

Data 2) suggests its involvement in neurogenesis and the morphogenesis of several organs 

including heart, kidney, and lung. MamRep434 and LFSINE_Vert were recently suggested [27] 

to be involved in gene regulation of glutamatergic neuron precursors, and indeed our 

enrichment analysis identifies “generation of neurons” and “synaptic transmission, 

glutamatergic” as significantly enriched for both TEs (Suppl. Data 2). AmnSINE1 has also been 

found to provide regulatory elements involved in the development of the mammalian brain (see 

e.g. [28]), again in agreement with the enrichment results, but also to be involved in innate 

immunity [4,7]. Other TEs, such as Tigger14a and Tigger16b have not been associated with 

specific functions in the literature, and thus would be interesting targets of experimental 

investigation. 

 

In addition, we have shown that some LTRs do not follow the general pattern of association 

between sequence/conservation features and phenotypic relevance. Most of these belong to the 

ERV1 family, and include some TEs whose phenotypic impact, in particular on the heritability of 
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complex traits, is much larger than expected from their sequence and conservation features. 

These TEs integrated themselves in the genome after the origin of primates, and are 

functionally related to fast-evolving pathways involved in the interaction with the environment, 

such as response to pathogens and metabolism. Intriguingly, two of these TEs (LTR2B, and 

MER41B) have been associated [29] to trophoblast gene expression. The placenta is indeed 

among the fastest-evolving organs in mammals [30], a fact which is compatible with the 

involvement of relatively young TEs. Moreover, LTR10E and LTR10B1 have been implicated in 

the rewiring of the TP53 regulome in primates [31]. 

 

The main limitation of our study is the fact that all the measures we considered were averaged 

or otherwise summarized over all the copies of a TE: Future investigations should consider the 

differences in sequence and conservation features among the different copies of a TE to 

fine-map the individual copies that were actually exapted by the host and their regulatory 

function. Similarly, our measures of phenotypic relevance are summarized across traits (for 

heritability), or tissues/cell lines (for gene expression and chromatin): Analyzing these biological 

contexts separately could provide further insight on TE relevance. Finally, we have not directly 

investigated the role of TE transcription, which is known to be relevant beyond their regulatory 

role especially in the very early stages of development, such as zygotic genome activation (see 

[32] for a recent review). 

 

In conclusion, we have shown that TE sequence and conservation features are strongly 

predictive of their functional impact on the host phenotype through rewiring of the gene 

regulatory network. 

Methods 

TE data preprocessing 

Bed files containing genome-wide coordinates of repetitive elements were retrieved from the 
latest UCSC Repeatmasker [33] GRCh38 annotation, and only transposable elements 
(repeatmasker repClass annotation "LINE, "SINE”, "LTR", "DNA", or “Retroposon”) were 
retained. TEs mapping on X, Y, and mitochondrial chromosomes were excluded from further 
analysis. TEs mapping within the Human Leukocyte Antigen (HLA) region of chromosome 6 
were also excluded, owing to the extreme variability of the HLA region which could skew 
sequence-based measures of conservation. A total of 906 TEs covering a minimum of 10,000 
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bases with available PhyloP and DRS values were retained for further analysis. After such a 
filter the “Retroposon” class contained only 3 TEs, and therefore was not separately analyzed 
as a class.  

Measures of phenotypic relevance 
We chose three measures of phenotypic relevance that could quantify the impact of TEs on 
molecular and macroscopic traits, which were subsequently used as dependent variables of our 
linear models. Such measures were computed for each TE (i.e. a repeatmasker “repName”) as 
described below. 

Chromatin accessibility 
Bed files containing genome-wide annotated functional regions were retrieved from the 
ENCODE Candidate Cis-Regulatory Elements (cCRE) Genome Browser track [34]. TE 
coordinates were intersected with cCREs coordinates in order to assess the overlap between 
TEs and open chromatin regions. The chromatin accessibility of a TE was computed as the 
number of TE bases overlapping any cCRE divided by the total genomic coverage of the TE. 

Gene expression 
eQTLs coordinates were retrieved for all 49 GTEx tissues [35]. For each TE, we counted the 
number of eGenes with eQTLs inside the TE, and divided it by the number of common SNPs 
(MAF > 0.01 in GTEx) inside the TE. 

Complex trait heritability 
The heritability enrichment of TEs was retrieved from Supplementary Data 4 of [16]. 

Sequence and Conservation Features 

Sequence cCRE score 
The regulatory content within TEs was predicted from sequence data with a machine learning 
approach. gkmSVM [18], an SVM machine learning algorithm that is able to predict regulatory 
sequence features from gapped k-mers, was trained with default parameters on 15,000 
randomly chosen cCREs not overlapping any TE. The trained model was then used to classify a 
set of TE consensus sequences downloaded from the Dfam database [19], resulting in a weight 
(namely the “cCRE score”) representing the propensity of the TE consensus sequence to 
function as a cCRE based on its k-mer composition. Since all other predictors were computed 
for TEs retrieved from repeatmasker, whereas the sequence score was computed on consensus 
sequences downloaded from Dfam, we could only compute cCRE scores on consensus 
sequences belonging to 816 TEs, due to differences in nomenclature. For the remaining TEs, 
the cCRE score was computed by applying the same trained model to the sequence of each 
copy of each TE, and then averaging the weights over all copies. Supplementary Fig. 6 shows 
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that the two methods highly correlate (R2 = 0.88), when tested on 80 random TEs with data 
available from both sources. 

Sequence age 
A genomic sequence age was assigned to each TE copy by intersecting the TE coordinates 
with the genomic age estimated in [20] and selecting their “max_age”, which corresponds to the 
oldest human ancestor in which a copy can be recognized. Since age estimates are available in 
non-overlapping windows that are highly variable in size (mean = 93.0, sd = 3522.013), TE 
copies overlapping consecutive windows were assigned the estimated age of the longest 
fragment. The age of a TE was then computed as the median age across all its copies. This 
assessment of sequence age, based on multiple alignment of vertebrate genomes, strongly 
correlates with the one, used e.g. in [16], based on the divergence of copies from the ancestral 
TE sequence, as shown in Suppl. Fig. 1. 

phyloP 
Genome-wide phyloP scores computed from the multiple alignment of 241 mammalian 
genomes [22], downloaded from the UCSC Genome Browser, were intersected with TE 
coordinates using the UCSC bigWigAverageOverBed utility, resulting in a mean phyloP score 
associated with each TE copy. TE phyloP scores were computed as the mean of all phyloP 
scores associated with all bases belonging to all copies.  

DRS 
Depletion Rank Scores computed by [23] were intersected with TE coordinates. Since DRS 
values are available as consecutive 500bp windows, the DRS value assigned to each TE copy 
was the average of the DRS of all windows overlapping the repeat weighted by the overlap 
length. The DRS score of a TE was then computed as the median of the DRS scores of its 
copies. Note that throughout the paper we use DRS’ = 1 - DRS/100 for sign consistency with the 
other two measures of selection (higher score corresponding to stronger conservation). 

Functional enrichment 
Enrichments in GO:BP of TEs were obtained with the R implementation of GREAT [36] with 
default parameters. In the figures, we reduced the redundancy of the enrichment results using 
rrvgo [25] with default parameters, then we showed the top 10 terms sorted by P-value and then 
by fold enrichment. Enrichment P-values < 10-300 were set to 10-300. The enrichment results 
shown in the Supplementary data are the complete ones, before processing with rrvgo.   

Statistical analysis 
For all linear models the dependent variable (i.e. the measure of phenotypic relevance) was 
inverse normal transformed and all independent variables were scaled to zero mean and unit 
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standard deviation, so that the effect sizes are expressed in units of one standard deviation of 
the independent variable. All linear regression models were fitted with the lm function in R.    
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Supplementary Tables 
 

Supplementary Table 1 
 
 
 
 
  βUNI PUNI βMULTI PMULTI 

DRS’ 0.5438 7.117 10-71 0.6105 2.371 10-35 

cCRE score 0.4416 1.488 10-44 0.3324 5.714 10-29 

phyloP 0.1756 1.038 10-7 -0.3791 3.635 10-6 

phyloP:DRS’   0.227 5.495 10-5 

sequence age:DRS’   0.109 6.301 10-5 

cCRE score:sequence age   -0.1651 0.000101 

cCRE score:DRS’   0.07311 0.04715 

sequence age:phyloP   0.09968 0.0477 

sequence age 0.4598 1.325 10-48 0.06159 0.1176 

cCRE score:phyloP   0.04742 0.1374 
 
Suppl. Tab. 1. Regression coefficients and P-values of linear models predicting the density of 
eGenes from sequence features and measures of conservation. The adjusted R2 of the 
multivariable model is 0.44. UNI: univariable model. MULTI: multivariable model including all 
pairwise interactions.  
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Supplementary Table 2 
 
  βUNI PUNI βMULTI PMULTI 

cCRE score 0.5537 6.206 10-74 0.5328 2.832 10-66 

DRS’ 0.3518 8.576 10-28 0.4105 6.974 10-18 

phyloP 0.207 3.14 10-10 -0.6982 2.11 10-17 

sequence age:phyloP   0.3543 2.3 10-12 

cCRE score:sequence age   -0.2305 4.83 10-08 

phyloP:DRS’   0.2104 0.0001605 

cCRE score:phyloP   0.09126 0.003972 

sequence age 0.2312 1.828 10-12 -0.112 0.004142 

sequence age:DRS’   0.06565 0.01471 

cCRE score:DRS’   -0.03304 0.3649 
 
 
Suppl. Tab. 2. Regression coefficients and P-values of linear models predicting the overlap with 
open chromatin from sequence features and measures of conservation. The adjusted R2 of the 
multivariable model is 0.45. UNI: univariable model. MULTI: multivariable model including all 
pairwise interactions. 
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Supplementary Table 3 
 
 
TE fitted repFamily repClass clade 

MamRep434 2.135 TcMar-Tigger DNA eutherians 

Tigger19a 1.954 TcMar-Tigger DNA eutherians 

Mam_R4 1.887 Dong-R4 LINE eutherians 

MER94B 1.789 hAT-Blackjack DNA eutherians 

hAT-N1_Mam 1.781 hAT-Tip100 DNA eutherians 

Plat_L3 1.654 CR1 LINE eutherians 

AmnSINE1 1.523 5S-Deu-L2 SINE therians 

Tigger16b 1.513 TcMar-Tigger DNA eutherians 

CR1-3_Croc 1.437 CR1 LINE eutherians 

MER57E3 1.38 ERV1 LTR catarrhini 
 
 
Suppl. Tab. 3. The 10 top TEs in terms of predicted effect on gene expression (“fitted” column). 
The clade of origin corresponds to the median sequence age of the TE copies (Methods). See 
also Suppl. Fig. 2.  
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Supplementary Table 4 
 
TE residual repFamily repClass clade 

LTR10G 2.708 ERV1 LTR catarrhini 

LTR3A 2.543 ERVK LTR catarrhini 

LTR47B3 2.434 ERVL LTR simians 

LTR2C 2.385 ERV1 LTR apes 

LTR42 2.305 ERVL LTR simians 

L1M 2.251 L1 LINE primates 

MER85 2.218 PiggyBac DNA simians 

LTR25 2.204 ERV1 LTR catarrhini 

LTR22B 2.082 ERVK LTR catarrhini 

LTR3B_ 2.078 ERVK LTR catarrhini 
 
Suppl. Tab. 4. The 10 top TEs in terms of residuals of the model predicting the effect on gene 
expression. See also Suppl. Fig. 3.  
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Supplementary Table 5 
 
TE fitted repFamily repClass clade 

MER121 2.961 hAT DNA therians 

AmnSINE1 2.187 5S-Deu-L2 SINE therians 

MER126 2.066 DNA DNA therians 

MamRep434 1.795 TcMar-Tigger DNA eutherians 

Mam_R4 1.647 Dong-R4 LINE eutherians 

MER57E3 1.552 ERV1 LTR catarrhini 

Tigger19a 1.448 TcMar-Tigger DNA eutherians 

Plat_L3 1.357 CR1 LINE eutherians 

LTR22C0 1.291 ERVK LTR catarrhini 

HERVK13-int 1.253 ERVK LTR african_apes 
 
Suppl. Tab. 5. The 10 top TEs in terms of predicted effect on chromatin accessibility (“fitted” 
column). See also Suppl. Fig. 4.  
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Supplementary Table 6 
 
TE residual repFamily repClass clade 

LTR19C 2.863 ERV1 LTR catarrhini 

MER61F 2.792 ERV1 LTR simians 

LTR2B 2.368 ERV1 LTR apes 

LTR21A 2.264 ERV1 LTR catarrhini 

LTR10B2 2.087 ERV1 LTR catarrhini 

LTR9C 2.066 ERV1 LTR simians 

LTR3B_ 2 ERVK LTR catarrhini 

LTR10A 1.965 ERV1 LTR catarrhini 

LTR13 1.926 ERVK LTR great_apes 

LTR3A 1.908 ERVK LTR catarrhini 
 
 
Suppl. Tab. 6. The 10 top TEs in terms of residuals of the model predicting the effect on 
chromatin accessibility. See also Suppl. Fig. 5.  
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Supplementary Figures 
 

 
Suppl. Fig. 1. Comparison of TE age derived in [20] from vertebrate multiple alignments and in 
[16] from the divergence from the consensus sequence.  
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Suppl. Fig. 2. A: Linear model predictions (x axis) vs actual eGene density (after inverse normal 
transformation) of TEs. The labels indicate the top 10 TEs by predicted value. B: Gene Ontology 
terms enriched in the top 10 TEs by predicted value.  
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Suppl. Fig. 3. A: Same as Suppl. Fig. 2, except that the labels now indicate the top 10 TEs by 
model residual. B: Gene Ontology terms enriched in the top 10 TEs by model residual.  
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Suppl. Fig. 4. A: Linear model predictions (x axis) vs actual density of overlap with cCREs (after 
inverse normal transformation) of TEs. The labels indicate the top 10 TEs by predicted value. B: 
Gene Ontology terms enriched in top 10 TEs by predicted value.  
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Suppl. Fig. 5. A: Same as Suppl. Fig. 4, except that the labels now indicate the top 10 TEs by 
model residual. B: Gene Ontology terms enriched in the top 10 TEs by model residual.  
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Suppl. Fig. 6. cCRE scores computed for 80 randomly chosen TEs using the consensus 
sequence (x axis) or averaging the score of all individual copies 
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