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Abstract
Alzheimer’s Disease (AD) is the leading cause of dementia, affecting brain struc-
ture, function, cognition, and behaviour. While previous studies have linked
brain regions to univariate outcomes (e.g., disease status), the relationship
between brain-wide changes and multiple disease and behavioural outcomes
of AD is still not well understood. Here, we propose Residual Partial Least
Squares (re-PLS) Learning, an explainable and generalisable framework that
models high-dimensional brain features and multivariate outcomes, accounting
for confounders. Using re-PLS, we map the many-to-many pathways between
cortical thickness and multivariate AD outcomes; identify neural biomarkers that
simultaneously predict multiple outcomes; control for confounding variables; con-
duct longitudinal AD prediction; and perform cross-cohort AD prediction. To
evaluate its efficacy, we first carry out within-cohort cross-subject validation
using ADNI data, and further examine its reproducibility via between-cohort
cross-validation using ADNI and OASIS data. Together, our results unveil brain
regions jointly but differentially predictive of distinctive cognitive-behavioural
scores in AD.
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1 Main1

Alzheimer’s disease (AD) is a neurodegenerative disorder affecting 50 million people2

worldwide and is projected to affect as many as 152 million by 2050 [1]. It is the most3

common form of dementia [2] . An early symptom of AD is difficulty remembering4

recent events. Gradually, a patient may exhibit language and orientation problems,5

mood swings, loss of motivation, self-neglect, and behavioural changes. In general, one6

observes progressive cognitive decline in AD, accompanied by a gradual loss of bodily7

functions, eventually leading to death [3] . An AD patient’s typical life expectancy8

following diagnosis ranges from three to nine years [4].9

Discovering biomarkers associated with AD is essential in understanding the10

pathology of the disease, identifying patients, assessing disease progression, and11

enabling the timely management of the condition [5]. An important biomarker of AD12

is brain cortical thickness, also known as the AD cortical “signature” [6]. Changes of13

cortical thickness are differentially expressed across brain areas and vary between pre-14

clinical dementia stages (i.e., subjects with mild cognitive impairment (MCI)) and15

dementia [7, 8]. In general, compared to cognitively normal (CN) subjects, individu-16

als with MCI and AD have decreased cortical thickness in the medial temporal lobe17

region and parts of the frontal and parietal cortices [7–9]. As the disease progresses,18

cortical thinning is observed across the entire cortex, especially in the lateral tempo-19

ral lobe [7]. In parallel, cortical thickness of frontal, parietal, and temporal lobes in20

AD is correlated with cognitive impairment [8], while regional thinning predicts (even21

mild) AD [10].22

In addition to cortical thickness changes, AD is accompanied by multiple cog-23

nitive and behavioural disruptions in memory, language, orientation, judgment, or24

problem-solving [11]. Yet, despite advances in single outcome assessment and pre-25

diction, our understanding of the many-to-many (i.e., many brain areas to many26

outcomes) relationship between the spatially varying cortical thickness changes and27

multiple symptoms or cognitive (dys)functions has remained limited.28

To improve our knowledge about and better manage the disease, it is crucial to29

identify and isolate brain regions, each of whose cortical thickness may be differen-30

tially associated with a unique, or several, cognitive or behavioural outcomes, chart31

the pathways between each set of brain areas and their corresponding outcome, as well32

as quantify the pathway effect. Equally important is to leverage these pathways and33

parameters of the identified regions to predict multiple, likely non-pairwise-correlated,34

cognitive and behavioural scores. That is, one uses cortical thickness data from35

identified, potentially different brain regions to predict each corresponding outcome.36

Such quests for neurobiological insights and predictive performances require joint37

effort, integrating methodological innovations and biological knowledge. First, there38

is a need to search for subsets of brain areas respectively associated with different39

cognitive and behavioural outcomes. This is important for improving our understand-40

ing of disease pathology and aiding in pathway estimation. Second, there is a need41

to chart pathways between high-dimensional cortical thickness and multiple cogni-42

tive and behavioural outcomes. Cortical thickness changes in AD occur across several43

functional brain regions, each likely projecting to multiple cognitive and behavioural44

domains. Therefore, understanding these pathways can provide insights into how45
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Fig. 1: Effect of age and gender on cortical thickness as well as disease and behavioural out-
comes in AD. (a) Cortical thickness from seven functional brain areas exhibits different variations across
age and gender groups. Outer, middle, and inner circles show cortical thickness by age, gender, and pre-
dictive weights for eight outcomes, respectively. Outer bars represent positive weights, and inner bars
represent negative weights based on averaged linear regression coefficients. Weights are normalised to [-
1, 1] within each functional network. (b) Eight AD-related outcomes vary by age and gender and are not
strongly pairwise correlated. Outer, middle, and inner circles display outcomes by age, gender, and corre-
lation structure, respectively. Connected lines indicate high correlations (|r| ≥ 0.7). (c) Cortical thickness
exhibits gender differences across brain networks. The left plot shows mean cortical thickness differences
between females and males across seven functional brain networks. The right plots show spatial distribution
of gender differences across brain regions. The female cortex is generally thicker than the male cortex. (d)
Cortical thickness varies by age group across brain networks. The left plot shows mean thickness decline
with age across seven functional brain networks. The right plots show spatial distribution of age-related
thickness changes across brain regions, with younger groups (< 60) generally showing thicker cortex than
older groups (> 80). (e) Distributional and associative analysis between AD-related outcomes and regional
cortical thickness. Top boxplots show cortical thickness distributions across seven functional brain areas;
right boxplots show cognitive and behavioural score distributions from eight tests. The value in each ellipse
represents correlations between each outcome and the corresponding brain network thickness. (f) Cortical
thickness differences across diagnostic groups (CN, MCI, AD) with statistical comparisons. The top plots
show mean thickness across brain regions for each diagnostic group. Bottom plots show statistical compar-
isons between groups (CN-MCI and MCI-AD). For panels (c), (d), and (f), rainbow colour bars indicate
normalised cortical cohort-specifis; red-blue colour bars represent t-statistics for brain regions.

cortical thickness in different brain areas may be linked to corresponding cognitive-46

behavioural outcomes. Third, there is a need to deal with confounding variables that47

affect both brain data and behaviour. Indeed, cortical thickness and disease outcomes48

differ across age and gender groups (see Fig. 1a-d); ignoring them or only considering49

their association with outcomes, but not with cortical thickness features, may bias50

estimated pathways [12]. In disease analysis and prediction, neglecting confounding51

effects may yield clinical misinterpretations [13]. Fourth, there is a need to predict52

multivariate, non-pairwise-correlated outcomes. Although predictive models built for53

assessing single outcomes [14] have considerably advanced our understanding of gen-54

eral aspects (such as disease status [15]) or specific subdomains (such as cognitive55

decline [16]) of AD, single-outcome prediction [17] may not capture multi-dimensional56

and -functional cognitive and behaviour degenerative landscapes of the disease. Fifth,57

as a neurodegenerative disease that not only progresses differentially along various58

cognitive and behavioural domains but also develops in time, there is a need to pre-59

dict AD progression longitudinally. This may help evaluate or anticipate the cognitive60
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decline and disease conversion early and manage the disease advancement in a timely61

manner. Finally, while selected features and predictive models facilitate biological62

interpretation and disease assessment, to introduce them in broader practices and to63

endorse their scientific efficacy, there is a need to demonstrate that properties of fea-64

tures and predictive models can be generalised to different subjects and, particularly,65

reproduced in other cohorts and datasets.66

Here, we introduce Residual Partial Least Squares (re-PLS) , by integrating67

residual learning [18, 19], partial least squares (PLS) [20–22], and predictive mod-68

elling [14, 23], to identify brain regions whose cortical thickness is associated with and69

predictive of multivariate, non-pairwise-correlated outcomes in AD; uncover multivari-70

ate many-to-many pathways from these regions to disease and behavioural outcomes;71

and predict such outcomes at both population and individual levels, across cross-72

sectional and longitudinal settings. Specifically, we apply re-PLS to data from the73

Alzheimer’s Disease Neuroimaging Initiative (ADNI) and discover potential pathways74

between cortical thickness data and multivariate disease and behavioural outcomes75

while controlling for confounding age and gender variables. Furthermore, we use re-76

PLS to perform longitudinal AD prediction. Finally, we test the features selected from77

and the model trained using ADNI data, without further modelling, on data from the78

Open Access Series of Imaging Studies (OASIS), and vice versa.79

2 Results80

We begin by summarising five key points regarding our findings. (1) Both re-PLS81

and other baseline models suggest that brain cortical thickness predicts multiple, non-82

pairwise-correlated behavioural and disease outcomes in AD (see Fig. 3). (2) The83

re-PLS and PLS yield higher predictive accuracy than competing models, while re-84

PLS additionally controls for the confounding variables (see Fig. 9 in Supplementary85

Materials). (3) After removing the age and gender effects, cortical thickness changes86

that are significantly predictive of the eight cognitive and behavioural outcomes are87

mainly in the temporal, frontal, and sensorimotor (see below for a discussion and88

Fig. 4). (4) The re-PLS is useful for predicting longitudinal disease progression and,89

particularly, seems promising to chart the disease course for subjects who change from90

MCI to AD over time (see Fig. 5). (5) The selected features and re-PLS model are91

generalisable and reproducible across-subjects and -cohorts (see Figs. 3 and 6).92

We summarise the experimental setup in Fig. 2 and Algorithm 1. In Fig. 3, we93

present the model’s performance on multivariate AD outcome prediction. In Fig. 4,94

we identify and present the brain areas whose cortical thickness is predictive of eight95

cognitive-behavioural outcomes. In Fig. 5, we present the results of longitudinal AD96

prediction. In Fig. 6, we demonstrate the model’s ability to generalise across different97

cohorts (ADNI and OASIS data).98

2.1 Cross-sectional AD assessment99

We first aim to identify and separate brain regions associated with and predictive of100

each AD-related cognitive and behavioural outcome under a cross-sectional setting,101

where scans from each individual are treated as independent repeated measurements.102
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Fig. 2: A schematic representation of Residual Partial Least Squares (re-PLS) Learning. (a) A
conventional way to predict multivariate outcomes using multivariate brain features. X represents high-
dimensional brain data, with each colored circle denoting a unique brain area and smaller circles representing
cortical thickness data from that region. Y represents multivariate outcomes, with each icon showing a
cognitive examination score (e.g., MMSE). Z represents confounders (e.g., age and gender) that affect both
feature variables X, outcome variables Y, and the pathways between them. In classical prediction problems,
one aims at looking for direct pathways between X and Y while controlling for confounding effects from Z.
Data from the identified areas are subsequently fed via the pathways (coloured arrows) to make predictions
on new subjects. (b) The Residual Partial Least Squares (re-PLS) Learning. The re-PLS begins by removing
confounding effects from the confounder Z, isolating the residuals of both the feature matrix X and the
outcome matrix Y as ϵX|Z and ϵY|Z, respectively. Rather than predicting directly between X and Y, re-PLS
applies PLS to these residuals, iteratively learning latent components (illustrated by grey circular arrows).
For each component s, weight vectors (wX, wY) project data into latent scores (ts, us) that maximize the
correlation between the input and output spaces. These scores estimate loading matrices (P and Q). At
each step, re-PLS performs deflation to update the residuals. The re-PLS obtains the outcome prediction
through matrix multiplication (see Eq. (13)). Finally, re-PLS projects latent feature representations back
to corresponding brain space to facilitate interpretation; the learned projections between the input features
and the outcomes also provide clear pathways from the original features (brain-wide cortical thickness) to
the multivariate disease outcomes, which are unaffected by confounders.

First, we identify anatomical regions whose cortical thickness is predictive of mul-103

tivariate AD outcomes using the P maps (each entry of a P map corresponds to one104

brain region) (see Fig. 4). Specifically, P1 consists predominantly of areas in the pre-105

frontal and temporal regions. P2 is largely located in the sensorimotor area with small106

parts in the Primary Visual Cortex (V1) and Secondary Visual Cortex (V2); it also107

has positive weights in parts of the temporal pole. P3 highlights the cognitive brain108

with a great deal of weight in the orbital prefrontal (OFC) cortex. P4 has negative109
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Fig. 3: Model performance of residual Partial Least Squares (re-PLS) Learning and its per-
formance in comparison to prominent baseline methods for predicting multivariate outcomes
in previously unseen subjects. (a) Scatter plots of the predicted outcomes against the observed out-
comes using re-PLS. The results are obtained by concatenating the predictions from the test set across
all 10 folds of a 10-fold cross-validation (CV). CN=cognitive normal; MCI=mild cognitive impairment;
AD=Alzheimer’s disease. (b) A comparison between re-PLS with two common baseline methods. Here, re-
PCR refers to principal component regression with confounders controlled via residual learning, and re-MLR
refers to multivariate linear regression with confounders controlled via residual learning. The plot displays
the correlation coefficient between the predicted and observed outcomes, calculated from the concatenated
predictions across all 10 folds. Overall, re-PLS yields the best result across eight outcomes. For both (a)
and (b), only results from out-of-sample predictions were shown.

weights in the dorsal lateral prefrontal cortex (DLPFC) and positive weights in parts110

of the Broca area. Finally, P5 contains areas with negative weights in the frontal111

eye fields (FEF) and BA7 (related to visuomotor coordination). We discover these112

brain maps via cross-subject validation using ADNI data; in Section 2.3, we further113

show that the patterns and the brain regions identified in P1 and P2 maps can be114

generalised not only across subjects but also between datasets.115
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Fig. 4: Discovering brain areas predictive of multivariate outcomes using the Residual Partial
Least Squares (re-PLS) Learning. (a) The re-PLS identifies five latent brain spaces whose associated
brain cortical thickness predicts multivariate outcomes in Alzheimer’s disease. The five brain spaces are
discovered and verified using cross-validation. (b) The functional localisation of the five projections in terms
of cortical thickness. The link between functional brain regions and the five identified projections is based on
the absolute value of the weights. Each width of each projection is the sum of absolute weights; we remove
non-significant lines. (c) The relationship between the outcomes’ latent spaces and the eight behavioural
and cognitive outcomes through weighted connections. The width of the lines from Qi (i = 1, . . . , 5) to each
outcome represents the contribution of the latent representation to the outcome prediction. These weights
have been normalised so that the absolute sum of each Q equals 1. Red lines denote negative weights,
while blue lines indicate positive weights. (d) The five latent brain spaces are almost orthogonal. The size
of each circle is proportional to the correlation between a pair of latent brain spaces, with “×” marking
insignificant results (P > 0.05). (e) Sample size studies for re-PLS. During each fold, we run both re-PLS
and re-MLR models using different percentages (from 10% to 100%) of the training samples and report
model performance on the testing samples. (f) Prediction accuracy improves as more outcomes are included.
This is an inherited property of re-PLS (through the learned projections) where each added outcome assists
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Second, we investigate how the identified brain areas are distributed across func-116

tional brain regions [24]. We notice that areas in P1 are located predominantly in the117

default regions; areas in P2 are primarily in the sensorimotor and attention regions;118
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areas in P3 have large representation in the default and control regions; and areas in119

P4 and P5 are mainly in the default and visual areas (see Fig. 4b). Furthermore, a120

correlation analysis between these five maps show that these projections are largely121

orthogonal (see Fig. 4d). This suggests that the P maps identify and isolate orthogo-122

nal functional brain areas that are predictive of multivariate outcomes. Based on the123

functional and anatomical separation (due in part to their orthogonality) of the P124

maps, we designate P1 as AD’s Default & Control map, P2 as AD’s Sensorimotor125

map, P3 as AD’s OFC map, P4 as AD’s DLPFC-Broca map and P5 the Visuomotor126

map (see Fig. 4a).127

Third, the latent brain spaces (P maps) provide important insights about poten-128

tial AD biomarkers (see Table 1). (1) Several P maps highlight the prominence of129

cortical thickness in the temporal areas (e.g., BA20, BA21 and BA22 in P1, and130

BA38 in P2) in predicting AD-related outcomes. Previous findings suggest that the131

degree of atrophy in the left BA38 and BA20/21 is strongly correlated with deficits132

in semantic memory processing [25]. BA21, part of the middle temporal gyrus, is133

involved in processing language and higher-order audition processes [26]. Accumulated134

tau deposition in the temporal gyrus, which anatomically overlaps BA20/BA21, has135

been shown to be associated with clinical impairments observed in AD [27]. BA22, in136

the superior temporal gyrus within Wernicke’s area, is involved in the comprehension137

of written and spoken language. (2) Several P maps highlight the importance of cor-138

tical thickness in frontal regions for predicting AD-related outcomes: the prefrontal139

cortex (e.g., BA9, BA10, and BA46), particularly in P1 and P4; the orbitofrontal140

cortex (e.g., BA10, BA11), especially in P3, and inferior frontal gyrus (e.g., BA44,141

and BA45), especially in P2 and P4 . BA9 (which contributes to the dorsolateral pre-142

frontal cortex or DLPFC) is linked with the strategic control of behaviour, including143

task inference, goal maintenance, inhibition, and flexible decision-making, reflecting its144

critical role in executive control [28, 29]. BA10 is related to working memory, episodic145

memory, and mentalizing [30]; it is known to support higher cognitive functions, such146

as task management and planning [31]. BA46 in the right hemisphere is primarily147

involved in spatial working memory [32, 33], whereas it in the left hemisphere is more148

engaged in maintaining image-based representations of objects [33]. Evidence also149

suggests that BA46 is significantly involved in delayed-response spatial working mem-150

ory tasks [34]. BA11 is involved in decision-making, processing rewards, and encoding151

new information [35, 36]. BA44, which is part of Broca’s area, is involved in speech152

production [37]. BA45 is thought to be involved in semantic fluency [38]. (3) Parts of153

the parietal lobe (e.g., BA39 and BA40 in P1) are significantly predictive of cog-154

nitive and memory scores. This confirms previous findings that AD patients undergo155

cortical thickness changes in the parietal cortices [7–9]. Importantly, BA39 (angular156

gyrus (AG)) has been shown to correlate with longitudinal declines in verbal flu-157

ency [39]. Damage to the left BA39 may result in dyslexia or semantic aphasia [40].158

BA40 (left supramarginal gyrus) is thought to be involved in reading, regarding both159

meaning and phonology of the words [41]. Moreover, BA39 plays a role in retrieval,160

particularly evident in cross-modal picture-sound pairing tasks, while BA40 plays a161

more limited role in sustaining retrieval [42]. (4) Our results hint at the roles senso-162

rimotor areas (e.g., BA4 and BA6 in P2) play in predicting AD-related outcomes.163
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Table 1: Relationship between identified latent brain spaces, their
anatomical correspondence, and associated functions.

Latent brain spaces Brodmann areas and relevant known functions

P1: Default-control BA9 (strategic control, action selection, and cognitive control [28,
29]), BA10(working memory, episodic memory and mentalizing [30];
task management and planing [31]), BA21, BA22 (language and
higher-order auditory processes [26]), BA39, BA40 (recollective
memory processes [42]), and BA46 (spatial working memory [32]).

P2: Sensorimotor BA38 (semantic memory [45]), BA17 (V1), BA18 (V2, attentional
modulation [44]), BA4, and BA6.

P3: OFC BA10, BA11 (decision making, processing rewards, and encoding
new information [35, 36]), and BA4, BA44, and BA45 (phonological
and semantic processing [38]).

P4: DLPFC-Broca BA44, BA45, BA9, BA17 (V1), and BA18 (V2).

P5: Visuomotor BA4, BA17, BA18, BA7 (visuomotor coordination [46]), and
BA8 (frontal eye fields and management of uncertainty [47]).

Although some have argued that sensory and motor changes may precede the cog-164

nitive symptoms of AD [43], since the eight outcomes in this study measure various165

cognitive abilities, our findings cannot distinguish whether the changes in cortical166

thickness in sensory and motor areas (thus changes in sensory and motor functions)167

hinder movement during the examinations (thereby affecting the performance on the168

eight outcomes), or if they contribute, in concert with other areas, to the performance169

during the tests. Further research needs to independently verify this. (5) Our results170

suggest that cortical thickness in the visual cortex (e.g., BA17 and BA18 in P2 and171

P4) may be associated with attentional and visual memory-related word remember-172

ing. Particularly, BA18 (V2) is thought to be related to attentional modulation of173

visual processing [44].174

Fourth, we investigated the relationship between the loadings in the latent175

space (Q loadings) and the eight behavioural and disease-related outcomes. We found176

that the five loadings (Q1 to Q5) exhibit overlapping associations with multiple cog-177

nitive and behavioural measures (see Fig. 4c). As each brain map Pi corresponds to178

loading Qi, it allows us to make interpretations both in the outcome space (through179

Qi) and regarding the brain spatial patterns (through Pi). In particular, we observe180

large positive weights in Q1 and Q2 for predicting ADAS13, CDRSB, and ADAS11181

scores, which measure memory, language, attention, and executive function. To under-182

stand the loadings’ neurological relevance, we enquire into their corresponding P183

maps. Q1’s corresponding P1 map (or AD’s Default & Control map) comprises lat-184

eral temporal regions, including BA20 and BA21, which is involved in semantic185

memory [25]. Specifically, BA20 is thought to primarily support visual association186

processes, while BA21 appears to be involved in audition processes and language [26].187

Q2’s corresponding P2 map (or AD’s Sensorimotor map) consists of the anterior188
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temporal lobe (BA38), which is associated with semantic memory [45]; the visual189

Association area (BA18/V2) exhibits enhanced effective connectivity to V5/MT dur-190

ing attentional modulation of motion processing [44]; and primary motor cortex (BA4)191

shows amyloid plaques and tau pathology in late-stage AD [48]. Next, the Q3 and Q4192

loadings both exhibit strong predictive weights for CDRSB, ADAS13, and ADASQ4,193

highlighting the involvement of prefrontal and language-related regions in these cog-194

nitive outcomes. Q3’s corresponding P3 map (or AD’s OFC map) includes parts195

of the orbitofrontal cortex (BA10 and BA11), a region critical for decision-making,196

executive function, and social behaviour-domains often impaired in AD. Q4’s corre-197

sponding P4 map (or AD’s DLPFC-Broca map) comprises DLPFC and Broca’s area,198

essential for working memory, attention, and language production. Finally, the Q5199

loading is associated with performance on ADASQ4, RAVLT immediate, and RAVLT200

learning, reflecting the integration of sensorimotor, attentional, and executive func-201

tions required for verbal memory and learning tasks. Relevantly, Q5’s corresponding202

P5 map (or AD’s Visuomotor map) includes regions involved in motor and visual203

processing (BA4, BA17, BA18), as well as BA7 (visuomotor coordination [46]) and204

BA8 (decision-making under uncertainty [47]).205

Fifth, we investigate the impact of varying sample sizes on the performance of206

re-PLS compared to residual learning-aided multivariate linear regression (re-MLR).207

Our results suggest that, overall, re-PLS outperforms re-MLR. More specifically, it208

is challenging for re-MLR to perform prediction, especially when training data is209

small (see Fig. 4e). In comparison, re-PLS seems to deliver better overall prediction210

accuracy across different training data sizes and is more consistent when training data211

sizes vary. Additionally, re-PLS seems to require less training data to achieve optimal212

prediction performance. For example, to achieve comparable results using 70% of213

training data by re-PLS, re-MLR requires nearly 90% of the training data.214

Sixth, we notice that re-PLS achieves higher prediction accuracy (both in terms215

of mean square error and in terms of correlation) as the number of outcomes216

increases (see Fig. 4f). This is possibly due to the nature of re-PLS: the hidden pro-217

jections aim to maximise the associations between the inputs (cortical thickness) and218

outcomes (disease scores) when controlling for covariates. Thus, when making pre-219

dictions, the prediction of each outcome is made by using the information of the220

inputs, the covariates, and the projections (which also learns information about other221

outcomes); although the outcomes are not all pairwise correlated, each association222

between two (even modestly) correlated outcomes would make one a helpful predictor223

of the other. Hence, the more outcomes, the better the prediction performance. Cer-224

tainly, in an extreme case, when all outcomes are identical, adding additional outcomes225

may not improve prediction performance.226

Finally, re-PLS achieves higher prediction accuracy compared to conventional lin-227

ear approaches. It is likely that the lower-dimensional “nearly orthogonal” projections228

contain reduced noise in contrast to the original high-dimensional data. These refined229

(lower-dimensional) features seem to achieve more effective data representation and230

compression in the latent space, leading to improved prediction performance. As a231

result, re-PLS not only assisted neurobiological explanation via the extracted latent232

brain spaces but also required a smaller amount of data to achieve similar prediction233
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performance compared to both re-PLR and re-PCR. This property may be helpful234

in situations with limited data but multivariate or many-to-many (high-dimensional235

input and multivariate outcomes) complexity.236

2.2 Longitudinal AD assessment237

As a neurodegenerative disease, AD progresses over time [3, 4]. Naturally, one would238

ask if it were possible to expand re-PLS to longitudinal settings to study AD progres-239

sion. Longitudinal assessment is important for two reasons. First, it is beneficial to240

monitor and forecast disease progression to improve disease management and treat-241

ment. Second, it is useful to identify brain areas whose degenerations are related242

to cognitive decline over time to gain insights into how AD progresses, which brain243

regions contribute to disease progression over time, and, if so, to what extent.244

To that end, we use re-PLS to study longitudinal AD prediction. We do so in two245

settings. First, we extend the use of re-PLS from cross-sectional analysis to predict246

AD status over time (see Fig. 5a-b). Second, we identify brain regions whose cortical247

thickness may be related to AD progression over time (see Fig. 5c-d). We note that248

we conduct longitudinal disease prediction on disease status but not on the eight249

outcomes. This is because conducting longitudinal multivariate disease prediction over250

time and across eight outcomes requires decomposing the variability into time and251

score space, and, therefore, requires a much larger sample size to obtain reliable results.252

Throughout, we consider diagnostic outcomes made by clinicians primarily based253

on clinical criteria. Specifically, every subject is diagnosed with one of the statuses:254

CN, MCI, or AD, based on ADNI criteria. For modelling, we assign groups of 0, 1, or255

2 to represent CN, MCI, and AD, respectively. In our analysis, we further group the256

individuals into four distinct longitudinal groups: CN, sMCI, pMCI, and AD, based on257

disease progression (see Fig. 5a). CN refers to individuals who were assessed as cogni-258

tively normal and maintained cognitively normal during subsequent visits. Stable Mild259

Cognitive Impairment (sMCI) denotes individuals who were assessed as MCIs during260

the first visit and continued to be diagnosed as an MCI during subsequent visits after261

six months. Progressive Mild Cognitive Impairment (pMCI) indicates individuals who262

were assessed with MCI during early visits but were diagnosed with AD during follow-263

up visits after six months. Lastly, AD represents individuals consistently assessed as264

AD throughout all visits. As some subjects have missing data at baseline, we consider265

their earliest scans as baseline data and arrange their later scans accordingly.266

After training the longitudinal re-PLS model, we implement it to predict unseen267

individual subjects’ status over time. Although we grouped every subject into one of268

the four groups - the group information for testing subjects was not used (to avoid269

information leakage); rather, the (four) group information was used to colour code270

the testing subjects to evaluate the accuracy of the longitudinal prediction perfor-271

mance (see Fig. 5b). We saw that the predicted overall mean scores increased from272

CN, sMCI, and pMCI to AD. This agrees with the actual diagnostic outcomes. Addi-273

tionally, the predicted longitudinal trend for pMCI subjects (subjects who were MCIs274

during early visits and later diagnosed with AD) seems to worsen noticeably more than275

the other groups. This is also consistent with their observed longitudinal diagnostic276

progression. The predicted trends for both CN and MCI groups are relatively stable,277
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Fig. 5: Longitudinal prediction of Alzheimer’s disease (AD). (a) Four subject groups were based
on baseline and last follow-up diagnoses. CN = cognitively normal throughout, sMCI = stable MCI (MCI
at baseline and follow-up), pMCI = progressive MCI (MCI at baseline, progressed to AD), and AD =
diagnosed Alzheimer’s disease at both time points. Group assignment is based on the first and latest
available diagnosis. (b) Longitudinal trend prediction. The longitudinal curve for each group is estimated
using the predicted mean group scores for new subjects at each time point. The width of the 95% confidence
bands (shaded colour) is estimated using a repeated 10-fold CV (run 100 times). In general, the predicted
longitudinal severity is AD > pMCI > sMCI > CN. The pMCI is predicted to worsen more than other
groups over time. (c) Latent brain spaces identified by re-PLS that are potentially related to longitudinal AD
progression. (d) Relationship between longitudinal latent brain spaces and diagnostic outcomes. The width
of the lines between three latent brain spaces and three types of diagnostic outcomes indicates the size of
the association. Red lines represent negative coefficients, and blue lines represent positive coefficients. The
strength of connection was estimated using the magnitude of the coefficient, quantifying the contribution
each brain space makes to predicting the target outcome.

in line with their observed longitudinal diagnostic statuses, although our method pre-278

dicts that both groups have a slight worsening sign after 60 months, presumptively279

because of a gentle cortical thinning due to ageing.280

Next, we seek to unveil the brain regions whose longitudinal cortical thickness281

change may be potentially associated with and predictive of AD disease status over282

time. To that end, we extract the longitudinal latent brain spaces (Plong maps, or283

the longitudinal version of the cross-sectional P maps), which uncover brain regions284

that may be associated with longitudinal disease progression over time. Specifically,285

we encode the disease status as a one-hot vector instead of scalars (0, 1, and 2) for286

the three possible outcomes (CN, MCI, and AD). Overall, we identify three longitu-287

dinal latent brain spaces. The first longitudinal map, Plong
1 , is linked to the default288
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mode. The second longitudinal map, Plong
2 , corresponds to the sensorimotor cortex,289

the temporal pole, and parts of the visual cortex. The third longitudinal latent brain290

map, Plong
3 , is associated with parts of the temporal, parietal, and occipital areas, and291

a portion of the OFC. Interestingly, all three longitudinal Plong maps (see Fig. 5c)292

overlap a great deal with the first three cross-sectional P maps (see Fig. 4a). This293

suggests that cortical thickness from these areas may be useful biomarkers for both294

cross-sectional and longitudinal AD studies.295

Additionally, we investigate the Qlong loading matrix to further understand how296

the identified latent spaces may contribute to predicting disease status. In re-PLS297

framework, each Qlong
i map sits along the projection of the associated Plong

i map298

onto the disease label space, capturing how variations in cortical thickness relate to299

clinical diagnosis over time. Our results show that the first two latent representations,300

Qlong
1 and Qlong

2 , contribute significantly to the prediction of CN and AD, while Qlong
3301

is most influential for predicting MCI. Additionally, we observe that CN status is302

positively associated with weights in Plong
1 and Plong

2 maps, but negatively associated303

with weights in Plong
3 map; this pattern is reversed for AD (see Fig. 5d).304

2.3 From cross-subject to cross-cohort AD prediction305

The reproducibility of the identified latent brain maps derived from machine learning306

is crucial for generalising our findings, particularly for disease prediction in previously307

unseen subjects. In this section, we evaluate reproducibility of re-PLS and its identified308

neural biomarkers. We do so by expanding our cross-subject analyses using ADNI309

data [49] to cross-cohort studies using data from ADNI and OASIS [50]. Specifically,310

we consider three scenarios. First, we repeat the cross-subject analyses using ADNI311

and OASIS data, respectively. Second, we test the model learned and the neural312

biomarkers extracted from ADNI data on OASIS data. Third, we reverse the process313

and demonstrate the possibility of Training on Small and Testing on Large (ToSToL)314

data, where features extracted from smaller OASIS data are used to predict disease315

outcomes in much larger ADNI data.316

We consider two disease outcomes, MMSE and CDR/CDRSB scores, available in317

both datasets. As CDRSB (used in ADNI) ranges from 0 to 18 and CDR score (used318

in OASIS) is between 0 and 2, to avoid data leakage and evaluate the generalisabil-319

ity of re-PLS and the identified neural biomarkers, we use the original scale of the320

CDR/CDRSB scores. Specifically, we directly trained the re-PLS using cortical thick-321

ness data and CDR-SB scoresin ADNI data, and tested the model on cortical thickness322

data in OASIS, and obtained predicted CDR-SB scores for OASIS samples. We then323

compared predicted CDR-SB scores with observed CDR scores in OASIS to assess324

the reproducibility of the model and neural biomarkers. We then repeat the same325

cross-cohort analysis, training the model on cortical thickness data and CDR scores in326

OASIS and evaluating it on ADNI data to obtain predicted CDR scores and compare327

predicted scores with observed CDR-SB scores. Additionally, to evaluate the general-328

izability of the latent brain maps (e.g., in Fig. 4a) during cross-cohort validation, we329

train the model using cortical thickness data and eight outcomes in ADNI and evalu-330

ate if the latent brain maps developed from ADNI predict MMSE and CDR in OASIS331

data. We note that when training the model using cortical thickness data and only332
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Fig. 6: Within and cross-cohort Alzheimer’s disease (AD) prediction. (a) A schematic representa-
tion of the cross-cohort predictive model setting. From left to right, re-PLS is trained using data from the
ADNI study. Extracted latent brain maps and trained parameters from ADNI data are then used, without
further modelling, to predict MMSE and CDR scores in OASIS data. Note that the range of CDRSB scores
is between 0 and 18, and it of CDR scores is between 0 and 3. We observe that the observed CDRSB score
in ADNI is from 0 to 17, and the observed CDR score in OASIS is between 0 and 2. The setting of other
within and cross-cohort analyses is similar: for within-cohort cross-validations, the training and test data
are randomly selected from the same study; for ToSToL (Training on Small and Testing on Large) analysis,
training data are from the smaller OASIS data, and test data are from the larger ADNI data. Out-of-sample
prediction performance of: (b) Cross-subject but within-cohort analysis using ADNI data; (c) Cross-subject
but within-cohort analysis using OASIS data; (d) Cross-cohort analysis (trained on OASIS data and tested
on ADNI data); and (e) Cross-cohort analysis (trained on ADNI data and tested on OASIS data). (f) Visual-
isation of the most important and consistent brain regions for each latent map is defined by regions that are
in the top 25% of absolute values and appear in 90% of 50 repetitions of a 10-fold cross-validation. Regions
that are shared between ADNI and OASIS datasets are highlighted in dark red, while regions unique to the
ADNI dataset are shown in light green, and those unique to the OASIS dataset are depicted in light orange.

MMSE and CD-SB scores in ADNI, the out-of-cohort prediction results for MMSE333

and CDR in OASIS improve further, and that the latent brain maps extracted using334
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different outcomes would naturally be different. To ensure consistency, we applied the335

same imaging preprocessing pipeline to both datasets.336

We assess the performance of the cross-cohort analyses across four scenarios (see337

Fig. 6). Panel (a) presents the schematic of the cross-cohort predictive modelling using338

re-PLS. Panels (b) and (c) portray the reproducibility of re-PLS in performing the339

cross-subject analysis (for ADNI and OASIS data, respectively). Panels (d)-(e) demon-340

strate the reproducibility of re-PLS in performing the cross-cohort analyses (trained341

on OASIS data and tested on ADNI data and vice versa). Panel (f) visualises the342

most important and consistent brain regions for each latent map, highlighting shared343

regions between the ADNI and OASIS datasets as well as those unique to each cohort.344

In within-cohort analyses, re-PLS generally demonstrates stronger performance345

compared to standard PLS. For within-OASIS analyses, the correlation between the346

predicted and observed MMSE scores is 0.4852 (P < 10−13) and the correlation347

between the predicted and observed CDR(SB) scores is 0.5198 (P < 10−16) using two348

latent maps learned from re-PLS. Under the same settings, PLS achieves 0.4768 (P349

< 10−13) for MMSE prediction and 0.5192 (P < 10−16) for CDR(SB) prediction. For350

within-ADNI analyses, the correlation between the predicted and observed MMSE351

scores is 0.5971 (P < 10−257), and the correlation between the predicted and observed352

CDR(SB) scores is 0.6231 (P < 10−306) using the five latent maps learned from353

re-PLS. See Fig. 6b and c. In comparison, PLS achieves 0.5973 (P < 10−275) and354

0.6209 (P < 10−304) for MMSE and CDR(SB) predictions, respectively (see Table 1 in355

the Supplementary Materials). We highlight that, in a small number of cases here and356

below, where PLS achieves similar or modestly better predictive accuracy than re-PLS,357

the advantage of re-PLS remains in its explainability: it extracts brain regions whose358

pathways link features and disease outcomes that are not affected by confounders such359

as age and gender while maintaining predictive accuracy.360

For cross-cohort analyses, our results suggest that re-PLS and the derived neu-361

ral biomarkers are reproducible and generalisable between cohorts, although the362

prediction performance between-cohort is, as expected, slightly lower than it is within-363

cohort. See Fig. 6d and e. Specifically, when trained on the smaller OASIS dataset364

and testing on the larger ADNI dataset, re-PLS achieves 0.4384 (P < 10−134) and365

0.4391 (P < 10−134) for MMSE and CDR predictions, respectively. Noticeably,366

when trained on the larger ADNI data and tested on the smaller OASIS dataset,367

re-PLS delivers good prediction performance, achieving 0.5144 (P < 10−15) and368

0.4620 (P < 10−12) for MMSE and CDR predictions, respectively.369

Next, we present the brain regions consistently identified across cohorts by re-PLS.370

In Fig. 6f, we visualise regions that are shared between ADNI and OASIS datasets,371

as well as cohort-specific areas. To find reproducible brain regions across cohorts,372

we first discover latent brain maps independently from each dataset. We then iden-373

tify overlapping brain regions selected from both datasets and further evaluate their374

reproducibility through 50 repetitions of 10-fold cross-validation. To identify consis-375

tent regions, we threshold the areas and retain the top 25% values. We then select376

regions that appear consistently in 90% of the entire validation set. The first latent377

map (P1) highlights consistent regions in the temporal cortex, specifically BA20 and378

BA21, DLPFC (BA46), parts of parietal cortices (BA39), and a part of V1 on the right379
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hemisphere, indicating a high degree of reproducibility. The second latent map (P2)380

also shows overlap across datasets, particularly in BA45, BA47, and parts of V2,381

the temporal lobe (BA20), and the sensorimotor regions (BA4/BA6). These findings382

suggest that the first two latent brain maps are not only predictive but also repro-383

ducible across subjects from two independent cohorts. In particular, the Default &384

Control (P1) map plays a dominant role in cross-cohort prediction, as evidenced by385

performance when trained on ADNI and tested on OASIS cohort, despite variabil-386

ity between cohorts. In parallel, the results also reveal dataset-specific differences. In387

the first latent brain map, OASIS-specific regions (in orange) are more concentrated388

in the occipital and parietal lobes, while ADNI-specific regions (in green) seem more389

concentrated in the frontal and temporal lobes. In the second latent map, OASIS-390

specific regions include small unique localisations in the primary visual cortex and391

BA43, whereas ADNI-specific regions are concentrated in the temporal, motor, and392

visual association areas.393

Taken together, our results show that re-PLS is not only reproducible and general-394

isable for cross-subject (but within-cohort) analysis, but also for cross-cohort analysis:395

the trained model and derived neural biomarkers from one cohort predict, without396

further model fitting, clinically relevant outcomes in subjects from a different cohort.397

Additionally, our results suggest that, in addition to transferring the findings from398

larger datasets to smaller ones, re-PLS can be trained on smaller datasets and extrapo-399

lated to larger datasets, suggesting its potential utility in handling data size disparities400

for multi-centre and multi-cohort studies.401

3 Discussion402

Identifying pathways between high-dimensional multivariate brain data and multivari-403

ate, non-pairwise-correlated behavioural, cognitive, and disease outcomes is central to404

advancing our knowledge about how anatomical distribution and functional integra-405

tion of cortical irregularities may give rise to neurodegenerative diseases. Equally, it is406

critical to predict disease progression that may manifest across different behavioural,407

cognitive, and disease domains. In this article, we develop re-PLS to (1) chart the408

pathways between high-dimensional multivariate brain cortical thickness data (inputs)409

and multivariate disease and behaviour data (outcomes); (2) simultaneously predict410

multiple, non-pairwise-correlated outcomes; (3) control for age and gender (con-411

founding variables) affecting both the inputs, the outcomes, and the pathways412

in-between; (4) assess disease scores cross-sectionally and disease progression longi-413

tudinally; and (5) reproduce and generalise the predictive model and the selected414

features cross-subject and -cohort.415

The re-PLS framework first obtains the residuals, unaffected by the confounders,416

containing information on cortical thickness and outcomes via residual learning. It417

then performs PLS learning between the brain data-specific and outcome-specific418

residuals to estimate feature weights that quantify the relationship between brain419

data and disease-related outcomes. The model finally uses the residuals, the con-420

founders (now covariates), and the estimated parameters to predict multivariate421

outcomes in new subjects.422
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We first examine the method’s efficacy using data from CN subjects, individuals423

with MCI, and AD patients from ADNI, a multi-centre study aiming at developing424

biomarkers for AD [51]. Our results show that re-PLS framework is promising for iden-425

tifying, separating, and estimating unique pathways between high-dimensional cortical426

thickness data and multivariate cognitive and behavioural scores. The identified brain427

regions are mainly in the temporal, frontal, and sensorimotor areas, supporting pre-428

vious findings [7–9, 52–56]. Additionally, our results have provided new insights: we429

identify several nearly orthogonal “predictive AD biomarkers” that are jointly but430

differentially predictive of multivariate outcomes related to different behavioural and431

cognitive traits of AD. Finally, extending the model to longitudinal settings, we dis-432

cover potential “longitudinal AD biomarkers” that are not only useful to explain how433

AD is affected spatially in the cortical areas over time but also promising to help434

predict longitudinal disease course and progression.435

Next, to showcase the generalisability and reproducibility of re-PLS, we first per-436

form a 10-fold CV. The model is iteratively trained on nine folds of the data and437

tested on the remaining fold without further model fitting (note that no subjects438

from the training data are in the testing set). It then iterates, training the model on439

nine new golds and testing it on the new remaining fold, and so on. Although our440

results in Fig. 4 highlight that parameters and pathways learned from the training441

data are helpful to predict multivariate AD outcomes in previously unseen subjects,442

it remains possible that the model may not capture the data variability across folds.443

To that end, we perform ten additional analyses with different CV settings. Specifi-444

cally, we set aside x% (where x = 0, 10, 20, . . . , 90) of the data for an additional step445

of out-of-sample test and run LOOCV on (100 − x)% of the data; when x = 0, one446

runs LOOCV on the entire ADNI data. To avoid a (un)lucky split (e.g., the train-447

ing data contains many subjects with AD and MCI, and the testing data contains448

many CNs), we perform stratified sampling. Taking x = 70 as an example, we ran-449

domly select 70% of AD subjects, 70% of the people with MCI, and 70% of CN -450

they form the training set, which is proportional to and representative of the entire451

data. The results show that the brain maps in the additional analyses, across vari-452

ous cross-validation settings, are generally consistent with those in Fig. 4 via 10-fold453

CV (see Figs. 10 to 19 in the Supplementary Materials). Additionally, the performance454

for predicting multivariate outcomes remains high and is consistent among different455

CV settings. Across all CV settings, the Default & Control map (P1) and Sensori-456

motor map (P2) are generally consistent across these 10 additional CVs. The OFC457

map (P3) and the DLFPF-Broca map (P4) are also consistent up to a sign (the iden-458

tified key brain areas are similar with comparable weights of importance, but the signs459

of the weights may flip) and become increasingly stabilized as more data are used for460

training. The sign flip, however, does not affect interpretation and prediction. This is461

because (a) the method identified the same brain regions; (b) a sign flip does not affect462

prediction: if the Pi map has a sign flip, the corresponding Qi also has a sign flip,463

thus the sign of prediction in Eq. (13) remains the same. The Visuomotor map (P5)464

explains the least amount of variability and is more variable across CV settings. Taken465

together, the additional cross-validation analyses suggest the utility of re-PLS in pre-466

dicting multivariate outcomes and that the model performance and neurobiological467
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explanation are consistent across different cross-validation mechanisms. Particularly,468

the consistency of the Default & Control map (P1), Sensorimotor map (P2), OFC469

map (P3) and DLPFC-Broca map (P4), and their convergence property as more data470

are used, suggest the strong plausibility of them being sensible predictive and explain-471

able “neural biomakers” for AD. In concert, these explorations further demonstrate472

the generalisability and reproducibility of the method in identifying brain regions that473

are predictive of those non-pairwise-corrected outcomes.474

Moreover, we demonstrate that the reproducibility of the neural biomarkers and475

re-PLS method extends to independent datasets and cross-cohort analysis using ADNI476

and OASIS data. These explorations show three advantages of the proposed method.477

First, re-PLS is not only generalisable in terms of (out-of-sample and out-of-cohort)478

prediction but also in terms of explanation (regarding the extracted latent biomarkers -479

the latent brain maps and associated parameters learned from ADNI data). Especially,480

the Default and Control map (P1), when directly coupled with cortical thickness481

data from OASIS data without further model fitting or fine-tuning, predicts MMSE482

and CDR scores in OASIS data. Second, the reproducibility of re-PLS in handling483

the ToSToL (Training on Small and Testing on Large) problem suggests that re-PLS484

can transfer knowledge from a smaller dataset to a larger dataset. Third, re-PLS is485

useful for out-of-sample or -cohort prediction, even if the scales of clinical outcomes486

in training and testing differ. For example, the model trained on cortical thickness487

data and CDR-SB scores (ranging between 0 and 18) in ADNI data predicts CDR488

scores (ranging between 0 and 3) in OASIS data, and vice versa.489

There are several limitations to this study. First, the nature of the imaging and cog-490

nitive data implies that the identified pathways are associative, although our methods491

selected brain regions whose cortical thickness is significantly predictive of multiple492

cognitive outcomes (which raises association to out-of-sample and -cohort prediction).493

Future studies should examine whether some of the identified brain markers and path-494

ways between the high-dimensional neural data and multiple outcomes can be raised495

to causal relationships. A beginning can perhaps be made by studying individuals496

with cortical lesions in the identified AD-related areas and examining if they exhibit497

AD-like behaviour and cognitive symptoms; combining re-PLS and causal inference498

may be helpful in this effort. Second, although re-PLS can perform longitudinal AD499

prediction, the algorithm was evaluated on sparse time points. This was partly due500

to the nature of the disease (brain structure degenerates progressively at a relatively501

slow pace, so it is perhaps unnecessary to have frequent assessments) and, in part, due502

to sparse measurements. Making a semi-continuous assessment of cognitive impair-503

ment, however, may help paint a refined, and perhaps more accurate, trajectory of504

the disease course, assist in monitoring symptom progression, and, for patients under505

treatment, evaluate the treatment efficacy more regularly and timely. Future analysis506

may extend re-PLS to more densely measured outcomes. Future analysis may refine507

patients into early and advanced AD patients and make finer forecasts. In parallel,508

one can apply re-PLS on MCI subjects and then follow up and apply re-PLS to data509

from the same subjects a few years later to study disease progression. Third, although510

our method unveils latent maps between brain regions and AD outcomes, the latent511

maps are not deep (in the sense of deep learning). One major challenge with the512
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“deeper” models is that, while solving the many-to-many disease prediction problem,513

it is at present oftentimes difficult to make neurobiological sense of the identified brain514

areas when the weights of the (deep) hidden layers are projected on the brain space.515

As one of our goals here is to introduce a methodologically sound and neurobiolog-516

ically meaningful method that delivers both predictive power and can identify brain517

areas and pathways that may shed light on neurology and neuropathology, we reserve518

explainable AD prediction via deep learning for future work. Fourth, the definition519

of AD is only based on symptoms, and the clinical diagnosis of patients only assigns520

them a categorical label of “AD”. Certainly, using re-PLS, we can further stratify the521

patients into different groups based on their continuous (non-categorical) predicted522

disease scores or the predicted multivariate cognitive and behaviour scores. One can523

even build a new, finer continuous AD total score leveraging the multivariate cognitive524

and behaviour scores (as different subjects have differential degeneration across those525

multivariate cognitive and behaviour subdomains); an example of a simple score can526

be a weighted sum of the predicted multivariate scores. These potentials may offer527

new insights about how to provide a finer prediction of the disease, but we cannot528

ascertain the validity using current data. Indeed, as a noticeable proportion of AD529

patients will end up with another diagnosis, such as FTD, LATE, PART, and vascular530

dementia, it is important to validate whether re-PLS can further predict AD patients531

into these groups. Future work can train re-PLS on subjects with FTD, LATE, PART,532

and vascular dementia to verify this possibility. Finally, although one of the key pre-533

dictive goals in this paper is to address a many-to-many problem, re-PLS can also be534

used in the future to predict single outcomes (as univariate outcomes are, in essence,535

special cases of multivariate outcomes).536

To summarise, our analyses demonstrated the possibility of identifying and iso-537

lating the many-to-many pathways between high-dimensional multivariate brain data538

and multiple, non-pairwise-correlated cognitive and behavioural outcomes, both cross-539

sectionally and longitudinally, and using the former to predict the latter in the face of540

confounding variables, in new subjects within the same cohort, and in subjects from541

a different cohort.542

4 Methods and Materials543

Subject information. This article uses data from the Alzheimer’s Disease Neu-544

roimaging Initiative (ADNI) [49] and the Open Access Series of Imaging Studies545

(OASIS) [50].546

The ADNI MRI data release includes a total of 1,196 subjects. Among them,547

45 subjects are under 60 years old, 305 are in their 60s, 620 are in their 70s,548

and 226 are 80 or older. At baseline, 321 were CN, 28 had subjective memory549

complaint (SMC), 663 had mild cognitive impairment (MCI), including 234 with550

early mild cognitive impairment (EMCI) and 429 with late mild cognitive impair-551

ment (LMCI), and 184 were diagnosed with AD. The statuses of AD, MCI, or CN552

are diagnostic outcomes made by clinicians primarily based on clinical criteria (see553

the ADNI2 Procedures Manual at: https://adni.loni.usc.edu/wp-content/uploads/554

2024/02/ADNI2 Procedures Manual 28Feb2024.pdf. During the follow-ups, 12 CNs555
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changed to MCIs, 1 CN to AD, 2 SMCs to MCIs, and 170 MCIs to ADs. Addition-556

ally, 9 subjects with either EMCIs or LMCIs reverted to CNs, 26 subjects with SMC557

reverted to CNs, and 2 AD patients reverted to MCIs. For the cross-sectional study,558

we used data from all 1,196 subjects. For the longitudinal study, we define CN = cog-559

nitively normal, sMCI = stable MCI (a subject assessed as an MCI during the first560

visit and continued to be diagnosed as an MCI during subsequent visits), pMCI =561

progressive MCI (a subject was diagnosed as an MCI during early visits and was later562

diagnosed with AD), and AD = Alzheimer’s disease. We excluded 52 subjects from the563

longitudinal study because they were either labelled as SMC at baseline (28 subjects),564

converted from CN to MCI (12 subjects), or from CN to AD (1 subject), from AD to565

MCI (2 subjects), or from EMCI or LMCI to CN (9 subjects); they do not fall into566

one of the four major groups (CN, sMCI, pMCI, and AD), and their sub-sample sizes567

were too small to support meaningful analysis. Thus, the longitudinal study consists568

of 1,144 subjects, including 308 CNs, 484 sMCIs, 170 pMCIs, and 182 AD.569

All participants provided written informed consent. Participants were recruited570

across North America and agreed to complete a variety of imaging and clinical assess-571

ments [49]. The ADNI Clinical Core manages all sites, and the Data and Publications572

Committee (DPC) vets all publications using ADNI data [57]. Full details regarding573

the initiative and the datasets are available at https://adni.loni.usc.edu/methods/574

documents.575

This paper considers eight disease and behavioural outcomes from the576

Clinical Dementia Rating (CDR), the Alzheimer’s Disease Assessment Scale-577

Cognitive (ADAS-COG), the Mini-Mental State Examination (MMSE), and the Rey578

Auditory Verbal Learning Test (RAVLT). More specifically, the CDR is a score that579

is derived from the summation of scores from each of the six categories: Memory (M),580

Orientation (O), Judgment and Problem Solving (JPS), Community Affairs (CA),581

Home and Hobbies (HH) and Personal Care (PC). ADAS-COG assesses learning582

and memory, language production, comprehension, constructional praxis, ideational583

praxis, and orientation. It includes tasks/tests such as Word Recall, Naming, Word584

Recognition, Remembering Tests, Word-Finding, and Spoken Language Ability. The585

MMSE is a brief cognitive screening test used to assess cognitive impairment and586

cognitive decline. A higher score on the MMSE indicates better cognitive function,587

while a lower score may suggest the presence of cognitive impairment or dementia.588

The RAVLT assesses abilities like immediate memory, delayed recall, and recogni-589

tion memory across five immediate learning trials. Further explanations regarding the590

scores we used in the analysis are in Table 2; full explanations of ADNI scores and591

procedures manual documents at https://adni.loni.usc.edu/methods/documents. We592

selected eight scores spanning key AD-relevant domains (memory, executive function,593

global cognition, and functional status) to provide comprehensive disease character-594

isation and demonstrate multivariate relationships across cognitive and functional595

dimensions.596

In the cross-cohort setting, we use the OASIS-1 dataset [50], which includes 225597

subjects with matching data to those in the ADNI: MRI images and two cogni-598

tive outcome measures: CDR (Clinical Dementia Rating) and MMSE (Mini-Mental599

21

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 8, 2025. ; https://doi.org/10.1101/2024.03.11.584383doi: bioRxiv preprint 

https://adni.loni.usc.edu/methods/documents
https://adni.loni.usc.edu/methods/documents
https://adni.loni.usc.edu/methods/documents
https://adni.loni.usc.edu/methods/documents
https://doi.org/10.1101/2024.03.11.584383
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2: Demographic and test information for the studied sample.
Age Age group and size Gender Total samples

73.39 ± 7.17

< 60: 45
60-70: 305
70-80: 620
> 80: 226

M/F: 662/534 2,862

Baseline Followups

CN: 321 subjects
CN → CN: 308 subjects
CN → MCI: 12 subjects
CN → AD: 1 subject

SMC: 28 subjects

MCI: 663 subjects
MCI → MCI: 484 subjects
MCI → AD: 170 subjects
MCI → CN: 2 subject

AD: 184 subjects
AD → MCI: 2 subjects
AD → AD: 182 subjects

Status Age at baseline Gender
CN (308 subjects) 74.50 ± 5.70 M/F: 153/155 (49.9% M)
sMCI (484 subjects) 72.57 ± 5.59 M/F: 290/194 (59.9% M)
pMCI (170 subjects) 73.27 ± 7.12 M/F: 99/71 (58.2% M)
AD (182 subjects) 74.70 ± 7.66 M/F: 96/86 (52.7% M)

Test Abbreviation Meaning

ADAS-COG
ADAS 11 It is the original ADAS-COG test, including 11

items that assess cognitive function: 1. Spoken
language ability. 2. Comprehension of spoken
language. 3. Recall of test instructions. 4. Word-
finding difficulty in spontaneous speech. 5. Fol-
lowing commands. 6. Naming objects and fingers.
7. Constructional praxis. 8. Ideational praxis. 9.
Orientation. 10. Word-recall task. 11. Word recog-
nition task.

ADAS 13 ADAS 13 (or ADAS-COG 13-item test) includes
11 original ADAS-COG items plus Delayed Word
Recall and Number Cancellation.

ADAS Q4 Q4 task is the Delayed Word Recall task in
ADAS13.

The Clinical
Dementia Rat-
ing (CDR)

CDR-SB The CDR Scale Sum of Boxes (CDR-SB) score
is obtained by summing the evaluator’s ratings
across six domains: Memory, Orientation, Judg-
ment and Problem Solving, Personal Care, Home
and Hobbies, and Community Affairs.

The Mini Mental
State Examina-
tion (MMSE)

MMSE The MMSE assessment evaluates orientation to
time and place, recall, attention, calculation, and
language abilities.

The Rey Auditory
Verbal Learning
Test (RAVLT)

RAVLT
Immediate

The RAVLT is a list of learning tasks that test
word recall using multiple trials after a time delay.
The RAVLT Immediate score measures a partici-
pant’s word recall after the first list learning trial.

RAVLT
Learning

The score measures the number of words remem-
bered across all trials.

RAVLT per-
cent forgetting

The RAVLT per cent forgetting score measures
the number of words from the original word list
missed over all trials in percentage.
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State Examination). The MMSE scores are consistent across both datasets. The stan-600

dard CDR scores range from 0 to 3, categorized as follows: 0 (no dementia, normal),601

0.5 (very mild dementia, questionable), 1 (mild dementia), 2 (moderate dementia),602

and 3 (severe dementia); the CDR-SB (Clinical Dementia Rating Sum of Boxes) used603

in ADNI is more detailed, ranging from 0 (no impairment) to 18 (severe impairment).604

4.1 Data Acquisition and Preprocessing605

For the ADNI dataset, we used the preprocessed MRI images. The scans were acquired606

using both 1.5T and 3T with different scanner protocols in each phase (ADNI 1, ADNI607

2, ADNI GO, and ADNI 3). All MRI scans in the ADNI dataset were preprocessed608

using the CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat). We used the surface609

segmentation tool with default parameters to extract cortical thickness from MRI610

scans. For the OASIS dataset, we used the cortical thickness measurements from611

FreeSurfer provided by OASIS. We then used the spatial registration tool in CAT12612

to map the atlas and individual brains to extract surface-based atlas maps using the613

Schaefer-Yeo 7 networks atlas [24] with a 200-parcel parcellation for both datasets.614

Secondary data analysis, including re-PLS, was conducted using a customised Python615

package available at https://github.com/thanhvd18/rePLS.616
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Algorithm 1 The Residual Partial Least Squares Learning
Step 0 (Data organisation): Organize sample data matrix X as N ×P , outcomes
matrix Y as N × J , and confounding variables matrix Z as N × R, where N , P ,
J , and R represent the number of samples, features, outcomes, and confounding
variables, respectively.
Step 1 (Obtaining residuals: εX|Z and εY|Z): Removing confounding effects:

εX|Z := X − Z̃βX|Z, εY|Z := Y − Z̃βY|Z,

where βX|Z := (Z̃⊺Z̃)−1Z̃⊺X and βY|Z := (Z̃⊺Z̃)−1Z̃⊺Y, and Z̃ :=
[
1N Z

]
.

Step 2 (PLS on residuals εX|Z and εY|Z): Let q be the number of latent
components to extract.
for s = 1 to q do

a. Compute weight vectors and score vectors:
Initialize us as the first column of εY|Z.
repeat

wX := (εX|Z)⊺us

∥(εX|Z)⊺us∥
, ts := εX|ZwX,

wY := (εY|Z)⊺ts

∥(εY|Z)⊺ts∥
, us := εY|ZwY.

until tsconverges.
b. Compute loadings:

ps := (ε
X|Z)⊺ts

ts
⊺ts

, qs := (εY|Z)⊺ts

ts
⊺ts

.

c. Deflate residuals:

εX|Z := εX|Z − tsp⊺
s , εY|Z := εY|Z − tsq⊺

s .

d. Store the results:

Weight matrices: WX(:, s) := wX, WY(:, s) := wY

Loading matrices: P(:, s) := ps, Q(:, s) := qs.

end for

Notations and data organizations. We begin by defining the notations used617

throughout this article. Let X ∈ RN×P represents the input data with N subjects618

and P features. Let Y ∈ RN×J and Z ∈ RN×R be the outcome and confounder619

matrices, respectively. Each subject i (1 ≤ i ≤ N), we define yij and zir as the jth
620

outcome and the rth confounding variable, respectively, for 1 ≤ j ≤ J, and , 1 ≤621
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r ≤ R. The dataset is partitioned into training and test sets of sizes Ntrain and Ntest622

respectively (N = Ntrain + Ntest). The corresponding subsets of data are written as623

Xtrain ∈ RNtrain×P , Ytrain ∈ RNtrain×J , and Ztrain ∈ RNtrain×R, with similar definitions624

for the test set.625

Residual Partial Least Squares (re-PLS) Learning. We outline re-PLS626

framework, which adjusts for confounding variables before performing partial least627

squares regression. The process begins by computing residuals of the predictor and628

outcome matrices with respect to the confounders Z. Specifically, during training, we629

define:630

β
Y|Z
train := (Z̃⊺

trainZ̃train)−1Z̃⊺
trainYtrain, ε

X|Z
train := Xtrain − Z̃trainβ

X|Z̃
train, (1)

β
X|Z
train := (Z̃⊺

trainZ̃train)−1Z̃⊺
trainXtrain, ε

Y|Z
train := Ytrain − Z̃trainβ

Y|Z̃
train, (2)

where Z̃train :=
[
1Ntrain Ztrain

]
and 1Ntrain denotes a column vector of ones of size631

Ntrain used to add an intercept term in linear regression. This step makes sure ε
X|Z
train632

and ε
Y|Z
train are both zero-centered. For a test subject, we compute:633

ε
X|Z
test := Xtest − Z̃testβ

X|Z, (3)

ε
Y|Z
test := Ytest − Z̃testβ

Y|Z. (4)

Note that the confounding structure Z is effectively removed from both X and634

Y through linear regression, so the confounders no longer influence the residuals. To635

make predictions on unseen data, we use:636

Ytest = ε
Y|Z
test + Z̃testβ

Y|Z

≈ f(εX|Z
test ) + Z̃testβ

Y|Z. (5)

Here, the function f(·) represents the mapping from residualised covariates to resid-637

ualised outcomes. To learn this relationship, we perform PLS on residuals ε
X|Z
train and638

ε
Y|Z
train, a process which we term Residual PLS Learning (re-PLS). The two key points639

of performing re-PLS are:640

(a) After removing the confounding effect, the residuals ε
X|Z
train and ε

Y|Z
train are likely641

to provide better insights about the potential relationship (see Section 1 of the642

Supplementary Materials) between the multivariate features Xtrain and outcomes643

Ytrain (compared to the case when confounder effect exists), as the residuals still644

contain information about Xtrain and Ytrain but are independent of Ztrain.645

(b) After removing the effect of Ztrain on Xtrain, we consider ε
X|Z
train as the new, trans-646

formed input variable (or transformed features), and the initial confounding effect647

of Ztrain on Ytrain now becomes a covariate effect (note that Ztrain affects Ytrain,648

ε
X|Z
train affects Ytrain, but Ztrain does not have any effect on ε

X|Z
train). This observation649

is valuable for performing out-of-sample prediction.650
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In the following, we outline the second key point of rePLS learning. We project651

data into latent space instead of directly regressing the outcome on the input. We652

then learn regression coefficients in this latent space and transform the predictions653

back to the original variable space.654

Each component (denoted as s) is learned at one time. The first step is to learn655

weight vectors (wX and wY) that maximize the covariance between score vectors:656

ts := ε
X|Z
trainwX, (6)

us := ε
Y|Z
trainwY. (7)

For simplicity, in the remaining part of the paper, we use notation without “train”657

to denote data used during training or parameters estimated from training data (for658

example, εX|Z := ε
X|Z
train and εY|Z := ε

Y|Z
train). The score vectors are updated itera-659

tively by alternating updates until convergence. Then the score vector ts captures the660

direction in εX|Z that has the highest covariance with εY|Z. The loading matrices are661

obtained by regressing εX|Z and εY|Z, respectively, on the score vector ts.662

p := (εX|Z)⊺ts

ts
⊺ts

, (8)

q := (εY|Z)⊺ts

ts
⊺ts

. (9)

The data matrices εX|Z and εY|Z are deflated and then utilised to learn the next663

component.664

εX|Z := εX|Z − tsp⊺, (10)
εY|Z := εY|Z − tsq⊺. (11)

After computing all components, we store the weight and loading vectors in the665

matrices wX ∈ RP ×I , wY ∈ RP ×J , P ∈ RP ×I , and Q ∈ RP ×J to make the final666

prediction. Since the columns of P are generally not orthogonal, the latent score667

matrix T cannot be directly recovered from εX|Z using P. Instead, we use the following668

relation:669

T = εX|ZwX (P⊺wX)−1.

This gives us the following form for predicting residualised outcomes from670

residualised covariates:671

εY|Z = TQ⊺

= εX|ZwX (P⊺wX)−1Q⊺. (12)
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We outline the entire procedure for computing these components in Algorithm 1672

and provide simulation studies and model comparisons with other methods in Section673

3 of the Supplementary Materials.674

Predict multivariate outcomes in new subjects. Consider new subjects with675

feature data Xtest and confounders Ztest. The predicted outcome Ytest for these new676

subjects without additional model fitting is given by:677

Ytest = ε
X|Z
test WX (P⊺WX)−1Q⊺︸ ︷︷ ︸

PLS-based prediction

+ Z̃testβ
X|Z︸ ︷︷ ︸

Confounder adjustment

. (13)

Note that after removing the confounding effect of Ztest on Xtest, the residuals678

ε
X|Z
test are no longer affected by Ztest. Therefore, the effect on the outcomes is now a679

covariate effect, namely the second part in Eq. (13).680
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