

Residual Partial Least Squares Learning: Brain Cortical Thickness Simultaneously Predicts Eight Non-pairwise-correlated Behavioural and Disease Outcomes in Alzheimer's Disease

Duy-Thanh Vu^{1,2,6*}, Duy-Cat Can^{1,2,6},
Christelle Schneuwly Diaz^{1,2}, Julien S. Bodelet^{1,2},
Guillaume E. Blanc¹, Huy Phan³, Gilles Allali⁴,
Viet-Dung Nguyen^{5,6}, Hengyi Cao^{7,8}, Xingru He⁹,
Yannick Müller¹, Bangdong Zhi¹⁰, Haochang Shou¹¹,
Haoyu Zhang¹², Wei He⁹, Xiaojun Wang¹⁰, Marcus Munafò¹³,
Guy Nagels^{14,15}, Philippe Ryvlin¹⁶, Nguyen Linh Trung^{6*},
Giuseppe Pantaleo², and Oliver Y. Chén^{1,2*},
for the Open Access Series of Imaging Studies (OASIS),
and for the Alzheimer's Disease Neuroimaging Initiative (ADNI)¹⁷

¹Platform of Bioinformatics, Lausanne University Hospital, Lausanne, Switzerland.

²Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.

³Department of Electrical Engineering, KU Leuven, Leuven, Belgium.

⁴Centre Leenaards de la mémoire, CHUV, Lausanne, Switzerland.

⁵École Nationale Supérieure de Techniques Avancées de Bretagne, Bretagne, France.

⁶VNU University of Engineering and Technology, Hanoi, Vietnam.

⁷Feinstein Institutes for Medical Research, Manhasset, NY, USA.

⁸Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.

⁹School of Public Health, He University, Shengyang, China.

¹⁰Innovation and Healthcare Group, University of Bristol, Bristol, UK.

¹¹Department of Biostatistics, University of Pennsylvania, Philadelphia, PA, USA.

¹²Division of Cancer Epidemiology and Genetics, NIH, Bethesda, MD, USA.

¹³School of Psychological Science, University of Bristol, Bristol, UK.

¹⁴Department of Neurology, Universitair Ziekenhuis Brussel, Jette, Belgium.

¹⁵Institute of Biomedical Engineering, University of Oxford, Oxford, UK.

¹⁶Département des neurosciences cliniques, CHUV, Lausanne, Switzerland.

¹⁷See Acknowledgements for the Alzheimer's Disease Neuroimaging Initiative.

* Corresponding author(s).

E-mail(s): duy.vu@chuv.ch; linhtrung@vnu.edu.vn; olivery.chen@chuv.ch.

Abstract

Alzheimer's Disease (AD) is the leading cause of dementia, affecting brain structure, function, cognition, and behaviour. While previous studies have linked brain regions to univariate outcomes (*e.g.*, disease status), the relationship between brain-wide changes and multiple disease and behavioural outcomes of AD is still not well understood. Here, we propose Residual Partial Least Squares (re-PLS) Learning, an explainable and generalisable framework that models high-dimensional brain features and multivariate outcomes, accounting for confounders. Using re-PLS, we map the *many-to-many* pathways between cortical thickness and multivariate AD outcomes; identify neural biomarkers that simultaneously predict multiple outcomes; control for confounding variables; conduct longitudinal AD prediction; and perform cross-cohort AD prediction. To evaluate its efficacy, we first carry out within-cohort cross-subject validation using ADNI data, and further examine its reproducibility via between-cohort cross-validation using ADNI and OASIS data. Together, our results unveil brain regions jointly but differentially predictive of distinctive cognitive-behavioural scores in AD.

1 Main

2 Alzheimer's disease (AD) is a neurodegenerative disorder affecting 50 million people
3 worldwide and is projected to affect as many as 152 million by 2050 [1]. It is the most
4 common form of dementia [2]. An early symptom of AD is difficulty remembering
5 recent events. Gradually, a patient may exhibit language and orientation problems,
6 mood swings, loss of motivation, self-neglect, and behavioural changes. In general, one
7 observes progressive cognitive decline in AD, accompanied by a gradual loss of bodily
8 functions, eventually leading to death [3]. An AD patient's typical life expectancy
9 following diagnosis ranges from three to nine years [4].

10 Discovering biomarkers associated with AD is essential in understanding the
11 pathology of the disease, identifying patients, assessing disease progression, and
12 enabling the timely management of the condition [5]. An important biomarker of AD
13 is brain cortical thickness, also known as the AD cortical "signature" [6]. Changes of
14 cortical thickness are differentially expressed across brain areas and vary between pre-
15 clinical dementia stages (*i.e.*, subjects with mild cognitive impairment (MCI)) and
16 dementia [7, 8]. In general, compared to cognitively normal (CN) subjects, individu-
17 als with MCI and AD have decreased cortical thickness in the medial temporal lobe
18 region and parts of the frontal and parietal cortices [7–9]. As the disease progresses,
19 cortical thinning is observed across the entire cortex, especially in the lateral tempo-
20 ral lobe [7]. In parallel, cortical thickness of frontal, parietal, and temporal lobes in
21 AD is correlated with cognitive impairment [8], while regional thinning predicts (even
22 mild) AD [10].

23 In addition to cortical thickness changes, AD is accompanied by multiple cog-
24 nitive and behavioural disruptions in memory, language, orientation, judgment, or
25 problem-solving [11]. Yet, despite advances in single outcome assessment and pre-
26 diction, our understanding of the many-to-many (*i.e.*, many brain areas to many
27 outcomes) relationship between the spatially varying cortical thickness changes and
28 multiple symptoms or cognitive (dys)functions has remained limited.

29 To improve our knowledge about and better manage the disease, it is crucial to
30 identify and isolate brain regions, each of whose cortical thickness may be differen-
31 tially associated with a unique, or several, cognitive or behavioural outcomes, chart
32 the pathways between each set of brain areas and their corresponding outcome, as well
33 as quantify the pathway effect. Equally important is to leverage these pathways and
34 parameters of the identified regions to predict multiple, likely non-pairwise-correlated,
35 cognitive and behavioural scores. That is, one uses cortical thickness data from
36 identified, potentially different brain regions to predict each corresponding outcome.

37 Such quests for neurobiological insights and predictive performances require joint
38 effort, integrating methodological innovations and biological knowledge. **First**, there
39 is a need to search for subsets of brain areas respectively associated with different
40 cognitive and behavioural outcomes. This is important for improving our understand-
41 ing of disease pathology and aiding in pathway estimation. **Second**, there is a need
42 to chart pathways between high-dimensional cortical thickness and multiple cogni-
43 tive and behavioural outcomes. Cortical thickness changes in AD occur across several
44 functional brain regions, each likely projecting to multiple cognitive and behavioural
45 domains. Therefore, understanding these pathways can provide insights into how

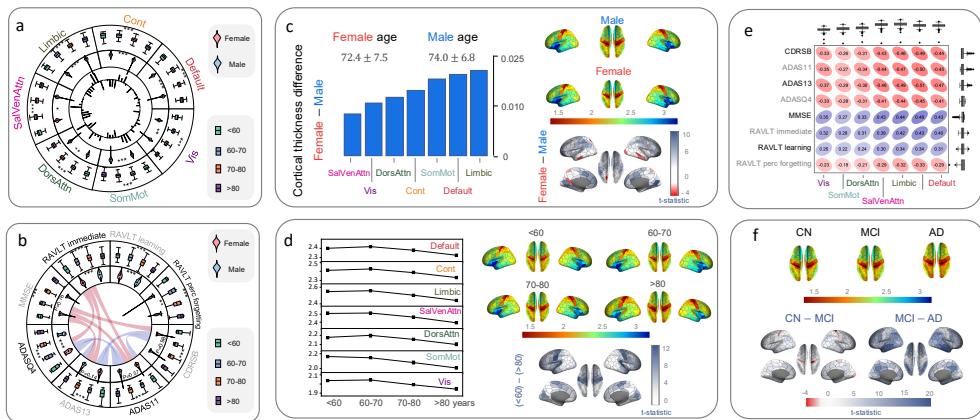


Fig. 1: Effect of age and gender on cortical thickness as well as disease and behavioural outcomes in AD. (a) Cortical thickness from seven functional brain areas exhibits different variations across age and gender groups. Outer, middle, and inner circles show cortical thickness by age, gender, and predictive weights for eight outcomes, respectively. Outer bars represent positive weights, and inner bars represent negative weights based on averaged linear regression coefficients. Weights are normalised to $[-1, 1]$ within each functional network. (b) Eight AD-related outcomes vary by age and gender and are not strongly pairwise correlated. Outer, middle, and inner circles display outcomes by age, gender, and correlation structure, respectively. Connected lines indicate high correlations ($|r| \geq 0.7$). (c) Cortical thickness exhibits gender differences across brain networks. The left plot shows mean cortical thickness differences between females and males across seven functional brain networks. The right plots show spatial distribution of gender differences across brain regions. The female cortex is generally thicker than the male cortex. (d) Cortical thickness varies by age group across brain networks. The left plot shows mean thickness decline with age across seven functional brain networks. The right plots show spatial distribution of age-related thickness changes across brain regions, with younger groups (< 60) generally showing thicker cortex than older groups (> 80). (e) Distributional and associative analysis between AD-related outcomes and regional cortical thickness. Top boxplots show cortical thickness distributions across seven functional brain areas; right boxplots show cognitive and behavioural score distributions from eight tests. The value in each ellipse represents correlations between each outcome and the corresponding brain network thickness. (f) Cortical thickness differences across diagnostic groups (CN, MCI, AD) with statistical comparisons. The top plots show mean thickness across brain regions for each diagnostic group. Bottom plots show statistical comparisons between groups (CN-MCI and MCI-AD). For panels (c), (d), and (f), rainbow colour bars indicate normalised cortical cohort-specifics; red-blue colour bars represent t-statistics for brain regions.

46 cortical thickness in different brain areas may be linked to corresponding cognitive-
 47 behavioural outcomes. **Third**, there is a need to deal with confounding variables that
 48 affect both brain data and behaviour. Indeed, cortical thickness and disease outcomes
 49 differ across age and gender groups (see Fig. 1a-d); ignoring them or only considering
 50 their association with outcomes, but not with cortical thickness features, may bias
 51 estimated pathways [12]. In disease analysis and prediction, neglecting confounding
 52 effects may yield clinical misinterpretations [13]. **Fourth**, there is a need to predict
 53 multivariate, non-pairwise-correlated outcomes. Although predictive models built for
 54 assessing single outcomes [14] have considerably advanced our understanding of gen-
 55 eral aspects (such as disease status [15]) or specific subdomains (such as cognitive
 56 decline [16]) of AD, single-outcome prediction [17] may not capture multi-dimensional
 57 and -functional cognitive and behaviour degenerative landscapes of the disease. **Fifth**,
 58 as a neurodegenerative disease that not only progresses differentially along various
 59 cognitive and behavioural domains but also develops in time, there is a need to pre-
 60 dict AD progression longitudinally. This may help evaluate or anticipate the cognitive

61 decline and disease conversion early and manage the disease advancement in a timely
62 manner. **Finally**, while selected features and predictive models facilitate biological
63 interpretation and disease assessment, to introduce them in broader practices and to
64 endorse their scientific efficacy, there is a need to demonstrate that properties of fea-
65 tures and predictive models can be generalised to different subjects and, particularly,
66 reproduced in other cohorts and datasets.

67 Here, we introduce *Residual Partial Least Squares* (re-PLS) , by integrating
68 residual learning [18, 19], partial least squares (PLS) [20–22], and predictive mod-
69elling [14, 23], to identify brain regions whose cortical thickness is associated with and
70 predictive of multivariate, non-pairwise-correlated outcomes in AD; uncover multivari-
71 ate many-to-many pathways from these regions to disease and behavioural outcomes;
72 and predict such outcomes at both population and individual levels, across cross-
73 sectional and longitudinal settings. Specifically, we apply re-PLS to data from the
74 Alzheimer’s Disease Neuroimaging Initiative (ADNI) and discover potential pathways
75 between cortical thickness data and multivariate disease and behavioural outcomes
76 while controlling for confounding age and gender variables. Furthermore, we use re-
77 PLS to perform longitudinal AD prediction. Finally, we test the features selected from
78 and the model trained using ADNI data, without further modelling, on data from the
79 Open Access Series of Imaging Studies (OASIS), and *vice versa*.

80 2 Results

81 We begin by summarising five key points regarding our findings. **(1)** Both re-PLS
82 and other baseline models suggest that brain cortical thickness predicts multiple, non-
83 pairwise-correlated behavioural and disease outcomes in AD (see Fig. 3). **(2)** The
84 re-PLS and PLS yield higher predictive accuracy than competing models, while re-
85 PLS additionally controls for the confounding variables (see Fig. 9 in *Supplementary*
86 *Materials*). **(3)** After removing the age and gender effects, cortical thickness changes
87 that are significantly predictive of the eight cognitive and behavioural outcomes are
88 mainly in the temporal, frontal, and sensorimotor (see below for a discussion and
89 Fig. 4). **(4)** The re-PLS is useful for predicting longitudinal disease progression and,
90 particularly, seems promising to chart the disease course for subjects who change from
91 MCI to AD over time (see Fig. 5). **(5)** The selected features and re-PLS model are
92 generalisable and reproducible across-subjects and -cohorts (see Figs. 3 and 6).

93 We summarise the experimental setup in Fig. 2 and Algorithm 1. In Fig. 3, we
94 present the model’s performance on multivariate AD outcome prediction. In Fig. 4,
95 we identify and present the brain areas whose cortical thickness is predictive of eight
96 cognitive-behavioural outcomes. In Fig. 5, we present the results of longitudinal AD
97 prediction. In Fig. 6, we demonstrate the model’s ability to generalise across different
98 cohorts (ADNI and OASIS data).

99 2.1 Cross-sectional AD assessment

100 We first aim to identify and separate brain regions associated with and predictive of
101 each AD-related cognitive and behavioural outcome under a cross-sectional setting,
102 where scans from each individual are treated as independent repeated measurements.

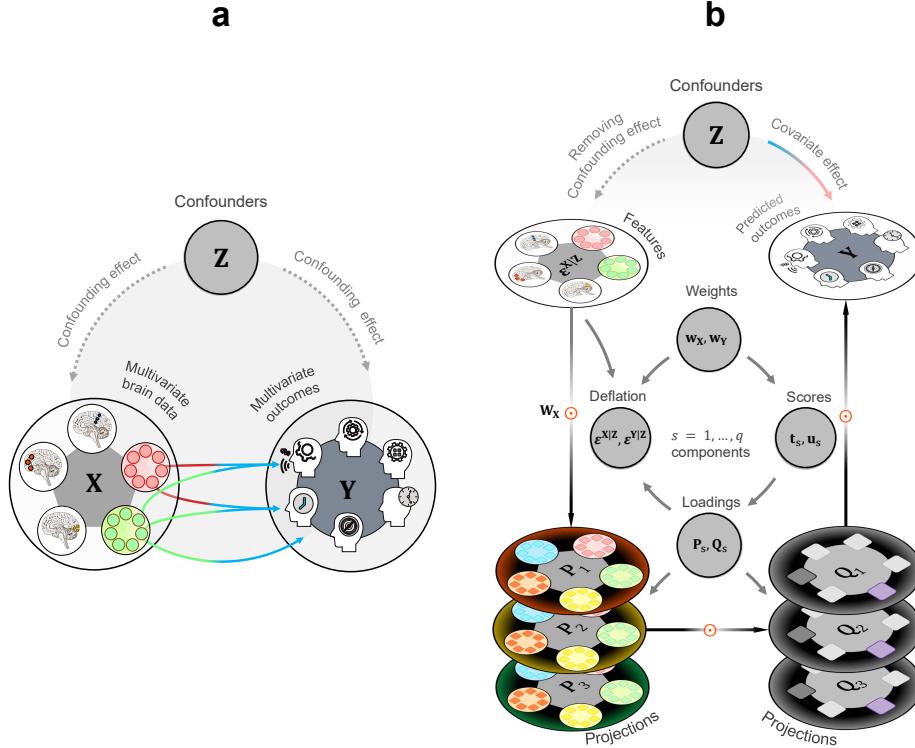


Fig. 2: A schematic representation of Residual Partial Least Squares (re-PLS) Learning. (a) A conventional way to predict multivariate outcomes using multivariate brain features. \mathbf{X} represents high-dimensional brain data, with each colored circle denoting a unique brain area and smaller circles representing cortical thickness data from that region. \mathbf{Y} represents multivariate outcomes, with each icon showing a cognitive examination score (e.g., MMSE). \mathbf{Z} represents confounders (e.g., age and gender) that affect both feature variables \mathbf{X} , outcome variables \mathbf{Y} , and the pathways between them. In classical prediction problems, one aims at looking for direct pathways between \mathbf{X} and \mathbf{Y} while controlling for confounding effects from \mathbf{Z} . Data from the identified areas are subsequently fed via the pathways (coloured arrows) to make predictions on new subjects. (b) The Residual Partial Least Squares (re-PLS) Learning. The re-PLS begins by removing confounding effects from the confounder \mathbf{Z} , isolating the residuals of both the feature matrix \mathbf{X} and the outcome matrix \mathbf{Y} as $\epsilon^{\mathbf{X}|\mathbf{Z}}$ and $\epsilon^{\mathbf{Y}|\mathbf{Z}}$, respectively. Rather than predicting directly between \mathbf{X} and \mathbf{Y} , re-PLS applies PLS to these residuals, iteratively learning latent components (illustrated by grey circular arrows). For each component s , weight vectors ($\mathbf{w}_X, \mathbf{w}_Y$) project data into latent scores ($\mathbf{t}_s, \mathbf{u}_s$) that maximize the correlation between the input and output spaces. These scores estimate loading matrices (\mathbf{P} and \mathbf{Q}). At each step, re-PLS performs deflation to update the residuals. The re-PLS obtains the outcome prediction through matrix multiplication (see Eq. (13)). Finally, re-PLS projects latent feature representations back to corresponding brain space to facilitate interpretation; the learned projections between the input features and the outcomes also provide clear pathways from the original features (brain-wide cortical thickness) to the multivariate disease outcomes, which are unaffected by confounders.

103 First, we identify anatomical regions whose cortical thickness is predictive of mul-
 104 tivariate AD outcomes using the \mathbf{P} maps (each entry of a \mathbf{P} map corresponds to one
 105 brain region) (see Fig. 4). Specifically, \mathbf{P}_1 consists predominantly of areas in the pre-
 106 frontal and temporal regions. \mathbf{P}_2 is largely located in the sensorimotor area with small
 107 parts in the Primary Visual Cortex (V1) and Secondary Visual Cortex (V2); it also
 108 has positive weights in parts of the temporal pole. \mathbf{P}_3 highlights the cognitive brain
 109 with a great deal of weight in the orbital prefrontal (OFC) cortex. \mathbf{P}_4 has negative

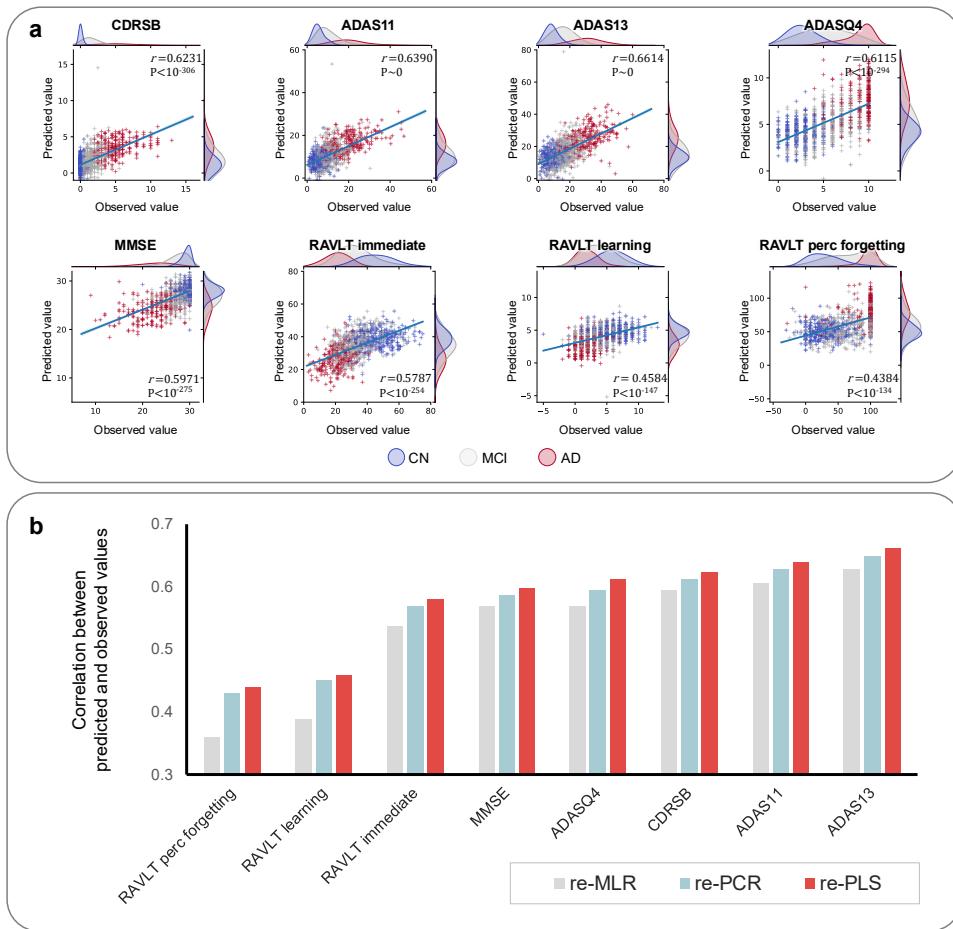


Fig. 3: Model performance of residual Partial Least Squares (re-PLS) Learning and its performance in comparison to prominent baseline methods for predicting multivariate outcomes in previously unseen subjects. (a) Scatter plots of the predicted outcomes against the observed outcomes using re-PLS. The results are obtained by concatenating the predictions from the test set across all 10 folds of a 10-fold cross-validation (CV). CN=cognitive normal; MCI=mild cognitive impairment; AD=Alzheimer's disease. (b) A comparison between re-PLS with two common baseline methods. Here, re-PCR refers to principal component regression with confounders controlled via residual learning, and re-MLR refers to multivariate linear regression with confounders controlled via residual learning. The plot displays the correlation coefficient between the predicted and observed outcomes, calculated from the concatenated predictions across all 10 folds. Overall, re-PLS yields the best result across eight outcomes. For both (a) and (b), only results from out-of-sample predictions were shown.

110 weights in the dorsal lateral prefrontal cortex (DLPFC) and positive weights in parts
 111 of the Broca area. Finally, \mathbf{P}_5 contains areas with negative weights in the frontal
 112 eye fields (FEF) and BA7 (related to visuomotor coordination). We discover these
 113 brain maps via cross-subject validation using ADNI data; in Section 2.3, we further
 114 show that the patterns and the brain regions identified in \mathbf{P}_1 and \mathbf{P}_2 maps can be
 115 generalised not only across subjects but also between datasets.

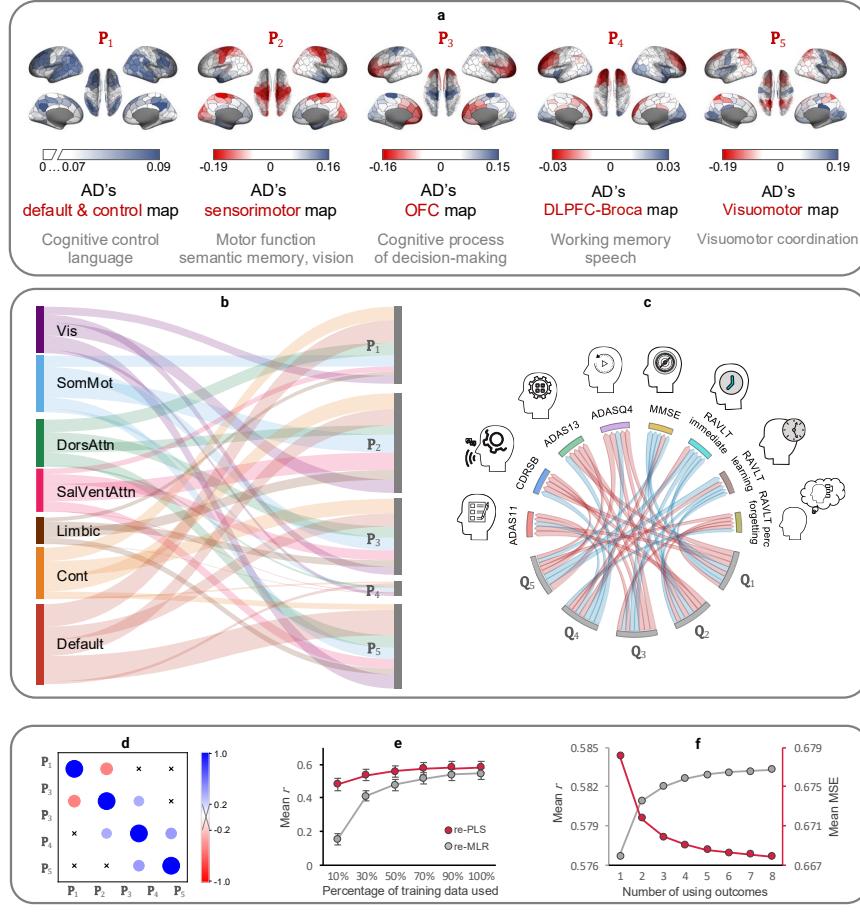


Fig. 4: Discovering brain areas predictive of multivariate outcomes using the Residual Partial Least Squares (re-PLS) Learning. (a) The re-PLS identifies five latent brain spaces whose associated brain cortical thickness predicts multivariate outcomes in Alzheimer's disease. The five brain spaces are discovered and verified using cross-validation. (b) The functional localisation of the five identified projections in terms of cortical thickness. The link between functional brain regions and the five identified projections is based on the absolute value of the weights. Each width of each projection is the sum of absolute weights; we remove non-significant lines. (c) The relationship between the outcomes' latent spaces and the eight behavioural and cognitive outcomes through weighted connections. The width of the lines from Q_i ($i = 1, \dots, 5$) to each outcome represents the contribution of the latent representation to the outcome prediction. These weights have been normalised so that the absolute sum of each Q equals 1. Red lines denote negative weights, while blue lines indicate positive weights. (d) The five latent brain spaces are almost orthogonal. The size of each circle is proportional to the correlation between a pair of latent brain spaces, with "x" marking insignificant results ($P > 0.05$). (e) Sample size studies for re-PLS. During each fold, we run both re-PLS and re-MLR models using different percentages (from 10% to 100%) of the training samples and report model performance on the testing samples. (f) Prediction accuracy improves as more outcomes are included. This is an inherited property of re-PLS (through the learned projections) where each added outcome assists in the prediction of other outcomes.

116 Second, we investigate how the identified brain areas are distributed across functional brain regions [24]. We notice that areas in P_1 are located predominantly in the
117 default regions; areas in P_2 are primarily in the sensorimotor and attention regions;
118

119 areas in \mathbf{P}_3 have large representation in the default and control regions; and areas in
120 \mathbf{P}_4 and \mathbf{P}_5 are mainly in the default and visual areas (see Fig. 4b). Furthermore, a
121 correlation analysis between these five maps show that these projections are largely
122 orthogonal (see Fig. 4d). This suggests that the \mathbf{P} maps identify and isolate orthogo-
123 nal functional brain areas that are predictive of multivariate outcomes. Based on the
124 functional and anatomical separation (due in part to their orthogonality) of the \mathbf{P}
125 maps, we designate \mathbf{P}_1 as AD's Default & Control map, \mathbf{P}_2 as AD's Sensorimotor
126 map, \mathbf{P}_3 as AD's OFC map, \mathbf{P}_4 as AD's DLPFC-Broca map and \mathbf{P}_5 the Visuomotor
127 map (see Fig. 4a).

128 Third, the latent brain spaces (\mathbf{P} maps) provide important insights about poten-
129 tial AD biomarkers (see Table 1). (1) Several \mathbf{P} maps highlight the prominence of
130 cortical thickness in the temporal areas (e.g., **BA20**, **BA21** and **BA22** in \mathbf{P}_1 , and
131 **BA38** in \mathbf{P}_2) in predicting AD-related outcomes. Previous findings suggest that the
132 degree of atrophy in the left BA38 and BA20/21 is strongly correlated with deficits
133 in semantic memory processing [25]. BA21, part of the middle temporal gyrus, is
134 involved in processing language and higher-order audition processes [26]. Accumulated
135 tau deposition in the temporal gyrus, which anatomically overlaps BA20/BA21, has
136 been shown to be associated with clinical impairments observed in AD [27]. BA22, in
137 the superior temporal gyrus within Wernicke's area, is involved in the comprehension
138 of written and spoken language. (2) Several \mathbf{P} maps highlight the importance of cor-
139 tical thickness in frontal regions for predicting AD-related outcomes: the prefrontal
140 cortex (e.g., **BA9**, **BA10**, and **BA46**), particularly in \mathbf{P}_1 and \mathbf{P}_4 ; the orbitofrontal
141 cortex (e.g., **BA10**, **BA11**), especially in \mathbf{P}_3 , and inferior frontal gyrus (e.g., **BA44**,
142 and **BA45**), especially in \mathbf{P}_2 and \mathbf{P}_4 . BA9 (which contributes to the dorsolateral pre-
143 frontal cortex or DLPFC) is linked with the strategic control of behaviour, including
144 task inference, goal maintenance, inhibition, and flexible decision-making, reflecting its
145 critical role in executive control [28, 29]. BA10 is related to working memory, episodic
146 memory, and mentalizing [30]; it is known to support higher cognitive functions, such
147 as task management and planning [31]. BA46 in the right hemisphere is primarily
148 involved in spatial working memory [32, 33], whereas it in the left hemisphere is more
149 engaged in maintaining image-based representations of objects [33]. Evidence also
150 suggests that BA46 is significantly involved in delayed-response spatial working mem-
151 ory tasks [34]. BA11 is involved in decision-making, processing rewards, and encoding
152 new information [35, 36]. BA44, which is part of Broca's area, is involved in speech
153 production [37]. BA45 is thought to be involved in semantic fluency [38]. (3) Parts of
154 the parietal lobe (e.g., **BA39** and **BA40** in \mathbf{P}_1) are significantly predictive of cog-
155 nitive and memory scores. This confirms previous findings that AD patients undergo
156 cortical thickness changes in the parietal cortices [7–9]. Importantly, BA39 (angular
157 gyrus (AG)) has been shown to correlate with longitudinal declines in verbal flu-
158 ency [39]. Damage to the left BA39 may result in dyslexia or semantic aphasia [40].
159 BA40 (left supramarginal gyrus) is thought to be involved in reading, regarding both
160 meaning and phonology of the words [41]. Moreover, BA39 plays a role in retrieval,
161 particularly evident in cross-modal picture-sound pairing tasks, while BA40 plays a
162 more limited role in sustaining retrieval [42]. (4) Our results hint at the roles senso-
163 rimotor areas (e.g., **BA4** and **BA6** in \mathbf{P}_2) play in predicting AD-related outcomes.

Table 1: Relationship between identified latent brain spaces, their anatomical correspondence, and associated functions.

Latent brain spaces	Brodmann areas and relevant known functions
P₁: Default-control	BA9 (strategic control, action selection, and cognitive control [28, 29]), BA10 (working memory, episodic memory and mentalizing [30]; task management and planning [31]), BA21 , BA22 (language and higher-order auditory processes [26]), BA39 , BA40 (recollective memory processes [42]), and BA46 (spatial working memory [32]).
P₂: Sensorimotor	BA38 (semantic memory [45]), BA17 (V1), BA18 (V2, attentional modulation [44]), BA4 , and BA6 .
P₃: OFC	BA10 , BA11 (decision making, processing rewards, and encoding new information [35, 36]), and BA4 , BA44 , and BA45 (phonological and semantic processing [38]).
P₄: DLPFC-Broca	BA44 , BA45 , BA9 , BA17 (V1), and BA18 (V2).
P₅: Visuomotor	BA4 , BA17 , BA18 , BA7 (visuomotor coordination [46]), and BA8 (frontal eye fields and management of uncertainty [47]).

164 Although some have argued that sensory and motor changes may precede the cog-
 165 nitive symptoms of AD [43], since the eight outcomes in this study measure various
 166 cognitive abilities, our findings cannot distinguish whether the changes in cortical
 167 thickness in sensory and motor areas (thus changes in sensory and motor functions)
 168 hinder movement during the examinations (thereby affecting the performance on the
 169 eight outcomes), or if they contribute, in concert with other areas, to the performance
 170 during the tests. Further research needs to independently verify this. (5) Our results
 171 suggest that cortical thickness in the visual cortex (e.g., **BA17** and **BA18** in **P₂** and
 172 **P₄**) may be associated with attentional and visual memory-related word remember-
 173 ing. Particularly, BA18 (V2) is thought to be related to attentional modulation of
 174 visual processing [44].

175 Fourth, we investigated the relationship between the loadings in the latent
 176 space (**Q** loadings) and the eight behavioural and disease-related outcomes. We found
 177 that the five loadings (**Q₁** to **Q₅**) exhibit overlapping associations with multiple cog-
 178 nitive and behavioural measures (see Fig. 4c). As each brain map **P_i** corresponds to
 179 loading **Q_i**, it allows us to make interpretations both in the outcome space (through
 180 **Q_i**) and regarding the brain spatial patterns (through **P_i**). In particular, we observe
 181 large positive weights in **Q₁** and **Q₂** for predicting ADAS13, CDRSB, and ADAS11
 182 scores, which measure memory, language, attention, and executive function. To under-
 183 stand the loadings' neurological relevance, we enquire into their corresponding **P**
 184 maps. **Q₁**'s corresponding **P₁** map (or AD's Default & Control map) comprises lat-
 185 eral temporal regions, including BA20 and BA21, which is involved in semantic
 186 memory [25]. Specifically, BA20 is thought to primarily support visual association
 187 processes, while BA21 appears to be involved in audition processes and language [26].
 188 **Q₂**'s corresponding **P₂** map (or AD's Sensorimotor map) consists of the anterior

189 temporal lobe (BA38), which is associated with semantic memory [45]; the visual
190 Association area (BA18/V2) exhibits enhanced effective connectivity to V5/MT during
191 attentional modulation of motion processing [44]; and primary motor cortex (BA4)
192 shows amyloid plaques and tau pathology in late-stage AD [48]. Next, the **Q**₃ and **Q**₄
193 loadings both exhibit strong predictive weights for CDRSB, ADAS13, and ADASQ4,
194 highlighting the involvement of prefrontal and language-related regions in these cog-
195 nitive outcomes. **Q**₃'s corresponding **P**₃ map (or AD's OFC map) includes parts
196 of the orbitofrontal cortex (BA10 and BA11), a region critical for decision-making,
197 executive function, and social behaviour-domains often impaired in AD. **Q**₄'s corre-
198 sponding **P**₄ map (or AD's DLPFC-Broca map) comprises DLPFC and Broca's area,
199 essential for working memory, attention, and language production. Finally, the **Q**₅
200 loading is associated with performance on ADASQ4, RAVLT immediate, and RAVLT
201 learning, reflecting the integration of sensorimotor, attentional, and executive func-
202 tions required for verbal memory and learning tasks. Relevantly, **Q**₅'s corresponding
203 **P**₅ map (or AD's Visuomotor map) includes regions involved in motor and visual
204 processing (BA4, BA17, BA18), as well as **BA**₇ (visuomotor coordination [46]) and
205 **BA**₈ (decision-making under uncertainty [47]).

206 Fifth, we investigate the impact of varying sample sizes on the performance of
207 re-PLS compared to residual learning-aided multivariate linear regression (re-MLR).
208 Our results suggest that, overall, re-PLS outperforms re-MLR. More specifically, it
209 is challenging for re-MLR to perform prediction, especially when training data is
210 small (see Fig. 4e). In comparison, re-PLS seems to deliver better overall prediction
211 accuracy across different training data sizes and is more consistent when training data
212 sizes vary. Additionally, re-PLS seems to require less training data to achieve optimal
213 prediction performance. For example, to achieve comparable results using 70% of
214 training data by re-PLS, re-MLR requires nearly 90% of the training data.

215 Sixth, we notice that re-PLS achieves higher prediction accuracy (both in terms
216 of mean square error and in terms of correlation) as the number of outcomes
217 increases (see Fig. 4f). This is possibly due to the nature of re-PLS: the hidden pro-
218 jections aim to maximise the associations between the inputs (cortical thickness) and
219 outcomes (disease scores) when controlling for covariates. Thus, when making pre-
220 dictions, the prediction of each outcome is made by using the information of the
221 inputs, the covariates, and the projections (which also learns information about other
222 outcomes); although the outcomes are not all pairwise correlated, each association
223 between two (even modestly) correlated outcomes would make one a helpful predictor
224 of the other. Hence, the more outcomes, the better the prediction performance. Cer-
225 tainly, in an extreme case, when all outcomes are identical, adding additional outcomes
226 may not improve prediction performance.

227 Finally, re-PLS achieves higher prediction accuracy compared to conventional lin-
228 ear approaches. It is likely that the lower-dimensional “nearly orthogonal” projections
229 contain reduced noise in contrast to the original high-dimensional data. These refined
230 (lower-dimensional) features seem to achieve more effective data representation and
231 compression in the latent space, leading to improved prediction performance. As a
232 result, re-PLS not only assisted neurobiological explanation via the extracted latent
233 brain spaces but also required a smaller amount of data to achieve similar prediction

234 performance compared to both re-PLR and re-PCR. This property may be helpful
235 in situations with limited data but multivariate or many-to-many (high-dimensional
236 input and multivariate outcomes) complexity.

237 2.2 Longitudinal AD assessment

238 As a neurodegenerative disease, AD progresses over time [3, 4]. Naturally, one would
239 ask if it were possible to expand re-PLS to longitudinal settings to study AD progres-
240 sion. Longitudinal assessment is important for two reasons. First, it is beneficial to
241 monitor and forecast disease progression to improve disease management and treat-
242 ment. Second, it is useful to identify brain areas whose degenerations are related
243 to cognitive decline over time to gain insights into how AD progresses, which brain
244 regions contribute to disease progression over time, and, if so, to what extent.

245 To that end, we use re-PLS to study longitudinal AD prediction. We do so in two
246 settings. First, we extend the use of re-PLS from cross-sectional analysis to predict
247 AD status over time (see Fig. 5a-b). Second, we identify brain regions whose cortical
248 thickness may be related to AD progression over time (see Fig. 5c-d). We note that
249 we conduct longitudinal disease prediction on disease status but not on the eight
250 outcomes. This is because conducting longitudinal multivariate disease prediction over
251 time and across eight outcomes requires decomposing the variability into time and
252 score space, and, therefore, requires a much larger sample size to obtain reliable results.

253 Throughout, we consider diagnostic outcomes made by clinicians primarily based
254 on clinical criteria. Specifically, every subject is diagnosed with one of the statuses:
255 CN, MCI, or AD, based on ADNI criteria. For modelling, we assign groups of 0, 1, or
256 2 to represent CN, MCI, and AD, respectively. In our analysis, we further group the
257 individuals into four distinct longitudinal groups: CN, sMCI, pMCI, and AD, based on
258 disease progression (see Fig. 5a). CN refers to individuals who were assessed as cogni-
259 tively normal and maintained cognitively normal during subsequent visits. Stable Mild
260 Cognitive Impairment (sMCI) denotes individuals who were assessed as MCIs during
261 the first visit and continued to be diagnosed as an MCI during subsequent visits after
262 six months. Progressive Mild Cognitive Impairment (pMCI) indicates individuals who
263 were assessed with MCI during early visits but were diagnosed with AD during follow-
264 up visits after six months. Lastly, AD represents individuals consistently assessed as
265 AD throughout all visits. As some subjects have missing data at baseline, we consider
266 their earliest scans as baseline data and arrange their later scans accordingly.

267 After training the longitudinal re-PLS model, we implement it to predict unseen
268 individual subjects' status over time. Although we grouped every subject into one of
269 the four groups - the group information for testing subjects was not used (to avoid
270 information leakage); rather, the (four) group information was used to colour code
271 the testing subjects to evaluate the accuracy of the longitudinal prediction perfor-
272 mance (see Fig. 5b). We saw that the predicted overall mean scores increased from
273 CN, sMCI, and pMCI to AD. This agrees with the actual diagnostic outcomes. Addi-
274 tionally, the predicted longitudinal trend for pMCI subjects (subjects who were MCIs
275 during early visits and later diagnosed with AD) seems to worsen noticeably more than
276 the other groups. This is also consistent with their observed longitudinal diagnostic
277 progression. The predicted trends for both CN and MCI groups are relatively stable,

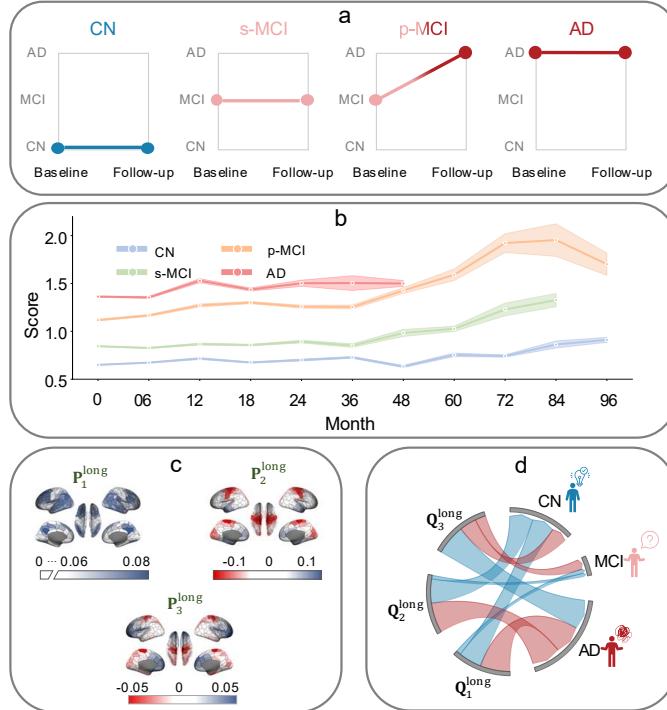


Fig. 5: Longitudinal prediction of Alzheimer's disease (AD). (a) Four subject groups were based on baseline and last follow-up diagnoses. CN = cognitively normal throughout, sMCI = stable MCI (MCI at baseline and follow-up), pMCI = progressive MCI (MCI at baseline, progressed to AD), and AD = diagnosed Alzheimer's disease at both time points. Group assignment is based on the first and latest available diagnosis. (b) Longitudinal trend prediction. The longitudinal curve for each group is estimated using the predicted mean group scores for new subjects at each time point. The width of the 95% confidence bands (shaded colour) is estimated using a repeated 10-fold CV (run 100 times). In general, the predicted longitudinal severity is AD > pMCI > sMCI > CN. The pMCI is predicted to worsen more than other groups over time. (c) Latent brain spaces identified by re-PLS that are potentially related to longitudinal AD progression. (d) Relationship between longitudinal latent brain spaces and diagnostic outcomes. The width of the lines between three latent brain spaces and three types of diagnostic outcomes indicates the size of the association. Red lines represent negative coefficients, and blue lines represent positive coefficients. The strength of connection was estimated using the magnitude of the coefficient, quantifying the contribution each brain space makes to predicting the target outcome.

278 in line with their observed longitudinal diagnostic statuses, although our method pre-
279 dicted that both groups have a slight worsening sign after 60 months, presumptively
280 because of a gentle cortical thinning due to ageing.

281 Next, we seek to unveil the brain regions whose longitudinal cortical thickness
282 change may be potentially associated with and predictive of AD disease status over
283 time. To that end, we extract the longitudinal latent brain spaces (\mathbf{P}^{long} maps, or
284 the longitudinal version of the cross-sectional \mathbf{P} maps), which uncover brain regions
285 that may be associated with longitudinal disease progression over time. Specifically,
286 we encode the disease status as a one-hot vector instead of scalars (0, 1, and 2) for
287 the three possible outcomes (CN, MCI, and AD). Overall, we identify three longitu-
288 dinal latent brain spaces. The first longitudinal map, $\mathbf{P}_1^{\text{long}}$, is linked to the default

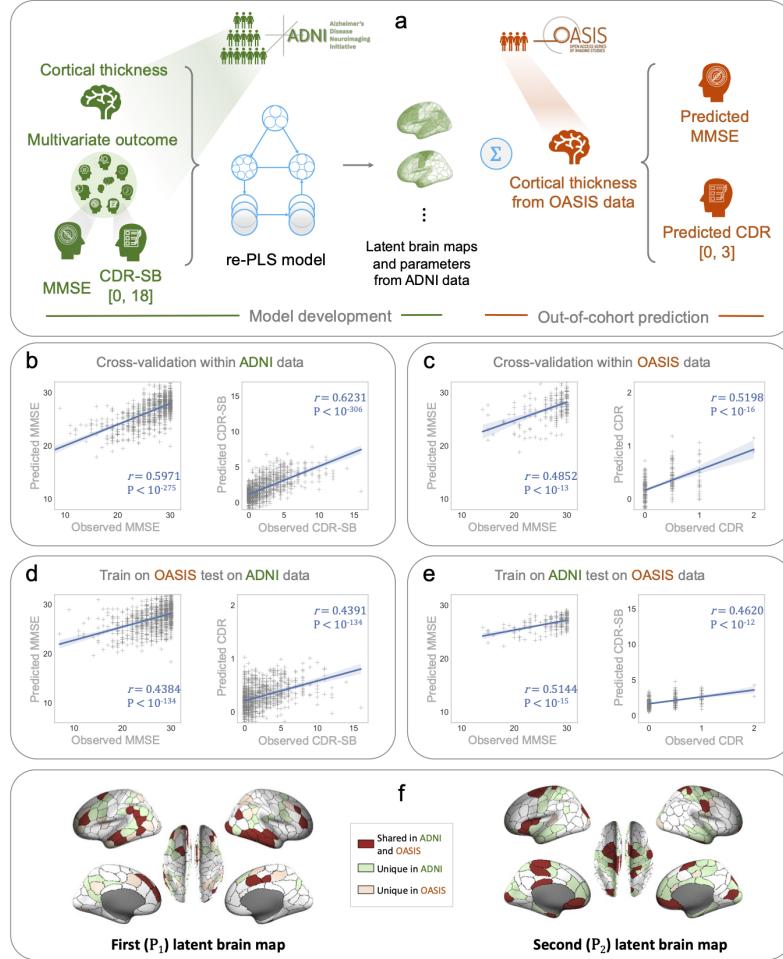
289 mode. The second longitudinal map, $\mathbf{P}_2^{\text{long}}$, corresponds to the sensorimotor cortex,
290 the temporal pole, and parts of the visual cortex. The third longitudinal latent brain
291 map, $\mathbf{P}_3^{\text{long}}$, is associated with parts of the temporal, parietal, and occipital areas, and
292 a portion of the OFC. Interestingly, all three longitudinal \mathbf{P}^{long} maps (see Fig. 5c)
293 overlap a great deal with the first three cross-sectional \mathbf{P} maps (see Fig. 4a). This
294 suggests that cortical thickness from these areas may be useful biomarkers for both
295 cross-sectional and longitudinal AD studies.

296 Additionally, we investigate the \mathbf{Q}^{long} loading matrix to further understand how
297 the identified latent spaces may contribute to predicting disease status. In re-PLS
298 framework, each $\mathbf{Q}_i^{\text{long}}$ map sits along the projection of the associated $\mathbf{P}_i^{\text{long}}$ map
299 onto the disease label space, capturing how variations in cortical thickness relate to
300 clinical diagnosis over time. Our results show that the first two latent representations,
301 $\mathbf{Q}_1^{\text{long}}$ and $\mathbf{Q}_2^{\text{long}}$, contribute significantly to the prediction of CN and AD, while $\mathbf{Q}_3^{\text{long}}$
302 is most influential for predicting MCI. Additionally, we observe that CN status is
303 positively associated with weights in $\mathbf{P}_1^{\text{long}}$ and $\mathbf{P}_2^{\text{long}}$ maps, but negatively associated
304 with weights in $\mathbf{P}_3^{\text{long}}$ map; this pattern is reversed for AD (see Fig. 5d).

305 2.3 From cross-subject to cross-cohort AD prediction

306 The reproducibility of the identified latent brain maps derived from machine learning
307 is crucial for generalising our findings, particularly for disease prediction in previously
308 unseen subjects. In this section, we evaluate reproducibility of re-PLS and its identified
309 neural biomarkers. We do so by expanding our cross-subject analyses using ADNI
310 data [49] to cross-cohort studies using data from ADNI and OASIS [50]. Specifically,
311 we consider three scenarios. First, we repeat the cross-subject analyses using ADNI
312 and OASIS data, respectively. Second, we test the model learned and the neural
313 biomarkers extracted from ADNI data on OASIS data. Third, we reverse the process
314 and demonstrate the possibility of Training on Small and Testing on Large (ToSToL)
315 data, where features extracted from smaller OASIS data are used to predict disease
316 outcomes in much larger ADNI data.

317 We consider two disease outcomes, MMSE and CDR/CDRSB scores, available in
318 both datasets. As CDRSB (used in ADNI) ranges from 0 to 18 and CDR score (used
319 in OASIS) is between 0 and 2, to avoid data leakage and evaluate the generalisabil-
320 ity of re-PLS and the identified neural biomarkers, we use the original scale of the
321 CDR/CDRSB scores. Specifically, we directly trained the re-PLS using cortical thick-
322 ness data and CDR-SB scores in ADNI data, and tested the model on cortical thickness
323 data in OASIS, and obtained predicted CDR-SB scores for OASIS samples. We then
324 compared predicted CDR-SB scores with observed CDR scores in OASIS to assess
325 the reproducibility of the model and neural biomarkers. We then repeat the same
326 cross-cohort analysis, training the model on cortical thickness data and CDR scores in
327 OASIS and evaluating it on ADNI data to obtain predicted CDR scores and compare
328 predicted scores with observed CDR-SB scores. Additionally, to evaluate the general-
329 izability of the latent brain maps (e.g., in Fig. 4a) during cross-cohort validation, we
330 train the model using cortical thickness data and eight outcomes in ADNI and eval-
331 uate if the latent brain maps developed from ADNI predict MMSE and CDR in OASIS
332 data. We note that when training the model using cortical thickness data and only



333 MMSE and CD-SB scores in ADNI, the out-of-cohort prediction results for MMSE
 334 and CDR in OASIS improve further, and that the latent brain maps extracted using

335 different outcomes would naturally be different. To ensure consistency, we applied the
336 same imaging preprocessing pipeline to both datasets.

337 We assess the performance of the cross-cohort analyses across four scenarios (see
338 Fig. 6). Panel (a) presents the schematic of the cross-cohort predictive modelling using
339 re-PLS. Panels (b) and (c) portray the reproducibility of re-PLS in performing the
340 cross-subject analysis (for ADNI and OASIS data, respectively). Panels (d)-(e) demon-
341 strate the reproducibility of re-PLS in performing the cross-cohort analyses (trained
342 on OASIS data and tested on ADNI data and *vice versa*). Panel (f) visualises the
343 most important and consistent brain regions for each latent map, highlighting shared
344 regions between the ADNI and OASIS datasets as well as those unique to each cohort.

345 In within-cohort analyses, re-PLS generally demonstrates stronger performance
346 compared to standard PLS. For within-OASIS analyses, the correlation between the
347 predicted and observed MMSE scores is 0.4852 ($P < 10^{-13}$) and the correlation
348 between the predicted and observed CDR(SB) scores is 0.5198 ($P < 10^{-16}$) using two
349 latent maps learned from re-PLS. Under the same settings, PLS achieves 0.4768 (P
350 $< 10^{-13}$) for MMSE prediction and 0.5192 ($P < 10^{-16}$) for CDR(SB) prediction. For
351 within-ADNI analyses, the correlation between the predicted and observed MMSE
352 scores is 0.5971 ($P < 10^{-257}$), and the correlation between the predicted and observed
353 CDR(SB) scores is 0.6231 ($P < 10^{-306}$) using the five latent maps learned from
354 re-PLS. See Fig. 6b and c. In comparison, PLS achieves 0.5973 ($P < 10^{-275}$) and
355 0.6209 ($P < 10^{-304}$) for MMSE and CDR(SB) predictions, respectively (see Table 1 in
356 the *Supplementary Materials*). We highlight that, in a small number of cases here and
357 below, where PLS achieves similar or modestly better predictive accuracy than re-PLS,
358 the advantage of re-PLS remains in its explainability: it extracts brain regions whose
359 pathways link features and disease outcomes that are not affected by confounders such
360 as age and gender while maintaining predictive accuracy.

361 For cross-cohort analyses, our results suggest that re-PLS and the derived neu-
362 ral biomarkers are reproducible and generalisable between cohorts, although the
363 prediction performance between-cohort is, as expected, slightly lower than it is within-
364 cohort. See Fig. 6d and e. Specifically, when trained on the smaller OASIS dataset
365 and testing on the larger ADNI dataset, re-PLS achieves 0.4384 ($P < 10^{-134}$) and
366 0.4391 ($P < 10^{-134}$) for MMSE and CDR predictions, respectively. Noticeably,
367 when trained on the larger ADNI data and tested on the smaller OASIS dataset,
368 re-PLS delivers good prediction performance, achieving 0.5144 ($P < 10^{-15}$) and
369 0.4620 ($P < 10^{-12}$) for MMSE and CDR predictions, respectively.

370 Next, we present the brain regions consistently identified across cohorts by re-PLS.
371 In Fig. 6f, we visualise regions that are shared between ADNI and OASIS datasets,
372 as well as cohort-specific areas. To find reproducible brain regions across cohorts,
373 we first discover latent brain maps independently from each dataset. We then iden-
374 tify overlapping brain regions selected from both datasets and further evaluate their
375 reproducibility through 50 repetitions of 10-fold cross-validation. To identify consis-
376 tent regions, we threshold the areas and retain the top 25% values. We then select
377 regions that appear consistently in 90% of the entire validation set. The first latent
378 map (\mathbf{P}_1) highlights consistent regions in the temporal cortex, specifically BA20 and
379 BA21, DLPFC (BA46), parts of parietal cortices (BA39), and a part of V1 on the right

380 hemisphere, indicating a high degree of reproducibility. The second latent map (\mathbf{P}_2)
381 also shows overlap across datasets, particularly in BA45, BA47, and parts of V2,
382 the temporal lobe (BA20), and the sensorimotor regions (BA4/BA6). These findings
383 suggest that the first two latent brain maps are not only predictive but also repro-
384ducible across subjects from two independent cohorts. In particular, the Default &
385 Control (\mathbf{P}_1) map plays a dominant role in cross-cohort prediction, as evidenced by
386 performance when trained on ADNI and tested on OASIS cohort, despite variabil-
387ity between cohorts. In parallel, the results also reveal dataset-specific differences. In
388 the first latent brain map, OASIS-specific regions (in orange) are more concentrated
389 in the occipital and parietal lobes, while ADNI-specific regions (in green) seem more
390 concentrated in the frontal and temporal lobes. In the second latent map, OASIS-
391 specific regions include small unique localisations in the primary visual cortex and
392 BA43, whereas ADNI-specific regions are concentrated in the temporal, motor, and
393 visual association areas.

394 Taken together, our results show that re-PLS is not only reproducible and general-
395 isable for cross-subject (but within-cohort) analysis, but also for cross-cohort analysis:
396 the trained model and derived neural biomarkers from one cohort predict, without
397 further model fitting, clinically relevant outcomes in subjects from a different cohort.
398 Additionally, our results suggest that, in addition to transferring the findings from
399 larger datasets to smaller ones, re-PLS can be trained on smaller datasets and extrapol-
400 ated to larger datasets, suggesting its potential utility in handling data size disparities
401 for multi-centre and multi-cohort studies.

402 3 Discussion

403 Identifying pathways between high-dimensional multivariate brain data and multivari-
404 ate, non-pairwise-correlated behavioural, cognitive, and disease outcomes is central to
405 advancing our knowledge about how anatomical distribution and functional integra-
406 tion of cortical irregularities may give rise to neurodegenerative diseases. Equally, it is
407 critical to predict disease progression that may manifest across different behavioural,
408 cognitive, and disease domains. In this article, we develop re-PLS to (1) chart the
409 pathways between high-dimensional multivariate brain cortical thickness data (inputs)
410 and multivariate disease and behaviour data (outcomes); (2) simultaneously predict
411 multiple, non-pairwise-correlated outcomes; (3) control for age and gender (con-
412 founding variables) affecting both the inputs, the outcomes, and the pathways
413 in-between; (4) assess disease scores cross-sectionally and disease progression longi-
414 tudinally; and (5) reproduce and generalise the predictive model and the selected
415 features cross-subject and -cohort.

416 The re-PLS framework first obtains the residuals, unaffected by the confounders,
417 containing information on cortical thickness and outcomes via residual learning. It
418 then performs PLS learning between the brain data-specific and outcome-specific
419 residuals to estimate feature weights that quantify the relationship between brain
420 data and disease-related outcomes. The model finally uses the residuals, the con-
421 founders (now covariates), and the estimated parameters to predict multivariate
422 outcomes in new subjects.

423 We first examine the method's efficacy using data from CN subjects, individuals
424 with MCI, and AD patients from ADNI, a multi-centre study aiming at developing
425 biomarkers for AD [51]. Our results show that re-PLS framework is promising for iden-
426 tifying, separating, and estimating unique pathways between high-dimensional cortical
427 thickness data and multivariate cognitive and behavioural scores. The identified brain
428 regions are mainly in the temporal, frontal, and sensorimotor areas, supporting pre-
429 vious findings [7–9, 52–56]. Additionally, our results have provided new insights: we
430 identify several nearly orthogonal “predictive AD biomarkers” that are jointly but
431 differentially predictive of multivariate outcomes related to different behavioural and
432 cognitive traits of AD. Finally, extending the model to longitudinal settings, we dis-
433 cover potential “longitudinal AD biomarkers” that are not only useful to explain how
434 AD is affected spatially in the cortical areas over time but also promising to help
435 predict longitudinal disease course and progression.

436 Next, to showcase the generalisability and reproducibility of re-PLS, we first per-
437 form a 10-fold CV. The model is iteratively trained on nine folds of the data and
438 tested on the remaining fold without further model fitting (note that no subjects
439 from the training data are in the testing set). It then iterates, training the model on
440 nine new golds and testing it on the new remaining fold, and so on. Although our
441 results in Fig. 4 highlight that parameters and pathways learned from the training
442 data are helpful to predict multivariate AD outcomes in previously unseen subjects,
443 it remains possible that the model may not capture the data variability across folds.
444 To that end, we perform ten additional analyses with different CV settings. Specifi-
445 cally, we set aside $x\%$ (where $x = 0, 10, 20, \dots, 90$) of the data for an additional step
446 of out-of-sample test and run LOOCV on $(100 - x)\%$ of the data; when $x = 0$, one
447 runs LOOCV on the entire ADNI data. To avoid a (un)lucky split (*e.g.*, the train-
448 ing data contains many subjects with AD and MCI, and the testing data contains
449 many CNs), we perform stratified sampling. Taking $x = 70$ as an example, we ran-
450 domly select 70% of AD subjects, 70% of the people with MCI, and 70% of CN -
451 they form the training set, which is proportional to and representative of the entire
452 data. The results show that the brain maps in the additional analyses, across vari-
453 ous cross-validation settings, are generally consistent with those in Fig. 4 via 10-fold
454 CV (see Figs. 10 to 19 in the *Supplementary Materials*). Additionally, the performance
455 for predicting multivariate outcomes remains high and is consistent among different
456 CV settings. Across all CV settings, the Default & Control map (\mathbf{P}_1) and Sensori-
457 motor map (\mathbf{P}_2) are generally consistent across these 10 additional CVs. The OFC
458 map (\mathbf{P}_3) and the DLFPPF-Broca map (\mathbf{P}_4) are also consistent up to a sign (the iden-
459 tified key brain areas are similar with comparable weights of importance, but the signs
460 of the weights may flip) and become increasingly stabilized as more data are used for
461 training. The sign flip, however, does not affect interpretation and prediction. This is
462 because (a) the method identified the same brain regions; (b) a sign flip does not affect
463 prediction: if the \mathbf{P}_i map has a sign flip, the corresponding \mathbf{Q}_i also has a sign flip,
464 thus the sign of prediction in Eq. (13) remains the same. The Visuomotor map (\mathbf{P}_5)
465 explains the least amount of variability and is more variable across CV settings. Taken
466 together, the additional cross-validation analyses suggest the utility of re-PLS in pre-
467 dicting multivariate outcomes and that the model performance and neurobiological

468 explanation are consistent across different cross-validation mechanisms. Particularly,
469 the consistency of the Default & Control map (\mathbf{P}_1), Sensorimotor map (\mathbf{P}_2), OFC
470 map (\mathbf{P}_3) and DLPFC-Broca map (\mathbf{P}_4), and their convergence property as more data
471 are used, suggest the strong plausibility of them being sensible predictive and explain-
472 able “neural biomakers” for AD. In concert, these explorations further demonstrate
473 the generalisability and reproducibility of the method in identifying brain regions that
474 are predictive of those non-pairwise-corrected outcomes.

475 Moreover, we demonstrate that the reproducibility of the neural biomarkers and
476 re-PLS method extends to independent datasets and cross-cohort analysis using ADNI
477 and OASIS data. These explorations show three advantages of the proposed method.
478 First, re-PLS is not only generalisable in terms of (out-of-sample and out-of-cohort)
479 prediction but also in terms of explanation (regarding the extracted latent biomarkers -
480 the latent brain maps and associated parameters learned from ADNI data). Especially,
481 the Default and Control map (\mathbf{P}_1), when directly coupled with cortical thickness
482 data from OASIS data without further model fitting or fine-tuning, predicts MMSE
483 and CDR scores in OASIS data. Second, the reproducibility of re-PLS in handling
484 the ToSToL (Training on Small and Testing on Large) problem suggests that re-PLS
485 can transfer knowledge from a smaller dataset to a larger dataset. Third, re-PLS is
486 useful for out-of-sample or -cohort prediction, even if the scales of clinical outcomes
487 in training and testing differ. For example, the model trained on cortical thickness
488 data and CDR-SB scores (ranging between 0 and 18) in ADNI data predicts CDR
489 scores (ranging between 0 and 3) in OASIS data, and *vice versa*.

490 There are several limitations to this study. First, the nature of the imaging and cog-
491 nitive data implies that the identified pathways are associative, although our methods
492 selected brain regions whose cortical thickness is significantly predictive of multiple
493 cognitive outcomes (which raises association to out-of-sample and -cohort prediction).
494 Future studies should examine whether some of the identified brain markers and path-
495 ways between the high-dimensional neural data and multiple outcomes can be raised
496 to causal relationships. A beginning can perhaps be made by studying individuals
497 with cortical lesions in the identified AD-related areas and examining if they exhibit
498 AD-like behaviour and cognitive symptoms; combining re-PLS and causal inference
499 may be helpful in this effort. Second, although re-PLS can perform longitudinal AD
500 prediction, the algorithm was evaluated on sparse time points. This was partly due
501 to the nature of the disease (brain structure degenerates progressively at a relatively
502 slow pace, so it is perhaps unnecessary to have frequent assessments) and, in part, due
503 to sparse measurements. Making a semi-continuous assessment of cognitive impair-
504 ment, however, may help paint a refined, and perhaps more accurate, trajectory of
505 the disease course, assist in monitoring symptom progression, and, for patients under
506 treatment, evaluate the treatment efficacy more regularly and timely. Future analysis
507 may extend re-PLS to more densely measured outcomes. Future analysis may refine
508 patients into early and advanced AD patients and make finer forecasts. In parallel,
509 one can apply re-PLS on MCI subjects and then follow up and apply re-PLS to data
510 from the same subjects a few years later to study disease progression. Third, although
511 our method unveils latent maps between brain regions and AD outcomes, the latent
512 maps are not deep (in the sense of deep learning). One major challenge with the

513 “deeper” models is that, while solving the many-to-many disease prediction problem,
514 it is at present oftentimes difficult to make neurobiological sense of the identified brain
515 areas when the weights of the (deep) hidden layers are projected on the brain space.
516 As one of our goals here is to introduce a methodologically sound and neurobiologically
517 meaningful method that delivers both predictive power and can identify brain
518 areas and pathways that may shed light on neurology and neuropathology, we reserve
519 explainable AD prediction via deep learning for future work. Fourth, the definition
520 of AD is only based on symptoms, and the clinical diagnosis of patients only assigns
521 them a categorical label of “AD”. Certainly, using re-PLS, we can further stratify the
522 patients into different groups based on their continuous (non-categorical) predicted
523 disease scores or the predicted multivariate cognitive and behaviour scores. One can
524 even build a new, finer continuous AD total score leveraging the multivariate cognitive
525 and behaviour scores (as different subjects have differential degeneration across those
526 multivariate cognitive and behaviour subdomains); an example of a simple score can
527 be a weighted sum of the predicted multivariate scores. These potentials may offer
528 new insights about how to provide a finer prediction of the disease, but we cannot
529 ascertain the validity using current data. Indeed, as a noticeable proportion of AD
530 patients will end up with another diagnosis, such as FTD, LATE, PART, and vascular
531 dementia, it is important to validate whether re-PLS can further predict AD patients
532 into these groups. Future work can train re-PLS on subjects with FTD, LATE, PART,
533 and vascular dementia to verify this possibility. Finally, although one of the key pre-
534 dictive goals in this paper is to address a many-to-many problem, re-PLS can also be
535 used in the future to predict single outcomes (as univariate outcomes are, in essence,
536 special cases of multivariate outcomes).

537 To summarise, our analyses demonstrated the possibility of identifying and iso-
538 lating the many-to-many pathways between high-dimensional multivariate brain data
539 and multiple, non-pairwise-correlated cognitive and behavioural outcomes, both cross-
540 sectionally and longitudinally, and using the former to predict the latter in the face of
541 confounding variables, in new subjects within the same cohort, and in subjects from
542 a different cohort.

543 4 Methods and Materials

544 **Subject information.** This article uses data from the Alzheimer’s Disease Neu-
545 roimaging Initiative (ADNI) [49] and the Open Access Series of Imaging Studies
546 (OASIS) [50].

547 The ADNI MRI data release includes a total of 1,196 subjects. Among them,
548 45 subjects are under 60 years old, 305 are in their 60s, 620 are in their 70s,
549 and 226 are 80 or older. At baseline, 321 were CN, 28 had subjective memory
550 complaint (SMC), 663 had mild cognitive impairment (MCI), including 234 with
551 early mild cognitive impairment (EMCI) and 429 with late mild cognitive impairment
552 (LMCI), and 184 were diagnosed with AD. The statuses of AD, MCI, or CN
553 are diagnostic outcomes made by clinicians primarily based on clinical criteria (see
554 the ADNI2 Procedures Manual at: https://adni.loni.usc.edu/wp-content/uploads/2024/02/ADNI2_Procedures_Manual_28Feb2024.pdf). During the follow-ups, 12 CNs

556 changed to MCIs, 1 CN to AD, 2 SMCs to MCIs, and 170 MCIs to ADs. Additionally,
557 9 subjects with either EMCIs or LMCIs reverted to CNs, 26 subjects with SMC
558 reverted to CNs, and 2 AD patients reverted to MCIs. For the cross-sectional study,
559 we used data from all 1,196 subjects. For the longitudinal study, we define CN = cog-
560 nitively normal, sMCI = stable MCI (a subject assessed as an MCI during the first
561 visit and continued to be diagnosed as an MCI during subsequent visits), pMCI =
562 progressive MCI (a subject was diagnosed as an MCI during early visits and was later
563 diagnosed with AD), and AD = Alzheimer's disease. We excluded 52 subjects from the
564 longitudinal study because they were either labelled as SMC at baseline (28 subjects),
565 converted from CN to MCI (12 subjects), or from CN to AD (1 subject), from AD to
566 MCI (2 subjects), or from EMCI or LMCI to CN (9 subjects); they do not fall into
567 one of the four major groups (CN, sMCI, pMCI, and AD), and their sub-sample sizes
568 were too small to support meaningful analysis. Thus, the longitudinal study consists
569 of 1,144 subjects, including 308 CNs, 484 sMCIs, 170 pMCIs, and 182 AD.

570 All participants provided written informed consent. Participants were recruited
571 across North America and agreed to complete a variety of imaging and clinical assess-
572 ments [49]. The ADNI Clinical Core manages all sites, and the Data and Publications
573 Committee (DPC) vets all publications using ADNI data [57]. Full details regarding
574 the initiative and the datasets are available at <https://adni.loni.usc.edu/methods/documents>.

575 This paper considers eight disease and behavioural outcomes from the
576 Clinical Dementia Rating (CDR), the Alzheimer's Disease Assessment Scale-
577 Cognitive (ADAS-COG), the Mini-Mental State Examination (MMSE), and the Rey
578 Auditory Verbal Learning Test (RAVLT). More specifically, the CDR is a score that
579 is derived from the summation of scores from each of the six categories: Memory (M),
580 Orientation (O), Judgment and Problem Solving (JPS), Community Affairs (CA),
581 Home and Hobbies (HH) and Personal Care (PC). ADAS-COG assesses learning
582 and memory, language production, comprehension, constructional praxis, ideational
583 praxis, and orientation. It includes tasks/tests such as Word Recall, Naming, Word
584 Recognition, Remembering Tests, Word-Finding, and Spoken Language Ability. The
585 MMSE is a brief cognitive screening test used to assess cognitive impairment and
586 cognitive decline. A higher score on the MMSE indicates better cognitive function,
587 while a lower score may suggest the presence of cognitive impairment or dementia.
588 The RAVLT assesses abilities like immediate memory, delayed recall, and recogni-
589 tion memory across five immediate learning trials. Further explanations regarding the
590 scores we used in the analysis are in Table 2; full explanations of ADNI scores and
591 procedures manual documents at <https://adni.loni.usc.edu/methods/documents>. We
592 selected eight scores spanning key AD-relevant domains (memory, executive function,
593 global cognition, and functional status) to provide comprehensive disease character-
594 isation and demonstrate multivariate relationships across cognitive and functional
595 dimensions.

596 In the cross-cohort setting, we use the OASIS-1 dataset [50], which includes 225
597 subjects with matching data to those in the ADNI: MRI images and two cogni-
598 tive outcome measures: CDR (Clinical Dementia Rating) and MMSE (Mini-Mental
599

Table 2: Demographic and test information for the studied sample.

Age	Age group and size	Gender	Total samples
73.39 ± 7.17	< 60: 45 60-70: 305 70-80: 620 > 80: 226	M/F: 662/534	2,862
Baseline		Followups	
CN: 321 subjects		CN → CN: 308 subjects CN → MCI: 12 subjects CN → AD: 1 subject	
SMC: 28 subjects			
MCI: 663 subjects		MCI → MCI: 484 subjects MCI → AD: 170 subjects MCI → CN: 2 subject	
AD: 184 subjects		AD → MCI: 2 subjects AD → AD: 182 subjects	
Status	Age at baseline	Gender	
CN (308 subjects)	74.50 ± 5.70	M/F: 153/155 (49.9% M)	
sMCI (484 subjects)	72.57 ± 5.59	M/F: 290/194 (59.9% M)	
pMCI (170 subjects)	73.27 ± 7.12	M/F: 99/71 (58.2% M)	
AD (182 subjects)	74.70 ± 7.66	M/F: 96/86 (52.7% M)	
Test	Abbreviation	Meaning	
ADAS-COG	ADAS 11	It is the original ADAS-COG test, including 11 items that assess cognitive function: 1. Spoken language ability. 2. Comprehension of spoken language. 3. Recall of test instructions. 4. Word-finding difficulty in spontaneous speech. 5. Following commands. 6. Naming objects and fingers. 7. Constructional praxis. 8. Ideational praxis. 9. Orientation. 10. Word-recall task. 11. Word recognition task.	
	ADAS 13	ADAS 13 (or ADAS-COG 13-item test) includes 11 original ADAS-COG items plus Delayed Word Recall and Number Cancellation.	
	ADAS Q4	Q4 task is the Delayed Word Recall task in ADAS13.	
The Clinical Dementia Rating (CDR)	CDR-SB	The CDR Scale Sum of Boxes (CDR-SB) score is obtained by summing the evaluator's ratings across six domains: Memory, Orientation, Judgment and Problem Solving, Personal Care, Home and Hobbies, and Community Affairs.	
The Mini Mental State Examination (MMSE)	MMSE	The MMSE assessment evaluates orientation to time and place, recall, attention, calculation, and language abilities.	
The Rey Auditory Verbal Learning Test (RAVLT)	RAVLT Immediate	The RAVLT is a list of learning tasks that test word recall using multiple trials after a time delay. The RAVLT Immediate score measures a participant's word recall after the first list learning trial. The score measures the number of words remembered across all trials.	
	RAVLT Learning		
	RAVLT percent forgetting	The RAVLT per cent forgetting score measures the number of words from the original word list missed over all trials in percentage.	

600 State Examination). The MMSE scores are consistent across both datasets. The stan-
601 dard CDR scores range from 0 to 3, categorized as follows: 0 (no dementia, normal),
602 0.5 (very mild dementia, questionable), 1 (mild dementia), 2 (moderate dementia),
603 and 3 (severe dementia); the CDR-SB (Clinical Dementia Rating Sum of Boxes) used
604 in ADNI is more detailed, ranging from 0 (no impairment) to 18 (severe impairment).

605 **4.1 Data Acquisition and Preprocessing**

606 For the ADNI dataset, we used the preprocessed MRI images. The scans were acquired
607 using both 1.5T and 3T with different scanner protocols in each phase (ADNI 1, ADNI
608 2, ADNI GO, and ADNI 3). All MRI scans in the ADNI dataset were preprocessed
609 using the CAT12 toolbox (<http://dbm.neuro.uni-jena.de/cat>). We used the surface
610 segmentation tool with default parameters to extract cortical thickness from MRI
611 scans. For the OASIS dataset, we used the cortical thickness measurements from
612 FreeSurfer provided by OASIS. We then used the spatial registration tool in CAT12
613 to map the atlas and individual brains to extract surface-based atlas maps using the
614 Schaefer-Yeo 7 networks atlas [24] with a 200-parcel parcellation for both datasets.
615 Secondary data analysis, including re-PLS, was conducted using a customised Python
616 package available at <https://github.com/thanhvd18/rePLS>.

Algorithm 1 The Residual Partial Least Squares Learning

Step 0 (Data organisation): Organize sample data matrix \mathbf{X} as $N \times P$, outcomes matrix \mathbf{Y} as $N \times J$, and confounding variables matrix \mathbf{Z} as $N \times R$, where N , P , J , and R represent the number of samples, features, outcomes, and confounding variables, respectively.

Step 1 (Obtaining residuals: $\varepsilon^{\mathbf{X}|\mathbf{Z}}$ and $\varepsilon^{\mathbf{Y}|\mathbf{Z}}$): Removing confounding effects:

$$\varepsilon^{\mathbf{X}|\mathbf{Z}} := \mathbf{X} - \tilde{\mathbf{Z}}\beta^{\mathbf{X}|\mathbf{Z}}, \quad \varepsilon^{\mathbf{Y}|\mathbf{Z}} := \mathbf{Y} - \tilde{\mathbf{Z}}\beta^{\mathbf{Y}|\mathbf{Z}},$$

where $\beta^{\mathbf{X}|\mathbf{Z}} := (\tilde{\mathbf{Z}}^\top \tilde{\mathbf{Z}})^{-1} \tilde{\mathbf{Z}}^\top \mathbf{X}$ and $\beta^{\mathbf{Y}|\mathbf{Z}} := (\tilde{\mathbf{Z}}^\top \tilde{\mathbf{Z}})^{-1} \tilde{\mathbf{Z}}^\top \mathbf{Y}$, and $\tilde{\mathbf{Z}} := [\mathbf{1}_N \ \mathbf{Z}]$.

Step 2 (PLS on residuals $\varepsilon^{\mathbf{X}|\mathbf{Z}}$ and $\varepsilon^{\mathbf{Y}|\mathbf{Z}}$): Let q be the number of latent components to extract.

for $s = 1$ to q **do**

 a. Compute weight vectors and score vectors:

 Initialize \mathbf{u}_s as the first column of $\varepsilon^{\mathbf{Y}|\mathbf{Z}}$.

repeat

$$\mathbf{w}_\mathbf{X} := \frac{(\varepsilon^{\mathbf{X}|\mathbf{Z}})^\top \mathbf{u}_s}{\|(\varepsilon^{\mathbf{X}|\mathbf{Z}})^\top \mathbf{u}_s\|}, \quad \mathbf{t}_s := \varepsilon^{\mathbf{X}|\mathbf{Z}} \mathbf{w}_\mathbf{X},$$

$$\mathbf{w}_\mathbf{Y} := \frac{(\varepsilon^{\mathbf{Y}|\mathbf{Z}})^\top \mathbf{t}_s}{\|(\varepsilon^{\mathbf{Y}|\mathbf{Z}})^\top \mathbf{t}_s\|}, \quad \mathbf{u}_s := \varepsilon^{\mathbf{Y}|\mathbf{Z}} \mathbf{w}_\mathbf{Y}.$$

until \mathbf{t}_s converges.

 b. Compute loadings:

$$\mathbf{p}_s := \frac{(\varepsilon^{\mathbf{X}|\mathbf{Z}})^\top \mathbf{t}_s}{\mathbf{t}_s^\top \mathbf{t}_s}, \quad \mathbf{q}_s := \frac{(\varepsilon^{\mathbf{Y}|\mathbf{Z}})^\top \mathbf{t}_s}{\mathbf{t}_s^\top \mathbf{t}_s}.$$

 c. Deflate residuals:

$$\varepsilon^{\mathbf{X}|\mathbf{Z}} := \varepsilon^{\mathbf{X}|\mathbf{Z}} - \mathbf{t}_s \mathbf{p}_s^\top, \quad \varepsilon^{\mathbf{Y}|\mathbf{Z}} := \varepsilon^{\mathbf{Y}|\mathbf{Z}} - \mathbf{t}_s \mathbf{q}_s^\top.$$

 d. Store the results:

 Weight matrices: $\mathbf{W}_\mathbf{X}(:, s) := \mathbf{w}_\mathbf{X}$, $\mathbf{W}_\mathbf{Y}(:, s) := \mathbf{w}_\mathbf{Y}$

 Loading matrices: $\mathbf{P}(:, s) := \mathbf{p}_s$, $\mathbf{Q}(:, s) := \mathbf{q}_s$.

end for

617 **Notations and data organizations.** We begin by defining the notations used
618 throughout this article. Let $\mathbf{X} \in \mathbb{R}^{N \times P}$ represents the input data with N subjects
619 and P features. Let $\mathbf{Y} \in \mathbb{R}^{N \times J}$ and $\mathbf{Z} \in \mathbb{R}^{N \times R}$ be the outcome and confounder
620 matrices, respectively. Each subject i ($1 \leq i \leq N$), we define y_{ij} and z_{ir} as the j^{th}
621 outcome and the r^{th} confounding variable, respectively, for $1 \leq j \leq J$, and $, 1 \leq$

622 $r \leq R$. The dataset is partitioned into training and test sets of sizes N_{train} and N_{test}
623 respectively ($N = N_{\text{train}} + N_{\text{test}}$). The corresponding subsets of data are written as
624 $\mathbf{X}_{\text{train}} \in \mathbb{R}^{N_{\text{train}} \times P}$, $\mathbf{Y}_{\text{train}} \in \mathbb{R}^{N_{\text{train}} \times J}$, and $\mathbf{Z}_{\text{train}} \in \mathbb{R}^{N_{\text{train}} \times R}$, with similar definitions
625 for the test set.

626 **Residual Partial Least Squares (re-PLS) Learning.** We outline re-PLS
627 framework, which adjusts for confounding variables before performing partial least
628 squares regression. The process begins by computing residuals of the predictor and
629 outcome matrices with respect to the confounders \mathbf{Z} . Specifically, during training, we
630 define:

$$\beta_{\text{train}}^{\mathbf{Y}|\mathbf{Z}} := (\tilde{\mathbf{Z}}_{\text{train}}^\top \tilde{\mathbf{Z}}_{\text{train}})^{-1} \tilde{\mathbf{Z}}_{\text{train}}^\top \mathbf{Y}_{\text{train}}, \quad \varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}} := \mathbf{X}_{\text{train}} - \tilde{\mathbf{Z}}_{\text{train}} \beta_{\text{train}}^{\mathbf{X}|\tilde{\mathbf{Z}}}, \quad (1)$$

$$\beta_{\text{train}}^{\mathbf{X}|\mathbf{Z}} := (\tilde{\mathbf{Z}}_{\text{train}}^\top \tilde{\mathbf{Z}}_{\text{train}})^{-1} \tilde{\mathbf{Z}}_{\text{train}}^\top \mathbf{X}_{\text{train}}, \quad \varepsilon_{\text{train}}^{\mathbf{Y}|\mathbf{Z}} := \mathbf{Y}_{\text{train}} - \tilde{\mathbf{Z}}_{\text{train}} \beta_{\text{train}}^{\mathbf{Y}|\tilde{\mathbf{Z}}}, \quad (2)$$

631 where $\tilde{\mathbf{Z}}_{\text{train}} := [\mathbf{1}_{N_{\text{train}}} \ \mathbf{Z}_{\text{train}}]$ and $\mathbf{1}_{N_{\text{train}}}$ denotes a column vector of ones of size
632 N_{train} used to add an intercept term in linear regression. This step makes sure $\varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$
633 and $\varepsilon_{\text{train}}^{\mathbf{Y}|\mathbf{Z}}$ are both zero-centered. For a test subject, we compute:

$$\varepsilon_{\text{test}}^{\mathbf{X}|\mathbf{Z}} := \mathbf{X}_{\text{test}} - \tilde{\mathbf{Z}}_{\text{test}} \beta_{\text{test}}^{\mathbf{X}|\mathbf{Z}}, \quad (3)$$

$$\varepsilon_{\text{test}}^{\mathbf{Y}|\mathbf{Z}} := \mathbf{Y}_{\text{test}} - \tilde{\mathbf{Z}}_{\text{test}} \beta_{\text{test}}^{\mathbf{Y}|\mathbf{Z}}. \quad (4)$$

634 Note that the confounding structure \mathbf{Z} is effectively removed from both \mathbf{X} and
635 \mathbf{Y} through linear regression, so the confounders no longer influence the residuals. To
636 make predictions on unseen data, we use:

$$\begin{aligned} \mathbf{Y}_{\text{test}} &= \varepsilon_{\text{test}}^{\mathbf{Y}|\mathbf{Z}} + \tilde{\mathbf{Z}}_{\text{test}} \beta_{\text{test}}^{\mathbf{Y}|\mathbf{Z}} \\ &\approx f(\varepsilon_{\text{test}}^{\mathbf{X}|\mathbf{Z}}) + \tilde{\mathbf{Z}}_{\text{test}} \beta_{\text{test}}^{\mathbf{Y}|\mathbf{Z}}. \end{aligned} \quad (5)$$

637 Here, the function $f(\cdot)$ represents the mapping from residualised covariates to residualised
638 outcomes. To learn this relationship, we perform PLS on residuals $\varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$ and
639 $\varepsilon_{\text{train}}^{\mathbf{Y}|\mathbf{Z}}$, a process which we term *Residual PLS Learning* (re-PLS). The two key points
640 of performing re-PLS are:

- 641 (a) After removing the confounding effect, the residuals $\varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$ and $\varepsilon_{\text{train}}^{\mathbf{Y}|\mathbf{Z}}$ are likely
642 to provide better insights about the potential relationship (see Section 1 of the
643 *Supplementary Materials*) between the multivariate features $\mathbf{X}_{\text{train}}$ and outcomes
644 $\mathbf{Y}_{\text{train}}$ (compared to the case when confounder effect exists), as the residuals still
645 contain information about $\mathbf{X}_{\text{train}}$ and $\mathbf{Y}_{\text{train}}$ but are independent of $\mathbf{Z}_{\text{train}}$.
- 646 (b) After removing the effect of $\mathbf{Z}_{\text{train}}$ on $\mathbf{X}_{\text{train}}$, we consider $\varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$ as the new, trans-
647 formed input variable (or transformed features), and the initial confounding effect
648 of $\mathbf{Z}_{\text{train}}$ on $\mathbf{Y}_{\text{train}}$ now becomes a covariate effect (note that $\mathbf{Z}_{\text{train}}$ affects $\mathbf{Y}_{\text{train}}$,
649 $\varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$ affects $\mathbf{Y}_{\text{train}}$, but $\mathbf{Z}_{\text{train}}$ does not have any effect on $\varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$). This observation
650 is valuable for performing out-of-sample prediction.

651 In the following, we outline the second key point of rePLS learning. We project
 652 data into latent space instead of directly regressing the outcome on the input. We
 653 then learn regression coefficients in this latent space and transform the predictions
 654 back to the original variable space.

655 Each component (denoted as s) is learned at one time. The first step is to learn
 656 weight vectors (\mathbf{w}_X and \mathbf{w}_Y) that maximize the covariance between score vectors:

$$\mathbf{t}_s := \varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}} \mathbf{w}_X, \quad (6)$$

$$\mathbf{u}_s := \varepsilon_{\text{train}}^{\mathbf{Y}|\mathbf{Z}} \mathbf{w}_Y. \quad (7)$$

657 For simplicity, in the remaining part of the paper, we use notation without “train”
 658 to denote data used during training or parameters estimated from training data (for
 659 example, $\varepsilon^{\mathbf{X}|\mathbf{Z}} := \varepsilon_{\text{train}}^{\mathbf{X}|\mathbf{Z}}$ and $\varepsilon^{\mathbf{Y}|\mathbf{Z}} := \varepsilon_{\text{train}}^{\mathbf{Y}|\mathbf{Z}}$). The score vectors are updated iter-
 660 atively by alternating updates until convergence. Then the score vector \mathbf{t}_s captures the
 661 direction in $\varepsilon^{\mathbf{X}|\mathbf{Z}}$ that has the highest covariance with $\varepsilon^{\mathbf{Y}|\mathbf{Z}}$. The loading matrices are
 662 obtained by regressing $\varepsilon^{\mathbf{X}|\mathbf{Z}}$ and $\varepsilon^{\mathbf{Y}|\mathbf{Z}}$, respectively, on the score vector \mathbf{t}_s .

$$\mathbf{p} := \frac{(\varepsilon^{\mathbf{X}|\mathbf{Z}})^\top \mathbf{t}_s}{\mathbf{t}_s^\top \mathbf{t}_s}, \quad (8)$$

$$\mathbf{q} := \frac{(\varepsilon^{\mathbf{Y}|\mathbf{Z}})^\top \mathbf{t}_s}{\mathbf{t}_s^\top \mathbf{t}_s}. \quad (9)$$

663 The data matrices $\varepsilon^{\mathbf{X}|\mathbf{Z}}$ and $\varepsilon^{\mathbf{Y}|\mathbf{Z}}$ are deflated and then utilised to learn the next
 664 component.

$$\varepsilon^{\mathbf{X}|\mathbf{Z}} := \varepsilon^{\mathbf{X}|\mathbf{Z}} - \mathbf{t}_s \mathbf{p}^\top, \quad (10)$$

$$\varepsilon^{\mathbf{Y}|\mathbf{Z}} := \varepsilon^{\mathbf{Y}|\mathbf{Z}} - \mathbf{t}_s \mathbf{q}^\top. \quad (11)$$

665 After computing all components, we store the weight and loading vectors in the
 666 matrices $\mathbf{w}_X \in \mathbb{R}^{P \times I}$, $\mathbf{w}_Y \in \mathbb{R}^{P \times J}$, $\mathbf{P} \in \mathbb{R}^{P \times I}$, and $\mathbf{Q} \in \mathbb{R}^{P \times J}$ to make the final
 667 prediction. Since the columns of \mathbf{P} are generally not orthogonal, the latent score
 668 matrix \mathbf{T} cannot be directly recovered from $\varepsilon^{\mathbf{X}|\mathbf{Z}}$ using \mathbf{P} . Instead, we use the following
 669 relation:

$$\mathbf{T} = \varepsilon^{\mathbf{X}|\mathbf{Z}} \mathbf{w}_X (\mathbf{P}^\top \mathbf{w}_X)^{-1}.$$

670 This gives us the following form for predicting residualised outcomes from
 671 residualised covariates:

$$\begin{aligned} \varepsilon^{\mathbf{Y}|\mathbf{Z}} &= \mathbf{T} \mathbf{Q}^\top \\ &= \varepsilon^{\mathbf{X}|\mathbf{Z}} \mathbf{w}_X (\mathbf{P}^\top \mathbf{w}_X)^{-1} \mathbf{Q}^\top. \end{aligned} \quad (12)$$

672 We outline the entire procedure for computing these components in Algorithm 1
673 and provide simulation studies and model comparisons with other methods in Section
674 3 of the *Supplementary Materials*.

675 **Predict multivariate outcomes in new subjects.** Consider new subjects with
676 feature data \mathbf{X}_{test} and confounders \mathbf{Z}_{test} . The predicted outcome \mathbf{Y}_{test} for these new
677 subjects without additional model fitting is given by:

$$\mathbf{Y}_{\text{test}} = \underbrace{\varepsilon_{\text{test}}^{\mathbf{X}|\mathbf{Z}} \mathbf{W}_{\mathbf{X}} (\mathbf{P}^{\mathbf{T}} \mathbf{W}_{\mathbf{X}})^{-1} \mathbf{Q}^{\mathbf{T}}}_{\text{PLS-based prediction}} + \underbrace{\tilde{\mathbf{Z}}_{\text{test}} \beta^{\mathbf{X}|\mathbf{Z}}}_{\text{Confounder adjustment}}. \quad (13)$$

678 Note that after removing the confounding effect of \mathbf{Z}_{test} on \mathbf{X}_{test} , the residuals
679 $\varepsilon_{\text{test}}^{\mathbf{X}|\mathbf{Z}}$ are no longer affected by \mathbf{Z}_{test} . Therefore, the effect on the outcomes is now a
680 covariate effect, namely the second part in Eq. (13).

681 **Code availability**

682 The re-PLS Python source code is available at <https://github.com/thanhvd18/rePLS>.

683 **Data availability**

684 The ADNI data used in the preparation of this article were obtained from the
685 Alzheimer's Disease Neuroimaging Initiative database and are available through an
686 application at <https://adni.loni.usc.edu/data-samples/adni-data/#AccessData>. The
687 OASIS data used in this article were provided by OASIS-1 and are available through
688 an application at <https://sites.wustl.edu/oasisbrains/home/access>.

689 **Author contributions**

690 D.T.V. and O.Y.C. conceptualised the study. D.T.V. and O.Y.C. developed the meth-
691 ods. D.T.V. wrote the code, performed data processing and analysis, and wrote and
692 maintained the re-PLS package. D.T.V. obtained all the results and figures in the
693 manuscript. N.L.T. and O.Y.C. provided support and guidance for D.T.V. H.C., G.A.,
694 P.R., and G.N. provided neurobiological support. C.S.D., J.S.B., G.E.B., H.P., V.D.N.,
695 H.S., and H.Z. provided statistical and machine learning support. X.H., B.Z., W.H.,
696 X.W., and M.M. provided insights into disease prediction. Y.M. and G.P. provided
697 clinical and medical insights. O.Y.C., D.T.V., and D.C.C. wrote the manuscript, with
698 comments from all other authors.

699 **Acknowledgements**

700 The ADNI data for this project were funded by the Alzheimer's Disease Neu-
701 roimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904)
702 and the Department of Defence ADNI (Department of Defence award number
703 W81XWH-12-2-0012). The investigators within the ADNI contributed to the design
704 and implementation of ADNI and/or provided data, but they did not take part

705 in the analysis or preparation of this report. A full listing of ADNI investigators
706 is available at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf. ADNI is funded by the National Institute on Aging, the
707 National Institute of Biomedical Imaging and Bioengineering, and through gener-
708 ous contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's
709 Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers
710 Squibb Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.;
711 Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated
712 company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
713 Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical
714 Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale
715 Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharma-
716 ceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical
717 Company; and Transition Therapeutics. The Canadian Institutes of Health Research
718 provides funds to support ADNI clinical sites in Canada. Private sector contributions
719 are facilitated by the Foundation for the National Institutes of Health (www.fnih.org).
720 The grantee organisation is the Northern California Institute for Research and Educa-
721 tion, and the study is coordinated by the Alzheimer's Therapeutic Research Institute
722 at the University of Southern California. The Laboratory disseminates ADNI data for
723 Neuro Imaging at the University of Southern California.

724
725 The OASIS data used in this article were provided by OASIS-1: Cross-Sectional:
726 Principal Investigators: D. Marcus, R. Buckner, J. Csernansky, and J. Morris; P50
727 AG05681, P01 AG03991, P01 AG026276, R01 AG021910, P20 MH071616, U24
728 RR021382.

729 Conflicts of interest

730 Non-declared.

731 References

732 [1] Breijyeh, Z. & Karaman, R. Comprehensive review on Alzheimer's disease:
733 Causes and treatment. *Molecules* **25**, 5789 (2020).

734 [2] Scheltens, P. *et al.* Alzheimer's disease. *The Lancet* **397**, 1577–1590 (2021).

735 [3] Alzheimer's Association. 2020 Alzheimer's disease facts and figures. *Alzheimers*
736 *Dement.* **16**, 391–460 (2020).

737 [4] Querfurth, H. W. & LaFerla, F. M. Alzheimer's disease. *N. Engl. J. Med.* **362**,
738 329–344 (2010).

739 [5] Querbes, O. *et al.* Early diagnosis of Alzheimer's disease using cortical thickness:
740 Impact of cognitive reserve. *Brain* **132**, 2036–2047 (2009).

741 [6] Dickerson, B. C. *et al.* The cortical signature of Alzheimer's disease: Regionally
742 specific cortical thinning relates to symptom severity in very mild to mild AD
743 dementia and is detectable in asymptomatic amyloid-positive individuals. *Cereb.*
744 *Cortex* **19**, 497–510 (2009).

745 [7] Singh, V. *et al.* Spatial patterns of cortical thinning in mild cognitive impairment
746 and Alzheimer's disease. *Brain* **129**, 2885–2893 (2006).

747 [8] Du, A. *et al.* Different regional patterns of cortical thinning in Alzheimer's disease
748 and frontotemporal dementia. *Brain* **130**, 1159–1166 (2007).

749 [9] Lerch, J. *et al.* Focal decline of cortical thickness in Alzheimer's disease identified
750 by computational neuroanatomy. *Cereb. Cortex* **15**, 995–1001 (2005).

751 [10] Bakkour, A., Morris, J. & Dickerson, B. The cortical signature of prodromal AD:
752 Regional thinning predicts mild AD dementia. *Neurology* **72**, 1048–1055 (2009).

753 [11] Morris, J. Clinical dementia rating: A reliable and valid diagnostic and staging
754 measure for dementia of the Alzheimer type. *Int. Psychogeriatrics* **9**, 173–176
755 (1997).

756 [12] Tian, J. & Pearl, J. *A general identification condition for causal effects*, 567–573
757 (AAAI Press/The MIT Press, Menlo Park, CA, 2002).

758 [13] Skelly, A., Dettori, J. & Brodt, E. Assessing bias: The importance of considering
759 confounding. *Evid. Based. Spine. Care. J.* **3**, 9–12 (2012).

760 [14] Chén, O. The roles of statistics in human neuroscience. *Brain Sci.* **9**, 194 (2019).

761 [15] Rao, K. *et al. Prediction and classification of Alzheimer's disease using machine*
762 *learning techniques in 3D MR images*, 85–90 (IEEE, Coimbatore, India, 2023).

763 [16] Velayudhan, L. *et al.* Entorhinal cortex thickness predicts cognitive decline in
764 Alzheimer's disease. *J. Alzheimer's Dis.* **33**, 755–766 (2013).

765 [17] Preziosa, P. *et al.* Structural MRI correlates of cognitive impairment in patients
766 with multiple sclerosis: A multicenter study. *Hum. Brain Mapp.* **37**, 1627–1644
767 (2016).

768 [18] Saad, Y. *Iterative Methods for Sparse Linear Systems* Second edn (SIAM,
769 Philadelphia, PA, 2003).

770 [19] Zhang, K., Zuo, W., Chen, Y., Meng, D. & Zhang, L. Beyond a Gaussian denoiser:
771 Residual learning of deep CNN for image denoising. *IEEE Trans. Image Process.*
772 **26**, 3142–3155 (2017).

773 [20] Ringle, C., Sarstedt, M., Sinkovics, N. & Sinkovics, R. A perspective on using
774 partial least squares structural equation modelling in data articles. *Data Brief*

775 48, 109074 (2023).

776 [21] Wold, S., Sjöström, M. & Eriksson, L. PLS-regression: A basic tool of
777 chemometrics. *Chemometr. Intell. Lab. Syst.* **58**, 109–130 (2001).

778 [22] Trygg, J. & Wold, S. Orthogonal projections to latent structures (O-PLS). *J.*
779 *Chemom.* **16**, 119–128 (2002).

780 [23] Chén, O. *et al.* *The statistical analysis of the varying brain*, 700–704 (IEEE,
781 Hanoi, Vietnam, 2023).

782 [24] Schaefer, A. *et al.* Local-global parcellation of the human cerebral cortex from
783 intrinsic functional connectivity MRI. *Cereb. Cortex* **28**, 3095–3114 (2018).

784 [25] Mummery, C. *et al.* A voxel-based morphometry study of semantic dementia:
785 Relationship between temporal lobe atrophy and semantic memory. *Ann. Neurol.*
786 **47**, 36–45 (2000).

787 [26] Strotzer, M. One century of brain mapping using Brodmann areas. *Clin.*
788 *Neuroradiol.* **19**, 179–186 (2009).

789 [27] Johnson, K. *et al.* Tau positron emission tomographic imaging in aging and early
790 Alzheimer’s disease. *Ann. Neurol.* **79**, 110–119 (2016).

791 [28] Rushworth, M., Walton, M., Kennerley, S. & Bannerman, D. Action sets and
792 decisions in the medial frontal cortex. *Trends Cogn. Sci.* **8**, 410–417 (2004).

793 [29] Silva, P., Spedo, C., Barreira, A. A. & Leoni, R. F. Symbol Digit Modalities Test
794 adaptation for Magnetic Resonance Imaging environment: A systematic review
795 and meta-analysis. *Mult. Scler. Relat. Disord.* **20**, 136–143 (2018).

796 [30] Gilbert, S. *et al.* Functional specialization within rostral prefrontal cortex (Area
797 10): A meta-analysis. *J. Cogn. Neurosci.* **18**, 932–948 (2006).

798 [31] Koechlin, E., Corrado, G., Pietrini, P. & Grafman, J. Dissociating the role of
799 the medial and lateral anterior prefrontal cortex in human planning. *Proc. Natl.*
800 *Acad. Sci.* **97**, 7651–7656 (2000).

801 [32] Wager, T. & Smith, E. Neuroimaging studies of working memory. *Cogn. Affect*
802 *Behav. Neurosci.* **3**, 255–274 (2003).

803 [33] Courtney, S., Petit, L., Haxby, J. & Ungerleider, L. The role of prefrontal cortex
804 in working memory: examining the contents of consciousness. *Philos. Trans. R.*
805 *Soc. Lond. B. Biol. Sci.* **353**, 1819–1828 (1998).

806 [34] Leung, H.-C., Gore, J. & Goldman-Rakic, P. Sustained mnemonic response in
807 the human middle frontal gyrus during on-line storage of spatial memoranda. *J.*
808 *Cogn. Neurosci.* **14**, 659–671 (2002).

809 [35] Rolls, E. & Grabenhorst, F. The orbitofrontal cortex and beyond: From affect to
810 decision-making. *Prog. Neurobiol.* **86**, 216–244 (2008).

811 [36] Frey, S. & Petrides, M. Orbitofrontal cortex and memory formation. *Neuron* **36**,
812 171–176 (2002).

813 [37] Gough, P., Nobre, A. & Devlin, J. Dissociating linguistic processes in the left
814 inferior frontal cortex with transcranial magnetic stimulation. *J. Neurosci.* **25**,
815 8010–8016 (2005).

816 [38] Heim, S., Eickhoff, S. & Amunts, K. Different roles of cytoarchitectonic BA 44
817 and BA 45 in phonological and semantic verbal fluency as revealed by dynamic
818 causal modelling. *NeuroImage* **48**, 616–624 (2009).

819 [39] Armstrong, N. *et al.* Associations between cognitive and brain volume changes
820 in cognitively normal older adults. *NeuroImage* **223**, 117289 (2020).

821 [40] Kantha, S. Albert Einstein's dyslexia and the significance of Brodmann Area 39
822 of his left cerebral cortex. *Med. Hypotheses* **37**, 119–122 (1992).

823 [41] Stoeckel, C., Gough, P. M., Watkins, K. E. & Devlin, J. T. Supramarginal gyrus
824 involvement in visual word recognition. *Cortex* **45**, 1091–1096 (2009).

825 [42] Ben-Zvi, S., Soroker, N. & Levy, D. Parietal lesion effects on cued recall following
826 pair associate learning. *Neuropsychologia* **73**, 176–194 (2015).

827 [43] Albers, M. *et al.* At the interface of sensory and motor dysfunctions and
828 Alzheimer's disease. *Alzheimers Dement.* **11**, 70–98 (2015).

829 [44] Friston, K. & Büchel, C. Attentional modulation of effective connectivity from
830 V2 to V5/MT in humans. *Proc. Natl. Acad. Sci.* **97**, 7591–7596 (2000).

831 [45] Ardila, A., Bernal, B. & Rosselli, M. The elusive role of the left temporal pole
832 (BA38) in language: A preliminary meta-analytic connectivity study. *Int. J.*
833 *Brain Sci.* **2014**, 946039 (2014).

834 [46] Le, A., Vesia, M., Yan, X., Crawford, J. & Niemeier, M. Parietal area BA7
835 integrates motor programs for reaching, grasping, and bimanual coordination. *J.*
836 *Neurophysiol.* **117**, 624–636 (2017).

837 [47] Volz, K., Schubotz, R. & von Cramon, D. Variants of uncertainty in decision-
838 making and their neural correlates. *Brain Res. Bull.* **67**, 403–412 (2005).

839 [48] Suva, D. *et al.* Primary motor cortex involvement in Alzheimer disease. *J.*
840 *Neuropathol. Exp. Neurol.* **58**, 1125–1134 (1999).

841 [49] Alzheimer's Disease Neuroimaging Initiative (ADNI). ADNI database.
842 <http://dx.doi.org/10.1002/alz.14099> (2024). Part of the data used in the

843 preparation of this article were from the ADNI.

844 [50] Marcus, D. S. *et al.* Open Access Series of Imaging Studies (OASIS): Cross-
845 sectional MRI data in young, middle aged, nondemented, and demented older
846 adults. *J. Cogn. Neurosci.* **19**, 1498–1507 (2007). Part of the data used in the
847 preparation of this article were from the OASIS.

848 [51] Weiner, M. *et al.* The Alzheimer’s disease neuroimaging initiative: A review of
849 papers published since its inception. *Alzheimers Dement.* **9**, e111–e194 (2013).

850 [52] Johnson, K. *et al.* Preclinical prediction of Alzheimer’s disease using SPECT.
851 *Neurology* **50**, 1563–1571 (1998).

852 [53] Greicius, M. D., Srivastava, G., Reiss, A. L. & Menon, V. Default-mode net-
853 work activity distinguishes Alzheimer’s disease from healthy aging: Evidence from
854 functional MRI. *Proc. Natl. Acad. Sci.* **101**, 4637–4642 (2004).

855 [54] Buckner, R. *et al.* Molecular, structural, and functional characterization of
856 Alzheimer’s disease: Evidence for a relationship between default activity, amyloid,
857 and memory. *J. Neurosci.* **25**, 7709–7717 (2005).

858 [55] Aramadaka, S. *et al.* Neuroimaging in Alzheimer’s disease for early diagnosis: A
859 comprehensive review. *Cureus* **15**, e38544 (2023).

860 [56] Minoshima, S. *et al.* Metabolic reduction in the posterior cingulate cortex in very
861 early Alzheimer’s disease. *Ann. Neurol.* **42**, 85–94 (1997).

862 [57] Weiner, M. *et al.* The Alzheimer’s disease neuroimaging initiative: Progress report
863 and future plans. *Alzheimers Dement.* **6**, 202–211 (2010).