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Abstract

Alzheimer’s Disease (AD) is the leading cause of dementia, affecting brain struc-
ture, function, cognition, and behaviour. While previous studies have linked
brain regions to univariate outcomes (e.g., disease status), the relationship
between brain-wide changes and multiple disease and behavioural outcomes
of AD is still not well understood. Here, we propose Residual Partial Least
Squares (re-PLS) Learning, an explainable and generalisable framework that
models high-dimensional brain features and multivariate outcomes, accounting
for confounders. Using re-PLS, we map the many-to-many pathways between
cortical thickness and multivariate AD outcomes; identify neural biomarkers that
simultaneously predict multiple outcomes; control for confounding variables; con-
duct longitudinal AD prediction; and perform cross-cohort AD prediction. To
evaluate its efficacy, we first carry out within-cohort cross-subject validation
using ADNI data, and further examine its reproducibility via between-cohort
cross-validation using ADNI and OASIS data. Together, our results unveil brain
regions jointly but differentially predictive of distinctive cognitive-behavioural
scores in AD.
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. 1 Main

> Alzheimer’s disease (AD) is a neurodegenerative disorder affecting 50 million people
s worldwide and is projected to affect as many as 152 million by 2050 [1]. It is the most
« common form of dementia [2] . An early symptom of AD is difficulty remembering
s recent events. Gradually, a patient may exhibit language and orientation problems,
s mood swings, loss of motivation, self-neglect, and behavioural changes. In general, one
7 observes progressive cognitive decline in AD, accompanied by a gradual loss of bodily
s functions, eventually leading to death [3] . An AD patient’s typical life expectancy
o following diagnosis ranges from three to nine years [4].

10 Discovering biomarkers associated with AD is essential in understanding the
u  pathology of the disease, identifying patients, assessing disease progression, and
12 enabling the timely management of the condition [5]. An important biomarker of AD
1 is brain cortical thickness, also known as the AD cortical “signature” [6]. Changes of
u cortical thickness are differentially expressed across brain areas and vary between pre-
15 clinical dementia stages (i.e., subjects with mild cognitive impairment (MCI)) and
16 dementia [7, 8]. In general, compared to cognitively normal (CN) subjects, individu-
7 als with MCI and AD have decreased cortical thickness in the medial temporal lobe
18 region and parts of the frontal and parietal cortices [7-9]. As the disease progresses,
19 cortical thinning is observed across the entire cortex, especially in the lateral tempo-
» ral lobe [7]. In parallel, cortical thickness of frontal, parietal, and temporal lobes in
2 AD is correlated with cognitive impairment [8], while regional thinning predicts (even
22 mlld) AD [10]

2 In addition to cortical thickness changes, AD is accompanied by multiple cog-
2 nitive and behavioural disruptions in memory, language, orientation, judgment, or
»s  problem-solving [11]. Yet, despite advances in single outcome assessment and pre-
% diction, our understanding of the many-to-many (i.e., many brain areas to many
x outcomes) relationship between the spatially varying cortical thickness changes and
;s multiple symptoms or cognitive (dys)functions has remained limited.

20 To improve our knowledge about and better manage the disease, it is crucial to
» identify and isolate brain regions, each of whose cortical thickness may be differen-
a1 tially associated with a unique, or several, cognitive or behavioural outcomes, chart
» the pathways between each set of brain areas and their corresponding outcome, as well
3 as quantify the pathway effect. Equally important is to leverage these pathways and
u  parameters of the identified regions to predict multiple, likely non-pairwise-correlated,
35 cognitive and behavioural scores. That is, one uses cortical thickness data from
3 identified, potentially different brain regions to predict each corresponding outcome.
37 Such quests for neurobiological insights and predictive performances require joint
s effort, integrating methodological innovations and biological knowledge. First, there
3 is a need to search for subsets of brain areas respectively associated with different
w0 cognitive and behavioural outcomes. This is important for improving our understand-
a  ing of disease pathology and aiding in pathway estimation. Second, there is a need
2 to chart pathways between high-dimensional cortical thickness and multiple cogni-
s tive and behavioural outcomes. Cortical thickness changes in AD occur across several
a functional brain regions, each likely projecting to multiple cognitive and behavioural
s domains. Therefore, understanding these pathways can provide insights into how
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Fig. 1: Effect of age and gender on cortical thickness as well as disease and behavioural out-
comes in AD. (a) Cortical thickness from seven functional brain areas exhibits different variations across
age and gender groups. Outer, middle, and inner circles show cortical thickness by age, gender, and pre-
dictive weights for eight outcomes, respectively. Outer bars represent positive weights, and inner bars
represent negative weights based on averaged linear regression coefficients. Weights are normalised to [-
1, 1] within each functional network. (b) Eight AD-related outcomes vary by age and gender and are not
strongly pairwise correlated. Outer, middle, and inner circles display outcomes by age, gender, and corre-
lation structure, respectively. Connected lines indicate high correlations (|r| > 0.7). (c) Cortical thickness
exhibits gender differences across brain networks. The left plot shows mean cortical thickness differences
between females and males across seven functional brain networks. The right plots show spatial distribution
of gender differences across brain regions. The female cortex is generally thicker than the male cortex. (d)
Cortical thickness varies by age group across brain networks. The left plot shows mean thickness decline
with age across seven functional brain networks. The right plots show spatial distribution of age-related
thickness changes across brain regions, with younger groups (< 60) generally showing thicker cortex than
older groups (> 80). (e) Distributional and associative analysis between AD-related outcomes and regional
cortical thickness. Top boxplots show cortical thickness distributions across seven functional brain areas;
right boxplots show cognitive and behavioural score distributions from eight tests. The value in each ellipse
represents correlations between each outcome and the corresponding brain network thickness. (f) Cortical
thickness differences across diagnostic groups (CN, MCI, AD) with statistical comparisons. The top plots
show mean thickness across brain regions for each diagnostic group. Bottom plots show statistical compar-
isons between groups (CN-MCI and MCI-AD). For panels (c), (d), and (f), rainbow colour bars indicate
normalised cortical cohort-specifis; red-blue colour bars represent t-statistics for brain regions.

s cortical thickness in different brain areas may be linked to corresponding cognitive-
s behavioural outcomes. Third, there is a need to deal with confounding variables that
s affect both brain data and behaviour. Indeed, cortical thickness and disease outcomes
» differ across age and gender groups (see Fig. la-d); ignoring them or only considering
so their association with outcomes, but not with cortical thickness features, may bias
s estimated pathways [12]. In disease analysis and prediction, neglecting confounding
2 effects may yield clinical misinterpretations [13]. Fourth, there is a need to predict
53 multivariate, non-pairwise-correlated outcomes. Although predictive models built for
s« assessing single outcomes [14] have considerably advanced our understanding of gen-
s eral aspects (such as disease status [15]) or specific subdomains (such as cognitive
s decline [16]) of AD, single-outcome prediction [17] may not capture multi-dimensional
sz and -functional cognitive and behaviour degenerative landscapes of the disease. Fifth,
ss as a neurodegenerative disease that not only progresses differentially along various
so cognitive and behavioural domains but also develops in time, there is a need to pre-
e dict AD progression longitudinally. This may help evaluate or anticipate the cognitive
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61 decline and disease conversion early and manage the disease advancement in a timely
e manner. Finally, while selected features and predictive models facilitate biological
63 interpretation and disease assessment, to introduce them in broader practices and to
e endorse their scientific efficacy, there is a need to demonstrate that properties of fea-
e tures and predictive models can be generalised to different subjects and, particularly,
6 reproduced in other cohorts and datasets.

o7 Here, we introduce Residual Partial Least Squares (re-PLS) , by integrating
¢ residual learning [18, 19], partial least squares (PLS) [20—22], and predictive mod-
o elling [14, 23], to identify brain regions whose cortical thickness is associated with and
7o predictive of multivariate, non-pairwise-correlated outcomes in AD; uncover multivari-
n  ate many-to-many pathways from these regions to disease and behavioural outcomes;
7= and predict such outcomes at both population and individual levels, across cross-
7 sectional and longitudinal settings. Specifically, we apply re-PLS to data from the
u  Alzheimer’s Disease Neuroimaging Initiative (ADNI) and discover potential pathways
75 between cortical thickness data and multivariate disease and behavioural outcomes
7 while controlling for confounding age and gender variables. Furthermore, we use re-
77 PLS to perform longitudinal AD prediction. Finally, we test the features selected from
7 and the model trained using ADNI data, without further modelling, on data from the
7o Open Access Series of Imaging Studies (OASIS), and vice versa.

» 2 Results

s We begin by summarising five key points regarding our findings. (1) Both re-PLS
&2 and other baseline models suggest that brain cortical thickness predicts multiple, non-
& pairwise-correlated behavioural and disease outcomes in AD (see Fig. 3). (2) The
e re-PLS and PLS yield higher predictive accuracy than competing models, while re-
s PLS additionally controls for the confounding variables (see Fig. 9 in Supplementary
s Materials). (3) After removing the age and gender effects, cortical thickness changes
e that are significantly predictive of the eight cognitive and behavioural outcomes are
s mainly in the temporal, frontal, and sensorimotor (see below for a discussion and
s Fig. 4). (4) The re-PLS is useful for predicting longitudinal disease progression and,
o particularly, seems promising to chart the disease course for subjects who change from
a MCI to AD over time (see Fig. 5). (5) The selected features and re-PLS model are
» generalisable and reproducible across-subjects and -cohorts (see Figs. 3 and 6).

03 We summarise the experimental setup in Fig. 2 and Algorithm 1. In Fig. 3, we
o present the model’s performance on multivariate AD outcome prediction. In Fig. 4,
os  we identify and present the brain areas whose cortical thickness is predictive of eight
o cognitive-behavioural outcomes. In Fig. 5, we present the results of longitudinal AD
or  prediction. In Fig. 6, we demonstrate the model’s ability to generalise across different
s cohorts (ADNI and OASIS data).

w 2.1 Cross-sectional AD assessment

w0 We first aim to identify and separate brain regions associated with and predictive of
1w each AD-related cognitive and behavioural outcome under a cross-sectional setting,
12 where scans from each individual are treated as independent repeated measurements.
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Fig. 2: A schematic representation of Residual Partial Least Squares (re-PLS) Learning. (a) A
conventional way to predict multivariate outcomes using multivariate brain features. X represents high-
dimensional brain data, with each colored circle denoting a unique brain area and smaller circles representing
cortical thickness data from that region. Y represents multivariate outcomes, with each icon showing a
cognitive examination score (e.g., MMSE). Z represents confounders (e.g., age and gender) that affect both
feature variables X, outcome variables Y, and the pathways between them. In classical prediction problems,
one aims at looking for direct pathways between X and Y while controlling for confounding effects from Z.
Data from the identified areas are subsequently fed via the pathways (coloured arrows) to make predictions
on new subjects. (b) The Residual Partial Least Squares (re-PLS) Learning. The re-PLS begins by removing
confounding effects from the confounder Z, isolating the residuals of both the feature matrix X and the
outcome matrix Y as eX!Z and €Y%, respectively. Rather than predicting directly between X and Y, re-PLS
applies PLS to these residuals, iteratively learning latent components (illustrated by grey circular arrows).
For each component s, weight vectors (wx, wy) project data into latent scores (ts, us) that maximize the
correlation between the input and output spaces. These scores estimate loading matrices (P and Q). At
each step, re-PLS performs deflation to update the residuals. The re-PLS obtains the outcome prediction
through matrix multiplication (see Eq. (13)). Finally, re-PLS projects latent feature representations back
to corresponding brain space to facilitate interpretation; the learned projections between the input features
and the outcomes also provide clear pathways from the original features (brain-wide cortical thickness) to
the multivariate disease outcomes, which are unaffected by confounders.

103 First, we identify anatomical regions whose cortical thickness is predictive of mul-
e tivariate AD outcomes using the P maps (each entry of a P map corresponds to one
s brain region) (see Fig. 4). Specifically, P consists predominantly of areas in the pre-
s frontal and temporal regions. Py is largely located in the sensorimotor area with small
w7 parts in the Primary Visual Cortex (V1) and Secondary Visual Cortex (V2); it also
108 has positive weights in parts of the temporal pole. P3 highlights the cognitive brain
0o with a great deal of weight in the orbital prefrontal (OFC) cortex. P4 has negative
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Fig. 3: Model performance of residual Partial Least Squares (re-PLS) Learning and its per-
formance in comparison to prominent baseline methods for predicting multivariate outcomes
in previously unseen subjects. (a) Scatter plots of the predicted outcomes against the observed out-
comes using re-PLS. The results are obtained by concatenating the predictions from the test set across
all 10 folds of a 10-fold cross-validation (CV). CN=cognitive normal; MCI=mild cognitive impairment;
AD=Alzheimer’s disease. (b) A comparison between re-PLS with two common baseline methods. Here, re-
PCR refers to principal component regression with confounders controlled via residual learning, and re-MLR
refers to multivariate linear regression with confounders controlled via residual learning. The plot displays
the correlation coefficient between the predicted and observed outcomes, calculated from the concatenated
predictions across all 10 folds. Overall, re-PLS yields the best result across eight outcomes. For both (a)
and (b), only results from out-of-sample predictions were shown.

weights in the dorsal lateral prefrontal cortex (DLPFC) and positive weights in parts
of the Broca area. Finally, P5 contains areas with negative weights in the frontal
eye fields (FEF) and BAT (related to visuomotor coordination). We discover these
brain maps via cross-subject validation using ADNI data; in Section 2.3, we further
show that the patterns and the brain regions identified in P; and Py maps can be
generalised not only across subjects but also between datasets.
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Fig. 4: Discovering brain areas predictive of multivariate outcomes using the Residual Partial
Least Squares (re-PLS) Learning. (a) The re-PLS identifies five latent brain spaces whose associated
brain cortical thickness predicts multivariate outcomes in Alzheimer’s disease. The five brain spaces are
discovered and verified using cross-validation. (b) The functional localisation of the five projections in terms
of cortical thickness. The link between functional brain regions and the five identified projections is based on
the absolute value of the weights. Each width of each projection is the sum of absolute weights; we remove
non-significant lines. (c) The relationship between the outcomes’ latent spaces and the eight behavioural
and cognitive outcomes through weighted connections. The width of the lines from Q; (i = 1,...,5) to each
outcome represents the contribution of the latent representation to the outcome prediction. These weights
have been normalised so that the absolute sum of each Q equals 1. Red lines denote negative weights,
while blue lines indicate positive weights. (d) The five latent brain spaces are almost orthogonal. The size
of each circle is proportional to the correlation between a pair of latent brain spaces, with “x” marking
insignificant results (P > 0.05). (e) Sample size studies for re-PLS. During each fold, we run both re-PLS
and re-MLR models using different percentages (from 10% to 100%) of the training samples and report
model performance on the testing samples. (f) Prediction accuracy improves as more outcomes are included.
This is an inherited property of re-PLS (through the learned projections) where each added outcome assists
in the prediction of other outcomes.

116 Second, we investigate how the identified brain areas are distributed across func-
ur  tional brain regions [24]. We notice that areas in P; are located predominantly in the
us default regions; areas in Py are primarily in the sensorimotor and attention regions;
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e areas in P3 have large representation in the default and control regions; and areas in
2 Py and Py are mainly in the default and visual areas (see Fig. 4b). Furthermore, a
121 correlation analysis between these five maps show that these projections are largely
12 orthogonal (see Fig. 4d). This suggests that the P maps identify and isolate orthogo-
123 nal functional brain areas that are predictive of multivariate outcomes. Based on the
1 functional and anatomical separation (due in part to their orthogonality) of the P
s maps, we designate P; as AD’s Default & Control map, P2 as AD’s Sensorimotor
s map, P3 as AD’s OFC map, P4 as AD’s DLPFC-Broca map and P5 the Visuomotor
7 map (see Fig. 4a).

128 Third, the latent brain spaces (P maps) provide important insights about poten-
e tial AD biomarkers (see Table 1). (1) Several P maps highlight the prominence of
1 cortical thickness in the temporal areas (e.g., BA20, BA21 and BA22 in Py, and
1 BAS38 in Ps) in predicting AD-related outcomes. Previous findings suggest that the
13 degree of atrophy in the left BA38 and BA20/21 is strongly correlated with deficits
133 in semantic memory processing [25]. BA21, part of the middle temporal gyrus, is
1 involved in processing language and higher-order audition processes [26]. Accumulated
135 tau deposition in the temporal gyrus, which anatomically overlaps BA20/BA21, has
s been shown to be associated with clinical impairments observed in AD [27]. BA22, in
17 the superior temporal gyrus within Wernicke’s area, is involved in the comprehension
s of written and spoken language. (2) Several P maps highlight the importance of cor-
139 tical thickness in frontal regions for predicting AD-related outcomes: the prefrontal
w cortex (e.g., BA9, BA10, and BA46), particularly in P; and Py; the orbitofrontal
i cortex (e.g., BA10, BA11), especially in P, and inferior frontal gyrus (e.g., BA44,
w2 and BA45), especially in Py and Py . BA9 (which contributes to the dorsolateral pre-
w3 frontal cortex or DLPFC) is linked with the strategic control of behaviour, including
s task inference, goal maintenance, inhibition, and flexible decision-making, reflecting its
ws  critical role in executive control [28, 29]. BA10 is related to working memory, episodic
1us memory, and mentalizing [30]; it is known to support higher cognitive functions, such
wr  as task management and planning [31]. BA46 in the right hemisphere is primarily
us  involved in spatial working memory [32, 33|, whereas it in the left hemisphere is more
1w engaged in maintaining image-based representations of objects [33]. Evidence also
150 suggests that BA46 is significantly involved in delayed-response spatial working mem-
1 ory tasks [34]. BA11 is involved in decision-making, processing rewards, and encoding
152 new information [35, 36]. BA44, which is part of Broca’s area, is involved in speech
153 production [37]. BA45 is thought to be involved in semantic fluency [38]. (3) Parts of
15 the parietal lobe (e.g., BA39 and BA40 in P;) are significantly predictive of cog-
155 nitive and memory scores. This confirms previous findings that AD patients undergo
s cortical thickness changes in the parietal cortices [7-9]. Importantly, BA39 (angular
57 gyrus (AG)) has been shown to correlate with longitudinal declines in verbal flu-
s ency [39]. Damage to the left BA39 may result in dyslexia or semantic aphasia [40].
10 BA40 (left supramarginal gyrus) is thought to be involved in reading, regarding both
1o meaning and phonology of the words [41]. Moreover, BA39 plays a role in retrieval,
w1 particularly evident in cross-modal picture-sound pairing tasks, while BA40 plays a
12 more limited role in sustaining retrieval [42]. (4) Our results hint at the roles senso-
163 rimotor areas (e.g., BA4 and BA6 in P3) play in predicting AD-related outcomes.
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Table 1: Relationship between identified latent brain spaces, their
anatomical correspondence, and associated functions.

Latent brain spaces | Brodmann areas and relevant known functions

P1: Default-control BA9 (strategic control, action selection, and cognitive control [28,
29]), BA10(working memory, episodic memory and mentalizing [30];
task management and planing [31]), BA21, BA22 (language and
higher-order auditory processes [26]), BA39, BA40 (recollective
memory processes [42]), and BA46 (spatial working memory [32]).

P2: Sensorimotor BA38 (semantic memory [45]), BA17 (V1), BA18 (V2, attentional
modulation [44]), BA4, and BAG.

P3: OFC BA10, BA11 (decision making, processing rewards, and encoding
new information [35, 36]), and BA4, BA44, and BA45 (phonological
and semantic processing [38]).

P4: DLPFC-Broca BA44, BA45, BA9, BA17 (V1), and BA18 (V2).

Ps5: Visuomotor BA4, BA17, BA18, BAT (visuomotor coordination [46]), and
BAS (frontal eye fields and management of uncertainty [47]).

s Although some have argued that sensory and motor changes may precede the cog-
165 nitive symptoms of AD [43], since the eight outcomes in this study measure various
166 cognitive abilities, our findings cannot distinguish whether the changes in cortical
17 thickness in sensory and motor areas (thus changes in sensory and motor functions)
s hinder movement during the examinations (thereby affecting the performance on the
160 eight outcomes), or if they contribute, in concert with other areas, to the performance
wo  during the tests. Further research needs to independently verify this. (5) Our results
m  suggest that cortical thickness in the visual cortex (e.g., BA17 and BA18 in P3 and
w2 P4) may be associated with attentional and visual memory-related word remember-
ws  ing. Particularly, BA18 (V2) is thought to be related to attentional modulation of
s visual processing [44].

175 Fourth, we investigated the relationship between the loadings in the latent
ws  space (Q loadings) and the eight behavioural and disease-related outcomes. We found
v that the five loadings (Q; to Qs) exhibit overlapping associations with multiple cog-
ws nitive and behavioural measures (see Fig. 4c). As each brain map P; corresponds to
w  loading Q, it allows us to make interpretations both in the outcome space (through
w Q) and regarding the brain spatial patterns (through P;). In particular, we observe
11 large positive weights in Q; and Qs for predicting ADAS13, CDRSB, and ADAS11
12 scores, which measure memory, language, attention, and executive function. To under-
183 stand the loadings’ neurological relevance, we enquire into their corresponding P
1 maps. Qs corresponding Py map (or AD’s Default & Control map) comprises lat-
15 eral temporal regions, including BA20 and BA21, which is involved in semantic
s memory [25]. Specifically, BA20 is thought to primarily support visual association
w7 processes, while BA21 appears to be involved in audition processes and language [26].
s Qgo’s corresponding Py map (or AD’s Sensorimotor map) consists of the anterior
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e temporal lobe (BA38), which is associated with semantic memory [45]; the visual
wo  Association area (BA18/V2) exhibits enhanced effective connectivity to V5/MT dur-
1 ing attentional modulation of motion processing [44]; and primary motor cortex (BA4)
112 shows amyloid plaques and tau pathology in late-stage AD [48]. Next, the Q3 and Q4
103 loadings both exhibit strong predictive weights for CDRSB, ADAS13, and ADASQ4,
14 highlighting the involvement of prefrontal and language-related regions in these cog-
s nitive outcomes. Qgz’s corresponding P3 map (or AD’s OFC map) includes parts
s of the orbitofrontal cortex (BA10 and BA11), a region critical for decision-making,
17 executive function, and social behaviour-domains often impaired in AD. Q4’s corre-
s sponding P4 map (or AD’s DLPFC-Broca map) comprises DLPFC and Broca’s area,
109 essential for working memory, attention, and language production. Finally, the Qs
20 loading is associated with performance on ADASQ4, RAVLT immediate, and RAVLT
s learning, reflecting the integration of sensorimotor, attentional, and executive func-
22 tions required for verbal memory and learning tasks. Relevantly, Qs’s corresponding
23 Ps map (or AD’s Visuomotor map) includes regions involved in motor and visual
20 processing (BA4, BA17, BA1S), as well as BA7 (visuomotor coordination [46]) and
s BAS8 (decision-making under uncertainty [47]).

206 Fifth, we investigate the impact of varying sample sizes on the performance of
a7 re-PLS compared to residual learning-aided multivariate linear regression (re-MLR).
28 Our results suggest that, overall, re-PLS outperforms re-MLR. More specifically, it
20 is challenging for re-MLR to perform prediction, especially when training data is
a0 small (see Fig. 4e). In comparison, re-PLS seems to deliver better overall prediction
an  accuracy across different training data sizes and is more consistent when training data
a2 sizes vary. Additionally, re-PLS seems to require less training data to achieve optimal
a3 prediction performance. For example, to achieve comparable results using 70% of
a4 training data by re-PLS, re-MLR requires nearly 90% of the training data.

215 Sixth, we notice that re-PLS achieves higher prediction accuracy (both in terms
a6 of mean square error and in terms of correlation) as the number of outcomes
ar  increases (see Fig. 4f). This is possibly due to the nature of re-PLS: the hidden pro-
218 jections aim to maximise the associations between the inputs (cortical thickness) and
a0 outcomes (disease scores) when controlling for covariates. Thus, when making pre-
20 dictions, the prediction of each outcome is made by using the information of the
a1 inputs, the covariates, and the projections (which also learns information about other
22 outcomes); although the outcomes are not all pairwise correlated, each association
23 between two (even modestly) correlated outcomes would make one a helpful predictor
24 of the other. Hence, the more outcomes, the better the prediction performance. Cer-
»s tainly, in an extreme case, when all outcomes are identical, adding additional outcomes
26 may not improve prediction performance.

27 Finally, re-PLS achieves higher prediction accuracy compared to conventional lin-
»s ear approaches. It is likely that the lower-dimensional “nearly orthogonal” projections
29 contain reduced noise in contrast to the original high-dimensional data. These refined
20 (lower-dimensional) features seem to achieve more effective data representation and
»n  compression in the latent space, leading to improved prediction performance. As a
2 result, re-PLS not only assisted neurobiological explanation via the extracted latent
233 brain spaces but also required a smaller amount of data to achieve similar prediction
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24 performance compared to both re-PLR and re-PCR. This property may be helpful
23 in situations with limited data but multivariate or many-to-many (high-dimensional
2 input and multivariate outcomes) complexity.

» 2.2 Longitudinal AD assessment

2 As a neurodegenerative disease, AD progresses over time [3, 4]. Naturally, one would
20 ask if it were possible to expand re-PLS to longitudinal settings to study AD progres-
20 sion. Longitudinal assessment is important for two reasons. First, it is beneficial to
.n monitor and forecast disease progression to improve disease management and treat-
22 ment. Second, it is useful to identify brain areas whose degenerations are related
a3 to cognitive decline over time to gain insights into how AD progresses, which brain
a4 Tegions contribute to disease progression over time, and, if so, to what extent.

25 To that end, we use re-PLS to study longitudinal AD prediction. We do so in two
us  settings. First, we extend the use of re-PLS from cross-sectional analysis to predict
27 AD status over time (see Fig. 5a-b). Second, we identify brain regions whose cortical
s thickness may be related to AD progression over time (see Fig. 5¢c-d). We note that
a9 we conduct longitudinal disease prediction on disease status but not on the eight
0 outcomes. This is because conducting longitudinal multivariate disease prediction over
1 time and across eight outcomes requires decomposing the variability into time and
2 score space, and, therefore, requires a much larger sample size to obtain reliable results.
253 Throughout, we consider diagnostic outcomes made by clinicians primarily based
s+ on clinical criteria. Specifically, every subject is diagnosed with one of the statuses:
s CN, MCI, or AD, based on ADNI criteria. For modelling, we assign groups of 0, 1, or
6 2 to represent CN, MCI, and AD, respectively. In our analysis, we further group the
27 individuals into four distinct longitudinal groups: CN, sMCI, pMCI, and AD, based on
s disease progression (see Fig. 5a). CN refers to individuals who were assessed as cogni-
250 tively normal and maintained cognitively normal during subsequent visits. Stable Mild
20 Cognitive Impairment (sMCI) denotes individuals who were assessed as MCls during
s the first visit and continued to be diagnosed as an MCI during subsequent visits after
22 six months. Progressive Mild Cognitive Impairment (pMCI) indicates individuals who
3 were assessed with MCI during early visits but were diagnosed with AD during follow-
%4 Up visits after six months. Lastly, AD represents individuals consistently assessed as
s AD throughout all visits. As some subjects have missing data at baseline, we consider
x6 their earliest scans as baseline data and arrange their later scans accordingly.

267 After training the longitudinal re-PLS model, we implement it to predict unseen
»%s individual subjects’ status over time. Although we grouped every subject into one of
260 the four groups - the group information for testing subjects was not used (to avoid
oo information leakage); rather, the (four) group information was used to colour code
on the testing subjects to evaluate the accuracy of the longitudinal prediction perfor-
2z mance (see Fig. 5b). We saw that the predicted overall mean scores increased from
oz CN, sMCI, and pMCI to AD. This agrees with the actual diagnostic outcomes. Addi-
o tionally, the predicted longitudinal trend for pMCI subjects (subjects who were MCls
o5 during early visits and later diagnosed with AD) seems to worsen noticeably more than
ars the other groups. This is also consistent with their observed longitudinal diagnostic
orn - progression. The predicted trends for both CN and MCI groups are relatively stable,
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Fig. 5: Longitudinal prediction of Alzheimer’s disease (AD). (a) Four subject groups were based
on baseline and last follow-up diagnoses. CN = cognitively normal throughout, sMCI = stable MCI (MCI
at baseline and follow-up), pMCI = progressive MCI (MCI at baseline, progressed to AD), and AD =
diagnosed Alzheimer’s disease at both time points. Group assignment is based on the first and latest
available diagnosis. (b) Longitudinal trend prediction. The longitudinal curve for each group is estimated
using the predicted mean group scores for new subjects at each time point. The width of the 95% confidence
bands (shaded colour) is estimated using a repeated 10-fold CV (run 100 times). In general, the predicted
longitudinal severity is AD > pMCI > sMCI > CN. The pMCI is predicted to worsen more than other
groups over time. (c) Latent brain spaces identified by re-PLS that are potentially related to longitudinal AD
progression. (d) Relationship between longitudinal latent brain spaces and diagnostic outcomes. The width
of the lines between three latent brain spaces and three types of diagnostic outcomes indicates the size of
the association. Red lines represent negative coefficients, and blue lines represent positive coefficients. The
strength of connection was estimated using the magnitude of the coefficient, quantifying the contribution
each brain space makes to predicting the target outcome.

as in line with their observed longitudinal diagnostic statuses, although our method pre-
a9 dicts that both groups have a slight worsening sign after 60 months, presumptively
20 because of a gentle cortical thinning due to ageing.

281 Next, we seek to unveil the brain regions whose longitudinal cortical thickness
»2  change may be potentially associated with and predictive of AD disease status over
x5 time. To that end, we extract the longitudinal latent brain spaces (P°"® maps, or
2 the longitudinal version of the cross-sectional P maps), which uncover brain regions
25 that may be associated with longitudinal disease progression over time. Specifically,
26 we encode the disease status as a one-hot vector instead of scalars (0, 1, and 2) for
27 the three possible outcomes (CN, MCI, and AD). Overall, we identify three longitu-
2 dinal latent brain spaces. The first longitudinal map, PP, is linked to the default

13


https://doi.org/10.1101/2024.03.11.584383
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.11.584383; this version posted August 8, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

20 mode. The second longitudinal map, Pl2°“g7 corresponds to the sensorimotor cortex,
20 the temporal pole, and parts of the visual cortex. The third longitudinal latent brain
201 MAap, Pg’ng, is associated with parts of the temporal, parietal, and occipital areas, and
x> a portion of the OFC. Interestingly, all three longitudinal P'°"® maps (see Fig. 5c)
203 overlap a great deal with the first three cross-sectional P maps (see Fig. 4a). This
24 suggests that cortical thickness from these areas may be useful biomarkers for both
25 cross-sectional and longitudinal AD studies.

206 Additionally, we investigate the Q!¢ loading matrix to further understand how
207 the identified latent spaces may contribute to predicting disease status. In re-PLS
25 framework, each Qi‘mg map sits along the projection of the associated Pi‘mg map
200 onto the disease label space, capturing how variations in cortical thickness relate to
w0 clinical diagnosis over time. Our results show that the first two latent representations,
o Q" and QY™ contribute significantly to the prediction of CN and AD, while Q™
w2 1s most influential for predicting MCI. Additionally, we observe that CN status is
s positively associated with weights in P11Orlg and Pg’ng maps, but negatively associated
30 with weights in Péong map; this pattern is reversed for AD (see Fig. 5d).

ws 2.3 From cross-subject to cross-cohort AD prediction

s The reproducibility of the identified latent brain maps derived from machine learning
s7 is crucial for generalising our findings, particularly for disease prediction in previously
58 unseen subjects. In this section, we evaluate reproducibility of re-PLS and its identified
w0 neural biomarkers. We do so by expanding our cross-subject analyses using ADNI
s0  data [49] to cross-cohort studies using data from ADNI and OASIS [50]. Specifically,
su  we consider three scenarios. First, we repeat the cross-subject analyses using ADNI
s and OASIS data, respectively. Second, we test the model learned and the neural
a3 biomarkers extracted from ADNI data on OASIS data. Third, we reverse the process
s and demonstrate the possibility of Training on Small and Testing on Large (ToSToL)
a5 data, where features extracted from smaller OASIS data are used to predict disease
a6 outcomes in much larger ADNI data.

317 We cousider two disease outcomes, MMSE and CDR/CDRSB scores, available in
us  both datasets. As CDRSB (used in ADNI) ranges from 0 to 18 and CDR score (used
a0 in OASIS) is between 0 and 2, to avoid data leakage and evaluate the generalisabil-
20 ity of re-PLS and the identified neural biomarkers, we use the original scale of the
= CDR/CDRSB scores. Specifically, we directly trained the re-PLS using cortical thick-
12 ness data and CDR-SB scoresin ADNI data, and tested the model on cortical thickness
23 data in OASIS, and obtained predicted CDR-SB scores for OASIS samples. We then
24 compared predicted CDR-SB scores with observed CDR, scores in OASIS to assess
w5 the reproducibility of the model and neural biomarkers. We then repeat the same
w26 cross-cohort analysis, training the model on cortical thickness data and CDR scores in
27 OASIS and evaluating it on ADNI data to obtain predicted CDR scores and compare
28 predicted scores with observed CDR-SB scores. Additionally, to evaluate the general-
2o izability of the latent brain maps (e.g., in Fig. 4a) during cross-cohort validation, we
;0 train the model using cortical thickness data and eight outcomes in ADNI and evalu-
s ate if the latent brain maps developed from ADNI predict MMSE and CDR, in OASIS
sz data. We note that when training the model using cortical thickness data and only
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Fig. 6: Within and cross-cohort Alzheimer’s disease (AD) prediction. (a) A schematic representa-
tion of the cross-cohort predictive model setting. From left to right, re-PLS is trained using data from the
ADNI study. Extracted latent brain maps and trained parameters from ADNI data are then used, without
further modelling, to predict MMSE and CDR scores in OASIS data. Note that the range of CDRSB scores
is between 0 and 18, and it of CDR scores is between 0 and 3. We observe that the observed CDRSB score
in ADNI is from 0 to 17, and the observed CDR score in OASIS is between 0 and 2. The setting of other
within and cross-cohort analyses is similar: for within-cohort cross-validations, the training and test data
are randomly selected from the same study; for ToSToL (Training on Small and Testing on Large) analysis,
training data are from the smaller OASIS data, and test data are from the larger ADNI data. Out-of-sample
prediction performance of: (b) Cross-subject but within-cohort analysis using ADNI data; (¢) Cross-subject
but within-cohort analysis using OASIS data; (d) Cross-cohort analysis (trained on OASIS data and tested
on ADNI data); and (e) Cross-cohort analysis (trained on ADNI data and tested on OASIS data). (f) Visual-
isation of the most important and consistent brain regions for each latent map is defined by regions that are
in the top 25% of absolute values and appear in 90% of 50 repetitions of a 10-fold cross-validation. Regions
that are shared between ADNI and OASIS datasets are highlighted in dark red, while regions unique to the
ADNI dataset are shown in light green, and those unique to the OASIS dataset are depicted in light orange.

MMSE and CD-SB scores in ADNI, the out-of-cohort prediction results for MMSE
and CDR in OASIS improve further, and that the latent brain maps extracted using
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s different outcomes would naturally be different. To ensure consistency, we applied the
33 same imaging preprocessing pipeline to both datasets.

337 We assess the performance of the cross-cohort analyses across four scenarios (see
s Fig. 6). Panel (a) presents the schematic of the cross-cohort predictive modelling using
s re-PLS. Panels (b) and (c) portray the reproducibility of re-PLS in performing the
s cross-subject analysis (for ADNI and OASIS data, respectively). Panels (d)-(e) demon-
s strate the reproducibility of re-PLS in performing the cross-cohort analyses (trained
s2on OASIS data and tested on ADNI data and vice versa). Panel (f) visualises the
w3 most important and consistent brain regions for each latent map, highlighting shared
s regions between the ADNI and OASIS datasets as well as those unique to each cohort.
35 In within-cohort analyses, re-PLS generally demonstrates stronger performance
us compared to standard PLS. For within-OASIS analyses, the correlation between the
w7 predicted and observed MMSE scores is 0.4852 (P < 107'3) and the correlation
us  between the predicted and observed CDR(SB) scores is 0.5198 (P < 10716) using two
s latent maps learned from re-PLS. Under the same settings, PLS achieves 0.4768 (P
s < 10713) for MMSE prediction and 0.5192 (P < 10716) for CDR(SB) prediction. For
s within-ADNI analyses, the correlation between the predicted and observed MMSE
s scores is 0.5971 (P < 107257), and the correlation between the predicted and observed
53 CDR(SB) scores is 0.6231 (P < 1073%) using the five latent maps learned from
s re-PLS. See Fig. 6b and c. In comparison, PLS achieves 0.5973 (P < 10727%) and
55 0.6209 (P < 1073%4) for MMSE and CDR(SB) predictions, respectively (see Table 1 in
w6 the Supplementary Materials). We highlight that, in a small number of cases here and
7 below, where PLS achieves similar or modestly better predictive accuracy than re-PLS,
s the advantage of re-PLS remains in its explainability: it extracts brain regions whose
0 pathways link features and disease outcomes that are not affected by confounders such
%0 as age and gender while maintaining predictive accuracy.

361 For cross-cohort analyses, our results suggest that re-PLS and the derived neu-
2 ral biomarkers are reproducible and generalisable between cohorts, although the
33 prediction performance between-cohort is, as expected, slightly lower than it is within-
s cohort. See Fig. 6d and e. Specifically, when trained on the smaller OASIS dataset
w5 and testing on the larger ADNI dataset, re-PLS achieves 0.4384 (P < 107!3%) and
s 0.4391 (P < 10713%) for MMSE and CDR predictions, respectively. Noticeably,
7 when trained on the larger ADNI data and tested on the smaller OASIS dataset,
s re-PLS delivers good prediction performance, achieving 0.5144 (P < 107'%) and
30 0.4620 (P < 10712) for MMSE and CDR predictions, respectively.

370 Next, we present the brain regions consistently identified across cohorts by re-PLS.
sn In Fig. 6f, we visualise regions that are shared between ADNI and OASIS datasets,
sz as well as cohort-specific areas. To find reproducible brain regions across cohorts,
sz we first discover latent brain maps independently from each dataset. We then iden-
s tify overlapping brain regions selected from both datasets and further evaluate their
a5 reproducibility through 50 repetitions of 10-fold cross-validation. To identify consis-
s tent regions, we threshold the areas and retain the top 25% values. We then select
sw regions that appear consistently in 90% of the entire validation set. The first latent
ss map (P7) highlights consistent regions in the temporal cortex, specifically BA20 and
s BA21, DLPFC (BA46), parts of parietal cortices (BA39), and a part of V1 on the right
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s0  hemisphere, indicating a high degree of reproducibility. The second latent map (Ps)
s also shows overlap across datasets, particularly in BA45, BA47, and parts of V2,
s2  the temporal lobe (BA20), and the sensorimotor regions (BA4/BAG). These findings
3 suggest that the first two latent brain maps are not only predictive but also repro-
s ducible across subjects from two independent cohorts. In particular, the Default &
ss Control (P1) map plays a dominant role in cross-cohort prediction, as evidenced by
s performance when trained on ADNI and tested on OASIS cohort, despite variabil-
7 ity between cohorts. In parallel, the results also reveal dataset-specific differences. In
ss  the first latent brain map, OASIS-specific regions (in orange) are more concentrated
s0  in the occipital and parietal lobes, while ADNI-specific regions (in green) seem more
0 concentrated in the frontal and temporal lobes. In the second latent map, OASIS-
s specific regions include small unique localisations in the primary visual cortex and
s BA43, whereas ADNI-specific regions are concentrated in the temporal, motor, and
.3 visual association areas.

304 Taken together, our results show that re-PLS is not only reproducible and general-
305 isable for cross-subject (but within-cohort) analysis, but also for cross-cohort analysis:
36 the trained model and derived neural biomarkers from one cohort predict, without
s7  further model fitting, clinically relevant outcomes in subjects from a different cohort.
s Additionally, our results suggest that, in addition to transferring the findings from
w0 larger datasets to smaller ones, re-PLS can be trained on smaller datasets and extrapo-
wo lated to larger datasets, suggesting its potential utility in handling data size disparities
s for multi-centre and multi-cohort studies.

« 3 Discussion

w3 Identifying pathways between high-dimensional multivariate brain data and multivari-
ws  ate, non-pairwise-correlated behavioural, cognitive, and disease outcomes is central to
w5 advancing our knowledge about how anatomical distribution and functional integra-
ws tion of cortical irregularities may give rise to neurodegenerative diseases. Equally, it is
w7 critical to predict disease progression that may manifest across different behavioural,
ws cognitive, and disease domains. In this article, we develop re-PLS to (1) chart the
w0 pathways between high-dimensional multivariate brain cortical thickness data (inputs)
a0 and multivariate disease and behaviour data (outcomes); (2) simultaneously predict
a1 multiple, non-pairwise-correlated outcomes; (3) control for age and gender (con-
a2 founding variables) affecting both the inputs, the outcomes, and the pathways
a3 in-between; (4) assess disease scores cross-sectionally and disease progression longi-
s tudinally; and (5) reproduce and generalise the predictive model and the selected
a5 features cross-subject and -cohort.

416 The re-PLS framework first obtains the residuals, unaffected by the confounders,
a7 containing information on cortical thickness and outcomes via residual learning. It
ss  then performs PLS learning between the brain data-specific and outcome-specific
s residuals to estimate feature weights that quantify the relationship between brain
20 data and disease-related outcomes. The model finally uses the residuals, the con-
= founders (now covariates), and the estimated parameters to predict multivariate
w22 outcomes in new subjects.
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23 We first examine the method’s efficacy using data from CN subjects, individuals
w24 with MCI, and AD patients from ADNI, a multi-centre study aiming at developing
w5 biomarkers for AD [51]. Our results show that re-PLS framework is promising for iden-
w6 tifying, separating, and estimating unique pathways between high-dimensional cortical
a7 thickness data and multivariate cognitive and behavioural scores. The identified brain
w8 regions are mainly in the temporal, frontal, and sensorimotor areas, supporting pre-
wo  vious findings [7-9, 52-56]. Additionally, our results have provided new insights: we
s0 identify several nearly orthogonal “predictive AD biomarkers” that are jointly but
a1 differentially predictive of multivariate outcomes related to different behavioural and
a2 cognitive traits of AD. Finally, extending the model to longitudinal settings, we dis-
a3 cover potential “longitudinal AD biomarkers” that are not only useful to explain how
s AD is affected spatially in the cortical areas over time but also promising to help
a5 predict longitudinal disease course and progression.

236 Next, to showcase the generalisability and reproducibility of re-PLS, we first per-
a7 form a 10-fold CV. The model is iteratively trained on nine folds of the data and
s tested on the remaining fold without further model fitting (note that no subjects
a0 from the training data are in the testing set). It then iterates, training the model on
o nine new golds and testing it on the new remaining fold, and so on. Although our
a1 results in Fig. 4 highlight that parameters and pathways learned from the training
w2 data are helpful to predict multivariate AD outcomes in previously unseen subjects,
w3 it remains possible that the model may not capture the data variability across folds.
wus To that end, we perform ten additional analyses with different CV settings. Specifi-
ws  cally, we set aside 2% (where z = 0, 10, 20, ...,90) of the data for an additional step
ws  of out-of-sample test and run LOOCV on (100 — 2)% of the data; when x = 0, one
wr runs LOOCV on the entire ADNI data. To avoid a (un)lucky split (e.g., the train-
us  ing data contains many subjects with AD and MCI, and the testing data contains
uo  many CNs), we perform stratified sampling. Taking 2 = 70 as an example, we ran-
w0 domly select 70% of AD subjects, 70% of the people with MCI, and 70% of CN -
1 they form the training set, which is proportional to and representative of the entire
w2 data. The results show that the brain maps in the additional analyses, across vari-
i3 ous cross-validation settings, are generally consistent with those in Fig. 4 via 10-fold
e CV (see Figs. 10 to 19 in the Supplementary Materials). Additionally, the performance
s for predicting multivariate outcomes remains high and is consistent among different
s CV settings. Across all CV settings, the Default & Control map (P;) and Sensori-
7 motor map (Ps) are generally consistent across these 10 additional CVs. The OFC
s map (P3) and the DLFPF-Broca map (Py4) are also consistent up to a sign (the iden-
w0 tified key brain areas are similar with comparable weights of importance, but the signs
w0 of the weights may flip) and become increasingly stabilized as more data are used for
w1 training. The sign flip, however, does not affect interpretation and prediction. This is
w2 because (a) the method identified the same brain regions; (b) a sign flip does not affect
w3 prediction: if the P; map has a sign flip, the corresponding Q; also has a sign flip,
s thus the sign of prediction in Eq. (13) remains the same. The Visuomotor map (P5)
w5 explains the least amount of variability and is more variable across CV settings. Taken
w6 together, the additional cross-validation analyses suggest the utility of re-PLS in pre-
w7 dicting multivariate outcomes and that the model performance and neurobiological
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ws explanation are consistent across different cross-validation mechanisms. Particularly,
w0 the consistency of the Default & Control map (P;), Sensorimotor map (P3), OFC
w0 map (P3) and DLPFC-Broca map (Py4), and their convergence property as more data
an are used, suggest the strong plausibility of them being sensible predictive and explain-
a2 able “neural biomakers” for AD. In concert, these explorations further demonstrate
a3 the generalisability and reproducibility of the method in identifying brain regions that
aa  are predictive of those non-pairwise-corrected outcomes.

ats Moreover, we demonstrate that the reproducibility of the neural biomarkers and
as  re-PLS method extends to independent datasets and cross-cohort analysis using ADNI
a7 and OASIS data. These explorations show three advantages of the proposed method.
ws  First, re-PLS is not only generalisable in terms of (out-of-sample and out-of-cohort)
w9 prediction but also in terms of explanation (regarding the extracted latent biomarkers -
0 the latent brain maps and associated parameters learned from ADNI data). Especially,
s the Default and Control map (P;), when directly coupled with cortical thickness
w2 data from OASIS data without further model fitting or fine-tuning, predicts MMSE
i3 and CDR scores in OASIS data. Second, the reproducibility of re-PLS in handling
s the ToSToL (Training on Small and Testing on Large) problem suggests that re-PLS
w5 can transfer knowledge from a smaller dataset to a larger dataset. Third, re-PLS is
s useful for out-of-sample or -cohort prediction, even if the scales of clinical outcomes
w7 in training and testing differ. For example, the model trained on cortical thickness
s data and CDR-SB scores (ranging between 0 and 18) in ADNI data predicts CDR
s scores (ranging between 0 and 3) in OASIS data, and vice versa.

490 There are several limitations to this study. First, the nature of the imaging and cog-
w1 nitive data implies that the identified pathways are associative, although our methods
w2 selected brain regions whose cortical thickness is significantly predictive of multiple
w3 cognitive outcomes (which raises association to out-of-sample and -cohort prediction).
s Future studies should examine whether some of the identified brain markers and path-
w5 ways between the high-dimensional neural data and multiple outcomes can be raised
w6 to causal relationships. A beginning can perhaps be made by studying individuals
w7 with cortical lesions in the identified AD-related areas and examining if they exhibit
ws  AD-like behaviour and cognitive symptoms; combining re-PLS and causal inference
wo  may be helpful in this effort. Second, although re-PLS can perform longitudinal AD
so prediction, the algorithm was evaluated on sparse time points. This was partly due
s to the nature of the disease (brain structure degenerates progressively at a relatively
s slow pace, so it is perhaps unnecessary to have frequent assessments) and, in part, due
s3  to sparse measurements. Making a semi-continuous assessment of cognitive impair-
se ment, however, may help paint a refined, and perhaps more accurate, trajectory of
ss  the disease course, assist in monitoring symptom progression, and, for patients under
ss  treatment, evaluate the treatment efficacy more regularly and timely. Future analysis
sor - may extend re-PLS to more densely measured outcomes. Future analysis may refine
ss  patients into early and advanced AD patients and make finer forecasts. In parallel,
so0  one can apply re-PLS on MCI subjects and then follow up and apply re-PLS to data
s from the same subjects a few years later to study disease progression. Third, although
su - our method unveils latent maps between brain regions and AD outcomes, the latent
s maps are not deep (in the sense of deep learning). One major challenge with the
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s “deeper” models is that, while solving the many-to-many disease prediction problem,
s it is at present oftentimes difficult to make neurobiological sense of the identified brain
sis  areas when the weights of the (deep) hidden layers are projected on the brain space.
sis  As one of our goals here is to introduce a methodologically sound and neurobiolog-
si7  ically meaningful method that delivers both predictive power and can identify brain
sis  areas and pathways that may shed light on neurology and neuropathology, we reserve
si9  explainable AD prediction via deep learning for future work. Fourth, the definition
s0 of AD is only based on symptoms, and the clinical diagnosis of patients only assigns
s them a categorical label of “AD”. Certainly, using re-PLS, we can further stratify the
s» patients into different groups based on their continuous (non-categorical) predicted
s3  disease scores or the predicted multivariate cognitive and behaviour scores. One can
s« even build a new, finer continuous AD total score leveraging the multivariate cognitive
s» and behaviour scores (as different subjects have differential degeneration across those
6 multivariate cognitive and behaviour subdomains); an example of a simple score can
sz be a weighted sum of the predicted multivariate scores. These potentials may offer
ss  New insights about how to provide a finer prediction of the disease, but we cannot
s ascertain the validity using current data. Indeed, as a noticeable proportion of AD
s patients will end up with another diagnosis, such as FTD, LATE, PART, and vascular
sn  dementia, it is important to validate whether re-PLS can further predict AD patients
s2  into these groups. Future work can train re-PLS on subjects with FTD, LATE, PART,
533 and vascular dementia to verify this possibility. Finally, although one of the key pre-
s dictive goals in this paper is to address a many-to-many problem, re-PLS can also be
3 used in the future to predict single outcomes (as univariate outcomes are, in essence,
s3  special cases of multivariate outcomes).

537 To summarise, our analyses demonstrated the possibility of identifying and iso-
s lating the many-to-many pathways between high-dimensional multivariate brain data
s3  and multiple, non-pairwise-correlated cognitive and behavioural outcomes, both cross-
sa0  sectionally and longitudinally, and using the former to predict the latter in the face of
saconfounding variables, in new subjects within the same cohort, and in subjects from
se2  a different cohort.

«s 4 Methods and Materials

s Subject information. This article uses data from the Alzheimer’s Disease Neu-
s roimaging Initiative (ADNI) [49] and the Open Access Series of Imaging Studies
ss  (OASIS) [50].

547 The ADNI MRI data release includes a total of 1,196 subjects. Among them,
sis 45 subjects are under 60 years old, 305 are in their 60s, 620 are in their 70s,
s9  and 226 are 80 or older. At baseline, 321 were CN, 28 had subjective memory
s0 complaint (SMC), 663 had mild cognitive impairment (MCI), including 234 with
s early mild cognitive impairment (EMCI) and 429 with late mild cognitive impair-
52 ment (LMCI), and 184 were diagnosed with AD. The statuses of AD, MCI, or CN
3 are diagnostic outcomes made by clinicians primarily based on clinical criteria (see
s the ADNI2 Procedures Manual at: https://adni.loni.usc.edu/wp-content/uploads/
s 2024/02/ADNI2_Procedures_Manual 28Feb2024.pdf. During the follow-ups, 12 CNs
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sss  changed to MCIs, 1 CN to AD, 2 SMCs to MCIs, and 170 MCIs to ADs. Addition-
ss7 - ally, 9 subjects with either EMCIs or LMCIs reverted to CNs, 26 subjects with SMC
sss reverted to CNs, and 2 AD patients reverted to MClIs. For the cross-sectional study,
ss0  we used data from all 1,196 subjects. For the longitudinal study, we define CN = cog-
s0  nitively normal, sMCI = stable MCI (a subject assessed as an MCI during the first
s visit and continued to be diagnosed as an MCI during subsequent visits), pMCI =
sz progressive MCI (a subject was diagnosed as an MCI during early visits and was later
s diagnosed with AD), and AD = Alzheimer’s disease. We excluded 52 subjects from the
s« longitudinal study because they were either labelled as SMC at baseline (28 subjects),
ses  converted from CN to MCI (12 subjects), or from CN to AD (1 subject), from AD to
ses  MCI (2 subjects), or from EMCI or LMCI to CN (9 subjects); they do not fall into
sovone of the four major groups (CN, sMCI, pMCI, and AD), and their sub-sample sizes
s were too small to support meaningful analysis. Thus, the longitudinal study consists
so  of 1,144 subjects, including 308 CNs, 484 sMCls, 170 pMCIs, and 182 AD.

570 All participants provided written informed consent. Participants were recruited
sn - across North America and agreed to complete a variety of imaging and clinical assess-
s2 ments [49]. The ADNI Clinical Core manages all sites, and the Data and Publications
s Committee (DPC) vets all publications using ADNI data [57]. Full details regarding
s the initiative and the datasets are available at https://adni.loni.usc.edu/methods/
s5 - documents.

576 This paper considers eight disease and behavioural outcomes from the
s Clinical Dementia Rating (CDR), the Alzheimer’s Disease Assessment Scale-
ss Cognitive (ADAS-COG), the Mini-Mental State Examination (MMSE), and the Rey
s Auditory Verbal Learning Test (RAVLT). More specifically, the CDR is a score that
0 is derived from the summation of scores from each of the six categories: Memory (M),
s Orientation (O), Judgment and Problem Solving (JPS), Community Affairs (CA),
s2 Home and Hobbies (HH) and Personal Care (PC). ADAS-COG assesses learning
ss  and memory, language production, comprehension, constructional praxis, ideational
s« praxis, and orientation. It includes tasks/tests such as Word Recall, Naming, Word
ses  Recognition, Remembering Tests, Word-Finding, and Spoken Language Ability. The
sss  MMSE is a brief cognitive screening test used to assess cognitive impairment and
se7 - cognitive decline. A higher score on the MMSE indicates better cognitive function,
ses while a lower score may suggest the presence of cognitive impairment or dementia.
sso The RAVLT assesses abilities like immediate memory, delayed recall, and recogni-
s0  tion memory across five immediate learning trials. Further explanations regarding the
s scores we used in the analysis are in Table 2; full explanations of ADNI scores and
s procedures manual documents at https://adni.loni.usc.edu/methods/documents. We
ss  selected eight scores spanning key AD-relevant domains (memory, executive function,
se¢  global cognition, and functional status) to provide comprehensive disease character-
ss  isation and demonstrate multivariate relationships across cognitive and functional
so6  dimensions.

507 In the cross-cohort setting, we use the OASIS-1 dataset [50], which includes 225
se  subjects with matching data to those in the ADNI: MRI images and two cogni-
s tive outcome measures: CDR (Clinical Dementia Rating) and MMSE (Mini-Mental
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Table 2: Demographic and test information for the studied sample.

Age Age group and size | Gender Total samples
< 60: 45
60-70: 305

73.39 £ 7.17 70-80: 620 M/F: 662/534 2,862
> 80: 226

Baseline Followups

CN: 321 subjects

CN — CN: 308 subjects
CN — MCI: 12 subjects
CN — AD: 1 subject

SMC: 28 subjects

MCI: 663 subjects

MCI — MCI: 484 subjects
MCI — AD: 170 subjects
MCI — CN: 2 subject

AD: 184 subjects

AD — MCI: 2 subjects
AD — AD: 182 subjects

Status Age at baseline Gender
CN (308 subjects) 74.50 £ 5.70 M/F: 153/155 (49.9% M)
sMCI (484 subjects) 72.57 £ 5.59 M/F: 290/194 (59.9% M)
pMCI (170 subjects) 73.27 + 7.12 M/F:99/71 (58.2% M)
AD (182 subjects) 74.70 £ 7.66 M/F: 96/86 (52.7% M)
Test Abbreviation | Meaning
ADAS 11 It is the original ADAS-COG test, including 11
ADAS-COG items that assess cognitive function: 1. Spoken
language ability. 2. Comprehension of spoken
language. 3. Recall of test instructions. 4. Word-
finding difficulty in spontaneous speech. 5. Fol-
lowing commands. 6. Naming objects and fingers.
7. Constructional praxis. 8. Ideational praxis. 9.
Orientation. 10. Word-recall task. 11. Word recog-
nition task.
ADAS 13 ADAS 13 (or ADAS-COG 13-item test) includes
11 original ADAS-COG items plus Delayed Word
Recall and Number Cancellation.
ADAS Q4 Q4 task is the Delayed Word Recall task in
ADAS13.
The Clinical | CDR-SB The CDR Scale Sum of Boxes (CDR-SB) score
Dementia Rat- is obtained by summing the evaluator’s ratings
ing (CDR) across six domains: Memory, Orientation, Judg-
ment and Problem Solving, Personal Care, Home
and Hobbies, and Community Affairs.
The Mini Mental MMSE The MMSE assessment evaluates orientation to
State Examina- time and place, recall, attention, calculation, and
tion (MMSE) language abilities.
The Rey Auditory | RAVLT The RAVLT is a list of learning tasks that test
Verbal Learning Immediate word recall using multiple trials after a time delay.
Test (RAVLT) The RAVLT Immediate score measures a partici-
pant’s word recall after the first list learning trial.
RAVLT The score measures the number of words remem-
Learning bered across all trials.
RAVLT  per- | The RAVLT per cent forgetting score measures

cent forgetting

the number of words from the original word list
missed over all trials in percentage.
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o0 State Examination). The MMSE scores are consistent across both datasets. The stan-
s dard CDR scores range from 0 to 3, categorized as follows: 0 (no dementia, normal),
2 0.5 (very mild dementia, questionable), 1 (mild dementia), 2 (moderate dementia),
s and 3 (severe dementia); the CDR-SB (Clinical Dementia Rating Sum of Boxes) used
ss in ADNI is more detailed, ranging from 0 (no impairment) to 18 (severe impairment).

o 4.1 Data Acquisition and Preprocessing

ss For the ADNI dataset, we used the preprocessed MRI images. The scans were acquired
oor using both 1.5T and 3T with different scanner protocols in each phase (ADNI 1, ADNI
sz 2, ADNI GO, and ADNI 3). All MRI scans in the ADNI dataset were preprocessed
s00 using the CAT12 toolbox (http://dbm.neuro.uni-jena.de/cat). We used the surface
s segmentation tool with default parameters to extract cortical thickness from MRI
en  scans. For the OASIS dataset, we used the cortical thickness measurements from
sz FreeSurfer provided by OASIS. We then used the spatial registration tool in CAT12
ez to map the atlas and individual brains to extract surface-based atlas maps using the
se  Schaefer-Yeo 7 networks atlas [24] with a 200-parcel parcellation for both datasets.
a5 Secondary data analysis, including re-PLS, was conducted using a customised Python
as  package available at https://github.com/thanhvd18/rePLS.
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Algorithm 1 The Residual Partial Least Squares Learning

Step 0 (Data organisation): Organize sample data matrix X as N x P, outcomes
matrix Y as N x J, and confounding variables matrix Z as N x R, where N, P,
J, and R represent the number of samples, features, outcomes, and confounding
variables, respectively.

Step 1 (Obtaining residuals: X% and £Y/%): Removing confounding effects:

eXlZ.=x - Zﬂxlz, e¥lZ .-y — Z,BY‘Z,

where %% .= (Z7Z)7'Z"X and Y% := (Z7Z)"'Z7Y, and Z := [1y Z].
Step 2 (PLS on residuals ¢X/Z and eY/%): Let ¢ be the number of latent
components to extract.
for s=1to ¢ do

a. Compute weight vectors and score vectors:

Initialize ug as the first column of e Y12,
repeat
(€X|Z)Tus X|Z
Wx = , tgi=eMwx,
TR X
(eY)Te, Y|z
Wy = , ug:=erfw
U lE ¥
until tsconverges.
b. Compute loadings:
NG L N oL
’ tsTts tsTts

c. Deflate residuals:

X|Z

. X|Z Y|Z .  _Y|Z
€ =Xl —tspT, e¥lZ .= gYl —t.q].

d. Store the results:

Weight matrices: Wx(:,8) :=wx, Wy(:,s) :=wy
Loading matrices: P(,s) :=ps, Q(:, ) := Q5.
end for
617 Notations and data organizations. We begin by defining the notations used

s throughout this article. Let X € RV*P represents the input data with N subjects
a0 and P features. Let Y € RV*/ and Z € RV*E be the outcome and confounder
e0 matrices, respectively. Each subject ¢ (1 < i < N), we define y;; and z;, as the gth
e1 outcome and the r" confounding variable, respectively, for 1 < j < J, and ,1 <
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622 1T < R. The dataset is partitioned into training and test sets of sizes Nipain and Nyegt
o3 respectively (N = Nipain + Niest)- The corresponding subsets of data are written as
o2 Xipain € RNrainx Py o e RNwainXJ and Zyg i € RNwain xR with similar definitions
es for the test set.

626 Residual Partial Least Squares (re-PLS) Learning. We outline re-PLS
ez framework, which adjusts for confounding variables before performing partial least
o8  squares regression. The process begins by computing residuals of the predictor and
e outcome matrices with respect to the confounders Z. Specifically, during training, we

630 deﬁne:
YIZ _ 51 5 —15T X|z _ 7 X|Z
train (Ztrainztrain> ZtrainYtrain7 €train ‘T Xtrain - Ztrainﬂtrain’ (1)
X|Z _ m1 7 —15T Y|Z _ 5 Y|Z
train (Ztrainztrain) ZtrainXtrairU Etrain ‘T Ytrain - Ztrain/gtrain’ (2)
on where Zirain = [1N,un Ztrain] and 1y, denotes a column vector of ones of size

. - . . X|Z
62 Nirain used to add an intercept term in linear regression. This step makes sure EtrzLin

s and ezl‘izn are both zero-centered. For a test subject, we compute:
X|Z 5 X|Z
Etelst = Xiest — Litest B ! s (3)
Y|Z 5 Y|Z
Etelt = Yiest — Litest B 1, (4)
634 Note that the confounding structure Z is effectively removed from both X and

65 Y through linear regression, so the confounders no longer influence the residuals. To
s make predictions on unseen data, we use:

Y|Z | 5 Y|Z
Ytest = Etest + Ztest/B |

~ f(ewol) + ZiessBY1Z. (5)

s Here, the function f(-) represents the mapping from residualised covariates to resid-

. . . . . X|Z
s ualised outcomes. To learn this relationship, we perform PLS on residuals EtrzLin

639 ezgizn, a process which we term Residual PLS Learning (re-PLS). The two key points

&0 of performing re-PLS are:

and

o (a) After removing the confounding effect, the residuals st)i;izn and e:;llizn are likely
642 to provide better insights about the potential relationship (see Section 1 of the
643 Supplementary Materials) between the multivariate features Xypain and outcomes
644 Yirain (compared to the case when confounder effect exists), as the residuals still
645 contain information about X¢;ain and Yy, but are independent of Zy ain.

o6 (b) After removing the effect of Ziain on Xirain, we consider efiliizn as the new, trans-
647 formed input variable (or transformed features), and the initial confounding effect
648 of Zirain o0 Yirain now becomes a covariate effect (note that Zipain affects Yirain,
649 efﬂnzn affects Yirain, but Zirain does not have any effect on sfilnzn) This observation
650 is valuable for performing out-of-sample prediction.
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651 In the following, we outline the second key point of rePLS learning. We project
e2 data into latent space instead of directly regressing the outcome on the input. We
&3 then learn regression coefficients in this latent space and transform the predictions
e« back to the original variable space.

655 Each component (denoted as s) is learned at one time. The first step is to learn
so  weight vectors (wx and wy) that maximize the covariance between score vectors:

. X|Z
tS "= Etrain WX, (6>

. Y|Z
Us = Epain WY (7)
657 For simplicity, in the remaining part of the paper, we use notation without “train”
ss  to denote data used during training or parameters estimated from training data (for
o example, eXIZ .= siiizn and €Y% = szzliizn). The score vectors are updated itera-

e0 tively by alternating updates until convergence. Then the score vector ts captures the
e direction in €XI1% that has the highest covariance with e¥!%. The loading matrices are

2 obtained by regressing eX1% and eY!%, respectively, on the score vector t,.
(€X|Z)Tt8
:: —_— 8
P PRI (8)
(eY1%)Tt,
= 9
q Ty 9)
663 The data matrices eX1% and €Y!% are deflated and then utilised to learn the next
664 COmMponent.
eXlZ .= eXIZ _ ¢ pT, (10)
e¥lZ .= eYIZ _ ¢ qT. (11)
665 After computing all components, we store the weight and loading vectors in the

s matrices wx € RPX wy € RPXI P € RP*! and Q € RP*/ to make the final
67 prediction. Since the columns of P are generally not orthogonal, the latent score
s matrix T cannot be directly recovered from X% using P. Instead, we use the following
e0 relation:

T = X%wx (PTwx) L.

670 This gives us the following form for predicting residualised outcomes from
e residualised covariates:

eYlZ = TQT
= €X‘ZWX (PTWX)_lQT. (12)
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672 We outline the entire procedure for computing these components in Algorithm 1
ez and provide simulation studies and model comparisons with other methods in Section
o 3 of the Supplementary Materials.

675 Predict multivariate outcomes in new subjects. Consider new subjects with
os  feature data Xiesy and confounders Ziqs;. The predicted outcome Yoy for these new
o7 subjects without additional model fitting is given by:

X|Z 1 = X|Z
Yiest = o Wx (PTWx)T'QT+  ZeeuSXZ (13)
——
PLS-based prediction Confounder adjustment
678 Note that after removing the confounding effect of Ziest on Xiest, the residuals

X|Z .
679 emlst are no longer affected by Zies;. Therefore, the effect on the outcomes is now a

0 covariate effect, namely the second part in Eq. (13).
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