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Abstract

The bacterial sequence data publicly available via the global DNA archives is a vast potential source
of information on the evolution of bacteria. However, most of this sequence data is unassembled, or
where assembled was done so with no consistent assembler or quality control. Although this data
has great potential, these inconsistencies make it unsuitable for large-scale analyses, and inaccessible
for most researchers to reuse. Therefore in our previous effort, we released a uniformly assembled
set of 661,405 genomes, consisting of all publicly available whole genome sequenced bacterial isolate
data up to a cutoff of November 2018, enriched with various search indexes to make the data easier
to sort and use. In this study, we first extend the dataset up to August 2024 with the same consistent
assembly pipeline, more than tripling the number of genomes available. We also expand the scope of
the dataset beyond genomes, as we begin a global collaborative project to generate annotations, species-
specific analyses, evolutionary data, new search indices, and protein structural data. Our collaboration
is therefore grass-roots, driven by the needs of different research communities within microbiology.

In this paper, we describe the project as of release 2024-08, comprising 2,440,377 assemblies.
All 2.4 million genomes have been uniformly reprocessed for quality criteria and to give taxonomic
abundance estimates with respect to the GTDB phylogeny. We further enrich the dataset with sequence
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annotations from Bakta, antimicrobial resistance predictions from AMRFinderPlus, and AlphaFold2
protein structure predictions for the 17.7M hypothetical proteins. By applying an evolution-informed
compression approach, the full set of genomes is just 130Gb: a reduction of "23x compared to
compressing individual assemblies. To make the resource as accessible as possible, we also provide
multiple search indexes, a method for alignment to the full dataset, and cloud-based access to all the
genomes.

The AllTheBacteria data (https://allthebacteria.org/) has already been independently used
in multiple other analyses — our goal is to make this a self-sustaining community-driven resource, which
increases the accessiblity and reuse of bacterial genomes for a large range of purposes.

Introduction

Bacteria are the dominant cellular organisms on the planet, responsible for the functioning of every
biome. As sequencing technology improves and becomes more widely accessible, we are seeing a rapid
expansion in the breadth and depth of sequencing of the bacterial domain. These genomes bear the
imprint of millions of years of evolution and constitute a priceless resource for the understanding of
their biology, dynamics and the effect on the ecology of our entire planet.

Bacterial genomes evolve both through “vertical” inheritance, as parents fission into pairs of children,
and through multiple modes of horizontal gene transfer including those mediated by viruses and mobile
genetic elements such as plasmids and transposons. This has profound implications for their plasticity
and for the flexibility of their genomes. Members of a single bacterial species can share as little as 50%
of their genomes (the core genome), the rest being accessory content, present in only a fraction of the
genomes of the species. This “optional extra” content consists of fleetingly present content carried by
mobile elements typically purged by selection and therefore rarely observed in the population. It also
includes valuable cargo providing vital adaptive traits, observed consistently at intermediate frequencies
due to balancing selection. For those who seek to explore the fundamental biology of bacteria, and for
those working on clinical microbiology and public health, it is of immense value to be able to study the
diversity of bacterial genomes and the dynamics of the functional elements they contain.

Unfortunately, genomes available in the public domain are processed inconsistently or not at all,
rendering their use for these purposes inaccessible to most researchers. Even when sequence assemblies
are available, specific problems include assembly by a range of different tools and settings; variable
quality control (QC); and since many are run together in single projects, there are batch effects caused by
blocks of genomes all using the same assembly workflow. As a result, these data are not appropriate for
large scale analyses, where uncorrected batch artefacts could masquerade as true biological differences
when comparing groups. In order to address this for the community, Blackwell et al. (2021) set out
to uniformly assemble, QC and analyse all bacterial isolate whole genome sequence (WGS) raw data
available in the ENA as of November 2018. They released 639,981 high-quality assemblies, along
with quality control information and fundamental genome-derived statistics — the most important of
which was to check the taxonomic abundance within each putatively single isolate dataset to confirm the
species label in the submitted ENA metadata, which is not necessarily sequence-derived. In the process
they estimated that 8.1% of the species metadata tags in the ENA were incorrect. They also released
multiple search indexes with the assemblies: for whole genome comparison (sourmash (Pierce et al.
2019) and sketchlib (Lees et al. 2019)), and for k-mer search (COBS (Bingmann et al. 2019)).

The assemblies and search indexes allowed multiple other studies of plasmids (Lassalle et al. 2023;
Hu et al. 2022), bacterial adaptation (Tamadonfar et al. 2023; Mason et al. 2023; Biggel et al. 2022;
Smith et al. 2022), and compression/indexing algorithms (Ekim, Berger, and Chikhi 2021; Cracco
and Tomescu 2023; Khan et al. 2022; Deorowicz, Danek, and Li 2023; Marchet and Limasset 2022).
However, there remained a few limitations. First, the raw data stored at the INSDC has more than
doubled since then, and although we realise that keeping up with publicly deposited sequence data is
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a never-ending task, an update to the dataset would clearly be of great value. Second, the full set of
assemblies we produced was almost 1Tb in size, even after compression, and the COBS indexes added
a further 900Gb - this high computational demand reduced the accessibility of the data. Third, we
wanted to have the taxonomic abundance QC metrics — one of the most important for downstream use
— reported based on the community-supported GTDB standard (Parks et al. 2022). Fourth, we had not
provided further useful information on top of the assemblies: gene annotation, species-specific analyses
of wide interest (e.g. serotyping, MLST), or built pan-genomes. However to provide all of this was
beyond the capacity or expertise of our own research group — to do this properly and best serve the whole
community, we realised that we bring the expertise of research communities who focussed on specific
genera/species inside the project.

This paper describes the methodology we used for assembly, QC, and generation of analyses/products.
Our processes are summarised in figure 1. All software pipelines are open source with permissive li-
censes, available on GitHub.
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Figure 1: Overview of release 2024-08 of AllTheBacteria, including data sources, analyses, and
community aspects of the project.
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Methods

Dataset

We downloaded all paired Illumina bacterial isolate whole genome sequence raw sequence metadata
from the ENA, using the query https://www.ebi.ac.uk/ena/portal/api/search?result=r
ead_run&fields=ALL&query=tax_tree(2)&format=tsv. Samples were processed if they were
not in the 661k dataset, and had metadata “instrument_platform” = “ILLUMINA®, “library_strategy”
== “WGS”, “library_source” = "GENOMCIC”, and “library_layout” = “PAIRED”. The samples were
processed in two stages: the first (release 0.2) was from metadata downloaded on June 16th 2023, and
then a second round of processing from metadata obtained on August 1st 2024 (incremental release
2024-08).

Genome assembly

The genome assembly pipeline for the 661k dataset used by Blackwell was based around v1.0.4 of
Shovill (https://github.com/tseemann/shovill) which is a wrapper around Spades (Bankevich
et al. 2012). For release 0.2, we refactored and updated the pipeline (https://github.com/leois
1/bacterial_assembly_pipeline), and used an updated version of Shovill (v1.1.0), however the
difference between v1.0.4 and v1.1.0 was minimal and does not impact assembler output, and therefore
there was no need to reassemble the existing 661k dataset.

All samples in release 2024-08 were processed using a simple Python script (see https://
github.com/AllTheBacteria/AllTheBacteria/tree/main/reproducibility/All-
samples/assembly), again using Shovill v1.1.0. The script processes one sample, first downloading
the reads, then running Sylph, Shovill, and finally removing contigs matching the human genome (as
described later).

Taxonomic abundance estimation

Most taxonomic abundance estimation tools are designed for metagenome data which consists of an
unknown mix of different taxa. However, in single isolate data, which makes up the entirety of this
collection, only a single species is expected to be present, unless the sample is contaminated. Therefore
performing taxonomic analysis on isolate data is considerably simpler than on full metagenomic data— we
wanted primarily to establish the major species, its relative abundance, and the nature of contaminants.
We used sylph (Shaw and Yu 2023) version 0.5.1 with the pre-built GTDB 1214 database (https:
//storage.googleapis.com/sylph-stuff/v0.3-c200-gtdb-r214.syldb) with default
options, which required just 10Gb of RAM and took (~1 minute per sample). Since the 661k dataset
had previously been analysed with Kraken/Bracken, we re-downloaded the reads and reprocessed them
with sylph.

A species call was made from the “Genome_file” column of the sylph output, using a lookup table
generated with TaxonKit (Shen and Ren 2021) using GTDB taxonomy data (https://github.com/s
henwei356/gtdb-taxdump, v0.4.0). The reads from 3,252 samples resulted in no output from sylph,
presumably because there were no matches to the reference database.

Human decontamination

After assembly, the contigs output by Shovill were matched to the human genome plus HLA sequences
using nucmer from version 4.0.0rcl of the MUMmer package (Margais et al. 2018). We used the
T2T CHM13 version 2 assembly (GCA_009914755.4) of the human genome (Nurk et al. 2022; Rhie
et al. 2023). For HLA sequences, we used the file hla_gen. fasta from version 3.55.0 of the IPD-
IMGT/HLA database (J. Robinson et al. 2000; Dominic J Barker et al. 2023; James Robinson, Dominic
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J. Barker, and Marsh 2024). Any contig that had a single match of at least 99% identity and 90% of its
length was removed.

Assembly statistics

The program assembly-stats (https://github.com/sanger-pathogens/assembly-stats; git
commit 7bdb58b) was run on each assembly to gather basic statistics. Assemblies with a total length
of less than 100kbp or greater than 15Mbp were excluded. We found that 21 of the assemblies in the
original 661k data set were longer than 15Mbp, and so were removed from our releases, meaning that
661,384 of the samples in AllTheBacteria originate from the 661k dataset.

CheckM

CheckM?2 (Chklovski et al. 2023) version 1.0.1 was run on each assembly, using the default downloaded
database uniref100.KO.1.dmnd. Weran checkm2 predict withoptions --allmodels --database_path
--lowmem. 275 samples did not run to completion, stopping with the error message “No DIAMOND
annotation was generated”. This suggests that the assemblies are of low quality, resulting in very few
predicted proteins.

MiniPhy

All assembly FASTA files were compressed using MiniPhy (Bfinda et al. 2023) commit 7abe08c, which
uses intelligent batching of genomes to improve compression. The process has two steps: Divide the
genomes into approximately equal-sized batches, typically done by species. In our case, the highest-
abundance species for each sample was previously determined using sylph (see above), and a CSV file was
created mapping the filename to species. Batches were auto-created using the create_batches.py
script from the MiniPhy repository. MiniPhy was then run on each batch; internally it created an
approximate phylogenetic tree and reordered the genomes for better compression. The output is then
compressed with the standard xz tool, to produce one archive file per batch.

sketchlib.rust

The high-quality assemblies were sketched at k=14 using sketchlib.rust v0.1.0. This database allows
sequence similarity search through computing a Jaccard index, either against all the contents, sparse
queries returning k-nearest neighbours, below a given distance threshold, or against a chosen sub-
set of queries. We ran sketchlib sketch -f 2kk list.txt -k 14 -s 1000 -o 2kk sketch
--threads 32 to use a sketch size of 1000. The resulting .skd database of sketches is 4.1 GB, and
.skm of metadata is 123 MB.

Antimicrobial resistance detection

Antimicrobial resistance determinants were identified using AMRFinderPlus (Feldgarden et al. 2021)
v3.12.8 on all assembly FASTA files with database version v2024-01-31.1. For appropriate species
(Acinetobacter baumannii, Burkholderia cepacia, Burkholderia pseudomallei, Campylobacter jejuni,
Campylobacter coli, Citrobacter freundii, Clostridioides difficile, Enterobacter cloacae, Enterobac-
ter asburiae, Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Escherichia, Shigella,
Klebsiella aerogenes, Klebsiella oxytoca, Klebsiella pneumopniae, Klebsiella pneumopniae species
complex, Neisseria gonorrhoeae, Neisseria meningitidis, Pseudomonas aeruginosa, Salmonella, Ser-
ratia marcescens, Staphylococcus aureus, Staphylococcus pseudintermedius, Streptococcus agalactiae,
Streptococcus mitis, Streptococcus pneumoniae, Streptococcus pyogenes, Vibrio cholerae, Vibrio vul-
nificus, Vibrio parahaemolyticus) we used the GTDB species assigned by sylph for the AMRFinderPlus
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--organism parameter, in accordance with the guidelines at https://github.com/ncbi/amr/wiki
/Running-AMRFinderPlus#--organism-option (git commit 5£27bbe), thus incorporating known
AMR-informative point mutations. This option was omitted for all other species.

Genome annotation

All assembly FASTA files were annotated using Bakta (Schwengers et al. 2021) v1.9.4 and its full
database type v5.1. For consistency and downstream interoperability reasons, the --keep-contig-headers
option was set; all other parameters were left to default values. To reduce the total amount of genome
annotation data (down from 35Tb), a two-step approach was carried out. First, only Bakta JSON result
files were kept, as standard output files can be reconstructed using Bakta’s bakta_io command. Second,

all annotated genome files were then grouped into taxonomic batches as explained above and compressed
using xz -9. The resulting compressed annotation data was thereby reduced in size to 1.5TB.

Protein Structure Prediction of Hypothetical Proteins

Of the 9,319,300,441 proteins in the Bakta annotation output for the 2024-08 release of ATB, we
generated protein structures for those that were annotated as hypothetical proteins. After de-duplication
of identical sequences, 31,929,327 remained. We then kept only proteins from accessions that passed
all quality control checks (as of July 2025), leaving 17,711,165 unique proteins under 3000 amino acids
in length. Protein structures were generated using ColabFold (Mirdita et al. 2022) v1.5.5. Multiple
sequence alignments were generated with MMSeqs2 (Steinegger and Soding 2017) v15.6f452 using
the uniref30 and environmental (i.e. ColabFoldDB) databases. Protein structure predictions were
generated using AMD MI250x GPUs on Setonix at the Pawsey Supercomputing Research Centre using
the AlphaFold2 (Jumper et al. 2021) ptm model 1 only, with 3 recycles, no templates or relaxation for
maximum throughout.

Results

We set up this project, named AllTheBacteria (ATB), aiming to update the 661k dataset and improve
on the previous limitations through a community-centric approach. We advertised the project on social
media and the public microbiology bioinformatics Slack channel (microbial-bioinfo.slack.com)
and gathered colleagues from across the world keen to work together to produce a valuable public
resource. To avoid the need for unsustainable downloads from public archives, processing of raw read
data into assemblies was centralised, and published in phases as results became available. This allowed
community members to reuse these assemblies for downstream tasks, and also prototype their pipelines
on subsets of the entire dataset. Our community members volunteered analyses based on their research
interests and expertise, and when complete we have incorporated these into the public data releases. We
also created a github organisation to collate and organise requests for new analysis ideas, and species-
specific tools. We currently have over twenty people actively contributing in this way. We are also
aware of reuses of the entire dataset in algorithm development, outside of the project community (and
outside of microbiology), which was also one of our aims.

This project extends and builds on the 661k dataset, using the same genome assembly pipeline. We
generated 1,778,993 new assemblies, giving a total of 2,440,377 assemblies when combined with the
661k dataset, along with associated taxonomic abundance estimates and quality statistics. We made
these data available as archives for those that need the entire resource, on the cloud for those that need
individual genomes, and on the ENA for long-term archiving and to link to the underlying data and
generating studies.

We shifted from using the NCBI taxonomy in the 661k project, to using the community-preferred
GTDB here, so reprocessed the sequence reads for all samples (including the 661k) in order to obtain
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consistent taxonomic estimates. For different use cases, we expect different levels of quality filtering
might be needed, so provide all assemblies and statistics computed from them. For ease of use, we
provide a file listing the 2,346,079 assemblies we deem “high-quality”: genome size between 100k
and 15Mb, no more than 2000 contigs, N50 at least 5000, majority species at above 99% abundance
(and the same majority species call for all INSDC sequencing runs from the same sample), CheckM2-
completeness at least 90%, and CheckM?2-contamination of no more than 5%.

As expected, the data is dominated by the species of high clinical interest - the top ten species
constitute 75% of the high-quality dataset. However, AllTheBacteria expands the number of species
from 7,003 to 11,824. A comparison of the number of species in the high-quality data set and in the
661k set is shown in Figure 2.
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Figure 2: Assembly counts of the 20 most common species in the high quality AllTheBacteria data
set, compared with their counts in the 661k set. Species names are from GTDB taxonomy, assigned by
Sylph.

In order to make the data more accessible more widely, we particularly focussed on making the dataset
searchable, accessible as individual assemblies, and making the entire dataset as small as possible. This
decreases demand on network, storage and computing requirements for all downstream users. It was
important to losslessly compress the assemblies as efficiently as possible, and without requiring users
to install any special software. Naively applying gzip to each assembly in its own fasta file resulted in a
disk usage of 3.9 Terabytes. Applying the MiniPhy tool (Bfinda et al. (2023)) to intelligently batch sets
of assemblies with related sequences, then applying compression with the standard xz tool, reduced the
disk use to 130Gb, a 23-fold reduction.

Genome annotations were successfully conducted for 2,438,287 assemblies, resulting in a total
of 9,333,646,492 predicted coding sequences (CDS). Among these, 240,369,332 were non-redundant
due to their MD5 hash values, and 8,731,879,018 (94%) were exactly identified and linked to UniProt
UniRef100 clusters (i.e. exactly identical). 450,878,009 and 66,907,569 were annotated and linked
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to UniProt (Consortium 2024) UniRef90 and UniRef50 clusters, respectively. 272,946,667 remaining
proteins could not be assigned any functional annotation and were annotated as hypothetical proteins.

Protein structures were generated for 17,708,939 unique proteins annotated as hypothetical by Bakta.
Of these, 16,044,432 (91%) were not identical to a representative in the UniProt 202503 release, while
12,004,534 (68%) did not share 90% sequence similarity over 80% coverage (calculated via MMSeqs2)
to any UniProt (release 202503) protein. The proteins with a structure prediction generated had an
average length of 201 amino acids. 8,619,588 (49%) had a mean pLDDT (predicted Local Distance
Difference Test) of at least 70, suggesting a good quality structure prediction.

Discussion

The goal of AllTheBacteria is to generate uniformly assembled, quality controlled, annotated resource
encompassing all sequenced bacteria. To sustain and enrich the resource, we have built a community
around it who create and share added-value analyses. The current total number of samples we include in
AllTheBacteriais 2,440,377, bringing us up to date with all INSDC bacterial (and archaeal) Illumina data
up to August 2024. We provide methods to make the data searchable, including a sketchlib search index
and LexicMap index. Sketchlib allows finding nearest neighbours, tree-building and epidemiological
analyses of the dataset with a much reduced representation. LexicMap (Wei Shen and Igbal 2024)
allows BLAST-like query alignment for sequences at least 500bp in length against the full dataset, with
very low RAM requirements (1-2Gb) and extremely quickly — seconds for a rare gene with a few tens of
thousand hits, to minutes for a 16s gene which requires alignment to almost every one of the 2 million
genomes. The trade-off is that the LexicMap index is relatively large (around 3Tb); since this would
be impractical to download, we do not provide it on OSF, but instead recommend downloading the
assemblies (130Gb) and recreating the index locally, which is faster. The index is available on AWS, and
we provided detailed instructions on how to run searches using cloud resources, so no local compute is
required.

Future work our community is working on includes deeper annotation, including of phage and
plasmids, harmonisation of gene annotation to provide consistent identifiers within a species, and
thereby construction of pangenomes. Our community incorporates researchers focused on more targeted
analyses, both focused on individual species and classes of analyses, which will be incorporated in future
releases. Examples of ongoing analyses include sequence typing (MLST), serotyping, and antiviral
defence system determination (DefenceFinder).

Although they are obviously not bacteria, we have also applied the same assembly process to all
(Illumina) sequenced archaea as of July 31st 2024 (n=815), and make the assemblies also available at
OSFE. Although presently a small dataset, we hope that by showing our tools can be applied to other
domains of life we can drive community efforts to improve data reuse and accessibility. Fungal genomes
would be an obvious target for future efforts in this space.

At time of writing, AllTheBacteria has already been used for development of new bioinformatic
tools (Li 2024; Vicedomini et al. 2025), for discovery of a new biosynthetic gene cluster (McCartney
and Hoyles 2025), and to study the global dissemination of a drug resistance gene mediated by a mobile
element (Serna et al. 2025). We want these data to be of use - please use them and publish with them.
As our collaborative network continues to grow, we envisage generation of progressively more valuable
analytic outputs for the research community, as well as triggering innovation in search index methods.

We are continuing to assemble genomes from INSDC as they become available — the next release
will contain genomes up to May 2025 — with the ambition to continue this effort, extend to long read
sequencing, and fungal genomes.
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Data Availability

A website linking to all resources is available athttps://allthebacteria.org/. Documentation for
AllTheBacteria is available at https://allthebacteria.readthedocs.io/en/latest/. All data
for AllTheBacteria are hosted on the Open Science Framework (OSF) here: https://osf.io/xv7q9/.
The assembly pipelines for release 0.2 and 2024-08 are at https://github.com/leoisl/bacteria
1_assembly_pipeline and https://github.com/AllTheBacteria/AllTheBacteria/tree/
main/reproducibility/All-samples/assembly.

In addition, individual assembly FASTA files for each sample are available on AWS with S3
URI of the form s3://allthebacteria-assemblies/<SAMPLE_ID>. fa.gz (for example s3:
//allthebacteria-assemblies/SAMDO0000344.fa.gz). Assemblies are also available through
the ENA, as third-party annotations (TPAs) with ERZ prefixes.

A LexicMap index of the full dataset is also available on AWS (see https://allthebacteria.o
rg/docs/ for details).
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