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Abstract. Accurate brain extraction is a critical step in the analysis
of rodent head magnetic resonance imaging (MRI) data. However, cur-
rent methods often encounter difficulties in handling the diverse range of
imaging setups, resolutions, and experimental conditions that are com-
monly found in this field. Based on the Segment Anything Model (SAM),
we introduce here SAMson (SAM for Segmentation Of Neuroimages),
an automated tool for robust rodent brain extraction. SAMson inte-
grates a bounding box generator and a mask prediction pipeline, of-
fering fully automated and semi-automated modes to address varying
experimental complexities. The performance of SAMson was evaluated
using three multi-centre rodent MRI datasets annotated at the pixel
level, which differed in terms of acquisition parameters, resolution, and
animal age groups. SAMson demonstrates superior performance to exist-
ing methods, including BET, RBM, and BEN, in terms of segmentation
accuracy, with Jaccard indices exceeding 90% across datasets. The semi-
automated mode demonstrates particular efficacy in challenging scenar-
ios, including low-resolution images and cases requiring refined mask
precision. In contrast to conventional volumetric techniques, SAMson
identifies errors at the level of individual slices, thereby enabling rapid
and targeted correction when needed. By providing open-source access,
SAMson aims to support large-scale research workflows and advance
translational neuroscience. The curated data can be downloaded from
https://doi.org/10.20350/digital CSIC /17000, and the code is available
at https://github.com/CanalsLab/SAMson.
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1 Introduction

Magnetic resonance imaging (MRI) is a fundamental technique in preclinical neu-
roscience that provides functional and structural information about the brain.
This non-invasive and longitudinal method has demonstrated significant trans-
lational validity, as preclinical observations in animal models can be directly
compared with human observations [T2].

Brain extraction, or skull stripping, is the segmentation of brain tissue from
the skull and other tissues in head MR images. This process, typically performed
at the outset of preprocessing pipelines, relies on masks outlining the region of in-
terest (ROI) [3]. Segmentation errors can compromise the reliability of scientific
observations and the reproducibility of the results [4]. Consequently, researchers
often resort to manual extraction, a labor-intensive process incompatible with
the growing demand for large datasets to enhance scientific inquiry. Numerous
algorithms have been developed to automate brain extraction [5]. Automation
not only streamlines workflows but also reduces inter- and intra-operator vari-
ability, ensuring robust performance across datasets from different facilities and
experimental conditions [3].

The current gold standard in automatic skull stripping is the Brain Extrac-
tion Tool (BET) offered by the FMRIB Software Library (FSL) [6]. However,
the advent of deep learning methods has introduced several medical image seg-
mentation tools, with U-Net-based models [7] achieving widespread adoption
[8]. While effective for human brain segmentation, these methods often fail to
adapt to rodent MRI due to the diversity of imaging setups and parameters [9].
An additional challenge is the lower image resolution relative to the brain-skull
distance in rodents, complicating brain extraction [I0]. Consequently, extensive
manual editing is frequently required, rendering the process nearly as laborious
as manual mask extraction itself.

A pioneering work in promptable image segmentation is the Segment Any-
thing Model (SAM) [11], built on Vision Transformer (ViT) architecture [12] and
trained on the SA-1B dataset (1.1 billion masks from 11 million images). This
extensive training grants SAM robust zero-shot generalization capabilities [13],
often outperforming fully supervised extraction methods across diverse segmen-
tation tasks without retraining or fine-tuning [14]. However, the training dataset
of SAM primarily consists of natural images, which differ significantly from med-
ical images [I5]. Natural images typically feature color encoding, well-defined
object boundaries, and a clear separation between foreground and background,
with a relatively balanced size distribution. In contrast, most medical images
are grayscale, with ambiguous and complex object boundaries, low contrast,
and overlapping characteristics between foreground and background [T4UT6JI7].
Not surprisingly, studies show that SAM generally performs worse in medical
image segmentation (MIS) compared to natural images [T4/T8T9I20)].

Despite this limitation, SAM has demonstrated superior performance com-
pared to other interactive MIS methods [21] and, in some cases, delivered zero-
shot results surpassing state-of-the-art tools [13]. For MRI applications, SAM
consistently segments medical images across various modalities and aspect ratios
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[17]. Specifically, in brain extraction from human MR images, SAM outperformed
BET across a wide range of imaging modalities, contrasts, and pathologies [22].

Previous studies have evaluated the zero-shot application of SAM to medi-
cal imaging [I3T4THT7IRITIRTI22], often using Ground-Truth (GT) masks to
create prompts, referred to as “oracle performance”. Other efforts focused on
optimizing the manual input of prompts [23] or adapting SAM for the segmen-
tation of medical images [I6I20I24]. However, limited attention has been directed
toward the critical aspect of automation. Due to its prompt-based design, devel-
oping automated pipelines based on SAM presents a challenge [20]. Nonetheless,
a model trained for promptable segmentation can serve different purposes when
integrated into a larger algorithmic system [IT].

Building on the above strategies, we present SAMson (SAM for Segmenta-
tion Of Neuroimages), an automated tool for brain extraction from rodent MR
images. SAMson integrates an independent generator of object-bounding boxes
as prompts for SAM, enabling the automatic production of accurate masks. We
validated SAMson on multi-center preclinical MRI datasets from mice, demon-
strating operator-independent segmentation results closely matching manually
created masks by an expert. This advancement streamlines preclinical research
workflows and supports translational studies. More broadly, SAMson establishes
a foundation for SAM-based automated segmentation pipelines, with potential
applications across diverse medical imaging tasks.

2 Methodology

2.1 Datasets

Three distinct MRI datasets have been acquired and curated to evaluate SAM-
son’s performance (Table [1)) across varying acquisition protocols, magnetic field
strengths, and image resolutions, thereby testing its robustness and transfer-
ability in diverse preclinical neuroimaging settings. The primary dataset (D1)
comprises a cohort of 53 mice, stratified into four different age groups: 16 sub-
jects at 3 months of age (m.o.a.), 11 at 4.5 m.o.a., 11 at 6 m.o.a., and 15 at
12 m.o.a. To assess the generalizability of SAMson, we employed two additional
datasets acquired in different MRI facilities and composed of 3 m.o.a. mice: D2,
which encompasses 10 subjects, and D3, including 12 subjects.

All D2 images were either utilized in two previously published studies [25/26]
or unpublished (authors acknowledged), but were not publicly released. In our
work, all images in the three datasets have been manually annotated for brain
segmentation and released.

2.2 Pipeline overview

SAMson’s architecture consists of two primary components: an object detec-
tor and a mask predictor. In brief, the object detector produces the necessary
prompts that are used by SAM to segment the brain accurately. In this section,
we describe the methodology in detail, following the steps in Fig. [1}
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Dataset | TR / TE (ms) |FOV (mm)| Matrix Size Resolution (mm)
D1 3000 / 7.698 18 x 15 108 x 90 x 16 [0.1667 x 0.1667 x 0.8
D2 2500 / 33 34 x 34 |256 x 256 x 22|0.1302 x 0.1302 x 0.8
D3 5500 / 26 175 x 17.5(175 x 175 x 48 0.1 x0.1x0.3

Table 1: Acquisition parameters of the three datasets used for evaluation. D1:
Images acquired on a 7-T scanner (Bruker, BioSpec 70/30, Ettlingen, Germany)
using a T2-weighted RARE (Rapid Acquisition with Relaxation Enhancement)
sequence. D2: T2-weighted sequence on a 7-T scanner (Bruker, BioSpec 70/30,
Ettlingen, Germany) equipped with an actively shielded gradient system. D3:
11.4-T MRI scanner (Bruker BioSpec USR 117/16, Ettlingen, Germany) using
a T2-weighted RARE sequence.

2.3 Object detection

To generate input prompts, SAMson utilizes bounding box mode, which outper-
forms point prompts by enhancing prediction stability. Bounding boxes offer a
less ambiguous spatial context for the ROI, capturing essential features such as
the object’s size, location, and intensity profile [T3T6/T7TI2021]. Since box-
based prompting is sensitive to slight offsets of the bounding boxes [13IT6JI7],
the precise definition of bounding box coordinates is the first and most critical
step for accurate automatic segmentation in SAMson (see Algorithm [1)).

1. Template prompt generation. Using a mouse brain-extracted template
[27] integrated into the tool, SAMson automatically generates bounding
boxes enclosing the brain region in each slice. In this approach, bounding
boxes are aligned with the average anatomical space of the mouse brain,
reducing the task of automated prompting to a registration operation.

2. Calculation of relative coordinates. From the template prompts gener-
ated in (1), we extract the relative coordinates of all boxes with respect to
the central slice box in the template space.

3. Definition of the central slice box per subject. Two primary factors
contribute to variability in locating the ROI: the antero-posterior coverage of
the image set (field of view, FOV) and the ROI size and location within the
FOV. By default, SAMson sets the FOV to the typical range in rodent MRI,
spanning from the anterior tip of the frontal cortex to the posterior occipital
cortex. Users can specify custom coordinates for different ranges to adjust
to the FOV, just by specifying the most anterior and posterior slices in their
experiment. To address variability in size and location of the brain relative to
the FOV, SAMson employs a brain segmentation function based on Otsu’s
method [28], implemented in the DIPY (Diffusion Imaging in Python) library
[29]. This method is most reliable on central slices and is used to generate a
bounding box for the subject’s central slice. This central slice box serves as
the basis for mapping and generating subsequent box prompts, compensating
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Fig. 1: SAMson pipeline. 1. Template prompt generation; 2. Calculation of relative
coordinates; 3. Definition of the central slice box per subject; 4. Mapping; 5a. Semi-
Auto mode; 5b. Full-Auto mode.

for inter-individual variability and differences in head positioning within the
FOV.

4. Mapping. The relative coordinates are transposed to the subject space
through linear interpolation, with flexibility for any number of slices and
antero-posterior ranges. These coordinates are then applied to the previously
generated central slice box to produce the complete set of bounding boxes
in the subject space.

2.4 Mask generation

We adapted SAM’s testing pipelin{l to accept the generated prompts and per-
form iterative mask prediction across consecutive slices. We implemented two
different mask generation modes, Semi-Auto and Full-Auto, differing in the level
of operator dependence.

5a. Semi-Auto mode (see Algorithm. It leverages SAM’s capability to make
three mask predictions for a single prompt, intended for whole object, part

! https://github.com/facebookresearch /segment-anything
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and subpart segmentation [ITII5]. In our case, these correspond to varying
levels of brain extraction, increasing the odds of producing a suitable mask.

5b. Full-Auto mode (see Algorithm [3). The mask predictor is configured to
produce one single output per slice, automatically assembling all the results
into a corresponding volumetric mask.

SAMson uses the largest SAM model, ViT-H (with 32 transformer layers and
636M parameters), as it is the default option and has been shown to provide
substantial performance improvements over smaller models in MIS [17].

2.5 Mask correction

All generated masks, including the one produced using Otsu’s method, are re-
fined through morphological image processing to eliminate outgrowths marginally
connected to the ROI and isolated false-positive voxels (see Algorithm {)). For
outgrowth removal, the mask is eroded to detach the undesired lobes, which are
then dilated and subtracted from the original mask. Since dilation and erosion
are not strictly inverse operations, residual voxels may persist along with small
disconnected components hallucinated by SAM [11]. SAMson automatically re-
moves these errors.

3 Results

The quality of the masks generated using SAMson was compared with GT masks
extracted by an expert researcher. For this quantitative performance assessment,
we used the Jaccard index metric [30], which evaluates the overlap between
predicted and GT masks. Ranging from [0, 1], a higher value indicates a larger
similarity between reference and predicted masks.

3.1 SAMson performance analysis

Both the Semi-Auto and Full-Auto SAMson versions yielded highly accurate
segmentation results (Table , showing excellent agreement with manually ex-
tracted masks. As expected, the Semi-Auto method outperformed the Full-Auto,

] Method [ D1 [ D2 [ D3 |
SAMson Full-Auto [ 90.12 £ 2.47 [ 95.20 £ 0.74 | 95.52 + 0.46
SAMson Semi-Auto|92.74 + 1.58|96.12 + 0.47|96.15 + 0.46

Table 2: Average Jaccard index results in percentage with their standard deviation.
Statistical comparison between Full-Auto and Semi-Auto results using paired t-test:
D1, £(104) = 6.5, p < 0.001; D2, £(18) = 3.1, p < 0.01; D3, £(22) = 3.2, p < 0.01.
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but the differences were small, confirming the strong performance of the auto-
mated approach. The results were consistent across all three datasets (D1-D3)
and ages, with slightly lower performance observed for older animals (Fig. a,c).
Changes in the imaging protocol or number of image slices had no impact on
performance and did not require code adjustments.

Segmentation performance was moderately influenced by image resolution
(D1<D2<D3) (Table[2), and the advantage of the Semi-Auto method diminished
with higher-resolution images (improvements of 2.9%, 1%, and 0.6% for D1,
D2, and D3, respectively; see further analysis below), aligning with a trade-off
between time spent on increasing resolution and preprocessing.

Fig. presents representative examples of three typical cases (one per dataset)
using the Full-Auto method. Overall, these findings demonstrate the tool’s ro-
bustness across varying experimental conditions, operators, and MRI facilities.

We further evaluated performance along the antero-posterior axis, across
slices (Fig. b,d), providing a more accurate depiction of the tool’s segmenta-
tion capabilities compared to averaged results. We found that errors were con-
centrated in a few slices in the most frontal and caudal positions . Since manual
editing depends on both the average error and its distribution, such localized
errors simplify manual correction when necessary.

3.2 Object detector accuracy

Two sources of error might affect SAMson’s accuracy: suboptimal prompt gen-
eration and model-specific errors that persist despite perfect bounding boxes.
To evaluate these, we assessed the accuracy of our box generator (Fig. a,b)
and compared SAM’s oracle performance with SAMson’s Full-Auto performance
(Fig. c,d,e), determining the extent to which errors are attributable to our
system versus inherent limitations of the segmentation model. For comparative
analyses across datasets, we focused on the 3 m.o.a subgroup within the D1
dataset to minimize age-related variability, as it is closest in age to subjects in
D2 and D3.

For high-resolution images (D2 and D3), significantly more precise bounding
boxes in D2 compared to D3 (unpaired t-test #(20) = 12.6;p = 1.22- 10~ !°; Fig.
[h) did not result into significantly better mask outcomes (¢(20) = 1.1;p = 0.27;
Fig. 2h). In D3 images, the accuracy of bounding boxes across slices (Fig. i)
showed moderate correlation (r = 0.43;p = 1.3 - 1072%) with the corresponding
accuracy of mask generation using those boxes (Fig. ) For lower resolution
images (D1 at 3 m.o.a), the variance of the object detector increased (Fig. )
and the correlation between suboptimal boxes and suboptimal masks also rose
(r = 0.56;p = 9.0 - 10723). This trend is reflected in the similarity of subject-
age-wise and slice-wise trajectories for boxes and masks (Fig. a,b and Fig.
a,b). Fisher z-Comparison showed that correlations between boxes and masks
for D1(3) and D3 were significantly different (z = 2.36;p = 0.018), indicating
that the impact of box prompt accuracy on mask generation quality becomes
more pronounced as image resolution decreases.
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Fig.2: Brain extraction performance of SAMson in Full-Auto (a-b) and
Semi-Auto (c-d) modes. Jaccard index computed relative to manual masks defined
by an expert. Subjects from D1 were categorized by age group (m.o.a.: months of age).
For D2 subjects, the first and last 2 slices, and for D3, the first 4 and last 2 slices were
excluded from the evaluation due to the absence of brain tissue. In total, the analysis
included 848 generated masks from D1, 190 from D2, and 504 from D3. a, ¢) Blue dots
represent the average performance for each subject, computed across all slices, with the
mean and SD in orange. For D1, global mean and SD across age groups is shown in red.
One-way ANOVA showed a significant age effect in (a) (f(4,52) = 9.9,p = 3-107°) and
(c) (f(4,52) = 8.1,p = 1.7-10~*). Post-hoc analysis with unpaired t-test demonstrated
the lower performance in the 12 m.o.a. group (Holm adjusted p-values vs. 12 m.o.a.:
p < 0.05 (%), p < 0.01 (xx), p < 0.001 (xx*x). b, d) Each data point represents the
performance score for each slice in the antero-posterior axis. Orange lines connect the
mean values for each slice group within their respective dataset or age group.
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Fig. 3: Representative brain masks extracted with SAMson. Green outlines
indicate manually drawn brain masks; blue outlines represent automatically generated
brain masks. Panels show one typical case from each dataset: a) D1, b) D2, and c) D3;
with average Jaccard results: 0.9023, 0.9528, and 0.9568, respectively.
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Fig.4: SAMson prompt generation accuracy and oracle performance. a,b)
Accuracy analysis of all generated bounding boxes compared to GT boxes, defined
as those that enclose GT masks. c-e¢) Comparison of SAMson’s oracle performance,
achieved using GT boxes as input prompts, with its Full-Auto performance across
datasets. Left: performance per subject, averaging across slices, where data points
corresponding to the same subject are connected by grey lines. Paired t-test: ¢) ¢(30) =
5.31;p = 2.6 -107°, d) t(18) = 1.14;p = 0.27, e) t(22) = —0.14;p = 0.89. Right:
performance per slice, averaging across subjects, with shaded areas indicating standard
deviation.

The comparison between SAMson’s Full-Auto mode and the oracle perfor-
mance showed no statistically significant differences in D2 and D3 datasets, either
globally or across slices, (Fig. @-c,d,e). However, a difference of small magnitude
but statistically significant was observed in D1(3 m.o.a) dataset (paired t-test,
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Full-Auto vs. oracle performance, #(30) = 5.31;p = 2.6 - 107°). This result in-
dicates that, in most cases, the tool’s performance is not constrained by the
accuracy of the object detector but by SAM’s capabilities in this specific MIS
problem. Improvements to the object detector could enhance segmentation out-
comes only for the most challenging slices (rostral and caudal) in low-resolution
images, where the Semi-Auto mode already provides mask results nearly as pre-
cise as the oracle.

3.3 Comparison with other automated tools

To highlight the significance of the developed automated pipeline, we conducted
a comparative analysis (Fig. [5]) of its performance against established brain ex-
traction methods, including BET [6] and deep learning-based tools such as RBM
[10] and BEN [31]. For BET, we evaluated both the standard version optimized
for mouse MRI data and BET4Animal, using the best-performing option. SAM-
son’s performance was compared across all three datasets, analyzing both mean
accuracy per subject and per slice. SAMson consistently outperformed all meth-
ods under all tested conditions.

4 Discussion

SAMson has demonstrated remarkable accuracy in segmenting rodent MRI brain
images, outperforming currently available methods. While the quantitative anal-
ysis focused on T2-weighted images, the tool has also been successfully applied
to other imaging modalities, such as diffusion-weighted MRI and fMRI. Its ver-
satility is underscored by its two complementary approaches: Full-Auto mode
provides efficiency and automation for most common applications and Semi-
Auto is ideal for challenging scenarios.

The Semi-Auto mode requires the operator to select the most accurate mask
between three options, which adds processing time but offers greater precision in
challenging cases, such as low-resolution images. In these cases, SAM becomes
more sensitive to prompt quality. Since low-resolution images typically contain
fewer slices, the time required for manual selection might be less than the time
needed to manually correct errors in fully-automated pipelines. As we depart
from the ideal scenario, there is a compromise between image quality and the
efficiency of both methods (Fig. [6).

Automatically generated masks by SAMson rarely exhibit recurrent errors
across slices, which can be attributed to two key factors. First, SAM’s toler-
ance to prompt inaccuracies allows it to adapt prediction beyond the speci-
fied bounding box. Second, the application of morphological transformations to
SAM’s mask predictions consistently improves accuracy by removing false pos-
itive and marginally connected regions, enhancing alignment with the nuances
of our specific segmentation problem.

It is noted that SAMson’s errors tend to be localized within specific (most
rostral and caudal) slices, facilitating mask refinement when necessary and en-
hancing operational efficiency. This can be attributed to SAM’s 2D slice-based
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Fig.5: Benchmarking of RBM, BEN, BET and SAMson (Full-Auto). a)
Average performance of each method across datasets, with results for the same subject
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subjects for each dataset. Shaded areas indicate standard deviation.
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segmentation approach, which generates independent predictions for each slice.
In contrast, volumetric brain extraction tools, such as BET, propagate errors
across slices, compounding inaccuracies. The rostral and caudal localization of
errors probably reflects partial volume effects—due to mixed brain and extrac-
erebral tissue in the same voxel—limiting tissue boundary definition. Improved
performance on higher-resolution datasets supports this interpretation. Also,
since the Jaccard index measures relative overlap, it is particularly sensitive to
differences in mask size. Smaller masks, such as the rostral and caudal ones, ex-
perience a disproportionately larger relative decrease in overlap for any deviation
from GT.

The reduced performance of D1(12 m.o.a) compared to younger subjects
likely stems from limitations in the study’s template, which was derived from
younger animals and may not represent older anatomical features. This resulted
in lower bounding box accuracy in aged animals, which as we have shown trans-
lated into segmentation mistakes. Future extensions of SAMson will include age-
template selection for a particular study or group.

In the omics era, the preprocessing of large datasets requires automation for
scalability and efficiency. SAMson streamlines brain extraction, significantly re-
ducing manual effort while maintaining high accuracy. Its adaptability across
various rodent experiments, scanner resolutions, and imaging conditions high-
lights its utility. Future iterations will focus on enhancing segmentation per-
formance and expanding functionality to other preclinical species. By offering
open-source code and data, we aim to enable the scientific community to adopt
and improve SAMson, advancing neuroscience research.

CRediT author statement

D.P.S.: Conceptualization, Software, Data curation, Resources, Formal analysis, Vali-
dation, Investigation, Visualization, Methodology, Writing — original draft, Writing —


https://doi.org/10.1101/2024.03.07.583982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583982; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

review & editing. M.K.S.: Conceptualization, Methodology, Writing — original draft.
P.M-T.: Data curation, Resources. E.M-M.: Resources. P.R-C.: Resources. P.L-L.: Re-
sources. S.D.S.: Conceptualization, Resources, Supervision, Project administration,
Writing - original draft. S.C.: Conceptualization, Resources, Supervision, Funding ac-
quisition, Project administration, Writing — original draft, Writing — review & editing.
A.P.: Conceptualization, Supervision, Project administration, Writing - original draft,
Writing - review & editing.

Acknowledgements

S.C. acknowledges support from PCI2024-153491 funded by MICIU /AEI /10.130

39/501100011033 and UE, PID2021-128158NB-C21 funded by MICIU/10.13039/ 50110

0011033 and FEDER, UE, CEX2021-001165-S funded by MICIU/AEI /10.13039/50110

0011033 and Excellence Grant CIPROM /2022/15 and INVESTIGO INVEST/2022/396
funded by the Generalitat Valenciana and Next Generation EU. S.D.S. was supported

by the the Spanish Ministerio de Ciencia e Innovacién, Agencia Estatal de Investigacién

(PID2021-128909NA-100 and CNS2023-14488 ), by the Programs for Centres of Excel-

lence in R&D Severo Ochoa (CEX2021-001165-S), and by the Generalitat Valenciana

through a Subvencion para la contratacién de investigadoras e investigadores doctores

de excelencia 2021 (CIDEGENT/2021/015) and by a Fundacién Pasqual Maragall Re-

search Programme (2024 call). P.L-L. was funded by grant PID2021-1225280B-100

funded by MICIU/AEI/10.13039/501100011033/FEDER, UE. Some of the mice used

in this study were generated in the project funded by MCIU/AEI/FEDER, UE grants

PID2022-1417000B-100, MCIN/AEI/10.13039/501100011033 and CB/07/09/0034 Cen-
ter for Networked Biomedical Research on Mental Health (CIBERSAM, Bortolozzi A).

D.P.S. gratefully acknowledges Gaspar Panadero Tendero for inspiring the initial idea

of this work.

References

1. De Santis S, Bach P, Pérez-Cervera L, Cosa-Linan A, Weil G, Vollstddt-Klein S,
et al. Microstructural White Matter Alterations in Men With Alcohol Use Disorder
and Rats With Excessive Alcohol Consumption During Early Abstinence. JAMA
Psychiatry. 2019 Jul;76(7):749-58. DOI: 10.1001/jamapsychiatry.2019.0318.

2. Sommer WH, Canals S, Bifone A, Heilig M, Hyytid P. From a sys-
tems view to spotting a hidden island: A narrative review implicating in-
sula function in alcoholism. Neuropharmacology. 2022 Feb;209:108989. DOI:
10.1016/j.neuropharm.2022.108989.

3. Zhuang AH, Valentino DJ, Toga AW. Skull-stripping magnetic resonance brain
images using a model-based level set. Neuroimage. 2006 May;32(1):79-92. DOL:
10.1016/j.neuroimage.2006.03.019.

4. Despotovi¢ I, Goossens B, Philips W. MRI segmentation of the human brain:
challenges, methods, and applications. Comput Math Methods Med. 2015
Mar;2015:450341. DOI: 10.1155/2015/450341.

5. Boesen K, Rehm K, Schaper K, Stoltzner S, Woods R, Liiders E, et al. Quantitative
comparison of four brain extraction algorithms. Neuroimage. 2004 Jul;22(3):1255-
61. DOI: 10.1016/j.neuroimage.2004.03.010.


http://dx.doi.org/10.1001/jamapsychiatry.2019.0318
http://dx.doi.org/10.1016/j.neuropharm.2022.108989
http://dx.doi.org/10.1016/j.neuropharm.2022.108989
http://dx.doi.org/10.1016/j.neuroimage.2006.03.019
http://dx.doi.org/10.1016/j.neuroimage.2006.03.019
http://dx.doi.org/10.1155/2015/450341
http://dx.doi.org/10.1016/j.neuroimage.2004.03.010
https://doi.org/10.1101/2024.03.07.583982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583982; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

6. Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002
Nov;17(3):143-55. DOIL: 10.1002/hbm.10062.

7. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical
Image Segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors.
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2015.
Cham: Springer International Publishing; 2015. p. 234-41. DOI: 10.1007/978-3-
319-24574-4_28|

8. Azad R, Aghdam EK, Rauland A, Jia Y, Avval AH, Bozorgpour A, et al. Medical
image segmentation review: The success of U-Net. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2024. DOI: 10.1109/TPAMI.2024.3435571.

9. Liu Y, Unsal HS, Tao Y, Zhang N. Automatic brain extraction for rodent MRI
images. Neuroinformatics. 2020;18(3):395-406. DOI: 10.1007/s12021-020-09453-z.

10. Hsu LM, Wang S, Ranadive P, Ban W, Chao THH, Song S, et al. Automatic Skull
Stripping of Rat and Mouse Brain MRI Data Using U-Net. Front Neurosci. 2020
Oct;14:568614. [DOI: 10.3389/fnins.2020.568614.

11. Kirillov A, Mintun E, Ravi N, Mao H, Rolland C, Gustafson L, et al. Segment any-
thing. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision; 2023. p. 4015-26. DOI: 10.1109/ICCV51070.2023.00371.

12. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T,
et al. An image is worth 16x16 words: Transformers for image recognition at scale.
In: International Conference on Learning Representations (ICLR); 2021. .

13. Cheng D, Qin Z, Jiang Z, Zhang S, Lao Q, Li K. SAM on Medical Images: A
Comprehensive Study on Three Prompt Modes; 2023. https://arxiv.org/abs/2305.
00035.

14. He S, Bao R, Li J, Stout J, Bjornerud A, Grant PE, et al.. Computer-Vision
Benchmark Segment-Anything Model (SAM) in Medical Images: Accuracy in 12
Datasets; 2023. https://arxiv.org/abs/2304.09324.

15. Zhang Y, Jiao R. Towards Segment Anything Model (SAM) for Medical Image
Segmentation: A Survey; 2023. |https://arxiv.org/abs/2305.03678|

16. Wu J, Ji W, Liu Y, Fu H, Xu M, Xu Y, et al.. Medical SAM Adapter: Adapting
Segment Anything Model for Medical Image Segmentation; 2023. https://arxiv.
org/abs/2304.12620.

17. Huang Y, Yang X, Liu L, Zhou H, Chang A, Zhou X, et al. Segment anything
model for medical images? Medical Image Analysis. 2024;92:103061.

18. Deng R, Cui C, Liu Q, Yao T, Remedios LW, Bao S, et al.. Segment Anything
Model (SAM) for Digital Pathology: Assess Zero-shot Segmentation on Whole Slide
Imaging; 2023. https://arxiv.org/abs/2304.04155.

19. Roy S, Wald T, Koehler G, Rokuss MR, Disch N, Holzschuh J, et al.. SAM.MD:
Zero-shot medical image segmentation capabilities of the Segment Anything Model;
2023. |https://arxiv.org/abs/2304.05396.

20. Ma J, He Y, Li F, Han L, You C, Wang B. Segment anything in medical images.
Nature Communications. 2024 Jan;15(1):654. DOI: 10.1038/s41467-024-44824-z|

21. Mazurowski MA, Dong H, Gu H, Yang J, Konz N, Zhang Y. Segment anything
model for medical image analysis: An experimental study. Medical Image Analysis.
2023;89:102918. DOI: 10.1016/j.media.2023.102918.

22. Mohapatra S, Gosai A, Schlaug G. SAM vs BET: A Comparative Study for Brain
Extraction and Segmentation of Magnetic Resonance Images using Deep Learning;
2023. https://arxiv.org/abs/2304.04738|

23. LiuY, Zhang J, She Z, Kheradmand A, Armand M. SAMM (Segment Any Medical
Model): A 3D Slicer Integration to SAM; 2024. https://arxiv.org/abs/2304.05622.


http://dx.doi.org/10.1002/hbm.10062
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1109/TPAMI.2024.3435571
http://dx.doi.org/10.1007/s12021-020-09453-z
http://dx.doi.org/10.3389/fnins.2020.568614
http://dx.doi.org/10.1109/ICCV51070.2023.00371
https://arxiv.org/abs/2305.00035
https://arxiv.org/abs/2305.00035
https://arxiv.org/abs/2304.09324
https://arxiv.org/abs/2305.03678
https://arxiv.org/abs/2304.12620
https://arxiv.org/abs/2304.12620
https://arxiv.org/abs/2304.04155
https://arxiv.org/abs/2304.05396
http://dx.doi.org/10.1038/s41467-024-44824-z
http://dx.doi.org/10.1016/j.media.2023.102918
https://arxiv.org/abs/2304.04738
https://arxiv.org/abs/2304.05622
https://doi.org/10.1101/2024.03.07.583982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583982; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

24. Chen C, Miao J, Wu D, Zhong A, Yan Z, Kim S, et al. MA-SAM: Modality-
agnostic SAM adaptation for 3D medical image segmentation. Medical Image
Analysis. 2024;98:103310. DOI: 10.1016/j.media.2024.103310.

25. Mateu-Bosch A, Segur-Bailach E, Mufioz-Moreno E, Barallobre MJ, Arbonés ML,
Gea-Sorli S, et al. Systemic delivery of AAV-GCDH ameliorates HLD-induced
phenotype in a glutaric aciduria type I mouse model. Molecular Therapy - Methods
& Clinical Development. 2024;32(3):101276. DOIL: 10.1016/j.omtm.2024.101276

26. Haddad-Tévolli R, Ramirez S, Mufioz-Moreno E, Mila-Guasch M, Miquel-Rio L,
Pozo M, et al. Food craving-like episodes during pregnancy are mediated by ac-
cumbal dopaminergic circuits. Nature Metabolism. 2022 Apr;4(4):424-34. DOL:
10.1038/s42255-022-00557-1.

27. Martinez-Tazo P, Santos A, Selim MK, Espinés-Soler E, De Santis S. Sex mat-
ters: The MouseX DW-ALLEN Atlas for mice diffusion-weighted MR imaging.
Neurolmage. 2024;292:120573. DOI: 10.1016/j.neuroimage.2024.120573.

28. Otsu N. A Threshold Selection Method from Gray-Level Histograms.
IEEE Transactions on Systems, Man, and Cybernetics. 1979;9(1):62-6. | DOL:
10.1109/TSMC.1979.4310076.

29. Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, Descoteaux M,
et al. Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform.
2014 Feb;8:8. DOI: 10.3389/fninf.2014.00008.

30. Jaccard P. Nouvelles Recherches Sur la Distribution Florale. Bulletin de la Societe
Vaudoise des Sciences Naturelles. 1908 01;44:223-70. DOI: 10.5169/seals-268384.

31. Yu Z, Han X, Xu W, Zhang J, Marr C, Shen D, et al. A generalizable brain
extraction net (BEN) for multimodal MRI data from rodents, nonhuman primates,
and humans. eLife. 2022 dec;11:e81217. DOI: 10.7554 /eLife.81217,


http://dx.doi.org/10.1016/j.media.2024.103310
http://dx.doi.org/10.1016/j.omtm.2024.101276
http://dx.doi.org/10.1038/s42255-022-00557-1
http://dx.doi.org/10.1038/s42255-022-00557-1
http://dx.doi.org/10.1016/j.neuroimage.2024.120573
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.3389/fninf.2014.00008
http://dx.doi.org/10.5169/seals-268384
http://dx.doi.org/10.7554/eLife.81217
https://doi.org/10.1101/2024.03.07.583982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583982; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A Algorithms

Algorithm 1: Box Prompt Generation

Input: A subject image slices S € R7s*Ws  with N slices
Masked template slices T' € {0, 1}77*W7T  with L slices
Antero-posterior span of the subject along the z-axis of the template
through slice indices (f, 1) corresponding to (first, last)
Output: Prompt boxes P’ € R2,
Otsu’s mask O € {0,1}#s*Ws

A) Find box prompts B for masked template slices:

Initialize B as an empty list;
foreach t € T' do
Find non-zero indices in t;
Determine the bounding box b = (21, Yu, Zr, yq) using the minimum and
maximum indices;

Append b to B

B) Extract from B the relative coordinates R from boundary positions of all
boxes with respect to those of the box in the central slice:

Initialize R as an empty list;

Obtain template’s central slice box ¢ = By, /2;

Calculate width, height (w, h) and center (x,y) coordinates of the box in the
central slice c;

foreach b € B do
Determine the relations p = (pi, pu, pr, pa) to map b towards c:

p=(—z)/w,  pr=(-z+z) W,
pu=(Y—yu)/hy,  pa=(-y+uya)/h,

Append p to R;
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C) Interpolate relative coordinates R to the subject R':

Initialize R’ as an empty list;
Assign z-axis coordinates to the template slices

7
Zi=—— i <i<L};
71 {ieN|0<i<L}

Allocate subject slices relative to the template
Z;:Zf+ﬁ(zzfzf) {ieN|0<i<N};

foreach z € Z' do
Find the pair of Z values (j, k) between which z lies: Z; < z < Z;
Calculate the set of relative coordinates p’ as:

' Bk —R;,
p=R;+(z Z])Zki—Z]-’

Append p’ to R’
D) Characterize the bounding box for the central slice of the subject:

Generate subject’s mask O using Otsu’s method;

Find subject’s most central slice d € 7' as the closest to Z. = 0.5;
Improve central slice mask m’ = Mask Correction(m);

From m/, find the bounding box b for the central slice d, as in (A);
Calculate width, height (w, h) and center (z,y) coordinates of ¥';

E) Extrapolate the central slice box:

Initialize B’ as an empty list;
foreach p' € R’ do
Determine the bounding box b = (z1, Yu, Tr,y4) using p’ and the values
(w7 h’ "L‘7 y):
/ /
LTy =T —W-pr, Tr =T+ W- Pp, (2)

Yu=y—h-pu, ya=y+hpy

Append b to B';

return Prompt boxes B’ € R2,, Otsu’s mask O € {0, 1}HsXWs;
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Algorithm 2: SAMson Semi-Auto Mask Generation

Input: A subject image slices S € R¥s*Ws  with N slices
Automatically generated box prompts B
Output: SAMson mask M € {0,1}7s*Ws

A) Create list of mask candidates M":

Initialize M’ as an empty list;

foreach (s,b) € (S, B) do
Image normalization and scaling § = (s/max(s)) - 255;
Predict 3 masks (m1, m2, ms) = SAM(S, b) with multi-mask output;
Improve masks (m1, m2, m3) = Mask Correction(mi,ma, m3);
Append mask candidates m1,ma, m3 to M’;

B) Create list of selected masks M:
Input: Vector e € {1,2, 3}N for best output selection in each slice;

Initialize M as an empty list;
fori=1to N do

Extract selected mask for slice i: m = M'[3(i — 1) + e;];
L Append m to M;

return SAMson mask M € {0,1}s*Ws,

Algorithm 3: SAMson Full-Auto Mask Generation

Input: A subject image slices S € RTs*Ws  with N slices
Automatically generated box prompts B
Output: SAMson mask M € {0,1}s*Ws

Initialize M as an empty list;

foreach (s,b) € (S, B) do
Image normalization and scaling § = (s/max(s)) - 255;
Predict mask m = SAM(3,b) without multi-mask output;
Improve mask m = Mask Correction(m);
Append m to M;

return SAMson mask M € {0,1}7s*Ws;



https://doi.org/10.1101/2024.03.07.583982
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.03.07.583982; this version posted January 15, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Algorithm 4: Mask Correction

Input: A mask slice m € {0,1}7*W
Output: Improved mask m’ € {0, 1}7*W

A) Remove outgrowths:

Erode mask m’ <~ m © k, being k a quadratic kernel of size s, so that lobes
detach from the main cluster of pixels;

Find largest group of connected pixels g in m’;

Set m’ < m' —g;

Dilate m’ < m' @ k (remaining groups) to restore the original outgrowth size;

Subtract outgrowths from original mask m’ < m — m/;

B) Remove separate pixels (hallucinated or from previous operations):

As in (A), find largest group of connected pixels and erase all others;
return Improved mask m’ € {0, 1}wa;



https://doi.org/10.1101/2024.03.07.583982
http://creativecommons.org/licenses/by-nc-nd/4.0/

	SAMson: an automated brain extraction tool for rodents using SAM

