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The lit-OTAR framework, developed through a collaboration
between Europe PMC and Open Targets, leverages deep learn-
ing to revolutionise drug discovery by extracting evidence from
scientific literature for drug target identification and valida-
tion. This novel framework combines Named Entity Recog-
nition (NER) for identifying gene/protein (target), disease, or-
ganism, and chemical/drug within scientific texts, and entity
normalisation to map these entities to databases like Ensembl,
Experimental Factor Ontology (EFO), and ChEMBL. Contin-
uously operational, it has processed over 39 million abstracts
and 4.5 million full-text articles and preprints to date, iden-
tifying more than 48.5 million unique associations that sig-
nificantly help accelerate the drug discovery process and sci-
entific research (> 29.9m distinct target-disease, 11.8m dis-
tinct target-drug and 8.3m distinct disease-drug relationships).
The results are made accessible through the Open Targets Plat-
form (https://platform.opentargets.org/) as well as
Europe PMC website (SciLite web app) and annotations API
(https://europepmc.org/annotationsapi).
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Introduction

The process of identifying drug targets is a critical aspect of
drug discovery, requiring an understanding of the molecu-
lar and genetic mechanisms of underlying diseases. In this
study, a “target” specifically refers to genes or proteins that
are investigated for their potential role in disease association
and drug discovery. Scientists rely on various sources of ev-
idence such as gene expression changes, genetic variations,
and clinical study data to unravel the connections between
drugs, targets and diseases (1). To navigate this complex-
ity, the Open Targets Platform (2) was developed as a com-
prehensive web-based tool that integrates diverse sources of
evidence, facilitating the efficient identification of promising
drug targets associated with diseases and phenotypes. The
Platform combines data from more than 20 different sources
to provide target–disease associations, including evidence de-
rived from genetic associations, somatic mutations, known
drugs, differential expression, animal models, pathways and
systems biology, and text-mining of scientific articles. An
integrated score weighs the evidence from each source and
type, contributing to an overall score for each target–disease
association. This systematic approach harmonises informa-

tion into a coherent schema and presents it in a user-friendly
manner.
Extraction of assertions from scientific articles is an impor-
tant aspect of this work, and to this end, Europe PMC (3)
has played a key supporting role. Europe PMC, a global
free biomedical literature repository indexing over 41 mil-
lion abstracts and 8.7 million full-text articles, provides es-
sential support with its text-mining capabilities. By integrat-
ing Europe PMC’s text-mined annotations, the Open Targets
Platform harnesses scientific literature as a unique source
of information, particularly to identify and elucidate tar-
get–disease–drug associations, which are central to its func-
tionality.
The Literature-Open Targets (Lit-OTAR) framework consists
of two primary components: Europe PMC text-mining and
the Open Targets literature module, as illustrated in Fig-
ure 1. Europe PMC utilises deep learning techniques to iden-
tify target (gene/protein), disease, and chemical/drug entities
within scientific documents. Subsequently, Open Targets per-
forms entity normalisation to accurately map these entities to
databases like Ensembl (4), Experimental Factor Ontology
(EFO) (5), and ChEMBL (6), while ranking the associations
between target–disease–drug mentioned in these documents.
The primary goal of this framework is to provide a scalable
and continuous service to the scientific community, enabling
efficient target validation.
Within the existing landscape in biomedical text-mining there
are a number of tools focusing on extracting key entities and
associations from literature. For instance, DisGeNET (7),
SemMedDB (8), LitSense (9), PubTator (10) and PubTator
Central (11) provide efficient ways to access high quality
text-mined bio-entites. However, these resources are oriented
towards access to texmined outputs alone either via high-
lighting terms or via APIs. The Lit-OTAR work described in
here is differently oriented, where the outputs of the frame-
work are mainly integrated with other types of evidences (e.g.
RNA expression and pathway analysis) to support system-
atic identification and prioritisation of therapeutic drug tar-
gets in the Open Targets Platform (2, 12). The outputs are
highlighted using Europe PMC’s Scilite tool and accessed
through the Annotations API.
The Lit-OTAR framework also benefits from an active com-
munity that provides documentation, training, and feedback
to drive continuous improvements. Community collabora-
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tion is facilitated through resources such as the Open Targets
Community Portal1 and the European PMC’s developer fo-
rum2, where users share insights and updates.
Our work builds on previous efforts. In our 2017 study (1),
we employed dictionary-based methods within a quarterly
operational pipeline for data updates, utilising the Europe
PMC text-mining pipeline enhanced with custom dictionar-
ies from UniProt and EFO for annotating target and disease
names. Although this approach was robust, it faced limita-
tions due to its reliance on manual rules such as abbrevia-
tion filters and blacklists of common terms and challenges
inherent in biomedical texts. Distinguishing between gene
and protein names, spelling variations, and context-specific
meanings of abbreviations often led to high recall but low
precision (13).
The emergence of modern natural language processing
(NLP) techniques (14, 15) has revolutionised text-mining
by offering high efficiency and accuracy. Models like
BERT (16), BioBERT (17), PubMedBERT (18), and Bio-
Former (19), trained on extensive biomedical corpora and
fine-tuned for specific tasks, have markedly improved the ac-
curacy of entity recognition, managing ambiguities, special
characters, acronyms, and identifying synonyms and varia-
tions in expression. These advancements not only enhance
recall and precision rates but also facilitate the discovery of
new biological relationships from the extensive, unstructured
data in the life science domain.
In our current study, we have leveraged deep learning tech-
niques, specifically models such as BioBERT and BioFormer,
to significantly enhance our pipeline. This updated Lit-OTAR
pipeline has been refined to enhance flexibility and modular-
ity, expanding its scope to include a new entity category for
chemical/drug. This enhancement has enabled the pipeline to
text-mine for associations between drugs and targets, drugs
and diseases, in addition to targets and diseases. Further-
more, we have addressed technical challenges such as sen-
tence splitting and boundary detection in complex document
structures like tables and figures. The main distinctions be-
tween the previous and the current pipeline are detailed in
Table T1 of the Supplementary Material.

Materials and Methods
At the time of writing this article, Europe PMC hosted ap-
proximately 39 million journal and preprint abstracts and 9
million full-text journal and preprint articles. However, only
a subset of these, specifically 39 million and 4.5 million, re-
spectively, were included due to licensing restrictions (CCO
and CC-BY) and their classification as original research ar-
ticles3. This dataset and the subsequent daily addition of
the data is run through our custom developed deep learning
model for NER extraction (20). The generated output is for-
matted in JSON, with identified entities treated as matches.
Moreover, when two matches or entities occur within the

1https://community.opentargets.org
2https://groups.google.com/a/ebi.ac.uk/g/

epmc-webservices
3https://europepmc.org/Copyright

same sentence, they are considered as forming an associa-
tion or providing evidence. We have completed a study with
three experts for treating co-occurrence as association (refer
Section Co-occurrence vs Association C). Subsequently, this
processed data is forwarded to the Open Targets ETL for the
purpose of normalisation (grounding). Disease-related enti-
ties are mapped to the Experimental Factor Ontology (EFO),
chemical and drug entities to CHEMBL, and gene and pro-
tein entities to Ensembl. The resulting data is made acces-
sible through both the Open Targets Platform and Europe
PMC annotations APIs, in addition to the Scilite annotations
tool (21) on the Europe PMC website (refer to Supplemen-
tary Material S7: Section B).
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~9m full-text + preprints
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Fig. 1. Overview of the Data Selection, Processing, and Accessibility Workflow in
Europe PMC and Open Targets Platforms. Refer to Section A (Entity Recognition),
Section B (Entity Normalisation) and Section D of the Supplementary Material S7
(Entity Annotation/Bibliography).

A. Entity Recognition. To develop deep learning models
for the Lit-OTAR framework, we utilised the Europe PMC
dataset (13). Initially, this dataset did not include men-
tions of chemical/drug. To overcome this limitation, we
used CHEMDNER BioCreative dataset (22) to annotate the
corresponding subset in Europe PMC with chemical/drug
mentions, preserving the human-annotated spans. The en-
riched dataset now covers mentions of gene/protein, dis-
ease, chemical/drug, and organism. We trained and evalu-
ated three different models BioBERT, SpaCy (custom trained
with PubMed+PMC word2vec (23) over 10 iterations), and
Bioformer on this dataset, using the evaluation criteria from
SemEval-2013 Task 9.1 (24) (Supplementary Material S2).

B. Entity Normalisation. The NER tagging of entities oc-
curs at Europe PMC, while normalisation and ranking (Sup-
plementary Material S4) takes place on the Open Targets
Platform (Figure 1).
The process involves matching and mapping entities to spe-
cific databases/ontologies. The pipeline uses a Word2Vec
skip-gram model (25) to transform NER outputs into stan-
dardised representations. This includes mapping diseases
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D Entity Recognition

to the EFO, chemicals to ChEMBL, and genes to Ensembl.
The model generates n-dimensional word embeddings, which
capture semantic similarities by analysing co-occurrence pat-
terns in the literature.
The model’s calculation of similarity metrics also supports
the ranking of entities, determining their relevance to the re-
search context by analysing literature patterns. This method
improves the accuracy of entity normalisation and enhances
the Open Targets Platform’s value for researchers by offer-
ing a comprehensive understanding of biological entity rela-
tionships and their potential therapeutic implications (refer to
Supplementary Material S3 and Algorithm A1).

C. Co-occurrence vs Association. A curation task was
conducted to annotate 252 sentences for association analy-
sis, with each annotator pair assigned 168 sentences and an
intentional overlap of 84 sentences between pairs to measure
inter-annotator agreement. The annotation categories for as-
sociation included the following classes: Altered Expression,
Genetic Variation, Regulatory Modification, Any (general or
unspecified association), NA (Not Available), and No (No as-
sociation mentioned). The annotation overlap was measured
using Cohen’s Kappa (K).
Despite high expectations, the overall Cohen’s Kappa value
indicated a variance in perceptions of associations in the
range of [0.2 - 0.39], reflecting a low inter-annotator agree-
ment that deemed the overlap unsuitable for machine learn-
ing purposes. The association identification presented chal-
lenges, evidenced by a low overlap. This difficulty was at-
tributed to various factors, including short sentences lack-
ing clear relations, long sentences with lists of multiple
genes/proteins, drugs and diseases, complex sentence struc-
tures, and sentences that required additional context for ac-
curate interpretation.
Given the subjectivity in defining associations, we opted to
treat co-occurrence as a form of association, including even
the absence of explicit associations. This approach allows
users to apply post-processing to tailor the data to their spe-
cific needs. However, it is important to note that this defini-
tion limits the framework’s ability to capture associations that
span multiple sentences, such as those involving coreference
or inferred context. This constraint may affect the compre-
hensiveness of extracted associations, as more complex lin-
guistic relationships are challenging to identify.
Following this study, we recognised that association is sub-
jective, leading us to consider co-occurrence as a form of as-
sociation itself. Consequently, we adjusted our approach to
treat co-occurrence as the universal set, acknowledging that
any co-occurrence might imply an association, despite the
challenges in explicit identification by annotators.

Results

D. Entity Recognition. BioBERT led in precision
among the models tested, achieving scores of 0.91
(Chemical/Drug), 0.90 (Disease), 0.93 (Organism),
and 0.91 (Gene/Protein), with similarly high recall and

F1-scores, demonstrating its effectiveness in entity recog-
nition across various categories. Given the computational
demands of BioBERT, our focus shifted towards enhancing
the Bioformer-8L model into the QEB8L model. By utilising
ONNX for model optimisation, we significantly improved
inference speeds without sacrificing performance. Further
enhancements through static quantisation not only increased
processing speed tenfold but also reduced the model size
to approximately 77MB, all while maintaining impressive
accuracy with precision scores ranging from 0.85 to 0.94
and F1-scores around 0.88 to 0.89, highlighting its balanced
performance as shown in Table 1.

Category Model Precision Recall F1-
score

Chemical/Drug

Dictionary 0.53 0.34 0.41
BioBERT 0.91 0.92 0.92

spaCy 0.80 0.73 0.76
QEB8L 0.85 0.90 0.88

Disease

Dictionary 0.48 0.74 0.58
BioBERT 0.90 0.80 0.85

spaCy 0.82 0.71 0.76
QEB8L 0.90 0.88 0.89

Organism

Dictionary 0.68 0.90 0.78
BioBERT 0.93 0.86 0.90

spaCy 0.85 0.75 0.79
QEB8L 0.94 0.85 0.89

Gene/Protein

Dictionary 0.48 0.74 0.58
BioBERT 0.91 0.87 0.89

spaCy 0.84 0.76 0.80
QEB8L 0.90 0.88 0.89

Table 1. The performance of different models (Dictionary, BioBERT, spaCy, QEB8L)
across four categories (Chemical/Drug, Disease, Organism, Gene/Protein) in
terms of Precision, Recall, and F1-score metrics evaluated on the Gold Standard
test set.

SpaCy, recognised for its quick inference speed, presented
slightly lower precision scores (0.80− 0.84) and F1-scores
(0.76−0.80) across categories, suggesting its practicality for
production-level entity recognition tasks with its efficiency.
Conversely, the Dictionary approach (our previous pipeline),
while serving as a baseline in the current study achieved
lower precision scores (0.48−0.68) but higher recall in some
instances, leading to moderate F1-scores.
Our analysis demonstrated a significant overlap between the
gold standard and the QEB8L model, identifying additional
entities by the QEB8L model not found in the gold standard.
Entities identified by the QEB8L model and dictionaries, but
absent in the gold standard, were classified as false positives.
Our goal was to minimise these false positives while max-
imising overlap as illustrated in Figure 2.
Moving to a deep learning approach, specifically the QEB8L
model, was driven by the need to reduce false positives and
improve entity coverage. The performance comparison us-
ing the gold standard test set demonstrated that the QEB8L
model significantly outperformed the previous dictionary-
based method, highlighting its advantage. The QEB8L
model, trained and evaluated on the gold standard dataset,
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Fig. 2. The figure shows the comparison in the number of entity matches between
the dictionary-based approach and the gold standard set versus the proposed deep
learning approach (QEB8L) to the gold standard (13). The comparison is made
between the entities: Gene/Protein (GP), Chemical/Drug (CD), Disease (DS) and
Organism (OG) (refer to Supplementary Material S5).

demonstrated the highest overlap with the gold standard, fea-
turing fewer false positives and false negatives as shown in
Figure 2. Some example entities are explained in Supple-
mentary Material S5 (refer to Table T2 for the QEB8L model
and Table T3 for the dictionary NER approach).

E. Entity Normalisation. A large proportion of the recog-
nised entities could be normalised, showing the effective-
ness of our methodology in mapping biomedical entities to
standardised knowledge bases; Disease to EFO, chemicals to
ChEMBL, and Genes to Ensembl. This process is crucial for
aggregating and analysing biomedical literature, facilitating
the identification of relationships between diseases and po-
tential therapeutic targets.
The entity normalised data, as shown in Table 2, illustrates
the scale and complexity of biomedical terminology. Dis-
eases and syndromes alone account for over 220 million
entities, with approximately 76.6% successfully normalised
to known entities from EFO. However, this represents only
7.6% of unique entity count, highlighting the presence of
a long tail of highly heterogeneous and less frequent la-
bels, where rare or variant terms are harder to normalise.
The unmapped entities underscore the diversity and complex-
ity of biomedical literature, presenting challenges in achiev-
ing complete normalisation, yet remain available for further
study4.
The significant diversity among unnormalised entities neces-
sitates continuous refinement of recognition and normalisa-
tion techniques. A literature-based evidence set curated by
the Uniprot team was used to benchmark the performance,
focusing particularly on disease-to-target associations. This
set, comprising of 969 publications with 1,038 disease–target
associations, served as a foundation for evaluating the effi-
ciency of the lit-OTAR pipeline.
The evaluation, detailed in Table 3, demonstrates high match
rates for target identification, indicating the Lit-OTAR frame-

4https://ftp.ebi.ac.uk/pub/databases/opentargets/
platform/latest/output/etl/json/literature/
failedCooccurrences/

work’s potential for mapping biomedical entities to standard-
ised knowledge bases. Conversely, disease recognition and
normalisation presented less robust results, highlighting ar-
eas for improvement due to the complexity and variability of
disease nomenclature.
These findings present the strengths and challenges of current
Lit-OTAR framework, emphasising the need for advance-
ments in handling the diversity and complexity of disease
terms. Interestingly, Lit-OTAR also facilitated unexpected
achievements, including the discovery of new disease enti-
ties and synonyms ("T2D"), and enhanced data processing
capabilities by integrating with databases like EFO and im-
proving analyses with the FDA’s Adverse Events Reporting
System (FAERS). The details are presented in Supplemen-
tary Material S6.

Conclusions
The Lit-OTAR framework, a collaboration between Europe
PMC and Open Targets, harnesses biomedical literature to
advance drug discovery. By applying named entity recogni-
tion and entity normalisation, this framework has processed
more than 39 million abstracts and 4.5 million full-text ar-
ticles, identifying around 48.5 million unique associations
among target–disease, target–drug, and disease–drug inter-
actions. This study provides insights into the drug discov-
ery process and expands scientific research. In addition, the
framework demonstrates the capability to discover new en-
tities and enrich databases and ontologies with previously
unrecognised associations. The Lit-OTAR pipeline operates
daily, with updates provided quarterly on both the Europe
PMC and Open Targets Platforms, ensuring timely access to
relevant data for researchers and supporting therapeutic re-
search and development.

Availability and Implementation

Data availability. Access the latest data version via FTP5,
GraphQL API6, and Google BigQuery7. Further details on the Plat-
forms are presented in the Supplementary Material S7.

Code availability. The computational frameworks and models sup-
porting this study are distributed across several repositories, main-
tained by Europe PMC and Open Targets, to ensure broad accessi-
bility and facilitate collaboration.

• The QEB8L model for entity recognition is at https://
github.com/ML4LitS/annotation_models.

• The Open Targets daily pipeline, under Europe
PMC, is at https://github.com/ML4LitS/
otar-maintenance.

• Open Targets’ ETL processes available at https://
github.com/opentargets.

5https://ftp.ebi.ac.uk/pub/databases/opentargets/
platform/latest/output/etl/json/literature/

6https://api.platform.opentargets.org/api/v4/
graphql/browser

7https://platform-docs.opentargets.org/
data-access/google-bigquery

4 | bioRχiv Santosh Tirunagari et al. | Lit-OTAR Framework for Extracting Biological Evidences from Literature

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2024.03.06.583722doi: bioRxiv preprint 

https://ftp.ebi.ac.uk/pub/databases/opentargets/platform/latest/output/etl/json/literature/failedCooccurrences/
https://ftp.ebi.ac.uk/pub/databases/opentargets/platform/latest/output/etl/json/literature/failedCooccurrences/
https://ftp.ebi.ac.uk/pub/databases/opentargets/platform/latest/output/etl/json/literature/failedCooccurrences/
https://github.com/ML4LitS/annotation_models
https://github.com/ML4LitS/annotation_models
https://github.com/ML4LitS/otar-maintenance
https://github.com/ML4LitS/otar-maintenance
https://github.com/opentargets
https://github.com/opentargets
https://ftp.ebi.ac.uk/pub/databases/opentargets/platform/latest/output/etl/json/literature/
https://ftp.ebi.ac.uk/pub/databases/opentargets/platform/latest/output/etl/json/literature/
https://api.platform.opentargets.org/api/v4/graphql/browser
https://api.platform.opentargets.org/api/v4/graphql/browser
https://platform-docs.opentargets.org/data-access/google-bigquery
https://platform-docs.opentargets.org/data-access/google-bigquery
https://doi.org/10.1101/2024.03.06.583722
http://creativecommons.org/licenses/by/4.0/


DRAFT

E Entity Normalisation

Entity type Entity count Mapped entity count Unique entity count Mapped unique entity count Unique mapped References
Disease 220,392,937 168,818,017 (76.6%) 2,196,439 166,497 (7.6%) 11,561

Chemical/Drug 122,872,756 77,826,420 (63.3%) 2,213,483 76,194 (3.4%) 10,370
Gene/Protein 347,835,641 197,124,445 (56.7%) 7,063,573 680,368 (9.6%) 28,778

Table 2. Summary of entity recognition and normalisation outcomes across Disease/Syndrome, Chemical/Drug, and Gene/Protein categories. Entity count is the total number
of entities identified. Mapped entity count is the number of these entities normalised to a knowledge base. Unique entity count refers to the total distinct entities, while Mapped
unique entity count is the subset of those distinct entities that were successfully normalised. Unique mapped references denote the unique knowledge base identifiers to
which entities have been mapped.

Publications Publication/target pairs Publication/disease pair Publication/disease/target triplet Disease/target pair
Uniprot curated evidence 969 1,088 1,515 1,580 1,038

Normalised matches 967 (99.8%) 1,034 (95.0%) 1,034 (68.3%) 748 (47.3%) 550 (53.0%)

Table 3. Benchmarking entity recognition and normalisation performance using a UniProt-curated gold standard evidence set.
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S1: Old pipeline vs new Lit-OTAR pipeline

Aspect Old pipeline [4] New Lit-OTAR pipeline
Data Source Europe PMC (PubMed and PubMed Central)

CCO & CC-BY Original Research articles
Europe PMC (PubMed and PubMed Central,
and Preprints). CCO & CC-BY Original Re-
search articles

Data Size 26 million abstracts, 1.2 million full-text arti-
cles

39 million journal article and preprint abstracts
and 4.5 million full-text articles and counting

Approach Dictionary-based Deep learning (Bioformer-8L)
Types Genes/protein and Disease Genes/protein, Disease, Organisms, and

Chemical/Drug
Accuracy High recall but low precision Improved precision and recall

Evidences Gene–Disease
Gene–Disease
Gene–Drug
Disease–Drug

Article Scoring Confidence scores based on location Confidence scores based on location (similar
to old pipeline (1))

Operational Quarterly (terminated on 04/2021) Daily since 04/2021
Benchmarking None Benchmarking of NER methods
Notes Manual rules, abbreviation filter with heuristic

rules, limited completeness, false positives
Improved accuracy, normalisation, broader
scope, improved sentence splitter, reduced
limitations

Performance
Precision: 0.54
Recall: 0.67
F-score: 0.58

Precision: 0.90
Recall: 0.88
F-score: 0.89

Table T1. Comparative Analysis of the Old pipeline (1) and the Current pipeline Across Various Aspects

S2: Evaluation Criteria

The NER was evaluated using the evaluation criteria used by SemEval-2013 Task 9.1 (24), which allows
assessment of the system’s performance based on four levels of strictness: strict, exact, partial, and type.
Strict evaluation requires both the boundaries and the type of an entity to match exactly with the reference
annotation, meaning even slight boundary differences result in a mismatch. Exact evaluation, on the
other hand, focuses on the boundaries alone, ensuring they match perfectly without factoring in type
accuracy. These levels consider the match of entity boundaries and types. Using these metrics to evaluate
the performance of the NER go beyond simple strict classification and take into account partial matching.
To compare the differences between the output of the NER system and the correct annotations, two factors
were considered: the exact string and the type of the entity. However, because there can be overlapping
entities from different categories and data formats, each system per category was evaluated. This means
that in certain cases, the counts in the "Strict" and "Exact" cells become equal. Similarly, this applies
to the values in the cells that correspond to partial matching and incorrect matching. After evaluating
the NER system using the metrics discussed above, the precision, recall, and F1-score was calculated for
benchmarking.
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The entity-level precision and recall are computed by deciding when a predicted entity counts as a correct
match (COR), in contrast to being labeled as partial (PAR), incorrect (INC), spurious (SPU), or missed
(MIS). Once “correct” is defined under a particular matching scheme (Strict, Exact, Partial, or Type), we
use the usual formulas8:

precision = correct
actual

, recall = correct
possible

,

where

actual = number of system output entities (TP + FP), possible = number of gold (true) entities (TP + FN).

Match Schemes in Detail.

1. Strict. A system entity is counted as correct (COR) only if:

• Its boundaries match the gold entity exactly (same start and end tokens),

• and the type is identical (e.g., both are DISEASE).

If either boundary or type differs, it is labeled as INC (incorrect), PAR (partial), etc.

2. Exact. The boundaries must match exactly, but the entity type is ignored for correctness. Thus, a
perfect boundary match is always COR, regardless of the predicted vs. gold type.

3. Partial. Any overlap between a system-predicted entity and a gold entity is at least a partial match.
Following Batista’s implementation:

CORpartial = (full overlaps), PARpartial = (partial overlaps).

Partial matches contribute half a point in precision and recall:

precisionpartial = COR +0.5×PAR
actual

, recallpartial = COR +0.5×PAR
possible

.

Types are ignored in the “Partial” scheme.

4. Type. The system entity must overlap with the gold entity and must match its type. Overlaps with
the same type are counted as COR (for full overlap) or PAR (for partial). Partial overlaps receive half
credit, while overlaps with different types are INC.

Finally, each system entity is ultimately labeled as one of five:

• COR – correct

• INC – incorrect

• PAR – partial match

• MIS – missed (the gold entity was not found)

• SPU – spurious (the system predicted an entity that does not exist in gold)

Then, for each of the four schemes (Strict, Exact, Partial, Type), we decide what qualifies as “COR.” In the
Partial and Type evaluations, partial matches (PAR) count as 0.5 toward precision and recall. Finally, the
precision, recall, and F1-score are computed for each of these schemes to benchmark system performance.

8http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/
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S3: Entity Linking

The entity linking process, implemented in Scala and integrated into the Open Targets pipelines
https://github.com/opentargets/platform-etl-backend/blob/master/src/
main/scala/io/opentargets/etl/backend/literature/, is designed to efficiently map
disease, drug, and gene labels to their corresponding EFO, ChEMBL, or Ensembl identifiers. This
approach involves generating a comprehensive lookup table from the Open Targets Platform’s disease,
target, and drug indices. Each dataset is processed independently, with all possible labels-such as names,
symbols, and retired terms-being expanded for each identifier. To rank the mapped keywords, similarity
factor is applied, prioritizing, for example, approved symbols over obsolete names. In cases where a
single label maps to multiple identifiers with equal ranking, the process disambiguates by aggregating
all related labels and identifiers from the source paper, selecting the most representative identifier based
on the assumption that multiple mentions of the same entity in a paper will use various synonyms. This
ensures accurate linking and minimizes redundant matches in the evidence.
The Algorithm A1 outlines a structured approach starting with the “Main” Procedure, where the initial
data comprising entity matches (named entities), and sentence texts is loaded and passed through various
stages. Note that in Europe PMC pipeline, only sentence splitting and section tagging are performed;
the sentences are then fed directly to the QEB8L model for entity recognition based on the subword
tokenization provided by Bioformer. By contrast, the Open Targets pipeline (Algorithm A1) carries out its
own NLP preprocessing.
In the first stage PreprocessData, the data undergoes filtering based on entity types and publication sec-
tions. This function also normalizes the text to ensure uniformity (UTF-8 conversion).
Next, the GroundEntities function applies NLP techniques such as tokenization, stopword removal, and
stemming. These steps help in breaking down the text into manageable units and prepare the data for entity
linking. Following this, the Word2VecModel function trains a Word2Vec model on the preprocessed text,
using parameters like window size and iteration count to guide the training process. This trained model
serves as the basis for mapping text to entities.
In the MapTextToEntities function, the trained Word2Vec model is applied to map text data to correspond-
ing entities by measuring similarity. A similarity threshold (70%) is employed to determine valid matches,
and the function adjusts mappings to optimize performance. Post-processing is handled by the PostProces-
sOutput function, which resolves co-occurrences and ranks the results based on defined metrics, ensuring
that the output is both relevant and accurate.
Finally, the entity mappings, co-occurrence information, and failed mappings are saved to specified output
paths (SaveOutput function). This structured pipeline ensures that the NER data is effectively processed,
entity linked, and saved for further analysis or reporting.

S4: Article Scoring and Ranking

The article scoring method in the lit-OTAR framework follows the approach detailed in (1). The algorithm
scores scientific articles on their relevance to target–disease associations, helping to rank/prioritise articles
by their relevance. The algorithm uses a weighting system that assigns different values to article sections,
from full-text articles to abstracts, based on their ability to highlight key entities. For instance, the "Title"
section gets the highest weight as it summarises the study’s findings, while the "Introduction" is weighted
least, given its focus is on known information. In abstracts, weight is given based on sentence position,
with the analysis of 360 MEDLINE abstracts (1) showing that the last sentence, usually detailing results,
is considered most significant.

S5: Examples: False Positives and False Negatives

The examples of entities found through QEB8L but missed in the Gold Standard (False Positives) ver-
sus entities found in the Gold Standard but missed through QEB8L (False Negatives) are presented in
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Algorithm A1 Entity Linking Pipeline
1: Input: Matches, entities (diseases, drugs, targets), document texts (abstracts, full texts)
2: Output: Entity mappings, Word2Vec vectors, co-occurrence data
3: procedure MAIN
4: Load data: matches, entities, texts . Assuming data is pre-structured
5: PreprocessData()
6: GroundEntities()
7: Model←Word2VecModel()
8: EntityMappings←MapTextToEntities(Model)
9: PostProcessOutput(EntityMappings)

10: SaveOutput()
11: end procedure
12: function PREPROCESSDATA . Filter and organize initial datasets for processing
13: Apply filters based on entity types and sections
14: Normalize text data for uniformity
15: return preprocessed data
16: end function
17: function GROUNDENTITIES . Apply NLP techniques to identify and normalize entities
18: Tokenize text to separate words
19: Remove stopwords and apply stemming
20: Prepare NLP pipelines for data transformation
21: return grounded entities
22: end function
23: function WORD2VECMODEL . Train a Word2Vec model using the preprocessed text
24: Configure model parameters (window size, etc.)
25: Train model on organized text data
26: return trained model
27: end function
28: function MAPTEXTTOENTITIES(Model) . Map text to entities using a trained Word2Vec model
29: Apply model to text data
30: Use a similarity threshold to determine entity matches
31: Adjust mapping based on performance
32: return mappings
33: end function
34: function POSTPROCESSOUTPUT(Mappings) . Resolve and refine entity mappings and relationships
35: Analyze co-occurrence and contextual data
36: Rank and merge results based on defined metrics
37: return refined output
38: end function
39: function SAVEOUTPUT . Persist the final output data for analysis or reporting
40: Configure paths and formats for saving data
41: Save EntityMappings and co-occurrence data
42: end function
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Table T2. Similarly, Table T3 presents entities found through the Dictionary Approach but missed in
the Gold Standard (False Positives) versus entities found in the Gold Standard but missed through the
Dictionary Approach (False Negatives).

Entity Type Found in QEB8L but missed in Gold Stan-
dard

Found in Gold Standard but missed in
QEB8L

Gene/Protein (GP) [’CPZ’, ’Flp’, ’APP180’, ’hALK’, ’CT4’] [’YALI0D20108g’, ’YALI0E32901g’,
’LDH4’, ’YALI0A9470g’, ’MSC1’]

Chemical/Drug (CD) [’No916601429’, ’phycoerythrin’, ’thymi-
dine’, ’butyrate’, ’crystal’]

[’YALIOB19470’, ’11192732’, ’pentose
phosphate’, ’QAPP67’, ’CS36962’]

Disease (DS) [’ischemia’, ’CUMS’, ’CIS’, ’facial angiofi-
bromas’, ’Rhizoma’]

[’aneurysms’, ’hallucinations’, ’Postherpetic
Neuralgia’, ’lymphadenopathy’, ’pertussis’]

Organism (OG) [’Platyhelminthes’, ’protozoans’, ’mero-
zoites’, ’SZ’, ’kids’]

[’Murine’, ’Methanobrevibactr’, ’wisent’,
’proviruses’, ’hermaphrodite’]

Table T2. Example Entities Found through QEB8L but Missed in Gold Standard vs. Entities Found in Gold Standard but Missed through
QEB8L.

For instance, in Table T3, the organism “cotton" was missed in the Gold Standard. The term “cotton" in
the given context refers to bedding material rather than the plant species, as shown in the sentence:

Each male compartment contained a stainless steel nest-box (130 mm × 130 mm × 130 mm)
filled with cotton bedding, a cardboard tube, water bowl, feed tray, and plastic climbing lattice
on one wall. (PMCID: PMC4414469, Figure 1)

This differs from its occurrence in the Gold Standard, where “cotton" refers to the plant in an agricultural
context:

Geminiviruses are emerging plant pathogens that infect a wide variety of crops including cotton,
cassava, vegetables, ornamental plants, and cereals. (PMCID: PMC3024232, Section Abstract)

Similarly, the chemical entity term “sec" was tagged in one context as referring to "seconds" rather than
the intended chemical meaning. Additionally, the term "hermaphrodite" (an organism) was confused with
“hermaphroditism", which may be considered a disorder in certain contexts.
These examples highlight the limitations of the dictionary-based NER approach used to extract entities.
While this approach relies on predefined dictionaries and manual rules, such as abbreviation filters and
blacklists of common terms, it faces challenges in handling the complexity and variability inherent in
biomedical texts. Issues such as distinguishing between gene and protein names (e.g., p53 vs. P53), man-
aging spelling variations (e.g., T2D vs. T2DM), and interpreting context-specific meanings of abbrevia-
tions (e.g., AIDS vs. aids) can lead to errors. The example of “cotton," as discussed earlier, underscores
the difficulty in disambiguating context-specific meanings. Additionally, special characters, synonyms,
and variations in word choice and sentence structure further complicate entity recognition, often necessi-
tating human interpretation and an exhaustive list of dictionary terms. As a result, this approach, while
achieving high recall, often suffers from low precision.
Entities found by QEB8L but missed in the Gold Standard (Table T2) include “merozoites" (PMCID:
PMC3097211), which are small, egg-shaped, unicellular organisms that represent a motile stage in the life
cycle of malaria parasites:

After intense multiplication during 2–6 days, depending on the Plasmodium species, mature
EEFs release thousands of merozoites, which invade erythrocytes and initiate the pathogenic
blood stage cycle.

This was not annotated in the Gold Standard but was correctly identified as an organism by the QEB8L
model.
However, there were also instances of misidentification. For example, “Chronic Unpredictable Mild Stress
(CUMS)" (PMCID: PMC4931053) was incorrectly identified as a disease, whereas it actually refers to an
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Entity Type Found in Dictionary approach but missed in
Gold Standard

Found in Gold Standard but missed in Dic-
tionary approach

Gene/Protein (GP) [’nodal’, ’Calc’, ’MPI’, ’LPS’, ’NHLT’] [’mTau’, ’At1g61795’, ’eIF2’, ’proton / Pi
symporters’, ’collagen type IV’]

Chemical/Drug (CD) [’3At’, ’silver’, ’sec’, ’Peptide’, ’Lipopolysac-
charide’]

[’nucleotide’, ’YALIOB19470’, ’carboxy-
lates1617’, ’serine’, ’11192732’]

Disease (DS) [’Trauma’, ’ischemia’, ’facial angiofibromas’,
’bluetongue’, ’hermaphrodite’]

[’CHD’, ’SZ’, ’RR - MS’, ’B - NHL’, ’mem-
ory deficits’]

Organism (OG) [’Euglenozoa’, ’Platyhelminthes’, ’cotton’,
’Białowieża’, ’Gibbon’]

[’Gram - positive cocci’, ’bulls’, ’Euglenezoa’,
’Methanobrevibactr’, ’rodent’]

Table T3. Example Entities Found through Dictionary Approach but Missed in Gold Standard vs. Entities Found in Gold Standard but
Missed Through Dictionary Approach.

experimental method. Similarly, in another context (PMCID: PMC5528876), “CIS" (Checklist Individual
Strength) was tagged as a disease, likely due to confusion with “clinically isolated syndrome".
Given that the QEB8L model tends to tag numerous spurious terms, it is crucial to normalize these terms
to a knowledge base using entity linking.

S6: Other Achievements

The additional entities not found in dictionaries or the gold standard test set (Figure 2), which have been
discovered through context learning in deep learning, further facilitate the addition of new entities to
databases/ontologies. In one such scenario, the framework has aided in identifying diseases previously
unlinked to any specific disease entity within the EFO 9. Through a preliminary analysis of frequently
occurring non-grounded labels, we identified new synonyms for existing diseases, notably recognising
“T2D" as a synonym for Type II Diabetes Mellitus (EFO_0001360). This discovery alone added 281,184
matched labels across 29,040 unique PubMed identifiers (PMIDs), significantly enriching the dataset and
enhancing the accuracy of disease-related data mapping.
In another scenario, it enhanced the processing of data from the FDA’s Adverse Events Reporting System
(FAERS). This system, which compiles reports of adverse events and medication errors submitted to the
FDA, presents unique challenges, such as distinguishing between a drug’s adverse events and its indica-
tions. To address this, an increase in EFO cross-references to MedDRA was necessary in order to find out
whether excluding reports where the adverse event matches the drug indication could improve the analyt-
ical outcomes’ power and effectiveness. The normalisation pipeline developed for the Lit-OTAR was able
to map a significant portion of MedDRA10 labels associated with adverse reactions to their correspond-
ing EFO terms. This effort resulted in a cross-reference list containing approximately 10,000 mappings,
which are assessed to be highly reliable.

S7: Data Platforms

The datasets generated are made available through both Open Targets Platform and Europe PMC. While
Open Targets Platform provides a web interface for data exploration and as bulk download, in Europe
PMC the datasets are accessible both via the Annotations API and the website.

A. Europe PMC Annotations API. The Europe PMC Annotations API11 is one of the main methods
of accessing texted mined outputs (also called annotations) hosted by Europe PMC. Derived from both
abstracts and open access full-text articles, these annotations are an invaluable resource for researchers
needing programmatic access to the vast repository. One of the motivations of this is to make text-mined
annotations available to the larger scientific community. To this end, the annotations are modelled based

9https://github.com/opentargets/issues/issues/1555?ref=blog.opentargets.org?ref=blog.opentargets.org
10https://www.meddra.org/?ref=blog.opentargets.org
11www.europepmc.org/AnnotationsApi
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Fig. F1. Accessing annotations by OpenTargets on the Europe PMC annotations API

on the W3C Web Annotation Data Model12. This has ensured the annotations are standardised and, most
importantly, FAIRified for wider consumption. The annotations are made available under the Apache
License Version 2.013.
The API’s RESTful architecture offers a modular structure, facilitating various functionalities essential
for fetching specific annotations based on article IDs, entities, providers, relationships, or article sections.
This flexibility is crucial for researchers aiming to extract detailed and targeted information from the
literature. The functionality varies from fetching annotations by article, entity name and provider (e.g.
OpenTargets) to relationships such as gene-disease relationships (see Figure F1).
The API delivers results in various formats, including JSON, XML, and ID_LIST (for article identifiers),
catering to different user preferences and requirements. Moreover, the annotations are available in JSON-
LD format, providing a graph representation that enhances data interoperability and integration.

12https://www.w3.org/TR/annotation-model/
13https://www.apache.org/licenses/LICENSE-2.0
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This extensive accessibility to annotated biomedical literature through the Europe PMC Annotations API
significantly empowers researchers, pharmaceutical companies facilitating the extraction and analysis of
rich datasets for advancing scientific discoveries.

B. Visualisations on Europe PMC Website. SciLite (21) is an annotation tool integrated into Eu-
rope PMC that highlights key biological concepts within scientific articles. SciLite enables researchers
to quickly grasp the important elements of a paper, facilitating more efficient data discovery and making
it easier to cross-reference information. The application makes API requests using the Annotations API
to fetch all relevant annotations for a given article (see Figure F3). A detailed description of the design
behind SciLite can be found here.14 SciLite is one of the infrastructural components of the Europe PMC
annotation platform. The platform is open for text-mined outputs from any source to be shared and dis-
played seamlessly on content. This is enabled by the use of the (W3C recommended) Web Annotation
Data Model http://www.w3.org/TR/annotation-model/. This aspect differentiates SciLite
from other tools such as PubTator (10).

Fig. F2. The screenshot of the Open Target annotation (in JSON-LD format) retrieved from the Europe PMC Annotations API for the
article with PMID 20877624. The annotation URI for the Open Target annotation is highlighted.

14https://europepmc.github.io/techblog/algorithm/2018/07/04/locating-text-html-pages.html
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C. Making annotations FAIR and Citable. One of the main aims of establishing Europe PMC Anno-
tation API is to make text-mined annotations FAIR, where users are able cite the text-mined entities and
relationships. This allows the consumer of the content to understand and trace the source of informa-
tion. The Web Annotation Model specification allows annotations to be uniquely identified using URIs,
offering a mechanism to cite annotations across multiple Platforms. To this end, for all Open Targets anno-
tations we have minted resolvable annotation URIs. For instance, for a given article ID the corresponding
Open Target annotation can be retrieved in JSON-LD format, that will contain the annotation URI (see
Figure F2).

Fig. F3. SciLite annotation tool highlighting the gene-disease association between HIV infection and QDPR using the LinkBack call.
The LinkBack feature is based on the LinkBack API (which accepts the unique ‘code’ in an annotation ID) and text-annotator.

D. Results in the Open Targets Platform. The Europe PMC dataset is utilised in two ways: The first
is to use the dataset to extract evidence for the association of targets and diseases. Co-occurrences of
target and disease entities are considered evidence for the association of those entities. In detail, when a
target and a disease are mentioned in the same sentence within a publication, this constitutes one piece
of Europe PMC evidence for the association of that target and that disease [Figure F4 (a)]. The second
involves using the dataset to provide context to the Platform entities. Users can browse the available
literature for the entity of their choice through the Bibliography widget, for example all the papers linked
to cystic fibrosis [Figure F4(b)]. For more details refer to article (2, 12).

S8: Comparison with Other Tools

The outputs from the lit-OTAR framework are visualised and accessed through Europe PMC’s
Scilite/Annotations API and Open Targets Platform. Table T4 present comparison of various tools in-
cluding SemMedDB (8), LitSense (9), PubTator (10) and PubTator Central (11) which provide similar
text-mining outputs.
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Fig. F4. Summary of how the lit-OTAR results are utilised and visualised in the Open Targets Platform. a. Europe PMC (red arrow) as
data source for evidence of target–disease associations; b. Bibliography widget from a disease profile page.
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Feature SciLite/Annotations API (3) LitSense (9) SemMedDB (8) PubTator 3.0 (10, 11)
Developer Europe PMC NCBI NLM (National Library of

Medicine)
NCBI

Primary
Function

Display text-mined annota-
tions to link articles with bi-
ological data

Sentence-
level retrieval
of biomedical
literature

Semantic predications ex-
traction and summarization
from biomedical text

text-mining, entity
annotation, and
relation extraction

Entity Types
Annotated

Primarily Gene/protein
names, diseases, organisms,
chemicals, gene ontology
terms, experimental meth-
ods, Accesion numbers,
Resources. Many other
entities from other providers

Genes,
proteins,
diseases,
chemicals,
mutations,
species

Entities include UMLS con-
cepts (e.g., drugs, diseases,
genes, anatomy, etc.)

Genes, diseases,
chemicals, variant,
species, cellline

Relations Ex-
tracted

Gene–disease, pro-
tein–protein interactions,
transcription factor–gene
targets, and biological
events.

None Subject–predicate–object
triples (e.g., TREATS,
AFFECTS, PROCESS_OF,
etc.)

33 million relations
(8.8 million unique
pairs)

Scale of Data Integrates multiple text-
mining tools, e.g., Ex-
TRI, IntAct, DisGeNET,
PheneBank, Open Targets,
and OntoGene, Metage-
nomics. More than 2 billion
annotations.

Focused on
sentence-level
data

Database includes detailed
structured data: citations,
sentences, entities, and
coreferences

1.6 billion entity an-
notations (4.6 million
unique identifiers)

Data Sources Europe PMC articles and cu-
rated data sources (e.g., Ex-
TRI, IntAct, Open Targets,
DisGeNET)

PubMed ab-
stracts and
PMC full-text
articles

PubMed abstracts; entities
mapped to UMLS Metathe-
saurus concepts

PubMed abstracts
and PMC full-text
articles

User Interface Highlights terms within ar-
ticles and links them to ex-
ternal databases and tools.
Exclusive API access with
search

Displays
relevant sen-
tences with
highlighted
entities

Database schema available
for querying; detailed aux-
iliary and semantic data ac-
cessible

Web interface and
API with search

Update Fre-
quency

Daily regular updates with
Europe PMC content

Regular up-
dates with
PubMed and
PMC content

Periodic updates; schema
and data aligned with the lat-
est biomedical literature

Weekly updates from
PubMed and PMC

Customization Users can select specific an-
notation types to display
(e.g., gene-disease, protein
interactions)

Users can fil-
ter results by
article section
or publication
year

Supports custom queries on
predications, coreferences,
and auxiliary data

Supports semantic
and relational queries
with enhanced preci-
sion

Integration Integrated within Europe
PMC platform and connects
with text-mining tools

Integrated
with PubTator
for entity
highlighting

Can be integrated into other
systems via its detailed rela-
tional schema

Integrated with
NCBI resources like
PubMed and PMC

Community Users can upload their own
data to support community

None None None

Performance Enhanced linking of litera-
ture to biological data; fo-
cuses on annotation cover-
age rather than precision

Efficient for
sentence-level
searches

Proven semantic predication
quality and flexibility in
querying relationships

Relation extraction
and search precision
in top 20 results

Table T4. Comparison of various biomedical scientific literature tools providing gene-drug-disease annotations.
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