

1 EPHA4 signaling dysregulation links abnormal locomotion and
2 the development of idiopathic scoliosis

3 **Authors:**

4 Lianlei Wang^{1,2,3,4#}, Xinyu Yang^{1,4#}, Sen Zhao^{1,5#}, Pengfei Zheng^{6#}, Wen Wen^{1,2,3},
5 Kexin Xu^{1,2,3}, Xi Cheng^{1,2,3}, Qing Li^{1,2,3}, Anas M. Khanshour⁷, Yoshinao Koike^{8,9},
6 Junjun Liu⁶, Xin Fan¹⁰, Nao Otomo^{8,9}, Zefu Chen^{1,2,3}, Yaqi Li^{1,2,3}, Lulu Li¹¹, Haibo
7 Xie⁶, Panpan Zhu⁶, Xiaoxin Li^{1,2,12}, Yuchen Niu^{1,2,12}, Shengru Wang^{1,2,3}, Sen Liu^{1,2,3},
8 Suomao Yuan⁴, Chikashi Terao⁸, Ziquan Li^{1,2,3}, Shaoke Chen¹⁰, Xiuli Zhao¹³, Pengfei
9 Liu^{5,14}, Jennifer E. Posey¹⁴, Zhihong Wu^{1,2,3,12}, Guixing Qiu^{1,2,3,12}, DISCO study
10 group (Deciphering Disorders Involving Scoliosis & COmorbidity), Shiro
11 Ikegawa⁹, James R. Lupski^{15,16,17}, Jonathan J. Rios^{7,18,19}, Carol A. Wise^{7,18,19}, Terry
12 Jianguo Zhang^{1,2,3*}, Chengtian Zhao^{6*}, Nan Wu^{1,2,3*}

13 **Affiliations:**

14 ¹State Key Laboratory of Complex Severe and Rare Diseases, Department of
15 Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical
16 College and Chinese Academy of Medical Sciences; Beijing, 100730, China.

17 ² Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health
18 Medical Care; Beijing, 100730, China.

19 ³Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical
20 Sciences; Beijing, 100730, China.

21 ⁴Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Cheeloo
22 College of Medicine, Shandong University; Jinan, Shandong, 250012, China.

23 ⁵Department of Molecular and Human Genetics, Baylor College of Medicine;
24 Houston, TX, 77030, USA.

25 ⁶Institute of Evolution & Marine Biodiversity, College of Marine Life Science,
26 Ocean University of China; Qingdao, 266003, China.

27 ⁷Center for Pediatric Bone Biology and Translational Research, Scottish Rite for
28 Children; Dallas, TX, 75219, USA.

29 ⁸Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative
30 Medical Sciences; Yokohama, Kanagawa, 230-0045, Japan.

31 ⁹Laboratory for Bone and Joint Diseases, RIKEN Center for Integrative Medical
32 Sciences; Minato-ku, Tokyo, 108-8639, Japan.

33 ¹⁰Department of Pediatric Endocrine and Metabolism, Maternal and Child Health
34 Hospital of Guangxi Zhuang Autonomous Region; Nanning, Guangxi, 530012,
35 China.

36 ¹¹Department of Newborn Screening Center, Beijing Obstetrics and Gynecology
37 Hospital, Capital Medical University, Beijing Maternal and Child Health Care
38 Hospital; Beijing, 100000, China.

39 ¹²Department of Central Laboratory, Peking Union Medical College Hospital, Peking
40 Union Medical College and Chinese Academy of Medical Sciences; Beijing, 100730,
41 China.

42 ¹³Department of Medical Genetics, Institute of Basic Medical Sciences, Chinese
43 Academy of Medical Sciences & Peking Union Medical College; Beijing, 100730,
44 China.

45 ¹⁴Baylor Genetics; Houston, TX, 77021, USA.

46 ¹⁵Departments of Pediatrics, Texas Children's Hospital and Baylor College of
47 Medicine; Houston, TX, 77030, USA.

48 ¹⁶Texas Children's Hospital; Houston, TX, 77030, USA.

49 ¹⁷Human Genome Sequencing Center, Baylor College of Medicine; Houston, TX,
50 77030, USA.

51 ¹⁸Department of Orthopaedics, University of Texas Southwestern Medical Center;
52 Dallas, TX, 75390, USA.

53 ¹⁹McDermott Center for Human Growth and Development, University of Texas
54 Southwestern Medical Center; Dallas, TX, 75390, USA.

55 **# These authors contributed equally to this work.**

56 ***Corresponding authors:**

57 Nan Wu, M.D., E-mail: dr.wunan@pumch.cn

58 Chengtian Zhao, Ph.D., E-mail: chengtian_zhao@ouc.edu.cn

59 Terry Jianguo Zhang M.D., E-mail: zhangjianguo@pumch.cn

60 **Author contributions**

61 Conceptualization: LW, SZ, CZ, NW

62 Methodology: LW, SZ, XY, PZ, WW, XC, AK, YK, NO, YL, CT, PL, CZ, NW

63 Investigation: LW, SZ, XY, PZ, WW, XC, AK, YK, JL, XF, NO, YL, LL, HX,
64 XL, SL, CT, SC, XZ, PL, SI, CZ, NW

65 Visualization: LW, SZ, XY, PZ, PZ, HX, JL, CZ, NW

66 Funding acquisition: LW, SW, TJZ, GQ, ZW, JR, CZ, NW

67 Project administration: LW, SZ, YN, ZW, GQ, TJZ, CZ, NW

68 Supervision: LW, SZ, SY, YN, ZW, GQ, TJZ, CZ, NW

69 Writing – original draft: LW, SZ, XY, JL, CZ, NW

70 Writing – review & editing: LW, SZ, XY, PZ, WW, KX, XC, QL, AK, YK, JL,
71 XF, NO, YL, LL, HX, PZ, XL, YN, SW, SL, CT, ZL, SC, XZ, PL, JEP, ZW, GQ, SI,
72 JRL, CAW, TJZ, CZ, NW

73 **Conflict-of-interest statement**

74 J.R.L has stock ownership in 23andMe, is a paid consultant for Regeneron
75 Pharmaceuticals and Novartis, and is a co-inventor on multiple United States and
76 European patents related to molecular diagnostics for inherited neuropathies, eye
77 diseases and bacterial genomic fingerprinting. The Department of Molecular and
78 Human Genetics at Baylor College of Medicine derives revenue from the
79 chromosomal microarray analysis (CMA by aCGH and/or SNP arrays), clinical
80 exome sequencing (cES) and whole-genome sequencing (WGS) offered in the
81 Baylor Genetics (BG) Laboratory (<http://bmgl.com>).

82

83 **This file includes:**

84 Main Text
85 Figures 1 to 8
86 Table 1
87 Figures S1 to S9
88 Tables S1 to S2, S4 to S7
89 Movie legends S1 to S10

90 **Other Supplementary Materials for this manuscript include the following:**

91 Tables S3
92 Movies S1 to S10

93 **Abstract**

94 Idiopathic scoliosis (IS) is the most common form of spinal deformity with unclear
95 pathogenesis. In this study, we firstly reanalyzed the loci associated with IS, drawing
96 upon previous studies. Subsequently, we mapped these loci to candidate genes using
97 either location-based or function-based strategies. To further substantiate our
98 findings, we verified the enrichment of variants within these candidate genes across
99 several large IS cohorts encompassing Chinese, East Asian, and European
100 populations. Consequently, we identified variants in the *EPHA4* gene as compelling
101 candidates for IS. To confirm their pathogenicity, we generated zebrafish mutants of
102 *epha4a*. Remarkably, the zebrafish *epha4a* mutants exhibited pronounced scoliosis
103 during later stages of development, effectively recapitulating the IS phenotype. We
104 observed that the *epha4a* mutants displayed defects in left-right coordination during
105 locomotion, which arose from disorganized neural activation in these mutants. Our
106 subsequent experiments indicated that the disruption of the central pattern generator
107 (CPG) network, characterized by abnormal axon guidance of spinal cord
108 interneurons, contributed to the disorganization observed in the mutants. Moreover,
109 when knocked down *efnb3b*, the ligand for EphA4a, we observed similar CPG
110 defects and disrupted left-right locomotion. These findings strongly suggested that
111 ephrin B3-EphA4 signaling is vital for the proper functioning of CPGs, and defects in
112 this pathway could lead to scoliosis in zebrafish. Furthermore, we identified two
113 cases of IS in *NGEF*, a downstream molecule in the EPHA4 pathway. Collectively,
114 our data provide compelling evidence that neural patterning impairments and
115 disruptions in CPGs may underlie the pathogenesis of IS.

116 **Keywords:** Idiopathic scoliosis (IS), Pathogenesis, *EPHA4* (*Ephrin type-A receptor*
117 4), Central pattern generators (CPGs).

118 **Introduction**

119 Idiopathic scoliosis (IS) is the most common form of spinal deformity, affecting
120 about 2.5% of the global population (Hresko, 2013; Luk et al., 2010). IS may have
121 long-term physical and mental health consequences, such as cosmetic deformity,
122 cardiopulmonary impairment, and even disability (Weinstein et al., 2003). All these
123 consequences can severely reduce the quality of life. Early intervention with
124 conservative treatments, such as braces, can control scoliosis progression and reduce
125 the need for surgical intervention (Weinstein et al., 2013). However, IS often remains
126 undiagnosed until malformation is evident, emphasizing the importance of
127 risk-prediction measurements in medical management.

128 Genetic factors are thought to play a significant role in the development of IS,
129 while only a few genes have been associated with the condition to date (Cheng et al.,
130 2015; Miller, 2007). Several single-nucleotide polymorphisms (SNPs) associated
131 with susceptibility to IS have been identified through genome-wide association
132 studies (GWASs), including SNPs linked to genes such as *LBX1*, *GPR126*, and
133 *BNC2*. Notably, knockdown or overexpression of zebrafish homologs of these
134 IS-associated genes have yielded body axis defects (Guo et al., 2016; Kou et al.,
135 2019; Kou et al., 2013; Ogura et al., 2015; Zhu et al., 2015). In addition to common
136 SNPs, rare variants with larger effect sizes or causing rare Mendelian disease traits
137 also contribute to IS. Rare variants in *FBNI*, *FBN2*, and other extracellular matrix
138 genes are associated with severe IS (Buchan et al., 2014; Haller et al., 2016).
139 Linkage analysis of familial IS suggests that it follows autosomal dominant (AD),
140 X-linked dominant, and multifactorial patterns of inheritance (Miller et al., 2005).
141 Variants in *CHD7* and *AKAP2* are also implicated in the pathogenesis of Mendelian
142 forms of IS (Gao et al., 2007; Liebeskind et al., 2016). Finally, centriolar protein
143 *POC5* and planar cell polarity protein Vang-like protein 1 (*VANGL1*) were also
144 shown to be associated with IS. Notably, all these genes participate in a wide range
145 of biological processes, the mechanisms underlying IS progression still require

146 further investigation. Consequently, there is currently no consensus on the etiology
147 of IS (Tang et al., 2021).

148 In this study, we developed a novel pipeline that combines SNP-to-gene
149 mapping and rare variant association analysis. Using this approach, we analyzed a
150 large Chinese population with IS and further validated our findings in East Asian
151 and European populations. Through these analyses, we identified *EPHA4* as a novel
152 gene associated with IS. To confirm the pathogenicity of this gene, we used a
153 zebrafish model and found that impaired EPHA4 pathway components and resulting
154 defects in central pattern generators (CPGs) were associated with asymmetric spinal
155 locomotion, which may serve as a contributory factor in the development of IS.
156 Additionally, we searched for candidate genes related to EPHA4 signaling pathways
157 and identified mutations in the *NGEF* among IS patients. Overall, our data suggest
158 that the impairment of the EPHA4 pathway and central pattern generators plays a
159 previously unknown role in the development and progression of IS.

160 **Results**

161 **Enrichment analysis of rare variants in IS candidate genes**

162 To identify candidate genes associated with IS, we conducted a comprehensive
163 literature review of SNPs that are linked to IS from 14 published GWASs. This led
164 us to obtain forty-one SNPs that showed genome-wide significance ($P < 5 \times 10^{-8}$) as
165 detailed in Table S1. We then employed positional mapping, expression quantitative
166 trait locus (eQTL) mapping, or chromatin interaction mapping to identify 156
167 candidate genes that could be potentially linked to these SNPs. Further analysis of
168 rare variants for the 156 candidate genes using exome data from 411 Chinese
169 probands and 3,800 unrelated Chinese controls identified *EPHA4* as the only
170 significant gene ($P=0.045$, $OR=4.09$) (Table S2). *EPHA4* is a member of the Eph
171 family of receptor tyrosine kinases which play a vital role in the development of the
172 nervous system (Kania and Klein, 2016). We identified three rare variants in *EPHA4*
173 from three IS patients, including one splicing-donor variant and two missense
174 variants (Table S2). The flowchart of the entire pipeline is shown in Fig. S1.

175 **Inheritance pattern and functional analyses of variants in *EPHA4***

176 We characterized the inheritance pattern of variants in *EPHA4* using either trio
177 sequencing data or Sanger sequencing for the parents. None of the parents being
178 tested had scoliosis based on a clinical screening test. Of the three rare variants in
179 *EPHA4*, two (NM_004438.3: c.1443+1G>C and c.2546G>A [p.Cys849Tyr]) arose
180 *de novo* (Fig. 1A and Table 1). The heterozygous splicing variant (c.1443+1G>C)
181 was identified in a female IS patient (SCO2003P0846) (Fig. 1B). Scoliosis in this
182 patient was diagnosed in her 10s, with a main curve Cobb angle of 60°. The *in vitro*
183 minigene assay showed that the c.1443+1G>C variant introduced a new splicing site,
184 resulting in a 36-bp in-frame deletion in exon 6 (Fig. 1G, 1I, S2A). The *EPHA4*
185 heterozygous missense variant (c.2546G>A, p.Cys849Tyr), identified in a female IS
186 patient (SCO2003P2146) (Fig. 1C), is located in the protein tyrosine kinase domain

187 of EPHA4 protein (Fig. 1A). The onset of scoliosis in this patient was in her 10s
188 with a 70° main curve Cobb angle. Given the critical role of EPHA4 in
189 phosphorylating CDK5, which in turn activates downstream signaling pathways (Fu
190 et al., 2007), a western blot analysis of *EPHA4*-c.2546G>A variant was conducted to
191 investigate the protein expression levels of EPHA4 and CDK5 and the amount of
192 phosphorylated CDK5 (pCDK5) in HEK293T cells transfected with *EPHA4*-mutant
193 or *EPHA4*-WT plasmid. Our results revealed that the missense variant resulted in a
194 decreased phosphorylation level of CDK5 ($p=0.015$), suggesting a partial
195 loss-of-function (LoF) of *EPHA4* (Fig. 1F).

196 We next investigated *de novo* non-coding variants of *EPHA4* via whole genome
197 sequencing (WGS) in 116 trio families with IS. A *de novo* heterozygous *EPHA4*
198 intronic variant (c.1318+10344A>G) was identified in a female patient
199 (SCO2003P2080) in an age range of 15-20 (Fig. 1D and Table 1). She developed
200 scoliosis in her 10s with a 70° main curve Cobb angle. This variant is predicted to
201 affect the branch point of the fifth intron of *EPHA4* (Fig. S2B). We performed nested
202 PCR to show that this variant induced exon 5 skipping, resulting in a 339-bp
203 in-frame deletion (Fig. 1H, J).

204 Next, we employed an in-house gene matching approach under the framework
205 of DISCO study, which identified a patient (SCO2003P3202) in an age range of 5-10,
206 who had been previously diagnosed with Waardenburg syndrome caused by a 4.46
207 Mb *de novo* deletion at 2q35-q36.2 (Li et al., 2015) (Table 1). Intriguingly, the
208 patient also presented mild scoliosis (Fig. 1E). The deletion included the entire *PAX3*
209 gene, which was responsible for the Waardenburg syndrome phenotype, and 36
210 neighboring genes, including *EPHA4* (Fig. 1K). As scoliosis is not typically
211 associated with Waardenburg syndrome caused solely by *PAX3* pathogenic variants
212 (Tassabehji et al., 1993), we hypothesize that the deletion of *EPHA4* may be
213 responsible for the IS phenotype in this patient. Notably, the patient IDs used in this

214 study are unique to our research group and will not be recognizable to anyone
215 outside the research team, including hospital staff and the patients themselves.

216 Notably, the GWAS signal which we mapped to *EPHA4* (rs13398147) (Zhu et
217 al., 2015) represents a significant eQTL in esophagus and colon tissues, with the T
218 allele associated with decreased expression of *EPHA4*. In our East Asian GWAS
219 cohort of 6,449 adolescent IS patients and 158,068 controls, we identified another
220 two eQTLs in *EPHA4* associated with decreased expression of *EPHA4* in brain
221 tissue (Table S3). In the same GWAS cohort, common SNPs in *EPHA4*, after
222 aggregation, also showed significant enrichment ($P=0.023$) in IS patients versus
223 controls. Taken together, the convergence between rare and common variants of
224 *EPHA4* that lead to LoF or hypomorphic effects highlights the pivotal role of
225 *EPHA4* in the pathogenesis of IS.

226 **IS-like phenotypes in zebrafish *epha4* mutants**

227 To investigate the role of *EPHA4* in scoliosis, we utilized zebrafish as a model
228 system due to its versatile nature in modeling adolescent IS (Bagnat and Gray, 2020;
229 Boswell and Ciruna, 2017; Grimes et al., 2016; Xie et al., 2022). Zebrafish have two
230 homologs of *EPHA4*, *epha4a* and *epha4b*. Using CRISPR-Cas9, we established a
231 stable *epha4a* zebrafish mutant line with a 63-bp deletion in exon 3, which
232 introduced a stop codon and resulted in a truncated protein (Fig. 2A-B). The
233 homozygous *epha4a* mutant larvae had no apparent defects in either notochord or
234 body axis development (Fig. S3A). Consistent with previous reports, the hindbrain
235 rhombomeric boundaries were found to be defective in both the *epha4a* homozygous
236 mutants and morphants (Fig. S3B) (Cayuso et al., 2019; Cooke et al., 2005).
237 Interestingly, more than 75% adult mutants showed mild scoliosis (88 of 116), and
238 some mutants exhibited severe scoliotic phenotype (4 of 116) (Fig. 2C-D, Movie
239 S1&S2). Remarkably, some heterozygous adult mutants also developed mild
240 scoliosis (14 of 95), whereas none of the wild-type fish showed any signs of
241 scoliosis (0 of 76) (Fig. 2C-D). Similarly, we further generated the *epha4b* mutants

242 with a 25-bp deletion in exon 3, which resulted in a frameshift mutation (Fig. S4A).
243 The *epha4b* zebrafish mutants also developed mild scoliosis (28 of 43) (Fig. S4B-C).
244 Intriguingly, both *epha4a* and *epha4b* mutants exhibited early onset scoliosis starting
245 from around 20 days post fertilization (Fig. S4D), a stage similar to that of IS
246 patients. Collectively, these data suggest that mutations in Eph4 proteins are linked
247 to the scoliotic phenotype in zebrafish.

248 **Abnormal left-right swimming pattern in the absence of Eph4a**

249 While the *epha4a* mutants seemed to be grossly normal during the larvae stages,
250 they developed spinal curvature gradually during later development. We decided to
251 investigate whether these mutants exhibited any abnormalities in their behavior at
252 the larvae stages using EthoVision XT software. By monitoring the swimming
253 behavior of 8 days post-fertilization (dpf) zebrafish larvae, we found the motion
254 distance and swimming velocity were significantly decreased in *epha4a* mutants (Fig.
255 3A-B). In addition, we observed a remarkable difference in the relative turning angle
256 and angular velocity between these two groups. The wild-type group changed their
257 swimming direction randomly, showing a relative angle around 0 degrees (Fig.
258 3C-D). In contrast, the *epha4a* mutants favored turning to one side of their directions
259 (a positive angle reflects a leftward turn) (Fig. 3C-D). Moreover, the absolute turn
260 angles and turning speed (angular velocity) were significantly higher in these
261 mutants (Fig. 3E-F). To rule out potential off-target effects, we injected *epha4a*
262 mRNA into *epha4a* mutants, which significantly restored the swimming
263 coordination defects (Fig. S5).

264 Next, we compared the swimming behavior after startle response between
265 wild-type and *epha4a* mutants. We used a needle to touch the head or the tail of 5
266 days post-fertilization (dpf) zebrafish larvae to stimulate swimming behavior. In
267 sibling controls, the larvae responded to the tactile stimulation and swam away
268 quickly (Movie S3). Conversely, the *epha4a* mutants failed to respond to the initial
269 stimulation, and the swimming pattern was defective with an abnormal bending

270 pattern (37 of 62 from tail-stimulation group and 34 of 77 from head-stimulation
271 group) (Fig. 3G, Movie S4). We further performed more comprehensive analysis by
272 high-speed video microscopy. After tactile stimulation, wild-type larvae displayed a
273 high-speed C-bend turn followed by a weaker counterbend turn after several
274 milliseconds (Fig. 3H-I). This rhythmic left/right swimming pattern ensures that the
275 fish swim away from the frightening stimulus. The turning angles of the control
276 larvae after stimulation changed with a sinusoidal wave pattern (Fig. 3J). In contrast,
277 this pattern was dramatically different in *epha4a* mutants (Fig. 3I,K). Of note,
278 although the C-bend turning angles were similar between *epha4a* mutants and
279 control siblings, the turning angles of the counterbend decreased significantly (Fig.
280 3L), implying a left/right coordination defect. Taken together, both regular
281 swimming and tactile stimulation analyses suggested that the left-right coordination
282 swimming pattern is compromised in the absence of Eph4a.

283 **Defects of left-right coordination due to abnormal CPG in the absence of**
284 **Epha4a**

285 The coordinated left-right locomotion of zebrafish larvae relies on the
286 synchronized contraction of muscle fibers, a process regulated by motor neurons
287 situated on each side of the fish. To explore this intricate mechanism, we utilized a
288 Tg(*elavl3:GAL4*; *UAS: GCaMP*) double transgene, allowing the expression of a
289 genetically encoded calcium sensor in all neurons. We observed the rhythmic
290 activation of calcium signaling in motor neurons located within the spinal cord (Fig.
291 4A, Fig. S6A, Movie S5, Movie S6). In wild-type larvae, the calcium signals
292 exhibited an alternating pattern between the left and right sides of the body, whereas
293 this coordinated pattern was disrupted in both *epha4a* mutants and morphants (Fig.
294 4A-B vs A'-B', Fig. S6A-B vs A'-B', Movie S7, Movie S8). Additionally, we found
295 that the activation frequency of motor neurons on the left and right sides was
296 comparable in wild-type larvae, but significantly different in the absence of Eph4a
297 (Fig. 4C-D, Fig. S6C-D).

298 One well-established concept regarding left-right coordination involves the
299 presence of central pattern generators (CPGs), which are regulated by interneuron
300 circuitry within the spinal cord. We further examined the axon guidance of
301 interneurons in *epha4a* mutants. First, we investigated the commissural trajectories
302 of reticulospinal (RS) interneurons. In control larvae, the large Mauthner neurons,
303 along with other RS neurons, were symmetrically positioned on each side of the
304 midline and projected their axons to the contralateral sides (Fig. 5A). These
305 bilaterally projected axons typically crossed at the midline and subsequently
306 synapsed on motoneurons of the opposite sides, contributing to the generation of
307 spinal cord neural circuits (Hale et al., 2016). However, in *epha4a* mutant larvae, we
308 observed an abnormal pattern in axonal projections. Specifically, the mutant axons
309 failed to traverse the midline and instead extended ipsilaterally (Fig. 5A). In addition,
310 the distance between Mauthner neurons (rhombomere 4) and rhombomere 7 was
311 significantly decreased and rhombomere 5 was scarcely visible in the mutant larvae
312 (Fig. 5A-B). Furthermore, the sites of axon crossing between two Mauthner neurons
313 tended to deviate to one side of the midline in the mutants (Fig. 5C-D').

314 Cerebrospinal fluid-contacting neurons (CSF-cNs) represent a unique type of
315 interneuron responsible for modulating the V0 and V2a interneurons, which are
316 integral components of locomotor CPGs (Fidelin et al., 2015; Talpalar et al., 2013;
317 Wu et al., 2021). In wild-type larvae, we observed that the ascending axons of these
318 neurons projected either to the right or left side from the midline, as visualized using
319 *Tg(pkdl1:GAL4;UAS:Kaede)* double transgenic larvae (Fig. 6A). However, in the
320 absence of EphA4a, the projection of these neurons exhibited notable disorganization,
321 with numerous axons crossing the midline from one side of the trunk. This
322 disorganized pattern was observed in both heterozygotic and homozygotic mutants
323 (Fig. 6A-B). Additionally, we employed an optogenetic approach to activate these
324 CSF-cNs, utilizing the *Tg(Gal4^{s1020t}; UAS:ChR2)* double transgene. Following
325 optical stimulation, we observed robust tail oscillations as previously described

326 (Wyart et al., 2009). In wild-type larvae, these tail oscillations exhibited a
327 symmetrical left-right beating pattern (Fig. 6C-D, Movie S9). However, a striking
328 disruption of this symmetry was observed in *epha4a* morphants, as they consistently
329 beat towards one side of the trunk following optical stimulation (a positive angle
330 reflects a rightward turn) (Fig. 6C'-D' and E, Movie S10). Collectively, these
331 findings demonstrate that the left-right coordination deficiencies observed in *epha4a*
332 mutants arise from abnormal neural circuit formation, which consequently disrupts
333 the integrity of the CPGs.

334 **Ephrin B3-Epha4 signaling regulates interneuron axon extension**

335 To further explore the role of Eph4a during interneuron axon extension, we
336 examined the expression of *epha4a* during early zebrafish embryonic development.
337 Whole-mount *in situ* hybridization results showed that both *epha4a* and *epha4b* were
338 abundantly expressed in the zebrafish spinal cord (Fig. S7A). We plotted the
339 expression of these two genes using two published single-cell transcriptome data,
340 which showed that *epha4a* and *epha4b* were both expressed in interneurons,
341 suggesting a role for *epha4* in interneuron function (Fig. S7B) (Cavone et al., 2021;
342 Scott et al., 2021). Notably, the expression of *efnb3b*, encoding the ligand of Eph4,
343 was highly enriched in the midline floor plate cells (Fig. S7B).

344 Ephrins, through interacting with Eph receptors, play a critical role in repulsive
345 axon guidance during neural development (Egea and Klein, 2007; Flanagan and
346 Vanderhaeghen, 1998). We further analyzed axon guidance in *efnb3b* morphants.
347 Similar to those of *epha4a* mutants, the *efnb3b* morphants also displayed axon
348 guidance defects, as well as uncoordinated calcium activation (Fig. S8A-C). In
349 addition, morphants larvae also displayed left-right oscillations defects after
350 optogenetic stimulation (a positive angle reflects a rightward turn) (Fig. S8D-E).

351 **Candidate variants in the EPHA4-related genes**

352 Our zebrafish studies suggested that EPHA4 signaling is crucial for interneuron

353 axon guidance, hence the formation of functional CPGs. Next, we further asked
354 whether mutation of other components of the EPHA4 signaling can result in IS in
355 humans. By searching for rare variants in *EPHA4*-related genes (Fig. S9)
356 (Szkłarczyk et al., 2019), we identified heterozygous *de novo* start-loss variant
357 (c.1A>G, p.Met1?) in *NGEF* in a young male (SCO2003P3332) (Fig. 7A-B, Table 1),
358 whose scoliosis was diagnosed in an age range of 15-20, with a main curve Cobb
359 angle of 60°. *NGEF* encodes the neuronal guanine nucleotide exchange factor
360 Ephexin that differentially affects the activity of GTPases RHOA, RAC1, and
361 CDC42. The activation of Ephexin is triggered by ephrin through EPHA4 (Shamah
362 et al., 2001).

363 Strikingly, we further identified a dominant missense variant (c.857G>A,
364 p.Ala286Val) in *NGEF* in a quad family with three affected members (Fig. 7C, Table
365 1). The proband (II:2, TSRHC01) has a 58° main curve Cobb angle. This variant,
366 which is located in the RhoGEF domain of Ephexin, is predicted to be highly
367 deleterious (CADD=29.6).

368 Altogether, our results suggest that defects of the CPGs owing to abnormal
369 EPHA4 signaling maybe one of the crucial factors responsible for IS.

370 **Discussion**

371 IS is a disease with diverse causes, and the underlying mechanisms can vary
372 even among patients with similar scoliotic phenotypes. Previous genetic studies have
373 highlighted the significance of the extracellular matrix (ECM) in maintaining the
374 balance of axial bone and supporting soft tissues in the spine, thus playing a crucial
375 role in IS development (Haller et al., 2016). For example, the top SNP associated
376 with IS maps to *LBX1*, an essential molecule for ECM maintenance and bone
377 homeostasis (Takahashi et al., 2011). Additionally, genetic loci in muscle
378 development-related genes have also been associated with the onset of scoliosis,
379 emphasizing the intricate interaction between bones and muscles (Ogura et al., 2015).
380 However, it is worth noting that the variants in these genes explain only a small
381 fraction of the overall heritability of IS. Consequently, it is imperative to establish
382 connections between the extensive genetic findings and biological mechanisms that
383 can elucidate the etiological landscape of IS.

384 In this study, we mapped 41 significant genome-wide loci to functional genes
385 through positional mapping and functional mapping such as eQTL. Then we
386 determined the enrichment in patient cohorts of rare variants in these genes, which
387 may have greater impacts compared with common SNPs. This approach revealed the
388 convergence of SNPs and rare variants in *EPHA4* that are enriched in patients with
389 IS. We also identified additional high-impact variants in *NGEF*, which is involved in
390 the EPHA4 pathway.

391 Our studies using zebrafish have revealed that deficiency of Eph4 can lead to
392 the development of scoliosis. Interestingly, we observed that even heterozygotic
393 *epha4a* zebrafish mutants displayed mild scoliosis (Fig. 2C), which is consistent
394 with the occurrence of this condition in scoliosis patients. Further analysis involving
395 behavior and imaging demonstrated that the absence of Eph4a resulted in defective
396 left-right coordination. This coordination is crucially governed by CPGs, which

397 generate rhythmic patterns of neural activity to coordinate limb movements on both
398 sides of the body (Kiehn, 2006; Marder and Bucher, 2001; Talpalar et al., 2013).
399 Previous studies have reported the involvement of ephrin and its receptors in axon
400 guidance during the maturation of neural circuits, including CPGs (Andersson et al.,
401 2012; Borgius et al., 2014; Iwasato et al., 2007). Ephrin B3, present in radial glial
402 cells at the dorsal midline, serves as a repulsive barrier to axons expressing EphA4
403 (Imondi et al., 2000). Axon guidance is disrupted when this repulsive pathway is
404 inactivated, leading to midline invasion (Butt et al., 2005; Kullander et al., 2001;
405 Paixão et al., 2013). In *EphA4* and *Efnb3* knockout mice, a 'hopping' gait is observed,
406 which is attributed to the aberrant crossing of motor neurons expressing EphA4
407 (Kullander et al., 2003). Consistent with these observations, we observed disrupted
408 axon guidance in the interneurons, which are integral components of CPGs, in both
409 *epha4a* mutants and *efnb3b* morphants. This finding suggests that CPG malfunction
410 may be a significant contributing factor to the scoliosis phenotype observed in these
411 genetic backgrounds. It is highly likely that the lack of coordinated left-right
412 locomotion generates imbalanced mechanical forces on the spine, gradually leading
413 to spinal curvature during later stages of development (Fig. 8).

414 Thus, our data provided a novel biological mechanism of IS, i.e., the
415 impairment of neural patterning and CPG. Previous studies have provided clues on
416 the role of CPGs in IS. Patients with adolescent IS showed asymmetric trunk
417 movement during gait, as characterized by increased relative forward rotation of the
418 right upper body in relation to the pelvis (Kramers-de Quervain et al., 2004; Nishida
419 et al., 2017). An electromyography (EMG) study also showed asymmetric activation
420 of paraspinal muscles between the convex and concave sides at the scoliosis curve
421 apex (Shimode et al., 2003). In a child with a strong family history of IS, asymmetric
422 hyperactivity was observed by EMG months before scoliosis was evident (Valentino
423 et al., 1985). These left-right locomotor coordination abnormalities indicated the
424 maldevelopment of CPGs as potential cause of IS. The CPG asymmetry may induce

425 an imbalance in trunk muscle strength, resulting in asymmetric rib drooping. This
426 leads to an abnormal vertebral rotation and then the onset of IS. Moreover, in a
427 companion study, Wang et al. identified a number of rare variants in *SLC6A9*, which
428 encodes glycine transporter 1 (GLYT1), in familial and sporadic adolescent IS cases.
429 The *slc6a9* mutant zebrafish also exhibited coordination of spinal neural activities
430 with pronounced lateral spinal curvature, recapitulating the human IS phenotype
431 (Wang et al., 2024). Taken together, we propose that the dysfunction of CPGs would
432 cause an imbalance in the motor drive from the spinal cord and the asymmetric
433 transversospinalis muscle pull, eventually producing a scoliotic curve (Fig. 8).

434 In summary, our study demonstrates that both common and rare variants within
435 the EPHA4 pathway contribute to the genetic architecture of IS. EPHA4 pathway
436 dysfunction causes axon pathfinding defects, resulting in impaired coordinated
437 left-right locomotion by disrupting neural patterning and the function of CPGs,
438 thereby potentially leading to IS.

439 **Materials and Methods**

440 **Mapping of candidate genes utilizing previous association studies**

441 Through a systematic literature review, we identified IS-associated SNPs
442 reported in GWASs and meta-analyses of GWAS. The literature search was carried
443 out using MEDLINE (via Pubmed.gov) and Web of Science (via Clarivate Analytics)
444 and was limited to English-language articles published from January 1980 to
445 October 2020. The following keywords were combined to perform the search:
446 ‘idiopathic scoliosis’ AND ‘GWAS’ OR ‘SNP’ OR ‘single nucleotide polymorphism’
447 OR ‘variant’ (Table S4). The inclusion/exclusion criteria of abstracts are provided in
448 Table S5. After screening the titles and abstracts, we obtained from the full-text
449 articles the rsID, chromosome, and position for SNPs with a threshold for
450 genome-wide significance of $P < 5.0 \times 10^{-8}$. For SNPs identified in multiple studies,
451 we recorded the lowest P-value.

452 SNPs reported in previous studies were first pruned using Functional Mapping
453 and Annotation (FUMA, v1.4.1, <https://fuma.ctglab.nl/>) (Watanabe et al., 2017).
454 Significant SNPs were considered independent at $r^2 < 0.6$. All known SNPs (available
455 in the 1000 Genomes reference panel, <https://www.internationalgenome.org/>) were
456 included for further gene mapping if they were in a linkage disequilibrium (LD) block
457 ($r^2 \geq 0.6$) with a significant independent SNP. Three SNP-to-gene strategies were
458 used:

- 459 1) For positional mapping of significant independent SNPs, we used annotations
460 obtained from ANNOVAR (<http://annovar.openbioinformatics.org>). A 10-kb
461 maximum distance was applied for intergenic SNPs.
- 462 2) For the eQTL mapping, we mapped significant independent SNPs and SNPs in an
463 LD block to eQTLs across 44 GTEx tissue types (release V8) (Consortium, 2020).
464 SNP-gene pairs with a false discovery rate (FDR) ≤ 0.05 were considered
465 significant.

466 3) For chromatin interaction mapping, we overlapped the significant independent
467 SNPs and those in LD blocks with one end of significantly interacting regions
468 across various tissue and cell types. Information on the interacting regions was
469 derived from Hi-C datasets of 21 tissues and cell types provided by GSE87112.
470 The significance of interactions for Hi-C datasets was computed by Fit-Hi-C,
471 with an FDR $\leq 10^{-6}$ considered significant. Genes were mapped if their
472 promoter regions overlapped with another end of the significant interactions. The
473 promoter region was defined as the region from -250 bp to +500 bp relative to
474 the transcription start site.

475 **Cohort description**

476 The Peking Union Medical College Hospital (PUMCH) cohort: The PUMCH
477 cohort comprised 411 unrelated Chinese patients with severe IS (Cobb angle $\geq 40^\circ$)
478 who underwent spinal surgery in the PUMCH between October 2017 and March
479 2022 as part of the Deciphering disorders Involving Scoliosis and COmorbidity
480 (DISCO) study (<http://www.discostudy.org/>). The clinical diagnosis was confirmed
481 using standing full-spine radiographs, three-dimensional computed tomography, and
482 magnetic resonance imaging. These patients did not show any congenital or
483 neuromuscular defect at the time of recruitment. The control cohort consisted of
484 3,800 individuals without observable scoliosis and with exome sequencing or
485 genome sequencing performed at PUMCH for clinical or research purposes.
486 Individuals with vertebrae malformation or congenital developmental defects were
487 excluded. A patient with a 2q35-36.2 deletion, including the *EPHA4* gene, was also
488 recruited through in-house gene matching of the DISCO study (Li et al., 2015). This
489 patient was subsequently evaluated for scoliosis by examination and radiography.

490 The East Asian cohort: The East Asian cohort includes totally 6,449 IS patients
491 and 158,068 controls from four independent datasets (Japanese dataset 1 (Kou et al.,
492 2013; Takahashi et al., 2011): 1,261 cases, 15,019 controls; Japanese dataset 2
493 (Ogura et al., 2015): 878 cases, 21,334 controls; Japanese dataset 3 (Kou et al.,

494 2019): 3,333 cases, 119,630 controls; Hong Kong dataset: 977 cases, 2,085 controls).
495 The inclusion criteria for IS subjects was as same as our previous studies (Fan et al.,
496 2012; Kou et al., 2019).

497 The Texas Scottish Rite Hospital for Children (TSRHC) cohort: We used a
498 replication cohort of European-ancestry patients with IS from the TSRHC. Cases
499 considered for inclusion in the study met criteria for a positive diagnosis of IS:
500 lateral deviation from the midline greater than 15 degrees as measured by the Cobb
501 angle method from standing spinal radiographs, axial rotation toward the side of the
502 deviation and exclusion of relevant co-existing diagnoses.

503 **Blood sample collection**

504 In the PUMCH cohort, genomic DNA samples were extracted from peripheral
505 blood leukocytes of each subject using a QIAamp DNA Blood Mini Kit (Qiagen,
506 Hilden, Germany), according to the manufacturer's protocol. Purified DNA was
507 qualified by Nanodrop 2000 (Thermo Fisher Scientific, Waltham, MA, USA) and
508 quantified by Qubit 3.0 using the dsDNA HS Assay Kit (Life Technologies, Carlsbad,
509 CA, USA). DNA samples were stored at 4°C until used.

510 In the East Asian and TSRHC cohort, genomic DNA was extracted from
511 peripheral blood or saliva using a standard protocol.

512 **DNA sequencing and variant calling**

513 In the PUMCH cohort, whole exome sequencing (WES) or whole genome
514 sequencing (WGS) was performed on peripheral blood DNA from all individuals and
515 available family members (Table S6). A SureSelect Human All Exon V6+UTR r2 core
516 design (91 Mb, Agilent) was used for exon capture. The exomes were then sequenced
517 on an Illumina HiSeq 4000 (Illumina, San Diego, CA, USA) according to the
518 manufacturer's instructions. For WGS, sequencing libraries were prepared using the
519 KAPA Hyper Prep kit (KAPA Biosystems, Kusatsu, Japan) with an optimized
520 manufacturer's protocol. We performed multiplex sequencing using an Illumina

521 HiSeq X-Ten sequencer (Illumina, San Diego, CA, USA). Variant calling and
522 annotation were done in-house using the Peking Union Medical College Hospital
523 Pipeline (PUMP) described previously (Chen et al., 2021; Zhao et al., 2021).

524 In the TSRHC cohort, subjects in 162 adolescent IS families were sequenced as
525 part of the Gabriella Miller Kids First Pediatric Research Consortium (GMKF) at The
526 HudsonAlpha Institute for Biotechnology (Huntsville, AL). In summary, DNA was
527 normalized, sheared and then ligated to Illumina paired-end adaptors. The purified
528 ligated DNA was amplified and exome sequencing was performed on the Illumina
529 HiSeq X platform. The sample's sequences were aligned into GRCh38 and genotypes
530 were joint-called per each family by the GMKF's Data Resource Center (DRC) at
531 Children's Hospital of Philadelphia following GATK best practices as detailed here
532 (Mukhopadhyay et al., 2020). GMKF DRC's alignment and joint genotyping
533 pipelines are open source and made available to the public via GitHub
534 (<https://github.com/kids-first/kf-alignment-workflow>) and
535 <https://github.com/kids-first/kf-jointgenotyping-workflow>.

536 **Rare variant association analysis of the candidate genes**

537 To determine the contribution of rare variants in GWAS candidate genes to IS,
538 we analyzed the gene-based mutational burden for 156 candidate genes. Only
539 ultra-rare variants with a gnomAD population-max allele frequency $\leq 0.01\%$ and a
540 cohort allele count ≤ 3 were analyzed. Each variant was assigned a weight, and the
541 mutational burden of a given gene was defined as the maximum weight value among
542 all ultra-rare variants carried by the individual. The SAIGE-GENE+ package was
543 used to determine the weighted mutational burden test for each gene (Zhou et al.,
544 2022).

545 Weighting criteria for the weighted burden analysis were developed according
546 to the variant types and in silico results. The LoF variants (canonical splicing
547 variants, nonsense variants, or variants that cause frameshift, stop-gain, or start-loss)

548 were calculated together with the protein-altering variants, including missense
549 variants and in-frame indels. Each variant was assigned a weight range from 0-1 and
550 the mutational burden for a given gene was defined as the maximum weight value
551 among all ultra-rare variants carried by the individual. The LoF variants annotated as
552 ‘high confidence’ by the loss-of-function transcript effect estimator (LOFTEE)
553 (Karczewski et al., 2020) were assigned a weight value of 1.0. The LoF variants
554 annotated as ‘low confidence’ or unlabeled by LOFTEE, the non-canonical splicing
555 variants with a SpliceAI score > 0.5, and the missense variants with a rare exome
556 variant ensemble learner (REVEL) (Ioannidis et al., 2016) score of 0.8 were assigned
557 a weight value of 0.8. The in-frame insertions/deletions (indels) with a Combined
558 Annotation Dependent Depletion (CADD) (Kircher et al., 2014) score > 20 and the
559 missense variants with a REVEL score > 0.6 and ≤ 0.8 were assigned a weight value
560 of 0.6. The in-frame indels with a CADD score > 10 and ≤ 20 and the missense
561 variants with a REVEL score > 0.4 and ≤ 0.6 were assigned a weight value of 0.4.
562 The in-frame indels and the missense variants with a REVEL score > 0.2 and ≤ 0.4
563 were assigned a weight value of 0.2. The remaining missense variants were assigned
564 a weight value of 0.

565 **Sanger sequencing of familial participants**

566 Sanger sequencing of familial participants was performed to determine the
567 origin of variants in *EPHA4* and *NGEF*. All LoF variants and protein-altering
568 variants identified in familial participants were validated. Variant-encoding gene
569 regions were amplified by PCR from genomic DNA obtained from probands, as well
570 as from parents for trios, to determine the origin of the variants. The amplicons were
571 purified using an Axygen AP-GX-50 kit (Corning, NY, USA) and sequenced by
572 Sanger sequencing on an ABI 3730xl instrument (Thermo Fisher Scientific, Waltham,
573 MA, USA).

574 **Minigene assay**

575 The splicing variant (*EPHA4*: c.1443+1G>C) was characterized by a minigene
576 assay. Genomic DNA from the heterozygous patient was amplified by PCR using a
577 high-fidelity DNA polymerase. Amplicons included exon 6, intron 6, exon 7, intron
578 7, and exon 8 of the *EPHA4* gene. PCR products were cloned into the vector via the
579 restriction sites BamHI and MluI for pCAS2, which is based on the pcDNA3.1
580 plasmid (Thermo Fisher Scientific, Waltham, MA, USA). Clones with wild-type or
581 mutant genomic inserts were selected and verified by sequencing the cloned DNA
582 fragments. The recombinant plasmids were transfected into 293T cells using
583 LipofectamineTM 3000 reagent (Thermo Fisher Scientific, Waltham, MA, USA).
584 For RT-qPCR, total RNA was isolated from the transfected cells using Trizol reagent
585 (Thermo Fisher Scientific, Waltham, MA, USA) and reverse transcription was
586 performed using the GoScript™ Reverse Transcription System (Promega, Madison,
587 MI, USA). PCR amplification was performed using the pCAS2-RT-F and
588 pCAS2-RT-R primers, and the products were sequenced using pCAS2-RT-F.

589 Primers sequences for the minigene assay were as follows:

590 pCAS2-RT-F: 5'-CTGACCCTGCTGACCCTCCT-3'

591 pCAS2-RT-R: 5'-TTGCTGAGAAGGCGTGGTAGAG-3'

592 **Nested PCR**

593 The splicing variant (*EPHA4*: c.1318+10344A>G) was characterized by nested
594 PCR. RNA was extracted from the whole blood of the patient using the TRIzon
595 Reagent (CWBIO, Hangzhou, China) according to the manufacturer's guidelines.
596 The cDNA was synthesized using HiScript II 1st Strand cDNA Synthesis Kit with a
597 gDNA wiper (Vazyme, Nanjing, China) according to the manufacturer's guidelines.
598 Nested PCR was performed as described previously (Yao and Tavis, 2005). Nested
599 PCR reactions in 50 μ l, included 2 μ l cDNA from the reverse transcription reaction
600 as the template for the first round of PCR or 2 μ l of first-round PCR product as the

601 template for the second PCR, 1.5 μ l 10 μ M sense primer, 1.5 μ l 10 μ M anti-sense
602 primer, 5 μ l nucleotide mix (2 mM each dNTP), 5 μ l 10 \times KOD Buffer, 1 μ l 1 unit/ μ l
603 Kod-Plus-Neo polymerase, 3 μ l 25 mM MgSO₄ and 31 μ l ddH₂O. The PCR program
604 was (94°C for 2 min, 98°C for 10 s, 55°C for 30 s, 68°C for 60 s) \times 20 cycles and
605 then (94°C for 2 min, 98°C for 10 s, 57°C for 30 s, 68°C for 60 s) \times 30 cycles.
606 Primers sequences:

607 For the first round:

608 F: 5'-GGCTCCTGTGTCAACAACTC-3'

609 R: 5'-GTTGGGATCTTCGTACGTAA-3'

610 For the second round:

611 F: 5'-AACTGCCTATGCAACGCTGG-3'

612 R: 5'-AGCTGCAATGAGAATTACC-3'

613 **Western blots**

614 HEK293T cells were transfected with *EPHA4*-C1-pEGFP plasmid or the
615 corresponding wild type vector to detect the missense variant in *EPHA4* (c.2546G>A,
616 p.Cys849Tyr). Cells were cultured in six-well plates and transfected with DNA (2
617 mg/well) using Lipofectamine 3000 reagent (Thermo Fisher Scientific, Waltham,
618 MA, USA). After 48 hours, cells were harvested, and protein extracts were prepared
619 as described (Ding et al., 2017). The mutant proteins and wild-type proteins were
620 fused to GFP. The expression of the two proteins was compared by western blots
621 with an GFP antibody using the ECL detection system. The GFP antibody was
622 purchased from Cell Signaling Technology (Cell Signaling, Danvers, MA, USA).
623 The CDK5 antibody was purchased from Santa Cruz Biotechnology (Santa Cruz,
624 CA, USA). A phospho-specific antibody against CDK5 phosphorylated at Tyr
625 (GeneTex, Irvine, CA 92606 US) was purchased from GeneTex. Western blot
626 experiments were repeated twice with similar results for the replicates.

627 **Genotyping and imputation of GWAS**

628 In the East Asian Japanese cohort, genotyping was performed by Illumina
629 Human610 Genotyping BeadChip, Illumina HumanOmniExpressExome and
630 HumanOmniExpress as our previous GWASs (Kou et al., 2019; Kou et al., 2013;
631 Ogura et al., 2015; Takahashi et al., 2011). For quality control (QC), subjects with call
632 rate < 0.98 , high-degree relatedness with other subjects and outliers of East Asian
633 ethnicity were excluded. For variants QC, the exclusion criteria of variants were as
634 follows: call rate < 0.99 , P-value for Hardy-Weinberg equilibrium $< 1.0 \times 10^{-6}$
635 and minor allele count < 10 . The reference panel for imputation, namely JEWEL7K,
636 was composed of 1000 Genomes Project phase 3 (v5) (Auton et al., 2015) and
637 Japanese whole-genome sequence data (Das et al., 2016) with 3256 high-depth
638 subjects (≥ 30 read counts) and 4216 low-depth subjects (≤ 15 read counts). Using
639 EAGLE 2.4.1 (<https://alkesgroup.broadinstitute.org/Eagle/>) to determine the
640 haplotypes, pre-phasing was conducted. Genotypes were imputed using Minimac4
641 (version1.0.0) (Das et al., 2016). After imputation, we excluded variants with minor
642 allele frequency (MAF) < 0.005 and low imputation quality ($R^2 < 0.3$).

643 In the East Asian Hong Kong cohort, samples were genotyped with Illumina
644 Human Omni ZhongHua-8 Beadchips. Illumina Genome Studio v2.0 was used to
645 convert raw data into PLINK format. The QC steps of samples and variants were
646 described in a previous study (Marees et al., 2018). Genotype phasing and imputing
647 were executed using SHAPEIT v2.r900 (Delaneau et al., 2012) and IMPUTE2
648 (Marchini et al., 2007). The imputed data was filtered using the following parameters:
649 INFO > 0.6 , Certainty > 0.8 , and MAF > 0.01 . Association analysis was performed
650 using PLINK v1.9 logistic regression with covariates: sex, age and top 20 principal
651 components of the variance-standardized relationship matrix.

652 **East Asian GWAS meta-analysis for IS**

653 For the meta-analysis of the four datasets (three Japanese datasets and one
654 Hong Kong dataset), an inverse-variance-based method was performed by METAL
655 (version2011-03-25) (Willer et al., 2010). SNPs in three or more of the four cohorts
656 were used in subsequent analyses.

657 **Gene-based common variant analysis and eQTL analysis**

658 SNPs in *EPHA4* or within 20 kb flanking *EPHA4* with a significant association
659 with IS were retrieved. SNPs were matched to potential eQTLs according to the
660 GTEx database (v8, <https://gtexportal.org>). Gene-based common variant analyses
661 were performed using Multi-marker Analysis of GenoMic Annotation (MAGMA)
662 (de Leeuw et al., 2015) and FUMA (Watanabe et al., 2017) using default settings
663 with LD information from the 1000 Genomes Project East Asian population (1KGP
664 EAS) as a reference. SNPs located within two kb upstream and one kb downstream
665 from *EPHA4* were included in the gene-based analysis.

666 **Zebrafish strains, mutants, and morphants**

667 Zebrafish Tuebingen (TU) strains were maintained at 28°C on a 14-hour/10-hour
668 light/dark cycle. Embryos were raised at 28.5°C in E3 medium (5 mM NaCl, 0.17
669 mM KCl, 0.39 mM CaCl₂, 0.67 mM MgSO₄) following standard protocols. Zebrafish
670 have two homologs of *EPHA4*, *epha4a* and *epha4b*. The CRISPR/Cas9 system was
671 used to generate zebrafish *epha4a* and *epha4b* mutants. To increase efficiency, we
672 injected Cas9 mRNA together with multiple single guide RNAs (sgRNAs) for each
673 gene (Table S7). The sgRNA sequences for *epha4a* and *epha4b* are listed in Table S7.
674 Morpholino sequences for *epha4a* and *efnb3b* knockdown analysis are also listed in
675 Table S7.

676 **Micro CT imaging**

677 Adult zebrafish *epha4a* mutants or wild-type siblings were euthanized with
678 tricaine methanesulfonate and fixed in 4% paraformaldehyde. Micro CT images were

679 captured using a PerkinElmer Quantum GX2. Planar images acquired over 360° of
680 rotation were reconstructed using QuantumGX. Three-dimensional renders of the
681 skeleton were made with Analyze 12.0 software (AnalyzeDirect).

682 **Behavioral recordings and analysis**

683 For behavior analysis, individual zebrafish larvae were transferred into 24-well
684 plate with fresh E3 medium at 8 dpf. Then, the plate was placed inside the
685 Daniovision (Noldus) observation chamber for further behavior analysis.
686 Video-tracking of swimming activity and further statistical analysis were performed
687 using the EthoVision™ XT10 software. Behavioral data were shown as total swim
688 distance (mm), average velocity (mm/s), average relative turn angle (degree), average
689 absolute turn angle (degree) and average absolute angular velocity (degree/s) at a
690 duration for 4 min. A positive angle reflects a leftward turn.

691 For tactile stimulation, zebrafish larvae were placed in a concave slide, and tactile
692 stimulation was performed with glass capillaries to the head or tail sides. Larval
693 startle responses were recorded using a high-speed video camera (Mikrotron, EoSens
694 Mini1) at 1000 fps. Automated analysis of larval movement was performed using the
695 FLOTE software package (Jain et al., 2014).

696 For optogenetic studies, the Tg(Gal4^{s1020t}; UAS:ChR2) transgenic embryos were
697 injected with control, *epha4a* or *efnb3b* morpholinos at one cell stage. At 5 dpf, the
698 head of injected larva was mounted in 1% low melting-point agarose (Sigma) and the
699 body was exposed in glass-bottom dishes (WPI). Leica M165FC fluorescence
700 microscope was used to irradiate with a blue laser at 488nm wavelength. Larval
701 responses were recorded using a high-speed video camera (Mikrotron, EoSens Mini1)
702 at 500 fps. Body curvature analysis of larval movement was performed using the
703 FLOTE software package.

704 **Whole-mount *in situ* hybridization and immunofluorescence**

705 The primer sequences used to amplify *epha4a*, *epha4b* and *rfng* genes were listed

706 in Table S7. Probe synthesis and whole-mount *in situ* hybridization were performed
707 according to standard protocols. For reticulospinal neurons immunostaining, embryos
708 were fixed in 2% trichloroacetic acid at 48 hpf for 3-4 h, washed twice in 0.5% Triton
709 X-100 in PBS and blocked in 0.5% Triton X-100, 10% normal goat serum, 0.1%
710 bovine serum albumin (Solarbio) in PBS for 1 h. The embryos were stained by
711 monoclonal anti-neurofilament 160 antibody (Sigma-Aldrich) overnight at 4°C, then
712 stained by goat anti-mouse Alexa Fluor 488 (Invitrogen) after washing.

713 **Analysis of neuronal calcium signals activity**

714 Control, *epha4a* or *efnb3b* morpholinos were injected into Tg(*elavl3*:GAL4;
715 UAS:GCaMP) transgenic embryos at one cell stage. At 24 hpf, embryos were
716 paralyzed with 0.5 mg/ml α -Bungarotoxin (AlomoneLabs), then mounted in 1% low
717 melting-point agarose (Sigma) in glass-bottom dishes (WPI). Neuronal calcium signal
718 images were collected with IXON-L-888 EMCCD camera equipped on Dragonfly
719 200 Spinning Disk Confocal Microscope using a 20 \times /0.55 objective within 1 min at a
720 frame rate of 10 fps.

721 Images were analyzed with imageJ software. To quantify the change in
722 fluorescence intensity, a region of interest (ROI) was defined, and the fluorescence
723 intensity F_t of different frames was normalized to F_t/F_{\min} based on the minimum
724 fluorescence intensity F_{\min} in all frames. To compare the left-right alternation pattern
725 of neuronal calcium signals, the ratio of the left-side calcium signals frequency (f_{left})
726 to the right-side calcium signals frequency (f_{right}) was logarithmically transformed
727 (lg-transformed).

728 **Quantification and statistical analysis**

729 Statistical analyses were performed in SPSS (version 15.0). Unpaired Student's
730 t-test, Welch one-way ANOVA or two-way ANOVA followed by Turkey's multiple
731 comparison test were applied when appropriate. All experiments were replicated at
732 least three times independently. $P<0.05$ was considered statistically significant.

733 **Study approval**

734 Approval for the study was obtained from the ethics committee at the Peking
735 Union Medical College Hospital (JS-098, JS-2364), the medical ethics committee of
736 the Keio University Hospital (No. 20080129), the ethical committee of RIKEN
737 Yokohama Institute (No. H20-17(8)), and the Institutional Review Board of the
738 University Texas Southwestern Medical Center (protocol STU 112010□150).
739 Written informed consent was obtained from each participating individuals and
740 families in the three cohorts. For the control group, the protocols were approved by
741 the ethics committee at Peking Union Medical College Hospital. All zebrafish
742 studies were approved by the Animal Care Committee of the Ocean University of
743 China (Animal protocol number: OUC2012316).

744 **Acknowledgments**

745 We appreciate all the patients, their families and clinical research coordinators,
746 including physicians who participated in this project. The authors also acknowledge
747 the Texas Advanced Computing Center (TACC) at The University of Texas at Austin
748 for providing computing resources that have contributed to the results related to the
749 TSRHC cohort. URL: <http://www.tacc.utexas.edu>.

750 **Funding**

751 National Key R&D Program of China 2023YFC2509700 (LW)
752 National Natural Science Foundation of China 81822030 (NW)
753 National Natural Science Foundation of China 82102522 (LW)
754 National Natural Science Foundation of China 31991194 & 32125015 (CZ)
755 National Natural Science Foundation of China 82172382 (TJZ)
756 CAMS Innovation Fund for Medical Sciences 2021-I2M-1-051 (TJZ, NW)
757 CAMS Innovation Fund for Medical Sciences 2021-I2M-1-052 (ZW)
758 CAMS Innovation Fund for Medical Sciences 2020-I2M-C&T-B-030 (TJZ)
759 Beijing Natural Science Foundation 7222133 (SW)
760 Non-profit Central Research Institute Fund of Chinese Academy of Medical
761 Sciences No. 2019PT320025 (NW)
762 National High Level Hospital Clinical Research Funding 2022-PUMCH-D-004
763 (TJZ)
764 National High Level Hospital Clinical Research Funding 2022-PUMCH-C-033
765 (NW)
766 Shandong Natural Science Foundation ZR202102210113 (LW)
767 Shandong Province Taishan Scholar Project (LW)
768 Gabriella Miller Kids First Program grant X01 HL132375-01A1 (JR)

769 **Data and materials availability**

770 The datasets used and/or analyzed during the current study are available from
771 the corresponding author on reasonable request.

772 **References**

773 Andersson, L.S., Larhammar, M., Memic, F., Wootz, H., Schwochow, D., Rubin, C.-J., Patra,
774 K., Arnason, T., Wellbring, L., and Hjälm, G. (2012). Mutations in DMRT3 affect
775 locomotion in horses and spinal circuit function in mice. *Nature* 488, 642-646.

776 Auton, A., Brooks, L.D., Durbin, R.M., Garrison, E.P., Kang, H.M., Korbel, J.O., Marchini,
777 J.L., McCarthy, S., McVean, G.A., and Abecasis, G.R. (2015). A global reference for human
778 genetic variation. *Nature* 526, 68-74.

779 Bagnat, M., and Gray, R.S. (2020). Development of a straight vertebrate body axis.
780 *Development* 147.

781 Borgijs, L., Nishimaru, H., Caldeira, V., Kunugise, Y., Löw, P., Reig, R., Itohara, S., Iwasato,
782 T., and Kiehn, O. (2014). Spinal glutamatergic neurons defined by EphA4 signaling are
783 essential components of normal locomotor circuits. *J Neurosci* 34, 3841-3853.

784 Boswell, C.W., and Ciruna, B. (2017). Understanding idiopathic scoliosis: a new zebrafish
785 school of thought. *Trends Genet* 33, 183-196.

786 Buchan, J., Alvarado, D., Haller, G., Cruchaga, C., Harms, M., Zhang, T., Willing, M.,
787 Grange, D., Braverman, A., Miller, N., *et al.* (2014). Rare variants in FBN1 and FBN2 are
788 associated with severe adolescent idiopathic scoliosis. *Hum Mol Genet* 23, 5271-5282.

789 Butt, S.J., Lundfeld, L., and Kiehn, O. (2005). EphA4 defines a class of excitatory
790 locomotor-related interneurons. *Proceedings of the National Academy of Sciences* 102,
791 14098-14103.

792 Cavone, L., McCann, T., Drake, L.K., Aguzzi, E.A., Oprisoreanu, A.M., Pedersen, E., Sandi,
793 S., Selvarajah, J., Tsarouchas, T.M., Wehner, D., *et al.* (2021). A unique macrophage

794 subpopulation signals directly to progenitor cells to promote regenerative neurogenesis in
795 the zebrafish spinal cord. *Dev Cell* 56, 1617-1630 e1616.

796 Cayuso, J., Xu, Q., Addison, M., and Wilkinson, D.G. (2019). Actomyosin regulation by Eph
797 receptor signaling couples boundary cell formation to border sharpness. *Elife* 8.

798 Chen, N., Zhao, S., Jolly, A., Wang, L., Pan, H., Yuan, J., Chen, S., Koch, A., Ma, C., and
799 Tian, W. (2021). Perturbations of genes essential for Müllerian duct and Wölffian duct
800 development in Mayer-Rokitansky-Küster-Hauser syndrome. *Am J Hum Genet* 108,
801 337-345.

802 Cheng, J.C., Castelein, R.M., Chu, W.C., Danielsson, A.J., Dobbs, M.B., Grivas, T.B.,
803 Gurnett, C.A., Luk, K.D., Moreau, A., Newton, P.O., *et al.* (2015). Adolescent idiopathic
804 scoliosis. *Nat Rev Dis Primers* 1, 15030.

805 Consortium, G. (2020). The GTEx Consortium atlas of genetic regulatory effects across
806 human tissues. *Science* 369, 1318-1330.

807 Cooke, J.E., Kemp, H.A., and Moens, C.B. (2005). EphA4 is required for cell adhesion and
808 rhombomere-boundary formation in the zebrafish. *Curr Biol* 15, 536-542.

809 Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A.E., Kwong, A., Vrieze, S.I., Chew,
810 E.Y., Levy, S., and McGue, M. (2016). Next-generation genotype imputation service and
811 methods. *Nat Genet* 48, 1284-1287.

812 de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized
813 gene-set analysis of GWAS data. *PLoS Comput Biol* 11, e1004219.

814 Delaneau, O., Marchini, J., and Zagury, J.-F. (2012). A linear complexity phasing method for

815 thousands of genomes. *Nat Methods* 9, 179-181.

816 Ding, L., Shen, Y., Ni, J., Ou, Y., Ou, Y., and Liu, H. (2017). EphA4 promotes cell
817 proliferation and cell adhesion-mediated drug resistance via the AKT pathway in multiple
818 myeloma. *Tumour Biol* 39, 1010428317694298.

819 Egea, J., and Klein, R. (2007). Bidirectional Eph-ephrin signaling during axon guidance.
820 *Trends Cell Biol* 17, 230-238.

821 Fan, Y.-H., Song, Y.-Q., Chan, D., Takahashi, Y., Ikegawa, S., Matsumoto, M., Kou, I.,
822 Cheah, K.S., Sham, P., and Cheung, K. (2012). SNP rs11190870 near LBX1 is associated
823 with adolescent idiopathic scoliosis in southern Chinese. *J Hum Genet* 57, 244-246.

824 Fidelin, K., Djennoune, L., Stokes, C., Prendergast, A., Gomez, J., Baradel, A., Del Bene, F.,
825 and Wyart, C. (2015). State-dependent modulation of locomotion by GABAergic spinal
826 sensory neurons. *Curr Biol* 25, 3035-3047.

827 Flanagan, J.G., and Vanderhaeghen, P. (1998). The ephrins and Eph receptors in neural
828 development. *Annu Rev Neurosci* 21, 309-345.

829 Fu, W.-Y., Chen, Y., Sahin, M., Zhao, X.-S., Shi, L., Bikoff, J.B., Lai, K.-O., Yung, W.-H.,
830 Fu, A.K., and Greenberg, M.E. (2007). Cdk5 regulates EphA4-mediated dendritic spine
831 retraction through an ephexin1-dependent mechanism. *Nat Neurosci* 10, 67-76.

832 Gao, X., Gordon, D., Zhang, D., Browne, R., Helms, C., Gillum, J., Weber, S., Devroy, S.,
833 Swaney, S., Dobbs, M., *et al.* (2007). CHD7 gene polymorphisms are associated with
834 susceptibility to idiopathic scoliosis. *Am J Hum Genet* 80, 957-965.

835 Grimes, D.T., Boswell, C.W., Morante, N.F., Henkelman, R.M., Burdine, R.D., and Ciruna,

836 B. (2016). Zebrafish models of idiopathic scoliosis link cerebrospinal fluid flow defects to
837 spine curvature. *Science* 352, 1341-1344.

838 Guo, L., Yamashita, H., Kou, I., Takimoto, A., Meguro-Horike, M., Horike, S., Sakuma, T.,
839 Miura, S., Adachi, T., Yamamoto, T., *et al.* (2016). Functional Investigation of a Non-coding
840 Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression
841 of the Ladybird Homeobox Gene Causes Body Axis Deformation. *PLoS Genet* 12,
842 e1005802.

843 Hale, M.E., Katz, H.R., Peek, M.Y., and Fremont, R.T. (2016). Neural circuits that drive
844 startle behavior, with a focus on the Mauthner cells and spiral fiber neurons of fishes. *J*
845 *Neurogenet* 30, 89-100.

846 Haller, G., Alvarado, D., Mccall, K., Yang, P., Cruchaga, C., Harms, M., Goate, A., Willing,
847 M., Morcuende, J., Baschal, E., *et al.* (2016). A polygenic burden of rare variants across
848 extracellular matrix genes among individuals with adolescent idiopathic scoliosis. *Hum Mol*
849 *Genet* 25, 202-209.

850 Hresko, M. (2013). Clinical practice. Idiopathic scoliosis in adolescents. *N Engl J Med* 368,
851 834-841.

852 Imondi, R., Wideman, C., and Kaprielian, Z. (2000). Complementary expression of
853 transmembrane ephrins and their receptors in the mouse spinal cord: a possible role in
854 constraining the orientation of longitudinally projecting axons. *Development* 127,
855 1397-1410.

856 Ioannidis, N.M., Rothstein, J.H., Pejaver, V., Middha, S., McDonnell, S.K., Baheti, S.,

857 Musolf, A., Li, Q., Holzinger, E., and Karyadi, D. (2016). REVEL: an ensemble method for
858 predicting the pathogenicity of rare missense variants. *Am J Hum Genet* **99**, 877-885.

859 Iwasato, T., Katoh, H., Nishimaru, H., Ishikawa, Y., Inoue, H., Saito, Y.M., Ando, R., Iwama,
860 M., Takahashi, R., and Negishi, M. (2007). Rac-GAP α -chimerin regulates motor-circuit
861 formation as a key mediator of EphrinB3/EphA4 forward signaling. *Cell* **130**, 742-753.

862 Jain, R.A., Bell, H., Lim, A., Chien, C.-B., and Granato, M. (2014). Mirror movement-like
863 defects in startle behavior of zebrafish *dcc* mutants are caused by aberrant midline guidance
864 of identified descending hindbrain neurons. *J Neurosci* **34**, 2898-2909.

865 Kania, A., and Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development,
866 physiology and disease. *Nat Rev Mol Cell Biol* **17**, 240-256.

867 Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins,
868 R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P., *et al.* (2020). The mutational constraint
869 spectrum quantified from variation in 141,456 humans. *Nature* **581**, 434-443.

870 Kiehn, O. (2006). Locomotor circuits in the mammalian spinal cord. *Annu Rev Neurosci* **29**,
871 279-306.

872 Kircher, M., Witten, D.M., Jain, P., O'roak, B.J., Cooper, G.M., and Shendure, J. (2014). A
873 general framework for estimating the relative pathogenicity of human genetic variants. *Nat
874 Genet* **46**, 310-315.

875 Kou, I., Otomo, N., Takeda, K., Momozawa, Y., Lu, H., Kubo, M., Kamatani, Y., Ogura, Y.,
876 Takahashi, Y., Nakajima, M., *et al.* (2019). Genome-wide association study identifies 14
877 previously unreported susceptibility loci for adolescent idiopathic scoliosis in Japanese. *Nat*

878 Commun 10, 3685.

879 Kou, I., Takahashi, Y., Johnson, T., Takahashi, A., Guo, L., Dai, J., Qiu, X., Sharma, S.,

880 Takimoto, A., Ogura, Y., *et al.* (2013). Genetic variants in GPR126 are associated with

881 adolescent idiopathic scoliosis. Nat Genet 45, 676-679.

882 Kramers-de Quervain, I.A., Muller, R., Stacoff, A., Grob, D., and Stussi, E. (2004). Gait

883 analysis in patients with idiopathic scoliosis. Eur Spine J 13, 449-456.

884 Kullander, K., Butt, S.J., Lebret, J.M., Lundfalld, L., Restrepo, C.E., Rydstrom, A., Klein, R.,

885 and Kiehn, O. (2003). Role of EphA4 and EphrinB3 in local neuronal circuits that control

886 walking. Science 299, 1889-1892.

887 Kullander, K., Croll, S.D., Zimmer, M., Pan, L., McClain, J., Hughes, V., Zabski, S.,

888 DeChiara, T.M., Klein, R., and Yancopoulos, G.D. (2001). Ephrin-B3 is the midline barrier

889 that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control.

890 Genes & development 15, 877-888.

891 Li, C., Chen, R., Fan, X., Luo, J., Qian, J., Wang, J., Xie, B., Shen, Y., and Chen, S. (2015).

892 EPHA4 haploinsufficiency is responsible for the short stature of a patient with 2q35-q36.2

893 deletion and Waardenburg syndrome. BMC Med Genet 16, 23.

894 Liebeskind, B.J., Hillis, D.M., Zakon, H.H., and Hofmann, H.A. (2016). Complex

895 Homology and the Evolution of Nervous Systems. Trends in Ecology & Evolution 31,

896 127-135.

897 Luk, K.D., Lee, C.F., Cheung, K.M., Cheng, J.C., Ng, B.K., Lam, T.P., Mak, K.H., Yip, P.S.,

898 and Fong, D.Y. (2010). Clinical effectiveness of school screening for adolescent idiopathic

899 scoliosis: a large population-based retrospective cohort study. *Spine* 35, 1607-1614.

900 Marchini, J., Howie, B., Myers, S., McVean, G., and Donnelly, P. (2007). A new multipoint

901 method for genome-wide association studies by imputation of genotypes. *Nat Genet* 39,

902 906-913.

903 Marder, E., and Bucher, D. (2001). Central pattern generators and the control of rhythmic

904 movements. *Curr Biol* 11, R986-996.

905 Marees, A.T., de Kluiver, H., Stringer, S., Vorspan, F., Curis, E., Marie-Claire, C., and Derkx,

906 E.M. (2018). A tutorial on conducting genome-wide association studies: Quality control and

907 statistical analysis. *Int J Methods Psychiatr Res* 27, e1608.

908 Miller, N. (2007). Genetics of familial idiopathic scoliosis. *Clin Orthop Relat Res* 462, 6-10.

909 Miller, N., Justice, C., Marosy, B., Doheny, K., Pugh, E., Zhang, J., Dietz, H., and Wilson, A.

910 (2005). Identification of candidate regions for familial idiopathic scoliosis. *Spine* 30,

911 1181-1187.

912 Mukhopadhyay, N., Bishop, M., Mortillo, M., Chopra, P., Hetmanski, J., Taub, M., Moreno,

913 L., Valencia-Ramirez, L., Restrepo, C., Wehby, G., *et al.* (2020). Whole genome sequencing

914 of orofacial cleft trios from the Gabriella Miller Kids First Pediatric Research Consortium

915 identifies a new locus on chromosome 21. *Hum Genet* 139, 215-226.

916 Nishida, M., Nagura, T., Fujita, N., Hosogane, N., Tsuji, T., Nakamura, M., Matsumoto, M.,

917 and Watanabe, K. (2017). Position of the major curve influences asymmetrical trunk

918 kinematics during gait in adolescent idiopathic scoliosis. *Gait Posture* 51, 142-148.

919 Ogura, Y., Kou, I., Miura, S., Takahashi, A., Xu, L., Takeda, K., Takahashi, Y., Kono, K.,

920 Kawakami, N., and Uno, K. (2015). A functional SNP in BNC2 is associated with adolescent
921 idiopathic scoliosis. *Am J Hum Genet* 97, 337-342.

922 Paixão, S., Balijepalli, A., Serradj, N., Niu, J., Luo, W., Martin, J.H., and Klein, R. (2013).
923 EphrinB3/EphA4-mediated guidance of ascending and descending spinal tracts. *Neuron* 80,
924 1407-1420.

925 Scott, K., O'Rourke, R., Winkler, C.C., Kearns, C.A., and Appel, B. (2021). Temporal
926 single-cell transcriptomes of zebrafish spinal cord pMN progenitors reveal distinct neuronal
927 and glial progenitor populations. *Dev Biol* 479, 37-50.

928 Shamah, S., Lin, M., Goldberg, J., Estrach, S., Sahin, M., Hu, L., Bazalakova, M., Neve, R.,
929 Corfas, G., Debant, A., *et al.* (2001). EphA receptors regulate growth cone dynamics through
930 the novel guanine nucleotide exchange factor ephexin. *Cell* 105, 233-244.

931 Shimode, M., Ryouji, A., and Kozo, N. (2003). Asymmetry of premotor time in the back
932 muscles of adolescent idiopathic scoliosis. *Spine* 28, 2535-2539.

933 Szklarczyk, D., Gable, A.L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M.,
934 Doncheva, N.T., Morris, J.H., Bork, P., *et al.* (2019). STRING v11: protein-protein
935 association networks with increased coverage, supporting functional discovery in
936 genome-wide experimental datasets. *Nucleic Acids Res* 47, D607-D613.

937 Takahashi, Y., Kou, I., Takahashi, A., Johnson, T.A., Kono, K., Kawakami, N., Uno, K., Ito,
938 M., Minami, S., and Yanagida, H. (2011). A genome-wide association study identifies
939 common variants near LBX1 associated with adolescent idiopathic scoliosis. *Nat Genet* 43,
940 1237-1240.

941 Talpalar, A.E., Bouvier, J., Borgius, L., Fortin, G., Pierani, A., and Kiehn, O. (2013).

942 Dual-mode operation of neuronal networks involved in left-right alternation. *Nature* 500,

943 85-88.

944 Tang, N.L., Dobbs, M.B., Gurnett, C.A., Qiu, Y., Lam, T., Cheng, J.C., and Hadley-Miller, N.

945 (2021). A decade in review after idiopathic scoliosis was first called a complex trait—A

946 tribute to the late dr. Yves Cotrel for his support in studies of etiology of scoliosis. *Genes* 12,

947 1033.

948 Tassabehji, M., Read, A.P., Newton, V.E., Patton, M., Gruss, P., Harris, R., and Strachan, T.

949 (1993). Mutations in the PAX3 gene causing Waardenburg syndrome type 1 and type 2. *Nat*

950 *Genet* 3, 26-30.

951 Valentino, B., Maccauro, L., Mango, G., Melito, F., and Fabozzo, A. (1985).

952 Electromyography for the investigation and early diagnosis of scoliosis. *Anat Clin* 7, 55-59.

953 Wang, X., Yue, M., Cheung, J.P.Y., Cheung, P.W.H., Fan, Y., Wu, M., Wang, X., Zhao, S.,

954 Khanshour, A.M., Rios, J.J., *et al.* (2024). Impaired glycine neurotransmission causes

955 adolescent idiopathic scoliosis. *J Clin Invest* 134.

956 Watanabe, K., Taskesen, E., van Bochoven, A., and Posthuma, D. (2017). Functional

957 mapping and annotation of genetic associations with FUMA. *Nat Commun* 8, 1826.

958 Weinstein, S., Dolan, L., Wright, J., and Dobbs, M. (2013). Effects of bracing in adolescents

959 with idiopathic scoliosis. *N Engl J Med* 369, 1512-1521.

960 Weinstein, S.L., Dolan, L.A., Spratt, K.F., Peterson, K.K., Spoonamore, M.J., and Ponseti,

961 I.V. (2003). Health and function of patients with untreated idiopathic scoliosis: a 50-year

962 natural history study. *JAMA* *289*, 559-567.

963 Willer, C.J., Li, Y., and Abecasis, G.R. (2010). METAL: fast and efficient meta-analysis of
964 genomewide association scans. *Bioinformatics* *26*, 2190-2191.

965 Wu, M.Y., Carbo-Tano, M., Mirat, O., Lejeune, F.X., Roussel, J., Quan, F.B., Fidelin, K.,
966 and Wyart, C. (2021). Spinal sensory neurons project onto the hindbrain to stabilize posture
967 and enhance locomotor speed. *Curr Biol* *31*, 3315-3329 e3315.

968 Wyart, C., Del Bene, F., Warp, E., Scott, E.K., Trauner, D., Baier, H., and Isacoff, E.Y.
969 (2009). Optogenetic dissection of a behavioural module in the vertebrate spinal cord. *Nature*
970 *461*, 407-410.

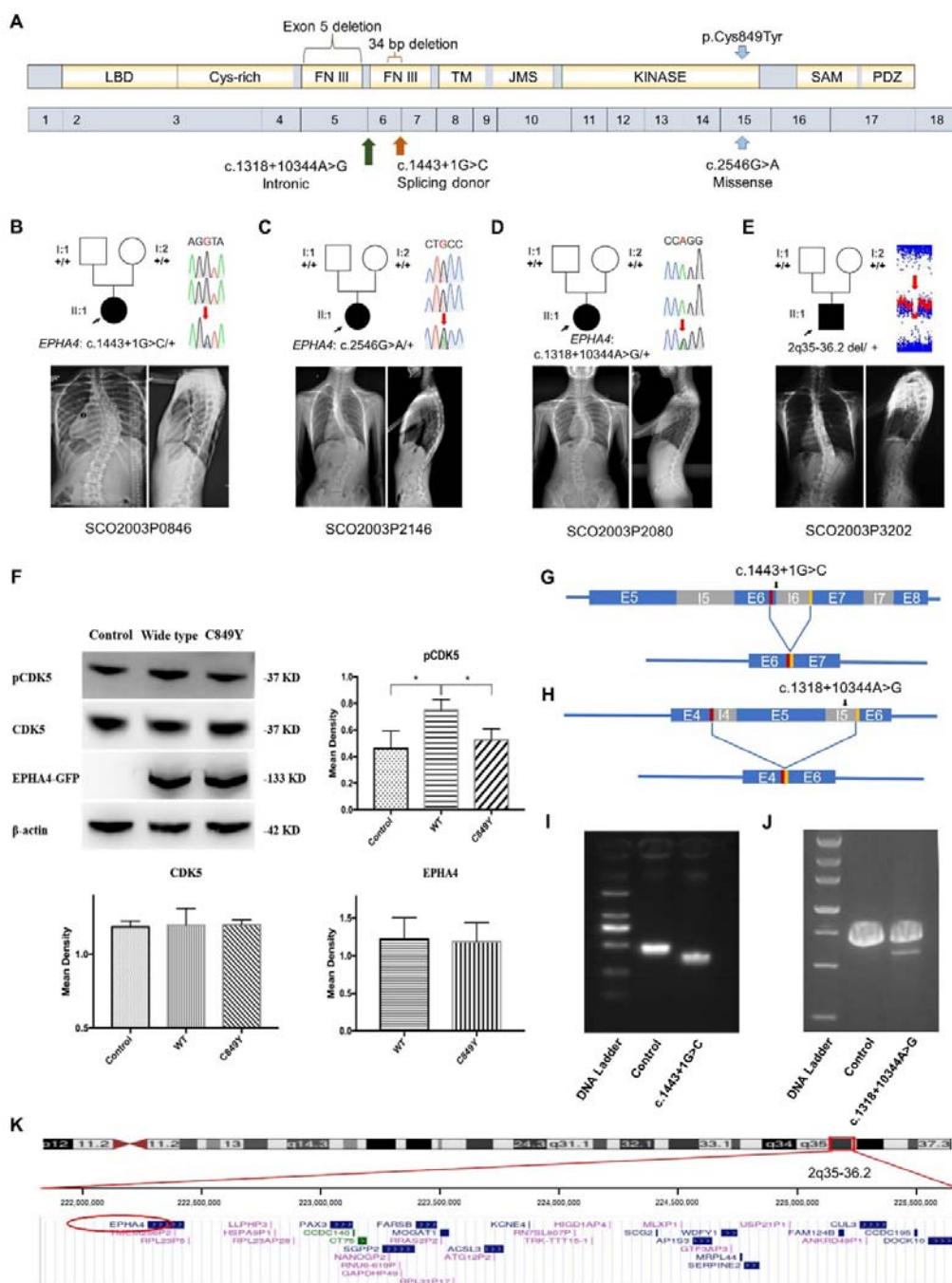
971 Xie, H., Li, M., Kang, Y., Zhang, J., and Zhao, C. (2022). Zebrafish: an important model for
972 understanding scoliosis. *Cell Mol Life Sci* *79*, 1-16.

973 Yao, E., and Tavis, J.E. (2005). A general method for nested RT-PCR amplification and
974 sequencing the complete HCV genotype 1 open reading frame. *Virol J* *2*, 1-9.

975 Zhao, S., Zhang, Y., Chen, W., Li, W., Wang, S., Wang, L., Zhao, Y., Lin, M., Ye, Y., and Lin,
976 J. (2021). Diagnostic yield and clinical impact of exome sequencing in early-onset scoliosis
977 (EOS). *J Med Genet* *58*, 41-47.

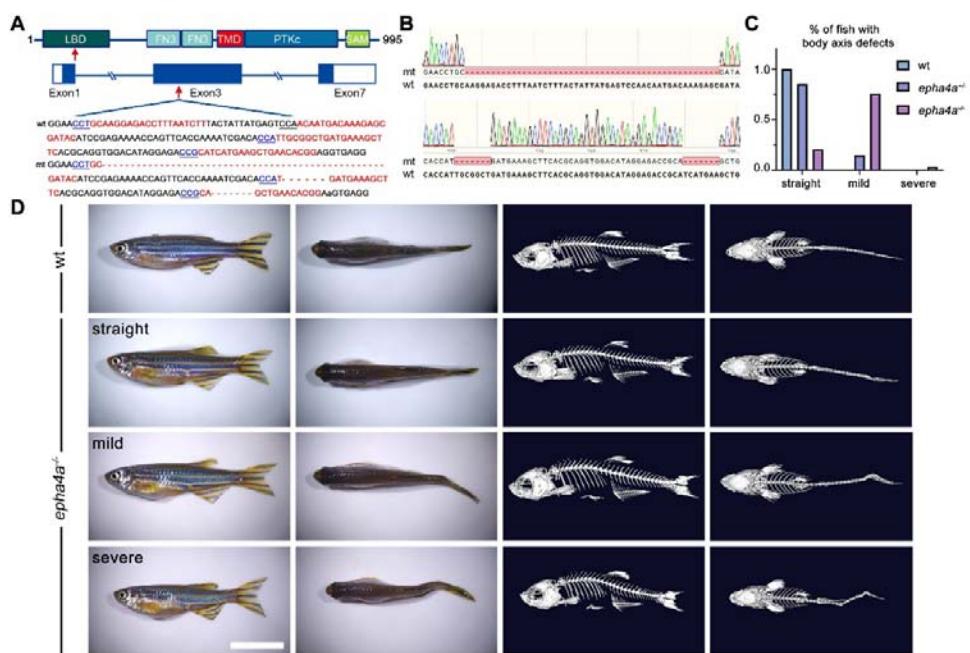
978 Zhou, W., Bi, W., Zhao, Z., Dey, K.K., Jagadeesh, K.A., Karczewski, K.J., Daly, M.J., Neale,
979 B.M., and Lee, S. (2022). SAIGE-GENE+ improves the efficiency and accuracy of set-based
980 rare variant association tests. *Nat Genet* *54*, 1466-1469.

981 Zhu, Z., Tang, N., Xu, L., Qin, X., Mao, S., Song, Y., Liu, L., Li, F., Liu, P., Yi, L., *et al.*
982 (2015). Genome-wide association study identifies new susceptibility loci for adolescent


983 idiopathic scoliosis in Chinese girls. *Nat Commun* 6, 8355.

984

Table 1. Dominantly inherited variants identified in *EPHA4* and *NGEF*.


Patient ID	Chr	Gene	Ethnicity	Inheritance pattern	cDNA change	AA change	Variant type	ExAC PLI	CADD	GnomAD frequency	In-house frequency
SCO2003P0846	2	<i>EPHA4</i>	Chinese	De novo	c.1443+1G>C	NA	Splice donor	1	21.4	0	0
SCO2003P2146	2	<i>EPHA4</i>	Chinese	De novo	c.2546G>A	p.Cys849Tyr	Missense	1	28.2	0	0
SCO2003P2080	2	<i>EPHA4</i>	Chinese	De novo	c.1318+10344A>G	NA	Intronic	1	NA	0	0
SCO2003P3202	2	<i>EPHA4</i>	Chinese	De novo	2q35-36.2 4.6 Mb deletion	NA	CNV	NA	NA	0	0
SCO2003P3332	2	<i>NGEF</i>	Chinese	De novo	c.1A>G	p.Met1?	Start lost	0.95	12.8	0	0
TSRHC01	2	<i>NGEF</i>	Non-Hispanic White	AD	c.857C>T	p.Ala286Val	Missense	0.95	29.6	0.00002	0

Abbreviations: Chr (chromosomal localization); AA (amino acid); AD (autosomal dominant); CNV (copy number variant); ExAC PLI (probability of being loss-of-function intolerant from Exome Aggregation Consortium); CADD (Combined Annotation Dependent Depletion score); gnomAD (Genome Aggregation Database); NA (not applicable).

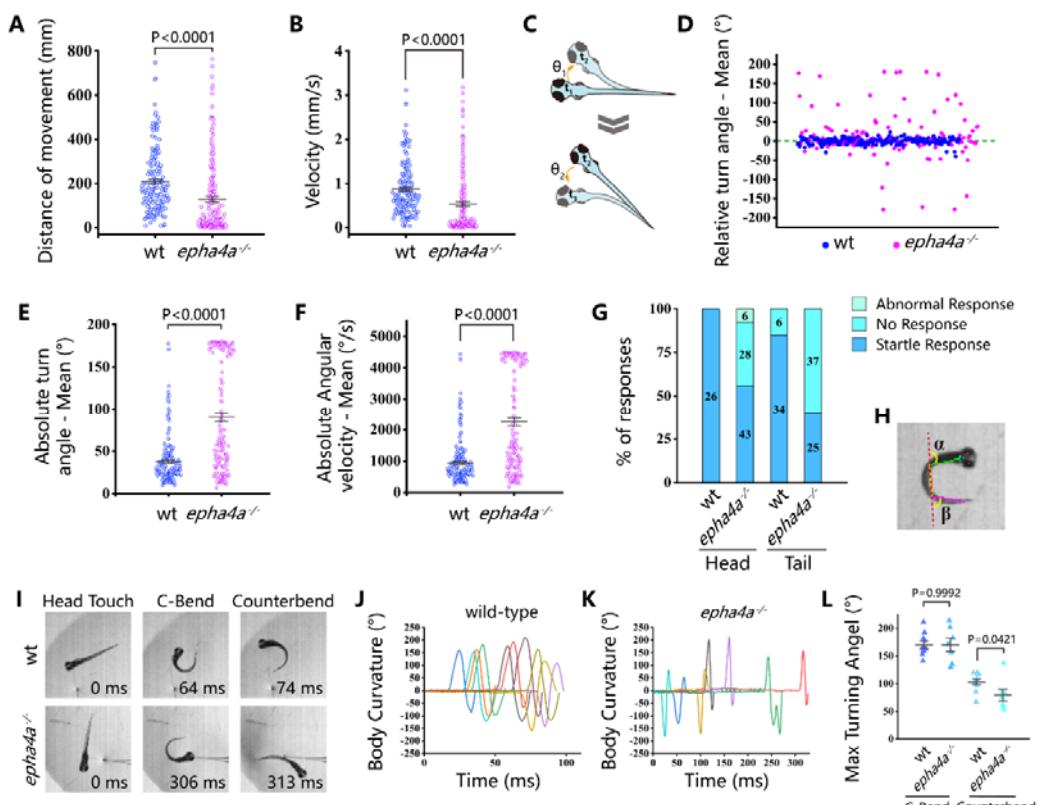
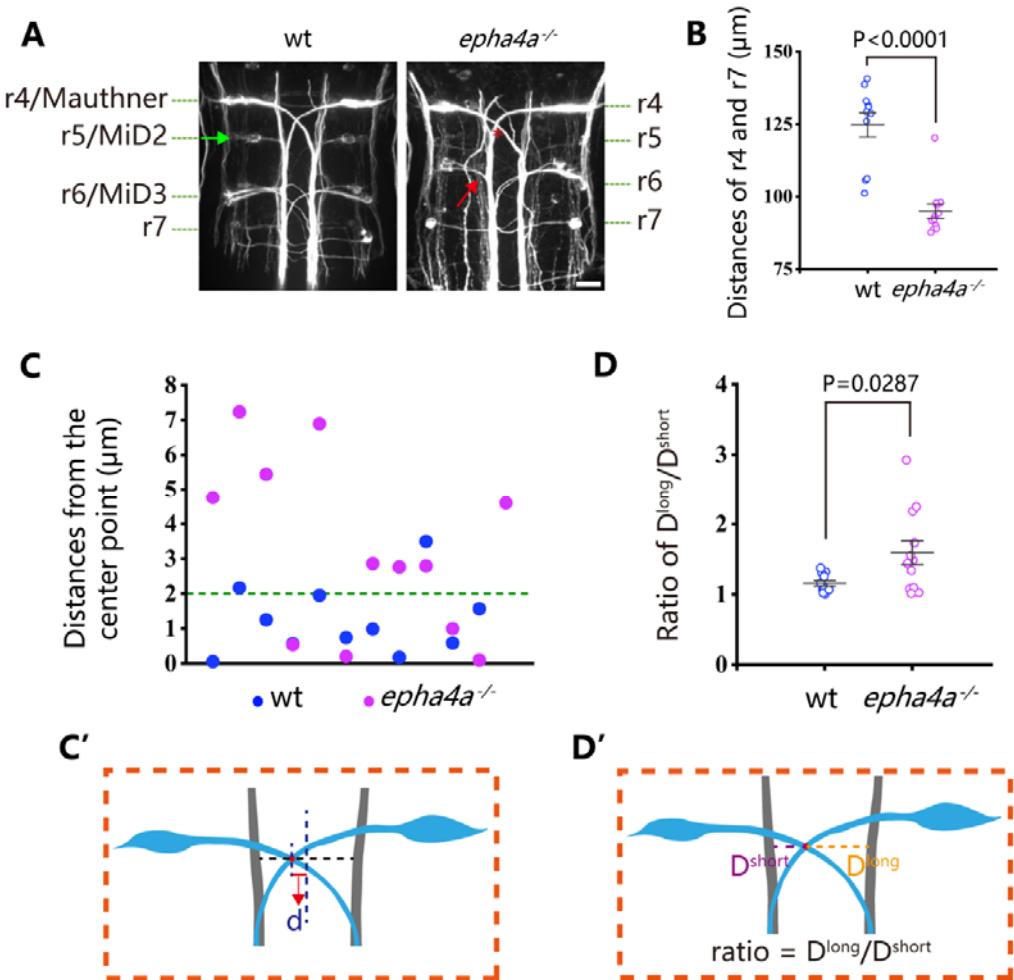
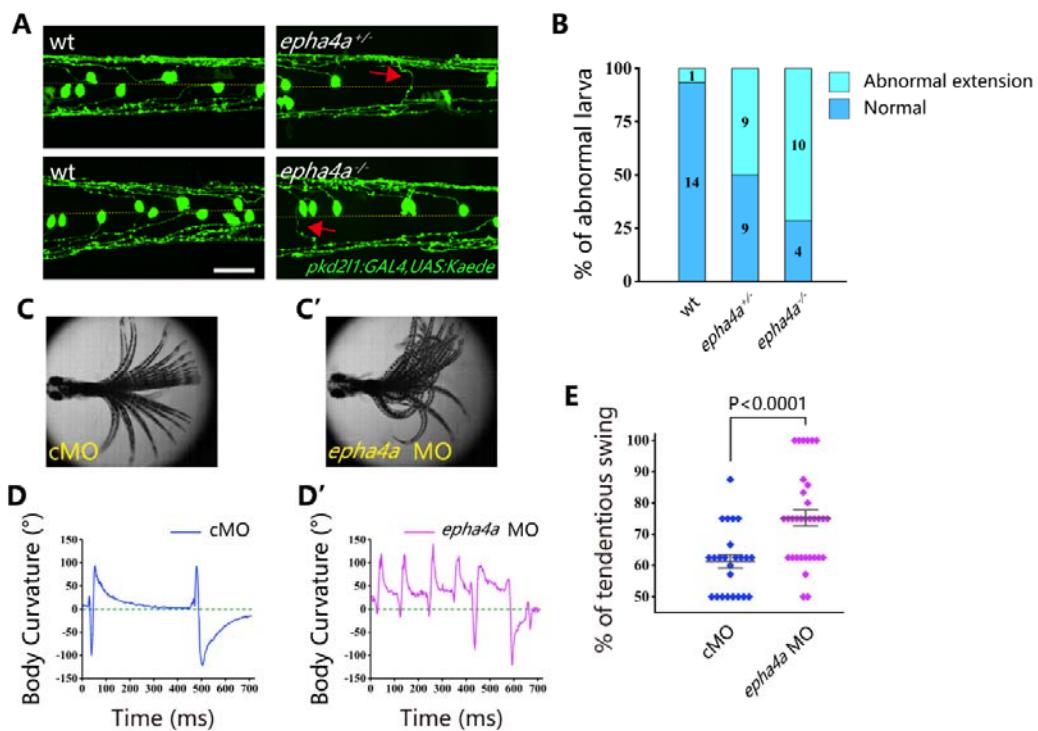
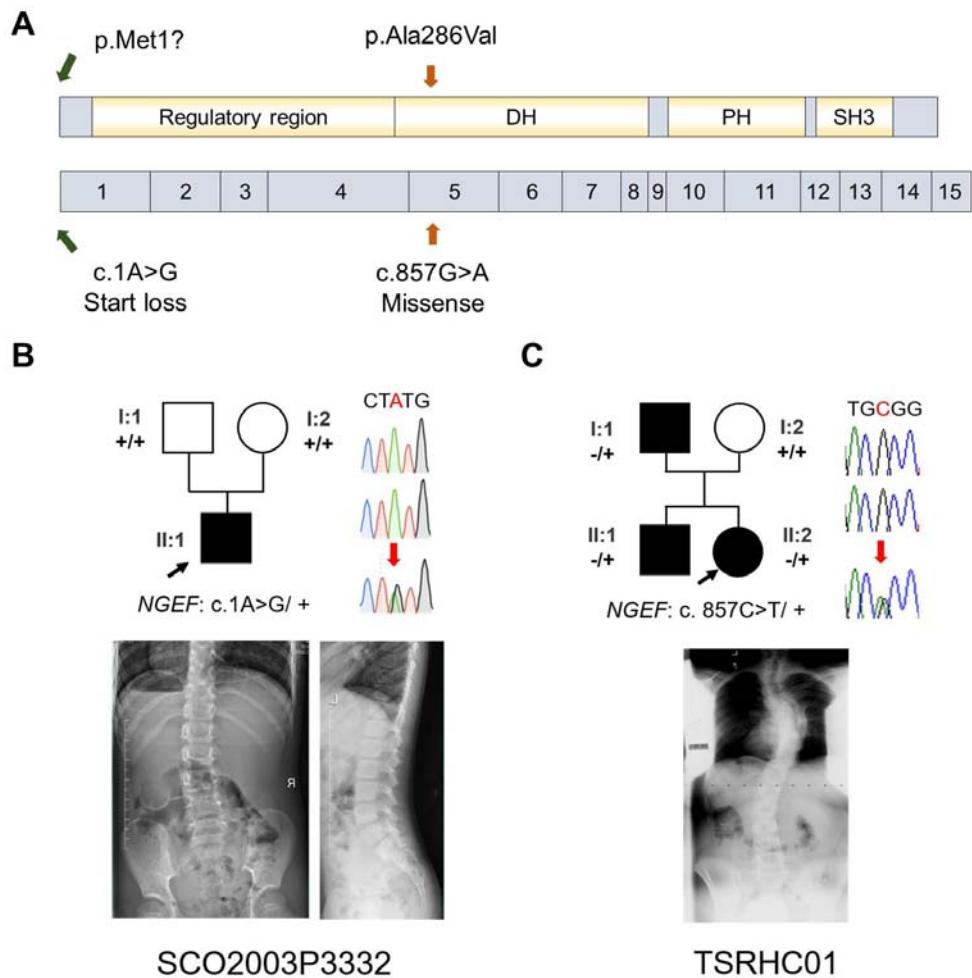


Figure 1. Clinical and genetic information on IS patients and functional effect of EPH4 variants. A: Locations of three *EPHA4* single nucleotide variants relative to the protein domains (top panel) and exons 1-18 (bottom panel). **B-E:** Pedigrees and spinal radiographs of four probands with dominant gene variants. Sanger sequencing confirmed the variants. The arrows indicate the probands. The term +/+ denotes the wild-type, and cDNA change/+ denotes the heterozygous variant. **F:** Western blot analysis of *EPHA4*-c.2546G>A variant showing the protein expression levels of EPH4 and CDK5 and the amount of phosphorylated CDK5 (pCDK5) in HEK293T cells transfected with *EPHA4*-WT or *EPHA4*-WT plasmid. WT: wild type. **G:** Schematic of the c.1443+1G>C mutation, showing the exon structure and the splicing change. **H:** Schematic of the c.1318+10344A>G mutation, showing the exon structure and the intronic change. **I-J:** Agarose gel electrophoresis showing PCR products for the c.1443+1G>C and c.1318+10344A>G mutations. **K:** Genomic map of the EPH4 gene region showing the 2q35-36.2 deletion and surrounding genes.


Schematic representation of the effect of the *EPHA4*-c.1443+1G>C mutation on the splicing process. This variant induced a new splicing site (red box). The yellow box indicates the splicing acceptor. **H:** Schematic representation of the effect of the *EPHA4*-c.1318+10344A>G mutation on the splicing process. This variant induced a new splicing site (red box). The yellow box indicates the splicing acceptor. **I:** The minigene assay result showed that the c.1443+1G>C variant introduced a new splicing site, resulting in a 36-bp in-frame deletion in exon 6. **J:** The nested PCR showed that the c.1318+10344A>G variant induced exon 5 skipping, resulting in a 339-bp in-frame deletion. **K:** NCBI RefSeq genes included in 2q35-q36.2 from UCSC Genome Browser. *EPHA4* is shown by the red oval.


Figure 2. Scoliosis in zebrafish *epha4a* mutants. **A:** Diagram of the protein domains, genomic structures, and sequences of wild-type and corresponding *epha4a* mutants. Red arrows indicate mutation sites. Blue boxes indicate open reading frames. Underlined sequences indicate the protospacer adjacent motif (PAM) region, and red fonts indicate Cas9 binding sites. LBD: ligand binding domain; FN3: fibronectin type 3 domain; TMD: transmembrane domain; PTKc: catalytic domain of the protein tyrosine kinases; SAM: sterile alpha motif. **B:** Sanger sequencing results confirmed the deletion of the target region in *epha4a* mutant transcripts. **C:** Bar graph showing the percentages of adult zebrafish with normal, mild, or severe body axis defects in wild-type (n=76), *epha4a* heterozygote (n=95), or *epha4a* homozygous (n=116). **D:** Representative images of wild-type and homozygous *epha4a* mutants. Micro CT images are shown on the right. Lateral and dorsal views are shown. Scale bar: 1 cm.


Figure 3. Abnormal left-right swimming pattern in the absence of Eph4a. **A:** Dot plots showing the swimming distance of each 8 dpf larva at a duration of 4 min (N=54 for wild-type and N=60 for *epha4a* mutants). **B:** Dot plots showing the swimming velocity of wild-type and mutant larvae as indicated. **C:** Diagram showing the turning angle (θ) of the larvae during swimming. **D:** Scatter plot showing the relative turning angle of wild-type and mutant larvae. The relative angles were calculated by the sum of turning angles during fish swimming with left (positive) or right (negative) turns. The *epha4a* mutants favored turning to one side of their directions compared with those of wild-type larvae. **E:** Dot plots showing the average absolute turning angle of wild-type and mutant larvae as indicated. **F:** Dot plots showing the average absolute angular velocity of wild-type and mutant larvae as indicated. **G:** Bar graph showing the percentages of 5 dpf zebrafish larvae with different reactions after tactile stimulation. N=10 for each group; the numbers of tactile stimulations are indicated in each column. **H:** Representative images of the total body curvature measurements in zebrafish larvae, with values as the sum of α and β angles shown in the figure. **I:** Representative time-series images of 5 dpf wild-type and *epha4a* mutant zebrafish larvae after tactile stimulation to the head. Each panel represents the points of maximal body curvature for the C-bend and counterbend after the tactile startle response. **J, K:** A plot of body curvature angles as measured in panel (H) during swimming in response to tactile head stimulation in 5 dpf wild-type (Panel J, N=5 larvae, n=10 stimuli) and *epha4a* mutants (Panel K, N=5 larvae, n=7 stimuli). Each colored curve represents an independent experiment showing the response of a single larva to a stimulus. The positive angle means turning right. **L:** The maximum curvature angles during the first C-bend and counterbend after tactile stimulation in wild-type and *epha4a* mutant larvae.


Figure 4. Uncoordinated left-right activation of spinal cord neurons in *epha4a* mutants. **A, A'**: Fluorescent images showing the dorsal-view of 24 hpf *Tg(elavl3:GAL4; UAS:GCaMP)* double transgenic larvae. The corresponding movies are shown in Movie S5 and S6. **B, B'**: Line charts showing the quantification of fluorescence changes of the region of interests (ROIs, circled in A, A') in wild-type larvae and *epha4a* mutants. **C**: Scatter plot showing the distribution trend of the ratio of the calcium signal frequency between left and right in wild-type (N=14 larvae, n=42 experiments) and *epha4a* mutants (N=10 larvae, n=30 experiments). **D**: Statistical graph of the ratio of the calcium signal frequency between left and right in wild-type larvae and *epha4a* mutants. Scale bars: 50 μ m in panel (A, A').

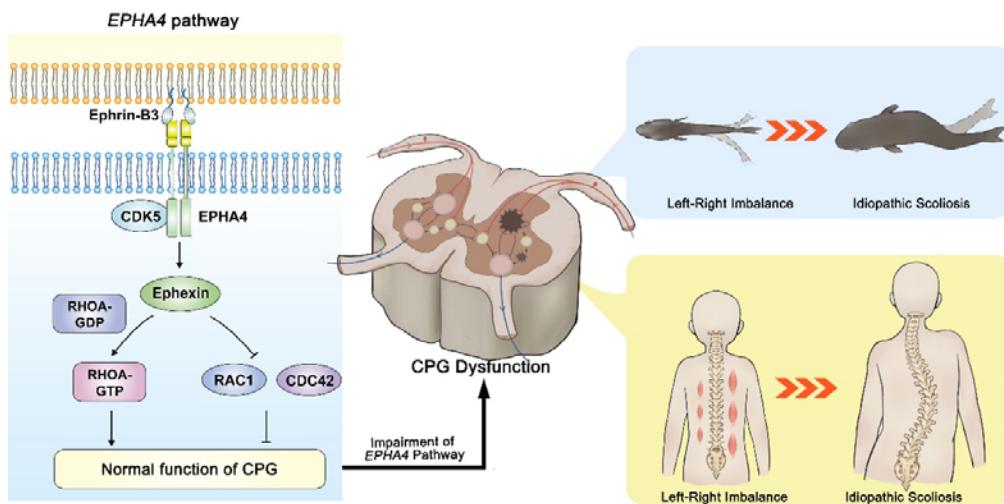

Figure 5. Disorganized neural patterning in *epha4a* mutants. **A:** Confocal images showing reticulospinal neuronal axons in 48 hours post-fertilization (hpf) wild-type and *epha4a* mutant larvae visualized with anti-neurofilament antibody RMO44. Asterisks indicate the cross sites of Mauthner axons. The green arrow indicates the cell body of the r5/MiD2 neuron in a wild-type larva. The red arrow points to the ipsilaterally projected axon of r6/MiD3 in the mutant larva, which is normally projected to the other side in wild-type fish. **B:** Statistical chart showing the distance between r4 and r7 of 48 hpf wild-type and *epha4a* mutants. **C:** Scatter plot showing the distance (d) between the center line and the intersection site of Mauthner axons as indicated in panel C'. **D:** The ratio of the distance between the intersection site of Mauthner axons and bilateral axon bundles in 48 hpf wild-type (N=11 larvae) and *epha4a* mutants (N=12 larvae). The ratios were calculated as in panel D'. Scale bars: 20 μm in panel (A).

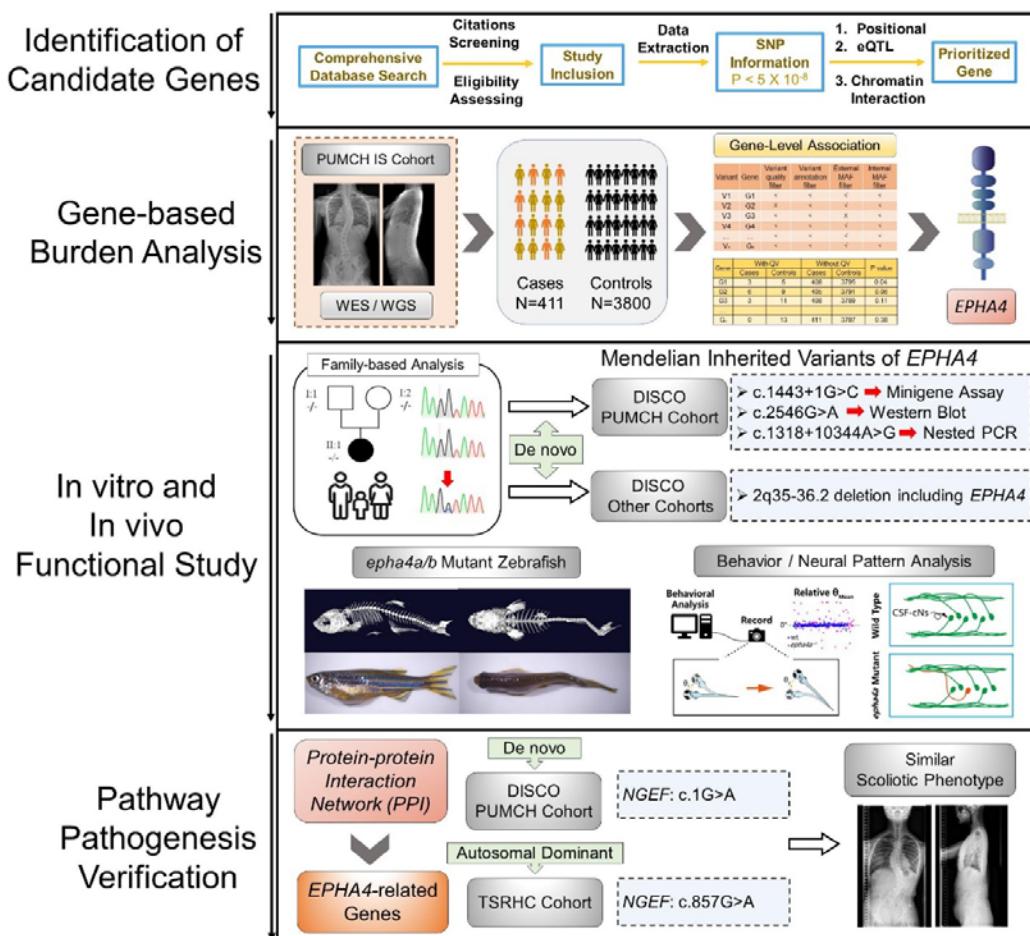
Figure 6. Aberrant swimming as a result of abnormal extension of CSF-cNs axons. **A:** Fluorescent images showing the distribution of ascending axons of CSF-cNs marked by Tg(*pkd211:GAL4,UAS:Kaede*) in 2 dpf *epha4a* mutant larvae. Yellow line indicates the midline and the red arrows indicate aberrantly extended axons in *epha4a*^{+/+} and *epha4a*^{-/-} larvae. **B:** Bar graph showing the percentages of abnormal extension of CSF-cNs axons in 2 dpf wild-type, *epha4a* heterozygote, and *epha4a* homozygous. The numbers of larvae are indicated in each column. **C, C':** Superimposed frames of tail oscillations in 5 dpf control and *epha4a* morphants. **D, D':** A plot of body curvature angles in panel (C) and (C'). The positive angle means turning right. **E:** Percentages of tendentious swing in control (N=8 larvae, n=24 experiments) and *epha4a* morphants (N=11 larvae, n=33 experiments). The percentages were calculated by the ratio of tendentious tail oscillation during the first eight swings. Scale bars: 50 μ m in panel (A).

Figure 7. IS patients with potential *NGEF* variants. A: Protein structure of NGEF protein with the position of potential variants. **B, C:** Pedigrees and spinal radiographs of two probands with dominant gene variants. Sanger sequencing results are shown on the right.

Figure 8. The proposed mechanism of IS mediated by *EPHA4* dysfunction. In healthy individuals, EphrinB3-activated EPHA4 phosphorylates CDK5, leading to the phosphorylation of Ephexin, a protein encoded by NGEF. Phosphorylated Ephexin can regulate axon guidance through either activating RHOA or suppressing CDC42 and RAC1 signaling . These processes are critical to maintain the normal function of the CPG, the local neural network that provides coordinated bilateral muscle control. Impairment of the EPHA4 pathway and CPG may cause an imbalance of the motor drive from the spinal cord during development, thus causing the uncoordinated left/right swimming behavior in zebrafish larvae and the asymmetry of the bilateral muscular pull in a young child. Although the appearance is normal in early childhood, the dysfunction produces a scoliotic curve during the growth spurt.

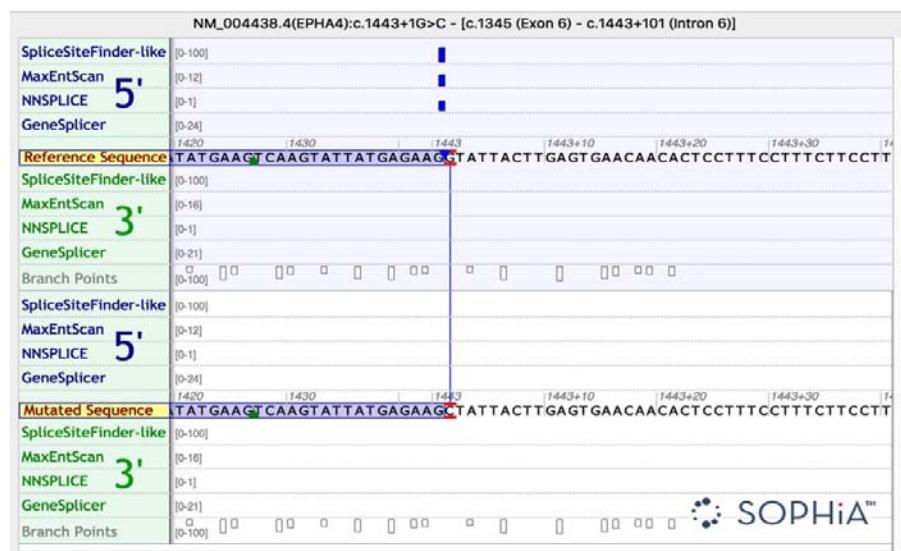
Supplementary Materials for

Impaired central pattern generators due to abnormal EPHA4 signaling leads to idiopathic scoliosis


Lianlei Wang *et al.*

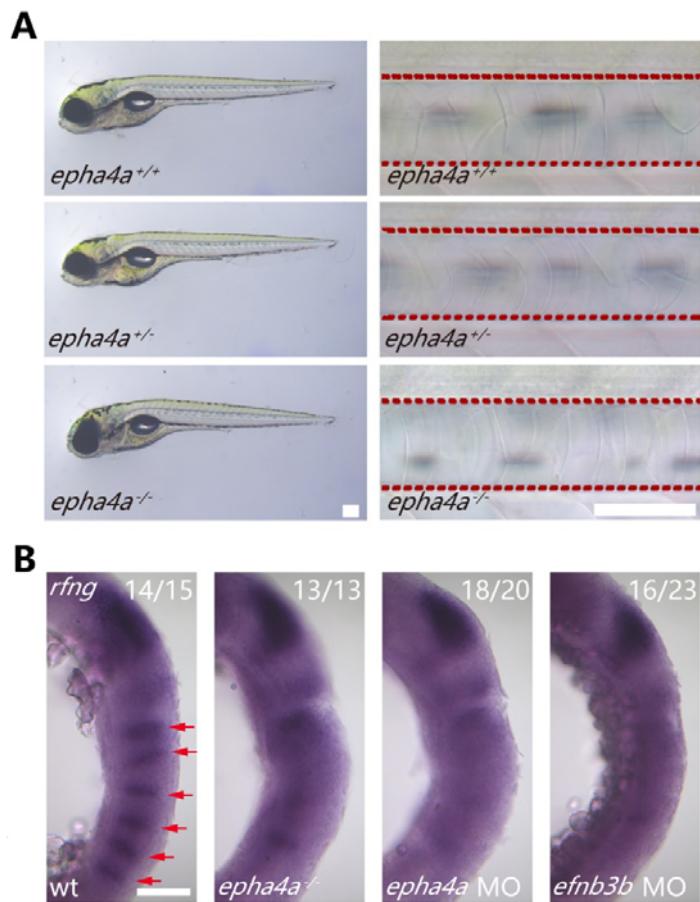
Corresponding author:

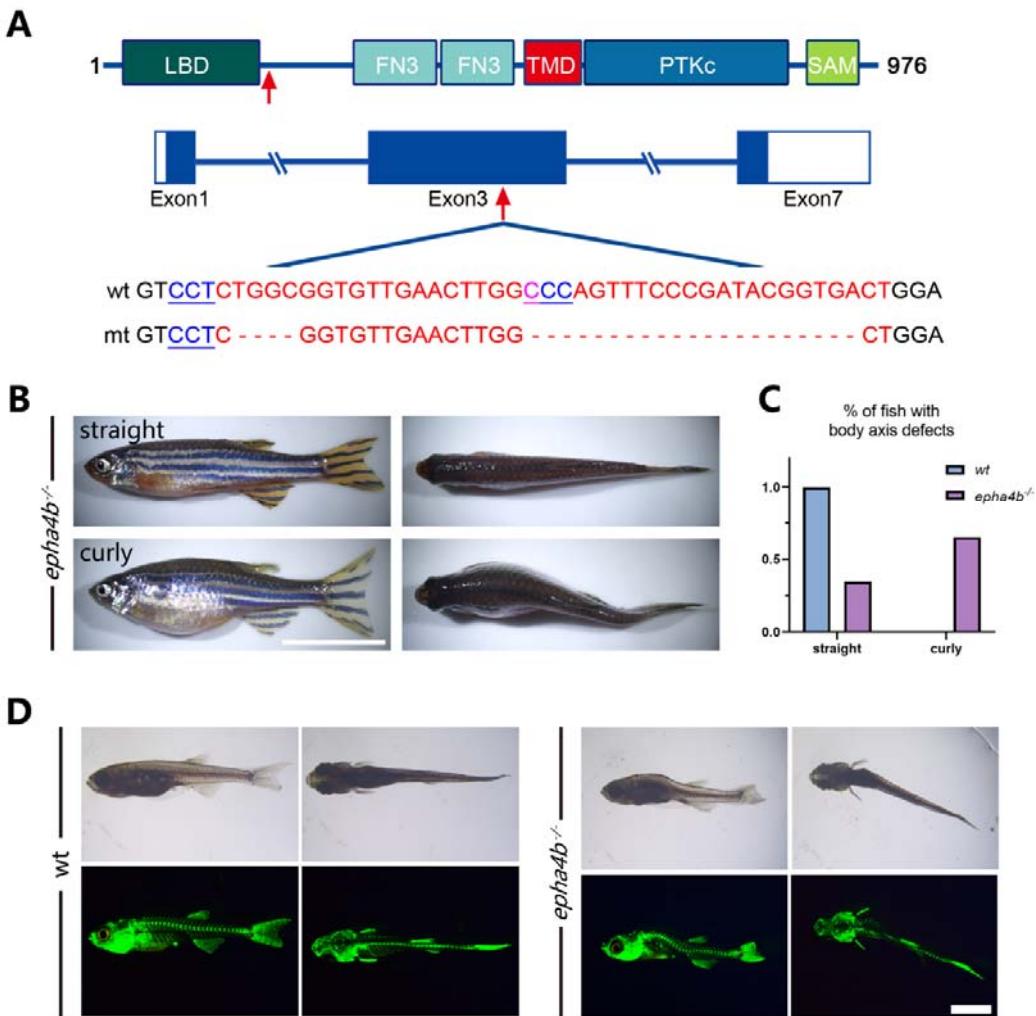
Nan Wu, M.D., E-mail: dr.wunan@pumch.cn

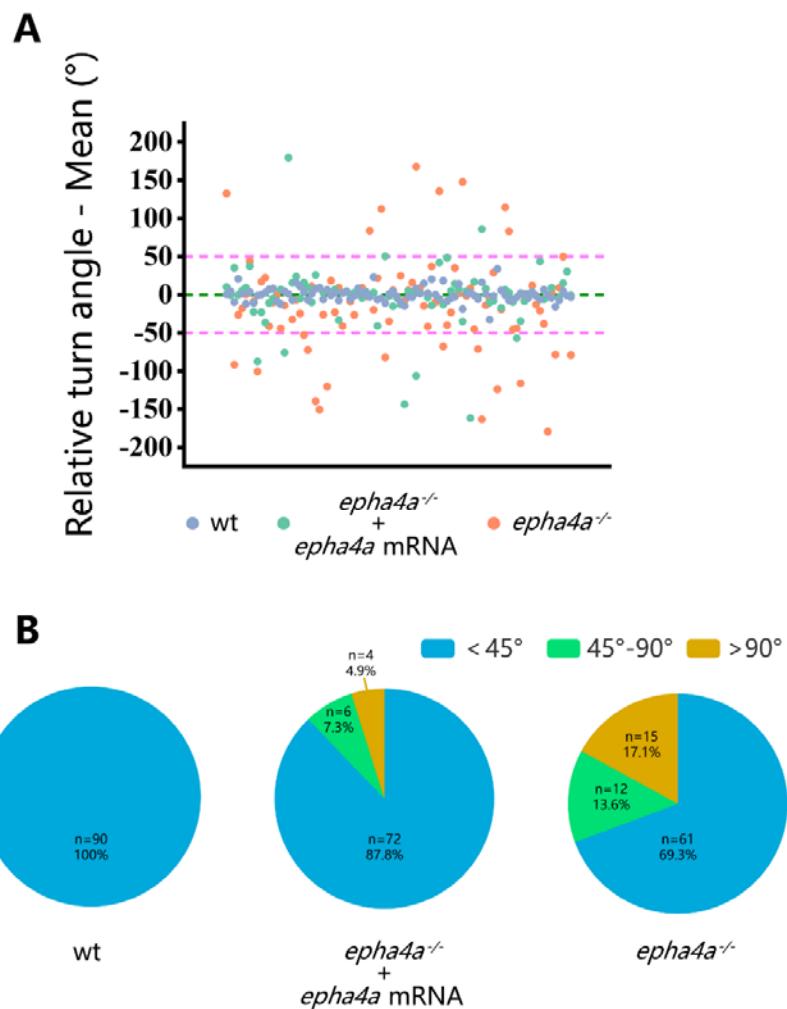

Chengtian Zhao, Ph.D., E-mail: chengtian_zhao@ouc.edu.cn

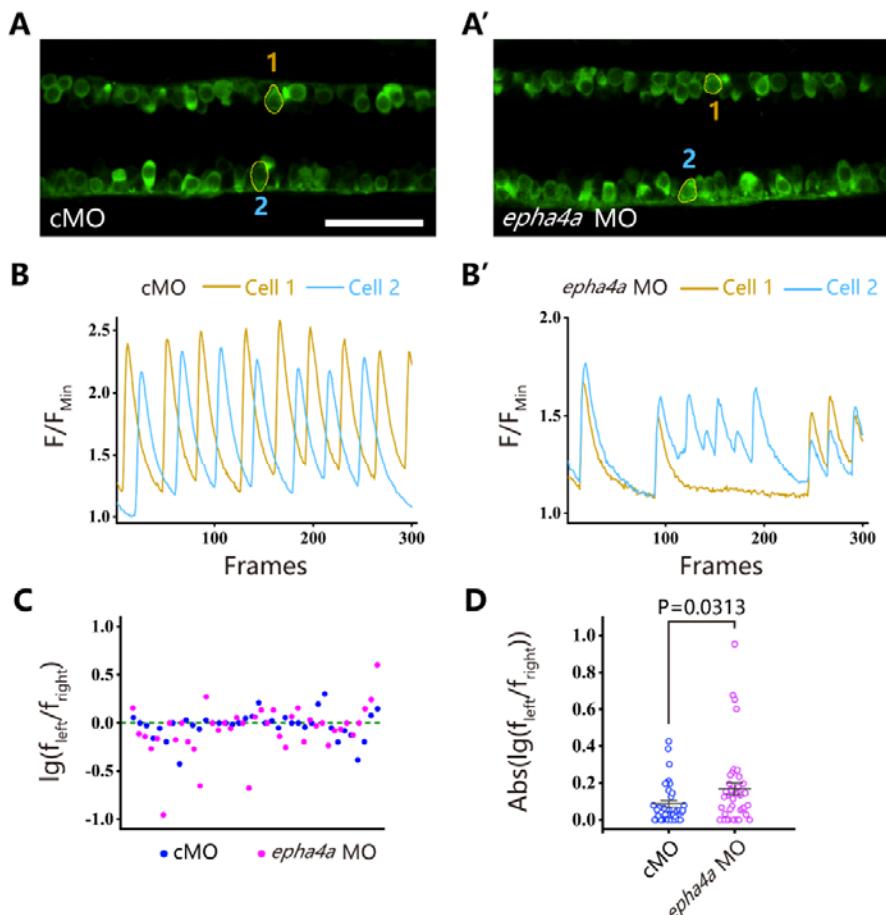
Terry Jianguo Zhang, M.D., E-mail: zhangjianguo@pumch.cn

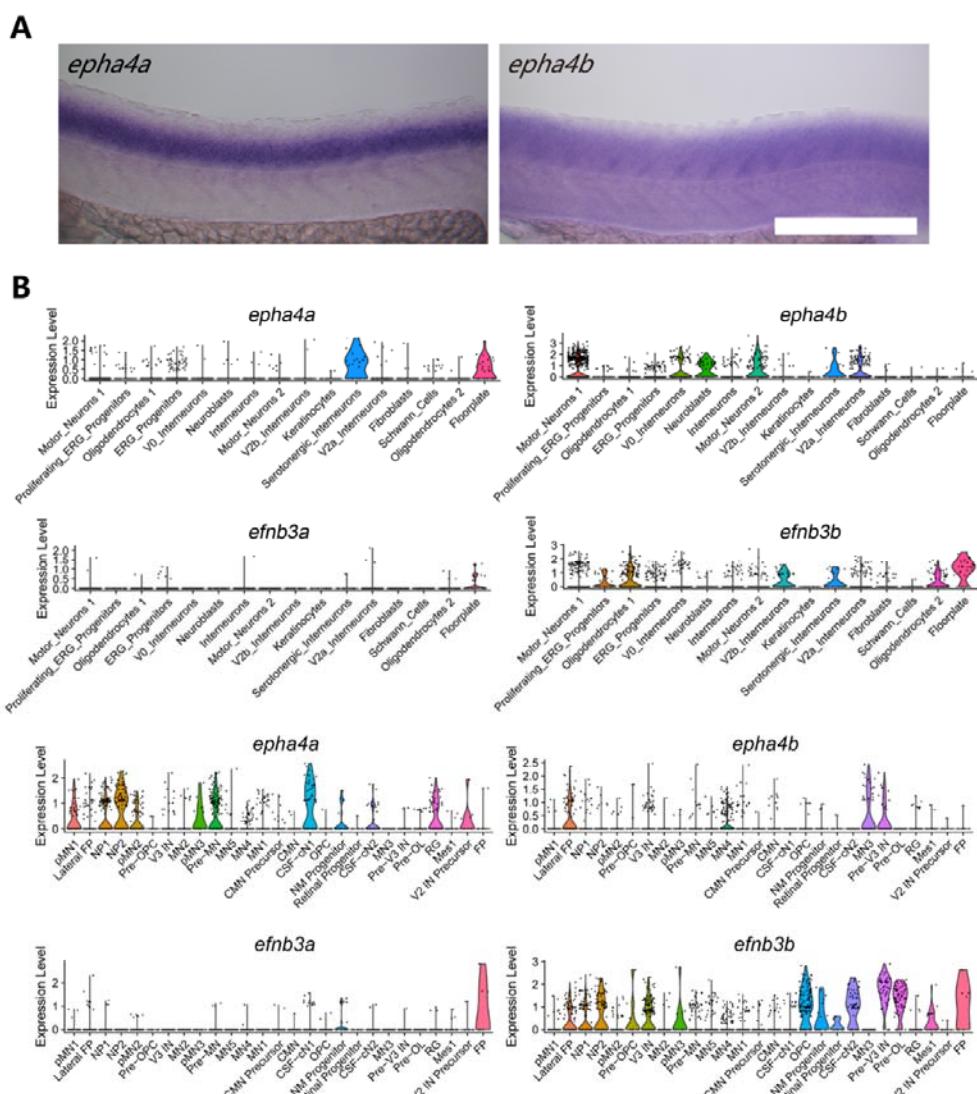
Supplementary Fig. 1. Flowchart for identification of causative genes. The processes of candidate gene mapping and gene-based burden analysis were described. The variants in *EPHA4* and *NGEF* identified in each cohort were displayed. Abbreviations: SNP (single nucleotide polymorphism); eQTL (expression quantitative trait locus); IS (idiopathic scoliosis).

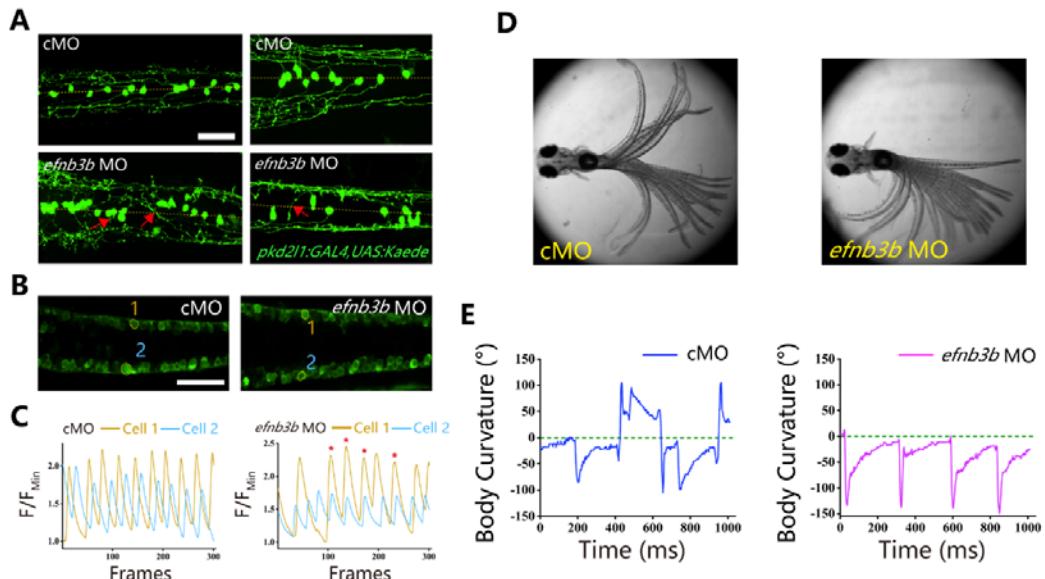

A

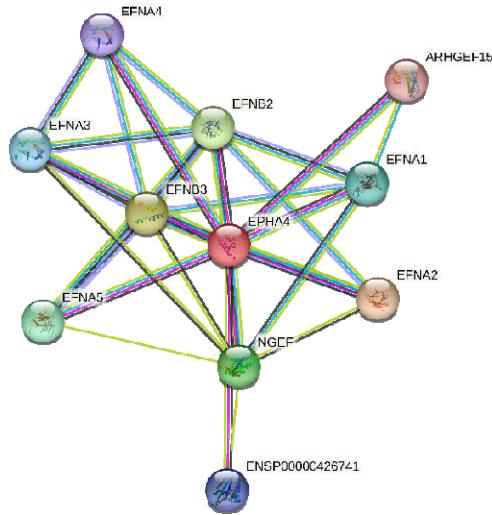

B


Supplementary Fig. 2. The splicing analysis by the Alamut software. The results of Alamut software by four algorithms (SpliceSiteFinder-like, MaxEntScan, NNSPlice, and GeneSplicer).


Supplementary Fig. 3. Phenotypes of *epha4a* mutants. **A:** Representative images showing the notochord and external phenotypes of wild-type and *epha4a* mutants. The red dashed lines indicate the area of the notochord. **B:** Whole-mount in situ hybridization results showing the expression of *rfng* gene in 18 hpf wild type, homozygous mutant or morphant larvae as indicated. *rfng* gene marks boundary cells in the hindbrain. The red arrows indicate boundary expression. The numbers of embryos analyzed are shown on top right. Scale bars: 200 µm in panel (A), 100 µm in panel (B).


Supplementary Fig. 4. Zebrafish *epha4b* mutants exhibited body axis defects during development. **A:** Diagram showing the protein domains, genomic structures, and sequences of the wild-type and corresponding *epha4b* mutants. Red arrows indicate mutation sites. **B:** Representative images of *epha4b* mutants. **C:** Bar graph showing the percentages of adult fish with normal and body axis defects in wild-type (n=39) and *epha4b* mutants (n=43). **D:** Bright-field and GFP fluorescent images showing scoliosis *epha4b* mutants at 28 dpf as indicated by Tg(*Ola*.*Sp7*:NLS-GFP) transgene, which labels the bone skeleton. Scale bars: 1 cm in panel (B), 2 mm in panel (D).


Supplementary Fig. 5. Rescue of the *epha4a* homozygous mutant phenotype by *epha4a* mRNA injection. A: Scatter plot showing the relative turning angle of wild-type, *epha4a* homozygous larvae and homozygous larvae injected with the corresponding mRNA. B: The pie chart shows the proportional distribution of relative turning angles in three groups of larvae. N=30 larvae, n=90 experiments. Larvae that remained stationary during the recording were excluded.


Supplementary Fig. 6. Uncoordinated left-right activation of spinal cord neurons in the absence of Eph4a. **A, A'**: Fluorescent images showing the dorsal-view of 24 hpf *Tg(elavl3:GAL4; UAS:GCaMP)* double transgenic larvae. The corresponding movies are shown in Movie S7 and S8. **B, B'**: Line charts showing the quantification of fluorescence changes of the region of interests (ROIs, circled in A, A') in control and *eph4a* morphants. **C**: Scatter plot showing the distribution trend of the ratio of the calcium signal frequency between left and right in control (N=15 larvae, n=38 experiments) and *eph4a* morphants (N=15 larvae, n=41 experiments). **D**: Statistical graph of the ratio of the calcium signal frequency between left and right in control and *eph4a* morphants. Scale bars: 50 μ m in panel (A, A').

Supplementary Fig. 7. Expression pattern of *epha4* and *efnb3* in the spinal cord.
A: Whole-mount in situ hybridization results showing the expression of *epha4a* and *epha4b* genes in the spinal cord in 24 dpf zebrafish larvae. **B:** Violin plot showing *epha4a*, *epha4b*, *efnb3a*, and *efnb3b* gene expression in different cell types. Single cell transcriptome data were acquired from two different studies (top and bottom) (Cavone et al., 2021; Scott et al., 2021). Scale bars: 200 μ m in panel (A).

Supplementary Fig. 8. Left-right coordination defects in *efnb3b* morphants. **A:** Fluorescent images showing the distribution of ascending axons of CSF-cNs marked by Tg(*pkd2l1:GAL4, UAS:Kaede*) in 2 dpf *efnb3b* morphants. The red arrows indicate aberrantly extended axons in *efnb3b* morphants. **B:** Fluorescent images showing the dorsal-view of 24 hpf Tg(*elavl3:GAL4; UAS:GCaMP*) transgenic larvae. **C:** The line chart showing the quantification of fluorescence changes of the ROIs in control morphants and *efnb3b* morphants as indicated in panel B. **D:** Superimposed frames of tail oscillations in 5dpf control and *efnb3b* morphants. **E:** A plot of body curvature angles in panel (D). The positive angle means turning right. Scale bars: 50 μ m in panel (A, B).

Supplementary Fig. 9. Proteins in STRING that interact with EPHA4. Protein interaction network analysis, as illustrated by STRING v11.5, was used to identify rare variants in genes related to *EPHA4*. Known and predicted protein-protein interactions are included in the STRING database. Multiple proteins, including Ephxin, are associated with EPHA4 physically or functionally. Ephxin, encoded by *NGEF*, is a neuronal guanine exchange factor.

Supplementary Table 1. Summary of the 14 studies and their corresponding SNPs included in the candidate genes mapping.

Citation	SNPs
Fan et al., J Hum. Genet. 2012	rs11190870 (p= 9.1×10^{-10})
Zhu et al., Hum. Mol. Genet. 2017	rs7593846 (p= 1.19×10^{-13}) rs7633294 (p= 1.85×10^{-12}) rs6570507 (p= 1.14×10^{-11}) rs6047663 (p= 1.61×10^{-15})
Zhu et al., Nat. Commun. 2015	rs678741 (p= 9.68×10^{-37}) rs4940576 (p= 2.22×10^{-12}) rs13398147 (p= 7.59×10^{-13}) rs241215 (p= 2.95×10^{-9})
Takahashi et al., Nat. Genet. 2011	rs11190870 (p= 1.24×10^{-19}) rs625039 (p= 8.13×10^{-15}) rs11598564 (p= 5.98×10^{-14})
Sharma et al., Hum. Mol. Genet. 2011	rs1400180 (p= 6.35×10^{-8})
Kou et al., Nat. Genet. 2013	rs6570507 (p= 1.27×10^{-14})
Xu et al., Spine Deform. 2018	rs169311 (p= 2.10×10^{-8})
Grauers et al., Spine J. 2015	rs11190870 (p= 7.0×10^{-18})
Ogura et al., Am. J of Hum. Genet. 2015	rs3904778 (p= 2.46×10^{-13})
Khanshour et al., Hum. Mol. Genet. 2018	rs4513093 (p= 1.71×10^{-15}) rs1455114 (p= 2.99×10^{-8}) rs687621 (p= 7.29×10^{-10}) rs10756785 (p= 7.00×10^{-10})
Sharma et al., Nat. Commun. 2015	rs6137473 (p= 3.12×10^{-8})
Miyake et al., PLoS One 2013	rs11190870 (p= 2.80×10^{-18}) rs625039 (p= 1.28×10^{-15}) rs12946942 (p= 6.43×10^{-12}) rs11598564 (p= 9.77×10^{-12}) rs6570507 (p= 3.78×10^{-8}) rs9496346 (p= 1.00×10^{-8})

Chettier et al., PLoS One 2015	rs11190878 (p= 4.18×10^{-9})
Kou et al., Nat. Commun. 2019	rs9389985 (p= 3.51×10^{-20})
	rs7028900 (p= 2.19×10^{-17})
	rs144131194 (p= 1.35×10^{-11})
	rs6047716 (p= 1.45×10^{-11})
	rs141903557 (p= 9.78×10^{-11})
	rs11205303 (p= 1.62×10^{-10})
	rs12029076 (p= 2.17×10^{-10})
	rs1978060 (p= 3.26×10^{-10})
	rs2467146 (p= 5.96×10^{-10})
	rs11787412 (p= 1.32×10^{-9})
	rs188915802 (p= 1.94×10^{-9})
	rs658839 (p= 3.15×10^{-9})
	rs2194285 (p= 8.69×10^{-9})
	rs160335 (p= 9.10×10^{-9})
	rs482012 (p= 2.30×10^{-8})
	rs11341092 (p= 2.92×10^{-8})
	rs17011903 (p= 3.56×10^{-8})
	rs397948882 (p= 3.66×10^{-8})
	rs12149832 (p= 4.40×10^{-8})

Rank	Gene Symbol	P value	Variants		OR (95%CI)
			in Cases (N = 411)	Controls (N = 3,800)	
1	<i>EPHA4</i>	0.045533	3	17	4.09 (0.946-17.6)
2	<i>ARVCF</i>	0.067987	6	24	3.05 (0.807-11.6)
3	<i>TXNRD2</i>	0.092043	3	11	3.60 (0.729-17.8)
4	<i>TRIM17</i>	0.115033	3	11	3.53 (0.795-15.7)
5	<i>SLC25A1</i>	0.119166	3	9	3.39 (0.817-14.1)
6	<i>MICALL2</i>	0.199131	0	24	0.30 (0.0176-4.94)
7	<i>MTMR11</i>	0.249127	5	35	2.05 (0.663-6.36)
8	<i>MMP2</i>	0.252208	4	17	3.03 (0.613-15.0)
9	<i>BCKDHB</i>	0.293142	1	16	0.643 (0.0469-8.83)
10	<i>TTK</i>	0.293162	0	17	0.583 (0.0334-10.2)

1 **Supplementary Table 2. Summarized results of burden analysis.**

11	<i>SLC2A6</i>	0.316088	1	21	0.675 (0.049-9.3)
12	<i>SOX6</i>	0.317369	2	25	0.822 (0.0949-7.11)
13	<i>WNT3A</i>	0.329116	1	11	0.814 (0.058-11.4)
14	<i>SDR42E1</i>	0.33538	0	11	0.631 (0.0359-11.1)
15	<i>GPR126</i>	0.33628	0	12	0.699 (0.0393-12.4)
16	<i>PIGN</i>	0.338169	1	22	0.663 (0.0869-5.06)
17	<i>POLL</i>	0.348494	0	11	0.668 (0.0378-11.8)
18	<i>PAX1</i>	0.350574	0	19	0.649 (0.0368-11.4)
19	<i>INSC</i>	0.363501	0	13	0.744 (0.0416-13.3)
20	<i>IBA57</i>	0.388644	0	8	0.744 (0.0416-13.3)

2 The p-values (Fisher's Exact Test) of 20 top ranked gene were calculated on the
3 basis of distribution differences of rare variant between the control group and the
4 PUMCH IS cohort. Abbreviations: OR (odds ratio); CI (confidence interval).

5 **Supplementary Table 4. Search strategies for each database.**

Search Number	Key Words	Results
MEDLINE (via Pubmed.gov)		
1#	Idiopathic scoliosis, GWAS/	69
2#	Idiopathic scoliosis, SNP/	56
3#	Idiopathic scoliosis, single nucleotide polymorphism/	149
4#	Idiopathic scoliosis, variant/	129
Web of Science (via Clarivate Analytics)		
1#	Idiopathic scoliosis, GWAS/	42
2#	Idiopathic scoliosis, SNP/	71
3#	Idiopathic scoliosis, single nucleotide polymorphism/	198
4#	Idiopathic scoliosis, variant/	227

6 **Supplementary Table 5. Inclusion and exclusion criteria of literature review.**

	Inclusion Criteria	Exclusion Criteria
Patient	Idiopathic scoliosis	Congenital scoliosis
Recruitment	Adolescent idiopathic scoliosis	Neuromuscular scoliosis
	Early-onset idiopathic scoliosis	Syndromic scoliosis
Study Type	Genome Wide Association Study (GWAS)	Secondary scoliosis
	Meta-analysis of GWAS	Degenerative scoliosis
Study Design	Case-control	Linkage study
		Candidate gene study
		Exome sequencing
		Whole genome sequencing
		-

7 **Supplementary Table 6. Sequencing information of PUMCH IS cohort.**

Characteristics	Cases		Controls	
	Trio	Singleton	Trio	Singleton
Exome sequencing	41	113	2,021	224
Genome sequencing	116	148	483	1,072
Sum	157	261	2,504	1,296
Passing QC	155	256	2,504	1,296

8 Abbreviations: QC (quality control); IS (idiopathic scoliosis).

9 **Supplementary Table 7. Sequences information of sgRNA and primers for**
10 **zebrafish study.**

sgRNA sequences used to generate zebrafish *epha4a* and *epha4b* mutants

<i>epha4a</i> sgRNA-1	AAGATTAAAGGTCTCCTTGC
<i>epha4a</i> sgRNA-2	GTATCGCTCTTGTCAATTGT
<i>epha4a</i> sgRNA-3	GAAGCTTCATCAGCCGCAA
<i>epha4a</i> sgRNA-4	CCGTGTTCAGCTTCATGATG
<i>epha4b</i> sgRNA-1	GCCAAGTTCAACACCG-CCAG
<i>epha4b</i> sgRNA-2	AGTCACCGTATCGGGAAACT

Primers for mutant genotype

<i>epha4a</i> -forward	GAGCTCAGCGGGTCTACATC
<i>epha4a</i> -reverse	GCGTACCTCCACTAGCGATG
<i>epha4b</i> -forward	GGTGTCTCTGAGGGTCTTT
<i>epha4b</i> -reverse	CCTGACAGTAGTCCTTATTCTCCTC

Morpholinos used to knock down the expression of *epha4a* and *efnb3b*

<i>epha4a</i> MO	AACACAAGCGCAGCCATTGGTGTC
<i>efnb3b</i> MO1	GTCTATTACTCCCATAAGCCGT
<i>efnb3b</i> MO2	GAAATCCCGAATTCCGTCTATTAC

Primers used for in situ hybridization analysis

<i>epha4a</i> probe forward	AGAATACGCCAATCAGGACG
-----------------------------	----------------------

<i>epha4a</i> probe reverse	CCTTCATGTTCTTCATAGCC
<i>epha4b</i> probe forward	TTTGGTGGAGGTTAGAGGGT
<i>epha4b</i> probe reverse	GTTGTTAGGGGTTGGGCTC
<i>rfng</i> probe forward	GGTGCTGCTTATTCCCTCCTT
<i>rfng</i> probe reverse	GCGCTAACCTCGACTGATGC

11 **Supplementary Movie 1:** Video showing the swimming of three wild-type fish.

12 **Supplementary Movie 2:** Video showing the swimming of three *epha4a* mutants
13 with severe or mild scoliosis.

14 **Supplementary Movie 3:** High-speed video showing the startle response in a
15 wild-type larva at 5 dpf triggered by head tactile stimulation. Time units: ms.

16 **Supplementary Movie 4:** High-speed video showing the abnormal startle response of
17 an *epha4a* mutant larva at 5 dpf triggered by head tactile stimulation. Time units: ms.

18 **Supplementary Movie 5:** Alternated activation of calcium signaling in motor
19 neurons of 24 hpf wild type Tg(*elavl3*:GAL4; *UAS*: GCaMP) transgenic larva.

20 **Supplementary Movie 6:** Alternated activation of calcium signaling in motor
21 neurons of 24 hpf wild type Tg(*elavl3*:GAL4; *UAS*: GCaMP) transgenic larva injected
22 with control MO.

23 **Supplementary Movie 7:** Abnormal activation of calcium signaling in motor neurons
24 of 24 hpf Tg(*elavl3*:GAL4; *UAS*: GCaMP) transgenic larva with homozygous *epha4a*
25 mutant background.

26 **Supplementary Movie 8:** Abnormal activation of calcium signaling in motor neurons
27 of 24 hpf Tg(*elavl3*:GAL4; *UAS*: GCaMP) transgenic larva injected with *epha4a* MO.

28 **Supplementary Movie 9:** Tail oscillation after light activation of 5dpf Tg(Gal4^{s1020t};
29 *UAS*:ChR2) double transgene larva.

30 **Supplementary Movie 10:** Tail oscillation after light activation of 5dpf Tg(Gal4^{s1020t};
31 *UAS*:ChR2) double transgene larva injected with *epha4a* MO.