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Estimating dynamic network communication is attracting increased attention, 5 

spurred by rapid advancements in multi-site neural recording technologies and efforts 6 

to better understand cognitive processes. Yet, traditional methods, which infer 7 

communication from statistical dependencies among distributed neural recordings, 8 

face core limitations: they do not incorporate possible mechanisms of neural 9 

communication, neglect spatial information from the recording setup, and yield 10 

predominantly static estimates that cannot capture rapid changes in the brain. To 11 

address these issues, we introduce the graph diffusion autoregressive model. Designed 12 

for distributed fi eld potential recordings, our model combines vector autoregression 13 

with a network communication process to produce a high-resolution communication 14 

signal. We successfully validated the model on simulated neural activity and 15 

recordings from subdural and intracortical micro-electrode arrays placed in macaque 16 

sensorimotor cortex demonstrating its ability to describe rapid communication 17 

dynamics induced by optogenetic stimulation, changes in resting state 18 

communication, and neural correlates of behavior during a reach task. 19 

 20 

Introduction 21 

The coordinated interactions across different brain networks and subnetworks underlies cognitive 22 

processes1–6, and disruptions of these interactions are linked to a range of neurological disorders7–23 
10. Despite this demonstrated importance, we still do not fully understand how brain networks 24 

perform computations through the coordinated signaling of connected neurons and neural 25 

populations during natural behavior, following a disease or injury, or as the result of rehabilitative 26 

intervention. The development of new electrophysiological recording technologies such as large-27 

scale micro-electrode arrays provides unique opportunities for measuring brain network activity 28 

simultaneously over multiple areas with high spatial and temporal resolution11–16. 29 

A common signal extracted from subdural and intracortical micro-electrode arrays is the local 30 

field potential (LFP), which describes voltage fluctuations in the extracellular space of neuronal 31 

tissue. For these signals, the most common approach for estimating neural communication is 32 

through functional connectivity (FC) analysis17,18. In general, FC measures define neural 33 

communication as the undirected (symmetric) or directed (asymmetric) statistical dependence 34 

between different measurements that can be inferred directly from data using either model-free 35 

approaches or very general model classes such as vector autoregressive (VAR) models19–22. While 36 

these techniques are a popular choice for electrophysiology analysis, they predominantly yield 37 

static estimates of neural communication. Additionally, they rarely incorporate information about 38 

the structural network connectivity of the underlying brain region, particularly when analyzing 39 
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recordings from high-resolution intracranial electrophysiology arrays. Lastly, most FC metrics stem 40 

from general-purpose statistical methods that have found widespread use across many scientific 41 

disciplines, but critically lack mechanistic assumptions relevant to modeling neural 42 

communication. 43 

In contrast to heavily data-driven FC analysis, neural interactions can also be modeled using tools 44 

from dynamical systems theory that incorporate knowledge about the mechanisms through which 45 

different neural populations interact23,24. For field potentials, a popular technique are neural field 46 

models that use a combination of differential equations to model temporal dynamics and integrals 47 

to incorporate spatial interactions23. Such models can generate neural dynamics that match 48 

empirical observations, such as the wave-like propagation of oscillatory activity observed in the 49 

sensorimotor cortex25,26. Furthermore, these ideas have been extended to model the flow of 50 

information across brain networks for example via structurally guided diffusion27. However, these 51 

models are typically not used in a data-driven framework, where functional interactions are 52 

directly inferred from measured neural activity. 53 

Here we propose a new technique for estimating dynamic neural communication that 1) naturally 54 

incorporates the spatial layout of the recording array and the local connectivity structure of the 55 

cortex28 as a structural prior, 2) integrates a mechanism of neural communication into a data-56 

driven FC model, and 3) produces a highly dynamic information flow signal that can be used to 57 

study transient network events. Specifically, we combine the classical autoregressive framework for 58 

the treatment of temporal dynamics with the graph Laplacian of a predefined structural 59 

connectivity graph to incorporate network interactions29. Because the graph Laplacian is 60 

commonly used to model diffusion processes on networks30, we refer to our approach as the graph 61 

diffusion autoregressive (GDAR) model. To the best of our knowledge, the GDAR model is the 62 

first approach to integrate the above three aspects – structural priors, a mechanism of neural 63 

communication, and a highly dynamic information flow signal – into a single data-driven model. 64 

To demonstrate the utility of our framework, we tested the GDAR model on five, highly diverse 65 

datasets. First, using synthetic data from various networks of Wilson-Cowan oscillators we 66 

demonstrate that the high-resolution communication signal estimated by our model aligns with 67 

the simulated interactions more accurately than standard VAR models. Next, using three micro-68 

electrocorticography (𝜇ECoG) and one Utah array dataset we demonstrate that the GDAR model 69 

can be used to uncover transient communication dynamics evoked during cortical optogenetic 70 

stimulation, uncover neural correlates of a monkey’s reach behavior that are dependent on the 71 

spatial frequency, and analyze changes in resting state neural communication after electrical 72 

stimulation. We show that the GDAR model outperforms standard VAR models and other FC 73 

measures and provides insights that cannot be obtained by other models. Finally, we show that 74 

the GDAR model better generalizes to unseen data than VAR models. 75 

Results 76 

Graph diffusion autoregressive (GDAR) model. An overview of the GDAR model is shown 77 

in Fig. 1 and a more detailed mathematical description can be found in Methods. First, the 78 

electrode layout of the recording array is used to construct a sparse and locally connected graph, 79 

with each electrode representing a node and with edges connecting nearby nodes Fig. 1a left). This 80 

graph serves as a structural prior that incorporates information about the local connectivity of 81 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2025. ; https://doi.org/10.1101/2024.02.26.582177doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582177
http://creativecommons.org/licenses/by-nc-nd/4.0/


the cortex into the model28. By modeling the spatiotemporal evolution of neural activity observed 82 

at the nodes of the graph as a parameterized diffusion process, the GDAR model transforms the 83 

neural activity into a directed communication or information flow signal defined on the graph 84 

edges (Fig. 1a right). This communication signal, which we will refer to as GDAR flow, describes 85 

the moment to moment signaling between the nodes. Unlike classical functional connectivity 86 

analysis, which aggregates information over multiple time points thereby estimating an average 87 

information flow, the GDAR model transforms the neural activity at each time point into a flow 88 

signal without losing temporal resolution. Therefore, it can be used to study transient 89 

communication events in the brain. 90 

As with VAR models, the GDAR model can be formalized as a predictive model with order 𝑝, 91 

which describes the number of lags used for predicting future neural activity. A model order of 92 

𝑝 = 1 describes a classic graph diffusion process, where temporal changes in neural activity are 93 

driven by the discrete approximation of the surface Laplacian, i.e., the second spatial derivative 94 

(see Eq. (3) in Methods). Increasing the model order increases the capacity of the model and adds 95 

“memory” to the diffusion process, thus offering the increased ability to model complex 96 

spatiotemporal neural dynamics. An overview of the 𝑝th order model is shown in Fig. 1b and c. 97 

The neural activity at time 𝑡 at each node 𝑠𝑖[𝑡] is modeled using a linear combination of its own 98 

𝑝 past samples plus the time varying GDAR flow from all neighboring nodes:  99 

𝑠𝑖[𝑡] =  ∑ 𝑚𝑘
{𝑖}

𝑠𝑖[𝑡 − 𝑘] + ∑ 𝑓{𝑖,𝑗}[𝑡]

𝑗∈𝒩(𝑖)

𝑝

𝑘=1

. 
(1) 

The GDAR flow 𝑓{𝑖,𝑗} between node 𝑖 and 𝑗 is given by a linear combination of the 𝑝 past activity 100 

gradients between the two nodes (Fig. 1c; see Methods for more details) 101 

𝑓{𝑖,𝑗}[𝑡] =  ∑ 𝑤𝑘
{𝑖,𝑗}

(𝑠𝑗[𝑡 − 𝑘] − 𝑠𝑖[𝑡 − 𝑘])

𝑝

𝑘=1

(2) 

and can be positive or negative, depending on whether information flows into or out of node 𝑖. 102 

The node and edge parameters of the GDAR model 𝑚𝑘
{𝑖}

and 𝑤𝑘
{𝑖,𝑗}

 can be estimated from neural 103 

recordings using linear regression (see Methods) and are assumed to be static within a predefined 104 

time window. 105 

Computing the second spatial derivative is equivalent to computing the current source densities 106 

(CSDs), which is a popular technique for analyzing field potential recordings obtained from 107 

technologies such as ECoG or electroencephalography (EEG)31,32. Therefore, the GDAR model 108 

can also be considered a combination of CSD analysis and VAR model. For field potential 109 

recordings the model parameters 𝑤1
{𝑖,𝑗}

, … , 𝑤𝑝
{𝑖,𝑗}

 can be interpreted as conductivities such that 110 

voltage gradients multiplied by conductivity yields current flow. Summing the current flows at 111 

each node is analogous to computing the current sources and sinks in CSD analysis. 112 
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The high temporal resolution of the GDAR flow signal 𝑓{𝑖,𝑗}[𝑡] is ideal to study transient signaling 113 

events. For example, the propagation of neural activity due to cortical stimulation can be tracked 114 

by concatenating consecutive time steps of 𝑓{𝑖,𝑗}[𝑡] and analyzing its spatiotemporal evolution  115 

Fig. 1: Overview of the graph diffusion autoregressive (GDAR) model. (a) The recording array is used to form a 

sparse, locally connected graph, where each electrode represents a node, and edges connect neighboring nodes. The 

GDAR model then transforms the neural activity observed at the nodes into a directed flow signal defined on the 

graph edges, representing the real-time signaling between nodes. (b) The model incorporates an order p autoregressive 

system, where at time 𝑡 each node's neural activity is modeled using a combination of its past p samples and the 

flow from all adjacent nodes. (c) The directed GDAR flow at time 𝑡 between node 𝑖 and 𝑗, denoted as 𝑓{𝑖,𝑗}[𝑡], is 

calculated as the weighted sum of the previous 𝑝 activity gradients between these nodes. In analogy to current source 

density analysis, the edge parameters 𝑤1
{𝑖,𝑗}

, … , 𝑤𝑝
{𝑖,𝑗}

 can be interpreted as conductivities for local field potential

measurements, such that conductivity times potential gradient yields a current flow. The model parameters are 

assumed to be static within a particular time window and can be estimated using linear regression (see Methods). 

(d) The GDAR flow can be used to study transient communication events, for example due to cortical stimulation.

(e) For resting state recordings, power spectral density estimates of the GDAR flow signal can be used to study

frequency band specific communication patterns. (f) and (g) Akin to classical Fourier analysis for time series, the

GDAR flow signal can also be decomposed into gradient (directional) and rotational flow modes of different spatial

frequency to study the smoothness and spatial composition of the flow signal across the network.
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(Fig. 1d). Alternatively, the model can be applied to resting state recording in which case it may 116 

be reasonable to compute the power spectrum of 𝑓{𝑖,𝑗}[𝑡]. This results in a similar frequency 117 

decomposition as is typical for VAR based FC measures (Fig. 1e) with the distinction that the 118 

GDAR flow power spectrum is determined by magnitude and phase differences between 119 

neighboring channels that are modulated by the Fourier transform of the model parameters (see 120 

Methods) whereas VAR based FC measures only utilize the model parameters for the spectral 121 

representation. 122 

Furthermore, modeling neural communication on top of a graph allows us to use recently 123 

developed theory from signal processing over simplicial complexes33–35 to decompose the GDAR 124 

flow signal into gradient (directional) and rotational modes of different spatial frequencies (Fig. 1f 125 

and g and Methods). The resulting gradient and rotational flow spectra can be used to quantify 126 

the degree of smoothness or coordination of the neural signaling (e.g., flow spectra with stronger 127 

low-frequency components are considered to represent more coordinated signaling). 128 

The GDAR model outperforms VAR models in inferring communication dynamics in 129 

a network of coupled Wilson-Cowan oscillators: To assess the accuracy of the GDAR flow, 130 

we fit the model to simulated data generated by 10 randomly connected 16-node networks of 131 

coupled Wilson-Cowan oscillators (Fig. 2 and Extended Fig. 1). The networks are used to generate 132 

a ground truth neural flow signal, as well as simulated neural activity, which is used to fit GDAR 133 

and VAR models of varying model orders (see Methods for more details). In contrast to the GDAR 134 

model, VAR models assume no structural connectivity and may find communication links between 135 

any pair of nodes in the network even if these nodes are not directly connected. Therefore, we also 136 

compare the GDAR model to a VAR model with access to the ground truth structural connectivity 137 

network, denoted as enhanced VAR (eVAR) model (see Methods). GDAR and eVAR model only 138 

differ in the aspect that the neural flow for the latter one is not driven by spatial activity gradients, 139 

but rather by the neural activity itself. All models are used to transform the simulated neural 140 

activity into a neural flow signal, which is compared to the ground truth neural flow using various 141 

metrics (Fig. 2a). Furthermore, we estimate the neural flow using the CSD approach and compare 142 

it to the ground truth flow. 143 

First, we compare the Pearson correlation coefficients (PCCs) between ground truth and estimated 144 

flow from GDAR, VAR, and eVAR models, as well as the CSD approach and found that the 145 

GDAR model significantly outperforms all other models for model orders 𝑝 ≥ 12 (Wilcoxon rank-146 

sum test, 𝑝 < 0.05), thus providing the most accurate estimate of the true neural flow dynamics. 147 

(Fig. 2b). We found the same result holds on two additional network structures – a 7-node locally 148 

connected graph and a 16-node grid graph that has a connectivity structure similar to the one we 149 

assume for our electrophysiology datasets below (Extended Fig. 1). 150 

Despite the superior performance of the GDAR over the competing models, the amount of 151 

correlation between estimated and ground truth flow is relatively low for all models. In principle, 152 

this can arise from amplitude and phase mismatches between the signals. We investigated this by 153 

transforming the ground truth and estimated flow into the frequency domain followed by 154 

computing magnitude and phase differences, as well as correlation coefficients between the 155 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2025. ; https://doi.org/10.1101/2024.02.26.582177doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582177
http://creativecommons.org/licenses/by-nc-nd/4.0/


magnitude spectra. We found that the GDAR model exhibits consistently lower magnitude errors 156 

than the VAR and eVAR models for all frequencies and lower phase errors for frequencies below 157 

50 Hz (Fig. 2c). Furthermore, for all models and model orders, correlations between the estimated 158 

and ground truth magnitude spectra were significantly higher compared to those between their 159 

corresponding time series (Fig. 2d). This suggests that all models have the capacity to accurately 160 

capture magnitude features of the flow signal. 161 

A notable observation is that the spectral magnitude of the ground truth flow is well approximated 162 

by lower order VAR, eVAR, and GDAR models. Specifically, the median correlation between 163 

estimated and ground truth spectral magnitude for VAR and eVAR models decreases with 164 

increasing model order. In contrast, the correlation for the GDAR model reaches another local 165 

maximum at higher orders, where it significantly outperforms the other two models (Fig. 2d). 166 

Despite this second maximum, the highest median correlations for the GDAR model still occur at 167 

low model orders, which contrasts with the results shown in Fig. 2b and suggest that low-order 168 

models are sufficient for approximating parts of the communication dynamics. At the same time, 169 

because low-order models rely on fewer past time steps for predicting future activity, they may 170 

have limited capacity to capture more complex spatiotemporal dynamics that are not fully 171 

reflected in spectral magnitude alone. To quantify the ability of our model to capture complex 172 

spatiotemporal dynamics, we used a recently developed tool from dynamical systems theory, called 173 

dynamical similarity analysis (DSA)36, which uses dynamical mode decomposition and shape 174 

analysis to provide a dissimilarity score between two (high-dimensional) time series (see Methods). 175 

Indeed, we found that with increasing model order the accuracy in capturing the spatiotemporal 176 

dynamics improves for all models (decreased DSA dissimilarity score) before plateauing at an 177 

order around 𝑝 = 26 (Fig. 2e). Hence, to accurately capture the complex dynamic properties of 178 

the flow signal, higher order models are needed. For these higher orders, the GDAR model 179 

significantly outperforms the VAR and eVAR models in terms of correlations between estimated 180 

and ground truth flow in both time and frequency domain (Fig. 2b, and d). 181 

Application of GDAR model to electrophysiological recordings: To show the versatility 182 

of the GDAR model to analyze communication dynamics evoked by cortical stimulation, during 183 

behavior, and at rest, we have applied the model to electrophysiological recordings from four 184 

separate experiments that either use a 𝜇ECoG array (3 datasets) or a Utah array (1 dataset) to 185 

record LFPs from the sensorimotor cortex of macaques. For all datasets, the layout of the 186 

recording array was first used to construct a locally connected and sparse graph, where each node 187 

corresponds to a recording channels (see Fig. 3 -Fig. 5). Next, GDAR models of different orders 188 

were fit to the recorded LFPs. The resulting model coefficients were then used to transforms the 189 

LFPs into GDAR flow signals, which were post-processed depending on the experimental setup. 190 
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Fig. 2: Evaluation of the GDAR model's accuracy in capturing neural communication dynamics using networks of 

Wilson Cowan oscillators. (a) 10 randomly connected 16-node toy networks were used to simulate neural activity at 

each network node as well as compute a ground truth flow across each edge (see Methods). The estimated neural 

activity is transformed into the estimated neural flow signal using GDAR, VAR, and eVAR (VAR model with 

knowledge of the structural connectivity) models of different model orders, as well as the CSD approach. Ground truth 

and estimated neural flow are then compared using various metrics. (b) Distribution (medians, upper and lower 

quartiles) of the Pearson correlation coefficient (CC) using data from 100 independent simulation trials (10 per 

network) pooled over all graph edges between ground truth and estimated neural flow for varying model orders. The 

GDAR model significantly outperforms all other models for orders 𝑝 ≥ 12, thus providing the most accurate overall 

estimate of the ground truth flow (c) Magnitude and phase difference between the spectrum of ground truth and 

estimated flow (median, upper and lower quartile). The GDAR model shows consistently lower magnitude errors for 

all frequencies and phase errors below 50 Hz. (d) Same as in (b) but now comparing the power spectral density (PSD) 

of the estimated and ground truth flow. The GDAR model again significantly outperforms the other models for higher 

model orders. (e) Dissimilarity scores between estimated and ground truth flow signals obtained via dynamical 

similarity analysis (DSA) to assess the accuracy of the estimated flow dynamics. Low dissimilarity scores for high 

model orders (𝑝 ≥ 26) suggest an accurate estimation of the flow dynamics by all three models. All statistical tests 

use Wilcoxon rank-sum tests at a significance level 𝑝 ≤ 0.001. Significance markers compare GDAR with eVAR model. 

Exact p-values can be found in Supplementary Table 1. 
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The GDAR model uncovers communication dynamics evoked by cortical optogenetic stimulation: 191 

First, we show that the GDAR model can uncover fast, stimulation induced communication 192 

dynamics that match the experimental protocol. To do so we use three sessions from an 193 

optogenetic stimulation experiment performed in macaques, where two lasers repeatedly 194 

stimulated different locations of the primary motor (M1) and somatosensory (S1) cortex expressing 195 

the opsin C1V1, and fit a 5th order GDAR model to the LFPs recorded by a 96-channel 𝜇ECoG 196 

array during stimulation (see Fig. 3a-c and Methods)11,37,38. GDAR flow signals averaged over all 197 

stimulation trials in the milliseconds before and after stimulation for Session 1 are shown in Fig. 198 

3d and Supplementary Video 1. When the network is at rest, flow levels across the network are 199 

small. Activation by the first laser located in M1 causes the GDAR flow to immediately increase 200 

near the stimulation location before spreading further into the network and reaching S1. After the 201 

second laser was activated, the flow increases near the second stimulation location and spreads 202 

into most parts of the network within the next few milliseconds. 203 

It is apparent from Fig. 3d that the GDAR flow exhibits complex spatiotemporal dynamics within 204 

milliseconds after stimulation. To test how these dynamics depend on the stimulation pattern, we 205 

project the high-dimensional flow signal from three sessions, which only differ in their stimulation 206 

location (see Fig. 3b), onto their first two principal components (PCs) and compare the flow 207 

dynamics in this lower dimensional subspace (see Methods). We found that these low dimensional 208 

communication dynamics are very consistent within each session and strongly differ between 209 

sessions (Fig. 3e). Furthermore, the communication dynamics show some remarkable similarities 210 

with the stimulation patterns. For Sessions 1 and 2, where the flow trajectories largely align in 211 

the PC space, the stimulation patterns are similar in that the second stimulation occurs to the 212 

top right of the first stimulation. On the other hand, for Session 3, which results in flow trajectories 213 

orthogonal to Session 1 and 2, the second stimulation occurs to the top left of the first stimulation. 214 

Furthermore, the magnitude of the PC reduced GDAR flow dynamics is noticeably smaller for 215 

Session 2 compared to Sessions 1 and 3. This might be a result of the spatial separation between 216 

Laser 1 and 2, which is smallest for Session 2. Our findings extend previous work showing that 217 

LFP power in monkeys and humans distinctly depend on stimulation parameters such as 218 

amplitude and frequency39,40. 219 

We also tested whether the VAR or CSD flow, or node signal like raw LFPs or its second spatial 220 

derivative, which resembles traditional current source density, can uncover dynamics that depend 221 

on the stimulation pattern but found that this is not the case (Fig. 3f and g, and Extended Fig. 222 

2). Perhaps it is not surprising that the raw LFPs or simple, model-free transformations thereof 223 

(CSD flow, second spatial derivative of raw LFP) fail to describe stimulation dependent dynamics 224 

using PC analysis as these signals may be dominated by noise and non-stimulation specific 225 

variation. Autoregressive models on the other hand may effectively filter out some of these non-226 

stimulation noise sources. Our results suggest that the GDAR model is more effective at 227 

uncovering such transient stimulation-dependent communication dynamics compared to standard 228 

VAR models. We also note that the dependence on the stimulation location can be observed when 229 
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Fig. 3: GDAR model applied to optogenetic stimulation experiment to study transient communication events. (a) 

LFPs from the primary motor (M1) and somatosensory (S1) cortex of a signal non-human primate were recorded 

using a 96-channel micro-ECoG array, while repeated paired stimulation was performed using two lasers (modified 

from Bloch et al.34). (b) The relative positions of the electrodes after rejecting bad channels and the locations of the 

two lasers are shown at the top for the three sessions that were analyzed in this work. The location of the sulcus 

between M1 and S1 is approximated by the thick gray line. The electrode array was not moved between the sessions. 

At the bottom, the stimulation protocol is shown. Each laser stimulates alternatingly for 5 ms, with a 10 ms delay 

between stimulation by Laser 1 and 2. This paired stimulation is repeated every 143 ms. Each stimulation block lasts 

approximately 7 min and is intermitted shorter long resting blogs during which no stimulation is performed. (c) The 

recording array is used to construct a sparsely connected graph and the recorded LFPs are then transformed into a 

flow signal using a 5th order GDAR model. (d) The GDAR flow for Session 1 averaged over all stimulation blocks 

and trials is shown for different time steps before (first plot) and after (remaining four plots) onset of stimulation 

from the first laser. The graphs suggest complex spatiotemporal signaling patterns evoked by cortical stimulation. (e) 

Flow snapshots from the first 25 ms after onset of the first laser stimulation for all trials, blocks, and sessions were 

stacked into a single matrix and the flow snapshots were projected onto its first two principal components (PCs). 

The PC reduced GDAR flow trajectories for different sessions are indicated by different colors. Average trajectories 

are shown as black solid lines with markers indicating different times point after the onset of stimulation by the first 

laser. Thin colored lines show trajectories by individual paired pulse trials. The plot highlights that GDAR flow 

trajectories are very consistent within and distinct between sessions, demonstrating that transient communication 

dynamics depend on the stimulation parameters. (f), (g) PC reduced flow trajectories similar to (e) but using a 5th 

order VAR model and the CSD approach. In contrast to the GDAR flow, VAR and CSD flow do not exhibit 

significant time and session dependent dynamics, thus, highlighting the utility of the GDAR model in stimulation 

induced transient communication dynamics. 
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plotting a low-dimensional representation of the model parameters itself, where the GDAR model 230 

shows a stronger separation between sessions than the VAR model (Extended Fig. 2). Finally, the 231 

model can also be adapted to model longer signal propagation paths between specific nodes in the 232 

network as it would be reasonable to assume for connections across the sulcus between M1 and 233 

S1 (see Extended Fig. 2, Supplementary Video 2, and Supplementary Note). 234 

The GDAR model can track changes in resting state neural communication that are consistent 235 

across experiments and recording modalities: Like classical FC analysis, the GDAR model can be 236 

utilized to study frequency specific changes in neural communication from resting state recordings. 237 

We demonstrate this using two distinct electrical stimulation experiments that employ either 238 

intracortical recordings via a 96-channel microelectrode array (Utah array) or subdural recordings 239 

via two 32-channel ECoG arrays (Fig. 4 and Fig. 5). For both experiments, repeated electrical 240 

stimulation of the macaque sensorimotor cortex is performed for 10-minute blocks at a time either 241 

at a single site or alternatingly at two sites (paired-stim), and resting state neural activity is 242 

recorded before, after, and between the stimulation blocks. Changes in gamma (30-70 Hz) flow 243 

power due to stimulation are estimated via 10th order GDAR models and tested for statistical 244 

significance (significance level 𝑝 ≤ 0.01; two-sample Kolmogorov-Smirnov test) (see Methods). 245 

For the Utah array data we analyzed recordings from three separate sessions that employ either 246 

single site or paired stimulation. For single site stimulation, we observe an increase in GDAR flow 247 

power proximal to the stimulation site (Fig. 4b, left). For paired stimulations, a localized increase 248 

was only observed near the first stimulation site (Fig. 4b, middle and right), with no notable 249 

changes near the second site. We quantified this increase by computing the average flow magnitude 250 

over all edges connected to the stimulation site and adjusted it for changes in LFP power (Fig. 251 

4c-e; also see Methods and Extended Fig. 3). Across all sessions, stimulation led to a sustained 252 

increase in resting-state communication near the first stimulation site above baseline levels. 253 

Notably, for paired stimulation sessions, this augmented communication persisted for at least 17 254 

minutes following the final stimulation block. 255 

For the ECoG data we analyzed changes in resting state neural communication due to single-site 256 

electrical stimulation performed during the acute phase after focal ischemic lesioning of the 257 

macaque sensorimotor cortex (Fig. 5a and b). In the ipsilesional hemisphere, gamma GDAR flow 258 

power increases locally near the stimulation site and decreases across other parts of the network 259 

(Fig. 5c). In the contralesional hemisphere, this effect is weakly mirrored, as we observe an increase 260 

in GDAR flow power for some edges in the area corresponding to stimulation in the ipsilesional 261 

hemisphere but not across the entire network. Similar patterns can be observed for changes in 262 

CSD flow power. On the other hand, VAR flow power suggest increased communication within 263 

both hemispheres, showing that the GDAR model can describe changes in resting state 264 

communication that are not captured by the VAR model. The changes in GDAR flow power from 265 

the ECoG dataset are also consistent with our finding from the Utah array dataset, underscoring 266 

the GDAR model's ability to robustly capture neural interactions across different experimental 267 

and recording modalities. 268 
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Finally, for the ECoG dataset we have compared our results with changes of three traditional FC 269 

measures: gamma coherence, gamma partial directed coherence (PDC), and gamma directed 270 

transfer function (DTF) (Fig. 5d). Note that in contrast to the GDAR model and CSD approach, 271 

coherence and VAR based measures assumes fully connected graphs, which typically results in 272 

much denser communication networks. In the ipsilesional hemisphere we found that PDC and 273 

DTF most closely agree with the results from the GDAR model, with the main difference that  274 

Fig. 4: Application of GDAR model to LFP data recorded from a macaque monkey using a Utah array during a 

paired electrical stimulation experiment. (a) The locations of the electrodes were used to construct a locally connected 

sparse graph as input to the GDAR model. Electrode A and B are used for single site and paired stimulation. For 

paired stimulation, electrode A stimulates before electrode B. (b) Changes in gamma (30-70 Hz) GDAR flow power 

due to stimulation are shown for three separate sessions. For the single-stim session, only electrode B stimulates. 

For the paired-stim sessions, electrode A and B stimulate repeatedly and alternatingly for a total of 50 minutes 

divided into five 10min blocks (see Methods for more details on the stimulation protocol). An increase in gamma 

GDAR flow power near the first stimulation location can be observed for all sessions. (c)-(e) Temporal evolution of 

the normalized gamma GDAR flow power averaged over all edges adjacent to the first stimulation site for all three 

sessions. The 2-minute blocks immediately after stimulation are highlighted in red. The gamma GDAR flow power 

has been corrected for linear changes in LFP power at the stimulation site (see Methods). For the paired stimulation 

sessions, the GDAR flow power remains elevated even after the stimulation period ends. 
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changes in communication by these two measures affect larger parts of the network. In the 275 

contralesional hemisphere, PDC and DTF changes are somewhat opposing the GDAR flow 276 

Fig. 5: Analyzing changes in resting state neural communication following electrical stimulation in the acute phase 

after ischemic lesioning using various flow and FC measures. (a) Two 32-channel ECoG arrays were placed over the 

left and right hemisphere of a macaque monkey and an ischemic stroke lesion was induced in the left hemisphere 

using the photothrombotic technique (see Methods). The estimated lesion size is indicated by the red patch in the 

center of the left hemisphere. One hour after lesioning, electrical stimulation was performed approximately 8 mm 

away from the lesion location. Neural activity was recorded before and after stimulation to assess the effects of 

stimulation on network connectivity in the acute phase after stroke. (b) The locations of the electrodes were used to 

construct two locally connected sparse graphs. (c) Similar to previous applications, 10th order GDAR and VAR 

models, as well as the CSD approach were used to transform the recorded neural activity before and after stimulation 

into neural flow signals. Next, power spectra of the flow signals were estimated and changes in gamma (30 − 70 Hz) 

flow power due to stimulation were computed. The changes in gamma flow power (in percent) are shown as undirected 

edges. Only changes with a significance threshold of 𝑝 ≤ 0.01 (two-sample Kolmogorov-Smirnov test) are shown. The 

lesion location is indicated by the black patch and the stimulation location is shown by the yellow marker. The plots 

show a local increase in GDAR gamma flow power in the ipsilesional hemisphere near the stimulation location. (d) 

Same as (c) but instead using coherence, partial directed coherence (PDC), and directed transfer function (DTF) 

to assess changes in neural communication. Similar to the GDAR flow, PDC and DTF increase for connections with 

the stimulation location. However, in contrast to the GDAR flow, these changes are less localized and instead affect 

communication across the entire network. 
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changes. We note that the patterns observed in Fig. 5c and d are highly frequency dependent (see 277 

Extended Fig. 4). 278 

The GDAR flow shows frequency specific correlations with reach velocity and exhibits directional 279 

tuning during a center-out reach task: Previous studies have shown that reach movements have 280 

strong neural correlates in M1 that can be detected from single neuron recordings as well as 281 

intracortical and surface field potentials41–46. Using 𝜇ECoG recordings from M1 of a macaque 282 

monkey performing a center-out reach task (Fig. 6a), we show that the GDAR model can be used 283 

to study such neural correlates of behavior on the level of network dynamics. To do so, we leverage 284 

the graph spectral decomposition of the GDAR flow signal described above and in Methods to 285 

decompose the high-gamma GDAR flow into its gradient and rotational flow spectrum (Extended 286 

Fig. 5a-e). An example of the time-varying flow spectra for a single reach trial along with the 287 

corresponding reach velocity is shown in Fig. 6b. Furthermore, using data from all directions and 288 

trials, Fig. 6c shows how the spectral power time series at each spatial frequency correlates with 289 

reach velocity. We found that an increase in reach velocity generally correlates with increases in 290 

gradient and rotational flow power. Remarkably, the increase in gradient flow power is most 291 

pronounced only for the 15 lowest spatial frequencies. In contrast to higher frequencies, such low-292 

frequency flow patterns are more coherent across the graph (see Extended Fig. 5b for examples), 293 

suggesting that coordinated activity across a larger cortical area facilitates reach movements. We 294 

also observed a similar phenomenon when studying the trial-to-trial variability of the GDAR flow 295 

for a single reach direction (see Extended Fig. 6). 296 

To quantify the extent to which the gradient flow spectrum is dominated by low frequencies, we 297 

defined the alignment index, which is computed as the ratio of the average power within the 15 298 

lowest spatial frequencies to the average power within the 15 highest spatial frequencies (see 299 

Methods). The alignment index shows strong directional tuning with a preference for the 90° (up) 300 

and 135° (up-left) directions (Fig. 6d, and Extended Fig. 5g) and a similar cosine characteristic as 301 

reported in the literature for other recording modalities41,42,45. We also observe a similarly strong 302 

directional tuning characteristic for the average power of the rotational spectrum (Fig. 6e and 303 

Extended Fig. 5h). In contrast, the directional tuning for the high-gamma envelope of the raw 304 

LFP signal averaged across all channels is significantly weaker (Extended Fig. 5i). This suggests 305 

that latent patterns of network activity extracted by the GDAR model rather than overall changes 306 

in signal power are better correlated with different behaviors. 307 

Finally, we investigated if spectral network features derived from the GDAR flow are correlated 308 

to preparatory activity prior to movement onset. We found that the gradient flow alignment index 309 

computed during the last 100 ms prior to the go cue shows a strong negative correlation with the 310 

reaction time, which is defined as the time between go cue and initiation of movement (Fig. 6f). 311 

This effect cannot be explained by any potential premature movements (Extended Fig. 5j). These 312 

findings suggest that the degree of neural coordination as captured by the GDAR flow alignment 313 

index does not only predict how fast movements are performed, but also how well the monkey is 314 

prepared at the start of the go cue. 315 

316 
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The GDAR model generalizes to unseen data better than VAR models: To test the 317 

GDAR model’s ability to generalize to unseen data, we evaluate the model’s one-step ahead 318 

prediction performance on data that were not included for estimating its parameters. Using the 319 

simulated field potentials from the 7-node network of Wilson-Cowan oscillators shown in Extended 320 

Fig. 1e (100 independent trials with 5s of simulated neural activity per trial), the GDAR model 321 

was trained on the initial 𝑁 samples of each trial and then tested on the remaining samples (see 322 

Methods for more details). An advantage of the GDAR model, owing to its fewer parameters 323 

compared to both VAR and eVAR models, is its reduced need for extensive training samples to 324 

accurately estimate model parameters. This results in the flatter RMSE curves for both training 325 

and testing data (Fig. 7a left and middle) as well as the lowest generalization gap (difference 326 

between test and train RMSE) among all models (Fig. 7a, right). Notably, the generalization gap 327 

for the GDAR model is nearly an order of magnitude smaller than that for the eVAR model. 328 

Fig. 6: Applying the GDAR model to ECoG recordings during a center-out reach tasks. (a) A rhesus macaque 

monkey performed an eight directional reach tasks with 25 trials per direction while LFPs were recorded using a 96-

channel micro-ECoG array placed over the primary motor cortex. The GDAR flow was computed for each reach 

trial, bandpass filtered between 70 − 200 Hz, and decomposed into its gradient and rotational spectrum for each time 

bin (see Methods). (b) Gradient and rotational spectrogram for a single reach trial. The black line shows the reach 

velocity. During the reach we observe an increase in rotational flow power across all frequencies and gradient flow 

power for low spatial frequencies. (c) Correlation (median and interquartile range) between reach velocity and flow 

spectral power for all spatial frequencies pooled across all trials and directions. Low-frequency gradient flow 

components show the highest correlation with reach velocity suggestion more activity is coordinated across the brain 

network during reaching. (d) Alignment index, defined as the ratio of the 15 lowest to the 15 highest gradient flow 

spectral coefficients for all eight reach directions (shown are quartiles, 1.5 times the interquartile range, and outliers). 

The alignment index forms a cosine-like tuning curve with a preference for the 90° (up) and 135° (up-left) directions. 

(e) Same as in (d) but for the average rotational flow power. (f) Reaction time, defined as the time between the go

cue and movement onset, as a function of the gradient spectrum alignment index during the last 100 ms before the

go cue. The strong negative correlation suggests that more coordinated network activity a faster reaction time

(correlation coefficient: −0.674; p-value: 7.99 ⋅ 10−28).

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2025. ; https://doi.org/10.1101/2024.02.26.582177doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582177
http://creativecommons.org/licenses/by-nc-nd/4.0/


We found similar results across the electrophysiology datasets (Fig. 7b-d). Despite the VAR model 329 

possessing significantly more parameters – ranging from 8 to 20 times more, depending on the size 330 

of the electrode array – the GDAR model exhibits comparable predictive performance on the 331 

training set (Fig. 7b). Unlike the VAR model, the GDAR model also generalizes almost perfectly 332 

to unseen data, as evidenced by a median generalization gap very close to zero for all datasets 333 

(Fig. 7c). Finally, we tested how well the model generalizes to data separated by longer time 334 

periods from the training set (Fig. 7d). The GDAR model again maintains a lower generalization 335 

gap across all time gaps and datasets compared to the VAR model, with the generalization gap 336 

remaining relatively stable as gap lengths increased. An intriguing observation emerged from the 337 

optogenetic stimulation dataset, where both the GDAR and VAR models exhibited increasing 338 

generalization gaps for larger gap lengths. We believe that this trend stems from plasticity 339 

mechanisms within each stimulation block, as repeated paired stimulation induces sustained 340 

alterations in brain network activity, thereby challenging the models' ability to generalize over 341 

extended time periods. 342 
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Discussion 343 

By drawing insights from both computational neuroscience and statistical modeling, we have 344 

introduced the GDAR model as a novel framework for estimating network level neural 345 

communication dynamics from field potential recordings. Our approach is defined by three key 346 

components – each previously explored in isolation by different communities, but not yet integrated 347 

into a unified framework. First, we combine the modeling capabilities of classical VAR models 348 

with a network diffusion process that serves as a plausible mechanistic constraint for neural 349 

communication. Second, the spatial layout of the recording array is incorporated as a structural 350 

prior, significantly reducing the model complexity while mimicking cortical connectivity on a 351 

Fig. 7: Generalization Performance of GDAR model on simulated data and electrophysiological recordings. (a) 10th 

order GDAR, VAR and eVAR models were fit to the first 𝑁 samples (train length) of neural activity simulated by 

the network of Wilson-Cowan oscillators shown in Fig. 2a independently for each of the 100 simulation trials. The 

model coefficients are then used to perform a one-step ahead prediction on the training data as well as the remaining 

samples in the trial (test data). The left and middle panel show the mean, 10th, and 90th percentile of the root mean 

square prediction error (RMSEs). The generalization gap (right panel) is defined as the difference between mean 

test and train RMSE. The GDAR model generalizes significantly better to unseen data than the VAR and eVAR 

model. (b) Normalized train RMSE of GDAR and VAR models for all four electrophysiology datasets considered in 

this study. The RMSE generally decreases with increasing model order 𝑝 and is comparable between GDAR and 

VAR model within each dataset. (c) Generalization gap (see Methods) of both models for the electrophysiology 

datasets. The GDAR model almost perfectly generalizes to unseen data. On the other hand, the VAR model always 

shows some degree of overfitting (Wilcoxon rank-sum test, 𝑝 ≤ 0.001). (d) The generalization gap for the optogenetic 

stimulation and two resting state datasets as a function of the time gap between train and test set. Except for the 

optogenetic stimulation experiment, the generalization gap remains constant or decreases as the time gap between 

train and test set increases. For all time gaps, the GDAR model outperforms the VAR model. 
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macroscopic scale. Third, our model produces a communication signal with the same temporal 352 

resolution as the original recordings, making it well suited for analyzing both transient and long-353 

term patterns of neural communication. Using simulations and four electrophysiology datasets 354 

from macaque sensory motor cortex, we have demonstrated that the GDAR model outperforms 355 

competing approaches (standard VAR models, CSD flow) in estimating fast communication 356 

dynamics, provides complementary insights into resting state communication that are consistent 357 

across different experiments and recording technologies, and can uncover neural flow dynamics 358 

that correlate with behavior. 359 

Why does the GDAR model perform better than standard VAR models? VAR models and other 360 

approaches for estimating functional brain connectivity have successfully been used to study neural 361 

interactions for many years. Yet these techniques remain relatively generic and lack a mechanism 362 

through which neural populations interact. In contrast, the GDAR model assumes that 363 

information propagates via a diffusive process, which has previously been proposed as a mechanism 364 

for neural communication27,47. It has also been shown that diffusion processes can explain 365 

functional connectivity estimates48 and model the propagation of activity evoked by intracranial 366 

stimulation more accurately than alternative models of neural communication49. Furthermore, the 367 

Laplacian that drives the diffusion process in the GDAR model has been used in neural field 368 

models to simulate realistic large-scale brain dynamics23,50. In particular, our finding that the 369 

GDAR model outperforms the enhanced VAR model – which differs from GDAR only in lacking 370 

the diffusion constraint – highlights the importance of including mechanistic assumptions into 371 

data-driven modeling. 372 

Another drawback of standard VAR models is that they generally ignore spatial relations between 373 

the recording electrodes, which means that interactions between nearby sensors are treated equally 374 

to interactions between distant ones. The idea of integrating spatial information in the form of 375 

structural priors into standard VAR models and other FC measures has recently been proposed 376 

in magnetic resonance imaging (MRI), electroencephalography (EEG), and 377 

magnetoencephalography (MEG) studies, where it has been shown to improve the estimation of 378 

FC networks51–54. However, this direction remains under-explored and, to the best of our 379 

knowledge, has not been applied to localized recording arrays that focus on network dynamics 380 

within one or two cortices. Furthermore, the studies that incorporate spatial information lack 381 

mechanistic assumptions about the neural communication process and have almost exclusively 382 

focused on static FC metrics. In contrast, the GDAR framework naturally produces a dynamic 383 

network flow signal by integrating structural priors and mechanistic constraints into a single model 384 

thereby likely contributing to its superior performance over VAR models. 385 

Our framework also uses a different mechanism for obtaining temporally resolved communication 386 

dynamics. Unlike existing approaches, which derive such dynamics through sliding windows55–57 or 387 

adaptive parameter estimation54,58, the GDAR model achieves this by combining static model 388 

parameter with the recorded neural activity. This approach offers several advantages: it reduces 389 

the number of parameters that need to be estimated, and it enables the detection of transient 390 

communication events that may be smoothed out by sliding window approaches or are difficult to 391 

track using linear adaptive parameter estimation techniques. 392 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2025. ; https://doi.org/10.1101/2024.02.26.582177doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582177
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

The GDAR model also has additional practical advantages for processing field potential signals. 393 

For the electrode arrays used in our analysis, the GDAR model has approximately ten times fewer 394 

parameters than the full VAR model. This larger number of parameters for the VAR model can 395 

cause them to overfit to idiosyncrasies in the data that do not correspond to meaningful neural 396 

interactions, which is particularly evident in the poor generalization performance for the reach 397 

dataset where model fitting relies on a limited number of observations (see Fig. 7c). Furthermore, 398 

field potential recordings can suffer from spurious correlations due to volume conduction, signal 399 

artifacts that are shared across channels, and the common reference signal problem. Such spurious 400 

correlations are known to cause erroneous connectivity estimates in classical measures of neural 401 

communication such as coherence, phase locking value, or metrics based on standard VAR 402 

models17. These spurious correlations can be addressed by preprocessing field potentials using CSD 403 

(i.e., the second spatial derivative) or activity gradients (i.e., the first spatial derivative) instead 404 

of using the raw neural activity17,59,60. Since the GDAR model employs the second spatial 405 

derivative, the effects of spurious correlations are strongly mitigated and should not negatively 406 

impact the performance of the model. 407 

While the assumption of a locally connected nearest neighbor graph as a structural prior is inspired 408 

by the cortical connectivity found in both mice and macaque monkeys, which is dominated by 409 

short range connections28, it neglects the potential existence of any direct long-range propagation 410 

paths. Since it can be difficult to determine the best underlying network structure as structural 411 

information is often not available, we suggest that in the future the structural connectivity graph 412 

could be designed in a more data-driven way, for example, using sparsity and distance regularizers. 413 

Furthermore, we currently make no distinction between nodes corresponding to electrodes in the 414 

interior versus the boundary of the array. Especially the boundary nodes may exhibit a large 415 

exchange of information with regions outside the array, which is not captured by the model, but 416 

could be incorporated by adding additional input terms. Another promising avenue would be to 417 

explore how other proposed mechanisms of neural signaling, such as biased random walks or 418 

shortest path routing27,47, could be incorporated as constraints into data-driven models of network 419 

communication. Furthermore, the GDAR model could be extended to model non-linear 420 

communication dynamics by introducing activation functions into the divergence step of the 421 

model. 422 

Although we developed the GDAR for field potential recordings and have applied it to a range of 423 

cortical electrophysiology datasets to evaluate its performance and demonstrate its versatility, we 424 

believe the model can be extended to other neural recording modalities and applications. For 425 

instance, it may be adapted for spiking data, either by modifying the autoregressive component 426 

to accommodate for discrete point processes – such as through generalized linear models61 – or by 427 

first converting spikes into firing rates. The model should also be readily applicable to human 428 

ECoG and stereoelectroencephalography (sEEG) recordings, which share similar signal properties 429 

with the recordings analyzed here. Finally, the GDAR model can be applied to brain-wide recoding 430 

modalities such as EEG, MEG or functional MRI (fMRI), which – combined with estimated 431 

structural connectivity networks – can enable the analysis of large-scale brain dynamics. In a 432 

preliminary investigation, we found that our model reliably estimates neural communication 433 

dynamics from resting-state fMRI data and is sensitive to age-related changes in neural flow62, 434 

highlighting its potential for broader applications in systems neuroscience and clinical research. 435 
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451 

Methods 452 

Graph Diffusion Autoregressive (GDAR) Model 453 

Derivation and algebraic representation: The starting point for deriving the GDAR model 454 

is to describe the spatiotemporal dynamics of the neural activity 𝑠 as a heat diffusion process 455 

𝑠̇ = 𝑤Δ𝑠, (3) 

where temporal changes in activity (𝑠̇) are driven by spatial activity gradients (Δ𝑠, where Δ is the 456 

surface Laplacian) multiplied by the diffusion rate 𝑤. The right-hand side of (3) is equivalent to 457 

current source density (CSD) which is a common technique for analyzing neurophysiological 458 

recordings. In practice, we have given a finite set of spatially distributed and discrete LFP 459 

measurements recorded from an 𝑁-channel electrode array (see Fig. 1a left). Thus, we can denote 460 

the LFPs recorded at time 𝑡 as a vector 𝑠[𝑡] ∈ ℝ𝑁. The surface Laplacian Δ is equivalent to the 461 

second spatial derivative and thus describes local interactions within the brain network. In a 462 

discrete measurement setup, this can be encoded by constructing a locally connected graph from 463 

the locations of the electrodes within the recording array63. Thereby, each electrode corresponds 464 

to a node in the graph and edges connect neighboring electrodes such as illustrated in Fig. 1a. 465 

The resulting unweighted graph consisting of 𝑁 vertices and 𝐸 edges can be represented 466 

algebraically using the node-to-edge incident matrix 𝐁 ∈ ℝ𝑁×𝐸, where the 𝑒th  column 𝑏(𝑒) 467 

corresponds to the 𝑒th  edge in the graph. Each edge is defined by a tail node 𝑛𝑖 and head node468 

𝑛𝑗 such that 𝑏𝑛𝑖

(𝑒)
= −𝑏𝑛𝑗

(𝑒)
= −1 and all other entries 𝑏𝑛𝑘

(𝑒)
= 0 for 𝑘 ≠ 𝑖, 𝑗. For each edge it is thereby 469 

arbitrary which incident node is defined as head and tail node. Using 𝐁, the continuous surface 470 

Laplacian Δ can be approximated using the negative of the graph Laplacian operator 𝐁𝐁𝑇. 471 

Furthermore, the first temporal derivative 𝑠̇ can be approximated by the first temporal difference 472 

𝑠[𝑡] − 𝑠[𝑡 − 1]. Thus, (3) can be approximated by 473 
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 𝑠[𝑡] = (𝐈𝑁 − 𝑤𝐁𝐁𝑇)𝑠[𝑡 − 1] + 𝑢[𝑡] = 𝐈𝑁𝑠[𝑡 − 1] − 𝐁𝑤𝐁𝑇𝑠[𝑡 − 1] + 𝑢[𝑡], (4) 

Where, 𝐈𝑁 is the 𝑁 × 𝑁 identity matrix and 𝑢[𝑡] is a white noise term. Previously, it has been 474 

shown that the matrices 𝐁𝑇 and 𝐁 can be interpreted as discrete approximations of the gradient 475 

and divergence operators, respectively35. Thus, the term 𝐁𝑤𝐁𝑇𝑠[𝑡 − 1] has a clear physical 476 

meaning in the context of LFP recordings as elaborated in the steps below: 477 

1. 𝐁𝑇𝑠[𝑡 − 1] = ∇𝑠[𝑡 − 1]: computes the voltage gradient for each node in the graph. 478 

2. 𝑤∇𝑠[𝑡 − 1] = 𝑓[𝑡]: In analogy to resistive circuits and CSD analysis, 𝑤 can be interpreted 479 

as a conductivity such that conductivity times voltage gradient yields a current flow 𝑓[𝑡]. 480 

3. 𝐁𝑓[𝑡]: For each node, the net flow, i.e., the sum of all in flows minus the sum of all outflows, 481 

is computed. This is equivalent to computing the current sources and sinks in CSD analysis. 482 

Equation (4) effectively expresses CSD analysis as a first order vector autoregressive (VAR) model. 483 

However, the model in Eq. (4) has limited expressivity as the only learnable parameter is the 484 

conductivity 𝑤. Thus, to improve its expressivity, we can 1) add parameterized node dynamics, 2) 485 

assume a spatially varying conductivity, and 3) extend the model order to a 𝑝th order VAR model. 486 

The resulting graph diffusion autoregressive (GDAR) model is given by 487 

 
𝑠[𝑡] = ∑(𝐌𝑘 − 𝐁𝐖𝑘𝐁𝑇)𝑠[𝑡 − 𝑘]

𝑝

𝑘=1

+ 𝑢[𝑡], 

(5) 

where 𝐌𝑘 = diag(𝒎𝑘) ∈ ℝ𝑁×𝑁 and 𝐖𝑘 = diag(𝒘𝑘) ∈ ℝ𝐸×𝐸 are diagonal matrices containing the 488 

node and edge parameters 𝒎𝑘 ∈ ℝ𝑁 and 𝒘𝑘 ∈ ℝ𝐸 of the 𝑘th lag, respectively. The term 𝐁𝐖𝑘𝐁𝑇 489 

can also be regarded as a weighted graph Laplacian matrix. The GDAR flow is defined as 490 

 
𝑓[𝑡] = ∑ 𝐖𝑘𝐁𝑇𝑠[𝑡 − 𝑘]

𝑝

𝑘=1

 

(6) 

 491 

Representation as constrained VAR model: The GDAR model in (5) can be related to the 492 

standard notation of a VAR model 493 

 
𝑠[𝑡] = ∑ 𝐀𝑘𝑠[𝑡 − 𝑘]

𝑝

𝑘=1

+ 𝑢[𝑡] 

(7) 

where 𝐀𝑘 ∈ ℝ𝑁×𝑁 contains the VAR model parameters and is generally a dense matrix. It can be 494 

shown that if 𝐀𝑘 has the same sparsity structure as the graph Laplacian 𝐁𝐁𝑇 and is symmetric, 495 

Eq. (7) is equivalent to Eq. (5) with (𝐀𝑘)𝑖,𝑗 = (𝐀𝑘)𝑗,𝑖 = (𝐖𝑘)𝑙,𝑙  if 𝑙 corresponds to the edge between 496 

node 𝑖 and 𝑗 and (𝐌𝑘)𝑖,𝑖 = (𝐀𝑘)𝑖,𝑖 + ∑ (𝐀𝑘)𝑖,𝑗𝑗∈𝒩(𝑖) , where 𝒩(𝑖) are the set of neighbors of node 𝑖. 497 

The representation of the GDAR model as a constrained VAR model is useful for fitting the model 498 

to neural data. 499 

Model fi tting: Using the VAR representation in Eq. (7), the model parameters 𝐌𝑘 and 𝐖𝑘 can 500 

be estimated using least squares regression following the procedure described by Lütkepohl64. 501 

Given 𝑇 + 𝑝 snapshots of neural activity by an 𝑁-channel recording array (𝑇 is the number of 502 

samples used for model fitting), the predicted neural activity can be collected in the data matrix 503 

𝐘 = [𝑠[𝑝 + 1], … , 𝑠[𝑝 + 𝑇]] ∈ ℝ𝑁×𝑇 and its vectorized version 𝛾 = vec(𝐘). The regressors can be 504 
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expressed as 𝐒 = [𝑆1, … , 𝑆𝑇] ∈ ℝ𝑁𝑝×𝑇, where 𝑆𝑡 = [𝑠[𝑡 + 𝑝 − 1]𝑇 , … , 𝑠[𝑡]𝑇]𝑇 ∈ ℝ𝑁𝑝×1. The505 

coefficients 𝐀𝑘 can be expressed as 𝐀 = [𝐀1, … , 𝐀𝑝] ∈ ℝ𝑁×𝑁𝑝 and 𝛼 = vec(𝐀). As shown in the506 

previous section, 𝐀𝑘 is spare and symmetric. Therefore, there exist a matrix 𝐑 such that 𝛼 = 𝐑𝛼̃ 507 

and 𝛼̃ only contains the non-zero entries of the upper triangle of 𝐀. Now (7) can be written as 508 

𝛾 = (𝐒𝑇⨂𝐈𝑁)𝐑𝛼̃ + 𝑢, (8) 

where ⨂ is the Kronecker product. Furthermore, we assume that 𝑢 is white noise with covariance 509 

matrix 𝚺𝑢. Eq. (8) can be solved in close form by minimizing 𝑢𝑇(𝐈𝑇⨂𝚺𝑢
−1)𝑢, where 𝐈𝑇 is the 𝑇 × 𝑇510 

identity matrix, to obtain the optimal parameters 𝛼̃∗: 511 

𝛼̃∗ = [𝐑𝑇(𝐒𝐒𝑇⨂𝚺𝑢
−1)𝐑]−1𝐑𝑇(𝐒⨂𝚺𝑢

−1)𝛾. (9) 

Eq. (9) is the solution to the generalized least squares (GLS) estimator, which is generally different 512 

from the ordinary least squares (OLS) estimator due to the sparsity and symmetry contraints64. 513 

However, it requires knowledge of the noise covariance matrix 𝚺𝑢
−1, which is unknown in practice.514 

Therefore, we first estimate the 𝚺𝑢
−1 by solving the OLS estimator 𝑢𝑇𝑢 to compute 𝛼̂̃ as515 

𝛼̂̃ = [𝐑𝑇(𝐒𝐒𝑇⨂𝐈𝑁)𝐑]−1𝐑𝑇(𝐒⨂𝐈𝑁)𝛾 (10) 

and denote 𝛼̂ = 𝑅𝛼̂̃. The corresponding coefficient matrix is 𝐀̂ with 𝑣𝑒𝑐(𝐀̂) = 𝛼̂. Then we estimate 516 

𝚺𝑢 as 517 

𝚺𝑢 =
1

𝑇
(𝐘 − 𝐀̂𝐒)(𝐘 − 𝐀̂𝐒)

𝑇 (11) 

It is also noted that (5) can be directly casted as a least squares minimization problem. However, 518 

we found that it is more efficient to compute the optimal parameters according to (8). 519 

Power spectrum of GDAR flow: If the model is applied to resting state neural activity, the 520 

GDAR flow signal may exhibit a similar oscillatory behavior as the neural activity. Therefore, it 521 

may be reasonable to compute its power spectrum to study frequency specific communication 522 

patterns. Using Eq. (6) and recognizing that it expresses the GDAR flow as the convolution 523 

between the model parameters 𝐖𝑘 and the activity gradients 𝐁𝑇𝑠[𝑡], the GDAR flow power524 

spectrum between nodes 𝑖 and 𝑗 is given by 525 

|𝐹{𝑖,𝑗}(𝜔)|
2

= |𝑊{𝑖,𝑗}(𝜔)|
2

⋅ |𝑆𝑗(𝜔) − 𝑆𝑖(𝜔)|
2

,
(12) 

where 𝑊{𝑖,𝑗}(𝜔), 𝑆𝑖(𝜔), and 𝑆𝑗(𝜔) are the Fourier transforms of the parameters, as well as the526 

neural activity of the two channels, and 𝜔 is the frequency variable. An interesting case occurs 527 

when the spectra of both channels have the same magnitude for a given frequency. Assuming 528 

|𝑆𝑖(𝜔)| = |𝑆𝑗(𝜔)| = 1, Eq. (12) can be simplified to 529 

|𝐹{𝑖,𝑗}(𝜔)|
2

2
= |𝑊{𝑖,𝑗}(𝜔)|

2
⋅ [1 − cos(𝜙𝑗 − 𝜙𝑖)],

(13) 

where 𝜙𝑖 and 𝜙𝑗 are the phase of the 𝑆𝑖(𝜔), and 𝑆𝑗(𝜔), respectively. That is, in this case the 530 

communication dynamics are driven only by phase differences between connected nodes. In 531 

general, however, communication dynamics will be determined by differences in magnitude and 532 

phase modulated by 𝑊{𝑖,𝑗}(𝜔), which was estimated with the objective of improving the prediction 533 

of future neural activity. 534 
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Decomposition into gradient and rotational flow spectra: Similar to the classical Fourier 535 

transform for time series, where a signal can be decomposed into a series of oscillatory components 536 

of increasing frequency, a flow signal can be decomposed into a set of spatial components (flow 537 

signals) with increasing spatial frequency. Furthermore, a flow signal can be decomposed into 538 

gradient (directional) components, which have non-zero divergence (sum of in-flow minus out-539 

flow) for some or all nodes of the graph, and rotational components, which have zero divergence 540 

for all graph nodes. This can be achieved via the Hodge-decomposition that defines two orthogonal 541 

sets of spatial basis functions (defined on the edge domain) for a given graph33–35. Each GDAR 542 

flow snapshot can then be projected onto these sets of basis functions to obtain the gradient and 543 

rotational flow spectrum. 544 

To obtain the gradient basis, we first compute the eigenvectors 𝐕̃grad ∈ ℝ𝑁×𝑁  of the graph 545 

Laplacian 𝐁𝐁𝑇. The orthonormal gradient flow basis 𝐕grad ∈ ℝ𝐸×𝑁 is then obtained by 546 

 
𝐕grad =

𝐁𝑇𝐕̃grad

||𝐁𝑇𝐕̃grad||
𝐹

. 
(14) 

The eigenvalues 𝜆grad associated with each eigenvector define a natural ordering of the 547 

eigenvectors in terms of spatial frequency. Specifically, if we compute the divergence of the 548 

eigenvectors 𝐕grad, we find that eigenvectors corresponding to small eigenvalues have small 549 

divergence, whereas eigenvectors associated with large eigenvectors have large divergence. Small-550 

divergence eigenvectors correspond to flow signals that are smooth (or low-frequency) across the 551 

graph, that is flow signals where the direction of flow is largely preserved or only slowly changes 552 

within a local neighborhood (also see Extended Fig. 5c for an example). High-divergence 553 

eigenvectors on the other hand correspond to flow patterns that rapidly change direction within 554 

a local neighborhood and can therefore be considered as non-smooth or being high-frequency. We 555 

can now obtain a gradient flow spectrum for each flow snapshot by projecting 𝑓[𝑡] onto 𝐕grad: 556 

 𝐹grad[𝜆grad, 𝑡] = 𝐕grad
𝑇 𝑓[𝑡]. (15) 

To obtain the rotational basis, we first have to define a set of triangles in the graph, which can 557 

be obtained, for example, via Delaunay triangulation. Mathematically, the triangle set is captured 558 

by the edge-to-triangle incident matrix 𝐁tri ∈ ℝ𝐸×𝑇 , where 𝑇 is the number of triangles and where 559 

the 𝑡th column 𝑏tri
(𝑡)

 corresponds to the 𝑡th  triangle in the graph. Each triangle is defined by three 560 

edges 𝑒𝑖, 𝑒𝑗, and 𝑒𝑘 and an arbitrarily chosen reference direction. If the edge direction across 𝑒𝑖 561 

(as defined in 𝐁) aligns with that reference direction 𝑏tri
(𝑡)(𝑒𝑖) = 1. Otherwise 𝑏tri

(𝑡)(𝑒𝑖) = −1 (the 562 

same logic applies to 𝑒𝑗, and 𝑒𝑘). For edges not involved in the triangle we have 𝑏tri
(𝑡)(⋅) = 0. To 563 

compute the rotational basis, we then follow the same procedure as above. That is, we first 564 

compute the eigenvectors 𝐕̃rot ∈ ℝ𝑇×𝑇 of the Laplacian 𝐁tri
𝑇 𝐁tri and then project 𝐕̃rot onto 𝐁tri and 565 

normalize: 566 

 
𝐕rot =

𝐁tri𝐕̃rot

||𝐁tri𝐕̃rot||
𝐹

. 
(16) 

Similar to the gradient flow, the eigenvalues 𝜆rot corresponding to the eigenvectors 𝐕rot can be 567 

used to define an ordering in terms of spatial frequency. Specifically, eigenvectors with small 568 

eigenvalues correspond to global rotational flows (akin to global currents) across the graph that 569 
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maintain or only slowly change orientation between local neighborhoods. On the other hand, 570 

eigenvectors with small eigenvalues exhibit localized rotational flows (akin to local eddy currents) 571 

that rapidly change orientation across local neighborhoods (see Extended Fig. 5e for an example). 572 

Finally, we can obtain a rotational flow spectrum for each flow snapshot by projecting 𝑓[𝑡] onto 573 

𝐕rot: 574 

 𝐹rot[𝜆rot, 𝑡] = 𝐕rot
𝑇 𝑓[𝑡]. (17) 

 575 

Wilson-Cowan Simulations 576 

Simulating neural activity: We simulated neural activity using various networks of Wilson-577 

Cowan oscillators65,66 shown in Fig. 2 and Extended Fig. 1. Each node consists of an excitatory 578 

and inhibitory subpopulation whose dynamics are governed by the following differential equations:  579 

 

𝜏𝑒

𝑑𝑒𝑖(𝑡)

𝑑𝑡
= −𝑒𝑖(𝑡) + 𝑆 (𝑐𝑒𝑒𝑒𝑘(𝑡) + 𝑐𝑖𝑒𝑖𝑘(𝑡) + 𝑃 + 𝜉(𝑡) + ∑ 𝑤𝑗→𝑖𝑒𝑗(𝑡 − 𝜏𝑗𝑘)

𝑗∈𝒩(𝑖)

) 

(18) 

 
𝜏𝑖

𝑑𝑖𝑖(𝑡)

𝑑𝑡
= −𝑖𝑖(𝑡) + 𝑆(𝑐𝑒𝑖𝑒𝑖(𝑡) + 𝜉(𝑡)) 

(19) 

where 𝑆 is the sigmoid function: 580 

 
𝑆(𝑥) =

1

1 + 𝑒
𝑥−𝜇

𝜎

 
(20) 

The description of the parameters and their values are listed in Table 1. The values are based on 581 

previous work by Abeysuriya et al.67 and Deco et al.68 and result in a power spectrum with a 582 

pronounced beta oscillation around 18 Hz and a 1 𝜔⁄  slope for higher frequencies. Coupling 583 

between excitatory populations of neighboring nodes is determined by the parameter 𝑤𝑗→𝑖 where 584 

each edge in the graph has two coupling parameters (𝑤𝑗→𝑖 and 𝑤𝑖→𝑗) resulting in bidirectional 585 

coupling. For the 16-node random graphs, we simulated 10 independent trials per graph, resulting 586 

in a total of 100 trials for 10 graphs, where for each trial the values of the edge weights 𝑤𝑗→𝑖 are 587 

randomly sampled from a uniform distribution (see Table 1 for range of 𝑤𝑗→𝑖). For the 7-node, 588 

and 16-node grid graph, we simulated 100 independent trials respectively. The ranges of 𝑤𝑗→𝑖 were 589 

chosen such that neural activity whose power spectrum resembles realistic local field potential 590 

signals was generated by the network. We integrated the system with a time step of 1e-4 seconds 591 

using a 4th order Runge-Kutta scheme for 20 seconds and discarded the first 15 seconds to 592 

eliminate transient effects of the simulation. The resultant 5 seconds of excitatory activity 𝑒[𝑡] 593 

was then downsampled to 1 kHz using an 8th order Chebyshev type I anti-aliasing filter and 594 

denoted as the simulated neural activity. Power spectral density (PSD) estimates of the simulated 595 

activity and ground truth flow for the 16-node random graphs averaged over all trials, graphs, 596 

and edges are shown in Extended Fig. 1b and c. 597 
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Table 1: Simulation parameters of Wilson-Cowan model adapted from Abeysuriya et al.67 and Deco et al.68 598 

Parameter Description Value 

𝜏𝑒 Excitatory time constant 0.002 

𝜏𝑖 Inhibitory time constant 0.004 

𝑐𝑒𝑒 Local excitatory to excitatory coupling  3.5 

𝑐𝑖𝑒 Local inhibitory to excitatory coupling -2.5 

𝑐𝑒𝑖 Local excitatory to inhibitory coupling 3.75 

𝑃 Constant excitatory input 0.31 

𝜇 Firing response threshold 1 

𝜎 Firing threshold variability 0.25 

𝜉 Random noise input 𝒩(0, 0.05) 

𝑤𝑖→𝑗 Excitatory to excitatory connectivity (16 node random graphs) 0.05, …, 0.3 

𝑤𝑖→𝑗  Excitatory to excitatory connectivity (7 node graph) 0.05, …, 0.55 

𝑤𝑖→𝑗  Excitatory to excitatory connectivity (16 node grid graph) 0.1, … 0.5 

Simulating ground truth neural flow: We simulated the ground truth flow by calculating the 599 

moment-to-moment influence that each excitatory node exerts on its neighbors. To do so, we first 600 

executed each integration step with the full set of parameters to obtain 𝑒[𝑡]. Then, for each 601 

excitatory coupling parameter 𝑤𝑗→𝑖, we repeated the integration step with 𝑤𝑗→𝑖 = 0 to obtain 602 

𝑒𝑖[𝑡]|𝑤𝑗→𝑖=0, which denotes the activity at node 𝑖 in the absence of an influence from node 𝑗 at 603 

time 𝑡. The flow from node 𝑗 to node 𝑖 was then defined as 𝑓𝑗→𝑖[𝑡] = 𝑒𝑖[𝑡] − 𝑒𝑖[𝑡]|𝑤𝑗→𝑖=0. This 604 

second step is repeated for all excitatory coupling parameters. The full two-step procedure is 605 

repeated for each integration step. The resulting bidirectional ground truth flow 𝑓gt,b[𝑡] was 606 

downsampled using the same anti-aliasing filter as used for the simulated neural activity. As our 607 

GDAR model only produced a unidirectional flow at each point in time, we define the 608 

unidirectional ground truth flow 𝑓gt[𝑡] between node 𝑖 and 𝑗 as 𝑓𝑖,𝑗
gt[𝑡] = 𝑓𝑖→𝑗

𝑔𝑡,𝑏[𝑡] − 𝑓𝑗→𝑖
𝑔𝑡,𝑏[𝑡]. It is 609 

noted that while 𝑓gt[𝑡] is unidirectional at each time point, the flow direction across each edge 610 

can change over time. 611 

GDAR flow: For each trial, we used the last 5 seconds of simulated neural activity to estimate 612 

the parameters of the GDAR model for varying model orders as described in (Graph Diffusion 613 

Autoregressive (GDAR) Model). The graph used for fitting the model is equal to the graph used 614 

for the simulations. The estimated model parameters were then used to transform the simulated 615 

neural activity into an estimated flow signal according to (6). 616 

VAR flow: For comparison, we also estimated the neural flow using a classical VAR model (Eq. 617 

(7)). To do so, we first estimated the VAR model parameters using the same data as for fitting 618 

the GDAR model. The directional flow across edge 𝑗 → 𝑖 is then computed as 𝑓𝑗→𝑖
VAR,b[𝑡] =619 

∑ (𝐴𝑘)𝑖,𝑗𝑠𝑖[𝑡]𝑝
𝑘=1 . Similar to the ground truth flow, the unidirectional flow is defined as 𝑓𝑖,𝑗

VAR[𝑡] =620 

𝑓𝑖→𝑗
𝑉𝐴𝑅,𝑏[𝑡] − 𝑓𝑗→𝑖

𝑉𝐴𝑅,𝑏[𝑡]. The VAR model assumes a fully connected network resulting into non-zero 621 

flow signals across connections that are not part of the network. To compare the VAR flow with 622 
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the ground truth flow, we therefore only extract the VAR flow for edges that exists in the ground 623 

truth network. 624 

eVAR flow: For a fair comparison with the GDAR model, we test a second autoregressive model 625 

that has access to the ground truth graph when estimating the VAR model coefficients. That is, 626 

we enforce (𝐴𝑘)𝑖,𝑗 = (𝐴𝑘)𝑗,𝑖 = 0 if node 𝑖 and 𝑗 are not connected. Using this eVAR models, we 627 

also computed a bidirectional flow 𝑓VAR,b[𝑡] and compare it to the ground truth bidirectional flow 628 

𝑓gt,b[𝑡] for the 7-node graph. However, we found that this does not result in higher correlation 629 

coefficients than the unidirectional flow (see Extended Fig. 1f). 630 

CSD flow: The last approach for estimating the neural flow is through CSD analysis. Since CSD 631 

is the second spatial derivative, which, for a given graph, can be approximated as the graph 632 

Laplacian operator 𝐁𝐁𝑇, the CSD flow is simply the gradient between the simulated neural activity 633 

at connected nodes in the network: 𝑓𝑖,𝑗
𝐶𝑆𝐷[𝑡] = 𝑠𝑖[𝑡] − 𝑠𝑗[𝑡]. This is equivalent to a first order GDAR 634 

model with spatially constant conductivity.  635 

Comparing ground truth and estimated neural fl ow: The ground truth and estimated flow 636 

signals are first z-scored independently for each trial and model, and then compared using the 637 

Pearson correlation coefficient (CC) computed independently for each edge in the graph. The CC 638 

distributions obtained by pooling CCs from all edges and 100 trials for each model are compared 639 

using a Wilcoxon rank-sum test. Furthermore, we computed the error between magnitude and 640 

phase spectrum of ground truth and estimated flow for each graph edge and trial (Fig. 2c). To 641 

do so, the power spectral density (PSD) of the flow across each edge (5s for each trial) was 642 

estimated using Welch’s method69 with a Hann window of size 256 samples and 50% overlap. Then 643 

the absolute difference (in dB) between ground truth and estimated flow was computed. To 644 

compare the phases, the 5s of neural flow obtained for each trial were first divided into 19 non-645 

overlapping segments of 256 samples and then the discrete Fourier transform for each segment 646 

was computed. Afterwards, the phase difference between ground truth and estimated phase was 647 

computed and mapped into the range from 0 to 𝜋 for each segment before being averaged over all 648 

19 segments. Fig. 2c shows the median, first, and third quartile of the magnitude and phase 649 

difference using data from all edges and trials. The PSDs of the ground truth and estimated flow 650 

signals were used to compute the PSD correlations in Fig. 2d. Finally, we compared the dynamics 651 

of the estimated flow with the dynamics of the ground truth flow using dynamical similarity 652 

analysis (DSA) in Fig. 2e36. To do so, Hankel dynamic mode decomposition (DMD) models are 653 

first independently fitted to the high-dimensional ground truth and estimated flow signal and the 654 

resultant DMD matrices 𝐴est and 𝐴gt are compared using a modified version of Procrustes analysis. 655 

To fit the Hankel-DMD models we used 15 delay time steps to construct the Hankel matrices and 656 

full rank regression. Optimization during the Procrustes analysis used 1000 iterations at a learning 657 

rate of 10−2. 658 

Optogenetic Stimulation Experiment 659 

One adult male rhesus macaque (monkey G: 8 years old, 17.5 kg) was used in this experiment. All 660 

procedures were performed under the approval of the University of California, San Francisco 661 
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Institutional Animal Care and Use Committee and were compliant with the Guide for the Care 662 

and Use of Laboratory Animals. 663 

Neural stimulation and recording interface: In this study, we used a subset of neural data 664 

recorded by a large-scale optogenetic neural interface11 that has previously been utilized to study 665 

changes in network functional connectivity due to cortical stimulation37,38. The interface was 666 

composed of several key components: a semi-transparent micro-electrode array, a semi-transparent 667 

artificial dura, a titanium implant, and a laser system for delivering optical stimulation. First, 668 

neurons in the primary sensorimotor cortex were rendered light-sensitive through a viral-mediated 669 

expression of the C1V1 opsin. To do so, 200 𝜇L of the viral cocktail AAV5-CamKIIa-670 

C1V1(E122T/E162T)-TS-eYFP-WPRE-hGH (2.5 × 1012 virus molecules/mL; Penn Vector Core, 671 

University of Pennsylvania, PA, USA, Addgene number: 35499) was administered across four sites 672 

into the primary somatosensory (S1) and primary motor (M1) cortices of the left hemisphere using 673 

convection-enhanced delivery11,37,70. Next, the chronic neural interface was surgically implanted 674 

by performing a 25mm craniotomy over the primary sensorimotor cortex, replacing the dura mater 675 

beneath the craniotomy with a chronic transparent artificial dura housed in a titanium chamber. 676 

During each experimental session, the artificial dura was removed and a custom 96 channel micro-677 

electrocorticography array consisting of platinum-gold-platinum electrodes and traces encapsuled 678 

in Parylene-C12 was placed on the cortical surface. Optical stimulation was performed by two 488 679 

nm lasers (PhoxX 488-60, Omicron-Laserage, Germany) connected to a fiber optic cable 680 

(core/cladding diameter: 62.5/125 μm, Fiber Systems, TX, USA) and positioned above the array 681 

such that the tip of the fiber-optic cable touched the array. Neural data in the form of local field 682 

potentials was recorded by the micro-ECoG array at a sampling frequency of 24 kHz using a 683 

Tucker-Davis Technologies system (FL, USA). It was verified that evoked neural responses were 684 

due to optogenetic activation and not other effects such as photoelectric artifacts or heating11,12,38. 685 

Stimulation protocol: The data analyzed in this study stems from three experimental sessions 686 

all performed on the same day. The only difference between the sessions was the location of 687 

stimulation, which is depicted in Fig. 3b. As the micro-ECoG array was not removed between 688 

sessions its location on the cortex remains unchanged. Each experimental session consists of 5 689 

stimulation blocks during which two lasers alternatingly and repeatedly stimulate. Each 690 

stimulation block lasts approximately 7 min and is intermittent by shorter resting state blocks 691 

during which no stimulation is performed. The stimulation pulse width for both lasers was 5 ms 692 

with a delay of 10 ms between stimulation by lasers 1 and 2. This paired stimulation is repeated 693 

at a frequency of 7 Hz (143 ms) resulting in a total of approximately 2970 pulse pairs for each 694 

stimulation block. All stimulation parameters (except for stimulation locations) are identical for 695 

the three sessions analyzed in this study. 696 

Signal preprocessing: First, bad channels were identified as 1) electrodes with high impedance 697 

and 2) channels with a low signal-to-noise ratio, and excluded from the analysis38. The location of 698 

the remaining 67 good channels was used to construct a sparse and locally connected graph, where 699 

each electrode corresponds to a node in the graph and each node is connected approximately to it 700 

8 nearest neighbors (see Fig. 3c top). The raw time series data was downsampled to 1017.25 Hz 701 

using a low-pass Chebyshev anti-aliasing filter and the mean activity within each channel was 702 

subtracted from the respective time series. 703 
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GDAR model fi tting: The preprocessed LPFs during each stimulation block were divided into 704 

segments of 10004 samples (approximately 10 s) with 4 samples overlap between segments and a 705 

5th order GDAR model was fitted to each segment as described in (Graph diffusion autoregressive 706 

(GDAR) model). The estimated model parameters were used to transform the neural activity into 707 

a the GDAR flow signal according to equation (6). The overlap between segments was chosen 708 

such that a continuous GDAR flow signal was obtained from the segmented LFPs without relying 709 

on zero padding. A model order of 5 was chosen for this application due to the short (10 ms) delay 710 

between stimulation by lasers 1 and 2. For larger model orders, the GDAR flow evoked by the 711 

second laser would increasingly be influenced by the neural activity evoked by the first laser 712 

resulting in a mixing of the neural responses to both stimulation pulses. Flow dynamics akin to 713 

the plots in Fig. 3e for a model order 𝑝 = 10 are shown in Extended Fig. 2c and d. 714 

Visualizing flow dynamics: To visualize the flow dynamics evoked by paired cortical 715 

stimulation, we have to project the high dimensional flow signals (𝑓[𝑡] ∈ ℝ𝐸, where 𝐸 is the 716 

number of edges in the graph) onto a lower dimensional subspace. To so so, we first pooled the 717 

first 25 flow snapshots from the onset of stimulation by the first laser from all sessions, blocks, 718 

and pulse pairs in a single data matrix 𝐹 ∈ ℝ𝐸×𝑀, where 𝑀 ≈ 3 ⋅ 5 ⋅ 2970 ⋅ 25 (3 sessions, 5 blocks 719 

per session, approximately 2970 pulse pairs per block, 25 flow snapsots per pulse pair). Afterwards 720 

we performed principle component analysis (PCA) and projected F onto its first two principal 721 

components (PCs) to obtain 𝐹̃ ∈ ℝ2×𝑀. Fig. 3e shows the PCA reduced GDAR flow dynamics 722 

where each trace illustrates a 25 snapshot long flow trajectory from a single pulse pair. For better 723 

visualization only 250 individual trajectories per stimulation block selected at random are plotted. 724 

Fig. 3g shows the same dynamics but instead using the VAR and CSD flow, respectively. Since 725 

the number of edges for the VAR model is very large, computing the PCs of the associated matrix 726 

𝑀 was not feasible. Therefore we first averaged the flow snapshots over 20 consequitive trials 727 

before computing the PCs. For comparison, we performed the same trial averaing for the GDAR 728 

flow and recomputed the flow trajectories (Extended Fig. 2e). The averaging does not seem to 729 

have a negative effect on the discriminability of the trajectories between different sessions. 730 

Modeling increased delay across sulcus: The GDAR model can easily be augmented to model 731 

variable delay across different edges. For example, it is reasonable to assume that signals that 732 

travel across the sulcus between M1 and S1 experience larger delays than signals traveling within 733 

each cortex. Larger delays in the GDAR model across an edge between node 𝑖 and 𝑗 can be 734 

incorporated by constraining edge coefficients 𝑤𝑘
{𝑖,𝑗}

= 0 for small delays (i.e., 𝑘 = 1, 2, … ), which 735 

can be achieved by augmenting the matrix 𝐑 in equation (8). We have used this approach to 736 

model larger delays across the sulcus by setting 𝑤𝑘
{𝑖,𝑗}

= 0 for edges that connect nodes in M1 to 737 

nodes in S1 for 𝑘 = 1, 2, 3. That is, the minimum delay across each sulcus edge is constrained to 738 

be 4 (see Extended Fig. 2f and Supplementary Video 2 for corresponding GDAR flow dynamics). 739 

Changes in resting-state communication due to electrical stimulation: 740 

To demonstrate the GDAR model’s ability to uncover changes in communication during resting 741 

state, we analyze data from two distinct experiments that were conducted using a 96-channel 742 

microelectrode array (Utah array) and two 32-channel ECoG arrays. 743 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 25, 2025. ; https://doi.org/10.1101/2024.02.26.582177doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582177
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Utah array experimental procedure: One adult rhesus macaque (Macaca mulatta, 12 kg, 11 744 

years, male) was used in this study. All procedures were performed under the approval of the 745 

University of California, San Francisco Institutional Animal Care and Use Committee and were 746 

compliant with the Guide for the Care and Use of Laboratory Animals. The experimental 747 

procedure was previously described by Bloch et al.71. A 96-channel Utah array was implanted in 748 

S1 and LFPs were recorded at a sampling frequency of 24 kHz before being downsampled to a 749 

frequency of 1017 Hz (8th order Chebychev anti-aliasing filter). The dataset consists of resting 750 

state recordings intermitted by five 10 minute stimulation blocks that contain repeated single site 751 

or paired electrical stimulation. For the single site stimulation session, stimulation is performed in 752 

in the form of five pulses (1 kHz burst frequency) that are repeated every 200 ms. The paired 753 

stimulation sessions use the same stimulation patterns for each stimulation site. For session paired-754 

stim 1, electrode B stimulated 100 ms after electrode A. For session paired-stim 2, the delay 755 

between stimulation sites A and B is chosen uniformly at random between -100 ms and 100 ms 756 

for each paired stimulation trial. 757 

ECoG array experimental procedure: One adult macaque (Macaca nemestrina, 14.6 kg, 7 758 

years, male) was used in this study. All procedures were performed under the approval of the 759 

University of Washington Institutional Animal Care and Use Committee and were compliant with 760 

the Guide for the Care and Use of Laboratory Animals. The experimental procedure was 761 

previously described elsewhere13,72,73. The animal was first anesthetized with isoflurane and a 762 

craniotomy with 25mm diameter was performed in each hemisphere over the sensorimotor cortex. 763 

A focal ischemic lesion in the left hemisphere was created by photo-activation of a previously 764 

injected light-sensitive dye (Rose Bengal). Following illumination, the dye causes platelet 765 

aggregation, thrombi formation, and interruption of local blood flow, leading to local neural cell 766 

death near the illuminated area. The location and extent of the lesion were estimated through 767 

post-mortem histological analysis of coronal slices and is illustrated as a black patch in Fig. 5. 768 

Electrical activity was recorded before, during, and after lesion induction simultaneously in the 769 

ipsi- and contralesional hemisphere using two 32-channel ECoG arrays (Fig. 5c)74,75. 770 

Approximately 60 min after the end of lesioning, repeated electrical stimulation was performed 8 771 

mm away from the lesion center. 1 kHz stimulation charge-balanced pulses (60 µA, 450 µs pulse 772 

width, 50 µs interphase interval) were given in 5 Hz bursts (5 pulses per burst) consecutively for 773 

10 minutes, where each stimulation block was followed by 2 min of baseline recording. The 774 

experiments included a total of six 10 min stimulation blocks. We used the 60 min of neural 775 

recording after lesion induction but before stimulation (pre stim), as well as the 2 min blocks of 776 

baseline recording in between the stimulation blocks (post stim). In total we used 4 blocks of post 777 

stim recordings for each hemisphere as the recordings in the other blocks were corrupted. 778 

Signal preprocessing: The preprocessing for both datasets was performed akin to the 779 

optogenetic stimulation experiment. The location of the ECoG channels was used to construct a 780 

sparse and locally connected graph (for the ECoG data, this was done separately for each 781 

hemisphere), where each node (electrode) is connected approximately to its 8 nearest neighbors 782 

(no bad channels were identified). The raw time series data was downsampled to 1 kHz using low-783 

pass Chebyshev anti-aliasing filter and the mean was removed from each channel. Additionally, 784 

artifacts – defined as signal values that deviate by ten or more standard deviations from the mean 785 
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simultaneously for all channels – were removed by linearly interpolating between the sample 786 

immediately before and after the artifact. 787 

Model fi tting and postprocessing: The preprocessed LFPs for both datasets during each block 788 

were divided into segments of length 10009 samples (approximately 10 s) with 9 samples overlap 789 

between segments and a 10th order GDAR model was fitted to each segment as described in Graph 790 

diffusion autoregressive (GDAR) model. The estimated model parameters were used to transform 791 

the neural activity into the GDAR flow signal according to equation (6), where each segments 792 

contains 10000 samples. To assess changes in neural communication due to stimulation in different 793 

frequency bands, we then computed the GDAR flow power spectral density (PSD) using Welch’s 794 

method69 (Hann window of size 1000 samples with 50% overlap) for each segment, and stored the 795 

average flow PSD within the gamma band (30 − 70 Hz). Finally, we computed the change in 796 

average flow PSD from before to after stimulation. Specifically, if we denote 𝐹𝑘
pre stim

 and 𝐹𝑘
post stim

 797 

as the average gamma flow PSD before and after stimulation of the 𝑘th segment, the relative 798 

change in GDAR flow magnitude Δstim is given by 799 

 
Δstim =

〈𝐹𝑘
post stim〉𝑘 − 〈𝐹𝑘

pre stim〉𝑘

〈𝐹𝑘
pre stim〉𝑘

, 
(21) 

where 〈⋅〉𝑘 denotes the average over all segments. We assessed the statistical significance of Δstim 800 

for each edge by forming sample distributions for pre- and post-stim communication from all pre- 801 

and post-stim segments and compared the distributions using a two-sample Kolmogorov-Smirnov 802 

test. If the distributions for a given edge differ with a significance level of 𝑝 ≤ 0.01, the edge is 803 

plotted in the graph. 804 

For the Utah array data, changes in gamma GDAR flow power due to stimulation (Fig. 4b) were 805 

computed using all data before stimulation (pre stim) as well as the five 2-minute resting state 806 

blocks following the stimulation blocks (post stim) for each session. To compute the temporal 807 

evolution of the normalized and averaged gamma GDAR flow power (Fig. 4c-e), the GDAR flow 808 

power in the gamma band was first averaged over all edges connected to the stimulation node. 809 

Then GDAR flow and LFP power were z-scored using the mean and standard deviation from the 810 

pre stim period for each session independently. We then computed the best linear fit between the 811 

z-scored LFP and average GDAR flow power 𝐹̅GDAR using all segments (pre and post stim)  812 

 𝐹̅GDAR = 𝑠 ⋅ 𝐿𝐹𝑃 + 𝑜. (22) 

The goal is to test whether the GDAR flow power changes beyond what can be linearly explained 813 

by changes in LFP power. Hence, we subtract the linear regression line from the average GDAR 814 

flow power 815 

 𝐹̅GDAR,corrected = 𝐹̅GDAR − 𝑠 ⋅ 𝐿𝐹𝑃. (23) 

and plotted the result in Fig. 4c-e. 816 

For the ECoG data, we additionally computed the change in flow power Δstim using the CSD 817 

approach and a 10th order VAR model (CSD and VAR flow were computed as described in Wilson-818 
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Cowan Simulations). The 10th order VAR model was also used to compute changes in coherence, 819 

partial directed coherence (PDC)22 and directed transfer function (DTF)21. PDC and DTF for 820 

each directed edge pair 𝑗 → 𝑖 were calculated using the following equations: 821 

𝑃𝐷𝐶𝑗→𝑖 =
|𝐴𝑖,𝑗(𝜔)|

2

∑ |𝐴𝑙,𝑗(𝜔)|
2

 𝑁
𝑙=1

, 
(24) 

𝐷𝑇𝐹𝑗→𝑖 =
|𝐻𝑖,𝑗(𝜔)|

2

∑ |𝐻𝑖,𝑙(𝜔)|
2

 𝑁
𝑙=1

, 
(25) 

where 𝐴𝑖,𝑗(𝜔) is the Fourier transform of (𝐴𝑘)𝑖,𝑗 (note that here 𝑘 is the time variable), and 𝐻𝑖,𝑗(𝜔) 822 

is the (𝑖, 𝑗) entry of the Fourier transform of the inverse of 𝐴𝑘. To obtain a unidirectional 823 

communication signal (Fig. 5d), we calculated the average between 𝑖 → 𝑗 and 𝑗 → 𝑖 for each pair 824 

of edges. 825 

Center-out Reach Task 826 

One adult male rhesus macaque (7 years old, 16.5 kg) was used in this study. All procedures were 827 

performed under the approval of the University of California, San Francisco Institutional Animal 828 

Care and Use Committee and were compliant with the Guide for the Care and Use of Laboratory 829 

Animals. Surgical procedure, neural interface, and signal preprocessing are the same as described 830 

in Optogenetic Stimulation Experiment. However, for the center-out reach task, the ECoG was 831 

placed fully over the primary motor (M1) cortex. Channels with persistent distortions were 832 

identified and excluded from the analysis resulting in 77 good channels used to construct a sparsely 833 

connected nearest neighbor graph as described previously. The animal performed a total of 200 834 

successful reach trial, 25 for each of the eight directions (see Fig. 6a). Each individual reach trial 835 

is divided into start, instructed delay, and reach phase. During the start phase, the monkey places 836 

its hand on the center of the screen. After that the instructed delay phase begins where first the 837 

target direction is presented before a randomly selected delay period terminated by a go-tone is 838 

introduced. The reach phase starts once the go-tone appears and ends when the monkey touches 839 

the target. The finger position of the monkey was tracked throughout the experiment using and 840 

electromagnetic position sensor (Polhemus Liberty, Colchester, VT) at 240 Hz76. 841 

GDAR model fi tting and post-processing: To ensure accurate model fitting, recorded LFPs 842 

from all three phases were used to estimate the parameters of the GDAR model. The model order 843 

was set to 𝑝 = 5 to ensure enough independent samples for each parameter. After the model 844 

parameters have been estimated, the GDAR flow is computed according to Eq. (6) and filtered 845 

into the high-gamma band using a 3rd order Butterworth filter with cutoff frequencies of 70 and 846 

200 Hz. The high-gamma GDAR flow signal 𝑓[𝑡] is then decomposed into its gradient and 847 

rotational flow spectrum 𝐹grad[𝜆grad, 𝑡] and 𝐹rot[𝜆rot, 𝑡] according to Eq.(14)-(17). To obtain the 848 

flow power spectrogram in Fig. 6b, we compute the magnitude square of 𝐹grad[𝜆grad, 𝑡] and 849 

𝐹rot[𝜆rot, 𝑡]. Flow power spectra as well as reach velocities are temporally smoothed using a 51 850 

sample 3rd order Savitzky-Golay filter. To account for the time delay between motor commands 851 

observable in M1 and actual movement onset77, we calculated the median correlation across all 852 

spatial frequencies 𝜆grad between 𝐹grad[𝜆grad, 𝑡 − 𝑑] and the reach velocity for varying delays 𝑑 853 
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(Extended Fig. 5f). We found a maximum correlation for a delay of 104 ms, which we corrected 854 

for in all subsequent analysis. 855 

To quantify the extend to which the gradient flow spectrum is dominated by low frequencies during 856 

reaching, we defined the alignment index as 857 

 
aligment index =  

∑ ∑ 𝐹grad[𝜆grad,𝑖, 𝑡]15
𝑖=1𝑡

∑ ∑ 𝐹grad[𝜆grad,N−𝑖, 𝑡]15
𝑖=1𝑡

, 
(26) 

where 𝑁 is the total number of gradient frequencies. The temporal averaging is performed over all 858 

time points where the reach velocity is above a threshold of 0.1  for the tuning curve analysis (Fig. 859 

6d) and over the last 100 ms prior to the go-tone for the reaction time analysis (Fig. 6f). For the 860 

rotational flow spectrum, we do not observe spectral changes during reaching that are strongly 861 

dependent on the spatial frequency. Therefore, we simply use the average over all spatial 862 

frequencies in Fig. 6e. 863 

Generalization performance 864 

According to Eq. (5), the GDAR model can predict the neural activity at the current time step 865 

using the past 𝑝 samples. To assess the generalization performance of the model, we computed the 866 

normalized root mean square error (RMSE) between the observed neural activity 𝑠[𝑡] and 867 

predicted neural activity 𝑠̂[𝑡] as follows: 868 

 
𝑅𝑀𝑆𝐸 =  

√∑ (𝑠̂𝑛[𝑡] − 𝑠𝑛[𝑡])2
𝑡,𝑛

√∑ (𝑠𝑛[𝑡])2
𝑡,𝑛

 
(27) 

The summation is performed over all time points 𝑡 within a segment, as well as over all channels 869 

𝑛 of the recording array. To compute the train RMSEs, the predictions 𝑠̂[𝑡] are computed for the 870 

same time points that were used for model fitting. For the test RMSEs, the models are applied to 871 

data that were not used for fitting the model. To compute the test RMSEs for the optogenetic 872 

stimulation, stroke, and Utah array datasets, the prediction RMSEs are computed for the 10 s 873 

segment that immediately follows the segment used for model fitting. That is, if the models have 874 

been fitted using segment 𝑖, the test RMSEs are computed using segment 𝑖 + 1. For Fig. 7d, where 875 

the generalization gap over larger time scales is assessed, the prediction RMSEs are computed for 876 

segments further away from the segment used for model fitting. For the reach dataset, the models 877 

are tested on the subsequent reach trial in the same direction. That is if the models have been 878 

fitted using trial 𝑖 from direction 𝑑 then the test RMSE is computed for trial 𝑖 + 1 from direction 879 

𝑑. 880 

 881 

 882 

Data availability: 883 

Data will be made available upon reasonable request from the authors. 884 

Code Availability: 885 

Source code for the GDAR model will be made available prior to publication. 886 
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Extended data fi gures 1063 

1064 

Extended Fig. 1: (a) 10 randomly connected 16-node networks used for conducting the simulations in Fig. 2. Each graph 1065 
was used to generate 10 independent simulation trials. (b), (c) Power spectral densities of simulated field potentials and 1066 
ground truth flow, respectively. The black line shows the average across all edges and trials. The gray shaded area 1067 
indicated one half of the standard deviation. The simulation parameters produce a strong oscillation around 18Hz. The 1068 
steep drop-off above 400 Hz can be attributed to the 8th order Chebyshev filter that was used for downsampling the data 1069 
to a sampling frequency of 1 kHz. (d), (e) Pearson correlation coefficient (CC) of GDAR, VAR, and eVAR model on 1070 
16-node grid graph and 7-node locally connected graph for various mode orders. The CC is pooled from 100 simulation1071 
trials with varying excitatory coupling parameters (see Methods) for each graph. Markers indicate whether the GDAR1072 
model significantly outperforms the eVAR model (Wilcoxon ranked-sum test, 𝑝 ≤ 0.001). The GDAR model significantly1073 
outperforms the other two models for all tested graphs given a sufficiently high model order. (f) CC between unidirectional1074 
ground truth and eVAR flow, as well as bidirectional ground truth and eVAR flow for various model orders. There is no1075 
significant performance difference between unidirectional and bidirectional eVAR flow for any model order. For most1076 
model orders, the unidirectional eVAR flow yields slightly higher median CCs than the bidirectional eVAR flow.1077 
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1079 

Extended Fig. 2: (a)-(f) Stimulation evoked dynamics using different signals and modeling approaches similar to the 1080 
plots in Fig. 3e. Neither LFP (a) nor classical CSD (b), i.e., the second spatial derivative computed via the graph 1081 
Laplacian, show significant temporal dynamics that are distinct between the sessions. Using a 10th order GDAR model 1082 
(c) results in reduced separability between sessions when compared to a 5th order model shown in Fig. 3e (similarly for1083 
a 10th order VAR model (d)). This is likely a result of the time scale of the paired stimulation (the onset of the second1084 
laser pulse occurs 5 ms after the offset of the first pulse) causing a mixing of the effects of the two lasers when fitting1085 
the models. (e) Averaging the flow signal over 20 consecutive trials before computing the low dimensional embedding1086 
does not a have negative affect on the dynamics. (f) PC reduced GDAR flow dynamics when constraining edges crossing1087 
the sulcus between M1 and S1 to exhibit a minimum signal propagation delay of 4ms. The dynamics are almost identical1088 
to the dynamics from the unconstrained GDAR model (Fig. 3e), suggesting that the stimulation induced communication1089 
dynamics uncovered by our model are robust to such constraints. (g), (h) The parameters of the 5th order GDAR and1090 
VAR model for all segments, blocks, and sessions were stacked into a single matrix and projected onto its first two PCs.1091 
Each dot represents the PC reduced parameters of a single 10 s segment used for model fitting. The parameters from the1092 
three different sessions are well separated in this low dimensional subspace for the GDAR model, but not for the VAR1093 
model where Session 2 and 3 are not separable.1094 
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1096 

Extended Fig. 3: Relation between average gamma GDAR flow and LFP power for the stimulation electrodes in the 1097 
Utah array dataset. The best linear regression lines are also shown (Single-stim: 𝑠𝑙𝑜𝑝𝑒 = −0.0692, 𝑝 = 0.827; Paired-1098 
stim 1: 𝑠𝑙𝑜𝑝𝑒 = 2.41, 𝑝 = 1.05𝑒 − 19; Paired-stim 2: 𝑠𝑙𝑜𝑝𝑒 = 2.15, 𝑝 = 2.1𝑒 − 43). The two paired stim sessions show 1099 
a strong linear relation between LFP and average GDAR flow power. Nevertheless, the GDAR flow power increases 1100 
due to stimulation beyond what can be explained by linear changes in LFP power. 1101 
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1103 

Extended Fig. 4: Replication of Fig. 5c and d for different frequency bands. Changes in communication are strongly 1104 
dependent on frequency, as well as the methods used for estimating it. However, some features such an increase in 1105 
communication in areas near the stimulation location in the ipsilesional hemisphere can be observed across multiple 1106 
frequency bands and methods. 1107 
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1109 

Extended Fig. 5: Extended plots for reach data shown in Fig. 6. (a) To better visualize the spatial frequency characteristic 1110 
of the gradient and rotational components, we compute the flow field (net-flow magnitude and direction at each node) 1111 
and potential field (divergence of flow at each node) (bottom) from the GDAR flow basis vectors 𝑉𝑔𝑟𝑎𝑑 and 𝑉𝑟𝑜𝑡 (top). 1112 
The example in (a) shows the gradient flow component corresponding to the 6th lowest frequency. (b) Average spectrum 1113 
of the gradient flow component (median and interquartile range) across all time points, trials and directions. Note that 1114 
the spectrum largely resembles white noise with a few stronger spectral components at the low, mid, and high frequencies. 1115 
(c) Flow and potential fields for three spectral components marked in (b). As the frequency increases, the flow becomes1116 
more disorganized with an increasing number of local sources and sinks and the overall divergence (measure of spatial1117 
frequency) increases. (d) and (e) Same as (b) and (c), but for rotational flow. The average rotational flow spectrum is1118 
primarily marked by an increase in power for some high-frequency components. (f) Correlation (median and interquartile1119 
range) between average gradient flow power (averaged over all spatial frequencies) and reach velocity for different delays1120 
between the neural signal and the recorded velocity. The maximum correlation occurs at 104 ms, which we assume to be1121 
transmission delay between motor commands in the brain and observable movements. (g) and (h) Average gradient and1122 
rotational power spectra for the 90° (up) and 225° (bottom-left) directions. The 90° direction shows a substantially larger1123 
increase in the low frequency gradient flow power, as well as rotational flow power across almost all frequencies than the1124 
225° direction, highlighting the directional tuning of the GDAR flow. (i) Directional tuning curves (quartiles, 1.5 times1125 
interquartile range, and outliers) for envelope of high gamma (70 − 200 Hz) filtered local field potential signal averaged1126 
over all recording electrodes. The same trend as for the GDAR flow alignment index (Fig. 6e) and average rotational1127 
flow power (Fig. 6f) can be observed, however differences between directions are not significant. (j) Correlation (median1128 
and interquartile range) between average gradient flow power and reach velocity during the last 100 ms prior to the go-1129 
cue. The median correlation of zero suggest that there is no residual movement occurring during that period that could1130 
explain the strong correlation between the alignment index and the reaction time in Fig. 6d. The monkey was instructed1131 
to hold his finger still on the center of the screen.1132 
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1133 

Extended Fig. 6: Applying the GDAR model to center-out reach data to study trial-by-trial variability of neural 1134 
communication. (a) To analyze the trial-by-trial variability, we mainly focus on direction 4 (top-left) as it showed a 1135 
greater reach variability than other directions. (b) The 25 reach trajectories of direction 4 were grouped into the five 1136 
fastest, 15 normal, and five slowest trials. The reach times during the fastest (slowest) trials range from 0.23 − 0.31 s 1137 
(1.43 − 8.19 s). The five slowest trajectories are very jagged either at the beginning or end of the reach. (c) Similar to 1138 
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the procedure described in Fig. 5, changes in GDAR flow power during reach compared to baseline were computed for 1139 
the high-gamma band (70 − 200 Hz) and are plotted for the five fastest, and slowest reach trials, respectively. Fast reach 1140 
t rials show a significantly stronger increase in GDAR flow power than slow trials. (d) The average change in high-1141 
gamma GDAR, VAR and CSD flow power is plotted against the reach time for each of the 200 trials (all directions). 1142 
While all metrics show a significant negative relation between the log of the reach time and the change in average flow 1143 
power, the GDAR model shows the highest |𝑅|, closely followed by the CSD flow. (e) Dominant GDAR flow patterns 1144 
(obtained via principal component analysis) for the five fastest and slowest reach trials of direction 4. (f) These GDAR 1145 
flow patterns naturally form two clusters where C1 contains fast and average trials and C2 the five slowest trials. (g) 1146 
Cluster centroids of C1 and C2. Fast reach trials correspond to a more coordinated GDAR flow pattern that involves 1147 
larger parts of the network, whereas slow reach trials exhibit a flow pattern that is mainly centered around a single node. 1148 

Supplementary Material: 1149 

Supplementary Table 2: p-values comparing GDAR and eVAR model for differences in Pearson correlation coefficients 1150 
(PCC) for the raw flow, PCC of the power spectral density (PSD) of the raw flow, and dynamical similarity analysis 1151 
(DSA) dissimilarity score for 16-node random graphs in Fig. 2b, d, and e, as well as PCC of the raw flow for the 16-1152 
node grid graph in Extended Fig. 1d. We used one-sided Wilcoxon rank-sum tests with the alternative hypothesis that 1153 
the GDAR model outperforms the eVAR model. 1154 

Model 

order 

PCC raw flow – 16-

node random graphs 

PCC PSD of raw flow 

– 16-node random 

graphs 

DSA dissimilarity – 

16-node random 

graphs 

PCC raw flow – 16-

node grid graph 

2 0.999999988 0.74 0.373 1.0 

4 0.93 0.51 0.157 1.0 

6 0.617 0.167 0.397 1.0 

8 0.509 0.201 0.728 1.0 

10 0.179 0.132 0.916 0.955 

12 0.0104 0.0693 0.99 0.19 

14 6.17 ⋅ 10−8 0.0133 0.99939 8.05 ⋅ 10−8 

16 4.32 ⋅ 10−19 4.41 ⋅ 10−4 0.999995 2.35 ⋅ 10−23 

18 1.17 ⋅ 10−27 1.12 ⋅ 10−5 0.9999988 8.21 ⋅ 10−40 

20 1.41 ⋅ 10−28 1.53 ⋅ 10−6 0.9999967 3 ⋅ 10−44 

22 2.13 ⋅ 10−25 1.12 ⋅ 10−7 0.987 2.33 ⋅ 10−42 

24 9.06 ⋅ 10−23 4.88 ⋅ 10−7 0.806 4.59 ⋅ 10−43 

26 1.47 ⋅ 10−22 2.88 ⋅ 10−6 0.536 1.25 ⋅ 10−46 

28 1.2 ⋅ 10−21 1.03 ⋅ 10−5 0.147 6.56 ⋅ 10−50 

30 9.54 ⋅ 10−19 1.5 ⋅ 10−5 0.134 4.58 ⋅ 10−49 

 1155 

Supplementary Table 3: p-values for differences in Pearson correlation coefficients shown in Extended Fig. 1e and f. For 1156 
“GDAR vs. eVAR”, the alternative hypothesis is that the GDAR model outperforms the eVAR model. For “eVAR 1157 
bidirectional vs. eVAR unidirectional”, the alternative hypothesis is that the bidirectional outperforms the unidirectional 1158 
VAR flow. We used one-sided Wilcoxon rank-sum tests. 1159 

Model order GDAR vs. eVAR eVAR bidirectional vs. eVAR unidirectional 

1 0.118 0.985 

2 0.9997 0.99904 

3 0.176 0.8 

4 0.719 0.987 

5 0.121 0.954 

6 0.457 0.961 

7 0.00497 0.871 

8 0.0161 0.834 

9 8.26 ⋅ 10−8 0.793 
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10 8.24 ⋅ 10−8 0.619 

11 3.06 ⋅ 10−10 0.662 

12 6.31 ⋅ 10−9 0.577 

13 2.1 ⋅ 10−10 0.602 

14 8.03 ⋅ 10−10 0.508 

15 5.28 ⋅ 10−9 0.491 

 1160 

Supplementary Table 4: p-values (one-sided Wilcoxon rank-sum test) for tuning curves in Fig. 6e and f. Only significant 1161 
comparisons are shown. All p-values are corrected for multiple comparisons via the Bonferroni method. 0° and 90° 1162 
correspond to the right and top direction, respectively. 1163 

Gradient spectrum alignment index (Fig. 6e) Rotational spectrum average spectral power (Fig. 6f) 

90° - 0°: 0.0165 45° - 225°: 0.0165 

90° - 225°: 4.42 ⋅ 10−5 90° - 225°: 7.04 ⋅ 10−6 

90° - 270°: 0.00111 135° - 225°: 4.42 ⋅ 10−5 

 180° - 225°: 0.00455 

 315° - 225°: 4.42 ⋅ 10−5 

 1164 

Supplementary Table 5: p-values (one-sided Wilcoxon rank-sum test) for differences in generalization gap between GDAR 1165 
and VAR model for four electrophysiological datasets in Fig. 7c. 1166 

Opto Reach Rest Utah Rest ECoG 

8.27 ⋅ 10−16 1.76 ⋅ 10−60 4.05 ⋅ 10−40 2.37 ⋅ 10−5 

 1167 

Supplementary Notes: 1168 

Modeling signal propagation delay across sulcus for optogenetic stimulation experiment: The 1169 

GDAR model can also be adapted to model longer signal propagation paths between specific 1170 

nodes in the network. For example, this may be the case for connections across the sulcus that 1171 

separates M1 and S1. To model this, we have constrained the GDAR model to enforce a 1172 

minimum propagation delay of 4 ms for all edges that connect nodes in M1 with nodes in S1 1173 

(see Methods). The evolution of the GDAR flow for Session 1 averaged over all trials is shown in 1174 

Supplementary Video 2 and is similar to the dynamics observed in Fig. 3d and Supplementary 1175 

Video 1, but with noticeably less flow across the sulcus. The PC reduced flow dynamics across 1176 

all sessions are shown in Extended Fig. 2f and are almost identical to the dynamics shown in 1177 

Fig. 3e, suggesting that adding signal propagation constraints to the model does not negatively 1178 

impact the sensitivity of the GDAR flow signal to the stimulation parameters. 1179 
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