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Inferring Neural Communication Dynamics from Field Potentials
Using Graph Diffusion Autoregression

Felix Schwock!'3" Julien Bloch?3, Karam Khateeb??, Jasmine Zhou??, Les Atlas!, Azadeh
Yazdan-Shahmorad®?#*

Estimating dynamic network communication is attracting increased attention,
spurred by rapid advancements in multi-site neural recording technologies and efforts
to better understand cognitive processes. Yet, traditional methods, which infer
communication from statistical dependencies among distributed neural recordings,
face core limitations: they do not incorporate possible mechanisms of neural
communication, neglect spatial information from the recording setup, and yield
predominantly static estimates that cannot capture rapid changes in the brain. To
address these issues, we introduce the graph diffusion autoregressive model. Designed
for distributed field potential recordings, our model combines vector autoregression
with a network communication process to produce a high-resolution communication
signal. We successfully validated the model on simulated neural activity and
recordings from subdural and intracortical micro-electrode arrays placed in macaque
sensorimotor cortex demonstrating its ability to describe rapid communication
dynamics induced by optogenetic stimulation, changes in resting state
communication, and neural correlates of behavior during a reach task.

Introduction

The coordinated interactions across different brain networks and subnetworks underlies cognitive
processes!' 6
10 Despite this demonstrated importance, we still do not fully understand how brain networks

, and disruptions of these interactions are linked to a range of neurological disorders’™

perform computations through the coordinated signaling of connected neurons and neural
populations during natural behavior, following a disease or injury, or as the result of rehabilitative
intervention. The development of new electrophysiological recording technologies such as large-
scale micro-electrode arrays provides unique opportunities for measuring brain network activity

simultaneously over multiple areas with high spatial and temporal resolution!'! 16

A common signal extracted from subdural and intracortical micro-electrode arrays is the local
field potential (LFP), which describes voltage fluctuations in the extracellular space of neuronal
tissue. For these signals, the most common approach for estimating neural communication is
through functional connectivity (FC) analysis'?!®. In general, FC measures define neural
communication as the undirected (symmetric) or directed (asymmetric) statistical dependence
between different measurements that can be inferred directly from data using either model-free
approaches or very general model classes such as vector autoregressive (VAR) models' 22. While
these techniques are a popular choice for electrophysiology analysis, they predominantly yield
static estimates of neural communication. Additionally, they rarely incorporate information about
the structural network connectivity of the underlying brain region, particularly when analyzing
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recordings from high-resolution intracranial electrophysiology arrays. Lastly, most FC metrics stem
from general-purpose statistical methods that have found widespread use across many scientific
disciplines, but critically lack mechanistic assumptions relevant to modeling neural
communication.

In contrast to heavily data-driven FC analysis, neural interactions can also be modeled using tools
from dynamical systems theory that incorporate knowledge about the mechanisms through which
different neural populations interact??*. For field potentials, a popular technique are neural field
models that use a combination of differential equations to model temporal dynamics and integrals
to incorporate spatial interactions?. Such models can generate neural dynamics that match
empirical observations, such as the wave-like propagation of oscillatory activity observed in the
25,26 Furthermore, these ideas have been extended to model the flow of
information across brain networks for example via structurally guided diffusion?”. However, these
models are typically not used in a data-driven framework, where functional interactions are
directly inferred from measured neural activity.

sensorimotor cortex

Here we propose a new technique for estimating dynamic neural communication that 1) naturally
incorporates the spatial layout of the recording array and the local connectivity structure of the
cortex®® as a structural prior, 2) integrates a mechanism of neural communication into a data-
driven FC model, and 3) produces a highly dynamic information flow signal that can be used to
study transient network events. Specifically, we combine the classical autoregressive framework for
the treatment of temporal dynamics with the graph Laplacian of a predefined structural

2 Because the graph Laplacian is

connectivity graph to incorporate network interactions
commonly used to model diffusion processes on networks*’, we refer to our approach as the graph
diffusion autoregressive (GDAR) model. To the best of our knowledge, the GDAR model is the
first approach to integrate the above three aspects — structural priors, a mechanism of neural

communication, and a highly dynamic information flow signal — into a single data-driven model.

To demonstrate the utility of our framework, we tested the GDAR model on five, highly diverse
datasets. First, using synthetic data from various networks of Wilson-Cowan oscillators we
demonstrate that the high-resolution communication signal estimated by our model aligns with
the simulated interactions more accurately than standard VAR models. Next, using three micro-
electrocorticography (UECoG) and one Utah array dataset we demonstrate that the GDAR model
can be used to uncover transient communication dynamics evoked during cortical optogenetic
stimulation, uncover neural correlates of a monkey’s reach behavior that are dependent on the
spatial frequency, and analyze changes in resting state neural communication after electrical
stimulation. We show that the GDAR model outperforms standard VAR models and other FC
measures and provides insights that cannot be obtained by other models. Finally, we show that
the GDAR model better generalizes to unseen data than VAR models.

Results

Graph diffusion autoregressive (GDAR) model. An overview of the GDAR model is shown
in Fig. 1 and a more detailed mathematical description can be found in Methods. First, the
electrode layout of the recording array is used to construct a sparse and locally connected graph,
with each electrode representing a node and with edges connecting nearby nodes Fig. 1a left). This
graph serves as a structural prior that incorporates information about the local connectivity of
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82  the cortex into the model?®. By modeling the spatiotemporal evolution of neural activity observed
83  at the nodes of the graph as a parameterized diffusion process, the GDAR model transforms the
84  neural activity into a directed communication or information flow signal defined on the graph
85  edges (Fig. 1a right). This communication signal, which we will refer to as GDAR flow, describes
86  the moment to moment signaling between the nodes. Unlike classical functional connectivity
87  analysis, which aggregates information over multiple time points thereby estimating an average
88  information flow, the GDAR model transforms the neural activity at each time point into a flow
89  signal without losing temporal resolution. Therefore, it can be used to study transient
90 communication events in the brain.

91  As with VAR models, the GDAR model can be formalized as a predictive model with order p,
92  which describes the number of lags used for predicting future neural activity. A model order of
93  p =1 describes a classic graph diffusion process, where temporal changes in neural activity are
94  driven by the discrete approximation of the surface Laplacian, i.e., the second spatial derivative
95 (see Eq. (3) in Methods). Increasing the model order increases the capacity of the model and adds
96 “memory” to the diffusion process, thus offering the increased ability to model complex
97  spatiotemporal neural dynamics. An overview of the p® order model is shown in Fig. 1b and c.
98  The neural activity at time t at each node s;[t] is modeled using a linear combination of its own
99  p past samples plus the time varying GDAR flow from all neighboring nodes:

Zm%}sl I+ Y f .

JeN(®

100  The GDAR flow fJ} between node i and j is given by a linear combination of the p past activity
101  gradients between the two nodes (Fig. 1c; see Methods for more details)

Fl ] Zw,i”}(sjt— - st — k]) %)

102  and can be positive or negative, depending on whether information flows into or out of node i.

103  The node and edge parameters of the GDAR model m,{(i} and Wki'j } can be estimated from neural
104  recordings using linear regression (see Methods) and are assumed to be static within a predefined
105  time window.

106  Computing the second spatial derivative is equivalent to computing the current source densities
107  (CSDs), which is a popular technique for analyzing field potential recordings obtained from
108  technologies such as ECoG or electroencephalography (EEG)3132. Therefore, the GDAR model

109 can also be considered a combination of CSD analysis and VAR model. For field potential

110  recordings the model parameters W{U}, ...,Wéi’j} can be interpreted as conductivities such that

111  voltage gradients multiplied by conductivity yields current flow. Summing the current flows at
112 each node is analogous to computing the current sources and sinks in CSD analysis.
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Fig. 1: Overview of the graph diffusion autoregressive (GDAR) model. (a) The recording array is used to form a
sparse, locally connected graph, where each electrode represents a node, and edges connect neighboring nodes. The
GDAR model then transforms the neural activity observed at the nodes into a directed flow signal defined on the
graph edges, representing the real-time signaling between nodes. (b) The model incorporates an order p autoregressive
system, where at time t each node's neural activity is modeled using a combination of its past p samples and the
flow from all adjacent nodes. (¢) The directed GDAR flow at time t between node i and j, denoted as et is
calculated as the weighted sum of the previous p activity gradients between these nodes. In analogy to current source
density analysis, the edge parameters Wl{i’j},...,wzgi'j} can be interpreted as conductivities for local field potential
measurements, such that conductivity times potential gradient yields a current flow. The model parameters are
assumed to be static within a particular time window and can be estimated using linear regression (see Methods).
(d) The GDAR flow can be used to study transient communication events, for example due to cortical stimulation.
(e) For resting state recordings, power spectral density estimates of the GDAR flow signal can be used to study
frequency band specific communication patterns. (f) and (g) Akin to classical Fourier analysis for time series, the
GDAR flow signal can also be decomposed into gradient (directional) and rotational flow modes of different spatial
frequency to study the smoothness and spatial composition of the flow signal across the network.

113 The high temporal resolution of the GDAR flow signal f{/3[t] is ideal to study transient signaling
114  events. For example, the propagation of neural activity due to cortical stimulation can be tracked
115 by concatenating consecutive time steps of f {L7}[t] and analyzing its spatiotemporal evolution
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116  (Fig. 1d). Alternatively, the model can be applied to resting state recording in which case it may
117  be reasonable to compute the power spectrum of f {L}¢]. This results in a similar frequency
118  decomposition as is typical for VAR based FC measures (Fig. le) with the distinction that the
119 GDAR flow power spectrum is determined by magnitude and phase differences between
120  neighboring channels that are modulated by the Fourier transform of the model parameters (see
121  Methods) whereas VAR based FC measures only utilize the model parameters for the spectral
122 representation.

123  Furthermore, modeling neural communication on top of a graph allows us to use recently
124  developed theory from signal processing over simplicial complexes?? 3° to decompose the GDAR
125  flow signal into gradient (directional) and rotational modes of different spatial frequencies (Fig. 1f
126  and g and Methods). The resulting gradient and rotational flow spectra can be used to quantify
127  the degree of smoothness or coordination of the neural signaling (e.g., flow spectra with stronger
128  low-frequency components are considered to represent more coordinated signaling).

129 The GDAR model outperforms VAR models in inferring communication dynamics in
130 a network of coupled Wilson-Cowan oscillators: To assess the accuracy of the GDAR flow,
131  we fit the model to simulated data generated by 10 randomly connected 16-node networks of
132 coupled Wilson-Cowan oscillators (Fig. 2 and Extended Fig. 1). The networks are used to generate
133  a ground truth neural flow signal, as well as simulated neural activity, which is used to fit GDAR
134  and VAR models of varying model orders (see Methods for more details). In contrast to the GDAR
135  model, VAR models assume no structural connectivity and may find communication links between
136  any pair of nodes in the network even if these nodes are not directly connected. Therefore, we also
137  compare the GDAR model to a VAR model with access to the ground truth structural connectivity
138  network, denoted as enhanced VAR (eVAR) model (see Methods). GDAR and eVAR model only
139  differ in the aspect that the neural flow for the latter one is not driven by spatial activity gradients,
140  but rather by the neural activity itself. All models are used to transform the simulated neural
141  activity into a neural flow signal, which is compared to the ground truth neural flow using various
142 metrics (Fig. 2a). Furthermore, we estimate the neural flow using the CSD approach and compare
143 it to the ground truth flow.

144  First, we compare the Pearson correlation coefficients (PCCs) between ground truth and estimated
145 flow from GDAR, VAR, and eVAR models, as well as the CSD approach and found that the
146  GDAR model significantly outperforms all other models for model orders p > 12 (Wilcoxon rank-
147  sum test, p < 0.05), thus providing the most accurate estimate of the true neural flow dynamics.
148  (Fig. 2b). We found the same result holds on two additional network structures — a 7-node locally
149  connected graph and a 16-node grid graph that has a connectivity structure similar to the one we
150  assume for our electrophysiology datasets below (Extended Fig. 1).

151  Despite the superior performance of the GDAR over the competing models, the amount of
152  correlation between estimated and ground truth flow is relatively low for all models. In principle,
153  this can arise from amplitude and phase mismatches between the signals. We investigated this by
154  transforming the ground truth and estimated flow into the frequency domain followed by
155 computing magnitude and phase differences, as well as correlation coeflicients between the
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156  magnitude spectra. We found that the GDAR model exhibits consistently lower magnitude errors
157  than the VAR and eVAR models for all frequencies and lower phase errors for frequencies below
158 50 Hz (Fig. 2c). Furthermore, for all models and model orders, correlations between the estimated
159  and ground truth magnitude spectra were significantly higher compared to those between their
160  corresponding time series (Fig. 2d). This suggests that all models have the capacity to accurately
161  capture magnitude features of the flow signal.

162 A notable observation is that the spectral magnitude of the ground truth flow is well approximated
163 by lower order VAR, eVAR, and GDAR models. Specifically, the median correlation between
164  estimated and ground truth spectral magnitude for VAR and eVAR models decreases with
165  increasing model order. In contrast, the correlation for the GDAR model reaches another local
166  maximum at higher orders, where it significantly outperforms the other two models (Fig. 2d).
167  Despite this second maximum, the highest median correlations for the GDAR model still occur at
168  low model orders, which contrasts with the results shown in Fig. 2b and suggest that low-order
169  models are sufficient for approximating parts of the communication dynamics. At the same time,
170  because low-order models rely on fewer past time steps for predicting future activity, they may
171  have limited capacity to capture more complex spatiotemporal dynamics that are not fully
172 reflected in spectral magnitude alone. To quantify the ability of our model to capture complex
173  spatiotemporal dynamics, we used a recently developed tool from dynamical systems theory, called
174  dynamical similarity analysis (DSA)36, which uses dynamical mode decomposition and shape
175  analysis to provide a dissimilarity score between two (high-dimensional) time series (see Methods).
176  Indeed, we found that with increasing model order the accuracy in capturing the spatiotemporal
177  dynamics improves for all models (decreased DSA dissimilarity score) before plateauing at an
178  order around p = 26 (Fig. 2e). Hence, to accurately capture the complex dynamic properties of
179  the flow signal, higher order models are needed. For these higher orders, the GDAR model
180  significantly outperforms the VAR and eVAR models in terms of correlations between estimated
181  and ground truth flow in both time and frequency domain (Fig. 2b, and d).

182  Application of GDAR model to electrophysiological recordings: To show the versatility
183  of the GDAR model to analyze communication dynamics evoked by cortical stimulation, during
184  behavior, and at rest, we have applied the model to electrophysiological recordings from four
185  separate experiments that either use a uECoG array (3 datasets) or a Utah array (1 dataset) to
186  record LFPs from the sensorimotor cortex of macaques. For all datasets, the layout of the
187  recording array was first used to construct a locally connected and sparse graph, where each node
188  corresponds to a recording channels (see Fig. 3 -Fig. 5). Next, GDAR models of different orders
189  were fit to the recorded LFPs. The resulting model coefficients were then used to transforms the
190 LFPs into GDAR flow signals, which were post-processed depending on the experimental setup.
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Fig. 2: Evaluation of the GDAR model's accuracy in capturing neural communication dynamics using networks of
Wilson Cowan oscillators. (a) 10 randomly connected 16-node toy networks were used to simulate neural activity at
each network node as well as compute a ground truth flow across each edge (see Methods). The estimated neural
actiity is transformed into the estimated neural flow signal using GDAR, VAR, and eVAR (VAR model with
knowledge of the structural connectivity) models of different model orders, as well as the CSD approach. Ground truth
and estimated neural flow are then compared using various metrics. (b) Distribution (medians, upper and lower
quartiles) of the Pearson correlation coefficient (CC) using data from 100 independent simulation trials (10 per
network) pooled over all graph edges between ground truth and estimated neural flow for varying model orders. The
GDAR model significantly outperforms all other models for orders p = 12, thus providing the most accurate overall
estimate of the ground truth flow (¢) Magnitude and phase difference between the spectrum of ground truth and
estimated flow (median, upper and lower quartile). The GDAR model shows consistently lower magnitude errors for
all frequencies and phase errors below 50 Hz. (d) Same as in (b) but now comparing the power spectral density (PSD)
of the estimated and ground truth flow. The GDAR model again significantly outperforms the other models for higher
model orders. (e) Dissimilarity scores between estimated and ground truth flow signals obtained via dynamical
similarity analysis (DSA) to assess the accuracy of the estimated flow dynamics. Low dissimilarity scores for high
model orders (p = 26) suggest an accurate estimation of the flow dynamics by all three models. All statistical tests
use Wilcoxon rank-sum tests at a significance level p < 0.001. Significance markers compare GDAR with e VAR model.

Ezact p-values can be found in Supplementary Table 1.
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191 The GDAR model uncovers communication dynamics evoked by cortical optogenetic stimulation:
192  First, we show that the GDAR model can uncover fast, stimulation induced communication
193  dynamics that match the experimental protocol. To do so we use three sessions from an
194  optogenetic stimulation experiment performed in macaques, where two lasers repeatedly
195  stimulated different locations of the primary motor (M1) and somatosensory (S1) cortex expressing
196  the opsin C1V1, and fit a 5 order GDAR model to the LFPs recorded by a 96-channel uECoG
197  array during stimulation (see Fig. 3a-c and Methods)!!3738. GDAR flow signals averaged over all
198  stimulation trials in the milliseconds before and after stimulation for Session 1 are shown in Fig.
199  3d and Supplementary Video 1. When the network is at rest, flow levels across the network are
200  small. Activation by the first laser located in M1 causes the GDAR flow to immediately increase
201  near the stimulation location before spreading further into the network and reaching S1. After the
202  second laser was activated, the flow increases near the second stimulation location and spreads

203  into most parts of the network within the next few milliseconds.

204 It is apparent from Fig. 3d that the GDAR flow exhibits complex spatiotemporal dynamics within
205  milliseconds after stimulation. To test how these dynamics depend on the stimulation pattern, we
206  project the high-dimensional flow signal from three sessions, which only differ in their stimulation
207  location (see Fig. 3b), onto their first two principal components (PCs) and compare the flow
208  dynamics in this lower dimensional subspace (see Methods). We found that these low dimensional
209 communication dynamics are very consistent within each session and strongly differ between
210  sessions (Fig. 3e). Furthermore, the communication dynamics show some remarkable similarities
211  with the stimulation patterns. For Sessions 1 and 2, where the flow trajectories largely align in
212 the PC space, the stimulation patterns are similar in that the second stimulation occurs to the
213 top right of the first stimulation. On the other hand, for Session 3, which results in flow trajectories
214 orthogonal to Session 1 and 2, the second stimulation occurs to the top left of the first stimulation.
215  Furthermore, the magnitude of the PC reduced GDAR flow dynamics is noticeably smaller for
216  Session 2 compared to Sessions 1 and 3. This might be a result of the spatial separation between
217  Laser 1 and 2, which is smallest for Session 2. Our findings extend previous work showing that
218 LFP power in monkeys and humans distinctly depend on stimulation parameters such as

219  amplitude and frequency3°4.

220  We also tested whether the VAR or CSD flow, or node signal like raw LFPs or its second spatial
221  derivative, which resembles traditional current source density, can uncover dynamics that depend
222 on the stimulation pattern but found that this is not the case (Fig. 3f and g, and Extended Fig.
223 2). Perhaps it is not surprising that the raw LFPs or simple, model-free transformations thereof
224 (CSD flow, second spatial derivative of raw LFP) fail to describe stimulation dependent dynamics
225 using PC analysis as these signals may be dominated by noise and non-stimulation specific
226  variation. Autoregressive models on the other hand may effectively filter out some of these non-
227  stimulation noise sources. Our results suggest that the GDAR model is more effective at
228  uncovering such transient stimulation-dependent communication dynamics compared to standard
229 VAR models. We also note that the dependence on the stimulation location can be observed when
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Fig. 3: GDAR model applied to optogenetic stimulation experiment to study transient communication events. (a)
LFPs from the primary motor (M1) and somatosensory (S1) cortex of a signal non-human primate were recorded
using a 96-channel micro-ECoG array, while repeated paired stimulation was performed using two lasers (modified
from Bloch et al.?%). (b) The relative positions of the electrodes after rejecting bad channels and the locations of the
two lasers are shown at the top for the three sessions that were analyzed in this work. The location of the sulcus
between M1 and S1 is approzimated by the thick gray line. The electrode array was not moved between the sessions.
At the bottom, the stimulation protocol is shown. Each laser stimulates alternatingly for 5 ms, with a 10 ms delay
between stimulation by Laser 1 and 2. This paired stimulation is repeated every 143 ms. Each stimulation block lasts
approximately 7 min and is intermitted shorter long resting blogs during which no stimulation is performed. (c) The
recording array is used to construct a sparsely connected graph and the recorded LFPs are then transformed into a
flow signal using a 5 order GDAR model. (d) The GDAR flow for Session 1 averaged over all stimulation blocks
and trials is shown for different time steps before (first plot) and after (remaining four plots) onset of stimulation
from the first laser. The graphs suggest complex spatiotemporal signaling patterns evoked by cortical stimulation. (e)
Flow snapshots from the first 25 ms after onset of the first laser stimulation for all trials, blocks, and sessions were
stacked into a single matriz and the flow snapshots were projected onto its first two principal components (PCs).
The PC reduced GDAR flow trajectories for different sessions are indicated by different colors. Average trajectories
are shown as black solid lines with markers indicating different times point after the onset of stimulation by the first
laser. Thin colored lines show trajectories by individual paired pulse trials. The plot highlights that GDAR flow
trajectories are very consistent within and distinct between sessions, demonstrating that transient communication
dynamics depend on the stimulation parameters. (f), (g) PC reduced flow trajectories similar to (e) but using a 5"
order VAR model and the CSD approach. In contrast to the GDAR flow, VAR and CSD flow do not exhibit
significant time and session dependent dynamics, thus, highlighting the utility of the GDAR model in stimulation
induced transient communication dynamics.
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230  plotting a low-dimensional representation of the model parameters itself, where the GDAR model
231 shows a stronger separation between sessions than the VAR model (Extended Fig. 2). Finally, the
232 model can also be adapted to model longer signal propagation paths between specific nodes in the
233 network as it would be reasonable to assume for connections across the sulcus between M1 and
234 S1 (see Extended Fig. 2, Supplementary Video 2, and Supplementary Note).

235 The GDAR model can track changes in resting state neural communication that are consistent
236  across experiments and recording modalities: Like classical FC analysis, the GDAR model can be

237  utilized to study frequency specific changes in neural communication from resting state recordings.
238  We demonstrate this using two distinct electrical stimulation experiments that employ either
239  intracortical recordings via a 96-channel microelectrode array (Utah array) or subdural recordings
240  via two 32-channel ECoG arrays (Fig. 4 and Fig. 5). For both experiments, repeated electrical
241  stimulation of the macaque sensorimotor cortex is performed for 10-minute blocks at a time either
242 at a single site or alternatingly at two sites (paired-stim), and resting state neural activity is
243 recorded before, after, and between the stimulation blocks. Changes in gamma (30-70 Hz) flow
244  power due to stimulation are estimated via 10" order GDAR models and tested for statistical
245  significance (significance level p < 0.01; two-sample Kolmogorov-Smirnov test) (see Methods).

246  For the Utah array data we analyzed recordings from three separate sessions that employ either
247  single site or paired stimulation. For single site stimulation, we observe an increase in GDAR flow
248  power proximal to the stimulation site (Fig. 4b, left). For paired stimulations, a localized increase
249  was only observed near the first stimulation site (Fig. 4b, middle and right), with no notable
250  changes near the second site. We quantified this increase by computing the average flow magnitude
251  over all edges connected to the stimulation site and adjusted it for changes in LFP power (Fig.
252 4c-e; also see Methods and Extended Fig. 3). Across all sessions, stimulation led to a sustained
253  increase in resting-state communication near the first stimulation site above baseline levels.
254  Notably, for paired stimulation sessions, this augmented communication persisted for at least 17
255  minutes following the final stimulation block.

256  For the ECoG data we analyzed changes in resting state neural communication due to single-site
257  electrical stimulation performed during the acute phase after focal ischemic lesioning of the
258  macaque sensorimotor cortex (Fig. 5a and b). In the ipsilesional hemisphere, gamma GDAR flow
259  power increases locally near the stimulation site and decreases across other parts of the network
260  (Fig. 5¢). In the contralesional hemisphere, this effect is weakly mirrored, as we observe an increase
261 in GDAR flow power for some edges in the area corresponding to stimulation in the ipsilesional
262 hemisphere but not across the entire network. Similar patterns can be observed for changes in
263  CSD flow power. On the other hand, VAR flow power suggest increased communication within
264  both hemispheres, showing that the GDAR model can describe changes in resting state
265 communication that are not captured by the VAR model. The changes in GDAR flow power from
266  the ECoG dataset are also consistent with our finding from the Utah array dataset, underscoring
267 the GDAR model's ability to robustly capture neural interactions across different experimental
268  and recording modalities.
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Fig. 4: Application of GDAR model to LFP data recorded from a macaque monkey using a Utah array during a

sparse graph as input to the GDAR model. Electrode A and B are used for single site and paired stimulation. For
paired stimulation, electrode A stimulates before electrode B. (b) Changes in gamma (30-70 Hz) GDAR flow power
due to stimulation are shown for three separate sessions. For the single-stim session, only electrode B stimulates.
For the paired-stim sessions, electrode A and B stimulate repeatedly and alternatingly for a total of 50 minutes
divided into five 10min blocks (see Methods for more details on the stimulation protocol). An increase in gamma
GDAR flow power near the first stimulation location can be observed for all sessions. (¢)-(e) Temporal evolution of
the normalized gamma GDAR flow power averaged over all edges adjacent to the first stimulation site for all three
sessions. The 2-minute blocks immediately after stimulation are highlighted in red. The gamma GDAR flow power
has been corrected for linear changes in LFP power at the stimulation site (see Methods). For the paired stimulation
sessions, the GDAR flow power remains elevated even after the stimulation period ends.

269  Finally, for the ECoG dataset we have compared our results with changes of three traditional FC
270  measures: gamma coherence, gamma partial directed coherence (PDC), and gamma directed
271 transfer function (DTF) (Fig. 5d). Note that in contrast to the GDAR model and CSD approach,
272 coherence and VAR based measures assumes fully connected graphs, which typically results in
273  much denser communication networks. In the ipsilesional hemisphere we found that PDC and
274  DTF most closely agree with the results from the GDAR model, with the main difference that
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Fig. 5: Analyzing changes in resting state neural communication following electrical stimulation in the acute phase
after ischemic lesioning using various flow and FC measures. (a) Two 32-channel ECoG arrays were placed over the
left and right hemisphere of a macaque monkey and an ischemic stroke lesion was induced in the left hemisphere
using the photothrombotic technique (see Methods). The estimated lesion size is indicated by the red patch in the
center of the left hemisphere. One hour after lesioning, electrical stimulation was performed approzimately 8 mm
away from the lesion location. Neural activity was recorded before and after stimulation to assess the effects of
stimulation on network connectivity in the acute phase after stroke. (b) The locations of the electrodes were used to
construct two locally connected sparse graphs. (c) Similar to previous applications, 10" order GDAR and VAR
models, as well as the CSD approach were used to transform the recorded neural activity before and after stimulation
into neural flow signals. Next, power spectra of the flow signals were estimated and changes in gamma (30 — 70 Hz)
flow power due to stimulation were computed. The changes in gamma flow power (in percent) are shown as undirected
edges. Only changes with a significance threshold of p < 0.01 (two-sample Kolmogorov-Smirnov test) are shown. The
lesion location is indicated by the black patch and the stimulation location is shown by the yellow marker. The plots
show a local increase in GDAR gamma flow power in the ipsilesional hemisphere near the stimulation location. (d)
Same as (c) but instead using coherence, partial directed coherence (PDC), and directed transfer function (DTF)
to assess changes in neural communication. Similar to the GDAR flow, PDC and DTF increase for connections with
the stimulation location. However, in contrast to the GDAR flow, these changes are less localized and instead affect
communication across the entire network.

275 changes in communication by these two measures affect larger parts of the network. In the
276  contralesional hemisphere, PDC and DTF changes are somewhat opposing the GDAR flow
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277  changes. We note that the patterns observed in Fig. 5¢ and d are highly frequency dependent (see
278  Extended Fig. 4).

279 The GDAR flow shows frequency specific correlations with reach velocity and exhibits directional
280 tuning during a center-out reach task: Previous studies have shown that reach movements have
281  strong neural correlates in M1 that can be detected from single neuron recordings as well as

282  intracortical and surface field potentials?! 46, Using uECoG recordings from M1 of a macaque
283  monkey performing a center-out reach task (Fig. 6a), we show that the GDAR model can be used
284  to study such neural correlates of behavior on the level of network dynamics. To do so, we leverage
285  the graph spectral decomposition of the GDAR flow signal described above and in Methods to
286  decompose the high-gamma GDAR flow into its gradient and rotational flow spectrum (Extended
287  Fig. ba-e). An example of the time-varying flow spectra for a single reach trial along with the
288  corresponding reach velocity is shown in Fig. 6b. Furthermore, using data from all directions and
289  trials, Fig. 6¢ shows how the spectral power time series at each spatial frequency correlates with
290 reach velocity. We found that an increase in reach velocity generally correlates with increases in
291  gradient and rotational flow power. Remarkably, the increase in gradient flow power is most
292  pronounced only for the 15 lowest spatial frequencies. In contrast to higher frequencies, such low-
293 frequency flow patterns are more coherent across the graph (see Extended Fig. 5b for examples),
294  suggesting that coordinated activity across a larger cortical area facilitates reach movements. We
295  also observed a similar phenomenon when studying the trial-to-trial variability of the GDAR flow
296  for a single reach direction (see Extended Fig. 6).

297  To quantify the extent to which the gradient flow spectrum is dominated by low frequencies, we
298  defined the alignment index, which is computed as the ratio of the average power within the 15
299  lowest spatial frequencies to the average power within the 15 highest spatial frequencies (see
300 Methods). The alignment index shows strong directional tuning with a preference for the 90° (up)
301  and 135° (up-left) directions (Fig. 6d, and Extended Fig. 5g) and a similar cosine characteristic as
302  reported in the literature for other recording modalities?!#245. We also observe a similarly strong
303  directional tuning characteristic for the average power of the rotational spectrum (Fig. 6e and
304 Extended Fig. 5h). In contrast, the directional tuning for the high-gamma envelope of the raw
305 LFP signal averaged across all channels is significantly weaker (Extended Fig. 5i). This suggests
306 that latent patterns of network activity extracted by the GDAR model rather than overall changes
307 in signal power are better correlated with different behaviors.

308 Finally, we investigated if spectral network features derived from the GDAR flow are correlated
309 to preparatory activity prior to movement onset. We found that the gradient flow alignment index
310 computed during the last 100 ms prior to the go cue shows a strong negative correlation with the
311  reaction time, which is defined as the time between go cue and initiation of movement (Fig. 6f).
312 This effect cannot be explained by any potential premature movements (Extended Fig. 5j). These
313  findings suggest that the degree of neural coordination as captured by the GDAR flow alignment
314  index does not only predict how fast movements are performed, but also how well the monkey is
315  prepared at the start of the go cue.

316
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Fig. 6: Applying the GDAR model to ECoG recordings during a center-out reach tasks. (a) A rhesus macaque
monkey performed an eight directional reach tasks with 25 trials per direction while LFPs were recorded using a 906-
channel micro-ECoG array placed over the primary motor cortex. The GDAR flow was computed for each reach
trial, bandpass filtered between 70 — 200 Hz, and decomposed into its gradient and rotational spectrum for each time
bin (see Methods). (b) Gradient and rotational spectrogram for a single reach trial. The black line shows the reach
velocity. During the reach we observe an increase in rotational flow power across all frequencies and gradient flow
power for low spatial frequencies. (¢) Correlation (median and interquartile range) between reach velocity and flow
spectral power for all spatial frequencies pooled across all trials and directions. Low-frequency gradient flow
components show the highest correlation with reach velocity suggestion more activity is coordinated across the brain
network during reaching. (d) Alignment index, defined as the ratio of the 15 lowest to the 15 highest gradient flow
spectral coefficients for all eight reach directions (shown are quartiles, 1.5 times the interquartile range, and outliers).
The alignment index forms a cosine-like tuning curve with a preference for the 90° (up) and 185° (up-left) directions.
(e) Same as in (d) but for the average rotational flow power. (f) Reaction time, defined as the time between the go
cue and movement onset, as a function of the gradient spectrum alignment index during the last 100 ms before the
go cue. The strong negative correlation suggests that more coordinated network activity a faster reaction time
(correlation coefficient: —0.674; p-value: 7.99 - 10728).

317 The GDAR model generalizes to unseen data better than VAR models: To test the
318 GDAR model’s ability to generalize to unseen data, we evaluate the model’s one-step ahead
319  prediction performance on data that were not included for estimating its parameters. Using the
320 simulated field potentials from the 7-node network of Wilson-Cowan oscillators shown in Extended
321  Fig. le (100 independent trials with 5s of simulated neural activity per trial), the GDAR model
322 was trained on the initial N samples of each trial and then tested on the remaining samples (see
323 Methods for more details). An advantage of the GDAR model, owing to its fewer parameters
324  compared to both VAR and eVAR models, is its reduced need for extensive training samples to
325  accurately estimate model parameters. This results in the flatter RMSE curves for both training
326  and testing data (Fig. 7a left and middle) as well as the lowest generalization gap (difference
327  between test and train RMSE) among all models (Fig. 7a, right). Notably, the generalization gap
328  for the GDAR model is nearly an order of magnitude smaller than that for the eVAR model.
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329  We found similar results across the electrophysiology datasets (Fig. 7b-d). Despite the VAR model
330  possessing significantly more parameters — ranging from 8 to 20 times more, depending on the size
331  of the electrode array — the GDAR model exhibits comparable predictive performance on the
332  training set (Fig. 7b). Unlike the VAR model, the GDAR model also generalizes almost perfectly
333  to unseen data, as evidenced by a median generalization gap very close to zero for all datasets
334  (Fig. 7c). Finally, we tested how well the model generalizes to data separated by longer time
335  periods from the training set (Fig. 7d). The GDAR model again maintains a lower generalization
336  gap across all time gaps and datasets compared to the VAR model, with the generalization gap
337 remaining relatively stable as gap lengths increased. An intriguing observation emerged from the
338  optogenetic stimulation dataset, where both the GDAR and VAR models exhibited increasing
339  generalization gaps for larger gap lengths. We believe that this trend stems from plasticity
340 mechanisms within each stimulation block, as repeated paired stimulation induces sustained
341  alterations in brain network activity, thereby challenging the models' ability to generalize over
342  extended time periods.
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Fig. 7: Generalization Performance of GDAR model on simulated data and electrophysiological recordings. (a) 10"
order GDAR, VAR and eVAR models were fit to the first N samples (train length) of neural activity simulated by
the network of Wilson-Cowan oscillators shown in Fig. 2a independently for each of the 100 simulation trials. The
model coefficients are then used to perform a one-step ahead prediction on the training data as well as the remaining
samples in the trial (test data). The left and middle panel show the mean, 10", and 90" percentile of the root mean
square prediction error (RMSEs). The generalization gap (right panel) is defined as the difference between mean
test and train RMSE. The GDAR model generalizes significantly better to unseen data than the VAR and eVAR
model. (b) Normalized train RMSE of GDAR and VAR models for all four electrophysiology datasets considered in
this study. The RMSE generally decreases with increasing model order p and is comparable between GDAR and
VAR model within each dataset. (c) Generalization gap (see Methods) of both models for the electrophysiology
datasets. The GDAR model almost perfectly generalizes to unseen data. On the other hand, the VAR model always
shows some degree of overfitting (Wilcozon rank-sum test, p < 0.001). (d) The generalization gap for the optogenetic
stimulation and two resting state datasets as a function of the time gap between train and test set. Fxcept for the
optogenetic stimulation experiment, the generalization gap remains constant or decreases as the time gap between
train and test set increases. For all time gaps, the GDAR model outperforms the VAR model.

Discussion

By drawing insights from both computational neuroscience and statistical modeling, we have
introduced the GDAR model as a novel framework for estimating network level neural
communication dynamics from field potential recordings. Our approach is defined by three key
components — each previously explored in isolation by different communities, but not yet integrated
into a unified framework. First, we combine the modeling capabilities of classical VAR models
with a network diffusion process that serves as a plausible mechanistic constraint for neural
communication. Second, the spatial layout of the recording array is incorporated as a structural
prior, significantly reducing the model complexity while mimicking cortical connectivity on a
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352  macroscopic scale. Third, our model produces a communication signal with the same temporal
353  resolution as the original recordings, making it well suited for analyzing both transient and long-
354  term patterns of neural communication. Using simulations and four electrophysiology datasets
355 from macaque sensory motor cortex, we have demonstrated that the GDAR model outperforms
356  competing approaches (standard VAR models, CSD flow) in estimating fast communication
357  dynamics, provides complementary insights into resting state communication that are consistent
358 across different experiments and recording technologies, and can uncover neural flow dynamics
359  that correlate with behavior.

360 Why does the GDAR model perform better than standard VAR models? VAR models and other
361  approaches for estimating functional brain connectivity have successfully been used to study neural
362 interactions for many years. Yet these techniques remain relatively generic and lack a mechanism
363  through which neural populations interact. In contrast, the GDAR model assumes that
364 information propagates via a diffusive process, which has previously been proposed as a mechanism
2747 It has also been shown that diffusion processes can explain
366  functional connectivity estimates®® and model the propagation of activity evoked by intracranial
367 stimulation more accurately than alternative models of neural communication’. Furthermore, the
368 Laplacian that drives the diffusion process in the GDAR model has been used in neural field

365 for neural communication

369 models to simulate realistic large-scale brain dynamics®?®. In particular, our finding that the
370  GDAR model outperforms the enhanced VAR model — which differs from GDAR only in lacking
371  the diffusion constraint — highlights the importance of including mechanistic assumptions into
372  data-driven modeling.

373  Another drawback of standard VAR models is that they generally ignore spatial relations between
374  the recording electrodes, which means that interactions between nearby sensors are treated equally
375  to interactions between distant ones. The idea of integrating spatial information in the form of
376  structural priors into standard VAR models and other FC measures has recently been proposed
377 in  magnetic  resonance imaging  (MRI), electroencephalography  (EEG), and
378  magnetoencephalography (MEG) studies, where it has been shown to improve the estimation of
379 FC networks® ™. However, this direction remains under-explored and, to the best of our
380 knowledge, has not been applied to localized recording arrays that focus on network dynamics
381  within one or two cortices. Furthermore, the studies that incorporate spatial information lack
382  mechanistic assumptions about the neural communication process and have almost exclusively
383  focused on static FC metrics. In contrast, the GDAR framework naturally produces a dynamic
384  network flow signal by integrating structural priors and mechanistic constraints into a single model
385  thereby likely contributing to its superior performance over VAR models.

386  Our framework also uses a different mechanism for obtaining temporally resolved communication
387  dynamics. Unlike existing approaches, which derive such dynamics through sliding windows®> 57 or
388  adaptive parameter estimation®®, the GDAR model achieves this by combining static model
389  parameter with the recorded neural activity. This approach offers several advantages: it reduces
390 the number of parameters that need to be estimated, and it enables the detection of transient
391 communication events that may be smoothed out by sliding window approaches or are difficult to
392  track using linear adaptive parameter estimation techniques.
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393  The GDAR model also has additional practical advantages for processing field potential signals.
394  For the electrode arrays used in our analysis, the GDAR model has approximately ten times fewer
395  parameters than the full VAR model. This larger number of parameters for the VAR model can
396  cause them to overfit to idiosyncrasies in the data that do not correspond to meaningful neural
397  interactions, which is particularly evident in the poor generalization performance for the reach
398  dataset where model fitting relies on a limited number of observations (see Fig. 7c). Furthermore,
399 field potential recordings can suffer from spurious correlations due to volume conduction, signal
400  artifacts that are shared across channels, and the common reference signal problem. Such spurious
401  correlations are known to cause erroneous connectivity estimates in classical measures of neural
402  communication such as coherence, phase locking value, or metrics based on standard VAR
403  models'”. These spurious correlations can be addressed by preprocessing field potentials using CSD
404  (i.e., the second spatial derivative) or activity gradients (i.e., the first spatial derivative) instead
405  of using the raw neural activity!”5%60, Since the GDAR model employs the second spatial
406  derivative, the effects of spurious correlations are strongly mitigated and should not negatively
407  impact the performance of the model.

408  While the assumption of a locally connected nearest neighbor graph as a structural prior is inspired
409 by the cortical connectivity found in both mice and macaque monkeys, which is dominated by
410  short range connections?®, it neglects the potential existence of any direct long-range propagation
411  paths. Since it can be difficult to determine the best underlying network structure as structural
412  information is often not available, we suggest that in the future the structural connectivity graph
413  could be designed in a more data-driven way, for example, using sparsity and distance regularizers.
414  Furthermore, we currently make no distinction between nodes corresponding to electrodes in the
415  interior versus the boundary of the array. Especially the boundary nodes may exhibit a large
416  exchange of information with regions outside the array, which is not captured by the model, but
417  could be incorporated by adding additional input terms. Another promising avenue would be to
418  explore how other proposed mechanisms of neural signaling, such as biased random walks or
419  shortest path routing?”*’, could be incorporated as constraints into data-driven models of network
420 communication. Furthermore, the GDAR model could be extended to model non-linear
421  communication dynamics by introducing activation functions into the divergence step of the
422  model.

423  Although we developed the GDAR for field potential recordings and have applied it to a range of
424  cortical electrophysiology datasets to evaluate its performance and demonstrate its versatility, we
425  believe the model can be extended to other neural recording modalities and applications. For
426  instance, it may be adapted for spiking data, either by modifying the autoregressive component
427  to accommodate for discrete point processes — such as through generalized linear modelsS! — or by
428  first converting spikes into firing rates. The model should also be readily applicable to human
429  ECoG and stereoelectroencephalography (sEEG) recordings, which share similar signal properties
430  with the recordings analyzed here. Finally, the GDAR model can be applied to brain-wide recoding
431  modalities such as EEG, MEG or functional MRI (fMRI), which — combined with estimated
432  structural connectivity networks — can enable the analysis of large-scale brain dynamics. In a
433  preliminary investigation, we found that our model reliably estimates neural communication
434  dynamics from resting-state fMRI data and is sensitive to age-related changes in neural flow%?,
435  highlighting its potential for broader applications in systems neuroscience and clinical research.
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451
452  Methods
453  Graph Diffusion Autoregressive (GDAR) Model

454  Derivation and algebraic representation: The starting point for deriving the GDAR model
455  is to describe the spatiotemporal dynamics of the neural activity s as a heat diffusion process

$ = wAs, (3)

456  where temporal changes in activity ($) are driven by spatial activity gradients (As, where A is the
457  surface Laplacian) multiplied by the diffusion rate w. The right-hand side of (3) is equivalent to
458  current source density (CSD) which is a common technique for analyzing neurophysiological
459  recordings. In practice, we have given a finite set of spatially distributed and discrete LFP
460  measurements recorded from an N-channel electrode array (see Fig. 1a left). Thus, we can denote
461  the LFPs recorded at time t as a vector s[t] € RN. The surface Laplacian A is equivalent to the
462  second spatial derivative and thus describes local interactions within the brain network. In a
463  discrete measurement setup, this can be encoded by constructing a locally connected graph from
464  the locations of the electrodes within the recording array%. Thereby, each electrode corresponds
465  to a node in the graph and edges connect neighboring electrodes such as illustrated in Fig. 1la.
466  The resulting unweighted graph consisting of N vertices and E edges can be represented

]RNXE h

467  algebraically using the node-to-edge incident matrix B € , where the e™ column b(®

468  corresponds to the e™ edge in the graph. Each edge is defined by a tail node n; and head node
469  n; such that b,(lei) = —b,gi) = —1 and all other entries b,(li) = 0 for k # i,j. For each edge it is thereby
470  arbitrary which incident node is defined as head and tail node. Using B, the continuous surface
471  Laplacian A can be approximated using the negative of the graph Laplacian operator BBT.
472  Furthermore, the first temporal derivative § can be approximated by the first temporal difference
473  s[t] —s[t — 1]. Thus, (3) can be approximated by
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s[t] = Iy — wBBT)s[t — 1] + u[t] = Iys[t — 1] — BwBTs[t — 1] + u[t], (4)

474  Where, Iy is the N X N identity matrix and u[t] is a white noise term. Previously, it has been
475  shown that the matrices BT and B can be interpreted as discrete approximations of the gradient
476  and divergence operators, respectively?®. Thus, the term BwBTs[t — 1] has a clear physical
477  meaning in the context of LFP recordings as elaborated in the steps below:

478 1. BTs[t — 1] = Vs[t — 1]: computes the voltage gradient for each node in the graph.

479 2. wVs[t — 1] = f[t]: In analogy to resistive circuits and CSD analysis, w can be interpreted
480 as a conductivity such that conductivity times voltage gradient yields a current flow f[t].
481 3. Bf[t]: For each node, the net flow, i.e., the sum of all in flows minus the sum of all outflows,
482 is computed. This is equivalent to computing the current sources and sinks in CSD analysis.

483  Equation (4) effectively expresses CSD analysis as a first order vector autoregressive (VAR) model.
484  However, the model in Eq. (4) has limited expressivity as the only learnable parameter is the
485  conductivity w. Thus, to improve its expressivity, we can 1) add parameterized node dynamics, 2)
486  assume a spatially varying conductivity, and 3) extend the model order to a pth order VAR model.
487  The resulting graph diffusion autoregressive (GDAR) model is given by

p (5)
slel = ) (M — BWBT)s[t — k] + u[t],
k=1
488  where M;, = diag(m;) € R¥*N and W, = diag(w;,) € REXE are diagonal matrices containing the

489  node and edge parameters my € RN and wy, € RE of the k™ lag, respectively. The term BW, BT
490 can also be regarded as a weighted graph Laplacian matrix. The GDAR flow is defined as
P (6)
e = Z W, BTs[t — k]
k=1

491

492  Representation as constrained VAR model: The GDAR model in (5) can be related to the
493  standard notation of a VAR model

p (7)
s[t] = Aps[t — k] + ult]
kz ‘

494  where A, € RNV contains the VAR model parameters and is generally a dense matrix. It can be
495  shown that if Ay has the same sparsity structure as the graph Laplacian BBT and is symmetric,
496  Eq. (7) is equivalent to Eq. (5) with (Ag);; = (Ag)j; = (W), if I corresponds to the edge between
497  mnode i and j and (My);; = (Ap)i; + Xjen()(Ax)ij, where V(i) are the set of neighbors of node i.
498  The representation of the GDAR model as a constrained VAR model is useful for fitting the model
499  to neural data.

500 Model fitting: Using the VAR representation in Eq. (7), the model parameters M}, and Wj, can
501 be estimated using least squares regression following the procedure described by Liitkepohl6?.
502  Given T + p snapshots of neural activity by an N-channel recording array (T is the number of
503  samples used for model fitting), the predicted neural activity can be collected in the data matrix
504 Y =[s[p+1]..,s[p+T]] € R"T and its vectorized version y = vec(Y). The regressors can be
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505 expressed as S =[S;,..,Sr] € RV?XT  where S, =[s[t+p—1]7,..,s[t]"]" € R"?*1 The
506  coefficients Ay can be expressed as A = [Ay,...,A,] € RV*NP and a = vec(A). As shown in the
507  previous section, A, is spare and symmetric. Therefore, there exist a matrix R such that ¢ = R&
508 and @ only contains the non-zero entries of the upper triangle of A. Now (7) can be written as

vy = (ST®I,)Ra + u, (8)

509  where ® is the Kronecker product. Furthermore, we assume that u is white noise with covariance
510 matrix Z,. Eq. (8) can be solved in close form by minimizing u” (I;®2;)u, where I is the T x T
511  identity matrix, to obtain the optimal parameters &*:

a@* = [RT(SSTRZ, HR]'RT(S®Z;V)y. 9)

512 Eq. (9) is the solution to the generalized least squares (GLS) estimator, which is generally different
513  from the ordinary least squares (OLS) estimator due to the sparsity and symmetry contraints®.
514  However, it requires knowledge of the noise covariance matrix £;;1, which is unknown in practice.
515  Therefore, we first estimate the X by solving the OLS estimator u’u to compute & as

& = [RT(SST®I, )R] IRT(S®I,)y (10)

516  and denote @ = R&. The corresponding coefficient matrix is A with vec(ﬁ) = &. Then we estimate
517 X, as
1. ~ (11)
%, = - (Y- AS)(Y - As)’
518 It is also noted that (5) can be directly casted as a least squares minimization problem. However,
519  we found that it is more efficient to compute the optimal parameters according to (8).

520 Power spectrum of GDAR flow: If the model is applied to resting state neural activity, the
521  GDAR flow signal may exhibit a similar oscillatory behavior as the neural activity. Therefore, it
522  may be reasonable to compute its power spectrum to study frequency specific communication
523  patterns. Using Eq. (6) and recognizing that it expresses the GDAR flow as the convolution
524  between the model parameters W) and the activity gradients BTs[t], the GDAR flow power
525  spectrum between nodes i and j is given by

[FED ()| = [WEB @) - [5;(@) = Si(w)|*, (12)
526  where Wi} (w), S;(w), and Sj(w) are the Fourier transforms of the parameters, as well as the
527  neural activity of the two channels, and w is the frequency variable. An interesting case occurs

528  when the spectra of both channels have the same magnitude for a given frequency. Assuming
529 |S;(w)| = |Sj(w)| = 1, Eq. (12) can be simplified to

Wi ()|? (13)
M = WD (w)[* - [1 = cos(¢; — 1))

530 where ¢; and ¢; are the phase of the S;(w), and Sj(w), respectively. That is, in this case the

531 communication dynamics are driven only by phase differences between connected nodes. In

532  general, however, communication dynamics will be determined by differences in magnitude and

533 phase modulated by W} (w), which was estimated with the objective of improving the prediction

534  of future neural activity.
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535 Decomposition into gradient and rotational flow spectra: Similar to the classical Fourier
536  transform for time series, where a signal can be decomposed into a series of oscillatory components
537  of increasing frequency, a flow signal can be decomposed into a set of spatial components (flow
538  signals) with increasing spatial frequency. Furthermore, a flow signal can be decomposed into
539  gradient (directional) components, which have non-zero divergence (sum of in-flow minus out-
540 flow) for some or all nodes of the graph, and rotational components, which have zero divergence
541  for all graph nodes. This can be achieved via the Hodge-decomposition that defines two orthogonal
542  sets of spatial basis functions (defined on the edge domain) for a given graph3 3°. Each GDAR
543  flow snapshot can then be projected onto these sets of basis functions to obtain the gradient and
544  rotational flow spectrum.

545 To obtain the gradient basis, we first compute the eigenvectors Vgrad € RV*N of the graph

546  Laplacian BBT. The orthonormal gradient flow basis Vgrad € REXN is then obtained by
BTVgrad (14)
| |BTVgrad| |F

547  The eigenvalues Agraq associated with each eigenvector define a natural ordering of the
548  eigenvectors in terms of spatial frequency. Specifically, if we compute the divergence of the

Vgrad =

549  eigenvectors Vgragq, we find that eigenvectors corresponding to small eigenvalues have small
550 divergence, whereas eigenvectors associated with large eigenvectors have large divergence. Small-
551  divergence eigenvectors correspond to flow signals that are smooth (or low-frequency) across the
552  graph, that is flow signals where the direction of flow is largely preserved or only slowly changes
553  within a local neighborhood (also see Extended Fig. 5¢ for an example). High-divergence
554  eigenvectors on the other hand correspond to flow patterns that rapidly change direction within
555  a local neighborhood and can therefore be considered as non-smooth or being high-frequency. We
556  can now obtain a gradient flow spectrum for each flow snapshot by projecting f[t] onto Vgraq:

Fgrad [Agrad; t] = VgTradf[t]. (15)

557  To obtain the rotational basis, we first have to define a set of triangles in the graph, which can
558  be obtained, for example, via Delaunay triangulation. Mathematically, the triangle set is captured
559 by the edge-to-triangle incident matrix By € REXT | where T is the number of triangles and where

560  the t™ column b corresponds to the t™ triangle in the graph. Each triangle is defined by three

tri
561  edges e;, e, and e, and an arbitrarily chosen reference direction. If the edge direction across e;

562  (as defined in B) aligns with that reference direction b® (e;) = 1. Otherwise p® (e;) = —1 (the

tri tri
563  same logic applies to e;, and ey). For edges not involved in the triangle we have bt(rtl) ()=0. To
564  compute the rotational basis, we then follow the same procedure as above. That is, we first
565  compute the eigenvectors V.or € RT*T of the Laplacian BY B and then project Vi.o; onto By and

566 normalize:

Btrivrot (16)
||Btrivrot| F
567  Similar to the gradient flow, the eigenvalues A.o; corresponding to the eigenvectors Vyo¢ can be

rot —

568 used to define an ordering in terms of spatial frequency. Specifically, eigenvectors with small
569  eigenvalues correspond to global rotational flows (akin to global currents) across the graph that
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570 maintain or only slowly change orientation between local neighborhoods. On the other hand,
571  eigenvectors with small eigenvalues exhibit localized rotational flows (akin to local eddy currents)
572  that rapidly change orientation across local neighborhoods (see Extended Fig. 5e for an example).
573  Finally, we can obtain a rotational flow spectrum for each flow snapshot by projecting f[t] onto
574 Vi

FrotlAron t] = VI?;)tf[t]' (17)
575
576  Wilson-Cowan Simulations
577 Simulating neural activity: We simulated neural activity using various networks of Wilson-

578  Cowan oscillators®% shown in Fig. 2 and Extended Fig. 1. Each node consists of an excitatory
579  and inhibitory subpopulation whose dynamics are governed by the following differential equations:

: (18)
deC;Et) = —e;(t) + S| Ceclr(t) + Crelr () + P+ £(1) + Z wiies (£ — 730

JEN (D

= —i;(£) + S(ceiei (D) + £(1))

Te

(di(t)

(19)
L

580  where S is the sigmoid function:

9
S(x) = ;x;# (20)
l+eo

581  The description of the parameters and their values are listed in Table 1. The values are based on
582  previous work by Abeysuriya et al.5” and Deco et al.%® and result in a power spectrum with a
583  pronounced beta oscillation around 18 Hz and a 1/w slope for higher frequencies. Coupling
584  between excitatory populations of neighboring nodes is determined by the parameter w;_; where
585  cach edge in the graph has two coupling parameters (wj_; and w;_,;) resulting in bidirectional
586  coupling. For the 16-node random graphs, we simulated 10 independent trials per graph, resulting
587  in a total of 100 trials for 10 graphs, where for each trial the values of the edge weights w;_,; are
588  randomly sampled from a uniform distribution (see Table 1 for range of w;_;). For the 7-node,
589  and 16-node grid graph, we simulated 100 independent trials respectively. The ranges of w;_,; were
590 chosen such that neural activity whose power spectrum resembles realistic local field potential
591  signals was generated by the network. We integrated the system with a time step of le-4 seconds
592  using a 4th order Runge-Kutta scheme for 20 seconds and discarded the first 15 seconds to
593  eliminate transient effects of the simulation. The resultant 5 seconds of excitatory activity e[t]
594  was then downsampled to 1 kHz using an 8th order Chebyshev type I anti-aliasing filter and
595  denoted as the simulated neural activity. Power spectral density (PSD) estimates of the simulated
596  activity and ground truth flow for the 16-node random graphs averaged over all trials, graphs,
597  and edges are shown in Extended Fig. 1b and c.
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598 Table 1: Simulation parameters of Wilson-Cowan model adapted from Abeysuriya et al.b” and Deco et al.5®

Parameter Description Value

Te Excitatory time constant 0.002

T; Inhibitory time constant 0.004

Cee Local excitatory to excitatory coupling 3.5

Cie Local inhibitory to excitatory coupling -2.5

Coi Local excitatory to inhibitory coupling 3.75

P Constant excitatory input 0.31

u Firing response threshold 1

o Firing threshold variability 0.25

& Random noise input N(0,0.05)
Wi j Excitatory to excitatory connectivity (16 node random graphs) 0.05, ..., 0.3
Wisj Excitatory to excitatory connectivity (7 node graph) 0.05, ..., 0.55
Wi Excitatory to excitatory connectivity (16 node grid graph) 0.1, ... 0.5

599  Simulating ground truth neural flow: We simulated the ground truth flow by calculating the
600 moment-to-moment influence that each excitatory node exerts on its neighbors. To do so, we first
601  executed each integration step with the full set of parameters to obtain e[t]. Then, for each
602  excitatory coupling parameter wj_,;, we repeated the integration step with w;,; =0 to obtain
603 ei[t]le_)Fo, which denotes the activity at node i in the absence of an influence from node j at
604  time t. The flow from node j to node i was then defined as fj_;[t] = e;[t] — e [t]le%izo. This
605 second step is repeated for all excitatory coupling parameters. The full two-step procedure is
606  repeated for each integration step. The resulting bidirectional ground truth flow f8%P[t] was
607 downsampled using the same anti-aliasing filter as used for the simulated neural activity. As our
608 GDAR model only produced a unidirectional flow at each point in time, we define the

609  unidirectional ground truth flow f8Yt] between node i and j as fig;-t[t] = iﬂt]fb [t] - j‘iti'b [t]. Tt is
610 noted that while f8t] is unidirectional at each time point, the flow direction across each edge

611  can change over time.

612 GDAR flow: For each trial, we used the last 5 seconds of simulated neural activity to estimate
613  the parameters of the GDAR model for varying model orders as described in (Graph Diffusion
614  Autoregressive (GDAR) Model). The graph used for fitting the model is equal to the graph used
615  for the simulations. The estimated model parameters were then used to transform the simulated
616  neural activity into an estimated flow signal according to (6).

617 VAR flow: For comparison, we also estimated the neural flow using a classical VAR model (Eq.

618 (7)). To do so, we first estimated the VAR model parameters using the same data as for fitting
619 the GDAR model. The directional flow across edge j — i is then computed as fj\i‘?R’b[t] =

620 ZLl(Ak)i, ;Si[t]. Similar to the ground truth flow, the unidirectional flow is defined as fl-,‘;-AR[t] =

621 fi‘:‘}R'b [t] — fj‘iAiR’b [t]. The VAR model assumes a fully connected network resulting into non-zero

622  flow signals across connections that are not part of the network. To compare the VAR flow with
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623  the ground truth flow, we therefore only extract the VAR flow for edges that exists in the ground
624  truth network.

625 eVAR flow: For a fair comparison with the GDAR model, we test a second autoregressive model
626  that has access to the ground truth graph when estimating the VAR model coefficients. That is,
627  we enforce (Ay);; = (Ax)j; = 0 if node i and j are not connected. Using this eVAR models, we
628  also computed a bidirectional flow fVARP[t] and compare it to the ground truth bidirectional flow
629  f8%P[¢] for the 7-node graph. However, we found that this does not result in higher correlation
630  coefficients than the unidirectional flow (see Extended Fig. 1f).

631 CSD flow: The last approach for estimating the neural flow is through CSD analysis. Since CSD
632 is the second spatial derivative, which, for a given graph, can be approximated as the graph
633  Laplacian operator BB, the CSD flow is simply the gradient between the simulated neural activity
634  at connected nodes in the network: ig-SD [t] = s;[t] — s;[t]. This is equivalent to a first order GDAR
635  model with spatially constant conductivity.

636 Comparing ground truth and estimated neural flow: The ground truth and estimated flow
637  signals are first z-scored independently for each trial and model, and then compared using the
638  Pearson correlation coefficient (CC) computed independently for each edge in the graph. The CC
639  distributions obtained by pooling CCs from all edges and 100 trials for each model are compared
640  using a Wilcoxon rank-sum test. Furthermore, we computed the error between magnitude and
641  phase spectrum of ground truth and estimated flow for each graph edge and trial (Fig. 2c). To
642  do so, the power spectral density (PSD) of the flow across each edge (5s for each trial) was
643  estimated using Welch’s method® with a Hann window of size 256 samples and 50% overlap. Then
644  the absolute difference (in dB) between ground truth and estimated flow was computed. To
645  compare the phases, the 5s of neural flow obtained for each trial were first divided into 19 non-
646  overlapping segments of 256 samples and then the discrete Fourier transform for each segment
647  was computed. Afterwards, the phase difference between ground truth and estimated phase was
648  computed and mapped into the range from 0 to m for each segment before being averaged over all
649 19 segments. Fig. 2c shows the median, first, and third quartile of the magnitude and phase
650  difference using data from all edges and trials. The PSDs of the ground truth and estimated flow
651  signals were used to compute the PSD correlations in Fig. 2d. Finally, we compared the dynamics
652  of the estimated flow with the dynamics of the ground truth flow using dynamical similarity
653  analysis (DSA) in Fig. 2e%. To do so, Hankel dynamic mode decomposition (DMD) models are
654  first independently fitted to the high-dimensional ground truth and estimated flow signal and the
655  resultant DMD matrices Aegr and Age are compared using a modified version of Procrustes analysis.
656  To fit the Hankel-DMD models we used 15 delay time steps to construct the Hankel matrices and
657  full rank regression. Optimization during the Procrustes analysis used 1000 iterations at a learning
658  rate of 1072,

659 Optogenetic Stimulation Experiment

660  One adult male rhesus macaque (monkey G: 8 years old, 17.5 kg) was used in this experiment. All
661  procedures were performed under the approval of the University of California, San Francisco
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662  Institutional Animal Care and Use Committee and were compliant with the Guide for the Care
663  and Use of Laboratory Animals.

664  Neural stimulation and recording interface: In this study, we used a subset of neural data
665 recorded by a large-scale optogenetic neural interface!! that has previously been utilized to study
666  changes in network functional connectivity due to cortical stimulation®”3%. The interface was
667 composed of several key components: a semi-transparent micro-electrode array, a semi-transparent
668  artificial dura, a titanium implant, and a laser system for delivering optical stimulation. First,
669  mneurons in the primary sensorimotor cortex were rendered light-sensitive through a viral-mediated
670  expression of the C1V1 opsin. To do so, 200uL of the viral cocktail AAV5-CamKIla-
671  C1V1(E122T/E162T)-TS-eYFP-WPRE-hGH (2.5 x 1012 virus molecules/mL; Penn Vector Core,
672  University of Pennsylvania, PA, USA, Addgene number: 35499) was administered across four sites
673  into the primary somatosensory (S1) and primary motor (M1) cortices of the left hemisphere using
674  convection-enhanced delivery!'!37.70 Next, the chronic neural interface was surgically implanted
675 by performing a 25mm craniotomy over the primary sensorimotor cortex, replacing the dura mater
676  beneath the craniotomy with a chronic transparent artificial dura housed in a titanium chamber.
677  During each experimental session, the artificial dura was removed and a custom 96 channel micro-
678  electrocorticography array consisting of platinum-gold-platinum electrodes and traces encapsuled
679  in Parylene-C'? was placed on the cortical surface. Optical stimulation was performed by two 488
680 nm lasers (PhoxX 488-60, Omicron-Laserage, Germany) connected to a fiber optic cable
681  (core/cladding diameter: 62.5/125 um, Fiber Systems, TX, USA) and positioned above the array
682  such that the tip of the fiber-optic cable touched the array. Neural data in the form of local field
683  potentials was recorded by the micro-ECoG array at a sampling frequency of 24 kHz using a
684  Tucker-Davis Technologies system (FL, USA). It was verified that evoked neural responses were
685  due to optogenetic activation and not other effects such as photoelectric artifacts or heating!!-12:38,

686  Stimulation protocol: The data analyzed in this study stems from three experimental sessions
687  all performed on the same day. The only difference between the sessions was the location of
688  stimulation, which is depicted in Fig. 3b. As the micro-ECoG array was not removed between
689  sessions its location on the cortex remains unchanged. Each experimental session consists of 5
690 stimulation blocks during which two lasers alternatingly and repeatedly stimulate. Each
691  stimulation block lasts approximately 7 min and is intermittent by shorter resting state blocks
692  during which no stimulation is performed. The stimulation pulse width for both lasers was 5 ms
693  with a delay of 10 ms between stimulation by lasers 1 and 2. This paired stimulation is repeated
694  at a frequency of 7 Hz (143 ms) resulting in a total of approximately 2970 pulse pairs for each
695  stimulation block. All stimulation parameters (except for stimulation locations) are identical for
696  the three sessions analyzed in this study.

697  Signal preprocessing: First, bad channels were identified as 1) electrodes with high impedance
698  and 2) channels with a low signal-to-noise ratio, and excluded from the analysis®®. The location of
699  the remaining 67 good channels was used to construct a sparse and locally connected graph, where
700  each electrode corresponds to a node in the graph and each node is connected approximately to it
701 8 nearest neighbors (see Fig. 3¢ top). The raw time series data was downsampled to 1017.25 Hz
702  using a low-pass Chebyshev anti-aliasing filter and the mean activity within each channel was
703  subtracted from the respective time series.
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704 GDAR model fitting: The preprocessed LPFs during each stimulation block were divided into
705  segments of 10004 samples (approximately 10 s) with 4 samples overlap between segments and a
706 5% order GDAR model was fitted to each segment as described in (Graph diffusion autoregressive
707  (GDAR) model). The estimated model parameters were used to transform the neural activity into
708 a the GDAR flow signal according to equation (6). The overlap between segments was chosen
709  such that a continuous GDAR flow signal was obtained from the segmented LFPs without relying
710  on zero padding. A model order of 5 was chosen for this application due to the short (10 ms) delay
711  between stimulation by lasers 1 and 2. For larger model orders, the GDAR flow evoked by the
712 second laser would increasingly be influenced by the neural activity evoked by the first laser
713  resulting in a mixing of the neural responses to both stimulation pulses. Flow dynamics akin to
714 the plots in Fig. 3e for a model order p = 10 are shown in Extended Fig. 2c and d.

715  Visualizing flow dynamics: To visualize the flow dynamics evoked by paired cortical
716  stimulation, we have to project the high dimensional flow signals (f[t] € RE, where E is the
717  number of edges in the graph) onto a lower dimensional subspace. To so so, we first pooled the
718  first 25 flow snapshots from the onset of stimulation by the first laser from all sessions, blocks,
719  and pulse pairs in a single data matrix F € RE*M_ where M ~ 3 - 52970 - 25 (3 sessions, 5 blocks
720  per session, approximately 2970 pulse pairs per block, 25 flow snapsots per pulse pair). Afterwards
721  we performed principle component analysis (PCA) and projected F onto its first two principal
722 components (PCs) to obtain F € R**M. Fig. 3e shows the PCA reduced GDAR flow dynamics
723  where each trace illustrates a 25 snapshot long flow trajectory from a single pulse pair. For better
724  visualization only 250 individual trajectories per stimulation block selected at random are plotted.
725  Fig. 3g shows the same dynamics but instead using the VAR and CSD flow, respectively. Since
726  the number of edges for the VAR model is very large, computing the PCs of the associated matrix
727 M was not feasible. Therefore we first averaged the flow snapshots over 20 consequitive trials
728  before computing the PCs. For comparison, we performed the same trial averaing for the GDAR
729  flow and recomputed the flow trajectories (Extended Fig. 2e). The averaging does not seem to
730  have a negative effect on the discriminability of the trajectories between different sessions.

731  Modeling increased delay across sulcus: The GDAR model can easily be augmented to model
732 variable delay across different edges. For example, it is reasonable to assume that signals that
733  travel across the sulcus between M1 and S1 experience larger delays than signals traveling within
734  each cortex. Larger delays in the GDAR model across an edge between node i and j can be

735  incorporated by constraining edge coefficients W,Ei'j } =0 for small delays (i.e., k = 1,2, ...), which
736  can be achieved by augmenting the matrix R in equation (8). We have used this approach to
737  model larger delays across the sulcus by setting W,Ei’j Y =0 for edges that connect nodes in M1 to
738 nodes in S1 for k = 1,2,3. That is, the minimum delay across each sulcus edge is constrained to

739 be 4 (see Extended Fig. 2f and Supplementary Video 2 for corresponding GDAR flow dynamics).

740 Changes in resting-state communication due to electrical stimulation:

741  To demonstrate the GDAR model’s ability to uncover changes in communication during resting
742  state, we analyze data from two distinct experiments that were conducted using a 96-channel
743 microelectrode array (Utah array) and two 32-channel ECoG arrays.
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744  Utah array experimental procedure: One adult rhesus macaque (Macaca mulatta, 12 kg, 11
745  years, male) was used in this study. All procedures were performed under the approval of the
746  University of California, San Francisco Institutional Animal Care and Use Committee and were
747  compliant with the Guide for the Care and Use of Laboratory Animals. The experimental
748  procedure was previously described by Bloch et al.”!. A 96-channel Utah array was implanted in
749  S1 and LFPs were recorded at a sampling frequency of 24 kHz before being downsampled to a
750  frequency of 1017 Hz (8" order Chebychev anti-aliasing filter). The dataset consists of resting
751  state recordings intermitted by five 10 minute stimulation blocks that contain repeated single site
752  or paired electrical stimulation. For the single site stimulation session, stimulation is performed in
753  in the form of five pulses (1 kHz burst frequency) that are repeated every 200 ms. The paired
754  stimulation sessions use the same stimulation patterns for each stimulation site. For session paired-
755  stim 1, electrode B stimulated 100 ms after electrode A. For session paired-stim 2, the delay
756  between stimulation sites A and B is chosen uniformly at random between -100 ms and 100 ms
757  for each paired stimulation trial.

758 ECoG array experimental procedure: One adult macaque (Macaca nemestrina, 14.6 kg, 7
759  years, male) was used in this study. All procedures were performed under the approval of the
760  University of Washington Institutional Animal Care and Use Committee and were compliant with
761  the Guide for the Care and Use of Laboratory Animals. The experimental procedure was
762  previously described elsewhere!® 7. The animal was first anesthetized with isoflurane and a
763  craniotomy with 25mm diameter was performed in each hemisphere over the sensorimotor cortex.
764 A focal ischemic lesion in the left hemisphere was created by photo-activation of a previously
765  injected light-sensitive dye (Rose Bengal). Following illumination, the dye causes platelet
766  aggregation, thrombi formation, and interruption of local blood flow, leading to local neural cell
767  death near the illuminated area. The location and extent of the lesion were estimated through
768  post-mortem histological analysis of coronal slices and is illustrated as a black patch in Fig. 5.
769  Electrical activity was recorded before, during, and after lesion induction simultaneously in the
770  ipsi- and contralesional hemisphere using two 32-channel ECoG arrays (Fig. 5¢)™7.
771  Approximately 60 min after the end of lesioning, repeated electrical stimulation was performed 8
772 mm away from the lesion center. 1 kHz stimulation charge-balanced pulses (60 pA, 450 ps pulse
773 width, 50 ps interphase interval) were given in 5 Hz bursts (5 pulses per burst) consecutively for
774 10 minutes, where each stimulation block was followed by 2 min of baseline recording. The
775  experiments included a total of six 10 min stimulation blocks. We used the 60 min of neural
776  recording after lesion induction but before stimulation (pre stim), as well as the 2 min blocks of
777  baseline recording in between the stimulation blocks (post stim). In total we used 4 blocks of post
778  stim recordings for each hemisphere as the recordings in the other blocks were corrupted.

779  Signal preprocessing: The preprocessing for both datasets was performed akin to the
780  optogenetic stimulation experiment. The location of the ECoG channels was used to construct a
781  sparse and locally connected graph (for the ECoG data, this was done separately for each
782  hemisphere), where each node (electrode) is connected approximately to its 8 nearest neighbors
783  (no bad channels were identified). The raw time series data was downsampled to 1 kHz using low-
784  pass Chebyshev anti-aliasing filter and the mean was removed from each channel. Additionally,
785  artifacts — defined as signal values that deviate by ten or more standard deviations from the mean
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786  simultaneously for all channels — were removed by linearly interpolating between the sample
787  immediately before and after the artifact.

788 Model fitting and postprocessing: The preprocessed LFPs for both datasets during each block
789  were divided into segments of length 10009 samples (approximately 10 s) with 9 samples overlap
790  between segments and a 10" order GDAR model was fitted to each segment as described in Graph
791  diffusion autoregressive (GDAR) model. The estimated model parameters were used to transform
792 the neural activity into the GDAR flow signal according to equation (6), where each segments
793  contains 10000 samples. To assess changes in neural communication due to stimulation in different
794  frequency bands, we then computed the GDAR flow power spectral density (PSD) using Welch’s
795  method® (Hann window of size 1000 samples with 50% overlap) for each segment, and stored the
796  average flow PSD within the gamma band (30 — 70 Hz). Finally, we computed the change in

797  average flow PSD from before to after stimulation. Specifically, if we denote kare StM ond kaOSt stim

798  as the average gamma flow PSD before and after stimulation of the k™ segment, the relative
799  change in GDAR flow magnitude Ay, is given by

A _ (kaost stim>k _ <kare stim)k (21)
stim — (kare stim>k

800  where (-); denotes the average over all segments. We assessed the statistical significance of Agtim
801 for each edge by forming sample distributions for pre- and post-stim communication from all pre-
802  and post-stim segments and compared the distributions using a two-sample Kolmogorov-Smirnov
803  test. If the distributions for a given edge differ with a significance level of p < 0.01, the edge is
804  plotted in the graph.

)

805  For the Utah array data, changes in gamma GDAR flow power due to stimulation (Fig. 4b) were
806  computed using all data before stimulation (pre stim) as well as the five 2-minute resting state
807  blocks following the stimulation blocks (post stim) for each session. To compute the temporal
808  evolution of the normalized and averaged gamma GDAR flow power (Fig. 4c-e), the GDAR flow
809  power in the gamma band was first averaged over all edges connected to the stimulation node.
810 Then GDAR flow and LFP power were z-scored using the mean and standard deviation from the
811  pre stim period for each session independently. We then computed the best linear fit between the
812  z-scored LFP and average GDAR flow power Fgpag using all segments (pre and post stim)

FGDAR=S'LFP+O. (22)

813  The goal is to test whether the GDAR flow power changes beyond what can be linearly explained
814 by changes in LFP power. Hence, we subtract the linear regression line from the average GDAR
815  flow power

FGDAR,corrected = FGDAR —s-LFP. (23)
816  and plotted the result in Fig. 4c-e.

817  For the ECoG data, we additionally computed the change in flow power Agy, using the CSD
818  approach and a 10" order VAR model (CSD and VAR flow were computed as described in Wilson-
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819  Cowan Simulations). The 10" order VAR model was also used to compute changes in coherence,
820  partial directed coherence (PDC)?? and directed transfer function (DTF)?.. PDC and DTF for
821  each directed edge pair j = i were calculated using the following equations:

2 0,
A; i (24)
poc, ;= @
Z?’=1|Al,j(w)|
2 0,
H. . (25)
DTF;_; = | l,](w)l

>V H @)

822  where 4; j(w) is the Fourier transform of (4y); j (note that here k is the time variable), and H; ;(w)
823  is the (i,j) entry of the Fourier transform of the inverse of A,. To obtain a unidirectional
824  communication signal (Fig. 5d), we calculated the average between i — j and j — i for each pair
825  of edges.

826 Center-out Reach Task

827  One adult male rhesus macaque (7 years old, 16.5 kg) was used in this study. All procedures were
828  performed under the approval of the University of California, San Francisco Institutional Animal
829  Care and Use Committee and were compliant with the Guide for the Care and Use of Laboratory
830  Animals. Surgical procedure, neural interface, and signal preprocessing are the same as described
831  in Optogenetic Stimulation Experiment. However, for the center-out reach task, the ECoG was
832  placed fully over the primary motor (M1) cortex. Channels with persistent distortions were
833  identified and excluded from the analysis resulting in 77 good channels used to construct a sparsely
834  connected nearest neighbor graph as described previously. The animal performed a total of 200
835  successful reach trial, 25 for each of the eight directions (see Fig. 6a). Each individual reach trial
836  is divided into start, instructed delay, and reach phase. During the start phase, the monkey places
837  its hand on the center of the screen. After that the instructed delay phase begins where first the
838  target direction is presented before a randomly selected delay period terminated by a go-tone is
839  introduced. The reach phase starts once the go-tone appears and ends when the monkey touches
840  the target. The finger position of the monkey was tracked throughout the experiment using and
841  electromagnetic position sensor (Polhemus Liberty, Colchester, VT) at 240 Hz™.

842 GDAR model fitting and post-processing: To ensure accurate model fitting, recorded LFPs
843  from all three phases were used to estimate the parameters of the GDAR model. The model order
844  was set to p =5 to ensure enough independent samples for each parameter. After the model
845  parameters have been estimated, the GDAR flow is computed according to Eq. (6) and filtered
846  into the high-gamma band using a 3" order Butterworth filter with cutoff frequencies of 70 and
847 200 Hz. The high-gamma GDAR flow signal f[t] is then decomposed into its gradient and
848  rotational flow spectrum Fgrad[/lgrad, t] and Fpo¢[Aror, t] according to Eq.(14)-(17). To obtain the
849  flow power spectrogram in Fig. 6b, we compute the magnitude square of Fgrad[/lgrad,t] and
850  FrotlAron t]. Flow power spectra as well as reach velocities are temporally smoothed using a 51
851  sample 3" order Savitzky-Golay filter. To account for the time delay between motor commands
852  observable in M1 and actual movement onset”, we calculated the median correlation across all
853  spatial frequencies Agraq between Fgrad[/lgrad,t — d] and the reach velocity for varying delays d
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854  (Extended Fig. 5f). We found a maximum correlation for a delay of 104 ms, which we corrected
855  for in all subsequent analysis.

856  To quantify the extend to which the gradient flow spectrum is dominated by low frequencies during
857  reaching, we defined the alignment index as

Zt z:11:51 Fgrad [Agrad,i: t] (26)

Zt 211:51 Fgrad [Agrad,N—i: t]’
858  where N is the total number of gradient frequencies. The temporal averaging is performed over all

aligment index =

859  time points where the reach velocity is above a threshold of 0.1 for the tuning curve analysis (Fig.
860  6d) and over the last 100 ms prior to the go-tone for the reaction time analysis (Fig. 6f). For the
861 rotational flow spectrum, we do not observe spectral changes during reaching that are strongly
862  dependent on the spatial frequency. Therefore, we simply use the average over all spatial
863  frequencies in Fig. 6e.

864  Generalization performance

865  According to Eq. (5), the GDAR model can predict the neural activity at the current time step
866  using the past p samples. To assess the generalization performance of the model, we computed the
867  normalized root mean square error (RMSE) between the observed neural activity s[t] and
868  predicted neural activity $§[t] as follows:

\/Zt,n(§n[t] - Sn[t])z (27)
LenlsaltD?

869  The summation is performed over all time points t within a segment, as well as over all channels

RMSE =

870  n of the recording array. To compute the train RMSEs, the predictions §[t] are computed for the
871  same time points that were used for model fitting. For the test RMSEs, the models are applied to
872  data that were not used for fitting the model. To compute the test RMSEs for the optogenetic
873  stimulation, stroke, and Utah array datasets, the prediction RMSEs are computed for the 10 s
874  segment that immediately follows the segment used for model fitting. That is, if the models have
875  been fitted using segment i, the test RMSEs are computed using segment i + 1. For Fig. 7d, where
876  the generalization gap over larger time scales is assessed, the prediction RMSEs are computed for
877  segments further away from the segment used for model fitting. For the reach dataset, the models
878  are tested on the subsequent reach trial in the same direction. That is if the models have been
879  fitted using trial i from direction d then the test RMSE is computed for trial i + 1 from direction
880 d.

881

882

883  Data availability:

884  Data will be made available upon reasonable request from the authors.
885 Code Availability:

886  Source code for the GDAR model will be made available prior to publication.
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Extended data figures
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Eztended Fig. 1: (a) 10 randomly connected 16-node networks used for conducting the simulations in Fig. 2. Each graph
was used to generate 10 independent simulation trials. (b), (¢) Power spectral densities of simulated field potentials and
ground truth flow, respectively. The black line shows the average across all edges and trials. The gray shaded area
indicated one half of the standard deviation. The simulation parameters produce a strong oscillation around 18Hz. The
steep drop-off above 400 Hz can be attributed to the 8™ order Chebyshev filter that was used for downsampling the data
to a sampling frequency of 1 kHz. (d), (e) Pearson correlation coefficient (CC) of GDAR, VAR, and eVAR model on
16-node grid graph and 7-node locally connected graph for various mode orders. The CC is pooled from 100 simulation
trials with varying excitatory coupling parameters (see Methods) for each graph. Markers indicate whether the GDAR
model significantly outperforms the eVAR model (Wilcozon ranked-sum test, p < 0.001). The GDAR model significantly
outperforms the other two models for all tested graphs given a sufficiently high model order. (f) CC between unidirectional
ground truth and eVAR flow, as well as bidirectional ground truth and eVAR flow for various model orders. There is no
significant performance difference between unidirectional and bidirectional eVAR flow for any model order. For most
model orders, the unidirectional e VAR flow yields slightly higher median CCs than the bidirectional e VAR flow.
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1080 Eztended Fig. 2: (a)-(f) Stimulation evoked dynamics using different signals and modeling approaches similar to the
1081 plots in Fig. 3e. Neither LEP (a) nor classical CSD (b), i.e., the second spatial derivative computed via the graph
1082 Laplacian, show significant temporal dynamics that are distinct between the sessions. Using a 10% order GDAR model
1083 (c) results in reduced separability between sessions when compared to a 5% order model shown in Fig. 3e (similarly for
1084 a 10" order VAR model (d)). This is likely a result of the time scale of the paired stimulation (the onset of the second
1085 laser pulse occurs 5 ms after the offset of the first pulse) causing a mizing of the effects of the two lasers when fitting

1086 the models. (e) Averaging the flow signal over 20 consecutive trials before computing the low dimensional embedding
1087 does not a have negative affect on the dynamics. (f) PC reduced GDAR flow dynamics when constraining edges crossing
1088 the sulcus between M1 and S1 to exhibit a minimum signal propagation delay of 4ms. The dynamics are almost identical

1089 to the dynamics from the unconstrained GDAR model (Fig. 3e), suggesting that the stimulation induced communication
1090 dynamics uncovered by our model are robust to such constraints. (g), (h) The parameters of the 5" order GDAR and
1091 VAR model for all segments, blocks, and sessions were stacked into a single matriz and projected onto its first two PCs.
1092 Each dot represents the PC reduced parameters of a single 10 s segment used for model fitting. The parameters from the
1093 three different sessions are well separated in this low dimensional subspace for the GDAR model, but not for the VAR
1094 model where Session 2 and 3 are not separable.
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1097 Extended Fig. 3: Relation between average gamma GDAR flow and LFP power for the stimulation electrodes in the
1098 Utah array dataset. The best linear regression lines are also shown (Single-stim: slope = —0.0692, p = 0.827; Paired-
1099 stim 1: slope = 2.41, p = 1.05e — 19; Paired-stim 2: slope = 2.15, p = 2.1e — 43). The two paired stim sessions show
1100 a strong linear relation between LFP and average GDAR flow power. Nevertheless, the GDAR flow power increases
1101 due to stimulation beyond what can be explained by linear changes in LEP power.
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broadband theta (1-4 Hz) beta (12-30 Hz) high-gamma (70-200 Hz)
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coherence

Extended Fig. 4: Replication of Fig. 5c¢ and d for different frequency bands. Changes in communication are strongly
dependent on frequency, as well as the methods used for estimating it. However, some features such an increase in
communication in areas near the stimulation location in the ipsilesional hemisphere can be observed across multiple
frequency bands and methods.
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1109

1110 Eaxtended Fig. 5: Extended plots for reach data shown in Fig. 6. (a) To better visualize the spatial frequency characteristic
1111 of the gradient and rotational components, we compute the flow field (net-flow magnitude and direction at each node)
1112 and potential field (divergence of flow at each node) (bottom) from the GDAR flow basis vectors Vgpaq and Vyoe (top).
1113 The example in (a) shows the gradient flow component corresponding to the 6™ lowest frequency. (b) Average spectrum
1114 of the gradient flow component (median and interquartile range) across all time points, trials and directions. Note that
1115 the spectrum largely resembles white noise with a few stronger spectral components at the low, mid, and high frequencies.
1116 (¢) Flow and potential fields for three spectral components marked in (b). As the frequency increases, the flow becomnes
1117 more disorganized with an increasing number of local sources and sinks and the overall divergence (measure of spatial
1118 frequency) increases. (d) and (e) Same as (b) and (c), but for rotational flow. The average rotational flow spectrum is
1119 primarily marked by an increase in power for some high-frequency components. (f) Correlation (median and interquartile
1120 range) between average gradient flow power (averaged over all spatial frequencies) and reach velocity for different delays
1121 between the neural signal and the recorded velocity. The maximum correlation occurs at 104 ms, which we assume to be
1122 transmission delay between motor commands in the brain and observable movements. (g) and (h) Average gradient and
1123 rotational power spectra for the 90° (up) and 225° (bottom-left) directions. The 90° direction shows a substantially larger
1124 increase in the low frequency gradient flow power, as well as rotational flow power across almost all frequencies than the

1125 225° direction, highlighting the directional tuning of the GDAR flow. (i) Directional tuning curves (quartiles, 1.5 times
1126 interquartile range, and outliers) for envelope of high gamma (70 — 200 Hz) filtered local field potential signal averaged
1127 over all recording electrodes. The same trend as for the GDAR flow alignment index (Fig. 0e) and average rotational

1128 flow power (Fig. 6f) can be observed, however differences between directions are not significant. (j) Correlation (median
1129 and interquartile range) between average gradient flow power and reach velocity during the last 100 ms prior to the go-
1130 cue. The median correlation of zero suggest that there is no residual movement occurring during that period that could
1131 explain the strong correlation between the alignment index and the reaction time in Fig. 6d. The monkey was instructed

1132 to hold his finger still on the center of the screen.
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1134 Extended Fig. 6: Applying the GDAR model to center-out reach data to study trial-by-trial variability of neural
1135 communication. (a) To analyze the trial-by-trial variability, we mainly focus on direction 4 (top-left) as it showed a

1136 greater reach variability than other directions. (b) The 25 reach trajectories of direction 4 were grouped into the five
1137 fastest, 15 normal, and five slowest trials. The reach times during the fastest (slowest) trials range from 0.23 —0.31 s
1138 (1.43 —8.19 s). The five slowest trajectories are very jagged either at the beginning or end of the reach. (¢) Similar to
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1139 the procedure described in Fig. 5, changes in GDAR flow power during reach compared to baseline were computed for
1140 the high-gamma band (70 — 200 Hz) and are plotted for the five fastest, and slowest reach trials, respectively. Fast reach
1141 t rials show a significantly stronger increase in GDAR flow power than slow trials. (d) The average change in high-
1142 gamma GDAR, VAR and CSD flow power is plotted against the reach time for each of the 200 trials (all directions).
1143 While all metrics show a significant negative relation between the log of the reach time and the change in average flow

1144 power, the GDAR model shows the highest |R|, closely followed by the CSD flow. (e) Dominant GDAR flow patterns
1145 (obtained via principal component analysis) for the five fastest and slowest reach trials of direction 4. (f) These GDAR

1146 flow patterns naturally form two clusters where C1 contains fast and average trials and C2 the five slowest trials. (g)
1147 Cluster centroids of C1 and C2. Fast reach trials correspond to a more coordinated GDAR flow pattern that involves
1148 larger parts of the network, whereas slow reach trials exhibit a flow pattern that is mainly centered around a single node.

1149  Supplementary Material:

1150 Supplementary Table 2: p-values comparing GDAR and eVAR model for differences in Pearson correlation coefficients
1151 (PCC) for the raw flow, PCC of the power spectral density (PSD) of the raw flow, and dynamical similarity analysis
1152 (DSA) dissimilarity score for 16-node random graphs in Fig. 2b, d, and e, as well as PCC of the raw flow for the 16-
1153 node grid graph in FExtended Fig. 1d. We used one-sided Wilcoxon rank-sum tests with the alternative hypothesis that
1154 the GDAR model outperforms the e VAR model.

Model PCC raw flow — 16- PCC PSD of raw flow DSA dissimilarity — PCC raw flow — 16-
order node random graphs — 16-node random 16-node random node grid graph
graphs graphs
2 0.999999988 0.74 0.373 1.0
4 0.93 0.51 0.157 1.0
6 0.617 0.167 0.397 1.0
8 0.509 0.201 0.728 1.0
10 0.179 0.132 0916 0.955
12 0.0104 0.0693 0.99 0.19
14 6.17-1078 0.0133 0.99939 8.05-1078
16 432-1071° 441-107* 0.999995 2.35-1072%3
18 1.17-107%7 1.12-107° 0.9999988 8.21-10740
20 1.41-10728 1.53-107°¢ 0.9999967 3107
22 2.13-107%5 1.12-1077 0.987 2.33-107%?
24 9.06-10723 4.88-1077 0.806 4591073
26 1.47 -10722 2.88-107° 0.536 1.25-107%6
28 1.2-10721 1.03-107° 0.147 6.56 - 10750
30 9.54-1071° 1.5-10°5 0.134 458-107%°

1155

1156 Supplementary Table 3: p-values for differences in Pearson correlation coefficients shown in Extended Fig. 1e and f. For
1157 “GDAR wvs. eVAR”, the alternative hypothesis is that the GDAR model outperforms the eVAR model. For “eVAR
1158 bidirectional vs. e VAR unidirectional”, the alternative hypothesis is that the bidirectional outperforms the unidirectional
1159 VAR flow. We used one-sided Wilcoron rank-sum tests.

Model order GDAR vs. eVAR eVAR bidirectional vs. eVAR unidirectional

1 0.118 0.985

2 0.9997 0.99904

3 0.176 0.8

4 0.719 0.987

5 0.121 0.954

6 0.457 0.961

7 0.00497 0.871

8 0.0161 0.834

9 8.26-1078 0.793
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10 8.24-1078 0.619
11 3.06-1071° 0.662
12 6.31-107° 0.577
13 2.1-10710 0.602
14 8.03-1071° 0.508
15 5.28-107° 0.491

1160

1161 Supplementary Table 4: p-values (one-sided Wilcoxon rank-sum test) for tuning curves in Fig. 6e and f. Only significant
1162 comparisons are shown. All p-values are corrected for multiple comparisons via the Bonferroni method. 0° and 90°
1163 correspond to the right and top direction, respectivelsy.

Gradient spectrum alignment index (Fig. 6e) Rotational spectrum average spectral power (Fig. 6f)
90°-0°:0.0165 45°-225°:0.0165
90°-225° 4.42 - 1075 90° - 225° 7.04- 107
90°-270°: 0.00111 135°-225°%4.42 - 1075
180° - 225°: 0.00455
315°-225%:4.42-107°

1164

1165 Supplementary Table 5: p-values (one-sided Wilcozon rank-sum test) for differences in generalization gap between GDAR
1166 and VAR model for four electrophysiological datasets in Fig. 7c.

Opto | Reach | Rest Utah | Rest ECoG
8.27-10716 | 1.76 - 10760 | 4.05-107%0 | 2.37-1075

1167

1168  Supplementary Notes:

1169 Modeling signal propagation delay across sulcus for optogenetic stimulation experiment: The
1170  GDAR model can also be adapted to model longer signal propagation paths between specific
1171  nodes in the network. For example, this may be the case for connections across the sulcus that
1172  separates M1 and S1. To model this, we have constrained the GDAR model to enforce a

1173  minimum propagation delay of 4 ms for all edges that connect nodes in M1 with nodes in S1
1174  (see Methods). The evolution of the GDAR flow for Session 1 averaged over all trials is shown in
1175  Supplementary Video 2 and is similar to the dynamics observed in Fig. 3d and Supplementary

1176  Video 1, but with noticeably less flow across the sulcus. The PC reduced flow dynamics across
1177  all sessions are shown in Extended Fig. 2f and are almost identical to the dynamics shown in
1178  Fig. 3e, suggesting that adding signal propagation constraints to the model does not negatively
1179  impact the sensitivity of the GDAR flow signal to the stimulation parameters.
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