
 

 

 

Intracellular Lactate Dynamics in Drosophila Glutamatergic Neurons 

 

Matthew S. Price1,2,5, Elham Rastegari1,5, Richa Gupta1, Katie Vo1, Travis I. Moore1,3, 

and Kartik Venkatachalam1,2,3,4 

 

1Department of Integrative Biology and Pharmacology, McGovern Medical School at the 

University of Texas Health Sciences Center (UTHealth), Houston, TX, USA 

 

2Neuroscience Graduate Program, The University of Texas MD Anderson Cancer 

Center UTHealth Houston Graduate School of Biomedical Sciences  

 

3Molecular and Translational Biology Graduate Program, The University of Texas MD 

Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences 

 

4Correspondence: kartik.venkatachalam@uth.tmc.edu 

5These authors contributed equally to this work 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2025. ; https://doi.org/10.1101/2024.02.26.582095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582095
http://creativecommons.org/licenses/by-nc-nd/4.0/


SUMMARY 

Rates of lactate production and consumption reflect the metabolic state of many cell 

types, including neurons. Here, we investigate the effects of nutrient deprivation on 

lactate dynamics in Drosophila glutamatergic neurons by leveraging the limiting effects 

of the diffusion barrier surrounding cells in culture. We found that neurons constitutively 

consume lactate when availability of trehalose, the glucose disaccharide preferred by 

insects, is limited by the diffusion barrier. Acute mechanical disruption of the barrier 

reduced this reliance on lactate. Through kinetic modeling and experimental validation, 

we demonstrate that neuronal lactate consumption rates correlate inversely with their 

mitochondrial density. Further, we found that lactate levels in neurons exhibited 

temporal correlations that allowed prediction of cytosolic lactate dynamics after the 

disruption of the diffusion barrier from pre-perturbation lactate fluctuations. Collectively, 

our findings reveal the influence of diffusion barriers on neuronal metabolic preferences, 

and demonstrate the existence of temporal correlations between lactate dynamics 

under conditions of nutrient deprivation and those evoked by the subsequent restoration 

of nutrient availability. 
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INTRODUCTION 

The advent of genetically-encoded sensors of energy-related metabolites, such as ATP, 

glucose, pyruvate, lactate, and the NAD+/NADH ratio, has revolutionized our 

understanding of the relationship between neuronal activity and bioenergetics1. By 

enabling real-time assessment of metabolic dynamics at cellular resolution, these 

sensors have elucidated how neuronal activity affects ATP production and revealed 

mechanisms underlying the metabolic burden of neuronal excitability, Ca2+ extrusion, 

and synaptic transmission2–7. Using these tools, pioneering work in Drosophila has 

revealed strong correlations between activity and metabolism in neuronal circuits of 

freely behaving animals1,8. These studies demonstrate that neurons allocate metabolic 

resources based on historical activity patterns, and that the metabolic states of 

interconnected neurons are correlated8–11. 

 

Lactate is a metabolite that stands at the crossroads of glycolysis, mitochondrial 

ATP production, and cellular redox state. Its production depends on the reduction of 

glycolysis-derived pyruvate by lactate dehydrogenase (LDH)12,13. In energetically 

demanding cells such as neurons, lactate oxidation is a glucose-sparing source of 

pyruvate, which is taken up into the mitochondria to power the tricarboxylic acid (TCA) 

cycle and oxidative phosphorylation (OXPHOS)14,15. In response to stimulation, mouse 

hippocampal neurons augment glycolysis, which temporarily exceeds OXPHOS, leading 

to the accumulation of lactate3. Neuronally-generated lactate can either be extruded or 

subsequently oxidized to pyruvate for the sustenance of mitochondrial ATP synthesis. In 

addition to this cell-autonomous axis of lactate production, glia can also supply neurons 
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with lactate as a substrate for energy production, especially during periods of 

heightened neuronal activity and computational load15–19. Oxidation of glia-derived 

lactate within neurons is necessary for the regulation of neuronal excitability, plasticity, 

and viability15,17,19,20. Notably, direct application of lactate, rather than glucose, 

increases neuronal spiking activity in rodent cortical neurons21. Examinations of lactate 

flux (i.e., changes in lactate levels over time) can also provide insights into the 

metabolic state of neurons. For instance, preferential use of lactate as a metabolic 

substrate reflects dependance on OXPHOS for energy production21. Since the cytosolic 

NAD+/NADH ratio is a readout of the directionality of LDH activity (pyruvate-to-lactate 

versus lactate-to-pyruvate)14,17, changes in lactate concentration also reflect the cellular 

redox balance12.  

 

In this study, our objective was to examine lactate dynamics at cellular resolution in 

Drosophila neurons. Using the FRET-based lactate biosensor, Laconic22, we found that 

dissociated Drosophila glutamatergic neurons are constitutive lactate consumers, albeit 

with notable cell-to-cell variability. Interestingly, the imaged neurons consumed lactate 

even in the presence of adequate levels of trehalose — the preferred sugar substrate in 

Drosophila and other insects23–25. Further analysis revealed that this preference for 

lactate consumption in the presence of trehalose reflected the formation of a diffusion 

barrier around the neurons referred to as the “unstirred layer”26–29. We found that 

mechanical disruption of the unstirred layer prevented the limiting effects, and thus, 

reduced the rates of lactate consumption. The effects of buffer mixing on the unstirred 
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layer and the rates of lactate consumption were augmented by the inclusion of lactate 

and trehalose in the mixing buffer.  

 

While the limiting effects of the unstirred layer on metabolite and oxygen availability 

presents a technical challenge in some contexts, we have leveraged this phenomenon 

as a biologically-meaningful opportunity for studying neuronal responses to nutrient 

deprivation. For instance, the limiting effects of the unstirred layer on trehalose 

availability indicates that Drosophila glutamatergic neurons can simultaneously oxidize 

both lactate and glucose (derived from trehalose) to generate ATP. Kinetic modeling 

and experimental validation suggested that variations in cellular oxygen consumption, 

reflected in mitochondrial density, underlie the observed heterogeneity in lactate 

consumption rates under unstirred layer conditions. These findings provide insights into 

the general determinants of glucose versus lactate oxidation in fly neurons. Further, 

mechanical disruption of the unstirred layer revealed that fluctuations in lactate levels 

showed strong temporal correlations that enabled accurate prediction of postmixing 

responses from premixing lactate dynamics. The addition of ectopic lactate and 

metabolizable sugars, disrupted these temporal patterns without affecting steady-state 

lactate levels. Therefore, we harnessed the nutrient-limiting effects of the unstirred layer 

to demonstrate that neuronal metabolic responses appear to exist along a spectrum, 

from highly predictable responses determined by preexisting states to more complex 

responses where external metabolites can reorganize intrinsic patterns.  
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RESULTS 

Dissociated Drosophila glutamatergic neurons exhibit dynamic changes in 

cytosolic lactate levels 

We investigated cytosolic lactate dynamics using Laconic — a FRET-based lactate 

biosensor comprised of the lactate binding domain of the bacterial transcription factor, 

LldR, flanked by mTFP and Venus22. In this system, proximity of the fluorophores in low 

cytosolic [lactate] results in constitutive mTFP–Venus FRET, which is attenuated by an 

increase in cytosolic [lactate] 22,30. Therefore, changes in cytosolic [lactate] are 

represented by the inverse of mTFP–Venus FRET efficiency, which we refer to as the 

Laconic ratio22,30. We expressed UAS-Laconic31 under the control of the d42-GAL4 

glutamatergic/motor neuron driver32,33 (d42>Laconic) and performed live imaging on 

neurons dissociated from 3rd instar larval brains (Figure 1A) in hemolymph-like buffer 

(HL3, pH 7.2) containing trehalose and sucrose, but without glucose or lactate34. 

Normalization of the Laconic ratios to starting values revealed that the ratios dropped 

steadily in ~75% of dissociated glutamatergic neurons (Figure 1B). Over six minutes, 

average Laconic ratios in the neuronal population dropped ~10% below baseline 

(Figures 1B and 1D). Analysis of individual neurons revealed exponential decay kinetics 

with rate constants (k) significantly greater than zero (Figure 1E), demonstrating 

reductions in cytosolic [lactate] at rest.  

 

Relationship between lactate levels and energy status in dissociated Drosophila 

glutamatergic neurons 
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Lactate is a glucose-sparing source of pyruvate. Via the combined activities of the TCA 

and OXPHOS, lactate-derived pyruvate is used for the generation of ATP12–15.  To 

determine whether the drop in cytosolic [lactate] reflected its utilization for supporting 

cellular bioenergetics, we monitored ATP/ADP ratios using the fluorescent reporter, 

PercevalHR35–37, in glutamatergic/motor neurons (d42>PercevalHR). Despite the 

continuous decrease in cytosolic [lactate], ATP/ADP ratios remained relatively stable, 

showing only a transient initial decline before returning to baseline by six minutes 

(Figures 1C-1D). When fitted to the exponential decay function, the rate constants of the 

changes in PercevalHR ratios were slightly negative and significantly lower than those 

for Laconic decay (Figure 1E). These patterns of lactate and ATP/ADP flux were 

consistent with dissociated neurons consuming lactate to maintain ATP levels.  

 

The “unstirred layer” and its impact neuronal lactate metabolism 

Trehalose is the preferred sugar source in Drosophila23–25. Trehalose utilization for 

energy production in fly cells is initiated by trehalase-mediated breakdown of the 

disaccharide into glucose monomers, which are then oxidized during glycolysis23. The 

reaction catalyzed by the glycolytic enzyme, glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH), decreases the cytosolic NAD+/NADH ratio and prompts LDH 

to convert pyruvate to lactate in order to restore NAD+ levels for the continuation of 

glycolysis38. Conversely, when glucose availability is limited and NAD+/NADH ratios 

rise, LDH operates in reverse, thereby oxidizing lactate to pyruvate while generating 

NADH. This metabolic toggle between glycolysis and lactate oxidation is largely 

governed by glucose availability.  
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Given this well-established metabolic framework, we asked why dissociated neurons 

would be consuming lactate in the presence of abundant trehalose (5 mM). One 

possible explanation for this observation was a diffusion barrier introduced by the 

formation of a stagnant, unstirred layer around the neurons. A phenomenon first 

described in the 1960s, the unstirred layer is formed as a result of solute and osmotic 

flow across cell membranes resulting in localized concentration changes adjacent to the 

membrane26–29. Discontinuity in diffusion rates introduced by the unstirred layer can 

reduce solute concentration within the layer. Of pertinence to cellular metabolism, the 

unstirred layer has been shown to limit the uptake of nutrients as well as oxygen into 

different cell types, including neurons28,39. Although an unstirred layer with no internal 

convective mixing will form adjacent to cell membrane even with perfect stirring in the 

bulk solution27, experimental evidence has shown that stirring thins the unstirred layer29.  

 

We reasoned that that if an unstirred layer formed around the imaged neurons were 

limiting the continued uptake of nutrients (e.g., trehalose), those neurons would be 

forced to rely on lactate oxidation for energy production. If so, stirring the bulk solution 

might counteract these effects, as indicated previously29. To test this idea, we 

introduced gentle stirring into the bulk solution using a magnetic stir-bar. As would be 

expected from thinning of the unstirred layer29, stirring significantly lowered the rates of 

cytosolic lactate consumption in neurons (Figures S1A and 1F-1G). To examine further 

the effects of buffer mixing on the kinetics of lactate consumption, we compared the 

kinetics of lactate consumption before and after the rapid application of 20 μL HL3 to the 
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existing 100 μL solution (Figure 1H). While premixing rate constants matched those 

observed in 6-minute recordings, mixing led to significant reduction in the rates of 

lactate consumption in those neurons (Figures 1H-1I). Since the composition of the 

newly added buffer was the same as that to which the cells were already exposed, 

these outcomes are likely the result of the acute mechanical disruption of the unstirred 

layer. 

 

To account for the potential effects of cytosolic pH on Laconic measurements, we 

performed simultaneous pH measurements using pHrodo-AM. We utilized an empirical 

pH correction protocol that first normalized the Laconic ratios to the exponential fits of 

the premixing baselines (Figure S1B). By doing so, average pre-mixing baselines were 

set to 1, and reductions in the rates of lactate consumption after mixing appeared as 

upward deflections of the ratios (Figure S1B). Cytosolic alkalinization induced by 

application of 10 mM NH4Cl led to acute decreases in both the normalized Laconic 

ratios and pHrodo fluorescence (Figure S1C). Upon removal of NH4Cl, both pHrodo 

fluorescence and normalized Laconic ratios exhibited transient overshoots reflecting the 

compensatory response of neurons to cytosolic alkalinization (Figure S1C). Deviations 

of the pHrodo and Laconic signals from baseline (ΔpHrodo and ΔLaconic ratio, 

respectively) exhibited linear relationships (Figure S1D), which were used to empirically 

correct for the changes in Laconic ratios that stem solely from changes in cytosolic pH. 

This approach corrected the effects of cytosolic pH changes on the normalized Laconic 

ratios (Figure S1E). By applying NH4Cl pulses at the end of each recording, we 

obtained pH-corrected normalized Laconic responses (Figure 1J). These traces 
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revealed that the integrated changes in normalized Laconic ratios exhibited linear 

relationship with premixing rate constants (Figure 1K), strengthening our conclusion that 

mixing affected neuronal lactate metabolism by disrupting the unstirred layer.  

 

Simple kinetic models capture the effects of buffer mixing on neuronal lactate 

consumption 

To understand the mechanistic basis of the effects of buffer mixing on neuronal lactate 

consumption, we developed a simple kinetic model tracking the dynamics of [trehalose], 

[lactate], [ATP], and [O2]. This “toy model” focused on assessing qualitative behavior of 

the system, and incorporated variable ATP demand and O2 consumption rates (koxygen) 

(Figure 2A). Our model had the following features: (1) ATP synthesis was calibrated to 

match demand, as has been shown experimentally6; (2) lactate production was coupled 

to glycolysis (simulating LDH-mediated NAD+ replenishment); and (3) it switched to 

lactate oxidation for ATP production as [trehalose] decreased. Under conditions 

mimicking high ATP demand and O2 consumption rates, the model predicted [lactate] 

accumulation before mixing followed by further increases after mixing (Figure 2B, left — 

grey box represents the imaged period). This pattern reflected preferential trehalose 

consumption and lactate production under low [O2] conditions. With lower ATP demand 

and O2 consumption rates, adequate oxygen availability permitted lactate consumption 

followed by rapid [lactate] increases after mixing (Figure 2B, right). Upon normalization 

to premixing baselines, we observed variable lactate levels in response to different ATP 

demands and O2 consumption rates (Figure 2C). However, these predicted variations in 

[lactate] showed two key discrepancies when compared to experimental data. First, 
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mixing led to universal increases in normalized [lactate] (Figure 2C), which was contrary 

to the experimental observation of both increases and decreases in normalized Laconic 

ratios after mixing (Figure 1J). Second, integrated [lactate] changes exhibited a J-

shaped relationship with premixing rate constants (Figure 2D), rather than the 

experimentally observed linear relationship (Figure 1K). 

 

To resolve these discrepancies, we refined the model by uncoupling lactate 

production from glycolysis (Figure 2E). This modification reflected the possibility that 

oxidation of NADH to NAD+ to facilitate the continued activity of GAPDH could involve a 

dehydrogenase other than LDH (e.g., glycerol-3-phosphate dehydrogenase, as 

suggested in flies and other organisms12,38,40). The refined model transformed cells into 

pure lactate consumers from being both producers and consumers of lactate, while 

retaining the repressive effect of [trehalose] on lactate consumption rates. In this new 

model, high ATP demand and O2 consumption were associated with minimal premixing 

[lactate] changes, followed by increased lactate consumption after mixing (Figure 2F, 

left). Lower ATP demand and O2 consumption rates predicted rates of decline in 

premixing [lactate], followed by reduced consumption rates after mixing (Figure 2F, 

right). These refined predictions better matched experimental observations. 

Normalization to premixing baselines revealed bidirectional changes in [lactate] after 

mixing (Figure 2G), which was consistent with experimental data (Figure 1J). 

Furthermore, integrated [lactate] changes exhibited a linear relationship with premixing 

rate constants (Figure 2H), which also matched the experimental observations (Figure 

1K). These results demonstrate that decoupling lactate production from glycolysis, while 
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maintaining trehalose-dependent regulation of lactate consumption, successfully 

reproduces the experimentally observed effects of buffer mixing on neuronal lactate 

consumption. 

 

Direct measurements of cytosolic glucose validate the effects of the unstirred 

layer 

Next, we asked whether the limiting effects of the unstirred layer manifested as 

decreasing cytosolic glucose levels. Using a FRET-based glucose sensor, FLII12Pglu-

700μδ641,42, we monitored cytosolic [glucose] in dissociated glutamatergic neurons. 

Glucose measurements revealed patterns similar to those observed with lactate. 

FLII12Pglu-700μδ6 ratios exhibited constitutive exponential decreases with time, and 

buffer mixing significantly reduced these decay rates (Figures S2A-S2B). This 

observation was noteworthy given that the HL3 buffer contained no glucose. Therefore, 

the slower decline in [glucose] after mixing likely reflects enhanced rates of glucose 

production stemming from increased trehalose availability, consistent with mechanical 

disruption of the unstirred layer increasing trehalose accessibility, and therefore, 

glucose levels within the neurons.  

 

Determinants of the rates of neuronal lactate consumption 

Our experimental observations revealed heterogenous lactate consumption rates in 

neurons owing to the limiting effects of unstirred layers. A kinetic model successfully 

reproduced this variability by incorporating different ATP demands and oxygen 

consumption rates. Direct comparisons between ATP demand, rates of oxygen 
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consumption and premixing rates of lactate consumption, as predicted by the kinetic 

model, revealed that the highest rates lactate consumption corresponded to the lowest 

rates of oxygen consumption and ATP demand (Figure 3A). Rates of lactate 

consumption exhibited significant negative correlation with both the rates of oxygen 

consumption and ATP demand, with the negative correlation being particularly strong 

with the rates of oxygen consumption (Figure 3B). This stronger inverse correlation with 

oxygen consumption rates suggested that the cellular capacity for oxidative metabolism 

might be a determinant of lactate utilization kinetics under conditions of insufficient 

trehalose availability. 

 

To experimentally investigate these predictions, we probed the relationship between 

the rates of lactate consumption and mitochondrial density — a proxy for oxygen 

consumption capacity. By loading d42>Laconic neurons with MitoTracker, which 

accumulates in active mitochondria to an extent proportional to their membrane 

potential, we determined both the rates of lactate consumption and the content of 

functional mitochondria in the same neurons (Figure 3C). This analysis revealed a 

significant negative correlation between the rates of lactate consumption and 

MitoTracker intensity (Figure 3C), which matched our predictions. Thus, neuronal 

mitochondrial density, which directly influence oxygen consumption rates, correlates 

inversely with the rates of lactate consumption when trehalose becomes limiting.   

 

Next, we assessed the potential involvement of other factors that could influence the 

rates of lactate consumption in the imaged neurons. Since only live neurons would 
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consume lactate for ATP production, low rates of constitutive lactate consumption in 

some ROIs could indicate cell death. We assessed the viability of neurons on the dishes 

using the rhodamine-conjugated, membrane-impermeable LIVE/DEAD dye that enters 

cells only if the plasma membrane is compromised as a result of cell death. This 

analysis revealed that <1% (median value, ~0.1%) of all the cells on a dish were stained 

by the LIVE/DEAD dye (Figure S3A). Permeabilization of the plasma membrane by 

application of 0.1% saponin led to the ~10-fold increase in dye uptake (Figure S3A), 

indicating that the plasma membranes of live Drosophila brain cells on the dish are 

appropriate barriers to dye uptake. Therefore, cell death is a negligible factor in the 

variability of lactate consumption in the imaged neurons.  

 

Since glia supply neurons with lactate as a substrate for energy production in the 

intact brain15–19, we also probed for the presence of glial cells in the vicinity of 

d42>Laconic neurons. After live imaging of Laconic ratios, we fixed several dishes 

containing d42>Laconic neurons and stained for glial nuclei using antibodies against the 

glial transcription factor, Repo43. None of the cells expressing Laconic showed 

immunoreactivity towards anti-Repo antibodies, indicating that d42-GAL4 did not drive 

expression in glial cells, at least the ones plated on dishes. Further, each field of view 

was comprised of a significantly smaller fraction of glial cells relative to the fraction of 

glutamatergic neurons expressing Laconic (median fractions, ~1% and ~7%, 

respectively) (Figure S3B). This imbalance argued against glial cells on the dishes 

being major contributors of lactate for neuronal consumption. In addition, median 

distance between the centers of the anti-Repo-positive glial cells and Laconic-
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expressing neurons was ~26 μm, which significantly exceeded the glial and neuronal 

radii (median radii, 3.3 and 2.0 μm, respectively) (Figure S3C). These distances 

between glia and neurons plated on the dishes argues further against the likelihood of 

glia contributing significantly to the rates of lactate consumption in the imaged neurons. 

Thus, rates of lactate consumption in neurons under our experimental conditions are 

driven cell autonomously with little or no contribution from glial cells. 

 

Impact of metabolite and drug inclusion in the mixing buffer 

Having established that mechanical disruption of the unstirred layer reduces lactate 

consumption, we asked how the inclusion of various metabolites and drugs in the 

mixing buffer might affect this response. We found that inclusion of 10 mM lactate in the 

mixing buffer significantly enhanced the integrated change in Laconic ratio (Figure 4A, 

compare black and light blue bars), indicating that direct lactate supplementation 

synergized with mixing-induced decrease in lactate consumption. Both trehalose and 

glucose (5 mM each) also augmented the lactate responses relative to controls (Figure 

4A, compare black bar with navy and green bars, respectively), which suggests that 

inclusion of metabolizable sugars in the mixing buffer resulted in stronger repression of 

lactate consumption. Arguing against effects of osmolarity changes upon inclusion of 

trehalose or glucose, inclusion of iso-osmolar levels of the metabolically-inert sugar, 

mannitol (5 mM), did not alter the Laconic responses (Figure 4A, compare black and 1st 

brown bars). Neither the OXPHOS inhibitor, oligomycin A (oligo A, 10 μM), nor the 

inhibitor of pyruvate–lactate conversion by LDH, oxamate (10 mM), had any additional 
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effects on the mixing response (Figure 4A, compare black bar with ruby and orange 

bars, respectively). 

 

While the aforementioned findings made sense in the context of lactate metabolism, 

we obtained unexpected results upon inclusion of the non-hydrolyzable glucose analog 

and glycolysis inhibitor 2-deoxyglucose (2DG, 10 mM). 2DG appeared to enhance the 

effects of buffer mixing (Figure 4A, compare black with purple bars). Similarly 

unexpected was the enhancement of the mixing effect by 10 mM mannitol (Figure 4A, 

compare black with 2nd brown bars). We reasoned that these puzzling results might 

stem from inherent heterogeneity in neuronal responses to the unstirred layer, as 

evident from the wide range of rate constants of premixing lactate consumption (from -

2.2x10-3 to 2.6x10-3). To ensure that we are comparing neurons with similar kinetics of 

lactate consumption, we used the “Jenks natural breaks classification” method (defines 

cluster boundaries by minimizing intra-cluster variance and maximizing inter-cluster 

variance, see Methods) to sort neurons into one of 3 internally-homogenous clusters on 

the basis of their rate constants. As evident in the case of mixing with HL3, clusters 

showed progressive ranges of rate constants from high to low (Figures S4A-S4B). 

Cluster 1 (highest rate constants) showed the largest changes in Laconic ratio, whereas 

clusters 2 and 3 showed progressively smaller changes (Figures S4C-S4D) — a 

reflection of the linear relationship between integrated Laconic changes and pre-mixing 

rate constants. Notably, neurons that shared membership in a particular cluster were 

often plated on different dishes or imaged on different days. Many neurons in a cluster 

did not even originate from the same animal. Therefore, patterns of neuronal lactate 
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consumption stemmed from inherent, cell autonomous properties of the imaged 

neurons. 

 

This clustering strategy enabled more precise "apple-to-apple" comparisons of 

responses within matching clusters and obviated the confounding effects of 

heterogenous lactate consumption rates. It revealed that inclusion of either lactate or 

trehalose augmented the effects of buffer mixing, but only in neurons that belonged to 

clusters 2 or 3 (bar-graphs, Figures 4B and 4C, respectively). In contrast, neither 

glucose nor 5 mM mannitol exerted significant influences on the integrated changes in 

Laconic ratio in any of the clusters (bar-graphs, Figures 4D and S4E, respectively). 

Therefore, the apparent stimulatory effect of glucose reflected the outcome of sampling 

bias, i.e., a greater fraction of sampled neurons belonged to clusters 1 or 2 and a 

smaller fraction of sampled neurons belonged to cluster 3 (cell fraction, Figure 4D). The 

apparent stimulatory effects of 2DG and 10 mM mannitol were also due to similar 

sampling bias, as intra-cluster comparisons revealed that neither drug had any influence 

on the effects of buffer mixing (Figures 4E and 4F, respectively). To determine whether 

10 mM 2DG was appropriately inhibiting glycolysis, we evaluated the effect of the drug 

on neuronal ATP/ADP ratio. As expected, 2DG application led to an acute decrease in 

cytosolic ATP/ADP ratio (Figures S4F-S4G), which pointed to its inhibitory effect on 

glycolysis. That the inhibition of glycolysis did not have much of an influence on 

neuronal [lactate] suggests that a relatively small fraction of neuronal lactate is derived 

from local glycolysis. Lastly, we found that oligo A had no significant influences on the 

integrated changes in Laconic ratio in any of the clusters (bar-graphs, Figures 4G), 
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while oxamate induced a slight but significant in the Laconic ratio in neurons belonging 

to cluster 3 (bar-graphs, Figures 4H). 

 

Premixing fluctuations in cytosolic lactate are correlated with neuronal responses 

to mixing-induced disruption of the unstirred layer 

The analyses described above revealed a quantitative relationship between the 

premixing lactate consumption rates and the magnitudes of [lactate] changes upon 

disruption of the unstirred layer. Even after normalization, Laconic ratios exhibited 

distinct patterns of fluctuations around the baseline (e.g., Figure 1J), likely reflecting 

temporal variations in cellular metabolic demand, transporter activity etc. Because 

fluctuations in functional parameters can encode meaningful information about cell state 

and response capacity, we hypothesized that premixing variability in normalized Laconic 

ratios (i.e., fluctuations in baseline [lactate]) might predict the neurons’ responses to the 

subsequent disruption of the unstirred layer. To test this hypothesis, we developed a 

machine learning approach using a neural network with a single hidden layer that 

incorporated both dropout and L1/L2 regularization to prevent overfitting44,45 (Figure 

5A). We trained this network using premixing Laconic ratio time series as input features 

and postmixing ratios as training labels (Figure 5B). The model's predictive capacity 

was then tested on unseen premixing Laconic ratios (Figure 5B). Using 5-fold cross-

validation, we demonstrated robust prediction accuracy for both training and test 

datasets, with predicted Laconic ratios closely matching experimental observations 

(Figures 5C and 5D, respectively). To validate that the model captured genuine 

biological relationships rather than spurious correlations, we scrambled the temporal 
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order of postmixing Laconic ratios (i.e., scrambled the temporal order of the labels). This 

manipulation greatly reduced prediction accuracy (Figure 5E), confirming that the model 

learned authentic temporal patterns in the data. Mean square error (MSE) values for 

buffer mixing predictions were statistically indistinguishable between the training and 

test datasets (Figure 5F), which indicates successful generalization without overfitting. 

Scrambled response labels resulted in ~6-fold higher MSE values (Figure 5F), 

supporting the existence of temporal relationships between pre- and postmixing Laconic 

ratios.  

 

This predictive capability of our model extended beyond buffer mixing. Comparable 

prediction accuracies were achieved for responses obtained by the inclusion of 5 mM 

mannitol, oligo A, and LDH inhibitor, oxamate, in the mixing buffer (Figure 5F). 

However, the inclusion of other metabolites and drugs in the mixing buffer partially 

disrupted the predictive relationship between the pre- and postmixing Laconic ratios. 

Higher MSE values were observed when the mixing buffer contained lactate, trehalose, 

glucose, 2DG, or 10 mM mannitol, although the model was still able to learn the 

relationship between premixing fluctuations and postmixing responses in all these cases 

(Figure 5F). Inclusion of lactate in the mixing buffer induced the greatest decline in 

model accuracy (Figure 5F), which suggested that uptake of lactate overrode the 

neurons’ initial response to the limiting effects of the unstirred layer.  

 

Regardless of which premixing dataset was used for training, the model achieved 

similar prediction accuracies across all postmixing conditions (Figure S5A). This finding 
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suggests the predictive capability of our model was robust, and pointed to the existence 

of fundamental temporal patterns in cellular lactate fluctuations that generalized across 

different conditions. In addition, temporal correlation analysis revealed that in response 

to buffer mixing or the inclusion of 5 mM mannitol in the mixing buffer, premixing 

Laconic ratios showed strong sequential correlations to postmixing ratios, transitioning 

from positive to negative correlation patterns over time (Figures 5G and S5B, 

respectively). This structured temporal relationship was greatly disrupted by the 

inclusion of lactate (Figure 5H), whereas inclusion of trehalose, glucose or 2DG in the 

mixing buffer led to partial disruption in the patterns of temporal correlations (Figures 

S5C-S5E). These data argue further that entry of some, though not all, ectopically 

added metabolites can either override or obscure the intrinsic rhythms of cytosolic 

lactate fluctuations.  
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DISCUSSION 

Our study reveals how the unstirred layer, a diffusion-limited boundary surrounding 

cells, can be leveraged to uncover properties of neuronal metabolism. By examining 

lactate dynamics in dissociated Drosophila neurons in unstirred layer conditions, we 

uncovered several insights into cellular metabolic regulation and heterogeneity. We 

demonstrated that Drosophila glutamatergic neurons are constitutive lactate consumers 

in unstirred layer conditions. Thus, local diffusion barriers can fundamentally alter 

cellular metabolic preferences. Since the effects of unstirred layer have also been 

observed in vivo, for instance in kidney tubules or during oxygenation of red blood 

cells26,46,47, it is possible that insect brains have evolved to constrain spatial distances 

between adjacent cell membranes in order to minimize the effects of such diffusion 

barriers.  

 

Kinetic modeling revealed that by decoupling lactate production from glycolysis while 

maintaining trehalose-dependent regulation of lactate consumption, we successfully 

reproduced experimental observations. Thus, Drosophila glutamatergic neurons 

possess alternative (i.e., LDH independent) mechanisms for maintaining NAD+/NADH 

balance during glycolysis. Indeed, other dehydrogenases such as glycerol-3-phosphate 

dehydrogenase — part of the glycerol phosphate shuttle — have been shown to play 

roles in NAD+ replenishment during glycolysis12,38,40. This decoupling of lactate 

production from glycolysis also enables neurons to utilize glycolytically-generated 

pyruvate for TCA and OXPHOS-dependent mitochondrial ATP production. As such, 

these neurons simultaneously consume both trehalose and lactate, with the latter likely 
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being supplied by local glial cells15–19. Such metabolic flexibility might be particularly 

important under conditions where trehalose and oxygen availability may be limited. 

 

The inverse correlation between mitochondrial density and lactate consumption 

rates suggests that cells with lower oxidative capacity, and by extension, greater 

reliance on trehalose/glucose metabolism (i.e., neurons that are relatively more 

glycolytic), exhibit a greater propensity to switch to lactate metabolism in response to 

trehalose limitations. In other words, neurons that preferentially consume trehalose 

exhibit a more acute response to the limiting effects of that sugar. Neurons with higher 

oxidative capacity are likely better equipped to utilize metabolic substrates other than 

trehalose, thus making them less responsive to diffusion limitations. As demand-driven 

variations in neuronal metabolism correlate with cell-to-cell variations in firing 

properties48, it is also possible that the observed differences the extent of lactate 

consumption are related to the neurons’ firing possibilities. For instance, in both 

Drosophila and crayfish, motor neurons that exhibit tonic firing have greater 

mitochondrial density and oxidative activity than do the neurons with phasic (burst-like) 

firing patterns31,49–51. Future studies could be designed to ask phasic motor neurons, 

which have lower mitochondrial density that the tonic motor neurons, exhibit enhanced 

propensity for lactate consumption under conditions of trehalose limitation. 

 

On the basis of premixing lactate consumption rates, we classified neurons into 3 

subgroups of decreasing reliance on lactate. Classification into clusters ensured that all 

comparisons were made between groups of neurons with similar kinetics of lactate 
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consumption. This analysis revealed that inclusion of 10 mM lactate in the mixing buffer 

led to increases in cytosolic lactate specifically in clusters with lower rates of lactate 

consumption (i.e., clusters 2 and 3 rather than cluster 1, Figure 4B). This observation 

stands to reason as neurons with inherently lower lactate consumption rates will be the 

ones that will naturally accumulate lactate. In neurons that are rapidly consuming 

lactate, ectopically added lactate will simply not have an opportunity to accumulate. 

Inclusion of trehalose in the mixing buffer also had similarly augmenting effects on 

cytosolic lactate in neurons belonging to clusters 2 and 3, indicating that trehalose 

supplementation resulted in significantly stronger effects on neurons with inherently 

slower lactate consumption rates. None of the other metabolites or drugs (including 

2DG) had any appreciable influence on the effects of buffer mixing on the rates of 

lactate consumption. The observation that 2DG-mediated inhibition of glycolysis had no 

appreciable effect on neuronal lactate metabolism agrees further with the notion that 

neuronal lactate metabolism is decoupled from glycolysis.   

 

Perhaps most intriguingly, we discovered that premixing fluctuations in cellular 

lactate levels contain predictive information about how neurons will respond to unstirred 

layer disruption. The ability of machine learning models to accurately predict postmixing 

responses from premixing dynamics suggested the existence of cell-intrinsic temporal 

correlations, as demonstrated by patterns of positive and negative correlations between 

pre- and postmixing Laconic ratios. Disruption of these temporal correlations by certain 

metabolites, particularly lactate, reveals how external factors can override or reorganize 

these intrinsic metabolic patterns. Notably, some compounds like 2DG disrupted 
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temporal correlations without causing a net change in steady-state lactate levels. This 

outcome points to forms of metabolic reorganization that selectively affect the temporal 

dynamics of the fluctuations in metabolite concentrations. Thus, neuronal responses to 

the disruption of the unstirred layer exist along a spectrum — from highly predictable 

responses determined by pre-existing fluctuations to more complex responses where 

external metabolites can reorganize intrinsic patterns. Future studies could be directed 

towards understanding whether these differences in metabolic states align with 

established motor neuron subtypes52–54. 

 

Limitations of the study and future directions 

Alterations in cytosolic [lactate] that we describe in this study occurred in neurons 

dissociated from the brains of 3rd instar larvae. Dissociation of brains was needed to 

ensure that the applied metabolites or drugs had direct access to neurons without 

having to traverse the glial blood brain barrier. Changes in neuronal [lactate] would 

likely be different in the intact brain where neurons receive trophic and metabolic 

support from glia16,17. To overcome this limitation in future studies, we hope to examine 

neuronal [lactate] in intact brains, and the relationship between this metabolite and 

neuronal activity. These studies would nicely complement prior work focused on the 

relationships between activity and the levels of pyruvate and ATP in brains of live flies8.  

 

While our studies have revealed that d42-GAL4-labeled neurons exhibit variable 

patterns of lactate flux stemming from differences in mitochondrial density, whether 

these neurons constitute transcriptionally-defined subpopulations remains to be 
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assessed. A variation of Patch-Seq55, whereby RNA from imaged neurons is extracted 

and sequenced by single cell RNA-seq (scRNA-seq), could be a potential strategy to 

assess whether neurons exhibiting correlated responses belong to transcriptionally-

defined subtypes. By generating GAL4 drivers using the markers identified by scRNA-

seq, we could determine the locations of these neurons in the brain and the types of 

circuits into which they integrate. Further, these subtype-specific markers would allow 

us track neurons that exhibit correlated changes in lactate flux, thereby allowing us to 

ask whether they exhibit correlated changes in other metabolic parameters such 

[glucose], [pyruvate], ATP/ADP ratio, and NAD+/NADH ratio using optical sensors1.  
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Methods 

Resource Availability 

Lead contact 

Further information and requests for resources and reagents should be directed to and 

will be fulfilled by the lead contact, Dr. Kartik Venkatachalam 

(kartik.venkatachalam@uth.tmc.edu). 

 

Materials availability 

This study did not generate new unique reagents. 

 

Data and code availability 

1. All data reported in this paper will be shared by the lead contact upon request.  

2. All original analysis code has been deposited and made publicly available 

(https://github.com/kvenkatachalam-lab/Price-et-al-2025). 

3. Any additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request. 

 

Method Details 

Drosophila husbandry 

All flies were reared at room temperature on standard fly food (per 1L of food: 95 g 

agar, 275 g Brewer’s yeast, 520 g cornmeal, 110 g sugar, 45 g propionic acid, and 36 g 

Tegosept). We obtained the d42-GAL4, a driver fly line for transgene expression in 

motor neurons32,33, from Bloomington Drosophila Stock Center and the UAS-Laconic31 
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transgenic line from the laboratory of Dr. Gregory Macleod. UAS-PercevalHR was 

described previously37. 

 

Dissociation and culturing of Drosophila neurons  

We dissociated neurons from Drosophila larval brains as described previously7,37. 

Briefly, we sterilized the cuticles of wandering 3rd instar d42>Laconic larvae by 

immersion in ethanol, followed by a wash in sterile water. We dissected brains from 

these larvae in primary neuron culture media comprised of Schneider’s insect medium 

(S0146; Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS), 

antibiotic/antimycotic solution (A5955; Sigma-Aldrich), and 50 mg/ml of insulin (I6634; 

Sigma-Aldrich). After dissection, we washed the brains using fresh primary neuron 

culture media and transferred them to a dissociation solution comprised of filter-

sterilized HL-3 (70 mM NaCl, 5 mM KCl, 1 mM CaCl2, 20 mM MgCl2, 10 mM NaHCO3, 

115 mM sucrose, 5 mM trehalose, and 5 mM HEPES) supplemented with 0.4 mM L-

cysteine (2430; Calbiochem), and 5 U/ml papain (P4762; Sigma-Aldrich). Tissues were 

then placed in an incubator at 25°C for 30 minutes to be enzymatically digested by 

papain. Following another wash in primary neuron culture media, we transferred papain-

treated brains to a 1.5-ml tube containing 150 μl of primary neuron culture media for 

dissociation by trituration. We plated the dissociated neurons on 35-mm glass bottom 

dishes (D35-10-0-N; Cellvis) pretreated with concanavalin-A (C2010; Sigma-Aldrich). 

Cells were thereafter stored in a humidified container for four days in primary neuron 

culture media in a 25°C incubator. We washed the preparations with PBS once daily to 
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eliminate any debris that may have remained from dissociation and to remove any yeast 

contamination. 

 

Confocal imaging of dissociated Drosophila neurons 

Confocal imaging of dissociated neurons was performed as described7,22,31,37. Briefly, 

we used a Nikon A1R laser-scanning confocal microscope equipped with Nikon 40x/1.3 

NA Plan-Fluor oil immersion objective and the “Perfect Focus System” for maintenance 

of focus over time. To assess lactate and glucose dynamics, we excited Laconic-or 

FLII12Pglu-700μδ6-expressing neurons with the 445 nm laser line and recorded 

emission signals at 488 nm and 535 nm. For ATP dynamics, we excited PercevalHR-

expressing neurons with the 405 nm and 488 nm laser lines and collected at 535 nm 

(Venus). For pH correction, we excited the pHrodo Red AM ester with the 561 nm laser 

line and collected at 585 nm simultaneously multiplexed with either the ratiometric 

Laconic lactate or PercevalHR ATP biosensors. We imaged ~20 cells per field and 

conducted at least 3 biological replicates for each treatment over the course of multiple 

days.  

For live-imaging with agitation, plates of dissociated d42>Laconic neurons were filled 

with 3 mL of HL3 imaging media at room temperature prior to imaging. A 5 mm 

octahedral stir bar was placed near the rim of the plate. A magnetic mini-stirrer affixed 

upside-down to a ring stand was placed in close proximity above the stir bar. The lowest 

setting that induced rotation of the stir bar was used to agitate the mixture. The mini-

stirrer was activated for 6 minutes prior to imaging and then left activated for the 

duration of the experiment.  
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For live-imaging without continuous agitation, we treated plates of dissociated 

neurons with the Invitrogen pHrodo Red AM pH indicator dye (P35372; ThermoFisher).  

Briefly, neurons were incubated for 30-minutes in 100 μl of a solution containing a 1x-

dilution of pHrodo AM ester in primary neuron culture media. At the end of the 

incubation period, the pHrodo Red AM ester and culture media solution was replaced 

with primary neuron culture media. Primary neuron culture media was replaced with 100 

μl of HL-3 at room temperature 10-minutes prior to imaging. Another ~ 5-minutes taken 

to identify Laconic-expressing neurons ensured that cells had ~15-minutes prior to the 

commencement of imaging.  

We recorded baseline signals for 2 minutes prior to the application of 20 μl of HL-3 

(mixing) or 20 μl of HL-3 containing metabolites or drugs at 6x final concentrations. 

Treatments were administered using an electronic pipette (Eppendorf Repeater E3) set 

at its 2nd-slowest dispense setting (#2) and a 100 μl Combitip. At the end of the 6-

minute control or experimental conditions, we replaced the solutions with fresh HL-3 for 

2 minutes. Subsequently, we applied 20 μl of a solution containing a 6x concentration of 

NH4Cl (10 mM final) in HL3 for 3-minutes to assess intracellular pH. This solution was 

then replaced with fresh HL-3 for an additional 3-minutes.  

To examine neuronal viability, we treated plates of dissociated d42>Laconic neuron 

cultures with the Invitrogen LIVE/DEAD Fixable Near IR Dead Cell Stain (L34992; 

ThermoFisher). Prior to labelling, cells were washed twice with PBS and incubated for 

30-minutes in 1x LIVE/DEAD Fixable Dead Cell Stain. As positive control, we treated 

cells with 0.1% (w/v) saponin (102855; MP Biomedicals) dissolved in primary neuron 

culture medium. After labeling, dissociated neuron cultures were fixed using 4% (w/v) 
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paraformaldehyde (PFA) (15710; Electron Microscopy Sciences) in PBS solution for 15-

minutes, followed by three 5-minute washes with 0.1% triton X-100 (w/v) in PBS. 

Neurons were mounted in DAPI Flouromount-G (0100-20; SouthernBiotech) and 

imaged on the Nikon A1R confocal microscope. We imaged multiple fields per dish 

using at least two dishes per saponin concentration.  

To examine the distribution of glia, we fixed dissociated d42>Laconic neuron 

cultures with paraformaldehyde, followed overnight incubation at 4°C with mouse 8D12 

anti-Repo antibodies (Developmental Studies Hybridoma Bank (DSHB)) along with 5% 

normal donkey serum blocking solution (D9663-10ML; SigmaAldrich). After washing, we 

incubated the neurons with AlexaFlourTM 568 anti-mouse secondary antibodies 

(A11004; Invitrogen) for 1-hour at room temperature. Cells were mounted in DAPI 

Flouromount-G (0100-20; SouthernBiotech) prior to imaging on a Nikon A1R confocal 

microscope. 

 

Calculation of Laconic, PercevalHR, and FLII12Pglu-700μδ6 ratios and pH 

correction 

For each field of view, we obtained fluorescence emissions from regions of interest 

(ROI) corresponding to individual neuronal cell bodies. To correct for background 

fluorescence, we subtracted the intensities of an ROI lacking cells from the intensities of 

the neuronal ROIs. Next, we corrected the emission intensities for fluorescence bleach, 

and then calculated the Laconic, PercevalHR, and FLII12Pglu-700μδ6 ratios with the 

bleach-corrected intensities (mTFP/Venus for Laconic, mCitrine/eCFP for FLII12Pglu-

700μδ6, or 488 nm/405 nm for PercevalHR). For the long traces without buffer mixing 
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(Figures 1B-1D and S1A), we normalized the Laconic and PercevalHR ratios to the 

starting values. For traces with buffer mixing at 2 minutes, we normalized the ratios to 

the means of their corresponding premixing values (i.e., baseline values).  

We utilized an empirical pH correction protocol that first normalized the 

Laconic/PercevalHR ratios to the exponential fits of the premixing baselines in order to 

set the average premixing baselines to 1. NH4Cl-induced deviations of the pHrodo and 

Laconic/PercevalHR signals from baseline exhibited linear relationships, which were 

used to empirically correct for the changes in sensor ratios that stem solely from 

changes in cytosolic pH. We applied NH4Cl pulses at the end of each recording.  

We determined the integrated changes in normalized, pH-corrected ratios by 

calculating the area under the curve (AUC) for each trace for 3 minutes from the time of 

mixing/treatment. We used the CausalImpact package56 in R to extrapolate the 

baseline, and thereby, estimated the ratios had we not applied the mixing/treatment. 

Difference between the AUC value of a trace and that of its extrapolated baseline, 

adjusted for the length of time after the treatment, represented the integrated change in 

ratios. 

 

Kinetic modeling of cellular metabolism 

We developed simple mathematical models to simulate the dynamics of trehalose and 

lactate metabolism as dictated by unstirred layer effects, and rates of glycolysis and 

OXPHOS. The models were implemented in R using the deSolve package57 for solving 

the system of ordinary differential equations (ODEs). The system of ODEs was solved 

using the LSODA (Livermore Solver for Ordinary Differential Equations) algorithm 
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implemented in the deSolve package. The metabolic system was described by coupled 

differential equations representing the temporal evolution of metabolites. 

1. Trehalose dynamics.  

d[trehalose]/dt = -v_trehalose_consumption  

where v_trehalose_consumption = k_trehalose * [trehalose]  

Here, k_trehalose is the rate constant for trehalose breakdown. 

2. Glucose dynamics. 

d[glucose]/dt = -v_glucose_consumption + (2 * v_trehalose_consumption) 

where v_glucose_consumption = k_glucose * [glucose] * (K_atp / (K_atp + [ATP])) * 

oxygen_factor_glucose   

Here, k_glucose is the rate constant for glucose consumption. We accounted for each 

trehalose molecule generating two glucose molecules. The velocity of glucose 

consumption was set to be contingent on demand for ATP using (K_atp / (K_atp + 

[ATP])) where K_atp is the half-maximal concentration of ATP. Since OXPHOS was 

implicit in the model, we also included a factor (oxygen_factor_glucose) to account for 

the complete oxidation of glucose. Oxygen-dependent regulation of glucose 

consumption was defined through a Hill equation: oxygen_factor_glucose = 

[oxygen]^n_glucose / (K_oxygen_glucose^n_glucose + [oxygen]^n_glucose), where 

K_oxygen_glucose is the half-maximal concentration of oxygen needed for complete 

oxidation of glucose and (n_glucose = 2) was the Hill coefficient representing 

cooperative regulation of glucose consumption. 

3. Lactate dynamics. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2025. ; https://doi.org/10.1101/2024.02.26.582095doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.26.582095
http://creativecommons.org/licenses/by-nc-nd/4.0/


d[lactate]/dt = -v_lactate_consumption + (lactate_coupling_factor * 

v_glucose_consumption) 

where v_lactate_consumption = k_lactate * [lactate] * (K_atp / (K_atp + [ATP])) * 

(K_glucose / (K_glucose + [glucose])) * oxygen_factor_lactate 

Here, k_lactate is the rate constant for lactate consumption. We set the velocity of 

glucose consumption to be contingent on demand for ATP using (K_atp / (K_atp + 

[ATP])). Further, (K_glucose / (K_glucose + [glucose])) where K_glucose is the half 

maximal concentration of glucose ensured that lactate consumption was contingent on 

glucose availability, i.e., lactate oxidation was driven by decreasing glucose levels. 

Since OXPHOS was implicit in the model, we also included a factor 

(oxygen_factor_lactate) to account for the complete oxidation of lactate. Oxygen-

dependent regulation of lactate consumption was defined through a Hill equation — 

oxygen_factor_lactate = [oxygen]^n_lactate / (K_oxygen_lactate^n_lactate + 

[oxygen]^n_lactate), where K_oxygen_lactate is the half-maximal concentration of 

oxygen needed for complete oxidation of lactate and (n_lactate = 2) was the Hill 

coefficient representing cooperative regulation of lactate consumption. 

4. ATP homeostasis. 

d[ATP]/dt = v_atp_production - v_atp_consumption = 0 

where v_atp_production = v_atp_production_glucose + v_atp_production_lactate; 

v_atp_production_glucose = yield_atp_glucose * v_glucose_consumption; and 

v_atp_production_lactate = yield_atp_lactate * v_lactate_consumption 

Here, yield_atp_glucose and yield_atp_lactate refer to the ATP yield associated with 

complete oxidation of glucose and lactate, respectively. The rate of change in [ATP] 
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was set to 0 to ensure that velocity of ATP production was equal to the velocity of ATP 

consumption.  

5. Oxygen utilization. 

d[oxygen]/dt = -v_oxygen_consumption 

where v_oxygen_consumption = k_oxygen_consumption * (v_glucose_consumption + 

v_lactate_consumption) 

Here, k_oxygen_consumption is the rate constant for oxygen consumption. 

Parameters chosen for the models included — trehalose consumption (k_trehalose 

= 0.01); glucose consumption (k_glucose = 0.1); lactate consumption (k_lactate = 0.03); 

ATP from complete oxidation of glucose involving glycolysis, TCA cycle and ETC 

(yield_atp_glucose = 32); ATP from complete oxidation of lactate involving TCA cycle 

and ETC (yield_atp_lactate = 30); half-maximal concentrations (K_atp = 100, K_glucose 

= 10, K_oxygen_lactate = K_oxygen_glucose = 50); rate of oxygen consumption 

(k_oxygen_consumption = varied between 0.1 and 0.6 to ensure variable oxygen 

consumption rates); ATP demand ([ATP] = varied between 1 and 100 to ensure variable 

ATP demand).  

The simulation was conducted in three sequential phases: 

1. Initial Phase (0–100-time units). This phase represented the time equivalent to that 

prior to placing the dishes on the scope. Initial conditions were [trehalose] = 100, 

[glucose] = 10, [lactate] = 80, [oxygen] = 100. 

2. Intermediate Phase (100–200-time units). This phase represented the time equivalent 

to the start of imaging to that equivalent to mechanical disruption of the unstirred layer. 

Initial conditions were end-state values from the first phase. 
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3. Perturbation Phase (200–300-time units). This phase represented the time equivalent 

to after mechanical disruption of the unstirred layer, i.e., when trehalose and oxygen 

concentrations were restored. Initial conditions were [trehalose] = 100, [glucose] = end-

state values from intermediate phase, [lactate] = end-state values from intermediate 

phase, [oxygen] = 100. 

 

Jenks natural breaks classification 

Using the classInt (https://cran.r-project.org/web/packages/classInt/index.html) R 

package, we implemented the Jenks Natural Breaks algorithm for stratification of the 

rate constants of lactate consumption. The classification process consisted of the 

following steps. First, we sorted the rate constants (k values) in descending order. Next, 

the dataset was partitioned into three distinct categories using the Jenks Natural Breaks 

optimization method, which minimizes within-class variance while maximizing between-

class variance. This resulted in three categories. k values greater than or equal to the 

minimum threshold of the "High" category were assigned to cluster 1, those falling 

between the "Medium" category thresholds were assigned to cluster 2, and those below 

the minimum threshold of the "Medium" category were assigned to cluster 3. 

 

Neural network to predict patterns of changes in Laconic ratios 

To predict the neurons' response categories from baseline fluctuations in Laconic ratios 

prior to treatment, we trained a neural network on z-scaled Laconic time series data. 

The training model was comprised of a single hidden layer of 50 units with linear 

activation function. Units of the output layer also used the linear activation function. We 
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implemented dropout regularization (rate=0.2) and L1/L2 regularization (rates=0.01) in 

the hidden layer to mitigate overfitting44,45. We used 5-fold cross-validation to predict 

post-mixing response. We determined prediction accuracies from 5-fold cross-validation 

using MSE as the metric of accuracy.  
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FIGURE LEGENDS 

Figure 1. Impact of the unstirred layer on neuronal lactate metabolism  

(A) Representative images of neurons dissociated from brains of Drosophila larvae 

expressing UAS-Laconic under the control of d42-GAL4 glutamatergic/motor neuron 

driver (d42>Laconic neurons). Venus and mTFP intensities and the ratio of the 

intensities (Laconic ratio) are shown.  

(B) Traces showing Laconic ratios in d42>Laconic neurons. Each trace is normalized to 

the starting value of that trace. Responses of individual neurons are shown in grey. 

Black line with error bars shows mean ± SEM of the population of neurons. 

(C) Traces showing PercevalHR ratios in d42>PercevalHR neurons. Each trace is 

normalized to the starting value of that trace. Responses of individual neurons are 

shown in grey. Black line shows mean ± SEM of the population. 

(D) Traces showing mean ± SEM normalized Laconic and PercevalHR ratios from 

panels (B) and (C), respectively. 

(E) Boxplots showing rate constants of exponential fits applied to Laconic and 

PercevalHR traces from panels (B) and (C), respectively. Dots represent individual 

values. ****, P < 0.0001, ***, P < 0.001. Red asterisks represent results of one-sample 

Wilcoxon test to examine difference from a median value of 0. Black asterisks are from 

Mann Whitney tests. 

(F) Traces showing mean ± SEM Laconic ratios normalized to the starting values in 

control neurons or in neurons subjected to stirring.  
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(G) Bar graph showing the rate constants of exponential fits applied to Laconic traces 

shown in panel (F). Values represent median ± 95% CI. ****, P < 0.0001, Mann Whitney 

tests. 

(H) Traces showing Laconic ratios in d42>Laconic neurons. Arrow represents time of 

buffer mixing. 

(I) Left, boxplot showing rate constants of exponential fits applied to the indicated 

traces. Dots represent individual values. Right, rate constants before and after buffer 

mixing. ****, P < 0.0001, n.s., not significant. Red asterisks represent results of one-

sample Wilcoxon test to examine difference from a median value of 0. Black asterisks 

are from Mann Whitney tests.  

 (J) Traces showing normalized Laconic ratios after pH correction. Arrow represents 

time of buffer mixing.  

(K) Scatterplot of the relationship between integrated changes in Laconic ratios and 

premixing rate constants. Regression line is shown. 

 

Figure 2. Simple kinetic models of the effects of buffer mixing on neuronal 

metabolite levels 

(A and E) Models of metabolite fluxes. Lactate production is coupled to glucose 

oxidation in (A) but not in (E). Metabolites indicated in black are explicitly modeled 

whereas the metabolites in grey are implicit.   

(B) Representative predictions of metabolite concentration dynamics based on the 

model shown in (A). Arbitrary values of ATP demand and rates of oxygen consumption 

(koxygen) are indicated above the traces. Grey box represents the epoch equivalent to the 
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imaging period. Arrow represents point in time when [trehalose] of [O2] are restored to 

starting values, as would occur in response to buffer mixing. 

(C) Normalized predicted lactate responses from 300 runs of the model shown in (A) 

with randomly selected values for ATP demand and koxygen from ranges of 1-100 and 

0.1-0.6, respectively.  

(D) Scatterplot of the relationship between predicted integrated changes in lactate levels 

and predicted premixing rate constants. 

(F) Same as (B) but based on the model shown in (E).  

(G) Same as (C) but based on the model shown in (E). 

(H) Same as (D) but based on the model shown in (E). Regression line is shown. 

 

Figure 3. Determinants of the rates of neuronal lactate consumption  

(A) Heatmap showing the relationships of O2 consumption rates and ATP demand with 

predicted rate constants of lactate decline derived from model shown in Figure 2E. 

(B) Scatterplots showing the correlation of predicted lactate consumption rates with the 

indicated parameters.  

(C) Left, representative confocal images of Laconic and MitoTracker in d42>Laconic 

neurons. Right, scatterplot showing the correlation between experimentally-determined 

lactate consumption rates and MitoTracker intensities in individual neurons.  

 

Figure 4. Impact of metabolite and drug inclusion in the mixing buffer on 

cytosolic Laconic ratios 
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(A) Bar graph showing integrated changes in the Laconic ratios in response to inclusion 

of the indicated concentrations of metabolites or drugs in the mixing buffer. Values 

represent median ± 95% CI. ****, P < 0.0001, ***, P < 0.001, **, P < 0.01, *, P < 0.05, 

n.s., not significant; pairwise Mann Whitney tests for differences from values obtained 

with mixing buffer without any metabolites or drugs. 

(B-H) Top, fraction of neurons belonging to the indicated clusters in response to the 

indicated treatments. Bottom, bar graph showing integrated changes in the Laconic 

ratios in the indicated clusters in response to inclusion of the indicated metabolite or 

drugs in the mixing buffer. Values represent median ± 95% CI. **, P < 0.01, *, P < 0.05, 

n.s., not significant; pairwise Mann Whitney tests for differences from values obtained 

with mixing buffer without any metabolites or drugs. Number of cells in clusters 1-3 and 

number of independent experiments are — mix (C1: 45, C2: 55, C3: 19, Expts: 10); 10 

mM lactate (C1: 74, C2: 3, C3: 15, Expts: 6); 5 mM trehalose (C1: 44, C2: 5, C3: 44, 

Expts: 7); 5 mM glucose (C1: 14, C2: 26, C3: 75, Expts: 8); 5 mM mannitol (C1: 49, C2: 

15, C3: 35, Expts: 8); 10 mM 2DG (C1: 18, C2: 52, C3: 20, Expts: 7); 10 mM mannitol 

(C1: 9, C2: 22, C3: 3, Expts: 3); 10 μM oligo A (C1: 16, C2: 45, C3: 23, Expts: 7); 10 

mM oxamate (C1: 3, C2: 37, C3: 59, Expts: 7). 

 

Figure 5. Correlations between premixing fluctuations in cytosolic lactate and the 

responses to disruption of the unstirred layer 

(A) Schematic of the neural network architecture used for prediction of post-mixing 

Laconic ratios from premixing values. Linear activation functions used in each layer are 

indicated. 
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(B) Schematic showing the training and testing protocols for the neural network 

designed to predict post-mixing Laconic ratios from premixing values. 

(C) Representative Laconic traces showing the ground truth and predicted post-mixing 

responses from traces used to train the model.  

(D) Representative Laconic traces showing the ground truth and predicted post-mixing 

responses from unseen (test) traces.  

(E) Representative Laconic traces showing the ground truth and predicted post-mixing 

responses from traces when the model was trained using labels with scrambled 

temporal order.  

(F) Bar graph showing the mean square error (MSE) values from comparison of the 

predicted values with the ground truth. Values represent mean ± SEM. ****, P < 0.0001, 

***, P < 0.001, **, P<0.01%, n.s., not significant, t-tests or Mann Whitney tests 

depending on data normality. 

(G) Heatmaps showing Pearson’s correlation between the Laconic ratios of in all 

neurons at each premixing time (columns) and Laconic ratios in the same neurons at 

each post-mixing time (rows).  

(H) Same as (G) with inclusion of 10 mM lactate in the mixing buffer. Heatmap scale 

shown in panel (G) also applies to panel (H). 
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