

An angiosperm-wide perspective on reproductive strategies and floral traits

Andrew J. Helmstetter^{ab*}, Marcos Méndez^c, Jürg Schönenberger^d, Concetta Burgarella^e, Bruce Anderson^f, Maria von Balthazar^d, Sylvain Billiard^g, Hugo de Boer^h, Johanne Crosⁱ, Pierre-Alexandre Delecroix^j, Mathilde Dufay^k, John R. Pannell^l, Dessislava Savova Bianchi^l, Daniel J. Schoen^m, Mario Vallejo-Marinⁿ, Rosana Zenil-Ferguson^o, Hervé Sauquet^{pq}, Sylvain Glémén^{jn*}, Jos Käfer^{b*}

^aFRB-CESAB, Montpellier, France

^bISEM, Univ Montpellier, CNRS, IRD, Montpellier, France

^cArea of Biodiversity and Conservation, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain

^dDepartment of Botany and Biodiversity Research, University of Vienna, Rennweg 14, 1030 Vienna, Austria

^eDepartment of Organismal Biology, University of Uppsala, Uppsala, 75236, Sweden

^fDepartment of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa

^gUniversity Lille, CNRS, UMR 8198 – Evo-Eco-Paleo, 59000 Lille, France

^hNatural History Museum, University of Oslo, 0318 Oslo, Norway

ⁱUniversité de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR 5558, Villeurbanne, France

^jCNRS, Ecosystèmes Biodiversité Evolution (Université de Rennes), 35000 Rennes, France

^kCEFE, University Montpellier, CNRS, University Paul Valéry Montpellier 3, Ephe, IRD, Montpellier, France

^lDepartment of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland

^mDepartment of Biology, McGill University, Montreal, QC, Canada

ⁿDepartment of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden

^oDepartment of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506 USA

^pNational Herbarium of New South Wales, Royal Botanic Gardens and Domain Trust, Sydney, New South Wales, 2000, Australia

^qEvolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia

*Correspondence:

Andrew J. Helmstetter, FRB-CESAB Institut Bouisson Bertrand, 5, rue de l'École de médecine - 34000 Montpellier. Email: andrew.j.helmstetter@gmail.com Orcid: <https://orcid.org/0000-0003-3761-4981>

Sylvain Glémén, CNRS, Ecosystèmes Biodiversité Evolution (Université de Rennes), 35000 Rennes, France.

Email: sylvain.glemin@univ-rennes1.fr Orcid: <https://orcid.org/0000-0001-7260-4573>

Jos Käfer, ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France. Email: jos.kafer@cnrs.fr Orcid: <https://orcid.org/0000-0001-6791-2731>

Keywords: flowering plants, floral morphology, reproduction, functional ecology, pollination, trait evolution, mating systems, sexual systems

¹ Summary

² Flowering plants have many different modes of sexual reproduction, notably varying from
³ selfing to outcrossing and from bisexual flowers to individuals with separate sexes (dioecy). These
⁴ reproductive modes are associated with a range of floral and other life-history traits. While
⁵ several theories have sought to explain how these correlations arose, many questions remain open,
⁶ particularly because these traits themselves have not evolved independently from one another.
⁷ These observations stress the need for an integrative analysis of plant traits to determine whether
⁸ the vast array of trait associations can be summarized as major reproductive strategies, which we
⁹ perform here. We assembled a set of 361 species representative of flowering plant diversity and 21
¹⁰ traits including those related to flowers, pollination, mating and sexual systems as well as classical
¹¹ life history traits. As expected, outcrossing was mainly found among long-lived, large-stature plants,
¹² but hermaphroditic (monoclinous) outcrossers and dioecious species were remarkably distinct in the
¹³ trait space. Level of floral investment seemed to be the main difference between these strategies,
¹⁴ with dioecious species having smaller, less rewarding flowers in general, a pattern that was not
¹⁵ only typical of abiotic pollination but present in biotically pollinated species as well. This work
¹⁶ adds to growing evidence that floral and pollination traits can yield new insights into the evolution
¹⁷ and ecology of flowering plants, and we argue that the important variation they underlie must be
¹⁸ accounted for going forward. Based on our findings, we propose a conceptual framework that will
¹⁹ help understand how different traits contribute to reproductive strategies.

20 Introduction

21 Angiosperms (flowering plants) are by far the most species-rich group of plants today. Its
22 reproductive organ, the flower, presents an exceptional diversity, as illustrated by the fact it has
23 traditionally been used as a key element to distinguish species, genera, and families. It is thought
24 this diversity has evolved to deal with the challenge of fertilization, for which flowering plants have
25 to rely on external vectors, either animals or abiotic factors (wind, water) to mate with other
26 individuals. Sex is considered to have evolved to facilitate the recombination of genetic material,
27 allowing species to adapt to their environment (Maynard Smith, 1978), and recombination is more
28 effective when individuals mate with other individuals (outcrossing) than with themselves (selfing).
29 Indeed, most species rely on outcrossing to produce offspring (Igic & Kohn, 2006), and it has been
30 identified as a main driver of evolutionary success (Gléménin, 2007). For instance, it has been shown
31 that self-incompatible (SI) species, i.e. obligate outcrossers, have higher diversification rates than
32 self-compatible (SC) species (Goldberg et al., 2010).

33 Most flowering plant species have bisexual flowers (here referred to using the botanical term
34 ‘monocliny’), which is probably the ancestral state of the clade (Sauquet et al., 2017). In these
35 species, outcrossing is often facilitated by genetic SI, but many morphological features also exist
36 that are thought to favour outcrossing (Barrett, 2002). Among others, they concern the disposition
37 of pistils and stamens in the flower (herkogamy, distyly), and differential maturity of pistils and
38 stamens (dichogamy). The strongest separation of sexual functions is found in dioecious plants,
39 which have separate ovule- and pollen-producing individuals (females and males), rendering selfing
40 impossible. The evolution of dioecy has intrigued naturalists for more than a century (Darwin,
41 1884). It has frequently arisen but is found in only a small minority of species (Renner, 2014). It
42 has been argued that dioecy is a “second-rate” outcrossing mechanism compared to genetic SI, as
43 individual plants can only reproduce through one sexual function in dioecy, which would lead to
44 lower fitness, all else being equal (Barrett, 2010). Genetic SI is thought difficult to re-evolve once
45 lost due to its complex underlying genetic architecture (Barrett, 2013), and thus might be replaced
46 by dioecy to achieve outcrossing. For instance, if an SC species manages to colonize a remote island
47 due to the reproductive assurance self-compatibility confers it will subsequently be confronted with
48 strong inbreeding depression, which could lead to the selection of dioecy (Baker & Cox, 1984). The
49 view of dioecy as inferior to SI has been promoted by studies suggesting dioecious species suffer
50 from higher extinction rates (Heilbuth, 2000; Vamosi & Vamosi, 2005), but this result has proven

51 incorrect more recently (Käfer et al., 2014; Sabath et al., 2016). Another sexual system, monoecy,
52 in which individuals bear unisexual flowers of both kinds, has been much less studied although it
53 is about as frequent as dioecy (Renner, 2014). Finally, some sexual systems are characterized by
54 a combination of unisexual and bisexual flowers, such as gynodioecy and andromonoecy, but they
55 are much rarer and seem to be more restricted to particular areas or plant families (Bawa & Beach,
56 1981; Torices et al., 2011; Dufay et al., 2014; Renner, 2014).

57 The diverse modes of reproduction in angiosperms are known to be linked to other traits, and
58 several explanations have been proposed for these associations (Table 1). For example, variation
59 in mating system (predominant outcrossing to predominant selfing) is associated with lifespan and
60 plant size. Selfing is mainly found among smaller, annual species because they rely heavily on the
61 reproductive assurance selfing provides while large, long-lived species with multiple opportunities
62 for reproduction are thought to suffer more from inbreeding depression and thus typically reproduce
63 through outcrossing (Scofield & Schultz, 2006; Petit & Hampe, 2006). Indeed, lifespan and
64 outcrossing rate are thought to evolve jointly to give rise to long-lived outcrossing species and
65 short-lived selfers (Lesaffre & Billiard, 2020). Dioecy on the other hand is often found in large plants
66 (Renner & Ricklefs, 1995; Vamosi et al., 2003). Such species produce many flowers, increasing the
67 risk that pollen is primarily transferred to flowers within the same individual, which can result in
68 the clogging of stigmas and pollen discounting. In this case, dioecy could be more efficient than
69 self-incompatibility, herkogamy or dichogamy to realize outcrossing (cf Thomson & Brunet, 1990).

70 Additional traits associated with reproductive mode could be indirectly linked to the degree of
71 outcrossing. This might be the case with dispersal traits; however, the direction of the association
72 and the underlying evolutionary forces are still debated. Initially, Baker (1955) proposed that selfing
73 favored establishment after long-distance dispersal, which is supported by the higher proportion
74 of self-compatible species on islands (Grossenbacher et al., 2017) or among alien and invasive
75 species (Razanajatovo et al., 2016; Van Kleunen et al., 2010). However, this can be due to
76 an ecological filter that does not necessarily imply coevolution of selfing and dispersal traits.
77 More recent theory provides a contrasting prediction that under spatial heterogeneity in pollen
78 limitation, outcrossing-dispersal vs selfing-nondispersal syndromes can evolve (Cheptou & Massol,
79 2009; Massol & Cheptou, 2011), although different ecological conditions can also select for the
80 opposite association (Rodger et al., 2018). In dioecious species, long-range dispersal, in particular
81 by animal dispersers, has been thought to be favorable to compensate for the effect of the absence
82 of seed production by males (Heilbuth et al., 2001).

reproductive mode	trait	explanation	reference
selfing	low flower attractiveness	reduction in the investment in pollen export and attraction	Sicard and Lenhard (2011)
	low pollen-ovule ratio	less necessary investment in the male function	Charnov (1987)
	annuality	reproductive assurance is primordial in annual species, that often occur in disturbed habitats	Barrett et al. (1997)
		“time limitation” hypothesis: self-fertilized ovules are more likely to develop into mature seeds than cross-fertilized ovules	Aarssen (2000)
	short life span	effects of inbreeding depression less severe than in long-lived species	Morgan et al. (1997), Morgan (2001), Scofield and Schultz (2006), and Lesaffre and Billiard (2020)
	colonizing ability	uniparental reproduction facilitates establishment after dispersal when mate availability is limited in the new area	Baker (1955) and Rodger et al. (2018)
dioecy	non-dispersal	reproductive assurance removes the selective pressure for dispersal when mating is locally limiting	Cheptou and Massol (2009), Massol and Cheptou (2011), and Rodger et al. (2018)
	wind pollination	less investment shared by female and male function in flower; accelerating fitness gain curves more likely	Charnov et al. (1976) and de Jong and Klinkhamer (2005)
	wind pollination	less scope for sexual selection and associated differences in attraction between the sexes	Vamosi and Otto (2002)
	wind pollination	a way to ensure pollen transfer when pollinators are absent	Friedman and Barrett (2008)
	dull flowers	less scope for sexual selection and associated differences in attraction between the sexes	Vamosi and Otto (2002)
	open, non-specialized flowers	less pollen discounting by selfing and more efficient pollen transport between plants	Bawa (1980)
monoecy	specialized pollinating insects	dioecious species need reliable pollen transfer that cannot be achieved by generalists	Renner and Feil (1993)
	woody growth form	lesser importance of reproductive assurance when seeds can be produced over longer times	Vamosi et al. (2003)
	woody growth form	with many flowers on an individual, self-pollen might saturate the stigmas and render self-incompatibility inefficient	Holsinger (1988) and Harder and Wilson (1998)
	fleshy fruits	uneven costs for reproduction	Bawa (1980) and Charnov (1982)
	fleshy fruits	more long-range dispersal by animals is needed because half of the population doesn't produce seeds	Heilbuth et al. (2001)
	wind pollination	separation of sexes in different flowers prevents self-pollination and clogging of stigmas	Faegri and Van Der Pijl (2013)
	wind pollination	facilitates selfing and reproductive assurance in plants with unisexual flowers	Friedman and Barrett (2008)

Table 1: Correlates of mating and sexual systems.

83 As one might expect given their role, floral traits have been found to be associated with the
84 different modes of reproduction, although in most cases the underlying mechanism is not clear. An
85 exception is the “selfing syndrome”, in which species that mainly reproduce through self-pollination
86 experience a reduction in flower size and attractiveness (showiness, scent, rewards) (Sicard &
87 Lenhard, 2011), presumably because the selection pressure to maintain pollinator attraction has
88 disappeared. Additional floral traits might be related to selfing, such as zygomorphy (bilateral
89 symmetry): it is thought to lead to more effective pollen transfer between individuals, and make
90 autogamous pollination more difficult (Joly & Schoen, 2021), so it seems likely that it occurs less
91 often in selfing plants.

92 Like selfing species, many dioecious species have small flowers (Vamosi et al., 2003), but the
93 reasons behind this association should be different because dioecious species cannot self-fertilize.
94 Theory based on resource allocation predicts that small flowers resulting from less investment
95 into pollinator attraction could favor the evolution of dioecy (Charnov et al., 1976). Indeed,
96 non-attractive flowers pollinated by wind have been thought to be associated with dioecy for this
97 reason. However this theory falls short in tropical rainforests, where many dioecious species are
98 found but pollination by wind is rare (Bawa & Opler, 1975). It has also been proposed that the type
99 of pollinator might influence the evolution of dioecy, but again the predictions are contrasting (see
100 Table 1). Strikingly, monoecy and its associations have been much less studied. Monoecy is often
101 not considered in its own right, but instead as a form of hermaphroditism alongside monocliny (e.g.
102 Maynard Smith, 1978; Charlesworth & Charlesworth, 1978), or as a moderate form of unisexuality
103 (but see for example Bawa & Beach, 1981).

104 The many mechanisms that have been proposed to influence the degree of outcrossing and
105 how it is achieved (Table 1) indicate that there's no single optimal mode of reproduction (cf
106 Anderson et al., 2023). Instead, it may be that the different trait combinations found in nature
107 are the result of tradeoffs. This is probably the case for the correlation between outcrossing and
108 lifespan, which involves a tradeoff between the benefits of outcrossing and the need for reproductive
109 assurance. Likewise, efficient pollen transfer between individuals might not always be possible with
110 monoclinous flowers and would thus result in dioecy, despite its disadvantages. Reproductive
111 strategies (or mating strategies; Barrett, 2003), i.e. trait combinations that have repeatedly arisen
112 across angiosperms, could result from the outcome of these tradeoffs. They are akin to the plant
113 ecological strategies that have been amply described using vegetative traits (Grime, 1974; Westoby,
114 1998): there are tradeoffs between the speed of growth and resistance to stress, or between the

115 quantity and the quality (mass) of seeds. These tradeoffs determine community composition with
116 respect to the levels of stress, disturbance and competition the community experiences.

117 Inspired by this work, we ask whether the plant traits, and in particular floral traits, can be
118 grouped to inform us about the possible reproductive strategies in plants. While size is often found
119 as the main source of variation in plants (Díaz et al., 2016), several studies have highlighted that
120 reproductive traits play an important role in explaining plant diversity (Salguero-Gómez et al.,
121 2016; E-Vojtkó et al., 2022). Our hypothesis is that traits related to plant reproduction, notably
122 including floral traits, account for considerable variation that is not distributed randomly at the
123 angiosperm scale. However, due to the large number of observed patterns and sometimes contrasting
124 mechanisms (Table 1), how floral traits vary with mating and sexual systems to form reproductive
125 strategies is currently not clear. In particular, given the well-established association of outcrossing
126 with lifespan and size, we are left wondering if additional correlations are simply a byproduct of
127 this relationship. For instance, trees, due to their larger size, can invest more resources in seed
128 dispersal, and more often use animals for dispersal than small species for which dispersal is mostly
129 unassisted (Thomson et al., 2018). Similarly, flower characteristics might be different between
130 trees and herbs, as suggested by the observation that zygomorphy is characteristic of several large,
131 mainly herbaceous families such as the Orchidaceae, Gesneriaceae and Lamiaceae, although this
132 has not explicitly been tested to our knowledge. Dioecy, which, as any outcrossing mechanism,
133 is predominantly found among trees, could be statistically correlated to other features of trees by
134 coincidence, and without any direct link with floral and dispersal traits.

135 To disentangle covariation in sexual, mating, floral, and other life-history traits, they must be
136 studied together. This will help uncover what traits are most closely associated with outcrossing
137 itself, as well as with the different ways to promote outcrossing. In this study we compile a dataset
138 of 21 traits related to or associated with reproduction for 361 species sampled from across the
139 angiosperm tree of life. We use these data to answer the question: what role do sexual system, flower
140 morphology and pollination mode play in shaping angiosperm reproductive strategies? We build
141 reproductive trait spaces to (1) determine the extent to which flower and pollination traits co-vary
142 at the angiosperm level, (2) explore how mating and sexual systems are distributed across the main
143 axes of variation and (3) establish whether major reproductive strategies can be characterized
144 among flowering plants.

145 Materials and Methods

146 Data collection

147 We collated trait data for angiosperm species using the PROTEUS collaborative database
148 (Sauquet, 2019). Our aim was to obtain a representative sample of the angiosperm diversity. We
149 started with species from the angiosperm-wide dataset of López-Martínez et al. (2023) for which
150 reproductive information (e.g., outcrossing rates, self-compatibility, dioecy) was available. Then, we
151 expanded the species sampling by adding at least one species from each family with more than 100
152 species. We added more species for the most species-rich families (e.g., Asteraceae, Orchidaceae),
153 choosing species that represented the main clades of these large families to best represent their
154 diversity. This process led to an initial set of 363 species.

155 We selected a list of traits based on prior knowledge of how reproduction-related and associated
156 traits influence evolutionary success (Helmstetter et al., 2023; Anderson et al., 2023). These traits
157 were selected primarily to encompass the main aspects of angiosperm reproduction and included
158 those related to mating system, sexual system, floral morphology (flower sex, ovary position, flower
159 colour, flower size, flower symmetry), dispersal distance/mode and pollination mode. We also
160 included several vegetative traits related to growth form and lifespan, which can also be related
161 to reproduction. For each trait, detailed scoring instructions were followed; for traits already
162 in PROTEUS, we used the instructions from Sauquet et al. (2017) and Schönenberger et al.
163 (2020), whereas for newly added traits, we compiled instructions (Appendix S1) based on previously
164 available guidelines (Perez-Harguindeguy et al., 2013; Cardoso et al., 2018). Seed mass was added
165 outside PROTEUS as the species mean according to the Seed Information Database (SER et al.,
166 2023).

167 To compare our results with those derived from classical functional traits, we also analysed a
168 data set of six plant traits (leaf area, leaf mass per area, leaf nitrogen per mass, diaspore mass,
169 stem specific density and plant height) for > 45,000 species (Díaz et al., 2016; Díaz et al., 2022).

170 Trait encoding

171 To facilitate downstream analyses, we modified the initial trait encoding to create a tractable
172 and interpretable set of traits (Table S1). For qualitative traits, we reduced the number of states
173 to between two and four for comparisons to be informative. In some cases we split an initially
174 complex trait into multiple different ones for easier interpretation of results. For example, habit

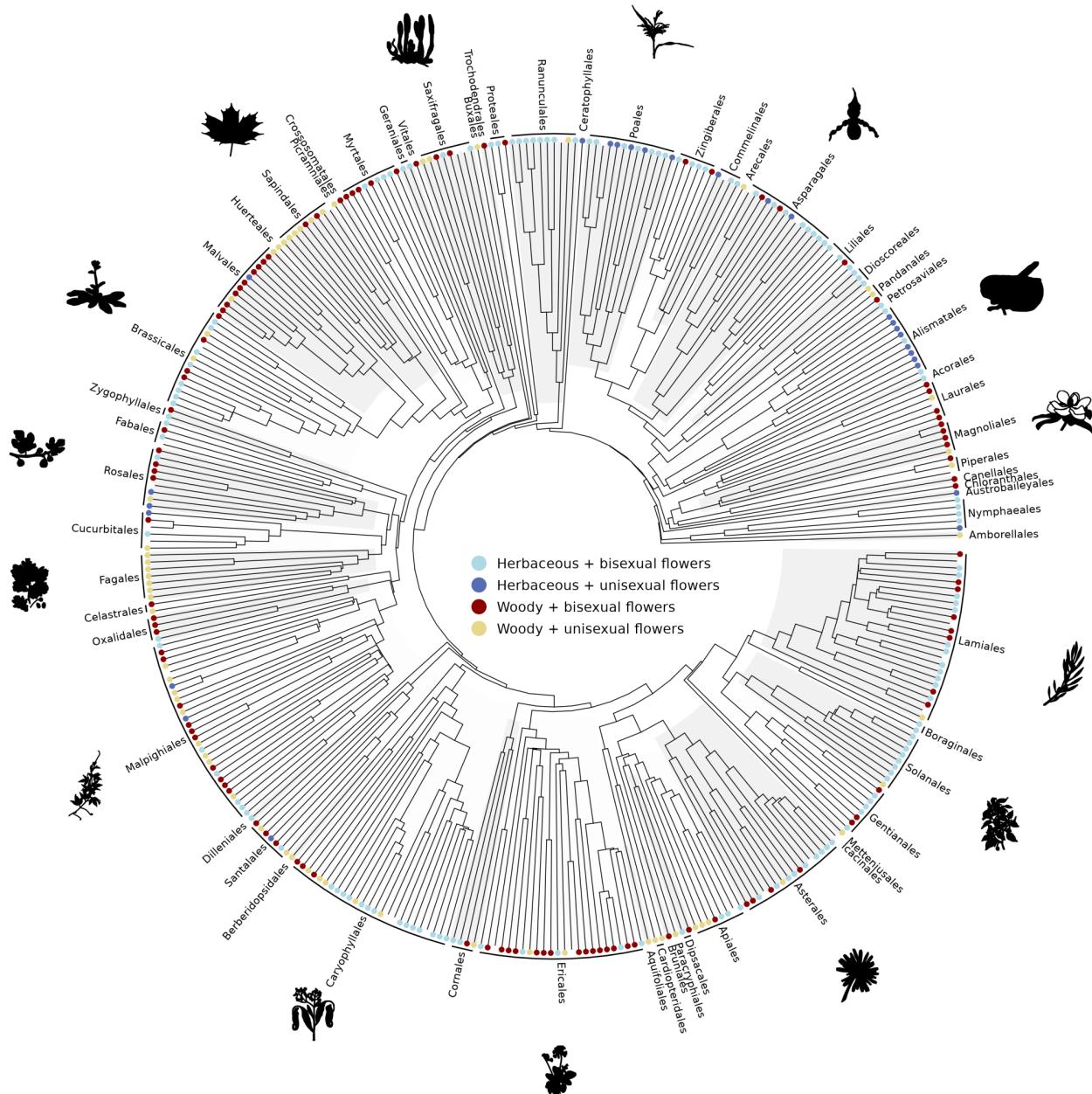


Figure 1: Phylogenetic tree representing the 361 species used in our analyses. Tips are labelled with coloured circles indicating the combination of woodiness and flower sex each species possesses. Species without data or those that are polymorphic for either trait are left blank. Orders that are represented in our set of species are highlighted around the outside of the tree alongside a selection of species' silhouettes from phylopic.org.

175 was recoded into three binary traits: woodiness, climbing and aquatic. Similarly, the original
176 sexual system (including monocliny, dioecy, monoecy, gynodioecy, andromonoecy, etc.) was split
177 into two binary traits: (1) flower sex coded as unisexual vs bisexual and (2) sexual system, coded
178 as monomorphic (including monocliny, monoecy, andromonoecy and gynomonoecy) vs dimorphic
179 (including dioecy, androdioecy and gynodioecy). For quantitative traits, if several values were
180 available for a species/trait combination (either several measurements or indication of minimum
181 and maximum values), we used their mean. The outcrossing rate was transformed into a qualitative
182 trait “mating” using three bins: selfing (< 0.2), mixed mating ($0.2 - 0.8$) and outcrossing (> 0.8).
183 This allowed us to combine species with a quantitative estimate of outcrossing rate with those for
184 which only a qualitative classification was available (phenotypic mating system, self-incompatibility
185 and dioecy, see Table S1).

186 We encoded the qualitative traits in two ways to facilitate different downstream analyses. The
187 first had one variable per trait with as many values as there are states in the trait, plus separate
188 values for cases in which the trait was polymorphic for a species (e.g. the trait woodiness has the
189 states: woody, herbaceous, woody-herbaceous). We refer to this encoding as the “original” data set.
190 In the second, qualitative traits were encoded using a one-hot approach, where each category of a
191 trait is treated as a distinct binary variable (e.g. woodiness is split into two variables, each with two
192 states: (1) woody vs. non-woody, (2) herbaceous vs. non-herbaceous). While one-hot encoding may
193 introduce some redundancy (e.g., most species that are herbaceous are not woody and vice-versa),
194 it is an alternative way of dealing with polymorphic states while keeping the relations between
195 values. For example, in the original encoding, a species that can be both woody and herbaceous
196 is assigned to a separate category with no explicit relation to other woody and herbaceous species,
197 while in the one-hot encoding, such a species is similar to both herbaceous and woody species.

198 For visualization purposes, we chose to divide species in five categories. Among species with
199 bisexual flowers (monocliny), species were assigned according to their predominant mating system
200 (selfing, mixed mating, and outcrossing). The two other categories concern species with unisexual
201 flowers, among which we distinguish dioecious and monoecious species. The few species with both
202 bisexual and unisexual flowers were considered monoclinous for this purpose, as usually, unisexual
203 flowers are not found in all populations (e.g. in gynodioecy) or only represent a small fraction of
204 the flowers. Species having both monoecious and dioecious populations were labeled according to
205 their major sexual system, if this information was available, or not labeled. Again, this labeling was
206 only used to aid the interpretation of the figures and data, and not in the multivariate analyses.

207 Filtering, transformations and missing data imputation

208 To limit the impact of missing data on our analyses, traits were removed if more than 50% of
209 values were missing in the original data set. Likewise, species were removed if more than 50% of
210 their traits were unknown. We log-transformed quantitative traits to conform better to normality
211 expectations, except for fusion of ovaries that is coded as a proportion. We also centered and scaled
212 these variables to limit potential biases caused by using traits with different units of measurement.

213 After filtering, many of the traits still contained missing data. We conducted imputation with
214 ‘missForest’ R package (Stekhoven & Bühlmann, 2012) to determine how this affected distances
215 between species. We followed the approach outlined in Debastiani et al. (2021). Briefly, a pairwise
216 phylogenetic distance matrix (see below for how the phylogenetic tree was generated) containing all
217 species was decomposed to a set of eigenvectors using the function *PVRdecomp()* from the ‘PVR’
218 R package (Santos, 2018). The first 10 eigenvectors were added to the trait data as additional,
219 complete traits to conduct imputation of missing data with the *missForest()* function.

220 We then examined pairwise correlations between traits in our original data set using different
221 approaches depending on the type of traits being compared. For qualitative vs qualitative trait
222 comparisons we calculated Cramer’s *V* using the *cramerV()* function in the R package ‘rcompanion’
223 (Mangiafico, 2025). For other comparisons we performed ANOVA (qualitative vs quantitative) or
224 Pearson’s correlation coefficient (quantitative vs quantitative). We then used hierarchical clustering
225 to group traits together with the *hclustvar()* function from the R package ‘ClustOfVar’ (Chavent
226 et al., 2017).

227 Trait spaces

228 To build trait spaces, we first calculated pairwise distance matrices among species using Gower’s
229 distance (Gower, 1971) with the function *daisy()* from R package ‘cluster’ (Maechler et al., 2022).
230 Gower’s distance was used because it can deal with missing data and mixed data types (e.g.
231 qualitative and quantitative). We then performed principal coordinates analysis (PCoA), a dimensionality
232 reduction approach used to summarize similarities in the data, on the resultant distance matrix.
233 We used the *pcoa()* function of the R package ‘ape’ (Paradis & Schliep, 2019) to generate a set
234 of orthogonal eigenvectors and their associated eigenvalues. For the one-hot data, we used the
235 *wcmdscale()* function in the R package ‘vegan’ for the PCoA, and fitted the individual traits on the
236 resulting trait space with the function *envfit()*. We also built an additional trait space using the

237 vegetative traits in the Díaz et al. (2022) data set. To do so we first removed those species that had
238 information for fewer than four of the six traits. This ensured distances could be calculated between
239 all species pairs while increasing computational feasibility and accuracy of distance calculations.
240 To compare these trait spaces we extracted the 159 species common to both datasets and re-built
241 the two corresponding trait spaces using only these species.

242 We quantified the “quality” of dimensionality reduction of the resultant trait spaces using the
243 method outlined in Mouillot et al. (2021). Briefly, the difference between the initial distance matrix
244 and the distance matrix after dimensionality reduction using PCoA was examined. High-quality
245 trait spaces are those in which a reduced number of PCoA dimensions accurately represents initial
246 distances among species, thus indicating high redundancy among traits. Quality was quantified
247 using the area under curve (AUC) metric relating the increase in quality with increasing number
248 of retained PCoA axes. This approach also provides an indication for how many axes are sufficient
249 to summarize the variation in the initial dataset.

250 PCoA is a linear dimensionality reduction approach that does not account for more complex
251 non-linear patterns. Therefore we also used an alternative dimensionality reduction approach,
252 Uniform Manifold Approximation and Projection (UMAP, McInnes et al., 2020), to visualise
253 non-linear patterns in our data. UMAP is based on manifold learning techniques and allows
254 the user to assess patterns at local and global scales simultaneously, depending on the size of
255 the neighbourhood (‘n_neighbours’) chosen. We applied UMAP to our Gower’s distance matrices
256 calculated using the original data set, and used the default configuration. We set the number of
257 components (dimensions) targeted to two and varied ‘n_neighbours’ (10, 25, 50, 100) to test the
258 effect of changing this parameter on the distribution of species in the space.

259 Clustering

260 To help define reproductive strategies we assigned species to different groups using the partitioning
261 around medoids (PAM) (Kaufman & Rousseeuw, 1990) clustering approach, as implemented in the
262 ‘cluster’ R package (Maechler et al., 2022). This method takes a distance matrix as an input and
263 is based on determining a set of medoids (points) that represent the structure of the data. Each
264 species is assigned to a medoid, with the goal of minimizing the sum of the dissimilarities of each
265 species to their closest medoid. PAM clustering was done using Gower’s distance matrices for both
266 original and one-hot encoded data sets.

267 The number of clusters (i.e. values of k) was initially selected using silhouette width. This metric

268 ranges from -1 to +1, where high values indicate that a point is similar to its cluster and different
269 from neighbouring clusters. However it can be difficult to objectively determine the appropriate
270 number of clusters that should be used to summarise the data set. To tackle this subjectivity issue,
271 we examined how cluster membership changed as values of k were changed using Sankey plots, a
272 type of flow diagram. We then identified groups of species that consistently grouped together as k
273 was increased from $k = 2$ to $k = 7$. We took the largest groups until the total number of species
274 reached 80% of the species in our data and considered these as ‘robust groups’.

275 Phylogenetic tree and simulated data sets

276 We built a phylogenetic tree among our species using V.PhyloMaker2 (Jin & Qian, 2022). We
277 used the default ‘GBOTB.extended.TPL’ tree that was derived from a large phylogenetic tree of
278 all seed plants (Smith & Brown, 2018) and built the tree using the default approach described
279 as ‘scenario 3’ (Jin & Qian, 2022). Prior to building the tree we standardized genus and species
280 epithets using the R package ‘TNRS’ (Boyle et al., 2013) and retrieved higher level taxonomy using
281 ‘TNRS’ and another R package, ‘taxize’ (Chamberlain & Szöcs, 2013).

282 To determine how phylogeny influences trait space for our set of species and traits we simulated
283 trait data using the phylogenetic tree of our species. To do so we first fitted trait evolution models
284 to each trait in the original data set with missing data imputed. For quantitative traits we fitted
285 Ornstein-Uhlenbeck (OU) models using the *fitContinuous()* function in the R package ‘geiger’
286 (Pennell et al., 2014) to estimate OU model parameters and root state values. For qualitative
287 traits we fitted fixed-rate, continuous-time Markov (Mk) models using the *asr_mk_model()* function
288 in ‘castor’ (Louca & Doebeli, 2018) to generate transition rate matrices and ancestral likelihoods
289 for the root state. We allowed all transition rates to be different by using all-rates-different (ARD)
290 models. We then used the estimated parameters and the phylogenetic tree to simulate new datasets
291 with *rTraitCont* from the ‘ape’ R package (Paradis et al., 2004) and *sim.history* from ‘phytools’
292 (Revell, 2012). Traits were simulated independently and then combined into a single simulated
293 dataset, from which we calculated distance matrices and ran PCoAs, as above.

294 Results

295 After recoding and filtering, the final data set consisted of 21 traits (Table S1) for 361 species
296 and 13% missing data (Fig. S1). With representatives from 260 of 416 families, and 61 of 64 orders

297 (Fig. 1, Table S2; APGIV, 2016), our dataset included a broad range of angiosperm diversity.
298 Imputing missing data only slightly changed Gower's distances between species (Fig. S2, Mantel
299 statistic $r = 0.87$), and so would likely have little impact on the following results. Using one-hot
300 encoding also had a minor effect on distances, which remained highly correlated (Mantel statistic r
301 = 0.95). In the following we used the “original” and the “one-hot encoded” data; the imputed data
302 were only used for comparisons among data sets and in the simulations to test for phylogenetic
303 effects.

304 **Reproductive trait space: quality and dimensions**

305 The first two PCoA axes of our trait space explained 30 to 34% of the variation (Figs. 2a and
306 3a), depending on the data encoding used. To characterize this trait space, we first compared it to
307 the one built with data for six traits classically used in plant functional ecology (Díaz et al., 2022)
308 from 7968 species. The species in our dataset were scattered throughout the mainly vegetative
309 trait space (Fig. S3a). Using a set of 159 species shared between the two datasets, we found that
310 the species' distances based on the six (vegetative) traits from Díaz et al. (2022) were only weakly
311 correlated with those based on the 21 traits in our study (Mantel statistic $r = 0.285$; Fig. S4).

312 Then, using the approach of Mouillot et al. (2021), we calculated statistics allowing comparison
313 of our trait space to others. The AUC criterion, which indicates how well the first n axes summarize
314 the total variation in the data set, indicated that to get a good representation of our trait space,
315 we must keep more dimensions than for the data set derived from Díaz et al. (2022) (Fig. S3b).
316 This was equally the case when comparing our results to those of the other trait spaces analyzed
317 by Mouillot et al. (2021). This means that, in our data set, traits were weakly redundant and most
318 of them contribute small but significant amounts of variation that cannot be reduced to variation
319 in other, more structurally important traits. We did not see notable differences in the trait space
320 quality analyses between our different data sets (original, imputed, one-hot; Fig. S5).

321 In order to test for phylogenetic inertia, we performed ancestral state reconstruction with the
322 original dataset to produce rate matrices that were used to simulate new data sets where all traits
323 evolved independently. As expected, distance matrices from these simulated data sets were not
324 correlated to the real data sets (Mantel statistic $r = -0.01$) and maximum distances were greater
325 when using real data (Fig. S2). When we ran PCoA on simulated data sets we found that the first
326 three to four axes explained substantially less variation than in the real data sets (Fig. S6). Thus,
327 at least the first three, perhaps four, PCoA axes from the analysis of our original data set are due

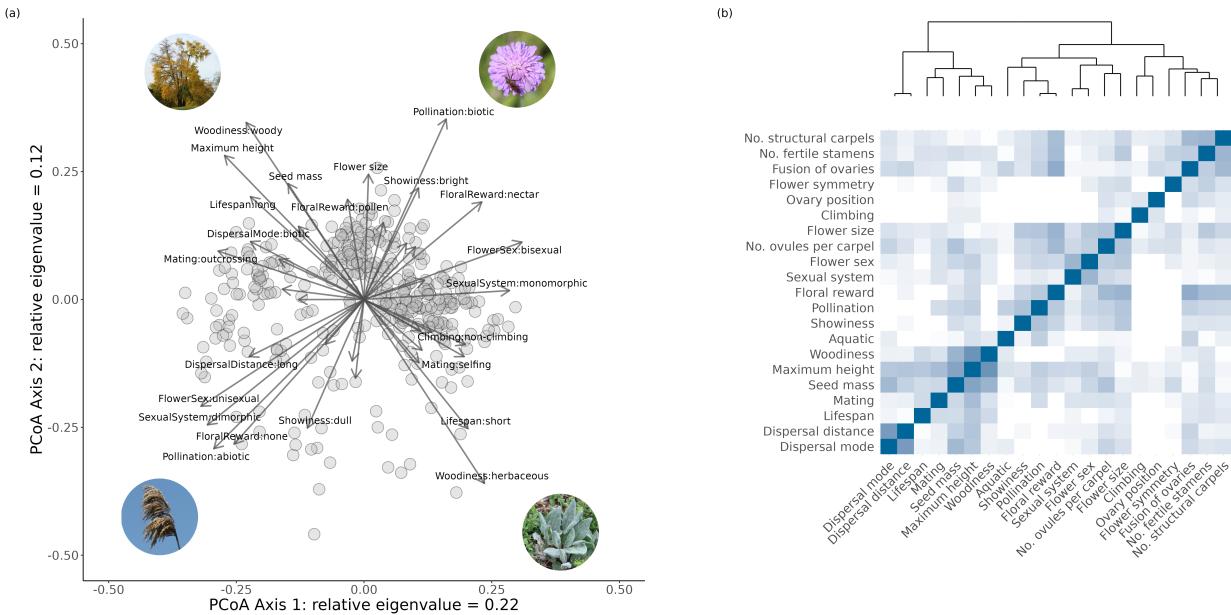


Figure 2: Multivariate analysis of plant traits. (a) The trait space obtained with a principal coordinates analysis (PCoA) performed on the one-hot encoded data set. The (linear) vectors of each trait in the first two dimensions are indicated as arrows and the species are indicated as circles. Images representing aspects of the trait space are shown in the four corners of the plot; photographs by A. J. Helmstetter. (b) A heat map showing the strength of the correlations between pairs of traits, where darker blues indicate higher correlation. The correlation coefficients were calculated using the original encoding of the data, so correlation coefficients are presented as absolute values as the direction of correlation is not meaningful for categorical data (see methods). The dendrogram is derived from hierarchical clustering of all traits.

328 to co-evolution of traits rather than neutral phylogenetic co-occurrence.

329 **Trait covariance**

330 The first four axes of the trait space were correlated with a combination of general life-history
331 and floral traits (Table S3). Among the most important traits we found woodiness, lifespan, seed
332 mass and plant height, and they were co-distributed along a diagonal in the 2D trait space defined
333 by the first two PCoA axes (Fig. 2). This same diagonal also corresponded to mating system
334 variation, from selfing associated with small size and short life span to outcrossing associated with
335 woodiness, large size and long life span. Many flower and pollination-related traits contributed
336 to variation that was orthogonal to this diagonal, including flower sex, floral reward, biotic vs.
337 abiotic pollination, showiness and plant sexual system. The third PCoA axis, representing 9%
338 of the variation, was mainly associated with dispersal (mode and distance), and the fourth axis,
339 representing 7% of the variation, with ovary position and flower symmetry (Fig. S7).

340 We examined correlations among traits (Fig. 2b) and found two main groups reflecting patterns
341 in the trait space; one containing vegetative traits, mating and dispersal, and another containing
342 flower morphology, pollination and sexual system. Among the first group of traits, lifespan,
343 height, seed mass, woodiness and mating were most strongly clustered, while dispersal traits were
344 more weakly associated with the others. Among the floral traits, two groups could be identified,
345 one mainly related to pollination and attraction (flower size, showiness, reward), and another
346 more morphological group (carpel and stamen number, position and fusion of ovaries, flower
347 symmetry). Flower sex and sexual system, although clearly morphological in nature, clustered
348 with the pollination and attraction traits, not the other morphological traits.

349 **Major reproductive strategies**

350 Partitioning Around Medoids (PAM) clustering (Figs. 3 & S8) of the species based on their
351 trait-based distances pointed to the existence of two major groups (light green and dark green
352 points in Fig. 3a). These were well separated in the first two dimensions of the trait space, and can
353 be predominantly characterized by species with bisexual flowers vs species with unisexual flowers.
354 When the number of clusters was increased to three, the cluster of unisexual species remained
355 (Squares in Fig. 3) while the cluster of species bisexual flowers was split into a herbaceous (circles)
356 and a woody (diamonds) group (Figs. 3 & S9). Such a structure in three major groups was also
357 revealed using UMAP (Fig. 3b; Fig. S10), which is based on an alternative decomposition approach

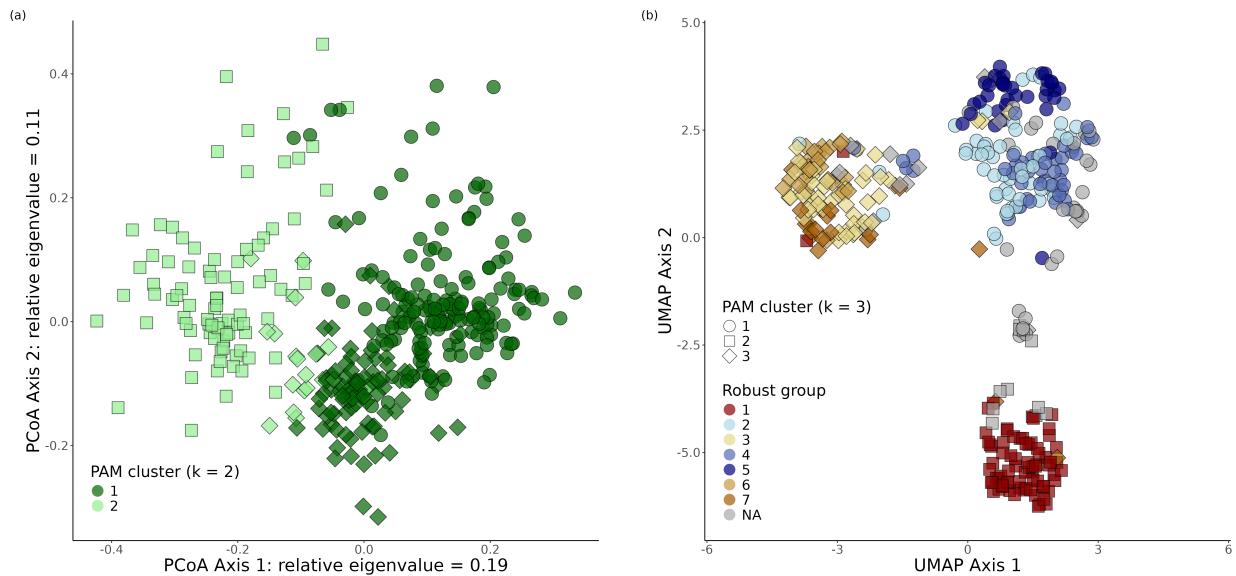


Figure 3: Trait spaces and clustering of species. (a) the position of species on the first two axes of a principal coordinates analysis (PCoA) on the original data set. Points are coloured by cluster membership derived from clustering using the partitioning around medoids (PAM) method when $k = 2$ (number of clusters). (b) the distribution of species along the first two axes of a UMAP (uniform manifold approximation) analysis with a neighbourhood size of 10, showing final-scale structure in the data. Points are coloured by robust group (see Figure S12 for further details). Point shape in both panels indicates their PAM cluster assignment when $k = 3$. Circles are mostly herbaceous species with bisexual flowers, squares are species with unisexual flowers and diamonds are woody species with bisexual flowers.

358 that allows the visualisation of non-linear and local patterns.

359 We sequentially increased the number of PAM clusters up to seven (Fig. S8) and tracked
360 whether groups of species stayed together in the clusters (“robust groups”) or not (Fig. S11). The
361 species with unisexual flowers remained a markedly stable group (Fig. S12d), especially the woody
362 dioecious species; the unisexual species that did not remain in this group were mostly monoecious
363 and herbaceous. The species in the bisexual clusters were further split into three robust groups
364 each: among the woody species, one group with smaller, rather dull flowers stands out (Fig. S12c,j),
365 while among the herbaceous species, a distinct robust group with zygomorphic flowers appears
366 (Fig. S12h). Thus, traits such as zygomorphy, flower size and dispersal mode, are characters
367 that play different roles depending on the context of other traits (mainly woodiness). Remarkably,
368 mating system was not clearly associated with one of the clusters, even among herbaceous species
369 where most variation in this trait is found. A total of 55 species did not group with other species
370 throughout the process and thus were not assigned to robust groups. Many of these were found
371 in distinct, sparsely populated areas of the trait spaces - in the top centre of the PCoA plot (Fig.
372 3a) and in the middle of the UMAP plot (Fig. 3b). In general, these were long-lived, herbaceous
373 species with small, dull, abiotically-pollinated flowers, many of which were aquatic.

374 Mating and sexual systems

375 In all analyses, variation in reproductive modes was encoded by three separate traits (mating,
376 flower sex, sexual system; Table S1). Thus, for interpretation we plotted the original sexual systems
377 (dioecy, monoecy, monocliny) and the mating systems of monoclinous species back on the trait space.
378 This allowed us to visually assess that dioecious species occupied an area in the trait space that
379 was largely distinct from the area occupied by the monoclinous species (Fig. 4a). Monoecious
380 species were found between these two sets and overlapped substantially with both monoclinous and
381 dioecious species, occupying a large area. Among the monoclinous species, the variation in mating
382 system was associated with a gradual shift in the associated traits. We found that predominantly
383 outcrossing and selfing species shared a large overlapping area in the trait space, despite being at
384 opposite ends of a major axis of variation.

385 There was a gradual increase in average size from selfing to outcrossing monoclinous species,
386 whereas dioecy and monoecy seemed more restricted to large-stature plants (Fig. 4b). Similarly,
387 while monoclinous selfing species had on average smaller flowers than outcrossers, average flower
388 size was even smaller among dioecious and monoecious species (Fig. 4c; see Fig. S13 for all

389 quantitative traits). The associated categorical traits (Fig. 4d-h) confirmed the trait associations
390 visible in Fig. 2. Unisexual flowers were almost always actinomorphic, while there was no notable
391 difference in flower symmetry among the monoclinous species with different mating systems. Abiotic
392 pollination was found more frequently among species with unisexual flowers, as was the absence of
393 a floral reward. However, purely abiotic pollination was not the major mode of pollination among
394 dioecious species, and its frequency was higher (about 45%) among monoecious species.

395 Discussion

396 We here present an angiosperm-scale synthetic analysis of the plant traits associated with mating
397 and sexual system variation. We compiled information on 21 traits, combining classical life-history
398 traits, with those relating to flowers, pollination and reproductive modes. Our study is based on
399 361 species, a small but representative sample of the angiosperm diversity, with species from more
400 than 50% of the families and nearly all orders. Our multivariate analyses indicate that the different
401 traits of these species are only moderately correlated and encapsulate substantially more diversity
402 than vegetative traits alone.

403 Structure of the reproductive trait space

404 Sexual and mating systems had markedly different distributions in the trait space. Mating
405 system variation was mainly correlated with variation in lifespan and size, as has been documented
406 previously (e.g. Petit & Hampe, 2006; Salguero-Gómez et al., 2016). Sexual system variation, on
407 the contrary, was linked to variation in floral and pollination traits. This pattern seems to be
408 mainly driven by the contrast between dioecious and monoclinous species: among the species that
409 are mainly outcrossing the dioecious species are those that have smaller, less rewarding flowers.
410 Here we confirm the patterns that have been described before by naturalists (e.g. Bawa, 1980;
411 Renner & Ricklefs, 1995) using a multi-trait analysis encompassing both sexual systems and mating
412 systems. While it is important to note that we only describe correlations, not causal relationships
413 (Table 1), between the modes of reproduction and their associated traits, a multi-trait analysis can
414 nevertheless indicate more (or less) plausible causes by identifying which traits co-occur most often.

415 Along the lifespan-size axis, mating systems largely overlapped. Thus, outcrossing and selfing
416 species cannot easily be distinguished, and floral traits were only weakly discriminative at this scale.
417 Selfing species tend to have smaller flowers than mixed-mating or outcrossing species, consistent

418 with the observation that the ‘selfing syndrome’ often involves a reduction in corolla size (Sicard
419 & Lenhard, 2011). However, the fraction of species with zygomorphic flowers, often interpreted
420 as being the sign of high-precision pollination favoring outcrossing, was similar among selfing,
421 outcrossing and mixed-mating species (Fig 4). Indeed, a transition to predominant selfing can
422 arise in very different pollination contexts, e.g., wind-pollinated grasses (Burgarella et al., 2023),
423 small-flowered herbs with generalist pollinators (Sicard et al., 2011), or in groups where specialist
424 pollination syndromes have evolved (Rose & Sytsma, 2021). Furthermore, selfing is associated with
425 higher extinction rates (cf Goldberg et al., 2010), although this might depend on associated traits
426 (Zenil-Ferguson et al., 2019; Helmstetter et al., 2023; Anderson et al., 2023). This would limit the
427 scope for co-evolution of multiple traits, which could explain why floral traits associated to selfing
428 are specific to each clade.

429 Traits associated with sexual systems have been described at the level of angiosperms (Renner &
430 Ricklefs, 1995; Vamosi et al., 2003) or regional floras, including species from many families (Bawa,
431 1980). However, most studies contrasted dioecy with hermaphroditism, often either excluding
432 monoecy or considering it as a particular case of hermaphroditism as, indeed, a monoecious
433 individual can self-pollinate in the absence of an incompatibility mechanism (Bertin, 1993). Here
434 we found that the traits of monoecious species were intermediate between those of monoclinous and
435 dioecious species (Fig. 4), consistent with the idea that monoecy presents a lesser degree of sexual
436 specialization than dioecy, and might serve as an evolutionary intermediate between dioecy and
437 monocliny (Renner & Ricklefs, 1995). However, there was extensive variation in the traits associated
438 with monoecious species (even though we sampled more dioecious than monoecious species), which
439 could be related to the variation in the spatial organisation of unisexual flowers. For example,
440 some species have inflorescences with both female and male flowers (e.g. *Hevea brasiliensis*, *Arum
441 maculatum*) forming functionally bisexual floral units, while in others the female and male flowers
442 are clearly separated (e.g. *Zea mays*). Monoecy has not been as intensively studied as dioecy (cf
443 Cronk, 2022) but clearly warrants further consideration in its own right. Investigations into the
444 drivers behind its evolution (e.g. resource allocation, sexual selection and interference (Willson,
445 1979; Bawa & Beach, 1981)) and the spatial (and even temporal) organisation of flowers more
446 generally are ripe avenues for future research.

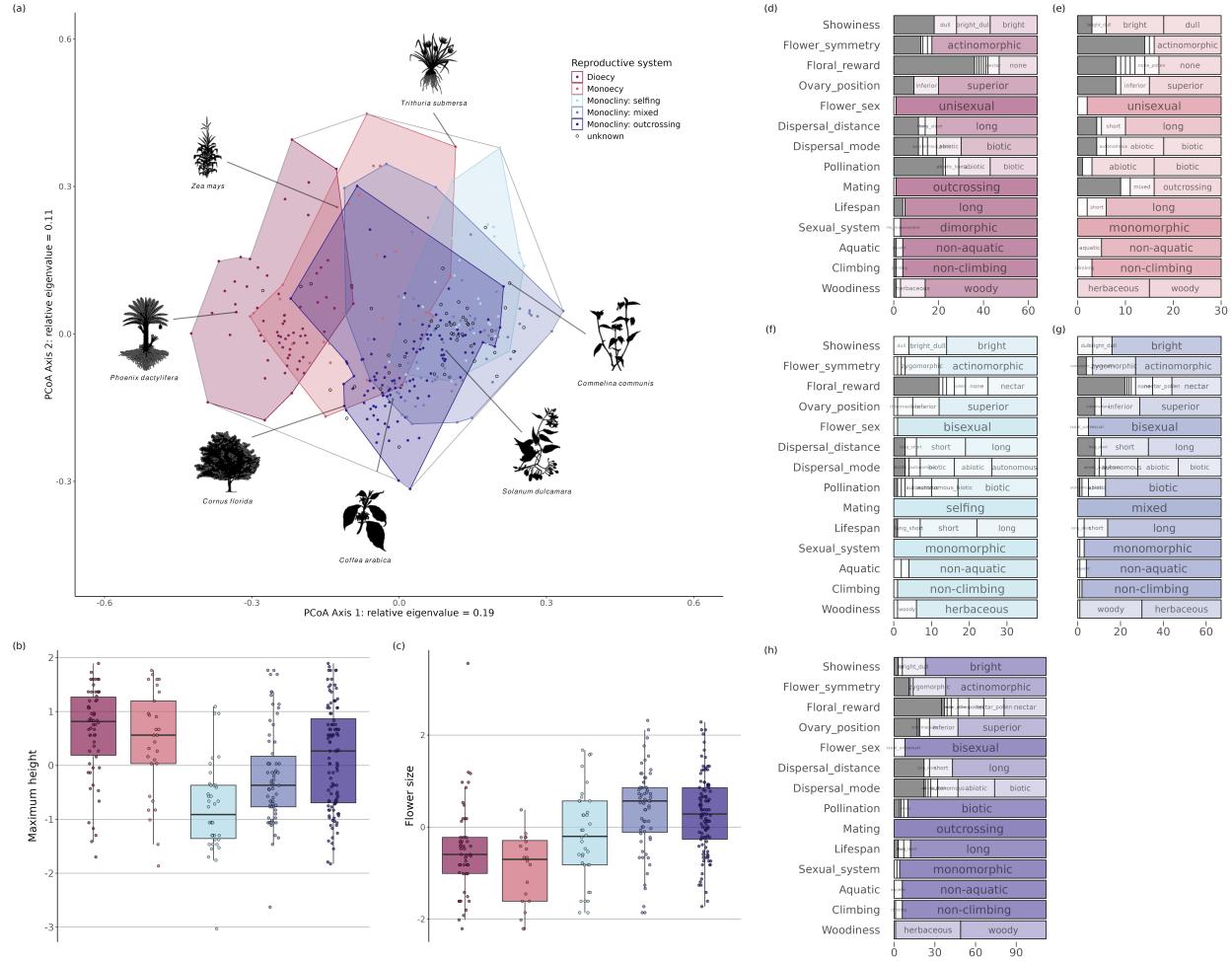


Figure 4: Sexual and mating systems in the angiosperm reproductive trait space. Panel (a) shows the position of 361 angiosperm species on the first two axes of a principal coordinates analysis (PCoA) on the original data set. Colours indicate the reproductive mode reduced to five categories for visualization. Species silhouettes, used to illustrate the diversity of species, are taken from phylopic.org. Boxplots show the distribution (after log transformation and scaling) of values for two traits per cluster: (b) maximum vertical height and (c) flower size. Points represent the values of species within each cluster. The stacked barplots (panels (d-h)) show the frequency of states for 14 categorical traits for each of the five reproductive modes: (d) dioecy, (e) monoecy, (f) monoclinous selfers, (g) monoclinous mixed mating species and (h) monoclinous outcrossers. Sections representing states with high frequencies are labelled and the dark grey sections correspond to missing data.

447 Traits differ between modes of outcrossing

448 In this study, monocliny and dioecy appear as two contrasting approaches to realize outcrossing.
449 Although both occurred mainly among long-lived, large-stature plants, the floral traits associated
450 with each of them show these approaches are clearly different. Is this difference driven by the way
451 the species are pollinated? Fewer than half of the dioecious species for which pollination mode
452 could be assessed were wind-pollinated, and most experienced at least some biotic pollination. It
453 should furthermore be taken into account that pollination modes are often inferred from floral
454 traits instead of pollination assays, and thus might not be correct. For example, although palms
455 (a family with a high incidence of dioecy; Nadot et al., 2016) had long been thought to be mainly
456 wind-pollinated based on their often rudimentary flowers, current knowledge indicates that a large
457 majority are pollinated by insects (Barfod et al., 2011; Henderson, 2024). So, the correlation of
458 dioecy with small, unrewarding and rather inconspicuous flowers does not seem to be a side-effect
459 of wind pollination, as it affects biotically-pollinated species alike. Rather, our results indicate that
460 dioecy is more likely to evolve in small-flowered species, possibly because there are fewer resources
461 to be shared between the female and male functions of those flowers (cf Charnov et al., 1976).
462 Monoecious species seem to resemble the dioecious species in these aspects, which suggests that it
463 is flower sex (uni- vs. bisexual) rather than sexual system (mono- vs. dimorphic) that drives these
464 correlations.

465 We found that dispersal traits were somewhat correlated with height, lifespan and thus mating,
466 but not particularly with sexual system. This is in agreement with previously identified patterns
467 of dispersal mode and plant size (Thomson et al., 2018), but does not lend support to hypotheses
468 that link dispersal to sexual system (Table 1). The observation that dioecious species more often
469 have fleshy, animal-dispersed fruits could thus be related to the correlation between plant size
470 and biotic dispersal. So while allocation to floral structures might influence the evolution of sexual
471 systems, allocation to seed dispersal may not. Indeed, as the primary male (pollen) and female (seed
472 and fruit) contributions to reproduction do not occur simultaneously in plants, resource overlap is
473 limited, which is thought not to favor the evolution of dioecy (Charnov et al., 1976).

474 This multi-trait view of the distribution of sexual and mating systems among angiosperms
475 stresses that the evolution of dioecy results from two mechanisms, i.e. it promotes outcrossing,
476 while small floral investment allows to optimize female and male fitness separately (cf Thomson &
477 Brunet, 1990; Bawa, 1980; Charlesworth & Charlesworth, 1987; Käfer et al., 2017). Early modelling

478 work has already shown that selfing avoidance is not enough to explain why dioecy evolves, as
479 unisexuality comes with a fitness cost that can be overcome by resource reallocation (Charlesworth
480 & Charlesworth, 1978). A recently-developed model includes both resource allocation and the
481 quality of outbred offspring in the female and male fitness gain curves, demonstrating how allocation
482 and outcrossing can jointly drive the transition towards separate sexes (Lesaffre et al., 2024).

483 Of course, much diversity remains unaccounted for, as is reflected by the fact that the first two
484 axes of the trait space had relatively low eigenvalues compared to other datasets (Mouillot et al.,
485 2021). This is partly due to traits that vary mostly in a subset of species, but not consistently
486 among the whole set of species (e.g. zygomorphy, dispersal mode; Fig. S12). Furthermore, there
487 are many exceptions to general patterns. Among the most striking ones is *Rafflesia*, the genus with
488 the largest known flowers, which is dioecious. This species obviously also has some other traits
489 making it difficult to compare to other plants - classifying it as herbaceous or woody would not
490 reflect its unique, almost completely endoparasitic habit.

491 Reproductive strategies of flowering plants

492 Just as plants have “ecological strategies” resulting from tradeoffs involved in competition,
493 stress-tolerance and dispersal (Grime, 1974; Westoby, 1998), they have “reproductive strategies”
494 that determine how much they rely on outcrossing and how this is achieved. This term has
495 been previously used to encompass life-history strategies that include diverse aspects of seed
496 production and its contribution to population growth and persistence (Salguero-Gómez et al.,
497 2016; Salguero-Gómez, 2017). We argue that these strategies should include floral and pollination
498 traits: we have shown they account for substantial additional variation, and this variation could
499 influence reproductive success and thus the composition of plant communities. On short timescales,
500 pollination directly influences an individual’s fitness through the number of seeds produced (e.g.,
501 depending on pollen limitation; Ashman et al., 2004). Also, pollination can influence seed quality (if
502 affected by inbreeding depression; Crnokrak and Roff, 1999), and could thus affect plants’ abilities to
503 compete and cope with stress (Craig & Mertz, 1994; Cheptou et al., 2000; Petrone Mendoza et al.,
504 2018). On longer timescales, pollination and reproduction affect genetic diversity and adaptive
505 capacity, and thus most likely play an important role in long-term population and species survival
506 (Burgarella & Glémén, 2017; Anderson et al., 2023). Hence, pollination could influence species’
507 ecological success, or maybe even its ecological strategy, although this remains to be investigated.
508 Our framework could be used, for instance, to assess how floral and pollination traits vary in the

509 context of plant communities.

510 Of course, other traits could contribute to the reproductive strategies of plants (Barrett, 2002;
511 Barrett, 2003). For example, dichogamy, a difference in the timing of fertility of the pistils and
512 stamens, could also lead to more effective pollen transfer between individuals. It has several variants
513 (Bertin & Newman, 1993), including heterodichogamy, in which some individuals of a population
514 are protogynous and others protandrous (Renner, 2001). Bertin and Newman (1993) rejected
515 the hypothesis that dichogamy primarily evolved to avoid self-fertilization, and found intriguing
516 differences in the traits associated with the several types of dichogamy. Similar patterns might
517 exist for herkogamy and distyly. We suggest that these morphologies reflect a certain separation of
518 the sexual functions, similar to the sexual systems.

519 In order to be able to integrate additional traits into the reproductive strategies we have
520 identified, we propose a conceptual reproductive trait space with three dimensions: lifespan, floral
521 investment and sexual separation (Fig. 5). While lifespan is not strictly a reproductive trait we
522 use it here because it is an easily measurable trait that summarizes how much a species relies on
523 outcrossing: short-lived species can be either selfing or outcrossing, while long-lived species are
524 almost always outcrossing. Floral investment is the allocation of resources into the production of
525 a flower, with small, non-attractive and non-rewarding flowers on one end and large, attractive,
526 nectar-producing flowers on the other. Sexual separation encompasses the sexual systems, from
527 monocliny through monoecy to dioecy. The main strategies we characterized in this study form
528 a 2D triangle in this 3D space, with (1) monoclinous, small-flowered annuals, (2) monoclinous,
529 large-flowered trees and (3) dioecious small-flowered trees at the vertices. As these are the most
530 common strategies, most species will fall close to this triangle. Yet, this framework also incorporates
531 less frequent strategies that occur at greater distances from this plane, such as wind pollinated herbs
532 or showy annuals.

533 In defining dimensions this way, we allow the framework to be expanded to traits we have
534 not studied. For example, dichogamy and herkogamy could be situated somewhere on the sexual
535 separation axis; would their associated traits differ markedly from, say, those of monoecious species?
536 Other traits could include floral longevity (Stephens et al., 2024) and 3D structure (Van der Niet
537 et al., 2010), as further measures of floral investment. Finally, this framework could be compared
538 to previously proposed spectra of angiosperm trait variation, such as the fast-slow continuum
539 (Salguero-Gómez et al., 2016) and the flower economics spectrum (Roddy et al., 2021), that rely on
540 measurements of reproductive output and floral investment. This would help uncover the extent

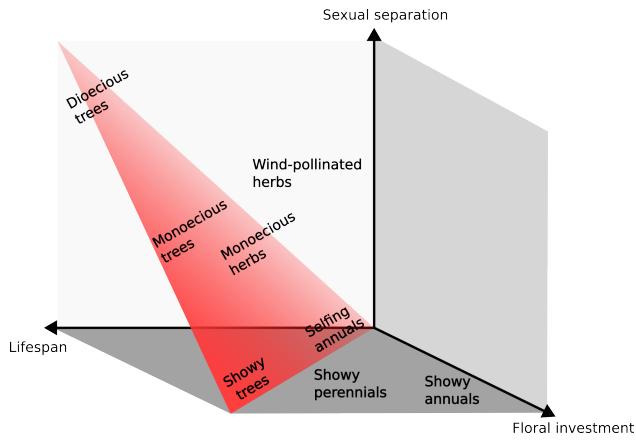


Figure 5: Conceptual representation of angiosperm reproductive strategies, defined by a 3D space with the most common strategies depicted on a 2D triangle. One main axis is lifespan, mainly related to outcrossing in the reproductive trait space: the longer the lifespan, the more a species will be outcrossing. The sexual separation axis includes the sexual systems included in our analysis (from monoclonal to dioecy) but potentially also other ways of separating sexual functions, like dichogamy. The floral investment axis includes flower size and floral reward, and possibly flower longevity.

541 to which morphological variation correlates with quantitative variables such as net reproductive
542 success and flower mass.

543 **Integrating floral and mating traits in the study of functional diversity**

544 It is increasingly recognized that floral traits should be considered when characterizing functional
545 diversity in angiosperms (E-Vojtkó et al., 2020). Here we aimed to represent angiosperm diversity
546 by working with an original dataset chosen to represent all major angiosperm clades. This is
547 complementary to the approach taken in other studies dealing with specific floras or datasets.
548 E-Vojtkó et al. (2022) studied two datasets of European species (central Europe and Alps), and
549 found that floral traits vary largely independently of vegetative traits. Despite their exclusion
550 of trees and grasses, and their focus on a different set of traits (notably not including sexual
551 system), the trait spaces they obtain are rather similar to our own. Lanuza et al. (2023) analyzed
552 plant reproductive strategies in light of interactions with pollinators. Wind-pollinated species were
553 therefore excluded, and tree species were generally underrepresented. Despite this, they also found
554 that variation in selfing and outcrossing was only weakly correlated with variation in flower traits.
555 The relative importance of floral traits in their trait space was higher than in our study, which could
556 be due to the larger number of floral traits they studied (including style length, flower number per
557 plant, quantity of nectar and pollen).

558 A challenge for the inclusion of floral traits in large-scale evolutionary and ecological studies
559 seems to be their lack of availability in databases. The largest plant database today, TRY,
560 contains limited data about flowers as compared to vegetative and seed traits (Kattge et al., 2020).
561 Many studies and floras contain such data, but collecting them requires botanical knowledge to
562 correctly interpret the complex terminology. Although floras are increasingly available online,
563 they still represent a small fraction of known plant species, with tropical floras typically being
564 underrepresented (cf Römer et al., 2023). We argue that publicly available data with well-described
565 trait standards are the most convenient way to ensure that datasets can be combined and extended.

566 The inclusion of floral and pollination-related traits in the description of the plant functional
567 diversity is necessary to improve our understanding of ecosystem functioning. Indeed, vegetative
568 functional diversity has proven instrumental in testing theories of diversity (e.g. Lamanna et al.,
569 2014; Schuldt et al., 2019). However, interactions with pollinators have also been identified as
570 playing a role in the maintenance of diversity in plant communities (Wei et al., 2021) and the
571 decrease of pollinator abundance can destabilize the mechanisms promoting species coexistence
572 (Johnson et al., 2022). As we are only starting to standardize floral trait data and make them
573 available, we still have a very incomplete picture about how they influence pollinator diversity
574 and abundance, and the subsequent effects on plant community composition. However, such
575 understanding is urgently needed as pollinators are declining rapidly in many agricultural and
576 semi-natural landscapes, and this angiosperm-wide study provides a framework for future research
577 (Artamendi et al., 2025).

578 **Acknowledgments:** This research is supported by the Fondation pour la Recherche sur la Biodiversité
579 (FRB) through the CESAB project ‘DiveRS’; the FRB, Office Français de la Biodiversité and
580 Ministère de Transition Ecologique project ‘IndicatoRS’; and by the ANR project ‘FloweRS’ (ANR-23-CE02-0003).

581 We thank the DiveRS members Sally Otto and Denis Roze for constructive discussions and feedback
582 on the manuscript. We thank Nicolas Casajus, Nicolas Loiseau and Marion Chartier for advice on
583 data analyses, Solenn Sarton for contributing data, and Maud Calmet for the organisation of the
584 workshops of the DiveRS group. We thank the University of Vienna for hosting the PROTEUS
585 database and eFLOWER server.

586 **Competing interests:** The authors declare no competing interests.

587 **Authorship contributions:** SG and JK initiated the project; BA, SB, CB, HdB, MD, SG, JK,
588 MM, SPO, JP, DR, HS, DS, JS, MVM, RZF and AH conceived the project; MvB, HS and JS
589 provided data management; MvB, CB, JC, PAD, SG, JK, MM, DSB, HS and JS entered data;
590 AH, SG, JK and HS performed analyses; AH visualized results; AH, JK and SG drafted the first
591 version of the manuscript; all authors contributed to and approved of the final version.

592 **Data availability:** The data set we compiled is available on the PROTEUS/eFLOWER website:
593 <https://eflower.myspecies.info/publications>. Data and all scripts are available at the following
594 github repository: <https://github.com/divers-it/rs-traitspace>.

595 References

596 Aarssen, L. W. (2000). Why are most selfers annuals? a new hypothesis for the fitness benefit of
597 selfing. *Oikos*, 89(3), 606–612.

598 Anderson, B., Pannell, J., Billiard, S., Burgarella, C., Boer, H. d., et al. (2023). Opposing effects of
599 plant traits on diversification. *iScience*, 26(4). <https://doi.org/10.1016/j.isci.2023.106362>

600 APGIV. (2016). An update of the Angiosperm Phylogeny Group classification for the orders and
601 families of flowering plants: APG IV. *Botanical Journal of the Linnean Society*, 181(1),
602 1–20. <https://doi.org/10.1111/boj.12385>

603 Artamendi, M., Martin, P. A., Bartomeus, I., & Magrach, A. (2025). Loss of pollinator diversity
604 consistently reduces reproductive success for wild and cultivated plants. *Nature Ecology &
605 Evolution*, 9(2), 296–313. <https://doi.org/10.1038/s41559-024-02595-2>

606 Ashman, T.-L., Knight, T. M., Steets, J. A., Amarasekare, P., Burd, M., et al. (2004). Pollen
607 limitation of plant reproduction: Ecological and evolutionary causes and consequences.
608 *Ecology*, 85(9), 2408–2421. <https://doi.org/10.1890/03-8024>

609 Baker, H. G. (1955). Self-Compatibility and Establishment After 'Long-Distance' Dispersal. *Evolution*,
610 9(3), 347–349. <https://doi.org/10.2307/2405656>

611 Baker, H. G., & Cox, P. A. (1984). Further thoughts on dioecism and islands. *Annals of the Missouri
612 Botanical Garden*, 71(1), 244–253. <https://doi.org/10.2307/2399068>

613 Barfod, A. S., Hagen, M., & Borchsenius, F. (2011). Twenty-five years of progress in understanding
614 pollination mechanisms in palms (Arecaceae). *Annals of Botany*, 108(8), 1503–1516. <https://doi.org/10.1093/aob/mcr192>

615 Barrett, S. C. (2003). Mating strategies in flowering plants: The outcrossing-selfing paradigm and
616 beyond. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 358(1434),
617 991–1004. <https://doi.org/10.1098/rstb.2003.1301>

618 Barrett, S. C. H. (2002). The evolution of plant sexual diversity. *Nature Reviews Genetics*, 3(4),
619 274–284. <https://doi.org/10.1038/nrg776>

620 Barrett, S. C. H. (2010). Understanding plant reproductive diversity. *Philosophical Transactions of
621 the Royal Society B: Biological Sciences*, 365(1537), 99–109. <https://doi.org/10.1098/rstb.2009.0199>

624 Barrett, S. C. H. (2013). The evolution of plant reproductive systems: How often are transitions
625 irreversible? *Proceedings of the Royal Society B: Biological Sciences*, 280(1765), 20130913.
626 <https://doi.org/10.1098/rspb.2013.0913>

627 Barrett, S. C. H., Harder, L. D., & Worley, A. C. (1997). The comparative biology of pollination and
628 mating in flowering plants. *Philosophical Transactions of the Royal Society of London. Series*
629 *B: Biological Sciences*, 351(1345), 1271–1280. <https://doi.org/10.1098/rstb.1996.0110>

630 Bawa, K. S. (1980). Evolution of dioecy in flowering plants. *Annual Review of Ecology, Evolution,*
631 *and Systematics*, 11, 15–39. <https://doi.org/10.1146/annurev.es.11.110180.000311>

632 Bawa, K. S., & Beach, J. H. (1981). Evolution of sexual systems in flowering plants. *Annals of the*
633 *Missouri Botanical Garden*, 68(2), 254–274. <https://doi.org/10.2307/2398798>

634 Bawa, K. S., & Opler, P. A. (1975). Dioecism in tropical forest trees. *Evolution.*, 29(1), 167–179.
635 <https://doi.org/10.2307/2407150>

636 Bertin, R. I. (1993). Incidence of monoecy and dichogamy in relation to self-fertilization in angiosperms.
637 *Am. J. Bot.*, 80(5), 557–560. <https://doi.org/10.2307/2445372>

638 Bertin, R. I., & Newman, C. M. (1993). Dichogamy in angiosperms. *The Botanical Review*, 59(2),
639 112–152. <https://doi.org/10.1007/BF02856676>

640 Boyle, B., Hopkins, N., Lu, Z., Raygoza Garay, J. A., Mozzherin, D., et al. (2013). The taxonomic
641 name resolution service: An online tool for automated standardization of plant names. *BMC*
642 *Bioinformatics*, 14(1), 16. <https://doi.org/10.1186/1471-2105-14-16>

643 Burgarella, C., Brémaud, M.-F., Hirschheydt, G. V., Viader, V., Ardisson, M., et al. (2023). Mating
644 systems and recombination landscape strongly shape genetic diversity and selection in wheat
645 relatives. *bioRxiv*, 2023.03.16.532584. <https://doi.org/10.1101/2023.03.16.532584>

646 Burgarella, C., & Glémén, S. (2017). Population genetics and genome evolution of selfing species.
647 In J. Wiley & L. Sons (Eds.), *Els* (1st ed., pp. 1–8). Wiley. <https://doi.org/10.1002/9780470015902.a0026804>

649 Cardoso, J. C. F., Viana, M. L., Matias, R., Furtado, M. T., Caetano, A. P. D., et al. (2018). Towards
650 a unified terminology for angiosperm reproductive systems. *Acta Bot. Bras.*, 32(3), 329–348.
651 <https://doi.org/10.1590/0102-33062018abb0124>

652 Chamberlain, S. A., & Szöcs, E. (2013). Taxize: Taxonomic search and retrieval in R. <https://doi.org/10.12688/f1000research.2-191.v2>

654 Charlesworth, B., & Charlesworth, D. (1978). Model for evolution of dioecy and gynodioecy. *The*
655 *American Naturalist*, 112(988), 975–997.

656 Charlesworth, D., & Charlesworth, B. (1987). Inbreeding depression and its evolutionary consequences.
657 *Annual Review of Ecology, Evolution, and Systematics*, 18, 237–268.

658 Charnov, E. L. (1982). *The theory of sex allocation*. Princeton University Press.

659 Charnov, E. L., Maynard Smith, J., & Bull, J. J. (1976). Why be an hermaphrodite? *Nature*,
660 263(5573), 125–126. <https://doi.org/10.1038/263125a0>

661 Charnov, E. L. (1987). On sex allocation and selfing in higher plants. *Evolutionary Ecology*, 1(1),
662 30–36. <https://doi.org/10.1007/BF02067266>

663 Chavent, M., Kuentz, V., Liquet, B., & Saracco, J. (2017). ClustOfVar: Clustering of Variables.

664 Cheptou, Imbert, Lepart, & Escarre. (2000). Effects of competition on lifetime estimates of inbreeding
665 depression in the outcrossing plant *Crepis sancta* (Asteraceae). *Journal of Evolutionary
666 Biology*, 13(3), 522–531. <https://doi.org/10.1046/j.1420-9101.2000.00175.x>

667 Cheptou, P.-O., & Massol, F. (2009). Pollination fluctuations drive evolutionary syndromes linking
668 dispersal and mating system. *The American Naturalist*, 174(1), 46–55. <https://doi.org/10.1086/599303>

670 Craig, D. M., & Mertz, D. B. (1994). Inbreeding effects on competition in *Tribolium*. *Researches on
671 Population Ecology*, 36(2), 251–254. <https://doi.org/10.1007/BF02514941>

672 Crnokrak, P., & Roff, D. A. (1999). Inbreeding depression in the wild. *Heredity*, 83(33), 260–270.
673 <https://doi.org/10.1038/sj.hdy.6885530>

674 Cronk, Q. (2022). The distribution of sexual function in the flowering plant: From monoecy to
675 dioecy. *Philosophical Transactions of the Royal Society B: Biological Sciences*, 377(1850),
676 20210486. <https://doi.org/10.1098/rstb.2021.0486>

677 Darwin, C. (1884). *The different forms of flowers on plants of the same species* (2nd ed.). John
678 Murray.

679 Debastiani, V. J., Bastazini, V. A. G., & Pillar, V. D. (2021). Using phylogenetic information to
680 impute missing functional trait values in ecological databases. *Ecological Informatics*, 63,
681 101315. <https://doi.org/10.1016/j.ecoinf.2021.101315>

682 de Jong, T. J., & Klinkhamer, G. L. (2005). *Evolutionary ecology of plant reproductive strategies*.
683 Cambridge University Press.

684 Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., et al. (2016). The global
685 spectrum of plant form and function. *Nature*, 529(7585), 167–171. <https://doi.org/10.1038/nature16489>

687 Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., et al. (2022). The global
688 spectrum of plant form and function: Enhanced species-level trait dataset. *Scientific Data*,
689 9(1), 755. <https://doi.org/10.1038/s41597-022-01774-9>

690 Dufay, M., Champelovier, P., Käfer, J., Henry, J. P., Mousset, S., & Marais, G. A. (2014). An
691 angiosperm-wide analysis of the gynodioecy-dioecy pathway. *Annals of Botany*, 114(3),
692 539–548. <https://doi.org/10.1093/aob/mcu134>

693 E-Vojtkó, A., de Bello, F., Durka, W., Kühn, I., & Götzenberger, L. (2020). The neglected importance
694 of floral traits in trait-based plant community assembly. *Journal of Vegetation Science*,
695 31(4), 529–539. <https://doi.org/10.1111/jvs.12877>

696 E-Vojtkó, A., Junker, R. R., de Bello, F., & Götzenberger, L. (2022). Floral and reproductive traits
697 are an independent dimension within the plant economic spectrum of temperate central
698 Europe. *New Phytologist*, 236(5), 1964–1975. <https://doi.org/10.1111/nph.18386>

699 Faegri, K., & Van Der Pijl, L. (2013). *Principles of pollination ecology* (3rd). Pergamon.

700 Friedman, J., & Barrett, S. C. H. (2008). A phylogenetic analysis of the evolution of wind pollination
701 in the angiosperms. *International Journal of Plant Sciences*, 169(1), 49–58. <https://doi.org/10.1086/523365>

702 Glémin, S. (2007). Mating Systems and the Efficacy of Selection at the Molecular Level. *Genetics*,
703 177(2), 905–916. <https://doi.org/10.1534/genetics.107.073601>

704 Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A., & Igić, B. (2010). Species
705 Selection Maintains Self-Incompatibility. *Science*, 330(6003), 493–495. <https://doi.org/10.1126/science.1194513>

706 Gower, J. C. (1971). A General Coefficient of Similarity and Some of Its Properties. *Biometrics*,
707 27(4), 857–871. <https://doi.org/10.2307/2528823>

708 Grime, J. P. (1974). Vegetation classification by reference to strategies. *Nature*, 250(5461), 26–31.
709 <https://doi.org/10.1038/250026a0>

710 Grossenbacher, D. L., Brandvain, Y., Auld, J. R., Burd, M., Cheptou, P.-O., et al. (2017). Self-compatibility
711 is over-represented on islands. *New Phytologist*, 215(1), 469–478. <https://doi.org/10.1111/nph.14534>

712 Harder, L. D., & Wilson, W. G. (1998). A clarification of pollen discounting and its joint effects
713 with inbreeding depression on mating system evolution. *The American Naturalist*, 152(5),
714 684–695. <https://doi.org/10.1086/286199>

718 Heilbuth, J. C., Ilves, K. L., & Otto, S. P. (2001). The consequences of dioecy for seed dispersal:
719 Modeling the seed-shadow handicap. *Evolution*, 55(5), 880–888.

720 Heilbuth, J. C. (2000). Lower Species Richness in Dioecious Clades. *The American Naturalist*,
721 156(3), 221–241. <https://doi.org/10.1086/303389>

722 Helmstetter, A. J., Zenil-Ferguson, R., Sauquet, H., Otto, S. P., Méndez, M., et al. (2023). Trait-dependent
723 diversification in angiosperms: Patterns, models and data. *Ecology Letters*, 26(4), 640–657.
724 <https://doi.org/10.1111/ele.14170>

725 Henderson, A. (2024). Pollination systems of palms (arecaceae). *Journal of Pollination Ecology*, 36,
726 144–248. [https://doi.org/10.26786/1920-7603\(2024\)782](https://doi.org/10.26786/1920-7603(2024)782)

727 Holsinger, K. E. (1988). Inbreeding depression doesn't matter - the genetic-basis of mating-system
728 evolution. *Evolution*, 42(6), 1235–1244. <https://doi.org/10.2307/2409007>

729 Igic, B., & Kohn, J. R. (2006). The Distribution of Plant Mating Systems: Study Bias Against
730 Obligately Outcrossing Species. *Evolution*, 60(5), 1098–1103. <https://doi.org/10.1111/j.0014-3820.2006.tb01186.x>

731 Jin, Y., & Qian, H. (2022). V.PhyloMaker2: An updated and enlarged R package that can generate
732 very large phylogenies for vascular plants. *Plant Diversity*, 44(4), 335–339. <https://doi.org/10.1016/j.pld.2022.05.005>

733 Johnson, C. A., Dutt, P., & Levine, J. M. (2022). Competition for pollinators destabilizes plant
734 coexistence. *Nature*, 607(7920), 721–725. <https://doi.org/10.1038/s41586-022-04973-x>

735 Joly, S., & Schoen, D. J. (2021). Repeated evolution of a reproductive polyphenism in plants is
736 strongly associated with bilateral flower symmetry. *Current Biology*, 31(7), 1515–1520.e3.
737 <https://doi.org/10.1016/j.cub.2021.01.009>

738 Käfer, J., Boer, H. J. d., Mousset, S., Kool, A., Dufay, M., & Marais, G. a. B. (2014). Dioecy
739 is associated with higher diversification rates in flowering plants. *Journal of Evolutionary
740 Biology*, 27(7), 1478–1490. <https://doi.org/https://doi.org/10.1111/jeb.12385>

741 Käfer, J., Marais, G. A. B., & Pannell, J. R. (2017). On the rarity of dioecy in flowering plants.
742 *Molecular Ecology*, 26(5), 1225–1241. <https://doi.org/10.1111/mec.14020>

743 Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., et al. (2020). TRY plant trait database
744 – enhanced coverage and open access. *Global Change Biology*, 26(1), 119–188. <https://doi.org/10.1111/gcb.14904>

748 Kaufman, L., & Rousseeuw, P. (1990). Partitioning Around Medoids (Program PAM). In *Finding*
749 *Groups in Data* (pp. 68–125). John Wiley & Sons, Ltd. <https://doi.org/10.1002/9780470316801.ch2>

750

751 Lamanna, C., Blonder, B., Violle, C., Kraft, N. J. B., Sandel, B., et al. (2014). Functional trait space
752 and the latitudinal diversity gradient. *Proceedings of the National Academy of Sciences*,
753 111(38), 13745–13750. <https://doi.org/10.1073/pnas.1317722111>

754 Lanuza, J. B., Rader, R., Stavert, J., Kendall, L. K., Saunders, M. E., & Bartomeus, I. (2023).
755 Covariation among reproductive traits in flowering plants shapes their interactions with
756 pollinators. *Functional Ecology*, 37, 2072–2084. <https://doi.org/10.1111/1365-2435.14340>

757 Lesaffre, T., Pannell, J. R., & Mullon, C. (2024). The joint evolution of separate sexes and sexual
758 dimorphism. *Journal of Evolutionary Biology*, 0(O), O. <https://doi.org/10.1093/jeb/voae136>

759

760 Lesaffre, T., & Billiard, S. (2020). The joint evolution of lifespan and self-fertilization. *Journal of*
761 *Evolutionary Biology*, 33(1), 41–56. <https://doi.org/10.1111/jeb.13543>

762 López-Martínez, A. M., Schönenberger, J., von Balthazar, M., González-Martínez, C. A., Ramírez-Barahona,
763 S., et al. (2023). Integrating fossil flowers into the angiosperm phylogeny using molecular
764 and morphological evidence. *Systematic Biology*, 72(4), 837–855. <https://doi.org/10.1093/sysbio/syad017>

765

766 Louca, S., & Doebeli, M. (2018). Efficient comparative phylogenetics on large trees. *Bioinformatics*,
767 34(6), 1053–1055. <https://doi.org/10.1093/bioinformatics/btx701>

768

769 Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., & Hornik, K. (2022). *Cluster: Cluster Analysis*
770 *Basics and Extensions*.

771

772 Mangiafico, S. S. (2025). *Rcompanion: Functions to Support Extension Education Program Evaluation*.
773 Rutgers Cooperative Extension.

774

775 Massol, F., & Cheptou, P.-O. (2011). Evolutionary syndromes linking dispersal and mating system:
776 The effect of autocorrelation in pollination conditions. *Evolution*, 65(2), 591–598. <https://doi.org/10.1111/j.1558-5646.2010.01134.x>

777

778 Maynard Smith, J. (1978). *The evolution of sex*. Cambridge University Press.

779

780 McInnes, L., Healy, J., & Melville, J. (2020). Umap: Uniform manifold approximation and projection
781 for dimension reduction. (arXiv:1802.03426). <https://doi.org/10.48550/arXiv.1802.03426>

782

778 Morgan, M. T. (2001). Consequences of life history for inbreeding depression and mating system
779 evolution in plants. *Proceedings of the Royal Society of London. Series B: Biological Sciences*,
780 268(1478), 1817–1824.

781 Morgan, M. T., Schoen, D. J., & Bataillon, T. M. (1997). The evolution of self-fertilization in
782 perennials. *The American Naturalist*, 150(5), 618–638. <https://doi.org/10.1086/286085>

783 Mouillot, D., Loiseau, N., Grenié, M., Algar, A. C., Allegra, M., et al. (2021). The dimensionality
784 and structure of species trait spaces. *Ecology Letters*, 24(9), 1988–2009. <https://doi.org/10.1111/ele.13778>

785 Nadot, S., Alapetite, E., Baker, W. J., Tregear, J. W., & Barfod, A. S. (2016). The palm family
786 (Arecaceae): A microcosm of sexual system evolution. *Botanical Journal of the Linnean
787 Society*, 182(2), 376–388. <https://doi.org/10.1111/boj.12440>

788 Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R
789 language. *Bioinformatics*, 20(2), 289–290. <https://doi.org/10.1093/bioinformatics/btg412>

790 Paradis, E., & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary
791 analyses in R. *Bioinformatics*, 35, 526–528. <https://doi.org/10.1093/bioinformatics/bty633>

792 Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J. C., et al. (2014). Geiger
793 v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic
794 trees. *Bioinformatics*, 30(15), 2216–2218. <https://doi.org/10.1093/bioinformatics/btu181>

795 Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., et al. (2013). New handbook
796 for standardised measurement of plant functional traits worldwide. *Australian Journal of
797 Botany*, 61, 167–234. https://doi.org/10.1071/BT12225_CO

798 Petit, R. J., & Hampe, A. (2006). Some Evolutionary Consequences of Being a Tree. *Annual Review
799 of Ecology, Evolution, and Systematics*, 37(1), 187–214. [https://doi.org/10.1146/annurev.ecolsys.37.091305.110215](https://doi.org/10.1146/annurev.
800 ecolsys.37.091305.110215)

801 Petrone Mendoza, S., Lascoux, M., & Glémin, S. (2018). Competitive ability of *Capsella* species
802 with different mating systems and ploidy levels. *Annals of Botany*, 121(6), 1257–1264.
803 <https://doi.org/10.1093/aob/mcy014>

804 Razanajatovo, M., Maurel, N., Dawson, W., Essl, F., Kreft, H., et al. (2016). Plants capable of
805 selfing are more likely to become naturalized. *Nature Communications*, 7(1), 13313. <https://doi.org/10.1038/ncomms13313>

806 Renner, S. S. (2001). How common is heterodichogamy? *Trends in Ecology & Evolution*, 16(11),
807 595–597. [https://doi.org/10.1016/S0169-5347\(01\)02280-7](https://doi.org/10.1016/S0169-5347(01)02280-7)

808

809

810 Renner, S. S., & Feil, J. P. (1993). Pollinators of tropical dioecious angiosperms. *American Journal*
811 *of Botany*, 80(9), 1100–1107. <https://doi.org/10.2307/2445757>

812 Renner, S. S. (2014). The relative and absolute frequencies of angiosperm sexual systems: Dioecy,
813 monoecy, gynodioecy, and an updated online database. *American Journal of Botany*, 101(10),
814 1588–1596. <https://doi.org/10.3732/ajb.1400196>

815 Renner, S. S., & Ricklefs, R. E. (1995). Dioecy and Its Correlates in the Flowering Plants. *American*
816 *Journal of Botany*, 82(5), 596–606. <https://doi.org/10.2307/2445418>

817 Revell, L. J. (2012). Phytools: An R package for phylogenetic comparative biology (and other
818 things). *Methods in Ecology and Evolution*, 3(2), 217–223. <https://doi.org/10.1111/j.2041-210X.2011.00169.x>

820 Roddy, A. B., Martínez-Perez, C., Teixido, A. L., Cornelissen, T. G., Olson, M. E., et al. (2021).
821 Towards the flower economics spectrum. *New Phytologist*, 229(2), 665–672. <https://doi.org/10.1111/nph.16823>

823 Rodger, J. G., Landi, P., & Hui, C. (2018). Heterogeneity in local density allows a positive evolutionary
824 relationship between self-fertilisation and dispersal. *Evolution*, 72(9), 1784–1800. <https://doi.org/10.1111/evo.13562>

826 Römer, G., Dahlgren, J. P., Salguero-Gómez, R., Stott, I. M., & Jones, O. R. (2023). Plant
827 demographic knowledge is biased towards short-term studies of temperate-region herbaceous
828 perennials. *Oikos*, e10250. <https://doi.org/10.1111/oik.10250>

829 Rose, J. P., & Sytsma, K. J. (2021). Complex interactions underlie the correlated evolution of floral
830 traits and their association with pollinators in a clade with diverse pollination systems.
831 *Evolution*, 75(6), 1431–1449. <https://doi.org/10.1111/evo.14220>

832 Sabath, N., Goldberg, E. E., Glick, L., Einhorn, M., Ashman, T.-L., et al. (2016). Dioecy does not
833 consistently accelerate or slow lineage diversification across multiple genera of angiosperms.
834 *New Phytologist*, 209(3), 1290–1300. <https://doi.org/10.1111/nph.13696>

835 Salguero-Gómez, R., Jones, O. R., Jongejans, E., Blomberg, S. P., Hodgson, D. J., et al. (2016).
836 Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide.
837 *Proceedings of the National Academy of Sciences*, 113(1), 230–235. <https://doi.org/10.1073/pnas.1506215112>

839 Salguero-Gómez, R. (2017). Applications of the fast–slow continuum and reproductive strategy
840 framework of plant life histories. *New Phytologist*, 213(4), 1618–1624. <https://doi.org/10.1111/nph.14289>

842 Santos, T. (2018). PVR: Phylogenetic Eigenvectors Regression and Phylogenetic Signal-Representation
843 Curve.

844 Sauquet, H. (2019). PROTEUS: A database for recording morphological data and fossil calibrations.

845 Sauquet, H., von Balthazar, M., Magallón, S., Doyle, J. A., Endress, P. K., et al. (2017). The
846 ancestral flower of angiosperms and its early diversification. *Nature Communications*, 8(1),
847 16047. <https://doi.org/10.1038/ncomms16047>

848 Schönenberger, J., von Balthazar, M., López Martínez, A., Albert, B., Prieu, C., et al. (2020).
849 Phylogenetic analysis of fossil flowers using an angiosperm-wide data set: Proof-of-concept
850 and challenges ahead. *American Journal of Botany*, 107(10), 1433–1448. <https://doi.org/10.1002/ajb2.1538>

852 Schuldert, A., Ebeling, A., Kunz, M., Staab, M., Guimarães-Steiniche, C., et al. (2019). Multiple plant
853 diversity components drive consumer communities across ecosystems. *Nature Communications*,
854 10(1), 1460. <https://doi.org/10.1038/s41467-019-09448-8>

855 Scofield, D. G., & Schultz, S. T. (2006). Mitosis, stature and evolution of plant mating systems:
856 Low-Phi and high-Phi plants. *Proceedings of the Royal Society B: Biological Sciences*,
857 273(1584), 275–282. <https://doi.org/10.1098/rspb.2005.3304>

858 SER, INSR, & RBGK. (2023). *Seed Information Database (SID)*. <https://ser-sid.org/>

859 Sicard, A., & Lenhard, M. (2011). The selfing syndrome: A model for studying the genetic and
860 evolutionary basis of morphological adaptation in plants. *Annals of Botany*, 107(9), 1433–1443.
861 <https://doi.org/10.1093/aob/mcr023>

862 Sicard, A., Stacey, N., Hermann, K., Dessoly, J., Neuffer, B., et al. (2011). Genetics, evolution, and
863 adaptive significance of the selfing syndrome in the genus *capsella*. *The Plant Cell*, 23(9),
864 3156–3171. <https://doi.org/10.1105/tpc.111.088237>

865 Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny.
866 *American Journal of Botany*, 105(3), 302–314. <https://doi.org/10.1002/ajb2.1019>

867 Stekhoven, D. J., & Bühlmann, P. (2012). MissForest—non-parametric missing value imputation for
868 mixed-type data. *Bioinformatics*, 28(1), 112–118. <https://doi.org/10.1093/bioinformatics/btr597>

870 Stephens, R. E., Gallagher, R. V., Méndez, M., & Sauquet, H. (2024). Zygomorphic flowers last
871 longer: The evolution of floral symmetry and floral longevity. *Biology Letters*, 20(6), 20240082.
872 <https://doi.org/10.1098/rsbl.2024.0082>

873 Thomson, F. J., Letten, A. D., Tamme, R., Edwards, W., & Moles, A. T. (2018). Can dispersal
874 investment explain why tall plant species achieve longer dispersal distances than short plant
875 species? *New Phytologist*, 217(1), 407–415. <https://doi.org/10.1111/nph.14735>

876 Thomson, J. D., & Brunet, J. (1990). Hypotheses for the evolution of dioecy in seed plants. *Trends
877 in Ecology & Evolution*, 5(1), 11–16. [https://doi.org/10.1016/0169-5347\(90\)90006-Y](https://doi.org/10.1016/0169-5347(90)90006-Y)

878 Torices, R., Méndez, M., & Gómez, J. M. (2011). Where do monomorphic sexual systems fit in
879 the evolution of dioecy? Insights from the largest family of angiosperms. *New Phytologist*,
880 190(1), 234–248. <https://doi.org/10.1111/j.1469-8137.2010.03609.x>

881 Vamosi, J. C., & Otto, S. P. (2002). When looks can kill: The evolution of sexually dimorphic floral
882 display and the extinction of dioecious plants. *Proceedings of the Royal Society B: Biological
883 Sciences*, 269(1496), 1187–1194. <https://doi.org/10.1098/rspb.2002.2004>

884 Vamosi, J. C., Otto, S. P., & Barrett, S. C. H. (2003). Phylogenetic analysis of the ecological
885 correlates of dioecy in angiosperms. *Journal of Evolutionary Biology*, 16(5), 1006–1018.
886 <https://doi.org/10.1046/j.1420-9101.2003.00559.x>

887 Vamosi, J. C., & Vamosi, S. M. (2005). Present day risk of extinction may exacerbate the lower
888 species richness of dioecious clades. *Diversity and Distributions*, 11(1), 25–32. <https://doi.org/10.1111/j.1366-9516.2005.00119.x>

889 Van der Niet, T., Zollikofer, C. P., León, M. S., Johnson, S. D., & Linder, H. P. (2010). Three-dimensional
890 geometric morphometrics for studying floral shape variation. *Trends in Plant Science*, 15(8),
891 423–426. <https://doi.org/10.1016/j.tplants.2010.05.005>

892 Van Kleunen, M., Weber, E., & Fischer, M. (2010). A meta-analysis of trait differences between
893 invasive and non-invasive plant species. *Ecology Letters*, 13(2), 235–245. <https://doi.org/10.1111/j.1461-0248.2009.01418.x>

894 Wei, N., Kaczorowski, R. L., Arceo-Gómez, G., O'Neill, E. M., Hayes, R. A., & Ashman, T. L.
895 (2021). Pollinators contribute to the maintenance of flowering plant diversity. *Nature*, 597(7878),
896 688–692. <https://doi.org/10.1038/s41586-021-03890-9>

897 Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. *Plant and Soil*, 199(2),
898 213–227. <https://doi.org/10.1023/A:1004327224729>

899 Willson, M. F. (1979). Sexual selection in plants. *The American Naturalist*, 113(6), 777–790. <https://doi.org/10.1086/283437>

903 Zenil-Ferguson, R., Burleigh, J. G., Freyman, W. A., Igić, B., Mayrose, I., & Goldberg, E. E. (2019).
904 Interaction among ploidy, breeding system and lineage diversification. *New Phytologist*,
905 224(3), 1252–1265. <https://doi.org/10.1111/nph.16184>