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Abstract

How consciousness arises from brain activity has been atopic of intense scientific research
for decades. But how does oneidentify the neural basis of something that isintrinsically
personal and subjective? A hallmark approach has been to ask observers to judge stimuli as
‘seen’ (conscious) and ‘unseen’ (unconscious) and use post hoc sorting of neural
measurements based these judgments. Unfortunately, cognitive and response biases are
known to strongly affect how observers place their criterion for judging stimuli as 'seen’ vs.
‘unseen’, thereby confounding neural measures of consciousness. Surprisingly however, the
effect of conservative and liberal criterion placement on neural measures of unconscious and
conscious processing has never been explicitly investigated. Here we use simulations and
electrophysiological brain measurements to show that conservative criterion placement has an
unintuitive consequence: rather than selectively providing a cautious estimate of conscious
processing, it inflates effect sizesin neural measures of both conscious and unconscious
processing, while liberal criterion placement does the reverse. After showing thisin
simulation, we performed decoding analyses on two el ectroencephal ography studies that
employ common subjective indicators of conscious awareness, in which we experimentally
mani pulated the response criterion. The results confirm that the predicted confounding effects
of criterion placement on neural measures of unconscious and conscious Processing occur in
empirical data, while further showing that the most widely used subjective scale, the
Perceptual Awareness Scale (PAS), does not guard against criterion confounds. Follow-up
simulations explicate how the experimental context determines whether the relative
confounding effect of criterion placement is larger in neural measures of either conscious or
unconscious processing. We conclude that criterion placement threatens the construct validity
of neural measures of conscious and unNconsci ous processing.
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I ntroduction

Psychology has along history of experimentally investigating the contents of the mind. After
Watson rejected introspectionism (Watson, 1914), and the cognitive revolution in turn
rejected behaviorism (Baars, 1994), it has become widely accepted that there is middle
ground: one can potentially gain access to (some of) the contents of the mind by asking
observers to report on these contents. This idea has been the central tenet in what has cometo
be known as the search for the neural correlate of consciousness (Crick and Koch, 1990;
LeDoux et al., 2020). It was realized early on that to determine what consciousnessis, one
must contrast it with what is not conscious, or else the concept of consciousness is an empty
shell (the contrastive approach, see Baars, 1994). This presupposes the idea that one can
distinguish between conscious and unconscious processes (so-called dual process models).
Indeed, the idea of a hidden unconscious life that precedes and/or escapes our conscious
experience also has along tradition, starting with the idea of unconscious inference
(Helmholtz, 1867), and later in Sigmund Freud’s hidden unconscious (Freud, 1904).

In the 80's and 90's of the previous century, this culminated in a heated debate
centered around the question of how to experimentally establish whether a stimulus has
reached consciousness or not. This debate roughly featured researchers defending the position
that one should determine unconscious cognition at an objective detection threshold
(Greenwald, 1992; Greenwald et al., 1996, 1989; Snodgrass et al., 2004), whereas others
defended the position that only a subjectively defined threshold can establish unconscious
cognition (Cheesman and Merikle, 1986; Merikle, 1992), with critical comments on the very
notion of dual process models by questioning the existence of unconscious cognition at all
(Holender, 1986; Holender and Duscherer, 2004).

The core difference between objective and subjective threshold modelsis that the
subjective threshold approach claims to take consciousness seriously by letting the
participants in a study indicate on their own terms whether they experience (see) a stimulus at
acertain level of intensity (Baars, 1994). In contrast, the objective threshold approach
attempts to establish the stimulus level at which some sensitivity measureis at chance,
regardless of their claimed experience’ and regardiess of response criterion or bias
(Azzopardi and Evans, 2007; Balsdon and Azzopardi, 2015; Green and Swets, 1966). Once it
is established that some stimulus is either subjectively invisible (observer claims not seeing
the stimulus) or objectively invisible (observer has zero sensitivity) at a given threshold, the
typical recipe for establishing unconscious processing is to show that this stimulus still exerts
behavioral effects (e.g. subliminal priming effects on a secondary task) or still undergoes
residual neural processing (e.g. as measured through EEG or fMRI) despite being
‘unconscious’.

Obj ective and subjective measures each have their own problems. Although objective
measures seem to align best with a scientific approach to consciousness (replicable, objective,
e.g. see Me et al., 2022; Soto et al., 2019), they do require oneto invoke a*“ Gold Standard of
seeing” that in fact does not exist (Koenderink, 2014). Relatedly, they ignore the fact that
subjective experienceis central to the very definition of consciousness. Indeed, cases have
been reported in which subjective experience is reported to be different even when objective
performanceis equated (Fleming et al., 2010a; Hesselmann et a., 2011; Lau and Passingham,
2006; Persaud et al., 2011).

Furthermore, subjective measures are the measure of choice in paradigmsin which
physical stimulation is kept identical, which are often introduced to prevent that differences
between conscious and unconscious vision can be attributed to physical rather than * mental’

7 Typically, participants have well above chance objective sensitivity for presentation levels at which they claim
that stimuli are ‘subjectively’ invisible (Stein et al., 2021).
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differences (so called “threshold” approaches, Sanchez et al., 2020). These arguments
question whether objective measures can even capture conscious experience, prompting
many to defend subjective measures (Baars, 1994; Dehaene, 2014; Overgaard et al., 2010).
Subj ective measures on the other hand have been widely criticized for being confounded by
effects that are unrelated to conscious experience, such as non-perceptual biases as well as
regression to the mean effects (for critical reviews see: Newell and Shanks, 2014; Schmidit,
2015; Shanks, 2017; Soto et al., 2019). Nevertheless, subjective measures have gained
considerable popularity in consciousness research over the past 20 years (Dehaeneet al.,
2003; King et al., 2016; King and Dehaene, 2014; Lamy et al., 2009; Michel, 2022;
Overgaard et al., 2010, 2006; Ramsgy and Overgaard, 2004; Salti et al., 2015; Sandberg et
al., 2010; Sergent et al., 2005; Sergent and Dehaene, 2004; Soto et al., 2019, 2011; Vugt et
al., 2018).

A dominant approach in the subjective threshold literature is to sort trials based on
observer’s responses to calculate the average neural activation for ‘seen’ (conscious) versus
‘unseen’ (unconscious) trials. Sorting of trials based on subjectively ‘seen’ or ‘ unseen’
responses is known as post hoc sorting, because experimental conditions are established
based on the participant’ s responses after the experiment has completed. Some proposed
phenomena that originate from this approach are unconscious working memory (King et a.,
2016; Soto et al., 2011; Soto and Silvanto, 2014; Tributschek et al., 2017), unconscious error
detection (Charles et al., 2013), and even unconscious arithmetic (Sklar et a., 2012), for
critical comments see (Shanks, 2017; Stein et al., 2016).

In this manuscript, we show that subjective measures are intrinsically prone to
criterion confounds. Arbitrary criterion placement influences the decision about stimulus
absence or presence, even when consciousness of the stimulus itself is not affected. Thus, two
stimuli that undergo identical sensory processing and result in the same experience might
either be reported as seen or as unseen, depending on whether the observer adopts aliberal
versus a conservative criterion for deciding whether the threshold for a* stimulus present’
decision) was reached. Although some may think that such criterion shifts must reflect
changes in conscious experience, thisis typically not the case. For example, it is well known
that perceptual decisions may be motivated by non-perceptual information, such as the payoff
matrix (the perceived utility of certain responses) or by statistical regularitiesin the
environment, even when subjective experience is not affected (Rungratsameetaweemana et
al., 2018; Sanchez-Fuenzalidaet a., 2023a; White and Poldrack, 2014).

Indeed, when alarge group of consciousness researchers at the Association of
Scientific Studies of Consciousness (ASSC) conference was asked about the relationship
between payoff-based criterion shifts and conscious perception, roughly two thirds answered
that they did not think that such shifts involve changes in conscious perception (Q2 in
Francken et a., 2022). The criterion problem has been known at |east since the advent of
signal detection theory (Azzopardi and Evans, 2007; Green and Swets, 1966) and has long
been hypothesized to underly many —if not all - subjective threshold effects (Eriksen, 1960;
Goldiamond, 1958; Peters and Lau, 2015; Phillips, 2020, 2016). However, when criterion
shifts are combined with post hoc sorting on subjective measures of consciousness, this may
lead to further unwanted confounds. Here we investigate the influence of criterion shifts on
post hoc sorted neural measures of consciousness.

Results

First, we sought to make explicit how — under the assumption of a signal detection theoretic
model — neural measures of information processing are expected to behave when selecting
trials based on a behavioral response. Interestingly, this exercise has never been undertaken.
In signal detection theory (Green and Swets, 1966), the relationship between the response
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(behavior) of an observer and the signal that the observer operates on, depends on the
criterion that the observer appliesto that signal. Thisisdepicted in Figure 1A, where a
distribution of internal signals resulting from pure noise (distribution on the left), needsto be
distinguished from a distribution that results when asignal is added to that noise (distribution
on the right). How well the observer can distinguish signal from noise is determined by the
distance between the two distributions (d', expressed in standard deviations).

To decide whether any given internal signal comes from the noise distribution or from
the signal distribution, the observer must arbitrarily place a criterion somewhere (i.e. the
threshold for responding in acertain way: red line/ conservative in the top panel, blueline/
liberal in the bottom panel). Signals strengths to the right of the criterion are then classified as
‘seen’, whereas signal strengthsto the left are classified as ‘unseen’ by the observer. The
subjective measures approach assumes that there isa 1:1 relationship between conscious
perception and this criterion, but this need not be the case. Indeed, when levels of uncertainty
are high, an identical internal signal may either result in a‘seen’ or in an ‘unseen’ response
depending on where this criterion was placed. Placement of the criterion can depend on many
non-perceptual factors, including the perceived utility of certain stimulus-response
combinations (the payoff matrix), statistical regularitiesin the environment (differences in the
ratio of noise and signal presentations) but also on the state of the observer (explorative vs
apprehensive) and even on small changes in task instructions.

When computing neural measures contingent on responses that are subject to criterion
shifts, such uncontrolled criterion effects leak into neural measures that are based on
behavioral response selection. For example, when the response criterion shifts from
conservativeto liberal, asis shown in the example in Figure 1A, the average signal strength
within both the seen and the unseen response category decreases (see leftward diagonal lines
from conservative to liberal). As aresult, when extracting the signals from either response
category, one should hypothetically get a decrease in the average signal strength in both
‘unseen’ and ‘seen’ conditions under aliberal criterion when compared to a criterion that is
more conservative.

In Figure 1B we used a simple simulation to uncover the effect of criterion shifts on
neural processing measures. In this simulation, we randomly generated normally distributed
internal ‘signals’, which one may conceptualize as trials in a neuroimaging experiment in
which astimulus is presented. Next, we either applied aliberal or a conservative criterion to
the signal strength histograms (Figure 1B, left panels) and computed the average signal
strength of the ‘unseen’ (left of criterion) and ‘seen’ (right of criterion) conditions, separately
for liberal and conservative (see Methods for details).

These average signal strengths are the equivalent of what would be termed neural
measures of unconscious (‘ unseen’) and conscious (‘seen’) processing in an experiment that
uses subjective measures to establish experimental conditions. Somewhat counterintuitively,
amore conservative criterion does not have different effects on the neural measure of
‘unconscious’ processing and on the neural measure of ‘ conscious’ processing. Instead, when
the two criteria are positioned symmetrically around the mean of the signal distribution asin
the left panels of Figure 1B, a more conservative criterion inflates neural measures of both
unconscious and conscious processing when compared to aliberal criterion (see the right
panel of Figure 1B). Although this consequence of criterion shifts on effect sizesin neural
measures based on post hoc sorted trials is clearly implied by signal detection theory, to our
knowledge it has not been highlighted in the consciousness literature.
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A. Signal detection theory B. Simulation of criterion effect on neural measures
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Figure 1. The effect of criterion shifts on neural measures of information processing under post hoc sorting. (A)
When the criterion shiftsto the right, the respondent becomes more conservative, whereas a leftward criterion
shift reflects a more liberal response criterion. The average signal strength of both unseen and seentrialsis
greater under a conservative response criterion than under a liberal response criterion, both for seen and for
unseen trials (diagonal line pointing leftward). (B) A simulation in which it is assumed that internal signal
strength is a reflection of neural processing. When simulating signal and noise trials (histograms of signal and
noise trials, left panel), a selection based on a conservative or liberal criterion would result in different average
signal strengths, which would affect the sensitivity of a decoding analysis on neural data of signal vs noise for
both seen and unseen trials, depicted as Area Under the Curve (AUC) in the right panel.

Next, we wondered to what extent such criterion effects become apparent in neural
measures of unconscious and/or conscious processing when this method is applied to
empirical data. To investigate this, we analyzed two datasets in which a criterion
mani pul ation was applied to a detection task. In both experiments, participants viewed a
continuous rapid serial visual presentation (RSVP) of oriented textures while EEG was
collected (see Figure 2A and 2B). The sequence of textures was aways identical, except that
the fifth texture either contained a texture-defined square of lines orthogonal to the
background orientation (target trials) or a homogenous texture without such a square
(no-target trials). In Experiment 1, which has previously been published by Kloosterman and
colleagues (2020, 2019), the participant’s task was to identify the target by pressing ‘yes
whenever they observed a square (detection experiment, see Figure 2A). To manipulate their
decision criterion, they were either punished using an aversive tone with a small monetary
deduction for misses (liberal condition) or an aversive tone with a small monetary deduction
for false alarms (conservative condition).

In a second experiment, we had a different group of participants perform the same
task, this time responding using the Perceptual Awareness Scale (PAS: Ramspy and
Overgaard, 2004). This scale allows observers to indicate the strength of their experience at a
more fine-grained resolution ranging from [0] “No experience” to [3] “A clear experience’
(PAS experiment, see figure 2B and Methods for full description of the four response
categories). The underlying assumption is that the PAS that selecting [0] will only occur if
trials are ‘truly’ unseen, so that unconscious processing is not overestimated, as may happen
in dichotomous or other types of scales (Overgaard et al., 2006; Overgaard and Sandberg,
2021; Sandberg et al., 2010). The PAS was devel oped to be able to resolve the inability to
externally calibrate subjective content, and as such its ultimate goal seems to be to be
impervious to non-perceptual criterion shifts. However, despite its popularity, the degree to
which the PAS s robust to non-perceptual criterion shifts has never been explicitly
investigated. Here, to counter criterion shifts when using the PAS, we further explicitly
instructed observers to respond in line with their experience: “ Even though you receive
feedback about the correctness of your responses, it is very important that you keep
responding according to what you actually experience, using the Perceptual Awareness


https://doi.org/10.1101/2024.02.22.581517
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581517; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Scale. Only press 0 if you are 100% convinced that no square appeared and only press 3 if
you ar e 100% convinced that a square appeared.” The criterion manipulation was applied by
counting PA SO responses on target trials as misses, and PASL, PAS2, or PAS3 responses on
no-target trials as false alarms (as is common practice, e.g. Soto et a., 2011). Aside from
response mode and target presentation duration (Experiment 1: 40 ms, Experiment 2: 30 ms),
both experiments were virtually identical (see Methods for other minor differences).

A. Experiment 1: detection C. Experiment 1: behavior

Hit rate Hit rate - False alarm rate
13

=—=§ P<10"

1]

0.6 4

P=0.808

..... Yes, figure presant
for no response) False alarm rata

1 0.4

F‘r _ Pei0
© s 05 a 021
absent (25%)
H Iy §
IT 300-2200 ms ! Fixed-order trial sequence 1000 ms 7/ 0 ‘ —=f— ol
: M Liberal
D. Experiment 2: behavior
B. Experiment 2: PAS B Conservative
30 ms § Hit rate Hit rate - False alarm rate
Q )
P=0.039 P=0.005 g £10 P=0.038
051 g BB 0.8
5 he B
0 ‘ 0.6 4
PAS1 PAS2 PAS3 c

False alarm rate

P=10%

&) ‘aiarm

Pe10? P=0.007

| presen (Conservative) 0.5 fi . 1 0.2 4
; Iy o & 3
T |~ %=
ITI 1800 - 2200 ms | Fixed-order trial sequence 750 ms 17 0 _‘i ﬁ_ _‘\_%__ ol
PAS1 PAS2 PAS3 PAS 1-3

Figure 2. Two experiments with a criterion manipulation. (A) In Experiment 1, participants had to execute a
detection task in 10-minute blocks by pressing a button whenever they perceived a square target (top stimulusin
acontinuous RSVP). In haf of the blocks, misses were signaled by a tone and a small monetary deduction
(liberal criterion condition) whereas in the other half of the blocks false alarms were signaled by atone and a
small monetary deduction (conservative criterion condition). (B) Same as in panel A, but now for Experiment 2,
in which participants regponded according to the PAS. (C and D) Behavior associated with Experiment 1 and 2.
Both hits and false alarms increased under the liberal condition compared to the conservative condition, whereas
senstivity remained approximately the same. Note that in panel D, to be able to compute hit and false alarm
rates the PAS was conceptualized as atype | response scale, with PASO indexing absent responses and PAS1-3
indexing present responses. Minor differences between experiments are detailed in the Methods.

Behaviorally, the criterion manipulation (liberal vs conservative) resulted in a strong
criterion shift in both experiments, expressed in concomitant increases of both hits
(responding “seen” when atarget was presented) and false alarms (responding “seen” when
no target was presented) for liberal when compared to the conservative condition (see left
panels of Figure 2C and 2D). In contrast, sensitivity — simplified here as the hit rate minus the
false alarm rate — remained largely unchanged (right panel of Figure 2C and 2D). To quantify
the success of the criterion manipulation in Experiment 1, we computed the signal theoretic
parameter estimates criterion c (liberd: -0.30, conservative: 0.73) and sensitivity d' (liberal:
2.12, conservative: 2.39). This confirmed that the criterion manipulation in Experiment 1 was
successful, and that it exerted amuch larger effect on criterion (hedges g=2.84) than on d’
(hedges g=0.30).

The behavioral data of Experiment 2 were analyzed in the same way as Experiment 1,
this time sorting trials using the four PAS levels, conceptualizing the PAS asatype |
response scale, with PASO indexing absent responses and PAS1-3 indexing present
responses. We reasoned that if participants can maintain a stable response criterion reflecting
their experience under the PAS, we should not observe criterion shifts. In contrast, however,
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we observed strong criterion shifts on al levels of the PAS, as can be seen from concomitant
increases of both hits and false alarms for liberal when compared to the conservative
condition (see left panels of Figure 2D), while sensitivity (collapsing PAS1, PAS2 or PAS3
as ‘seen’ responses) was only slightly higher for conservative compared to liberal (seethe
right panel of Figure 2D). This shows for thefirst time, that all levels of the PAS are affected
by criterion shifts, questioning the construct validity of the measure (see Discussion).
Computing the corresponding signal theoretic estimates for Experiment 2 confirms this result
for criterion c (liberal: -0.59, conservative: 0.60) and sensitivity d' (liberal: 1.29,
conservative: 1.59). Effect sizes on these measures show that the criterion manipulation in
Experiment 2 worked and that it exerted a much larger effect on criterion (hedges g=2.02)
than on d’ (hedges g=0.42), just as we observed in Experiment 1.

Next, to establish the effect of criterion shifts on neural measures, we turned to
classification performance of EEG data as a measure of neural processing (Fahrenfort et al.,
2018). Firgt, alinear discriminant analytic (LDA) classifier was trained for each participant
using al trials from all sessions (3 sessionsin Experiment 1, 2 sessions in Experiment 2) to
discriminate target from no-target trials based on EEG data, irrespective of seen/unseen
responses and irrespective of the response criterion. To maximize signal-to-noise ratio, we
applied aleave-one-person-out cross validated decoding scheme by using all classifiers from
all participants except the participants that was being tested (separately for Experiment 1 and
for Experiment 2). This leave-one-person-out cross validation procedure maximized the
available data for training without requiring k-folding on subsets of cells with low response
counts, so that all test sets were classified by the same fully independent classifiers. A single
time series of classification performance across time was obtained for every participant
(every testing set) by averaging classification performance across all classifiers that tested
that set (see Methods and supplementary Figure S2 for details). We maximized
signal-to-noise ratio by performing classification using occipitoparietal electrodes, as these
are known to be most sensitive to these stimuli (Fahrenfort et a., 2017, 2008, 2007).
Different electrode selections (all electrodes or only occipital electrodes) yielded qualitatively
similar results.

In afirst step, we computed classifier performance over time across all trials
(irrespective of responses or condition) in the experiment, separately for Experiment 1 and
Experiment 2. We subsequently computed the average classification performance across both
experiments (see Figure 3A, left panel) and identified three times at which local maxima
occurred in this average (137 ms, 266 ms and 430 ms). These peaks reflect stages that are
often identified in similar experiments that investigate the time course of perceptual
organization (Fahrenfort et al., 2017, 2008, 2007). Figure 3A (right panel) shows that these
peaks have highly similar topographic maps of current source density, obtained from the
forward transformed weights of the training data from the selected peaks for both
experiments (Haufe et al., 2014). To keep multiple comparisons to a minimum, further testing
was carried out on the time points at which these three peaks occurred. Note that
classification performance was higher for Experiment 1 than for Experiment 2, as this
experiment had 3 sessions instead of 2, and target stimuli were presented for 40 ms instead of
30 ms (which also resulted in a higher behavioral d' for Experiment 1 than for Experiment 2).
Note that this has no bearing on the relevant hypothesis tests, because hypothesis testing
effects are only within, and not between experiments (i.e. the only relevant differenceis
between conservative and liberal, not between Experiment 1 and Experiment 2).

Next, to investigate the effect of these criterion shifts on neural measures, we
determined how classification performance was affected by post hoc sorting trials based on
response categories, separately for decisions made under aliberal criterion and under a
conservative criterion. We applied a standard post hoc sorting procedure to the EEG data of
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each experiment, creating a conscious condition of ‘seen’ figure trials and an unconscious
condition of ‘unseen’ figuretrials, separately under a conservative and alibera criterion. For
Experiment 1, the difference between seen and unseen was operationalized as participants
either giving a‘yes' response (='seen’) or no response a all (="unseen’). For Experiment 2
the difference between seen and unseen was operationalized as giving aresponse of 1, 2 or 3
on the PAS (='seen’) or giving a 0-response on the PAS (=" unseen’).

To ensure that differences resulting from post hoc sorting could not be explained by
differences in signal-to-noise ratio resulting from disparities in trial counts in the testing set,
we equated trial counts between the liberal and conservative condition within each participant
by randomly selecting the same number of trials from overrepresented cells (for Experiment
1, thiswas done at the level of ‘seen’ and ‘unseen’ responses, for experiment 2 the trial
counts were equated at each of the PAS levels, see methods for details). As aresult,
response-contingent conditions in the liberal and conservative conditions had identical input
for al classification analyses. Although different trial counts in the testing set might affect
the precision with which AUC is estimated in adecoding analysis, it does not affect the size
of AUC itself. Trial count equation was merely performed to make sure the liberal and
conservative condition were as comparable as possible. Analyzing the data without equating
trial counts resulted in qualitatively identical results.

We then extracted classifier performances at the aforementioned peaks under both a
conservative and aliberal criterion, separately for the ‘seen’ and ‘unseen’ conditions, and
separately for Experiment 1 and Experiment 2. For Experiment 2, weinitially collapsed
(averaged) the three ‘seen’ PASlevels (1, 2, 3) into asingle ‘seen’ level, so that the visibility
factor of Experiment 1 and Experiment 2 would have the same two levels. We then entered
thesein alarge 2 (experiment) x 2 (visibility) x 2 (criterion) x 3 (latency) repeated measures
ANOV A with experiment as a between group factor. The result of this ANOVA showed
strong main effects of experiment (Expl vs Exp2: F14=38.68, p<10°®, 12,=0.49), visibility
(seen vs unseen: F14=204.01, p<10™°, 12,=0.84), criterion (liberal vs conservative:
F140=20.98, p<10™, 12,=0.34) and latency (137 ms, 266 ms and 430 ms: F170,85=33.72,
p<10, 12,=0.46), see Supplementary Table S1 for the full ANOVA.

First, we asked whether the criterion shift significantly affected classification
performance after post hoc sorting, which was confirmed by the highly significant main
effect of criterion. This can also be seen in Figure 3B, where we first show the main effect of
criterion separately for Experiment 1 (detection) and Experiment 2 (PAS) collapsed across
‘seen’ and ‘unseen’ trials. These data confirm - as was predicted from our simulation — that
post hoc sorting resultsin alarge criterion effect, with higher classification performance for
the conservative than for the liberal condition. The consistency of the effect is further
supported by the fact that criterion did not significantly interact with experiment (F1 4=1.38,
p=0.25, n2,=0.03). Criterion did interact with visibility (F1,4=5.36, p=0.026, 2,=0.12), and
with latency (F1.7569.80=4.44, p=0.02, n2,=0.1), indicating that criterion effects on neural
measures manifested differentially in different visibility levels and at different momentsin
time. Indeed, in both experiments the criterion effect occurs at long latencies (266 ms and
430 ms) but not at the short latency of 137 ms, as was established using one-sided t-tests
(conservative > liberal) for simple effects in each of the three latencies for each of the two
experiments (see Figure 3B, for the complete time courses of these experiments see
supplementary Figure S1A). Finaly, there was a highly significant 3-way interaction between
criterion, experiment, and visibility (F14=18.47, p<103, 12,=0.32), which we will expound on
in much more detail further down below.
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Figure 3. Classification performance with and without post hoc sorting. (A) Classification performance of target
present vstarget absent time-locked to stimulus onset, expressed in Area Under the Curve (AUC), separately for
Experiment 1 and Experiment 2, as well as average classification performance, shaded areas are standard error
of the mean (left panel). The average performance across both experiments clearly shows three local
classification performance peaks at 137 ms, 266 ms and 430 ms. The distribution of cortical activity at these
peaks was highly similar for Experiment 1 and Experiment 2, as shown in topographic Current Source Density
maps that were obtained from the forward transformed classification weights, obtained from training a classifier
using all electrodes for visualization purposes (right panel). (B) Classification performance of target present vs
target absent after post hoc sorting on ‘ seen’ and ‘unseen’ responses (here collapsed across ‘ seen’ and ‘ unseen’,
see Figure 4 for the uncollapsed data), separately for Experiment 1 and Experiment 2, and separately for the
liberal and the conservative condition. (C) Same asin B, but thistime performing classification anaysison all
trials without first post hoc sorting into ‘seen’ and ‘unseen’ trials (using the same classfiersasused in B). See
supplementary Figure 2 for the complete time series.
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An alternative explanation for these findings might be that the criterion effect is not
driven by response-contingent post hoc sorting, but rather that the conservative condition just
has higher classification accuracy overall (regardless of post hoc sorting). To investigate this
possibility, we re-analyzed the same data without post hoc sorting, i.e. by taking all trialsin
the conservative condition and in the liberal condition without sorting them into ‘seen’ and
‘unseen’. Asin the previous analysis (and using the same classifiers), we extracted
classification performance at these peaks under a conservative and under aliberal criterion,
separately for Experiment 1 and Experiment 2 (see Figure 3C, for the complete time courses
see supplementary Figure S1B).

To test for criterion effects in the absence of post hoc sorting, we then entered these
datain a2 (experiment) x 2 (criterion) x 3 (latency) repeated measures ANOV A with
experiment as a between group factor (naturally there was no factor visibility because there
was no post hoc sorting). As before, the result of this ANOV A showed strong main effects of
experiment (Expl vs Exp2: Fy14,=28.45, p<10°°, n2,=0.42), and latency (137 ms, 266 ms and
430 ms: F1.70,6705=49.95, p<10™, 12,=0.56), but this time there was no main effect of criterion
(liberal vs conservative: F140=1.16, p=0.29, n2,=0.03), see Supplementary Table S2 for the
full ANOVA. Figure 3C shows the effect of criterion separately for the two experiments, with
one-sided post hoc t-tests (conservative > liberal) for each of the three latencies. This figure
shows that —if anything - the criterion effect isin the opposite direction of the effect
observed in Figure 3B, further confirming that the criterion effects in Figure 3B are due to
post hoc sorting and not due to genera effects of decoding sensitivity in the conservative
versus the liberal condition.

Having established the specificity of the post hoc sorting effect, we return our
attention to theinitial post hoc sorting analysis (Figure 3B and Supplementary Table S1). In
this analysis, we observed a small 2-way interaction between visibility and criterion as well
as ahighly significant 3-way interaction between experiment, criterion, and visibility as noted
above (F14=18.47, p<1073, 12,=0.32), also see Supplementary Table S1. This would suggest
that Experiment 1 and Experiment 2 contain different post hoc sorting criterion effects on the
‘seen’ and the ‘unseen’ condition. To investigate this further, we performed separate
ANOVAs for Experiment 1 (Figure 4A) and Experiment 2 (figure 4B).

For Experiment 1, we performed a 2 (visibility) x 2 (criterion) x 3 (latency) repeated
measures ANOV A (see Supplementary Table S3 for the full ANOVA). This analysis again
shows strong main effects of visibility (F1,15=81.38, p<107, n2,=0.84), criterion (F1,15=13.89,
p<0.01, n2,=0.48), and latency (F5,30=37.13, p<10®, 12,=0.71), but more importantly, it also
shows that criterion strongly interacts with visibility in Experiment 1 (F1,15=11.06, p<0.01,
n2,=0.42). One-sided t-tests for simple effects (conservative > liberal) revealed that the
criterion effects were only significant in the ‘unseen’ condition (Figure 4A, left panel), but
not in the ‘seen’ condition (Figure 4A, right panel), and - as established before — that these
effects only appear in the late 266 ms/ 430 ms latencies as opposed to the early 137 ms
latency.
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Figure 4. Differential effects on classification performance of post hoc sorting on either ‘ seen’ or ‘unseen’
conditions. (A) Classification performance in Experiment 1 for the liberal and conservative condition, separately
for ‘unseen’ trials (Ieft panel) and for ‘seen’ trials (right panel). (B) Sameasin A, but now for Experiment 2.
(C-D). Simulations showing the effect of criterion shifts under low senstivity or high sensitivity when the
threshold isthe same in C and D. When overal sensitivity islow (C), the effect of criterion shiftsis more likely
to appear in the ‘seen’ condition, whereas when sensitivity is high (D), the effect of criterion shiftsis more
likely to appear in the ‘unseen’ condition. (E-F) The effect of criterion shifts under an overall conservative or an
overall liberal criterion when sengitivity is the same. When the overall criterion is conservative (E), the effect of
criterion shiftsis more likely to appear in the ‘seen’ condition, whereas when the overall criterionis liberal (F),
the effect of criterion shiftsis more likely to appear in the ‘unseen’ condition.

To investigate the interaction between visibility and criterion in Experiment 2, we
performed the same analysisin a4 (visibility) x 2 (criterion) x 3 (latency) repeated measures
ANOVA, this time maintaining the four PAS responses as separate levelsin the factor
visibility (see Supplementary Table $4 for the full ANOVA). Again, this analysis confirmed
strong main effects of visibility (F2.37.5022=67.29, p<10°, 12,=0.73), criterion (F1.5=10.10,
p=0.004, 12,=0.29), and latency (F1.g047.26=13.26, p<10™, 12,=0.35), as observed in Experiment
1. Moreover, this experiment-specific ANOVA confirms that here too, criterion interacts with
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visibility (F2.2941.37=2.86, p=0.06, n2,=0.10). However, the direction of the interaction is very
different from Experiment 1. Post hoc t-tests for ssmple effects (conservative > liberal)
revealed that in Experiment 2, the criterion effects were predominantly in the ‘ seen’
conditions of the PAS (PASL, PAS2 and PAS3, see Figure 4B, 2™, 3" and 4™ panel), but not
in the ‘unseen’ condition (PASD, see Figure 4B, |leftmost panel), whereas Experiment 1
showed a significant effect in ‘unseen’ but not in ‘seen’ (and again only at late 266 ms and/or
430 ms latencies). These differential effects of the criterion on ‘seen’ and ‘unseen’ across
experiments explains the highly significant three-way interaction between criterion,
experiment, and visibility in theinitial ANOVA in which Experiment was incorporated as a
factor.

Together, these results confirm clear criterion-effects in both Experiment 1 and
Experiment 2 due to post hoc sorting, as was predicted from our initial simulations. However,
comparing Experiment 1 and Experiment 2 also shows that these criterion effects are most
prominent in the ‘unseen’ condition for Experiment 1, while being most prominent for the
‘seen’ conditions (PASL, PAS2 and PAS3) in Experiment 2. Wondering why this might be,
we went back to our simulations to determine what parameters influence whether a criterion
shift is expressed more strongly in ‘unseen’ or in ‘seen’ conditions. To determine this, we
separately manipulated two main parametersin our model: sensitivity (the distance between
the noise and the signal distribution) and overall criterion (whether the conservative and
liberal criterion are either on the left or on the right side of the signal distribution).

Figure 4C-F show the result of these smulations. First, we manipulated the degree of
sensitivity (Figure 4C-D), while keeping the response threshol ds for responding ‘seen’ or
‘unseen’ the same. When sensitivity is low (Figure 4C, left panels), asmall criterion shift is
more likely to have alarge effect on the neural measurein the ‘seen’ condition after post hoc
sorting (Figure 4C, right panel). Conversely, when sensitivity is high (Figure 4D, left panels)
the same criterion shift is more likely to have alarge effect on the ‘unseen’ condition (Figure
4D, right panel). These simulations show that under identical signal detection thresholds, a
change in sensitivity (for example when showing higher strength stimuli, or when an observer
is more attentive), can have alarge differential impact on the neural measures in ‘seen’ and
‘unseen’ conditions, making their interpretation intrinsically problematic.

In a second simulation, we looked at the effect of overal criterion shifts (Figure 4E
and 4F), while keeping sensitivity the same. When the overall criterion is conservative
(Figure 4E, left panels), asmall criterion shift might have alarge effect on the neural measure
in the ‘seen’ condition after post hoc sorting (Figure 4E, right panel), whereas when the
overal criterionisliberal (Figure 4F, left panels) the same criterion shift can have alarge
effect in the “unseen’ condition (Figure 4F, right panel). This shows that small criterion shifts
can have a differential impact on the effect size in neural measures of ‘seen’ and ‘ unseen’
stimuli, even when sensitivity stays the same, depending on whether the overal criterionis
liberal or conservative, again making the interpretation of such effects problematic.

Thus, criterion shifts can differentially confound neural measures of conscious or
unconsci ous processing, depending both on overall criterion and sensitivity. The direction of
this influence can be counterintuitive, is difficult to predict, and cannot be controlled
experimentally. Interestingly, Experiment 1 has a much higher sensitivity than Experiment 2
(both in terms of classification accuracy and in terms of behavioral sensitivity, as pointed out
before). This provides a compelling explanation for our finding that experiment 1 (detection)
shows the largest effect of the criterion shift in the unseen condition, whereas for experiment
2 (PAS) the largest effect was observed in the PAS1 condition and up, which isnicely in line
with the predictions from our simulation in Figure 4C-D. Importantly, these factors either
cannot be controlled in principle (criterion) and/or are not controlled in practice (sensitivity),
which questions the construct validity of subjective measures under post hoc sorting. In the
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discussion, we consider what these results mean for the future of subjective measuresin
CONSCiousness research.

Discussion

In this manuscript, we have shown through simulation that post hoc sorting on ‘seen’ and
‘unseen’ responses causes neura effect sizesin ‘seen’ and ‘unseen’ conditions to become
stronger under a conservative compared to aliberal response criterion. To test this claim
empirically, we analyzed data from two experiments in which criterion shifts were induced
experimentally (one using a simple detection task, one using the PAS). We found that in both
experiments, criterion shifts modulated effect size in neural measures of ‘unconscious’
(unseen) and/or ‘conscious’ (Seen) processing, and that this happens even though the
conservative and liberal condition used the same independent training data (identical
classifiers), and even though the trial counts in the test sets were equated for the conservative
and liberal condition. Finally, we showed through simulation that such criterion shifts can
either predominantly impact the neural measure of ‘unconscious' or of ‘ conscious’
processing (or both), depending on the sensitivity of observers and how they place their
criterion based on the experimental context.

Together, these data show that criterion shifts confound neural measures of conscious
and unconscious processing under post hoc sorting. Such confounds potentially contaminate
studies of unconscious cognition (King et al., 2016; Soto et al., 2011) as well as studies that
apply post hoc sorting to reveal neural measures of consciousness through a contrastive
approach (Boxtel et al., 2010; Hesselmann et al., 2011; Hesselmann and Malach, 2011;
Levinson et a., 2021; Melloni et a., 2011; Ress and Heeger, 2003; Rolke et a., 2001; Salti et
al., 2015; Sanchez et al., 2020; Sergent et al., 2005; Stein et al., 2021; Vugt et a., 2018;
Wyart and Tallon-Baudry, 2008). Concretely, the contrast “ seen>unseen”, used in
neuroimaging studies to isolate the neural basis of consciousness, can either result in strong
or in weak differences between conditions, depending on the response criterion that was
adopted by the observers.

Unfortunately, arbitrary criterion placement isintrinsic to decision making, and is
known to be affected by many factors that are not controlled between, or even within
experiments. Context is known to have alarge effect on how observers place their criterion.
For example, the ratio of targets to non-targets (the base-rate), the strength of the target
stimulus compared to noise (the signa-to-noise ratio), the utility of certain stimulus-response
combinations (the payoff matrix), and even small changesin task instructions are all known
to affect the response criterion (Fleming et al., 2010b; Kloosterman et al., 2019; Rakhshan et
al., 2018; Super et a., 2001; White and Poldrack, 2014). So even if some criterion shifts may
have a perceptual origin (Meyerhoff and Scholl, 2018; Witt et al., 2015), the omni presence of
arbitrary criterion placement due to non-perceptual influences (Sanchez-Fuenzalida et al.,
2023b, 2023a) threatens the construct validity of subjective measures in consciousness
research.

Relatedly, criterion shifts also threaten the construct validity of the PAS. Experiment
2 showsthat all levels of the PAS are sensitive to the criterion manipulation, even when
explicitly instructing participants to only respond according to their experience. This finding
isin line with evidence showing similar effects on related subjective measures, such as
confidence judgements. For example, both payoff and base-rate induced criterion shifts not
only result in abias on first order decisions, but also affect how second order confidence
judgements are distributed (Lebreton et al., 2019, 2018; Locke et a., 2020), also see (Peters
et a., 2017). Indeed, recent experiments from our lab have confirmed that payoff and
base-rate induced criterion shifts affect confidence scores even when perceptual experienceis
not affected (Sanchez-Fuenzalida et al., 2023b).
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Some may argue that the usage of the PAS in a context in which criterion shifts are
experimentally induced is not the spirit in which the PAS was devised. One might even claim
that experiment 2 does not make use of the PAS because the criterion was explicitly
mani pulated in this study, and that one should always take care to extensively calibrate the
PAS to subjective content in every experimental context (Sandberg and Overgaard, 2015).
However, proper instruction does not resolve thisissue. Any context — experimentally
induced or not - influences the criterion in some way, and if there is no way to enforce that
the adopted criterion is an unwavering threshold on subjective experience (and nothing else),
any subjective measure is potentially prone to confounds of a non-experiental nature. Without
resolving this, any experiment remains open to the critique that the participants in the study
may not have adopted the subjective scale as it was intended, for whatever reason.

Indeed, critics of the current experiment would voice exactly this concern: that the
participants did not adopt the PAS as it was intended due to wrong instruction and/or due to
the experimental context. In particular, Sandberg and Overgaard have noted (personal
communication) that one of the instructions we used (the sentence “Only press O if you are
100% convinced that no square appeared and only press 3 if you are 100% convinced that a
sguare appeared") as well as the use of feedback/payoff differs from the way PAS has been
used in other studies (Sandberg and Overgaard, 2015). Future research would need to show
whether removing these manipulations would (partially) mitigate the criterion effects on the
PAS that we found in Experiment 2. Nevertheless, criterion shifts are well-known to also
occur without these manipulations and occur naturally across experiments that have different
ratios of target to non-targets, different overall levels of visibility and so forth.

As such, the current experiment can be viewed as a caricature of actual experimental
practice. For example, depending on how ‘ calibration to subjective content’ is done and the
experimental context that is generated, some may show that blindsight does not exist (Mazzi
et a., 2016; Overgaard et al., 2008), while others may use the same subjective scale to show
that unconscious working memory does exist (King et al., 2016; Soto et a., 2011). Plausibly,
such patterns of results can be reversed when authors would adopt different calibration
procedures or invoke different experimental contextsin their experiments, without an
objective way of maintaining or quantifying the construct validity of the adopted subjective
scale. Importantly, there is no such thing as a criterion-free experimental context. As pointed
out in the beginning of this discussion and in our simulations, many dimensions that are not
controlled between experiments, will have a large effect on the criterion even without
manipulating it explicitly/experimentally.

Thus, researchers studying consciousness are faced with a difficult conundrum. On
the one hand, many view subjective measures as a crucial behavioral marker of the presence
or absence of consciousness (Baars, 1994; Dehaene, 2014; Overgaard et al., 2010). On the
other hand, subjective measures do not reliably measure the construct they intend to measure
due to criterion confounds. A potentia way out of this conundrum has been a proposal by
Peters & Lau (2015). They combined an objective, first order judgment with a criterion-free
subjective measure by having participants place bets (as proxy for subjective reports) on their
objective judgment. Trials consisted of two intervals, only one of them containing a grating
target, and subjects were asked to guess grating orientation for both intervals and place a bet
on which of these two judgements is deemed as more likely to be correct. They argued that
above-chance objective performance in the absence of subjective insight measured in this
criterion-free way would reflect unconscious perception. One may debate however whether
this would save the intended nature of subjective measures, as the bet that participants are
forced to place on one of the two intervals seems equivalent to an objective two-interval
forced choice task. Without making any final judgement on this matter, we point out that
saving the construct validity of subjective measures requires one to solve the criterion
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problem (Morgan et al., 2013). Without a properly experimentally defined procedure for
doing so, their construct validity will remain under threst.

Summarizing, aside from the effect of the criterion on behavioral responses
themselves, we show both empirically and in simulation that post hoc trial sorting of neural
data on subj ective measures can have unintuitive consequences depending on the
experimental context (i.e. depending on the criterion that participants adopt). Experimental
contexts that induce conservative behavioral responses on subjective measures will
overestimate estimates neural correlates of both ‘unconscious’ (unseen) and ‘ conscious’
(seen) conditions, whereas experimental contexts that induce liberal behavioral responding do
the reverse. As such, criterion placement threatens the construct validity of neural measures
of consciousness.

Methods

Smulations

For all simulations, we simulated experimentsin Matlab by generating 10,000 normally
distributed noise and noisetsignal trias using different parameters for the distance between
the two distributions as the sengitivity of the system and the criterion that was applied under
any given simulation (see OSF https://doi.org/10.17605/OSF.1I0/AP23W for all Matlab code
and parameter settings). Decoder classification performance was approximated by
conceptualizing the difference d between the average signal strength of signal trials and noise
trials after post hoc sorting on criterion as a measure of decoder sensitivity under post hoc
sorting (ranging from 0 to o). This value was converted to AUC classification performance

(ranging from 0.5 to 1), using the formula AUC = d)%, inwhich ™ is the normal cumulative
distribution function. The equivalent Matlab code is AUCsoted = NOrmedf(dsored V2), for the

relevant conversion formula from d to AUC see (Ruscio, 2008).

Participants and payment

All participants had normal or corrected-to-normal vision and were recruited at the University
of Amsterdam (UvA) in partial fulfillment of first year psychology curricular requirements or
for monetary reimbursement (€10 per hour). Participants signed a written informed consent
form before the start of the experiment. All procedures were approved by the ethics
committee of the University of Amsterdam.

Experiment 1. Sixteen participants (eight females, mean age 24.1 years, SD 1.64, al
right-handed) completed three experimental EEG sessions on different days, each session
lasting ca. 2 hours. At the beginning of the experiment, participants were informed they could
earn atotal bonus of €30, on top of their regular pay of €10 per hour or course credit. After
completing the last session of the experiment, every participant was paid the full bonus as
required by the ethical committee.

Experiment 2. Thirty-four participants completed three experimental sessions: one
behavioral training session lasting approximately 45 minutes and two experimental EEG
session lasting 2.5 hours each. The EEG data from twenty-six participants was analyzed (14
female, mean age 23.1 years, SD 3.19, 22 right-handed). Four participants were excluded
from analysis due having extremely low trial counts on one or more cells after post hoc
sorting on the four response levels of the PAS (<5 trials). Four participants were excluded
due to equipment failure and/or human error during data collection resulting in corrupted
data. Participants had the opportunity to earn an extra €5 in each EEG session, based on the
variable payoff scheme described below. All participants were naive to the purpose of the
study.
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Experimental setup and presentation software

Participants completed the experiment in a low-lit, quiet room. Stimuli were shown on a
computer monitor, with arefresh rate of 100Hz. The experiment was created on
Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com).
Experiment 1: Participants were seated approximately 70 cm away from the monitor.
Experiment 2: Participants rested their heads on a chin rest 73 cm away from the monitor.

Stimuli and RSVP

Stimuli consisted of a continuous semi-random rapid serial visual presentation (RSVP) of full
screen texture patterns (see Figure 2). The texture patterns consisted of line elements
approximately 0.07° thick and 0.4° long in visual angle. Each texture in the RSVP was
oriented in one of four possible directions: 0° [vertical], 45°, 90° or 135°. After arandom
inter-trial interval containing randomly ordered textures, a fixed order sequence containing 25
textures began. The fifth stimulus of the sequence either contained a texture-defined figure
(target, T) or a homogenous texture (nontarget, NT). The fixed sequence contained the
following orientations: 45°, 90°, 0°, 90°, T/NT, 0°, 90°, 0°, 90°, 0°, 45°, 0°, 135°, 90°, 45°,
0°, 135°, 0°, 45°, 90°, 45°, 90°, 135°, 0°, 135°. This fixed sequence ensured that the visual
stimulation surrounding the target was always the same across trials. The nontarget was a
homogeneous diagonally oriented texture (45° or 135°). The target was the same texture but
contained an orientation-defined square in the center, of which the surface elements were
orthogonally rotated with respect to the background. Orientation of targets and nontargets
was randomly selected, while ensuring that each orientation was used in 50% of trials. The
visual angle of the target square was approximately 2.4°. In 75% of trials, atarget figure was
shown, and in 25% no figure was shown.

Experiment 1. Target stimuli were presented for 40 ms (i.e. stimulation frequency 25 Hz).
Theintertrial interval (ITI) varied randomly between 300 and 2200 ms. The fixation dot was
red throughout the experiment.

Experiment 2. Target stimuli were presented for 30 ms (i.e. stimulation frequency of 33.3
Hz). The ITI varied randomly between 1800 and 2200 ms. The onset of the fixed sequence
containing atarget or a nontarget was signaled by the central fixation dot turning from grey to
black. The fixation dot was black during the fixed sequence. After the fixed sequence, the
fixation dot changed to green, which indicated that participants could respond.

Task instructions and payoff induced criterion manipulation

Participants were instructed to detect a target in an RSV P stream by pressing a button, while
thelir criterion was manipulated.

Experiment 1. Participants were instructed to press a button using their right hand whenever
they observed atarget in the continuous RSV P. Although the onset of atria within the
continuous stream of textures was not explicitly cued, the similar distribution of reaction
timesin target and nontarget trials suggests that participants used the temporal structure of
the task even when no target appeared. See Kloosterman et al. (2019) for details. In
aternating nine-minute blocks of trials, we actively biased participants’ perceptual decisions
by instructing them either to report as many targets as possible while playing an aversive tone
after each miss (no button press after presentation of atarget, liberal condition), or by
instructing them to only report high-certainty targets while playing an aversive tone after
each false alarm (button press even when no target was presented, conservative condition).
Participants were told their bonus would be diminished by €0.03 after a miss and diminished
by €0.10 after a false alarm. Participants were free to respond at any time during a block
whenever they detected atarget. A trial was considered atarget present response when a
button press occurred before the fixed-order sequence ended (i.e. within 0.84 s after onset of
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the fifth texture containing the (non)target, see Figure 2). The criterion manipulation switched
back and forth after every block, so that each session contained both conservative and liberal
criterion blocks.

Experiment 2. Participants were instructed to determine whether they observed atarget in
the continuous RSV P using the Perceptual Awareness Scale (PAS; Ramsoy & Overgaard,
2004). The PASisafour-point scale, on which participants rate the strength of their
experience of a stimulus from O to 3.
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The following instructions regarding the PAS were given to participants:

Response category Description
0 - No experience No impression of a square.
1 - Brief glimpse A feeling that a square was shown.

2 - Almost clear experience  Ambiguous experience of asguare. A feeling of being

almost certain about seeing a square.
3 - Clear experience Non-ambiguous experience of the square. No doubt in

ONe's answer.
Between blocks, participants were reminded of the description of each response option of the
PAS. Participants received additional on-screen feedback if they used one response option for
less than 10% of responses in the previous block: “You are not using all the possible
responses on the scale. If this reflects your experience, that is absolutely fine. Otherwise, here
are the categories again:”, followed by the PAS descriptions. This was to ensure partici pants
were always aware of using the scale in full, rather than settling into a pattern of choosing
between two responses, for example. Participants were further explicitly instructed to respond
only according to what they experienced, regardless of the feedback they received during the
experiment:
“ Even though you receive feedback about the correctness of your responses, it is very
important that you keep responding accor ding to what you actually experience, using the
Perceptual Awareness Scale. Only press 0 if you are 100% convinced that no square
appeared and only press 3 if you are 100% convinced that a square appeared.”
Participants were instructed to respond when the fixation dot changed from grey to green,
which occurred at the end of the fixed RSV P sequence. Responses given while the fixation
date was not green were not recorded. Participants responded using the index finger of their
preferred hand, by pressing keys labelled ‘0, *1’, ‘2’ or ‘3, corresponding to the responses
possible on the PAS. As soon as a response was given, the fixation dot changed to grey and
the button pressed was displayed in the center of the screen for 60ms, on top of a stream of
textures with a grey fixation dot, so participants could ensure they had pressed the correct key
(or, alternatively, correct their finger position for the following trial). An auditory feedback
tone was given for either false alarms (conservative condition, responding ‘1’, ‘2’ or ‘3’ when
no target was present) or misses (liberal condition, responding ‘O’ when atarget was present).
In addition, for every tone, €0.01 was deducted from their €5 reward for that session. The
criterion manipulation occurred at a session level, so that one feedback scheme was
exclusively executed in on session, and the other in the other session. The order of sessions
was counterbalanced across participants. There was no break in the stream of textures
throughout a block of 144 trials, unless no response was given within the 5s limit. In this
case, participants were shown a screen reading “Please respond every time the fixation dot is
green about what you just experienced.”, then given a5s countdown before the stream of
textures resumed. Throughout the block, the same texture was never repeated twice in arow.
No performance feedback was provided at the end of a block. Participants were informed of
how much of the extrareward they earned in each session at the end of all sessions.

EEG sessions

Experiment 1.

Prior to EEG recording in the first session, participants performed a 10-minute practice run of
both conditions, in which visual feedback directly after amiss (liberal condition) or false
alarm (conservative) informed participants about their mistake, allowing them to adjust their
decision bias accordingly. During EEG recording, participants performed six blocks per
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session lasting ca. nine minutes each. During a block, participants continuously monitored the
screen and were free to respond by button press whenever they thought they saw atarget.
Each block contained 240 trials, of which 180 target and 60 nontarget trials. The condition of
the first block of a session was counterbalanced across participants. There were short breaks
between blocks, in which participants indicated when they were ready to begin the next
block.

Experiment 2. Prior to collecting EEG, each subject underwent a practice session. The
practice session started with a slower version of the task, so participants could familiarize
themselves with the structure of thetrials, and clearly identify the target, and in which they
were familiarized with the PAS scale. Only participants that were able to perform the task
with areasonable accuracy of 30% (hit rate minus false alarm rate) were invited for the
subsequent EEG sessions. EEG was collected in two different experimental sessions. A
session contained ten blocks of either the liberal or conservative condition (counter-balanced
across participants). Each block contained 144 trials (108 target trials, 36 non-target trials),
and lasted approximately 9 minutes.

EEG Recording.

Continuous EEG data were recorded at 512HZ using a 64-channel BioSemi Active-Two
system (BioSemi, Amsterdam, The Netherlands). Two external electrodes were placed on the
earlobes, to be used as a reference. Electrooculargraphy (EOG) was recorded using four
electrodes: on the outer side of each eye (horizontal) and above and below the left eye
(vertical). Horizontal and vertical EOG electrodes were referenced against each other, to
obtain information about horizontal eye movements, and vertical eye movements and blinks,
respectively. Triggers were sent at the time of response and target presentation, recording the
orientation and type of trial (target or catch).

Experiment 1. EEG was recorded from a 48-electrode EEG cap that was slightly modified to
include 11 and 12 next to 1z. Other electrodes were placed according to the 10-20 system. The
complete list of electrodes was AF3, AF4, C3, C4, CP1, CP2, CP3, CP4, CP5, CP6, Cz, F3,
F4, F7, F8, FC1, FC2, FC5, FC6, Fpl, Fp2, Fz, 11, 12, Iz, O1, O2, Oz, P1, P10, P2, P3, P4,
P5, P6, P7, P8, P9, PO3, PO4, PO7, PO8, POz, Pz, T7, T8, TP7, TP8.

Experiment 2. EEG was recorded from a standard 64-electrode EEG cap, according to the
10-20 system. The complete list of electrodes was AF3, AF4, AF7, AF8, AFz, C1, C2, C3,
C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FC1,
FC2, FC3, FC4, FC5, FC6, FCz, FT7, FT8, Fpl, Fp2, Fpz, Fz, Iz, O1, 02, Oz, P1, P10, P2,
P3, P4, P5, P6, P7, P8, P9, PO3, PO4, PO7, PO8, POz, Pz, T7, T8, TP7, TP8.

EEG Pre-processing.

The EEG data from Experiment 1 was pre-processed as described in detail in Kloosterman et
a. (2019), with the only exception that for these analyses no detrending was applied to the
data. The datafrom Experiment 2 was pre-processed using a very similar pre-processing
pipeline, as described next. All pre-processing and subsequent analyses were conducted using
EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld et al., 2011) and/or the
ADAM toolbox (Fahrenfort et al., 2018) using MATLAB code. All data were referenced to
the average voltage of two electrodes attached to the earlobes. Channel locations were looked
up according to the standard 10-5 BESA cap. Data were downsampled to 256Hz to reduce
time and space required for further pre-processing and analysis. The continuous EEG data
were epoched between 100 ms before target presentation and 750 ms after target presentation.
An Independent Component Analysis (ICA) was used on epoched and demeaned data to
identify and remove eye-blinks. Finally, the data were transformed to Scalp Current Density
(CSD) using spherical splines (Perrin et al., 1989), after which the data were
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baseline-corrected using the interval (-100, 0) ms prior to decoding. No high-pass or low-pass
filtering was applied to the data to preclude temporal displacements (Driel et al., 2021,
VanRullen, 2011).

EEG decoding analyses

Trials were balanced such that the number of trials within each stimulus-response
combination were always the same between the liberal and the conservative condition. To
achieve this, trials were randomly selected from the stimulus-response condition with the
overrepresented stimulus class to match the condition with fewer responses in number. This
was done to ensure that differences between the liberal and conservative conditions could not
arise just because more trials were included in one condition than in the other.

EEG data were analyzed using the ADAM toolbox (Fahrenfort et al., 2018), a
MATLARB toolbox for multivariate pattern anaysis of EEG data. The train-test procedure
used to classify EEG data was a leave-one-person-out cross validated decoding scheme. In
this procedure, all sessions from each participant were merged, and electrodes were used as
featuresto train an LDA classifier to discriminate between targets (figures) and no-targets
(homogenous textures) for every sample in the epoch (-100, 750) ms.

Next, these classifiers were used to test the data sets from all participants, except the
one that the classifier had been trained on. This procedure was repeated until all classifiers
had tested all data sets, except data from the same participant. For Experiment 1 (N=16), this
resulted in 16*15=240 classifier performance sets, and for Experiment 2 (N=26), this resulted
in 26*25=650 classifier performance sets. Classifier performance sets that were tested on the
same person were subsequently averaged, returning to 16 classifier performance sets for
Experiment 1, and 26 classifier performance sets for Experiment 2, which were used for
subsequent group level statistics. A graphical depiction of this |eave-one-person-out cross
validation procedure is shown in supplementary Figure S2. The procedure ensured that train
and test sets were fully independent, while maximizing the available training data to evaluate
test data, as well as maximizing the generalizability of the results within the tested
population. The accuracy measure to establish classifier performance was Area Under the
Curve (AUC). Classifiers were trained and tested using the occipitoparietal electrodes in both
datasets: 1z, 01, 02, Oz, P1, P10, P2, P3, P4, P5, P6, P7, P8, P9, PO10, PO3, PO4, PO7,
PO8, PO9, POz, Pz. Group level ANOVASs on classifier performance scores were performed
in JASP (Team, 2023).
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Data and code availability
All data and analysis code is available from OSF in arepository with DOI:
10.17605/0OSF.10/AP23W (link: https://doi.org/10.17605/OSF.IO/AP23W)
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Supplementary Table S1. Repeated Measures ANOVA after post hoc sorting). In cases
where Mauchly’ s test of sphericity was violated, the Greenhouse-Geisser corrected values are
provided below it on the second row.

Within Subj ects Effects

Cases Ssqulzgri df S'\é'lfg;‘e F D 7
Criterion 0.025 1.000 0.025 20984 4.455x10° 0.344
Criterion [ experiment 0.002 1.000 0.002 1.376 0.248 0.033
Residuals 0.047 40.000 0.001
Latencies 0.213 2.000 0.106 33719 2.395x10! 0.457
0.213 1.787 0119 33719 2222x10"° 0.457
Latencies [ experiment 0.171 2.000 0.085 27.093 1.036x10° 0.404
0.171 1.787 0.096 27.093 6.518x10° 0404
Residuals 0.252 80.000 0.003
0.252 71.493 0.004
Visibility 0.405 1.000 0405 204.012 2.679x10Y 0.836
Visibility @ experiment 0.073 1.000 0.073 36.888 3.725x107 0.480
Residuals 0.079 40.000 0.002
Criterion @ Latencies 0.009 C 2.000C 0.004C 44420 0.015L1 0.100
0.009 1.745 0.005  4.442 0.019 0.100
Criterion [ Latencies [ experiment 0.002"  2.000 8.407x10*T" 0.84217 0.4351" 0.021
0.002 1745 9.635x10%  0.842 0421 0.021
Residuals 0.080 80.000 9.990x10™
0.080 69.802 0.001
Visibility @ Criterion 0.003 1.000 0.003  5.360 0.026 0.118
Visibility [ Criterion [ experiment 0.009 1.000 0.009 18473 1.073x10* 0.316
Residuals 0.080 80.000 9.990x10*
0.080 69.802 0.001
Visibility @ Latencies 0.194 2.000 0.097 71794 1.398x10"® 0.642
0.194 1.829 0.106 71794 3.372x10Y 0.642
Visibility I Latencies [ experiment 0.060 2.000 0.030 22009 2.422x10° 0.355
0.060 1.829 0.033 22009 8.186x10° 0.355
Residuals 0.080 80.000 9.990x10*
0.080 69.802 0.001
Visibility @ Criterion B Latencies 0.003 2.000 0001 2561 0.084 0.060
0.003 1.879 0.001 2561 0.087 0.060
Visibility B Criterion Bl L afenicies 0.006 2.000 0003 5897 0.004 0128
experl ment
0.006 1.879 0.003  5.897 0.005 0.128
Residuals 0.080 80.000 9.990x10*
0.080 69.802 0.001

Note. Sphericity corrections not available for factors with 2 levels.
Note. Type Il Sum of Squares
71 Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p<.05).

Between Subjects Effects

Cases Sum of Squares df Mean Square F p "%
experiment 0233 1 0.233 38.680 2.324x10" 0.492
Residuals 0.240 40 0.006

Note. Type Il Sum of Squares

23


https://doi.org/10.1101/2024.02.22.581517
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.22.581517; this version posted March 11, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Supplementary Table S2. Repeated Measures ANOV A control (no post hoc sorting). In
cases where Mauchly’s test of sphericity was violated, the Greenhouse-Geisser corrected
values are provided below it on the second row.

Within Subj ects Effects

Cases ;ngr%fs df Mean Square F p n%
Latencies 0.230_ 2.000 0.1150L 4995301 8350x10™ Ll 0.555
0.230 1.699 0.135 49953  6.320x10™  0.555
Latencies [ experiment 0.166 2.000 _| 0083 36036l 6.945x10™ 0.474
0.166 1.699 0.098 36.036 1.953x10"° 0474
Residuals 0.184 80.000 0.002
0.184 67.954 0.003
Criterion 2.869x10-4 1.000 2.869x10-4 1.164 0.287 0.028
Criterion B experiment 3.225x10-4 1.000 3.225x10-4 1.309 0259 0.032
Residuals 0.010 40.000 2.465x10-4

Note. Sphericity corrections not available for factors with 2 levels.
Note. Type Il Sum of Squares
71 Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p<.05).

Between Subjects Effects

Cases Sum of Squares df Mean Square F p n%
experiment 0212 1 0212 28446 4.070x10° 0416
Residuals 0.297 40 0.007

Note. Type Il Sum of Squares
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Supplementary Table S3. Repeated Measures ANOVA for experiment 1 (detection), after
post hoc sorting. There were no violations of Mauchly’s test of sphericity.

Within Subj ects Effects

Cases Sum of Squares df Mean Square F p "%
Criterion 0.016 1 0.016  13.890 0.002 0.481
Residuals 0.017 15 0.001
Latencies 0.289 2 0144 37129 7.677x10° 0.712
Residuals 0.117 30 0.004
Visibility 0.332 1 0.332 81376 1.904x10’ 0.844
Residuals 0.061 15 0.004
Criterion B Latencies 0.007 2 0.004 3477 0.044 0.188
Residuas 0.032 30 0.001
Visihility B Criterion 0.008 1 0.008  11.056 0.005 0.424
Residuas 0.032 30 0.001
Visibility B Latencies 0.175 2 0.088  30.405 6.093x10° 0.670
Residuals 0.032 30 0.001
Visibility & Criterion [ Latencies 0.007 2 0.003 3.842 0.033 0.204
Residuas 0.032 30 0.001

Note. Type Il Sum of Squares
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Supplementary Table $4. Repeated Measures ANOVA for experiment 2 (PAS), after post
hoc sorting. In cases where Mauchly’ s test of sphericity was violated, the
Greenhouse-Geisser corrected values are provided below it on the second row.

Within Subj ects Effects

Cases Sum of Squares df  Mean Square F p n%
Criterion 0.025 1.000 0.025 10.102 0004 0.288
Residuals 0.062  25.000 0.002
Latencies 0.162 2.000 0.081 13256  2.404x10°  0.347
0.162 1.891 0.085 13256  3.679x10°  0.347
Residuals 0.305  50.000 0.006
0305  47.277 0.006
Visibility 0.1750 3.000L 0.0581 67.2870 3.216x10% [ 0.729
0.175 2.369 0.074 67287 3.078x10Y  0.729
Residuals 0.065 75000 8.677x10*
0.065 59.222 0.001
Criterion @ Latencies 0.006 2.000 0.003 1.769 0.181 0.066
0.006 1.655 0.004 1.769 0.188  0.066
Residuals 0.088  50.000 0.002
0088 41371 0.002
Visibility @ Criterion 0.0041 3.000C 0.001) 2.863L] 0.042 0.103
0.004 2.292 0.002 2.863 0.058 0.103
Residuals 0.088  50.000 0.002
0.088 41371 0.002
Visibility @ Latencies 0.1080  6.000C 0.018[1 26.0490] 4.358x10%[1 0.510
0.108 4.210 0.026 26049 1.816x10"° 0.510
Residuals 0.088  50.000 0.002
0088 41371 0.002
Visibility @ Criterion @ Latencies 0.005[1 6.000 7.515x10%1  1.05507 0.39217 0.040
0.005 4.045 0.001 1.055 0.383  0.040
Residuals 0.088  50.000 0.002
0.088 41371 0.002

Note. Sphericity corrections not available for factors with 2 levels.
Note. Type Il Sum of Squares
71 Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p<.05).
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A. After post-hoc sorting on responses
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B. Without post-hoc sorting on responses (control)
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Supplementary Figure S1. Decoding timelines of liberal and conservative with post hoc
sorting (A) and without post hoc sorting, control analysis (B).
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Hypothetical train/test data set for one participant

raw EEG data
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Supplementary Figure S2. Graphical depiction of leave-one-person-out cross validation
scheme. A classifier isaways trained on all target versus no-target trials of agiven
participant and tested in a different participant on the various cells of any given experimental
design. See methods for details.
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