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Abstract 
How consciousness arises from brain activity has been a topic of intense scientific research 
for decades. But how does one identify the neural basis of something that is intrinsically 
personal and subjective? A hallmark approach has been to ask observers to judge stimuli as 
‘seen’ (conscious) and ‘unseen’ (unconscious) and use post hoc sorting of neural 
measurements based these judgments. Unfortunately, cognitive and response biases are 
known to strongly affect how observers place their criterion for judging stimuli as 'seen' vs. 
'unseen', thereby confounding neural measures of consciousness. Surprisingly however, the 
effect of conservative and liberal criterion placement on neural measures of unconscious and 
conscious processing has never been explicitly investigated. Here we use simulations and 
electrophysiological brain measurements to show that conservative criterion placement has an 
unintuitive consequence: rather than selectively providing a cautious estimate of conscious 
processing, it inflates effect sizes in neural measures of both conscious and unconscious 
processing, while liberal criterion placement does the reverse. After showing this in 
simulation, we performed decoding analyses on two electroencephalography studies that 
employ common subjective indicators of conscious awareness, in which we experimentally 
manipulated the response criterion. The results confirm that the predicted confounding effects 
of criterion placement on neural measures of unconscious and conscious processing occur in 
empirical data, while further showing that the most widely used subjective scale, the 
Perceptual Awareness Scale (PAS), does not guard against criterion confounds. Follow-up 
simulations explicate how the experimental context determines whether the relative 
confounding effect of criterion placement is larger in neural measures of either conscious or 
unconscious processing. We conclude that criterion placement threatens the construct validity 
of neural measures of conscious and unconscious processing. 
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Introduction 
Psychology has a long history of experimentally investigating the contents of the mind. After 
Watson rejected introspectionism (Watson, 1914), and the cognitive revolution in turn 
rejected behaviorism (Baars, 1994), it has become widely accepted that there is middle 
ground: one can potentially gain access to (some of) the contents of the mind by asking 
observers to report on these contents. This idea has been the central tenet in what has come to 
be known as the search for the neural correlate of consciousness (Crick and Koch, 1990; 
LeDoux et al., 2020). It was realized early on that to determine what consciousness is, one 
must contrast it with what is not conscious, or else the concept of consciousness is an empty 
shell (the contrastive approach, see Baars, 1994). This presupposes the idea that one can 
distinguish between conscious and unconscious processes (so-called dual process models). 
Indeed, the idea of a hidden unconscious life that precedes and/or escapes our conscious 
experience also has a long tradition, starting with the idea of unconscious inference 
(Helmholtz, 1867), and later in Sigmund Freud’s hidden unconscious (Freud, 1904). 
 In the 80’s and 90’s of the previous century, this culminated in a heated debate 
centered around the question of how to experimentally establish whether a stimulus has 
reached consciousness or not. This debate roughly featured researchers defending the position 
that one should determine unconscious cognition at an objective detection threshold 
(Greenwald, 1992; Greenwald et al., 1996, 1989; Snodgrass et al., 2004), whereas others 
defended the position that only a subjectively defined threshold can establish unconscious 
cognition (Cheesman and Merikle, 1986; Merikle, 1992), with critical comments on the very 
notion of dual process models by questioning the existence of unconscious cognition at all 
(Holender, 1986; Holender and Duscherer, 2004).  

The core difference between objective and subjective threshold models is that the 
subjective threshold approach claims to take consciousness seriously by letting the 
participants in a study indicate on their own terms whether they experience (see) a stimulus at 
a certain level of intensity (Baars, 1994). In contrast, the objective threshold approach 
attempts to establish the stimulus level at which some sensitivity measure is at chance, 
regardless of their claimed experience7 and regardless of response criterion or bias 
(Azzopardi and Evans, 2007; Balsdon and Azzopardi, 2015; Green and Swets, 1966). Once it 
is established that some stimulus is either subjectively invisible (observer claims not seeing 
the stimulus) or objectively invisible (observer has zero sensitivity) at a given threshold, the 
typical recipe for establishing unconscious processing is to show that this stimulus still exerts 
behavioral effects (e.g. subliminal priming effects on a secondary task) or still undergoes 
residual neural processing (e.g. as measured through EEG or fMRI) despite being 
‘unconscious’. 

Objective and subjective measures each have their own problems. Although objective 
measures seem to align best with a scientific approach to consciousness (replicable, objective, 
e.g. see Mei et al., 2022; Soto et al., 2019), they do require one to invoke a “Gold Standard of 
seeing” that in fact does not exist (Koenderink, 2014). Relatedly, they ignore the fact that 
subjective experience is central to the very definition of consciousness. Indeed, cases have 
been reported in which subjective experience is reported to be different even when objective 
performance is equated (Fleming et al., 2010a; Hesselmann et al., 2011; Lau and Passingham, 
2006; Persaud et al., 2011). 

Furthermore, subjective measures are the measure of choice in paradigms in which 
physical stimulation is kept identical, which are often introduced to prevent that differences 
between conscious and unconscious vision can be attributed to physical rather than ‘mental’ 

                                                 
7
 Typically, participants have well above chance objective sensitivity for presentation levels at which they claim 

that stimuli are ‘subjectively’ invisible (Stein et al., 2021). 
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differences (so called “threshold” approaches, Sanchez et al., 2020). These arguments 
question whether objective measures can even capture conscious experience, prompting 
many to defend subjective measures (Baars, 1994; Dehaene, 2014; Overgaard et al., 2010). 
Subjective measures on the other hand have been widely criticized for being confounded by 
effects that are unrelated to conscious experience, such as non-perceptual biases as well as 
regression to the mean effects (for critical reviews see: Newell and Shanks, 2014; Schmidt, 
2015; Shanks, 2017; Soto et al., 2019). Nevertheless, subjective measures have gained 
considerable popularity in consciousness research over the past 20 years (Dehaene et al., 
2003; King et al., 2016; King and Dehaene, 2014; Lamy et al., 2009; Michel, 2022; 
Overgaard et al., 2010, 2006; Ramsøy and Overgaard, 2004; Salti et al., 2015; Sandberg et 
al., 2010; Sergent et al., 2005; Sergent and Dehaene, 2004; Soto et al., 2019, 2011; Vugt et 
al., 2018). 

A dominant approach in the subjective threshold literature is to sort trials based on 
observer’s responses to calculate the average neural activation for ‘seen’ (conscious) versus 
‘unseen’ (unconscious) trials. Sorting of trials based on subjectively ‘seen’ or ‘unseen’ 
responses is known as post hoc sorting, because experimental conditions are established 
based on the participant’s responses after the experiment has completed. Some proposed 
phenomena that originate from this approach are unconscious working memory (King et al., 
2016; Soto et al., 2011; Soto and Silvanto, 2014; Trübutschek et al., 2017), unconscious error 
detection (Charles et al., 2013), and even unconscious arithmetic (Sklar et al., 2012), for 
critical comments see (Shanks, 2017; Stein et al., 2016).  

In this manuscript, we show that subjective measures are intrinsically prone to 
criterion confounds. Arbitrary criterion placement influences the decision about stimulus 
absence or presence, even when consciousness of the stimulus itself is not affected. Thus, two 
stimuli that undergo identical sensory processing and result in the same experience might 
either be reported as seen or as unseen, depending on whether the observer adopts a liberal 
versus a conservative criterion for deciding whether the threshold for a ‘stimulus present’ 
decision) was reached. Although some may think that such criterion shifts must reflect 
changes in conscious experience, this is typically not the case. For example, it is well known 
that perceptual decisions may be motivated by non-perceptual information, such as the payoff 
matrix (the perceived utility of certain responses) or by statistical regularities in the 
environment, even when subjective experience is not affected (Rungratsameetaweemana et 
al., 2018; Sánchez-Fuenzalida et al., 2023a; White and Poldrack, 2014). 

Indeed, when a large group of consciousness researchers at the Association of 
Scientific Studies of Consciousness (ASSC) conference was asked about the relationship 
between payoff-based criterion shifts and conscious perception, roughly two thirds answered 
that they did not think that such shifts involve changes in conscious perception (Q2 in 
Francken et al., 2022). The criterion problem has been known at least since the advent of 
signal detection theory (Azzopardi and Evans, 2007; Green and Swets, 1966) and has long 
been hypothesized to underly many – if not all - subjective threshold effects (Eriksen, 1960; 
Goldiamond, 1958; Peters and Lau, 2015; Phillips, 2020, 2016). However, when criterion 
shifts are combined with post hoc sorting on subjective measures of consciousness, this may 
lead to further unwanted confounds. Here we investigate the influence of criterion shifts on 
post hoc sorted neural measures of consciousness. 
 
Results 
First, we sought to make explicit how – under the assumption of a signal detection theoretic 
model – neural measures of information processing are expected to behave when selecting 
trials based on a behavioral response. Interestingly, this exercise has never been undertaken. 
In signal detection theory (Green and Swets, 1966), the relationship between the response 
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(behavior) of an observer and the signal that the observer operates on, depends on the 
criterion that the observer applies to that signal. This is depicted in Figure 1A, where a 
distribution of internal signals resulting from pure noise (distribution on the left), needs to be 
distinguished from a distribution that results when a signal is added to that noise (distribution 
on the right). How well the observer can distinguish signal from noise is determined by the 
distance between the two distributions (d’, expressed in standard deviations).  

To decide whether any given internal signal comes from the noise distribution or from 
the signal distribution, the observer must arbitrarily place a criterion somewhere (i.e. the 
threshold for responding in a certain way: red line / conservative in the top panel, blue line / 
liberal in the bottom panel). Signals strengths to the right of the criterion are then classified as 
‘seen’, whereas signal strengths to the left are classified as ‘unseen’ by the observer. The 
subjective measures approach assumes that there is a 1:1 relationship between conscious 
perception and this criterion, but this need not be the case. Indeed, when levels of uncertainty 
are high, an identical internal signal may either result in a ‘seen’ or in an ‘unseen’ response 
depending on where this criterion was placed. Placement of the criterion can depend on many 
non-perceptual factors, including the perceived utility of certain stimulus-response 
combinations (the payoff matrix), statistical regularities in the environment (differences in the 
ratio of noise and signal presentations) but also on the state of the observer (explorative vs 
apprehensive) and even on small changes in task instructions. 

When computing neural measures contingent on responses that are subject to criterion 
shifts, such uncontrolled criterion effects leak into neural measures that are based on 
behavioral response selection. For example, when the response criterion shifts from 
conservative to liberal, as is shown in the example in Figure 1A, the average signal strength 
within both the seen and the unseen response category decreases (see leftward diagonal lines 
from conservative to liberal). As a result, when extracting the signals from either response 
category, one should hypothetically get a decrease in the average signal strength in both 
‘unseen’ and ‘seen’ conditions under a liberal criterion when compared to a criterion that is 
more conservative. 

In Figure 1B we used a simple simulation to uncover the effect of criterion shifts on 
neural processing measures. In this simulation, we randomly generated normally distributed 
internal ‘signals’, which one may conceptualize as trials in a neuroimaging experiment in 
which a stimulus is presented. Next, we either applied a liberal or a conservative criterion to 
the signal strength histograms (Figure 1B, left panels) and computed the average signal 
strength of the ‘unseen’ (left of criterion) and ‘seen’ (right of criterion) conditions, separately 
for liberal and conservative (see Methods for details). 

These average signal strengths are the equivalent of what would be termed neural 
measures of unconscious (‘unseen’) and conscious (‘seen’) processing in an experiment that 
uses subjective measures to establish experimental conditions. Somewhat counterintuitively, 
a more conservative criterion does not have different effects on the neural measure of 
‘unconscious’ processing and on the neural measure of ‘conscious’ processing. Instead, when 
the two criteria are positioned symmetrically around the mean of the signal distribution as in 
the left panels of Figure 1B, a more conservative criterion inflates neural measures of both 
unconscious and conscious processing when compared to a liberal criterion (see the right 
panel of Figure 1B). Although this consequence of criterion shifts on effect sizes in neural 
measures based on post hoc sorted trials is clearly implied by signal detection theory, to our 
knowledge it has not been highlighted in the consciousness literature. 
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Figure 1. The effect of criterion shifts on neural measures of information processing under post hoc sorting. (A) 
When the criterion shifts to the right, the respondent becomes more conservative, whereas a leftward criterion 
shift reflects a more liberal response criterion. The average signal strength of both unseen and seen trials is 
greater under a conservative response criterion than under a liberal response criterion, both for seen and for 
unseen trials (diagonal line pointing leftward). (B) A simulation in which it is assumed that internal signal 
strength is a reflection of neural processing. When simulating signal and noise trials (histograms of signal and 
noise trials, left panel), a selection based on a conservative or liberal criterion would result in different average 
signal strengths, which would affect the sensitivity of a decoding analysis on neural data of signal vs noise for 
both seen and unseen trials, depicted as Area Under the Curve (AUC) in the right panel. 
 

Next, we wondered to what extent such criterion effects become apparent in neural 
measures of unconscious and/or conscious processing when this method is applied to 
empirical data. To investigate this, we analyzed two datasets in which a criterion 
manipulation was applied to a detection task. In both experiments, participants viewed a 
continuous rapid serial visual presentation (RSVP) of oriented textures while EEG was 
collected (see Figure 2A and 2B). The sequence of textures was always identical, except that 
the fifth texture either contained a texture-defined square of lines orthogonal to the 
background orientation (target trials) or a homogenous texture without such a square 
(no-target trials). In Experiment 1, which has previously been published by Kloosterman and 
colleagues (2020, 2019), the participant’s task was to identify the target by pressing ‘yes’ 
whenever they observed a square (detection experiment, see Figure 2A). To manipulate their 
decision criterion, they were either punished using an aversive tone with a small monetary 
deduction for misses (liberal condition) or an aversive tone with a small monetary deduction 
for false alarms (conservative condition). 

In a second experiment, we had a different group of participants perform the same 
task, this time responding using the Perceptual Awareness Scale (PAS: Ramsøy and 
Overgaard, 2004). This scale allows observers to indicate the strength of their experience at a 
more fine-grained resolution ranging from [0] “No experience” to [3] “A clear experience” 
(PAS experiment, see figure 2B and Methods for full description of the four response 
categories). The underlying assumption is that the PAS that selecting [0] will only occur if 
trials are ‘truly’ unseen, so that unconscious processing is not overestimated, as may happen 
in dichotomous or other types of scales (Overgaard et al., 2006; Overgaard and Sandberg, 
2021; Sandberg et al., 2010). The PAS was developed to be able to resolve the inability to 
externally calibrate subjective content, and as such its ultimate goal seems to be to be 
impervious to non-perceptual criterion shifts. However, despite its popularity, the degree to 
which the PAS is robust to non-perceptual criterion shifts has never been explicitly 
investigated. Here, to counter criterion shifts when using the PAS, we further explicitly 
instructed observers to respond in line with their experience: “Even though you receive 
feedback about the correctness of your responses, it is very important that you keep 
responding according to what you actually experience, using the Perceptual Awareness 
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Scale. Only press 0 if you are 100% convinced that no square appeared and only press 3 if 
you are 100% convinced that a square appeared.” The criterion manipulation was applied by 
counting PAS0 responses on target trials as misses, and PAS1, PAS2, or PAS3 responses on 
no-target trials as false alarms (as is common practice, e.g. Soto et al., 2011). Aside from 
response mode and target presentation duration (Experiment 1: 40 ms, Experiment 2: 30 ms), 
both experiments were virtually identical (see Methods for other minor differences). 
 

 
Figure 2. Two experiments with a criterion manipulation. (A) In Experiment 1, participants had to execute a 
detection task in 10-minute blocks by pressing a button whenever they perceived a square target (top stimulus in 
a continuous RSVP). In half of the blocks, misses were signaled by a tone and a small monetary deduction 
(liberal criterion condition) whereas in the other half of the blocks false alarms were signaled by a tone and a 
small monetary deduction (conservative criterion condition). (B) Same as in panel A, but now for Experiment 2, 
in which participants responded according to the PAS. (C and D) Behavior associated with Experiment 1 and 2. 
Both hits and false alarms increased under the liberal condition compared to the conservative condition, whereas 
sensitivity remained approximately the same. Note that in panel D, to be able to compute hit and false alarm 
rates the PAS was conceptualized as a type I response scale, with PAS0 indexing absent responses and PAS1-3 
indexing present responses. Minor differences between experiments are detailed in the Methods. 
 

Behaviorally, the criterion manipulation (liberal vs conservative) resulted in a strong 
criterion shift in both experiments, expressed in concomitant increases of both hits 
(responding “seen” when a target was presented) and false alarms (responding “seen” when 
no target was presented) for liberal when compared to the conservative condition (see left 
panels of Figure 2C and 2D). In contrast, sensitivity – simplified here as the hit rate minus the 
false alarm rate – remained largely unchanged (right panel of Figure 2C and 2D). To quantify 
the success of the criterion manipulation in Experiment 1, we computed the signal theoretic 
parameter estimates criterion c (liberal: -0.30, conservative: 0.73) and sensitivity d’ (liberal: 
2.12, conservative: 2.39). This confirmed that the criterion manipulation in Experiment 1 was 
successful, and that it exerted a much larger effect on criterion (hedges g=2.84) than on d’ 
(hedges g=0.30). 

The behavioral data of Experiment 2 were analyzed in the same way as Experiment 1, 
this time sorting trials using the four PAS levels, conceptualizing the PAS as a type I 
response scale, with PAS0 indexing absent responses and PAS1-3 indexing present 
responses. We reasoned that if participants can maintain a stable response criterion reflecting 
their experience under the PAS, we should not observe criterion shifts. In contrast, however, 
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we observed strong criterion shifts on all levels of the PAS, as can be seen from concomitant 
increases of both hits and false alarms for liberal when compared to the conservative 
condition (see left panels of Figure 2D), while sensitivity (collapsing PAS1, PAS2 or PAS3 
as ‘seen’ responses) was only slightly higher for conservative compared to liberal (see the 
right panel of Figure 2D). This shows for the first time, that all levels of the PAS are affected 
by criterion shifts, questioning the construct validity of the measure (see Discussion). 
Computing the corresponding signal theoretic estimates for Experiment 2 confirms this result 
for criterion c (liberal: -0.59, conservative: 0.60) and sensitivity d’ (liberal: 1.29, 
conservative: 1.59). Effect sizes on these measures show that the criterion manipulation in 
Experiment 2 worked and that it exerted a much larger effect on criterion (hedges g=2.02) 
than on d’ (hedges g=0.42), just as we observed in Experiment 1. 

Next, to establish the effect of criterion shifts on neural measures, we turned to 
classification performance of EEG data as a measure of neural processing (Fahrenfort et al., 
2018). First, a linear discriminant analytic (LDA) classifier was trained for each participant 
using all trials from all sessions (3 sessions in Experiment 1, 2 sessions in Experiment 2) to 
discriminate target from no-target trials based on EEG data, irrespective of seen/unseen 
responses and irrespective of the response criterion. To maximize signal-to-noise ratio, we 
applied a leave-one-person-out cross validated decoding scheme by using all classifiers from 
all participants except the participants that was being tested (separately for Experiment 1 and 
for Experiment 2). This leave-one-person-out cross validation procedure maximized the 
available data for training without requiring k-folding on subsets of cells with low response 
counts, so that all test sets were classified by the same fully independent classifiers. A single 
time series of classification performance across time was obtained for every participant 
(every testing set) by averaging classification performance across all classifiers that tested 
that set (see Methods and supplementary Figure S2 for details). We maximized 
signal-to-noise ratio by performing classification using occipitoparietal electrodes, as these 
are known to be most sensitive to these stimuli (Fahrenfort et al., 2017, 2008, 2007). 
Different electrode selections (all electrodes or only occipital electrodes) yielded qualitatively 
similar results. 

In a first step, we computed classifier performance over time across all trials 
(irrespective of responses or condition) in the experiment, separately for Experiment 1 and 
Experiment 2. We subsequently computed the average classification performance across both 
experiments (see Figure 3A, left panel) and identified three times at which local maxima 
occurred in this average (137 ms, 266 ms and 430 ms). These peaks reflect stages that are 
often identified in similar experiments that investigate the time course of perceptual 
organization (Fahrenfort et al., 2017, 2008, 2007). Figure 3A (right panel) shows that these 
peaks have highly similar topographic maps of current source density, obtained from the 
forward transformed weights of the training data from the selected peaks for both 
experiments (Haufe et al., 2014). To keep multiple comparisons to a minimum, further testing 
was carried out on the time points at which these three peaks occurred. Note that 
classification performance was higher for Experiment 1 than for Experiment 2, as this 
experiment had 3 sessions instead of 2, and target stimuli were presented for 40 ms instead of 
30 ms (which also resulted in a higher behavioral d’ for Experiment 1 than for Experiment 2). 
Note that this has no bearing on the relevant hypothesis tests, because hypothesis testing 
effects are only within, and not between experiments (i.e. the only relevant difference is 
between conservative and liberal, not between Experiment 1 and Experiment 2). 

Next, to investigate the effect of these criterion shifts on neural measures, we 
determined how classification performance was affected by post hoc sorting trials based on 
response categories, separately for decisions made under a liberal criterion and under a 
conservative criterion. We applied a standard post hoc sorting procedure to the EEG data of 
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each experiment, creating a conscious condition of ‘seen’ figure trials and an unconscious 
condition of ‘unseen’ figure trials, separately under a conservative and a liberal criterion. For 
Experiment 1, the difference between seen and unseen was operationalized as participants 
either giving a ‘yes’ response (=’seen’) or no response at all (=’unseen’). For Experiment 2 
the difference between seen and unseen was operationalized as giving a response of 1, 2 or 3 
on the PAS (=’seen’) or giving a 0-response on the PAS (=’unseen’). 

To ensure that differences resulting from post hoc sorting could not be explained by 
differences in signal-to-noise ratio resulting from disparities in trial counts in the testing set, 
we equated trial counts between the liberal and conservative condition within each participant 
by randomly selecting the same number of trials from overrepresented cells (for Experiment 
1, this was done at the level of ‘seen’ and ‘unseen’ responses, for experiment 2 the trial 
counts were equated at each of the PAS levels, see methods for details). As a result, 
response-contingent conditions in the liberal and conservative conditions had identical input 
for all classification analyses. Although different trial counts in the testing set might affect 
the precision with which AUC is estimated in a decoding analysis, it does not affect the size 
of AUC itself. Trial count equation was merely performed to make sure the liberal and 
conservative condition were as comparable as possible. Analyzing the data without equating 
trial counts resulted in qualitatively identical results. 

We then extracted classifier performances at the aforementioned peaks under both a 
conservative and a liberal criterion, separately for the ‘seen’ and ‘unseen’ conditions, and 
separately for Experiment 1 and Experiment 2. For Experiment 2, we initially collapsed 
(averaged) the three ‘seen’ PAS levels (1, 2, 3) into a single ‘seen’ level, so that the visibility 
factor of Experiment 1 and Experiment 2 would have the same two levels. We then entered 
these in a large 2 (experiment) x 2 (visibility) x 2 (criterion) x 3 (latency) repeated measures 
ANOVA with experiment as a between group factor. The result of this ANOVA showed 
strong main effects of experiment (Exp1 vs Exp2: F1,40=38.68, p<10-6, η²p=0.49), visibility 
(seen vs unseen: F1,40=204.01, p<10-16, η²p=0.84), criterion (liberal vs conservative: 
F1,40=20.98, p<10-4, η²p=0.34) and latency (137 ms, 266 ms and 430 ms: F1.79,80=33.72, 
p<10-8, η²p=0.46), see Supplementary Table S1 for the full ANOVA. 

First, we asked whether the criterion shift significantly affected classification 
performance after post hoc sorting, which was confirmed by the highly significant main 
effect of criterion. This can also be seen in Figure 3B, where we first show the main effect of 
criterion separately for Experiment 1 (detection) and Experiment 2 (PAS) collapsed across 
‘seen’ and ‘unseen’ trials. These data confirm - as was predicted from our simulation – that 
post hoc sorting results in a large criterion effect, with higher classification performance for 
the conservative than for the liberal condition. The consistency of the effect is further 
supported by the fact that criterion did not significantly interact with experiment (F1,40=1.38, 
p=0.25, η²p=0.03). Criterion did interact with visibility (F1,40=5.36, p=0.026, η²p=0.12), and 
with latency (F1.75,69.80=4.44, p=0.02, η²p=0.1), indicating that criterion effects on neural 
measures manifested differentially in different visibility levels and at different moments in 
time. Indeed, in both experiments the criterion effect occurs at long latencies (266 ms and 
430 ms) but not at the short latency of 137 ms, as was established using one-sided t-tests 
(conservative > liberal) for simple effects in each of the three latencies for each of the two 
experiments (see Figure 3B, for the complete time courses of these experiments see 
supplementary Figure S1A). Finally, there was a highly significant 3-way interaction between 
criterion, experiment, and visibility (F1,40=18.47, p<10-3, η²p=0.32), which we will expound on 
in much more detail further down below. 
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2024.02.22.581517doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581517
http://creativecommons.org/licenses/by/4.0/


 10

 
 
Figure 3. Classification performance with and without post hoc sorting. (A) Classification performance of target 
present vs target absent time-locked to stimulus onset, expressed in Area Under the Curve (AUC), separately for 
Experiment 1 and Experiment 2, as well as average classification performance, shaded areas are standard error 
of the mean (left panel). The average performance across both experiments clearly shows three local 
classification performance peaks at 137 ms, 266 ms and 430 ms. The distribution of cortical activity at these 
peaks was highly similar for Experiment 1 and Experiment 2, as shown in topographic Current Source Density 
maps that were obtained from the forward transformed classification weights, obtained from training a classifier 
using all electrodes for visualization purposes (right panel). (B) Classification performance of target present vs 
target absent after post hoc sorting on ‘seen’ and ‘unseen’ responses (here collapsed across ‘seen’ and ‘unseen’, 
see Figure 4 for the uncollapsed data), separately for Experiment 1 and Experiment 2, and separately for the 
liberal and the conservative condition. (C) Same as in B, but this time performing classification analysis on all 
trials without first post hoc sorting into ‘seen’ and ‘unseen’ trials (using the same classifiers as used in B). See 
supplementary Figure 2 for the complete time series. 
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An alternative explanation for these findings might be that the criterion effect is not 

driven by response-contingent post hoc sorting, but rather that the conservative condition just 
has higher classification accuracy overall (regardless of post hoc sorting). To investigate this 
possibility, we re-analyzed the same data without post hoc sorting, i.e. by taking all trials in 
the conservative condition and in the liberal condition without sorting them into ‘seen’ and 
‘unseen’. As in the previous analysis (and using the same classifiers), we extracted 
classification performance at these peaks under a conservative and under a liberal criterion, 
separately for Experiment 1 and Experiment 2 (see Figure 3C, for the complete time courses 
see supplementary Figure S1B). 

To test for criterion effects in the absence of post hoc sorting, we then entered these 
data in a 2 (experiment) x 2 (criterion) x 3 (latency) repeated measures ANOVA with 
experiment as a between group factor (naturally there was no factor visibility because there 
was no post hoc sorting). As before, the result of this ANOVA showed strong main effects of 
experiment (Exp1 vs Exp2: F1,40=28.45, p<10-5, η²p=0.42), and latency (137 ms, 266 ms and 
430 ms: F1.70,67.95=49.95, p<10-12, η²p=0.56), but this time there was no main effect of criterion 
(liberal vs conservative: F1,40=1.16, p=0.29, η²p=0.03), see Supplementary Table S2 for the 
full ANOVA. Figure 3C shows the effect of criterion separately for the two experiments, with 
one-sided post hoc t-tests (conservative > liberal) for each of the three latencies. This figure 
shows that – if anything - the criterion effect is in the opposite direction of the effect 
observed in Figure 3B, further confirming that the criterion effects in Figure 3B are due to 
post hoc sorting and not due to general effects of decoding sensitivity in the conservative 
versus the liberal condition. 

Having established the specificity of the post hoc sorting effect, we return our 
attention to the initial post hoc sorting analysis (Figure 3B and Supplementary Table S1). In 
this analysis, we observed a small 2-way interaction between visibility and criterion as well 
as a highly significant 3-way interaction between experiment, criterion, and visibility as noted 
above (F1,40=18.47, p<10-3, η²p=0.32), also see Supplementary Table S1. This would suggest 
that Experiment 1 and Experiment 2 contain different post hoc sorting criterion effects on the 
‘seen’ and the ‘unseen’ condition. To investigate this further, we performed separate 
ANOVAs for Experiment 1 (Figure 4A) and Experiment 2 (figure 4B).  

For Experiment 1, we performed a 2 (visibility) x 2 (criterion) x 3 (latency) repeated 
measures ANOVA (see Supplementary Table S3 for the full ANOVA). This analysis again 
shows strong main effects of visibility (F1,15=81.38, p<10-6, η²p=0.84), criterion (F1,15=13.89, 
p<0.01, η²p=0.48), and latency (F2,30=37.13, p<10-8, η²p=0.71), but more importantly, it also 
shows that criterion strongly interacts with visibility in Experiment 1 (F1,15=11.06, p<0.01, 
η²p=0.42). One-sided t-tests for simple effects (conservative > liberal) revealed that the 
criterion effects were only significant in the ‘unseen’ condition (Figure 4A, left panel), but 
not in the ‘seen’ condition (Figure 4A, right panel), and - as established before – that these 
effects only appear in the late 266 ms / 430 ms latencies as opposed to the early 137 ms 
latency. 
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Figure 4. Differential effects on classification performance of post hoc sorting on either ‘seen’ or ‘unseen’ 
conditions. (A) Classification performance in Experiment 1 for the liberal and conservative condition, separately 
for ‘unseen’ trials (left panel) and for ‘seen’ trials (right panel). (B) Same as in A, but now for Experiment 2. 
(C-D). Simulations showing the effect of criterion shifts under low sensitivity or high sensitivity when the 
threshold is the same in C and D. When overall sensitivity is low (C), the effect of criterion shifts is more likely 
to appear in the ‘seen’ condition, whereas when sensitivity is high (D), the effect of criterion shifts is more 
likely to appear in the ‘unseen’ condition. (E-F) The effect of criterion shifts under an overall conservative or an 
overall liberal criterion when sensitivity is the same. When the overall criterion is conservative (E), the effect of 
criterion shifts is more likely to appear in the ‘seen’ condition, whereas when the overall criterion is liberal (F), 
the effect of criterion shifts is more likely to appear in the ‘unseen’ condition. 
 

To investigate the interaction between visibility and criterion in Experiment 2, we 
performed the same analysis in a 4 (visibility) x 2 (criterion) x 3 (latency) repeated measures 
ANOVA, this time maintaining the four PAS responses as separate levels in the factor 
visibility (see Supplementary Table S4 for the full ANOVA). Again, this analysis confirmed 
strong main effects of visibility (F2.37,59.22=67.29, p<10-16, η²p=0.73), criterion (F1,25=10.10, 
p=0.004, η²p=0.29), and latency (F1.89,47.28=13.26, p<10-4, η²p=0.35), as observed in Experiment 
1. Moreover, this experiment-specific ANOVA confirms that here too, criterion interacts with 
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visibility (F2.29,41.37=2.86, p=0.06, η²p=0.10). However, the direction of the interaction is very 
different from Experiment 1. Post hoc t-tests for simple effects (conservative > liberal) 
revealed that in Experiment 2, the criterion effects were predominantly in the ‘seen’ 
conditions of the PAS (PAS1, PAS2 and PAS3, see Figure 4B, 2nd, 3rd and 4th panel), but not 
in the ‘unseen’ condition (PAS0, see Figure 4B, leftmost panel), whereas Experiment 1 
showed a significant effect in ‘unseen’ but not in ‘seen’ (and again only at late 266 ms and/or 
430 ms latencies). These differential effects of the criterion on ‘seen’ and ‘unseen’ across 
experiments explains the highly significant three-way interaction between criterion, 
experiment, and visibility in the initial ANOVA in which Experiment was incorporated as a 
factor. 

Together, these results confirm clear criterion-effects in both Experiment 1 and 
Experiment 2 due to post hoc sorting, as was predicted from our initial simulations. However, 
comparing Experiment 1 and Experiment 2 also shows that these criterion effects are most 
prominent in the ‘unseen’ condition for Experiment 1, while being most prominent for the 
‘seen’ conditions (PAS1, PAS2 and PAS3) in Experiment 2. Wondering why this might be, 
we went back to our simulations to determine what parameters influence whether a criterion 
shift is expressed more strongly in ‘unseen’ or in ‘seen’ conditions. To determine this, we 
separately manipulated two main parameters in our model: sensitivity (the distance between 
the noise and the signal distribution) and overall criterion (whether the conservative and 
liberal criterion are either on the left or on the right side of the signal distribution).  

Figure 4C-F show the result of these simulations. First, we manipulated the degree of 
sensitivity (Figure 4C-D), while keeping the response thresholds for responding ‘seen’ or 
‘unseen’ the same. When sensitivity is low (Figure 4C, left panels), a small criterion shift is 
more likely to have a large effect on the neural measure in the ‘seen’ condition after post hoc 
sorting (Figure 4C, right panel). Conversely, when sensitivity is high (Figure 4D, left panels) 
the same criterion shift is more likely to have a large effect on the ‘unseen’ condition (Figure 
4D, right panel). These simulations show that under identical signal detection thresholds, a 
change in sensitivity (for example when showing higher strength stimuli, or when an observer 
is more attentive), can have a large differential impact on the neural measures in ‘seen’ and 
‘unseen’ conditions, making their interpretation intrinsically problematic.  

In a second simulation, we looked at the effect of overall criterion shifts (Figure 4E 
and 4F), while keeping sensitivity the same. When the overall criterion is conservative 
(Figure 4E, left panels), a small criterion shift might have a large effect on the neural measure 
in the ‘seen’ condition after post hoc sorting (Figure 4E, right panel), whereas when the 
overall criterion is liberal (Figure 4F, left panels) the same criterion shift can have a large 
effect in the ‘unseen’ condition (Figure 4F, right panel). This shows that small criterion shifts 
can have a differential impact on the effect size in neural measures of ‘seen’ and ‘unseen’ 
stimuli, even when sensitivity stays the same, depending on whether the overall criterion is 
liberal or conservative, again making the interpretation of such effects problematic.  

Thus, criterion shifts can differentially confound neural measures of conscious or 
unconscious processing, depending both on overall criterion and sensitivity. The direction of 
this influence can be counterintuitive, is difficult to predict, and cannot be controlled 
experimentally. Interestingly, Experiment 1 has a much higher sensitivity than Experiment 2 
(both in terms of classification accuracy and in terms of behavioral sensitivity, as pointed out 
before). This provides a compelling explanation for our finding that experiment 1 (detection) 
shows the largest effect of the criterion shift in the unseen condition, whereas for experiment 
2 (PAS) the largest effect was observed in the PAS1 condition and up, which is nicely in line 
with the predictions from our simulation in Figure 4C-D. Importantly, these factors either 
cannot be controlled in principle (criterion) and/or are not controlled in practice (sensitivity), 
which questions the construct validity of subjective measures under post hoc sorting. In the 
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discussion, we consider what these results mean for the future of subjective measures in 
consciousness research. 
 
Discussion 
In this manuscript, we have shown through simulation that post hoc sorting on ‘seen’ and 
‘unseen’ responses causes neural effect sizes in ‘seen’ and ‘unseen’ conditions to become 
stronger under a conservative compared to a liberal response criterion. To test this claim 
empirically, we analyzed data from two experiments in which criterion shifts were induced 
experimentally (one using a simple detection task, one using the PAS). We found that in both 
experiments, criterion shifts modulated effect size in neural measures of ‘unconscious’ 
(unseen) and/or ‘conscious’ (seen) processing, and that this happens even though the 
conservative and liberal condition used the same independent training data (identical 
classifiers), and even though the trial counts in the test sets were equated for the conservative 
and liberal condition. Finally, we showed through simulation that such criterion shifts can 
either predominantly impact the neural measure of ‘unconscious’ or of ‘conscious’ 
processing (or both), depending on the sensitivity of observers and how they place their 
criterion based on the experimental context.  

Together, these data show that criterion shifts confound neural measures of conscious 
and unconscious processing under post hoc sorting. Such confounds potentially contaminate 
studies of unconscious cognition (King et al., 2016; Soto et al., 2011) as well as studies that 
apply post hoc sorting to reveal neural measures of consciousness through a contrastive 
approach (Boxtel et al., 2010; Hesselmann et al., 2011; Hesselmann and Malach, 2011; 
Levinson et al., 2021; Melloni et al., 2011; Ress and Heeger, 2003; Rolke et al., 2001; Salti et 
al., 2015; Sanchez et al., 2020; Sergent et al., 2005; Stein et al., 2021; Vugt et al., 2018; 
Wyart and Tallon-Baudry, 2008). Concretely, the contrast “seen>unseen”, used in 
neuroimaging studies to isolate the neural basis of consciousness, can either result in strong 
or in weak differences between conditions, depending on the response criterion that was 
adopted by the observers.  

Unfortunately, arbitrary criterion placement is intrinsic to decision making, and is 
known to be affected by many factors that are not controlled between, or even within 
experiments. Context is known to have a large effect on how observers place their criterion. 
For example, the ratio of targets to non-targets (the base-rate), the strength of the target 
stimulus compared to noise (the signal-to-noise ratio), the utility of certain stimulus-response 
combinations (the payoff matrix), and even small changes in task instructions are all known 
to affect the response criterion (Fleming et al., 2010b; Kloosterman et al., 2019; Rakhshan et 
al., 2018; Supèr et al., 2001; White and Poldrack, 2014). So even if some criterion shifts may 
have a perceptual origin (Meyerhoff and Scholl, 2018; Witt et al., 2015), the omnipresence of 
arbitrary criterion placement due to non-perceptual influences (Sánchez-Fuenzalida et al., 
2023b, 2023a) threatens the construct validity of subjective measures in consciousness 
research.  

Relatedly, criterion shifts also threaten the construct validity of the PAS. Experiment 
2 shows that all levels of the PAS are sensitive to the criterion manipulation, even when 
explicitly instructing participants to only respond according to their experience. This finding 
is in line with evidence showing similar effects on related subjective measures, such as 
confidence judgements. For example, both payoff and base-rate induced criterion shifts not 
only result in a bias on first order decisions, but also affect how second order confidence 
judgements are distributed (Lebreton et al., 2019, 2018; Locke et al., 2020), also see (Peters 
et al., 2017). Indeed, recent experiments from our lab have confirmed that payoff and 
base-rate induced criterion shifts affect confidence scores even when perceptual experience is 
not affected (Sánchez-Fuenzalida et al., 2023b).  
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Some may argue that the usage of the PAS in a context in which criterion shifts are 
experimentally induced is not the spirit in which the PAS was devised. One might even claim 
that experiment 2 does not make use of the PAS because the criterion was explicitly 
manipulated in this study, and that one should always take care to extensively calibrate the 
PAS to subjective content in every experimental context (Sandberg and Overgaard, 2015). 
However, proper instruction does not resolve this issue. Any context – experimentally 
induced or not - influences the criterion in some way, and if there is no way to enforce that 
the adopted criterion is an unwavering threshold on subjective experience (and nothing else), 
any subjective measure is potentially prone to confounds of a non-experiental nature. Without 
resolving this, any experiment remains open to the critique that the participants in the study 
may not have adopted the subjective scale as it was intended, for whatever reason.  

Indeed, critics of the current experiment would voice exactly this concern: that the 
participants did not adopt the PAS as it was intended due to wrong instruction and/or due to 
the experimental context. In particular, Sandberg and Overgaard have noted (personal 
communication) that one of the instructions we used (the sentence “Only press 0 if you are 
100% convinced that no square appeared and only press 3 if you are 100% convinced that a 
square appeared") as well as the use of feedback/payoff differs from the way PAS has been 
used in other studies (Sandberg and Overgaard, 2015). Future research would need to show 
whether removing these manipulations would (partially) mitigate the criterion effects on the 
PAS that we found in Experiment 2. Nevertheless, criterion shifts are well-known to also 
occur without these manipulations and occur naturally across experiments that have different 
ratios of target to non-targets, different overall levels of visibility and so forth. 

As such, the current experiment can be viewed as a caricature of actual experimental 
practice. For example, depending on how ‘calibration to subjective content’ is done and the 
experimental context that is generated, some may show that blindsight does not exist (Mazzi 
et al., 2016; Overgaard et al., 2008), while others may use the same subjective scale to show 
that unconscious working memory does exist (King et al., 2016; Soto et al., 2011). Plausibly, 
such patterns of results can be reversed when authors would adopt different calibration 
procedures or invoke different experimental contexts in their experiments, without an 
objective way of maintaining or quantifying the construct validity of the adopted subjective 
scale. Importantly, there is no such thing as a criterion-free experimental context. As pointed 
out in the beginning of this discussion and in our simulations, many dimensions that are not 
controlled between experiments, will have a large effect on the criterion even without 
manipulating it explicitly/experimentally. 

Thus, researchers studying consciousness are faced with a difficult conundrum. On 
the one hand, many view subjective measures as a crucial behavioral marker of the presence 
or absence of consciousness (Baars, 1994; Dehaene, 2014; Overgaard et al., 2010). On the 
other hand, subjective measures do not reliably measure the construct they intend to measure 
due to criterion confounds. A potential way out of this conundrum has been a proposal by 
Peters & Lau (2015). They combined an objective, first order judgment with a criterion-free 
subjective measure by having participants place bets (as proxy for subjective reports) on their 
objective judgment. Trials consisted of two intervals, only one of them containing a grating 
target, and subjects were asked to guess grating orientation for both intervals and place a bet 
on which of these two judgements is deemed as more likely to be correct. They argued that 
above-chance objective performance in the absence of subjective insight measured in this 
criterion-free way would reflect unconscious perception. One may debate however whether 
this would save the intended nature of subjective measures, as the bet that participants are 
forced to place on one of the two intervals seems equivalent to an objective two-interval 
forced choice task. Without making any final judgement on this matter, we point out that 
saving the construct validity of subjective measures requires one to solve the criterion 
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problem (Morgan et al., 2013). Without a properly experimentally defined procedure for 
doing so, their construct validity will remain under threat. 

Summarizing, aside from the effect of the criterion on behavioral responses 
themselves, we show both empirically and in simulation that post hoc trial sorting of neural 
data on subjective measures can have unintuitive consequences depending on the 
experimental context (i.e. depending on the criterion that participants adopt). Experimental 
contexts that induce conservative behavioral responses on subjective measures will 
overestimate estimates neural correlates of both ‘unconscious’ (unseen) and ‘conscious’ 
(seen) conditions, whereas experimental contexts that induce liberal behavioral responding do 
the reverse. As such, criterion placement threatens the construct validity of neural measures 
of consciousness. 
 
Methods 
 
Simulations 
For all simulations, we simulated experiments in Matlab by generating 10,000 normally 
distributed noise and noise+signal trials using different parameters for the distance between 
the two distributions as the sensitivity of the system and the criterion that was applied under 
any given simulation (see OSF https://doi.org/10.17605/OSF.IO/AP23W for all Matlab code 
and parameter settings). Decoder classification performance was approximated by 
conceptualizing the difference d between the average signal strength of signal trials and noise 
trials after post hoc sorting on criterion as a measure of decoder sensitivity under post hoc 
sorting (ranging from 0 to ∞). This value was converted to AUC classification performance 

(ranging from 0.5 to 1), using the formula ��� �  Φ
��

√�
, in which � is the normal cumulative 

distribution function. The equivalent Matlab code is AUCsorted = normcdf(dsorted/√2), for the 
relevant conversion formula from d to AUC see (Ruscio, 2008). 
 
Participants and payment 
All participants had normal or corrected-to-normal vision and were recruited at the University 
of Amsterdam (UvA) in partial fulfillment of first year psychology curricular requirements or 
for monetary reimbursement (€10 per hour). Participants signed a written informed consent 
form before the start of the experiment. All procedures were approved by the ethics 
committee of the University of Amsterdam. 
Experiment 1. Sixteen participants (eight females, mean age 24.1 years, SD 1.64, all 
right-handed) completed three experimental EEG sessions on different days, each session 
lasting ca. 2 hours. At the beginning of the experiment, participants were informed they could 
earn a total bonus of €30, on top of their regular pay of €10 per hour or course credit. After 
completing the last session of the experiment, every participant was paid the full bonus as 
required by the ethical committee. 
Experiment 2. Thirty-four participants completed three experimental sessions: one 
behavioral training session lasting approximately 45 minutes and two experimental EEG 
session lasting 2.5 hours each. The EEG data from twenty-six participants was analyzed (14 
female, mean age 23.1 years, SD 3.19, 22 right-handed). Four participants were excluded 
from analysis due having extremely low trial counts on one or more cells after post hoc 
sorting on the four response levels of the PAS (<5 trials). Four participants were excluded 
due to equipment failure and/or human error during data collection resulting in corrupted 
data. Participants had the opportunity to earn an extra €5 in each EEG session, based on the 
variable payoff scheme described below. All participants were naïve to the purpose of the 
study. 
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Experimental setup and presentation software 
Participants completed the experiment in a low-lit, quiet room. Stimuli were shown on a 
computer monitor, with a refresh rate of 100Hz. The experiment was created on 
Presentation® software (Neurobehavioral Systems, Inc., Berkeley, CA, www.neurobs.com). 
Experiment 1: Participants were seated approximately 70 cm away from the monitor. 
Experiment 2: Participants rested their heads on a chin rest 73 cm away from the monitor. 
 
Stimuli and RSVP 
Stimuli consisted of a continuous semi-random rapid serial visual presentation (RSVP) of full 
screen texture patterns (see Figure 2). The texture patterns consisted of line elements 
approximately 0.07° thick and 0.4° long in visual angle. Each texture in the RSVP was 
oriented in one of four possible directions: 0° [vertical], 45°, 90° or 135°. After a random 
inter-trial interval containing randomly ordered textures, a fixed order sequence containing 25 
textures began. The fifth stimulus of the sequence either contained a texture-defined figure 
(target, T) or a homogenous texture (nontarget, NT). The fixed sequence contained the 
following orientations: 45°, 90°, 0°, 90°, T/NT, 0°, 90°, 0°, 90°, 0°, 45°, 0°, 135°, 90°, 45°, 
0°, 135°, 0°, 45°, 90°, 45°, 90°, 135°, 0°, 135°. This fixed sequence ensured that the visual 
stimulation surrounding the target was always the same across trials. The nontarget was a 
homogeneous diagonally oriented texture (45° or 135°). The target was the same texture but 
contained an orientation-defined square in the center, of which the surface elements were 
orthogonally rotated with respect to the background. Orientation of targets and nontargets 
was randomly selected, while ensuring that each orientation was used in 50% of trials. The 
visual angle of the target square was approximately 2.4°. In 75% of trials, a target figure was 
shown, and in 25% no figure was shown. 
Experiment 1. Target stimuli were presented for 40 ms (i.e. stimulation frequency 25 Hz). 
The intertrial interval (ITI) varied randomly between 300 and 2200 ms. The fixation dot was 
red throughout the experiment. 
Experiment 2. Target stimuli were presented for 30 ms (i.e. stimulation frequency of 33.3 
Hz). The ITI varied randomly between 1800 and 2200 ms. The onset of the fixed sequence 
containing a target or a nontarget was signaled by the central fixation dot turning from grey to 
black. The fixation dot was black during the fixed sequence. After the fixed sequence, the 
fixation dot changed to green, which indicated that participants could respond.  
 
Task instructions and payoff induced criterion manipulation 
Participants were instructed to detect a target in an RSVP stream by pressing a button, while 
their criterion was manipulated.  
Experiment 1. Participants were instructed to press a button using their right hand whenever 
they observed a target in the continuous RSVP. Although the onset of a trial within the 
continuous stream of textures was not explicitly cued, the similar distribution of reaction 
times in target and nontarget trials suggests that participants used the temporal structure of 
the task even when no target appeared. See Kloosterman et al. (2019) for details. In 
alternating nine-minute blocks of trials, we actively biased participants’ perceptual decisions 
by instructing them either to report as many targets as possible while playing an aversive tone 
after each miss (no button press after presentation of a target, liberal condition), or by 
instructing them to only report high-certainty targets while playing an aversive tone after 
each false alarm (button press even when no target was presented, conservative condition). 
Participants were told their bonus would be diminished by €0.03 after a miss and diminished 
by €0.10 after a false alarm. Participants were free to respond at any time during a block 
whenever they detected a target. A trial was considered a target present response when a 
button press occurred before the fixed-order sequence ended (i.e. within 0.84 s after onset of 
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the fifth texture containing the (non)target, see Figure 2). The criterion manipulation switched 
back and forth after every block, so that each session contained both conservative and liberal 
criterion blocks. 
Experiment 2. Participants were instructed to determine whether they observed a target in 
the continuous RSVP using the Perceptual Awareness Scale (PAS; Ramsoy & Overgaard, 
2004). The PAS is a four-point scale, on which participants rate the strength of their 
experience of a stimulus from 0 to 3.  
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The following instructions regarding the PAS were given to participants: 
Response category Description 
0 - No experience No impression of a square. 
1 - Brief glimpse A feeling that a square was shown.  
2 - Almost clear experience Ambiguous experience of a square. A feeling of being  

almost certain about seeing a square. 
3 - Clear experience Non-ambiguous experience of the square. No doubt in 

one's answer. 
Between blocks, participants were reminded of the description of each response option of the 
PAS. Participants received additional on-screen feedback if they used one response option for 
less than 10% of responses in the previous block: “You are not using all the possible 
responses on the scale. If this reflects your experience, that is absolutely fine. Otherwise, here 
are the categories again:”, followed by the PAS descriptions. This was to ensure participants 
were always aware of using the scale in full, rather than settling into a pattern of choosing 
between two responses, for example. Participants were further explicitly instructed to respond 
only according to what they experienced, regardless of the feedback they received during the 
experiment: 
“Even though you receive feedback about the correctness of your responses, it is very 
important that you keep responding according to what you actually experience, using the 
Perceptual Awareness Scale. Only press 0 if you are 100% convinced that no square 
appeared and only press 3 if you are 100% convinced that a square appeared.” 
Participants were instructed to respond when the fixation dot changed from grey to green, 
which occurred at the end of the fixed RSVP sequence. Responses given while the fixation 
date was not green were not recorded. Participants responded using the index finger of their 
preferred hand, by pressing keys labelled ‘0’, ‘1’, ‘2’ or ‘3’, corresponding to the responses 
possible on the PAS. As soon as a response was given, the fixation dot changed to grey and 
the button pressed was displayed in the center of the screen for 60ms, on top of a stream of 
textures with a grey fixation dot, so participants could ensure they had pressed the correct key 
(or, alternatively, correct their finger position for the following trial). An auditory feedback 
tone was given for either false alarms (conservative condition, responding ‘1’, ‘2’ or ‘3’ when 
no target was present) or misses (liberal condition, responding ‘0’ when a target was present). 
In addition, for every tone, €0.01 was deducted from their €5 reward for that session. The 
criterion manipulation occurred at a session level, so that one feedback scheme was 
exclusively executed in on session, and the other in the other session. The order of sessions 
was counterbalanced across participants. There was no break in the stream of textures 
throughout a block of 144 trials, unless no response was given within the 5s limit. In this 
case, participants were shown a screen reading “Please respond every time the fixation dot is 
green about what you just experienced.”, then given a 5s countdown before the stream of 
textures resumed. Throughout the block, the same texture was never repeated twice in a row. 
No performance feedback was provided at the end of a block. Participants were informed of 
how much of the extra reward they earned in each session at the end of all sessions.  
 
 
 
EEG sessions 
Experiment 1.  
Prior to EEG recording in the first session, participants performed a 10-minute practice run of 
both conditions, in which visual feedback directly after a miss (liberal condition) or false 
alarm (conservative) informed participants about their mistake, allowing them to adjust their 
decision bias accordingly. During EEG recording, participants performed six blocks per 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 11, 2025. ; https://doi.org/10.1101/2024.02.22.581517doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.22.581517
http://creativecommons.org/licenses/by/4.0/


 20

session lasting ca. nine minutes each. During a block, participants continuously monitored the 
screen and were free to respond by button press whenever they thought they saw a target. 
Each block contained 240 trials, of which 180 target and 60 nontarget trials. The condition of 
the first block of a session was counterbalanced across participants. There were short breaks 
between blocks, in which participants indicated when they were ready to begin the next 
block. 
Experiment 2. Prior to collecting EEG, each subject underwent a practice session. The 
practice session started with a slower version of the task, so participants could familiarize 
themselves with the structure of the trials, and clearly identify the target, and in which they 
were familiarized with the PAS scale. Only participants that were able to perform the task 
with a reasonable accuracy of 30% (hit rate minus false alarm rate) were invited for the 
subsequent EEG sessions. EEG was collected in two different experimental sessions. A 
session contained ten blocks of either the liberal or conservative condition (counter-balanced 
across participants). Each block contained 144 trials (108 target trials, 36 non-target trials), 
and lasted approximately 9 minutes. 
 
EEG Recording.  
Continuous EEG data were recorded at 512HZ using a 64-channel BioSemi Active-Two 
system (BioSemi, Amsterdam, The Netherlands). Two external electrodes were placed on the 
earlobes, to be used as a reference. Electrooculargraphy (EOG) was recorded using four 
electrodes: on the outer side of each eye (horizontal) and above and below the left eye 
(vertical). Horizontal and vertical EOG electrodes were referenced against each other, to 
obtain information about horizontal eye movements, and vertical eye movements and blinks, 
respectively. Triggers were sent at the time of response and target presentation, recording the 
orientation and type of trial (target or catch). 
Experiment 1. EEG was recorded from a 48-electrode EEG cap that was slightly modified to 
include I1 and I2 next to Iz. Other electrodes were placed according to the 10-20 system. The 
complete list of electrodes was AF3, AF4, C3, C4, CP1, CP2, CP3, CP4, CP5, CP6, Cz, F3, 
F4, F7, F8, FC1, FC2, FC5, FC6, Fp1, Fp2, Fz, I1, I2, Iz, O1, O2, Oz, P1, P10, P2, P3, P4, 
P5, P6, P7, P8, P9, PO3, PO4, PO7, PO8, POz, Pz, T7, T8, TP7, TP8. 
Experiment 2. EEG was recorded from a standard 64-electrode EEG cap, according to the 
10-20 system. The complete list of electrodes was AF3, AF4, AF7, AF8, AFz, C1, C2, C3, 
C4, C5, C6, CP1, CP2, CP3, CP4, CP5, CP6, CPz, Cz, F1, F2, F3, F4, F5, F6, F7, F8, FC1, 
FC2, FC3, FC4, FC5, FC6, FCz, FT7, FT8, Fp1, Fp2, Fpz, Fz, Iz, O1, O2, Oz, P1, P10, P2, 
P3, P4, P5, P6, P7, P8, P9, PO3, PO4, PO7, PO8, POz, Pz, T7, T8, TP7, TP8. 
 
EEG Pre-processing.  
The EEG data from Experiment 1 was pre-processed as described in detail in Kloosterman et 
al. (2019), with the only exception that for these analyses no detrending was applied to the 
data. The data from Experiment 2 was pre-processed using a very similar pre-processing 
pipeline, as described next. All pre-processing and subsequent analyses were conducted using 
EEGLAB (Delorme and Makeig, 2004), FieldTrip (Oostenveld et al., 2011) and/or the 
ADAM toolbox (Fahrenfort et al., 2018) using MATLAB code. All data were referenced to 
the average voltage of two electrodes attached to the earlobes. Channel locations were looked 
up according to the standard 10-5 BESA cap. Data were downsampled to 256Hz to reduce 
time and space required for further pre-processing and analysis. The continuous EEG data 
were epoched between 100 ms before target presentation and 750 ms after target presentation. 
An Independent Component Analysis (ICA) was used on epoched and demeaned data to 
identify and remove eye-blinks. Finally, the data were transformed to Scalp Current Density 
(CSD) using spherical splines (Perrin et al., 1989), after which the data were 
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baseline-corrected using the interval (-100, 0) ms prior to decoding. No high-pass or low-pass 
filtering was applied to the data to preclude temporal displacements (Driel et al., 2021; 
VanRullen, 2011). 
 
EEG decoding analyses 
Trials were balanced such that the number of trials within each stimulus-response 
combination were always the same between the liberal and the conservative condition. To 
achieve this, trials were randomly selected from the stimulus-response condition with the 
overrepresented stimulus class to match the condition with fewer responses in number. This 
was done to ensure that differences between the liberal and conservative conditions could not 
arise just because more trials were included in one condition than in the other. 

EEG data were analyzed using the ADAM toolbox (Fahrenfort et al., 2018), a 
MATLAB toolbox for multivariate pattern analysis of EEG data. The train-test procedure 
used to classify EEG data was a leave-one-person-out cross validated decoding scheme. In 
this procedure, all sessions from each participant were merged, and electrodes were used as 
features to train an LDA classifier to discriminate between targets (figures) and no-targets 
(homogenous textures) for every sample in the epoch (-100, 750) ms.  

Next, these classifiers were used to test the data sets from all participants, except the 
one that the classifier had been trained on. This procedure was repeated until all classifiers 
had tested all data sets, except data from the same participant. For Experiment 1 (N=16), this 
resulted in 16*15=240 classifier performance sets, and for Experiment 2 (N=26), this resulted 
in 26*25=650 classifier performance sets. Classifier performance sets that were tested on the 
same person were subsequently averaged, returning to 16 classifier performance sets for 
Experiment 1, and 26 classifier performance sets for Experiment 2, which were used for 
subsequent group level statistics. A graphical depiction of this leave-one-person-out cross 
validation procedure is shown in supplementary Figure S2. The procedure ensured that train 
and test sets were fully independent, while maximizing the available training data to evaluate 
test data, as well as maximizing the generalizability of the results within the tested 
population. The accuracy measure to establish classifier performance was Area Under the 
Curve (AUC). Classifiers were trained and tested using the occipitoparietal electrodes in both 
datasets: Iz, O1, O2, Oz, P1, P10, P2, P3, P4, P5, P6, P7, P8, P9, PO10, PO3, PO4, PO7, 
PO8, PO9, POz, Pz. Group level ANOVAs on classifier performance scores were performed 
in JASP (Team, 2023). 
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Data and code availability 
All data and analysis code is available from OSF in a repository with DOI: 
10.17605/OSF.IO/AP23W (link: https://doi.org/10.17605/OSF.IO/AP23W) 
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Supplementary Table S1. Repeated Measures ANOVA after post hoc sorting). In cases 
where Mauchly’s test of sphericity was violated, the Greenhouse-Geisser corrected values are 
provided below it on the second row. 
 
Within Subjects Effects  

Cases 
Sum of 
Squares 

df Mean 
Square 

F p η²p 

Criterion 0.025 
 

1.000 
 

0.025 
 

20.984 
 

4.455×10-5 
 
0.344 

Criterion � experiment 0.002 
 

1.000 
 

0.002 
 

1.376 
 

0.248 
 
0.033 

Residuals 0.047 
 

40.000 
 

0.001 
      

Latencies 0.213 
 

2.000 
 

0.106 
 

33.719 
 
2.395×10-11 

 
0.457 

  0.213 
 

1.787 
 

0.119 
 

33.719 
 
2.222×10-10 

 
0.457 

Latencies � experiment 0.171 
 

2.000 
 

0.085 
 

27.093 
 

1.036×10-9 
 
0.404 

  0.171  1.787  0.096  27.093  6.518×10-9  0.404 
Residuals 0.252 

 
80.000 

 
0.003 

      
  0.252 

 
71.493 

 
0.004 

      
Visibility 0.405 

 
1.000 

 
0.405 

 
204.012 

 
2.679×10-17 

 
0.836 

Visibility � experiment 0.073  1.000  0.073  36.888  3.725×10-7  0.480 

Residuals 0.079 
 

40.000 
 

0.002 
      

Criterion � Latencies 0.009 � 2.000 � 0.004 � 4.442 � 0.015 � 0.100 

  0.009 
 

1.745 
 

0.005 
 

4.442 
 

0.019 
 
0.100 

Criterion � Latencies � experiment 0.002 � 2.000 � 8.407×10-4 � 0.842 � 0.435 � 0.021 
  0.002 

 
1.745 

 
9.635×10-4 

 
0.842 

 
0.421 

 
0.021 

Residuals 0.080  80.000  9.990×10-4       
  0.080 

 
69.802 

 
0.001 

      
Visibility � Criterion 0.003 

 
1.000 

 
0.003 

 
5.360 

 
0.026 

 
0.118 

Visibility � Criterion � experiment 0.009 
 

1.000 
 

0.009 
 

18.473 
 

1.073×10-4 
 
0.316 

Residuals 0.080 
 

80.000 
 

9.990×10-4 
      

  0.080 
 

69.802 
 

0.001 
      

Visibility � Latencies 0.194 
 

2.000 
 

0.097 
 

71.794 
 
1.398×10-18 

 
0.642 

  0.194 
 

1.829 
 

0.106 
 

71.794 
 
3.372×10-17 

 
0.642 

Visibility � Latencies � experiment 0.060 
 

2.000 
 

0.030 
 

22.009 
 

2.422×10-8 
 
0.355 

  0.060 
 

1.829 
 

0.033 
 

22.009 
 

8.186×10-8 
 
0.355 

Residuals 0.080 
 

80.000 
 

9.990×10-4 
      

  0.080 
 

69.802 
 

0.001 
      

Visibility � Criterion � Latencies 0.003 
 

2.000 
 

0.001 
 

2.561 
 

0.084 
 
0.060 

  0.003 
 

1.879 
 

0.001 
 

2.561 
 

0.087 
 
0.060 

Visibility � Criterion � Latencies � 
experiment 

0.006 
 

2.000 
 

0.003 
 

5.897 
 

0.004 
 
0.128 

  0.006 
 

1.879 
 

0.003 
 

5.897 
 

0.005 
 
0.128 

Residuals 0.080 
 

80.000 
 

9.990×10-4 
      

  0.080 
 

69.802 
 

0.001 
      

Note.  Sphericity corrections not available for factors with 2 levels. 
Note.  Type III Sum of Squares 
� Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p<.05). 
 
Between Subjects Effects  

Cases Sum of Squares df Mean Square F p η²p  
experiment 

 
0.233 

 
1 

 
0.233 

 
38.680 

 
2.324×10-7 

 
0.492 

 
Residuals 

 
0.240 

 
40 

 
0.006 

       
Note.  Type III Sum of Squares 
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Supplementary Table S2. Repeated Measures ANOVA control (no post hoc sorting). In 
cases where Mauchly’s test of sphericity was violated, the Greenhouse-Geisser corrected 
values are provided below it on the second row. 
 
Within Subjects Effects  

Cases Sum of 
Squares df Mean Square F p η²p  

Latencies 0.230 � 2.000 � 0.115 � 49.953 � 8.350×10-15 � 0.555 
  0.230  1.699  0.135  49.953  6.320×10-13  0.555 
Latencies � experiment 0.166 � 2.000 � 0.083 � 36.036 � 6.945×10-12 � 0.474 

  0.166  1.699  0.098  36.036  1.953×10-10  0.474 
Residuals 0.184  80.000  0.002       
  0.184  67.954  0.003       
Criterion 2.869×10-4  1.000  2.869×10-4  1.164  0.287  0.028 

Criterion � experiment 3.225×10-4  1.000  3.225×10-4  1.309  0.259  0.032 

Residuals 0.010  40.000  2.465×10-4       

Note.  Sphericity corrections not available for factors with 2 levels. 
Note.  Type III Sum of Squares 
� Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p<.05). 
  
Between Subjects Effects  

Cases Sum of Squares df Mean Square F p η²p  
experiment 

 
0.212 

 
1 

 
0.212 

 
28.446 

 
4.070×10-6 

 
0.416 

 
Residuals 

 
0.297 

 
40 

 
0.007 

       
 Note.  Type III Sum of Squares 
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Supplementary Table S3. Repeated Measures ANOVA for experiment 1 (detection), after 
post hoc sorting. There were no violations of Mauchly’s test of sphericity. 
 
Within Subjects Effects  

Cases Sum of Squares df Mean Square F p η²p  
Criterion 

 
0.016 

 
1 

 
0.016 

 
13.890 

 
0.002 

 
0.481 

Residuals 
 

0.017 
 
15 

 
0.001 

      
Latencies 

 
0.289 

 
2 

 
0.144 

 
37.129 

 
7.677×10-9 

 
0.712 

Residuals 
 

0.117 
 
30 

 
0.004 

      
Visibility 

 
0.332 

 
1 

 
0.332 

 
81.376 

 
1.904×10-7 

 
0.844 

Residuals  0.061  15  0.004       
Criterion � Latencies  

0.007 
 

2 
 

0.004 
 

3.477 
 

0.044 
 
0.188 

Residuals 
 

0.032 
 
30 

 
0.001 

      
Visibility � Criterion 

 
0.008 

 
1 

 
0.008 

 
11.056 

 
0.005 

 
0.424 

Residuals 
 

0.032 
 
30 

 
0.001 

      
Visibility � Latencies  

0.175 
 

2 
 

0.088 
 

30.405 
 

6.093×10-8 
 
0.670 

Residuals 
 

0.032 
 
30 

 
0.001 

      
Visibility � Criterion � Latencies  

0.007 
 

2 
 

0.003 
 

3.842 
 

0.033 
 
0.204 

Residuals 
 

0.032 
 
30 

 
0.001 

      
Note.  Type III Sum of Squares 
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Supplementary Table S4. Repeated Measures ANOVA for experiment 2 (PAS), after post 
hoc sorting. In cases where Mauchly’s test of sphericity was violated, the 
Greenhouse-Geisser corrected values are provided below it on the second row. 
 
Within Subjects Effects 

Cases Sum of Squares df Mean Square F p η²p  
Criterion 0.025 

 
1.000 

 
0.025 

 
10.102 

 
0.004 

 
0.288 

Residuals 0.062 
 

25.000 
 

0.002 
      

Latencies 0.162 
 

2.000 
 

0.081 
 

13.256 
 

2.404×10-5 
 

0.347 
  0.162 

 
1.891 

 
0.085 

 
13.256 

 
3.679×10-5 

 
0.347 

Residuals 0.305 
 

50.000 
 

0.006 
      

  0.305 
 

47.277 
 

0.006 
      

Visibility 0.175 � 3.000 � 0.058 � 67.287 � 3.216×10-21 � 0.729 
  0.175 

 
2.369 

 
0.074 

 
67.287 

 
3.078×10-17 

 
0.729 

Residuals 0.065 
 

75.000 
 

8.677×10-4 
      

  0.065 
 

59.222 
 

0.001 
      

Criterion � Latencies 0.006 
 

2.000 
 

0.003 
 

1.769 
 

0.181 
 

0.066 
  0.006 

 
1.655 

 
0.004 

 
1.769 

 
0.188 

 
0.066 

Residuals 0.088 
 

50.000 
 

0.002 
      

  0.088 
 

41.371 
 

0.002 
      

Visibility � Criterion 0.004 � 3.000 � 0.001 � 2.863 � 0.042 � 0.103 
  0.004 

 
2.292 

 
0.002 

 
2.863 

 
0.058 

 
0.103 

Residuals 0.088 
 

50.000 
 

0.002 
      

  0.088 
 

41.371 
 

0.002 
      

Visibility � Latencies 0.108 � 6.000 � 0.018 � 26.049 � 4.358×10-21 � 0.510 
  0.108 

 
4.210 

 
0.026 

 
26.049 

 
1.816×10-15 

 
0.510 

Residuals 0.088 
 

50.000 
 

0.002 
      

  0.088 
 

41.371 
 

0.002 
      

Visibility � Criterion � Latencies 0.005 � 6.000 � 7.515×10-4 � 1.055 � 0.392 � 0.040 
  0.005 

 
4.045 

 
0.001 

 
1.055 

 
0.383 

 
0.040 

Residuals 0.088 
 

50.000 
 

0.002 
      

  0.088 
 

41.371 
 

0.002 
      

Note.  Sphericity corrections not available for factors with 2 levels. 
Note.  Type III Sum of Squares 
� Mauchly's test of sphericity indicates that the assumption of sphericity is violated (p<.05). 
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Supplementary Figure S1. Decoding timelines of liberal and conservative with post hoc 
sorting (A) and without post hoc sorting, control analysis (B). 
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Supplementary Figure S2. Graphical depiction of leave-one-person-out cross validation 
scheme. A classifier is always trained on all target versus no-target trials of a given 
participant and tested in a different participant on the various cells of any given experimental 
design. See methods for details. 
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