

1 **CD81⁺ senescent-like fibroblasts exaggerate inflammation and activate**
2 **neutrophils via C3/C3aR1 axis in periodontitis**

3 **Liangliang Fu^{a,1}, Chenghu Yin^{a,1}, Qin Zhao^a, Shuling Guo^a, Wenjun Shao^a, Ting Xia^a, Quan**
4 **Sun^a, Liangwen Chen^a, Jinghan Li^a, Min Wang^{a,*}, Haibin Xia^{a,*},**

5 ^a State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory
6 of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School &
7 Hospital of Stomatology, Wuhan University, Wuhan 430079, China; fuliangliang@whu.edu.cn
8 (L.F.); yinchenghu@whu.edu.cn (C.Y.)

9 ¹ These authors contribute equally to this work.

10 *Corresponding author: Min Wang^{a,*}, Haibin Xia^{a,*},

11 Post address: Department of Oral Implantology, School and Hospital of Stomatology, Wuhan
12 University, 237 Luoyu Road, Wuhan, 430079, Hubei Province, PR China

13 E-mail addresses: xhaibin@whu.edu.cn (H.X.); 83wangmin@whu.edu.cn (M.W.)

14

15 **Declaration of Competing Interest**

16 The authors declare that they have no known competing financial interests or personal
17 relationships that could have appeared to influence the work reported in this paper.

18

19 **Abstract**

20 Periodontitis, a prevalent inflammatory disease worldwide, poses a significant economic burden
21 on society and the country. Previous research has established a connection between cellular
22 senescence and periodontitis. However, the role and mechanism of cell senescence in the
23 progression of periodontitis have not been thoroughly investigated. This study aimed to explore the
24 involvement of cellular senescence in the pathogenesis of periodontitis and determine the
25 underlying mechanisms. Our findings demonstrated that senescent cells accumulated during the
26 progress of periodontitis. Moreover, several scRNA-seq analysis suggested that gingival fibroblasts
27 were the main cell population undergoing cellular senescence during periodontitis, which helps
28 mitigate tissue damage and bone loss. Furthermore, we identified a high expression of CD81 in the
29 senescent gingival fibroblast population. These cells were found to actively contribute to
30 inflammation through their potent pro-inflammatory metabolic activity and secretion of SASP-
31 related factors. Additionally, they recruited neutrophils via the C3/C3aR1 pathway, indirectly
32 sustaining the inflammatory response. Senolytics via Navitoclax successfully alleviated
33 inflammation and bone loss in periodontitis and administration of metformin could alleviate
34 alleviated inflammation and bone loss in periodontitis through inhibiting cellular senescence. These
35 results provide valuable insights into the cellular and molecular basis of periodontitis-induced tissue
36 damage, highlighting the significance of fibroblast senescence. In conclusion, our study sheds light
37 on the relationship between CD81 and cellular senescence, suggesting its potential as a therapeutic
38 target for periodontitis.

39 **Key words:** Cellular senescence; Periodontal diseases, Human gingival fibroblasts; Senescence
40 associated secretory phenotype; CD81

41

42 **1. Introduction**

43 Periodontitis is an inflammatory disease of irreversible progressive tissue damage, alveolar bone
44 loss and destruction of tooth supporting tissues, and is caused by microbial infections that eventually
45 lead to tooth loosening and eventual tooth loss (Wolff, Dahlén, & Aeppli, 1994). Periodontitis affects
46 11.2% of the global population and more than 40% of people over the age of 30, posing a major
47 burden on public health (Eke, Borgnakke, & Genco, 2020; Sanz et al., 2020). Clinical studies have
48 shown that the prevalence and severity of periodontitis increase with age, and moderate loss of
49 alveolar bone and periodontal attachment is common in older adults (Huttner, Machado, de Oliveira,
50 Antunes, & Hebling, 2009).

51 Cell senescence is a stress response characterized by irreversible proliferation arrest, resistance
52 to apoptosis, and secretion of a range of inflammatory cytokines, growth factors, and proteases,
53 known as senescence-associated secretory phenotypes (SASP) (Coppé, Desprez, Krtolica, &
54 Campisi, 2010; Rodier et al., 2009). Cellular senescence is considered necessary for tissue
55 homeostasis as it aims to eliminate unnecessary damage and promote tissue repair through immune-
56 mediated mechanisms, and even prevent the occurrence of tumors (Campisi, 2013; Ohtani & Hara,
57 2013). However, the specific environment of the gingival sulcus leads to persistent plaque in
58 periodontal tissue, resulting in oxidative DNA damage as collateral damage of chronic bacterial
59 infection (Aquino-Martinez et al., 2020). Repeated exposure to lipopolysaccharide (LPS) derived
60 from *Porphyromonas gingivalis* (Pg), a key pathogen of periodontitis, can accelerate cellular
61 senescence driven by DNA damage (Aquino-Martinez et al., 2021). Furthermore, recent evidence
62 suggests that bacteria can also induce senescence of healthy cells in an active oxygen-dependent
63 manner by causing inflammation and excessive neutrophil activity (Guo et al., 2024; Lagnado et al.,
64 2021). The aggravation or persistence of these stimulating factors can lead to abnormal
65 accumulation of senescent cells and directly affect periodontal tissue function. Therefore, chronic
66 bacterial infections can cause cell senescence through both direct and indirect mechanisms.

67 Senescent cells have been found to contribute to bacteria-induced inflammation, with the
68 activation of SASPs playing a crucial role in the release of various pro-inflammatory factors,
69 including interleukin (IL)-1 α , IL-6, and IL-8. Elevated levels of these inflammatory factors have
70 been associated with periodontal damage and loss of alveolar bone (Aquino-Martinez et al., 2020;
71 Yu et al., 2024). However, the specific mechanism by which senescent cells contribute to the

72 development of periodontitis remains unclear. In the immune response to periodontitis, dendritic
73 cells (DCs) infected by Pg activate related SASPs, such as IL-1 β , IL-6, and IL-8, which ultimately
74 accelerate the progression of periodontitis (El-Awady, Elashiry, Morandini, Meghil, & Cutler, 2022).
75 Additionally, the aging of T lymphocytes, which are crucial for adaptive immunity, leads to a
76 significant alteration in their immunosuppressive ability in Th17/Treg subsets. This alteration
77 ultimately results in the loss of tooth support and alveolar bone (González-Osuna et al., 2022).
78 However, the role and mechanism of cellular senescence in the progression of periodontitis have
79 not been thoroughly investigated.

80 The breakthrough technology of single-cell RNA sequencing has made it easier to analyze gene
81 expression at the cellular level and identify key cell subpopulations (Zhang et al., 2021). In this
82 study, we utilized bulk-RNA seq, clinical periodontal samples, and a mice ligature-induced
83 periodontitis model to demonstrate that cellular senescence levels increase with periodontitis
84 progression. Through sc-RNA seq, in vitro, and in vivo experiments, we observed significant
85 cellular senescence in gingival fibroblasts. Additionally, we identified a unique subgroup of gingival
86 fibroblasts with high expression of CD81, which exhibited senescence characteristics such as ROS
87 accumulation and enrichment of senescence genes. We propose that this subgroup of fibroblasts can
88 directly promote the progression of periodontitis by secreting SASP-related factors, such as IL-6,
89 and indirectly amplify inflammation by recruiting neutrophils through the complement pathway,
90 specifically C3. We also found that targeting cellular senescence with senolytic drug or metformin
91 can reduce inflammation and delay alveolar bone resorption in periodontitis.

92 错误!未定义书签。. **Results**

93 2.1 *Cellular senescence characteristics in periodontitis*

94 Cellular senescence is a manifestation of aging at the cellular level. Although accumulation of
95 senescent cells is normal in aged tissues, persistent bacterial infection and chronic inflammation
96 promote the early onset of senescence by ROS activation and DNA damage (Aquino-Martinez,
97 2023). In clinical gingival specimens from periodontally healthy individuals of similar age and those
98 diagnosed with periodontitis, we found that the senescence biomarker senescence-associated β -
99 galactosidase (SA- β -gal) was scarcely expressed in the gingiva of young healthy individuals.
100 However, in gingival samples from patients with periodontitis, a notable increase in SA- β -gal-
101 positive cells was observed, primarily localized in the lamina propria of gingival connective tissue

102 (Figure 1A). Additionally, IHC staining analysis revealed that other senescent biomarkers, such as
103 cell cycle inhibitory proteins p16 and p21, and senescence-associated heterochromatin foci (SAHFs)
104 like H3K9me3, were significantly upregulated in human periodontitis gingival tissues as well
105 (Figure 1B).

106 The clinical samples from periodontitis patients were often derived from older individuals,
107 because periodontitis incidence obviously increases with age (Eke et al., 2020). To avoid
108 confounding factors like age potentially affecting the experimental results, we also examined the
109 levels of cellular senescence in the Ligature-induced periodontitis (LIP) mouse model (Figure 1C).
110 IHC staining results indicated that the protein expression level of p16 among gingiva was
111 significantly upregulated following ligation, peaking at day 7 post-ligation (Figure 1D). And then,
112 gingiva at day 7 post-ligation and healthy gingiva as control were collected for protein and gene
113 analysis. Western blotting analysis showed that the protein levels of p16 in LIP 7D group was about
114 2 times of that in control group (Figure 1E). And the transcription of p16, p21, and Tp53 in gingival
115 tissues were higher at day 7 post-ligation than those in control (Figure 1F). Furthermore, bulk RNA-
116 sequencing was performed on gingival tissues from LIP 7D and healthy mice (Figure 1-figure
117 supplement 1A), identifying 458 upregulated and 358 downregulated genes. Notably, among the
118 upregulated genes, 19 senescence-associated genes were detected, including C3, Il6 and so on
119 (Figure 1-figure supplement 1B). We also observed a significant upregulation of several SASPs
120 genes such as Icam1, Mmp3, Nos3, Igfbp7, Igfbp4, Mmp14, Timp1, Ngf, Il6, Areg, and Vegfa in
121 the LIP group (Figure 1-figure supplement 2A). The Gene Set Enrichment Analysis (GSEA)
122 enrichment analysis based on our sequencing data revealed the upregulation of the cellular
123 senescence pathway in LIP mice Figure 1-figure supplement 1C). Moreover, a significant reduction
124 in oxidative phosphorylation and the tricarboxylic acid (TCA) cycle was observed in the LIP group
125 (Figure 1-figure supplement 2B, C).

126 Gene Ontology Biological Process (GO BP) analysis of differentially expressed genes further
127 demonstrated mitochondrial respiratory and electron transport dysfunction, as well as impaired
128 oxidative phosphorylation in the gingiva of LIP mice, suggesting that mitochondrial dysfunction
129 might contribute to cell senescence in periodontitis (Figure 1-figure supplement 1D). Meanwhile,
130 upregulation of the cellular senescence pathway and a series of inflammatory-related pathways,

131 including complement activation and response to lipopolysaccharide, were also enriched in the LIP
132 group (Figure 1-figure supplement 1D). Besides that, the PI3K-AKT, MAPK and NF- κ B signaling
133 pathways were also activated in LIP group (Figure 1-figure supplement 2D, E and F), which were
134 closely associated with the onset of cellular senescence and the secretion of SASP factors (Raynard
135 et al., 2022; Sayegh et al., 2024; Tang et al., 2023). Collectively, these findings suggested that
136 senescent cells gradually accumulated and senescence-related signaling pathways were activated
137 during the progression of periodontitis.

138 *2.2 Gingival fibroblasts were the main cell type responsible for cellular senescence in periodontitis*

139 To identify which cell types in periodontitis tissue are enriched for senescence, we re-analyzed
140 public sc-RNA seq data of healthy and periodontitis human gingiva (Williams et al., 2021). This
141 data from 8 healthy and 13 periodontitis-affected gingival samples were analyzed, clustering the
142 cells into 15 distinct groups (Figure 2-figure supplement 1A). These clusters were classified into
143 fibroblasts, immune cells, epithelial cells, endothelial cells, and other cell types based on specific
144 markers (Figure 2A, Figure 2-figure supplement 1B).

145 In periodontitis samples, there was a notable shift in cellular composition: immune cells
146 increased while structural cells, such as fibroblasts, decreased (Figure 2B, C). Cellular senescence
147 gene score analysis across different cell types revealed that fibroblasts in particular showed
148 significant upregulation of senescence scores in periodontitis, indicating that they had the highest
149 overall levels of senescence (Figure 2D). GSEA of differentially expressed genes between healthy
150 and periodontitis fibroblasts further confirmed the activation of senescence pathways in
151 periodontitis (Figure 2E). To further verify fibroblast senescence in periodontitis, we analyzed
152 another data from GSE152042, which included samples from 2 healthy, 1 mild, and 1 severe
153 periodontitis gingiva (Caetano et al., 2021). The results showed a decline in fibroblast proportion
154 along with increasing disease severity (Figure 2-figure supplement 1C and D) and a corresponding
155 increase in cellular senescence score (Figure 2F). Immunofluorescence staining on clinical sample
156 confirmed that the proportion of P16⁺ senescent fibroblasts in periodontitis rose to approximately
157 25%, compared to very few in healthy gingiva (Figure 2G). *In vitro*, healthy primary gingival
158 fibroblasts (HGFs) stimulated with different concentrations of *Porphyromonas gingivalis*
159 lipopolysaccharide (Pg-LPS) showed a dose-dependent increase in SA- β -gal positive fibroblasts
160 (Figure 2-figure supplement 2A and B). These findings suggest that gingival fibroblasts undergo

161 significant senescence, potentially induced by Pg-LPS, during the progression of periodontitis.

162 *2.3 CD81⁺ fibroblasts were identified as the major fibroblast subpopulation undergoing senescence*

163 To examine the changes in gingival fibroblast subpopulations during periodontitis, we analyzed
164 gingival fibroblasts from dataset GSE164241 (Williams et al., 2021), and identified 7 distinct
165 fibroblasts subpopulations (Figure 3A). The cell proportion bar chart revealed a significant increase
166 in subpopulations 1 and 3 in periodontitis compared to healthy controls (Figure 3B). We then applied
167 a cellular senescence gene set (Saul et al., 2022), to score these subpopulations and found that
168 subpopulation 1 exhibited the highest average expression levels, with a marked increase in
169 periodontitis (Figure 3C). GO enrichment analysis of the differentially expressed genes further
170 confirmed that subpopulation 1 displayed upregulated aging characteristics Figure 3D), indicating
171 that this subpopulation is primarily responsible for fibroblast senescence. Among the top 20 marker
172 genes for subpopulation 1, CD81, a transmembrane protein, emerged as a potential biomarker for
173 this senescent subpopulation (Figure 3E). A density heatmap demonstrated that CD81 was
174 predominantly enriched in subpopulation 1 (Figure 3F). The remaining subgroups were classified
175 as EmFB (extracellular matrix-associated fibroblasts), P-EmB (pre-extracellular matrix-associated
176 fibroblasts), MyFB (myofibroblasts), P-MyFB (pre-myofibroblasts), VFB (vascular-associated
177 fibroblasts), and ImFB (immune-associated fibroblasts), based on GO analysis (Figure 3F).
178 Immunofluorescence staining further showed that the proportion of CD81⁺ fibroblasts in
179 periodontitis increased to approximately 50%, compared to very few in healthy samples (Figure
180 3G). Thus, CD81⁺ fibroblasts might represent a core senescent fibroblast population in human
181 periodontitis.

182 *2.4 CD81⁺ fibroblasts were terminally differentiational cell with high SASP expression*

183 To investigate the role of fibroblasts in periodontitis-related inflammation, we analyzed the
184 expression of SASP-related genes in each fibroblast group. CD81⁺ fibroblasts exhibited elevated
185 levels of SASP-related genes, including IL-6, CXCL-5, CXCL-6, MMP1, and MMP3 (Figure 4A).
186 Additionally, we examined the metabolic activity of each subgroup, focusing on lipid metabolism.
187 Pathways related to fatty acid biosynthesis, arachidonic acid metabolism, and steroid biosynthesis
188 were significantly upregulated in CD81⁺ fibroblasts (Figure 4-figure supplement 1A), suggesting
189 that lipid metabolism might play a role in cellular senescence of the gingival fibroblasts.
190 Arachidonic acid, in particular, could be converted into prostaglandins and leukotrienes via

191 cyclooxygenases (COXs) and lipoxygenases, contributing to the inflammatory response (Figure 4-
192 figure supplement 1B) (Wang et al., 2021). We further observed a higher gene expression of PTGS1
193 (encoding COX1 protein) and PTGS2 (encoding COX2 protein) in CD81⁺ fibroblasts compared to
194 other fibroblasts subpopulations (Figure 4-figure supplement 1C). Pseudotime analysis of fibroblast
195 differentiation trajectories revealed that CD81⁺ fibroblasts predominantly clustered at the end of the
196 trajectory, indicating limited differentiation potential (Figure 4B, C). Functional enrichment analysis
197 of genes showing gradual increases during differentiation highlighted pathways related to
198 inflammatory activation and aging characteristics (Figure 4D). Several SASP genes, including
199 CXCL1, CXCL6, IL6, MMP1, SERPINE1, EGFR, FGF2, FNDC1, IGFBP4, LAMB1, and TIMP1,
200 also exhibited increased expression during differentiation (Figure 4E). Overall, our bioinformatics
201 analysis demonstrated that CD81⁺ fibroblasts exhibited differentiation arrest and heightened
202 expression of SASP factors, further implicating them in the inflammatory and senescent processes
203 of periodontitis.

204 *2.5 CD81⁺fibroblasts indirectly sustained inflammation by recruiting neutrophils via C3/C3aR1
205 axis*

206 To explore the communication between CD81⁺ fibroblasts and immune cells in periodontitis,
207 we analyzed their interactions under diseased conditions. Our results revealed that CD81⁺
208 fibroblasts had the highest level of communication with immune cells, particularly neutrophils,
209 compared to other fibroblast subgroups (Figure 5A). This suggests that CD81⁺ fibroblasts play a
210 key role in mediating the immune response during periodontitis. Additionally, we observed a
211 significant increase in the expression of MIF and C3 signaling pairs between CD81⁺ fibroblasts and
212 immune cells (Figure 5B). Previous studies have demonstrated the importance of sustained
213 neutrophil infiltration in the progression of periodontitis, with C3 known to recruit neutrophils and
214 contribute to the formation of neutrophil extracellular traps (Ando et al., 2024; Kim et al., 2023;
215 Song et al., 2023). Further analysis of the C3 pathway showed that the C3 receptor-ligand pair was
216 active in the communication between CD81⁺ fibroblasts and neutrophils in both healthy and
217 periodontitis conditions (Figure 5C), underscoring its unique role in neutrophil recruitment. Notably,
218 CD81⁺ fibroblasts exhibited the highest expression of the C3 ligand compared to other fibroblasts
219 subgroups, while the C3 receptor (C3aR1) was exclusively expressed by neutrophils in periodontitis
220 (Figure 5D). We also detected higher C3 expression in human periodontitis gingiva (Figure 5E),

221 indicating its involvement in the disease. In vitro experiments further confirmed that periodontitis
222 gingival fibroblasts secreted higher levels of C3 protein at 30 ng/mL compared to healthy fibroblasts
223 at about 20 ng/mL (Figure 5F), and Pg-LPS stimulation could enhance C3 secretion by gingival
224 fibroblasts from baseline at 10 ng/mL to about 20 ng/mL (Figure 5G). Interestingly, spatial
225 transcriptomic analysis of gingival tissue revealed that the regions expressing CD81 and SOD2, a
226 neutrophil marker, in periodontitis overlapped in the gingival lamina propria, showing a high spatial
227 correlation (Figure 5H). These findings suggest that CD81⁺ fibroblasts might facilitate neutrophil
228 infiltration through the C3/C3aR1 axis, contributing to the inflammatory response in periodontitis.

229 *2.6 Targeting cellular senescence in periodontitis could alleviate inflammation and bone
230 resorption*

231 In human periodontitis gingiva, we found that CD81⁺ fibroblasts might activate neutrophils via
232 the C3/C3aR1 axis to exacerbate inflammation. To verify whether this mechanism exists in the LIP
233 mouse model, we examined the expression of related markers. In the gingiva of the LIP model, P16⁺
234 fibroblasts, identified by p16 and Vimentin protein, comprised approximately 70% of total
235 fibroblasts, significantly higher than the 10% observed in healthy mice (Figure 5 -figure supplement
236 1A). Similarly, CD81⁺ fibroblasts accounted for about 30% of total fibroblasts, compared to less
237 than 10% in the control group (Figure 5-figure supplement 1B). Immunofluorescence staining
238 revealed co-localization of Vimentin, p16, and CD81 in LIP gingiva, indicating the presence of
239 senescent CD81⁺ fibroblasts in the experimental periodontitis model (Figure 5 -figure supplement
240 1C). We also observed a higher expression of C3 protein expression in the LIP group compared to
241 controls (Figure 5-figure supplement 2A, B). Neutrophil infiltration, marked by MPO increased
242 from approximately 10% at baseline to 40% in the inflamed gingiva of LIP mice, notably in the
243 epithelial and lamina layers (Figure 5-figure supplement 2C, D). Further staining demonstrated that
244 CD81⁺ C3⁺ fibroblasts constituted the majority of fibroblasts in the LIP group (Figure 5-figure
245 supplement 2E, F). Notably, MPO⁺ neutrophils clustered around CD81⁺ cells in the lamina of the
246 LIP model (Figure 5-figure supplement 2G). These findings in the LIP mouse model suggest that
247 CD81⁺ fibroblasts with senescence characteristics might activate neutrophils through C3, similar to
248 the mechanism observed in human periodontitis.

249 To further explore the role of senescent cells in periodontitis progression, we established a LIP
250 mouse model treated with the senolytic drug ABT263, a Bcl2 inhibitor (Figure 6A). H&E staining

251 revealed that the ABT263-treated group exhibited reduced inflammatory cell infiltration in the
252 gingiva compared to the vehicle control (Figure 6B). IHC staining of senescence markers p16 and
253 H3K9me3 showed a significant reduction in senescent cells: P16⁺ cells decreased from 20% to 8%,
254 and H3K9me3⁺ cells from 35% to 20%, after ABT263 administration (Figure 6C, D, a and b). To
255 assess the effect of ABT263 on eliminating CD81⁺ fibroblasts in periodontitis, immunofluorescence
256 staining demonstrated a drop in the proportion of CD81⁺ fibroblasts from 40% to less than 20%
257 after treatment (Figure 6E and c). Since our results suggested that CD81⁺ fibroblasts might activate
258 neutrophil infiltration via the C3/C3aR1 axis, we next evaluated the impact of senolytic treatment
259 on C3 secretion and neutrophil infiltration. IHC analysis revealed a slight reduction in C3 intensity
260 in gingival tissue and a significant decrease in the number of infiltrated neutrophils after ABT263
261 treatment (Figure 6F, G, d and e). Finally, we observed a marked reduction in the number of
262 osteoclasts marked by CTSK in the ABT263-treated group, decreasing from 6 cells/mm² in the
263 vehicle group to 1 cell/mm², which suggested less bone resorbing after ABT263 treatment (Figure
264 6H and f). Taken together, these results suggest that senolytic treatment with ABT263 could be a
265 potential strategy to mitigate inflammation and bone resorption in periodontitis progression.

266 *2.7 Metformin alleviated the inflammation and bone resorption of periodontitis via inhibiting the*
267 *interaction between CD81⁺ fibroblasts and neutrophil cell*

268 Metformin, an oral antihyperglycemic drug, has been preliminarily validated its therapeutic
269 efficacy in periodontitis (Neves et al., 2023). However, the underlying mechanisms remain unclear.
270 Increasing evidence suggests that metformin regulates cellular senescence, but its involvement in
271 periodontitis-related senescence has yet to be reported (Kodali et al., 2021; Soukas, Hao, & Wu,
272 2019). To uncover the role of metformin in periodontitis regarding cellular senescence, we first re-
273 analyzed sc-RNA seq data from GSE242714, which included the gingival tissue of periodontitis
274 mice treated with metformin (Neves et al., 2023). Notably, we found that metformin treatment
275 reduced the cellular senescence score of the periodontitis gingiva compared to untreated
276 periodontitis gingiva (Figure 7-figure supplement 1A). Based on this, we further established a LIP
277 mouse model and administered metformin daily for 14 days before and after the modeling time point
278 to evaluate its effects on cellular senescence in periodontitis (Figure 7A). Micro-CT imaging
279 revealed that delayed bone loss around the periodontal area was found following metformin
280 administration (Figure 7B), with the higher bone volume to tissue volume ratio (BV/TV, Figure 7a)

281 and less distance of cement-to-enamel junction to alveolar bone crest (CEJ-ABC distance, Figure
282 7b) compared to LIP treated with ddH₂O group. Histological analyses further demonstrated that
283 metformin significantly mitigated periodontitis-induced inflammatory cell infiltration (Figure 7-
284 figure supplement 1B), and collagen degradation (Figure 7-figure supplement 1C and a), as shown
285 by H&E and Masson staining. Additionally, metformin reversed the upregulation of p16 (Figure 7C
286 and c), p21 (Figure 7-figure supplement 1D and b), and H3K9me3 (Figure 7-figure supplement 1E
287 and c) in the periodontitis model. Importantly, the number of CD81⁺ fibroblasts was reduced in the
288 LIP model after metformin administration compared to the untreated LIP group as well (Figure 7D
289 and d). Furthermore, metformin reversed the elevated expression of C3 and MPO in periodontitis,
290 compared to the periodontitis and ddH₂O groups (Figure 7E, F, e, and f). In vitro, senescent
291 fibroblasts induced by PG-LPS were treated with metformin (Figure 7-figure supplement 2A).
292 Results showed that metformin decreased the proportion of SA- β -gal positive fibroblasts from 50%
293 in the LPS group to 35% (Figure 7-figure supplement 2B and C). Metformin also reversed the
294 protein expression of CD81, C3, and p16 in fibroblasts (Figure 7-figure supplement 2D).
295 Additionally, metformin reduced the proportion of CD81/p16 and CD81/C3 double-positive
296 gingival fibroblasts (Figure 7-figure supplement 3A-D). Collectively, these findings suggest that
297 metformin alleviates inflammation and bone resorption in periodontitis by inhibiting the interaction
298 between CD81⁺ fibroblasts and neutrophils, which provides a novel therapeutic strategy for
299 periodontitis.

300 **3. Discussion**

301 This study suggests that cellular senescence plays a role in the progression of periodontitis, and
302 targeting cellular senescence may help alleviate the condition. We discovered that senescent gingival
303 fibroblasts are associated with periodontitis pathology. Under continuous stimulation of LPS-PG,
304 oxidative stress caused by ROS accelerates cell senescence in gingival fibroblasts. These senescent
305 cells highly express CD81, which contribute to the expansion of inflammation through
306 proinflammatory metabolic activities and factors related to SASP. Additionally, they continuously
307 recruit neutrophils through the C3 pathway, indirectly maintaining the inflammatory response. The
308 use of Navitoclax and Metformin can slow down the progression of periodontitis by reducing
309 gingival cell senescence (Scheme 1).

310 The underlying mechanism of immune homeostasis instability and the transformation of chronic

311 gingivitis into periodontitis has not been fully elucidated. Our findings will provide valuable insights
312 for future studies on the pathological mechanism of periodontitis development. Gingival fibroblasts,
313 which are essential cells in gingival connective tissue, have recently gained attention as key
314 participants (Wielento, Lagosz-Cwik, Potempa, & Grabiec, 2023). Previous studies have reported
315 heterogeneity in gingival fibroblasts in periodontal tissues, with four subsets significantly altered in
316 periodontitis: Fib1.1 (CXCL1, CXCL2, CXCL13); Fib 1.2 (APCDD1, IGFBP2, MRPS6); Fib 1.3
317 (APOD, GSN, CFD); and Fib 1.4 (TIMP3, ASPN, COL11A1). Some of these clusters are directly
318 associated with neutrophils and proinflammatory cytokines, suggesting that periodontal tissue
319 immunity relies on strong matrix-neutrophil interactions within these tissues (Williams et al., 2021).
320 Another study revealed the presence of genetic markers in a unique subgroup of gingival fibroblasts
321 called AG fibroblasts (fibroblasts activated to guide chronic inflammation). These fibroblasts may
322 have functional capabilities as oral immune surveillance agents and play a role in coordinating the
323 initiation of gingival inflammation (Kondo, Gleason, Okawa, Hokugo, & Nishimura, 2023).
324 Caetano et al. conducted a study where they mapped stromal cells from healthy and periodontitis
325 individuals. They identified a subset of fibroblasts that expressed ARGE pro-inflammatory genes at
326 high levels (Caetano et al., 2023). In a more recent study, the team used multiomics techniques and
327 fluorescence in situ hybridization to demonstrate the presence of a spatially restricted population of
328 pathogenic fibroblasts in the gingival lamina propria. These fibroblasts expressed CXCL8 and
329 CXCL10 and were responsible for recruiting neutrophils and lymphocytes in the periodontal pocket
330 area. Additionally, they exhibited angiogenic properties (Caetano et al., 2023). The increasing
331 amount of data supports the role of gingival fibroblast heterogeneity in the pathological mechanism
332 of periodontitis, particularly in immune regulation (Yin et al., 2025). However, previous studies
333 have mainly focused on immune disorders resulting from communication between fibroblasts and
334 immune cells, neglecting the dynamic changes of fibroblasts themselves in periodontitis pathology.
335 In this study, we present a unique subset of fibroblasts with significantly altered gene signatures due
336 to cell senescence, suggesting that cell senescence plays a crucial role in the heterogeneity of
337 gingival fibroblasts.

338 It has been recognized that low concentrations of ROS produced during chronic inflammation
339 can indirectly cause periodontal tissue destruction (Chapple & Matthews, 2007). Recent studies
340 have also found that repeated exposure to LPS, a component of gram-negative bacterial membranes,

341 leads to DNA damage in various cell types, including gingival and alveolar bone cells (Aquino-
342 Martinez et al., 2020). Cells that survive from persistent DNA damage acquire a senescent
343 phenotype, which in turn triggers the recruitment of immune cells through dysregulation of
344 proinflammatory cytokines. Senescent cells often overexpress IL-6, IL-1 α , IL-1 β , and IL-8,
345 collectively referred to as SASP (Coppé et al., 2010). Our findings indicate that gingival fibroblast
346 senescence directly promotes the development of chronic periodontitis by secreting SASP-related
347 factors, which may explain the formation of pro-inflammatory fibroblasts and their significant
348 impact on immune regulation. Accumulating evidence suggests that drugs can regulate the activity
349 of SASP, as demonstrated by An et al. who showed that short-term treatment with rapamycin can
350 reduce gingival and alveolar bone inflammation and promote the regeneration of alveolar bone in
351 elderly mice (An et al., 2020). Additionally, Kuang et al. reported that metformin inhibits the
352 destructive effect of H₂O₂ on human PDLSC, leading to a reduction in oxidative stress-induced
353 aging (Kuang et al., 2020). Through oral administration of metformin, we have demonstrated its
354 potential in alleviating the progression of periodontitis by delaying the senescence of gingival
355 fibroblasts. However, further experiments are required to determine the decisive role of fibroblast
356 senescence in the periodontitis.

357 CD81, a member of the tetraspanin family of proteins, could serve as a cell surface marker
358 (Karam, Méresse, Kremer, & Daher, 2020) and a signaling pathway receptor (Oguri et al., 2020).
359 CD81 is a major regulator of virus entry into cells and plays an important role in other pathogenic
360 human viruses (New et al., 2021). Research on the role of CD81 has shown that it could form a
361 complex with α V/ β 1 and α V/ β 5 integrins to activate the FAK signaling pathway (Oguri et al., 2020),
362 which induce the interferon signaling pathway for immune response regulation (Hanagata & Li,
363 2011), and mediate NF- κ B signaling pathway to induce IL-6 expression (Ding et al., 2019). Clinical
364 studies have indicated a correlation between the level of CD81 in saliva and the severity of
365 periodontitis disease (Tobon-Arroyave, Celis-Mejia, Cordoba-Hidalgo, & Isaza-Guzman, 2019), as
366 well as its association with the regulation of aging and inflammation (Y. Jin et al., 2018). In our
367 study, we observed that gingival fibroblasts with high CD81 expression exhibited a high enrichment
368 of the NF- κ B signaling pathway, leading to significant upregulation of IL-6 expression. The NF- κ B
369 pathway is recognized as a switch for cellular senescence, and NF- κ B activation can drive cell
370 senescence-related secretory phenotypes. Therefore, CD81 is likely to play a crucial role in

371 regulating gingival fibroblast cell senescence. However, further investigation is needed to elucidate
372 the specific molecular mechanism.

373 Finally, a link has been established between C3 from senescent fibroblasts and neutrophil
374 infiltration in periodontitis. C3 has a strong recruitment ability for neutrophils and is crucial for the
375 formation of neutrophil extracellular traps (NETs) (Yipp et al., 2012). Persistent neutrophil
376 infiltration and hyperresponsiveness, including the formation of NETs, play significant roles in the
377 development of periodontitis (Uriarte & Hajishengallis, 2023). Genetic analysis and preclinical
378 studies have confirmed C3 as a potential pharmacological target for periodontitis treatment (Alayash
379 et al., 2024; Hajishengallis & Chavakis, 2021). Gingival fibroblasts stimulated with IFN- γ up-
380 regulated the expression of chemokines (CXCL9, -10, -11, CCL8), molecules involved in antigen
381 presentation, complement component 3 (C3), and other immune response-related molecules (Ha,
382 Jung, Choi, & Ji, 2022). Our experimental results have demonstrated that CD81 $^{+}$ gingival fibroblasts
383 are an important source of C3. Understanding the source and mechanism of C3 complement in
384 periodontitis is of great significance for comprehending the pathological development of the disease
385 and can provide a new perspective for designing drug schemes.

386 Our study focused on identifying a specific group of gingival fibroblasts that express high
387 levels of CD81 during the development of periodontitis. Our findings suggest that these CD81 $^{+}$
388 gingival fibroblasts exhibit characteristics of cellular senescence and possess strong pro-
389 inflammatory abilities. Furthermore, we have established a connection between CD81 $^{+}$ gingival
390 fibroblasts and the recruitment and hyperactivation of neutrophils through C3. However, further
391 investigations are required to explore the association between CD81 and cellular senescence, as well
392 as its potential as a therapeutic target. In conclusion, our research provides valuable insights and
393 treatment strategies for understanding the progression of periodontitis.

394 **4. Materials and methods**

395 **4.1 Human samples**

396 All individuals provided written informed consent and this study was approved by the Ethics
397 Committee of School & Hospital of Stomatology Wuhan University (WDKQ2024B01). A total of
398 16 participants were recruited in this study (healthy group: n=8; periodontitis group: n=8). The basic
399 information of the included patient was listed in Supplementary Table 1. Healthy control group
400 included patient who underwent wisdom tooth extraction or crown lengthening procedures, and

401 inclusion criteria are as follows: 1) age 18-65 years old; 2) good general health, no systemic diseases,
402 able to tolerate periodontal surgery; 3) no erythema, edema, bleeding and other symptoms in
403 gingival tissue; 4) no use of nicotine-related products in recent 6 months. Periodontitis group
404 included patients who went through pocket reduction surgeries. Inclusion criteria for patients with
405 chronic periodontitis were as follows (Armitage, 1999): 1) age 18-65 years; 2) good general health,
406 no systemic disease, and tolerance to periodontal surgery; 3) mild gingival tissue redness, bleeding
407 on probing, or clinical attachment loss (CAL) \geq 4 mm or probing depth (PD) \geq 5 mm in non-acute
408 inflammatory periods; 4) no use of nicotine-related products in the last 6 months. Collected gingiva
409 were used for primary cell culture and histological analysis in this study.

410 4.2 Primary gingival fibroblast cell culture isolation and culture

411 Collected gingiva tissues were transported from the clinic to the laboratory in pre-cooled
412 phosphate-buffered saline (PBS) solution and rinsed with PBS several times to remove debris. And
413 then, the tissues were minced into small fragments at diameter of approximately 1–3 mm. The tissue
414 pieces were digested with 2 μ g/ml type II collagenase (2275GR001, BioFroxx, Germany) at 37°C
415 for 2 h, and collected cell precipitates were incubated for 5–7 days at 37°C and 5% CO₂ in DMEM
416 high-glucose medium (DMEM, YC-2067, China) supplemented with 20% fetal bovine serum (FBS,
417 PAN-SERATECH, South America) (J. Li et al., 2024). The primary gingival fibroblast cells that
418 grew out of the explants were cultured and passaged. Primary gingival fibroblasts at passages four
419 to eight were used in the following experiments. Gingival fibroblasts derived from healthy gingiva
420 were labelled as H-HGF while those derived from periodontitis gingiva were labelled as P-HGF.

421 4.3 Pg-LPS induced human gingival fibroblasts treated with metformin

422 To investigate the effect of Pg-LPS on the cellular senescence of gingival fibroblasts, healthy
423 human gingival fibroblasts (HGFs) were seeded at 5000 per well in 96 well plate and incubated in
424 complete medium at 37 °C overnight. And then, the HGFs were stimulated by *Porphyromonas*
425 *gingivalis* lipopolysaccharide (Pg-LPS InvivoGen, USA) at 0, 0.5, 1, 5 and 10 μ g/mL for 24 h. At
426 last, the samples were used for SA- β -gal staining.

427 To evaluate the effect of metformin on the cellular senescence of gingival fibroblasts
428 stimulated by Pg-LPS, HGFs at 150,000 cells per ml using hemacytometer, were seeded in 3 ml
429 plates and incubated in complete medium at 37 °C overnight. For LPS+MET group, cells were pre-
430 treated with metformin (HY-B0627, MedChemExpress, China) at 2 mM for 24 h. And then, for LPS

431 and LPS+MET group, cells were stimulated with Pg-LPS (InvivoGen, USA) at 1 μ g/mL for another
432 24 h according to a previous study (Sun et al., 2023). Subsequently, HGFs cells were harvested for
433 subsequent SA- β -gal staining, western blot analysis and immunofluorescence staining.

434 4.4 Enzyme-linked immunosorbent assay (ELISA) analysis of C3

435 Human gingival fibroblasts were seeded in 6-well plates with 2 mL complete cell culture.
436 When it comes to 80 or 90 % cell confluence, cells were kept in a resting state for 24 h in serum-
437 free medium. The supernatant of cell culture was collected after centrifugal at 12,000 rpm for 20min.
438 The concentration of C3 in cell culture supernatants was assessed by Human C3 ELISA kit
439 (ELK1059, ELK Biotechnology, China) according to the manufacture instruction.

440 4.5 Staining for Senescence-Associated Galactosidase (SA- β -gal)

441 SA- β -gal staining was performed using the Senescent β -Galactosidase Staining Kit (C0602;
442 Beyotime Biotechnology, China) according to the manufacturer's instructions. Cell samples were
443 incubated for 12 hours while tissue samples were incubated for 24 hours at 37°C in a CO₂-free
444 temperature chamber. Tissue sections were then stained by nuclear red staining solution. Positive
445 cells were blue-stained and all cells were nuclear red-stained. Three randomized regions of interest
446 were captured under an ordinary light microscope (DP72 microscope, Olympus, Japan) and the
447 percentage of positive cells were counted by Image J v2.0 (NIH, Bethesda, MD, USA).

448 4.6 Ligature-induced periodontitis (LIP) mouse model treated by Senolytics or metformin

449 C57BL/6 mice (8 weeks, male) were purchased from Hubei Provincial Center for Disease
450 Control and Prevention and bred in specific pathogen free animal laboratory of the School &
451 Hospital of Stomatology, Wuhan University. The animal experiments were conducted according to
452 the ARRIVE guidelines 2.0. Animals and approved by the Animal Research Ethics Committee at
453 the School & Hospital of Stomatology, Wuhan University, China (No. S07922040A). The animals
454 were housed in a SPF environment with controlled temperature/humidity with 12h light/dark cycle.

455 To investigate the role of senescent cells in periodontitis progression, the ligature-induced
456 periodontitis (LIP) mouse model was treated by Senolytics drug ABT263 (HY-10087,
457 MedChemExpress, China). In brief, after anesthetics, the mice were ligated with a 5-0 silk (SA82G,
458 ETHICON, China) between the maxillary first and second molars and knots were tied on palatal
459 side to secure the ligature. The ligatures were examined daily to ensure that they remained in place
460 during the experimental period. LIP mice were divided into 2 group: Vehicle and ABT263 group.

461 Each group included 6 mice. LIP mice were intraperitoneally injected with vehicle alone (10%
462 DMSO + 40%PEG300 + 5% Tween-80 + 45% Saline) or with ABT263 (50mg/kg/d; HY-10087;
463 MedChemExpress, China) as previously (S. Li et al., 2023). Three days after ligation, vehicle and
464 ABT263 was given to mice for two cycles of 4 consecutive days, with 3 days of rest between cycles.
465 After 14 days post ligation, mice were euthanized, and their maxilla and gingiva were collected for
466 histological staining.

467 To investigate the effect of metformin on the periodontitis progression, the LIP mouse
468 model was treated by metformin (HY-B0627, MedChemExpress, China). Mice were allocated into
469 four group: CON+ddH₂O group, LIP+ ddH₂O group, LIP+MET group and CON+MET group, each
470 group included 6 mice. LIP+MET group and CON+MET group were treated with 200 mg/kg
471 metformin while CON+ddH₂O group and LIP+ddH₂O were treated with the distilled water as the
472 control. Metformin or ddH₂O were given by intragastric administration once a day for 14 days
473 before LIP model establishment. On the fifteenth day after intragastric administration, LIP+ ddH₂O
474 group and LIP+MET group were ligated with a 5-0 silk between the maxillary left first and second
475 molars and knots were tied on palatal side to secure the ligature. A second set of controls included
476 mice that were not treated with ligatures on either side. Metformin or ddH₂O were given once a
477 day for another 14 days. At the end of the time frame, mice were euthanized and their maxilla and
478 gums were collected for micro-CT and histological analysis.

479 4.7 Micro-tomographic (Micro-CT) scanning and analysis

480 Micro-CT scanning was performed using Bruker Micro-CT SkyScan1276 (Konitich,
481 Germany). The region of interest (ROI) was established in a three-dimensional (3-D) scope:
482 vertically, starting from 0.2 mm apical to the cemental enamel junction (CEJ) of the second molar
483 (2nd M), extending towards the root apical to get a span of 0.5 mm; mesiodistally, ranging from the
484 most mesial aspect of the CEJ of the first molar (1st M) to the root furcation of the third molar (3rd
485 M); buccolingually and lingually, ranging around the root furcation of the 2nd M within a span of
486 1.5 mm. The ratio of bone volume to total volume (BV/TV) was calculated based on this ROI. The
487 distances between the CEJ to the alveolar bone crest (CEJ-ABC) were measured at the 2nd M. The
488 3-D reconstruction, calculation and measurements were conducted using the CTAn software
489 (version 1.18.8.0, SkyScan, Germany). All measurements were repeated for three times with 6 mice
490 per group, with the average value of the bilateral maxillary alveolar bone taken as one sample for

491 statistical analysis.

492 4.8 Protein extraction and western blot

493 Protein extracted from mice samples or primary gingival fibroblasts were dissolved in 80 μ L
494 of RIPA buffer to extract total protein, supplemented with protease and 1% phosphatase inhibitors.
495 All samples were quantified and normalized using a protein assay kit known as bicinchoninic acid
496 (Thermo Fisher Scientific, Waltham, MA, United States). Following a 10-minute heat treatment at
497 95 °C, the samples underwent sodium dodecyl sulfate-polyacrylamide gel electrophoresis for
498 separation and were then transferred to a polyvinylidene fluoride membrane (Millipore). The
499 membrane was blocked using the primary antibody-blocking solution and then incubated overnight
500 at 4 °C with primary antibodies against p16 (10883-1-AP, Proteintech, China), CD81 (66866-1-
501 IG, Proteintech, China), β -ACTIN (66009-1-Ig, Proteintech, China), C3 (21337-1-AP, Proteintech,
502 China), and GAPDH (PMK052S, Biopm, China). Subsequently, the membrane was treated with
503 horseradish peroxidase (HRP) conjugated secondary antibodies at 37 °C for 1 h. Visualization of
504 signals were conducted using a Ultrasensitive ECL Detection Kit (Thermo Fisher Scientific,
505 Waltham, MA, United States) with the ChemiDoc MP Imaging Systems (Bio-Rad, USA). Protein
506 levels were normalized to β -ACTIN or GAPDH using Image J analysis software.

507 4.9 RNA extraction and RT-qPCR

508 To extract total RNA, the Trizol reagent and standard collection procedure were utilized. Total
509 RNA concentration was measured using a Nanodrop2000 instrument (Thermo Fisher Scientific,
510 Waltham, MA, United States). According to the guidelines provided by the manufacturer, the total
511 RNA was subjected to reverse transcription into cDNA using the HiScript II Q RT SuperMix
512 (Vazyme). The amplification reaction was performed using ChamQ SYBR qPCR Master Mix
513 (Vazyme) in the QuantStudio 6 Flex System (Thermo Fisher Scientific, Waltham, MA, United
514 States). The primers for the experiment were bought from Sangon Biotech Co., Ltd. The results
515 were analyzed using the $2^{-\Delta\Delta C_t}$ method, with normalization to β -actin and calibration to the control
516 group. The forward and reverse primer sequences of the target genes used in the experiment can be
517 found in Supplementary Table 2.

518 4.10 Histological analysis

519 The human gingiva samples were kept in 4% paraformaldehyde for 24 h, followed by
520 dehydrated, fixed in paraffin or optimal cutting temperature compound. The mice maxilla with

521 gingival tissues were kept in 4% paraformaldehyde for 24 h, followed by 4 weeks of decalcification
522 with 15% EDTA at pH 7.4. The decalcifying solution underwent replacement every 2 days. Tissues
523 were then dehydrated, fixed in paraffin and sectioned. The sections were stained by hematoxylin
524 and eosin (H&E), Masson, immunohistochemical and immunofluorescence staining.
525 Immunohistochemical and immunofluorescence staining were performed According to the
526 manufacturer's instructions (MXB biotechnologies, Fuzhou, China). The primary antibodies used
527 for immunohistochemistry included p16 (1:1000; Cat: 10883-1-Ap, Proteintech, China), p21
528 (1:200, Cat: 10355-1-AP, Proteintech, China), H3K9me3 (1:1000. Cat: M1112-3, HUABio, China),
529 C3 (1:200, Cat: 21337-1-AP, Proteintech, China), MPO (1:200, Cat: Ab208670, Abcam) and CTSK
530 (1:200, Cat: 121071, Proteintech, China). Immunofluorescence (IF) staining was performed with
531 the antibodies of CD81 (1:1000, Cat: 10883-1-AP, Proteintech, China), Vimentin (1:200, Cat:
532 A19607, ABclonal, China), p16, C3 and MPO as previously described. In immunohistochemical
533 staining (IHC), 3,3-diaminobenzidine tetrahydrochloride (Zhongshan Biotechnology, Ltd, China)
534 was utilized for visualization. For double IF staining, anti-mouse, and rabbit secondary antibodies
535 had Cy3 red and 488 nm green fluorescent markers (ABclonal, China). For triple IF staining, the
536 nucleus of cells in tissues was stained using DAPI (Zhongshan Biotechnology, Ltd, China). The
537 stained sections were examined and captured using an Olympus DP72 microscope (Olympus
538 Corporation, Japanese). For semi-quantification of protein expressions, the mean optical density
539 (MOD) of positive stains was measured using the imageJ2 software (version: 2.14.0, National
540 Institutes of Health, Bethesda, MD). For the semi-quantification of Masson's trichrome, the
541 collagen volume fractions (stained blue) for individual sections were measured using ImageJ2
542 software.

543 4.11 Bulk RNA sequencing

544 For bulk RNA sequencing, RNA was extracted using the methods outlined in the qRT-PCR
545 protocol. The total RNA was then sent to the Analysis and Testing Center at the Institute of
546 Hydrobiology, Chinese Academy of Sciences (Wuhan, China) for quality control, library
547 preparation, and sequencing on the Illumina platform. We utilized the Illumina TruSeq RNA library
548 preparation kit, which generated libraries with insert fragment lengths of approximately 400-500 bp.
549 The resulting fastq reads were aligned to the mouse genome (GRCm38) using a dedicated RNA-seq
550 aligner. We filtered the raw data quality using Trimmomatic (version 0.36) (Bolger, Lohse, & Usadel,

551 2014). The filtered reads were subsequently aligned to the reference genome with HISAT2 (version
552 2.2.1), and the aligned reads were quantified using StringTie (Pertea, Kim, Pertea, Leek, & Salzberg,
553 2016). The average mapping rate for each sample exceeded 90%, with sequencing depths ranging
554 from 30M to 40M reads.

555 We employed DESeq2 (version 1.34.0) to identify differentially expressed gene sets, applying
556 thresholds of $|\log_2(\text{fold change})| > 1$ and a significance level of $P < 0.05$ (Love, Huber, & Anders,
557 2014). The selected differentially expressed genes were then subjected to Gene Ontology (GO)
558 enrichment analysis. Additionally, Gene Set Enrichment Analysis (GSEA) was performed using
559 GSEA_Linux_4.1.0 to identify relevant pathways (Subramanian et al., 2005). Significant gene sets
560 were determined based on three criteria: $P < 0.05$, false discovery rate (FDR) < 0.25 , and an absolute
561 normalized enrichment score (NES) > 1 .

562 4.12 Single-cell RNA sequencing analysis

563 Single-cell RNA transcriptome including GSE164241, GSE152042 and GSE242714 were
564 obtained from the GEO dataset. GSE164241 contained 70407 cells from 13 healthy samples and 8
565 periodontitis samples (Williams et al., 2021). GSE152042 contained 12379 cells from 2 healthy
566 samples, 1 periodontitis sample (mild) and 1 periodontitis sample (severe) (Caetano et al., 2021).
567 GSE242714 contained 6473 cells from the control mice and LIP mice samples, which were put on
568 either water or Metformin samples (n=5 group) (Neves et al., 2023). As for scRNA-seq, the
569 "Seurat4.4.0" package was applied to integrate different samples with CCA (cross-dataset
570 normalization) method, GSE164241 cell profiles were filtered scriteria of Feature_RNA > 200 &
571 nFeature_RNA < 5000 & MT_percent < 10 & nCount_RNA < 25000 & nCount_RNA > 1000, then
572 GSE152042 cell profiles were filtered scriteria of Feature_RNA > 500 & nFeature_RNA < 6000 &
573 MT_percent < 20, and GSE242714 cell profiles were filtered Feature_RNA > 300 & nFeature_RNA
574 < 5000 & MT_percent < 15 & nCount_RNA < 25000 & nCount_RNA > 500, then those data were
575 further normalized using the "LogNormalize"method, and the unique gene markers in each group
576 were identified with the "FindMarkers"function. "UMAP" was used to display the cell distribution.
577 The function "Addmodulescore" was used to reflect differences in biological processes in different
578 cell populations.

579 4.13 Fibroblast cell re-clustering analysis

580 Fibroblast clusters from GSE164241 were reanalysed and were then re-normalised by calling
581 the ‘NormalizeData’ function to account for the reduction in cell numbers subsequent to subsetting
582 the data. The top 2000 most variable features across the dataset were then identified using the
583 ‘FindVariableFeatures’. These variable features were subsequently used to inform clustering by
584 passing them into the ‘RunPCA’ command. Via ‘Elbowplot’, we identified that the first eight
585 principle components should be used for downstream clustering when invoking the ‘FindNeighbors’
586 and ‘RunUMAP’, as detailed above.

587 4.14 Gene function enrichment analysis

588 GO analysis was performed using ‘Enrichr’ on the top 200 differentially expressed genes
589 (adjusted p-value < 0.05 by Wilcoxon Rank Sum test) (Kuleshov et al., 2016). GO terms shown
590 are enriched at FDR < 0.05. The enrichment analysis between different fibroblast subsets in
591 scRNAseq was performed by ‘Metascape’ and further drawn by the ‘ggplot2’ package. Four
592 methods including ‘ssGSEA’, ‘AUCell,’ ‘UCell,’ and ‘singscore’ were used for enrichment analysis
593 between different clusters. Images were further drawn by "irGSEA". GSEA was applied to validate
594 the result on RNA-seq with default settings (1000 permutations for gene sets, Signal2Noise metric
595 for ranking genes).

596 4.15 “Cellular senescence” and “Senescence-associated secretory phenotypes” gene set

597 The cellular senescence gene set, which was used to reflect the degree of cellular senescence,
598 has been validated across species in a variety of cell lines and multiple sequencing data including
599 scRNA-seq, bulk RNA-seq, etc. It has better validation efficiency than previously known gene sets
600 associated with cell senescence (Saul et al., 2022). SASP includes several soluble and insoluble
601 factor families. These factors can affect surrounding cells by activating various cell surface receptors
602 and corresponding signal transduction pathways that may lead to a variety of pathologies. SASP
603 factors can be divided globally into the following main categories: soluble signal transduction
604 factors (interleukins, chemokines and growth factors), secreted proteases and secreted insoluble
605 protein/extracellular matrix (ECM) components (Coppé et al., 2010).

606 4.16 Metabolism pathway analysis

607 The ‘scMetabolism’ package was used to quantify the metabolism activity at the scRNA-seq
608 dataset. Seventy-eight metabolism pathways in KEGG were included in the package. The pathways
609 were further used to evaluate the metabolism activity at the single-cell resolution (Wu et al., 2022).

610 4.17 Pseudotime trajectory analysis

611 We applied the single-cell trajectories analysis utilizing Monocle2 using the DDR-Tree and
612 default parameter. Before Monocle analysis, we selected marker genes from the Seurat clustering
613 result and raw expression counts of the cell passed filtering. Based on the pseudotime analysis,
614 branch expression analysis modeling (BEAM Analysis) was applied for branch fate determined gene
615 analysis (Qiu et al., 2017).

616 4.18 Cell-cell communication analysis

617 The cell-cell communication was measured by quantification of ligand-receptor pairs among
618 different cell types. Gene expression matrices and metadata with major cell annotations were used
619 as input for the CellChat package (v1.6.1) (S. Jin et al., 2021).

620 4.19 Spatial transcriptomics data analysis.

621 Spatial Transcriptomics slides were printed with two identical capture areas from 1 healthy
622 sample and 1 periodontitis sample (Caetano et al., 2023). The capture of gene expression
623 information for ST slides was performed by the Visium Spatial platform of 10x Genomics through
624 the use of spatially barcoded mRNA-binding oligonucleotides in the default protocol. Raw UMI
625 counts spot matrices, imaging data, spot-image coordinates, and scale factors were imported into R
626 using the Seurat package (versions 4.2.2). Normalization across spots was performed with the
627 ‘LogVMR’ function. Dimensionality reduction and clustering were performed with independent
628 component analysis (PCA) at resolution 1 with the first 30 PCs. Signature scoring derived from
629 scRNA-seq or ST signatures was performed with the ‘AddModuleScore’ function with default
630 parameters in Seurat. Spatial feature expression plots were generated with the SpatialFeaturePlot
631 function in Seurat (versions 3.2.1). To further increase data resolution at a subspot level, we applied
632 the BayesSpace package (Zhao et al., 2021).

633 4.20 Statistical analysis

634 GraphPad Prism software (version 6.0, USA) was used for statistical analyses. Data were
635 presented as the mean and standard deviation (SD) in all graphs. Data were analyzed using the
636 unpaired Student’s t-test in order to compare group pairs or ANOVA for multiple group comparisons.
637 Statistical significance was set at $p < 0.05$.

638

639 **Acknowledgements**

640 Thanks to all clinical participants for their contribution. We Would like to thank Dr. Zhixian
641 Qiao and Xiaocui Chai at The Analysis and Testing Center of Institute of Hydrobiology, Chinese
642 Academy of Sciences for their assistance with RNA-seq and data analysis.

643 **Competing interests**

644 The authors declare that no competing interests exist.

645 **Funding**

646 The National Natural Science Foundation of China (No.32370816) and Research Project of
647 School and Hospital of Stomatology Wuhan University (No.ZW202403) for Haibin Xia.
648 Undergraduate Training Programs for Innovation and Entrepreneurship of Wuhan University,
649 (No.S202510486507) for Min Wang. The funders had no role in study design, data collection, and
650 interpretation, or the decision to submit the work for publication.

651 **Author contributions**

652 **Liangliang Fu:** Conceptualization, Investigation, Formal analysis, Supervision, Project
653 administration, Methodology, Writing—original draft; **Chenghu Yin:** Conceptualization,
654 Investigation, Formal analysis, Software, Methodology, Validation, Writing—original draft; **Qin**
655 **Zhao:** Methodology, Resources, Supervision; **Shuling Guo:** Software, Visualization; **Wenjun**
656 **Shao:** Data curation, Software; **Ting Xia:** Methodology, Software; **Quan Sun:** Methodology,
657 Visualization; **Liangwen Chen:** Resources, Visualization; **Jinghan Li:** Methodology, Software,
658 Validation. **Min Wang:** Funding acquisition, Project administration, Writing—review and editing;
659 **Haibin Xia:** Conceptualization, Funding acquisition, Project administration, Writing—review and
660 editing.

661 **Ethics Statement**

662 Human subjects: All individuals provided written informed consent and this study was
663 supported by the Ethics Committee of School & Hospital China Hospital of Stomatology Wuhan
664 University (WDKQ2024B01).

665 The animal tests in this study adhere to the guidelines established by the Animal Research
666 Ethics Committee at the School & Hospital of Stomatology, Wuhan University, China. The Ethics
667 Committee approved the Animal Use research with protocol number No. S07922040A.

668 **Data availability**

669 Upon a reasonable request, the corresponding author is able to furnish all the essential data that

670 backs up the discoveries of this research. Single-cell RNA-sequencing data obtained in this study
671 are provided in NIH Gene Expression Omnibus (GSE164241, GSE152042 and GSE242714):

672 References

- 673 Alayash, Z., Baumeister, S. E., Holtfreter, B., Kocher, T., Baurecht, H., Ehmke, B., . . . Reckelkamm, S.
674 L. (2024). Complement C3 as a potential drug target in periodontitis: Evidence from the cis-
675 Mendelian randomization approach. *J Clin Periodontol*, 51(2), 127-134.
676 doi:10.1111/jcpe.13894
- 677 An, J. Y., Kerns, K. A., Ouellette, A., Robinson, L., Morris, H. D., Kaczorowski, C., . . . Kaeberlein, M.
678 (2020). Rapamycin rejuvenates oral health in aging mice. *eLife*, 9. doi:10.7554/eLife.54318
- 679 Ando, Y., Tsukasaki, M., Huynh, N. C., Zang, S., Yan, M., Muro, R., . . . Takayanagi, H. (2024). The
680 neutrophil-osteogenic cell axis promotes bone destruction in periodontitis. *Int J Oral Sci*, 16(1),
681 18. doi:10.1038/s41368-023-00275-8
- 682 Aquino-Martinez, R. (2023). The Emerging Role of Accelerated Cellular Senescence in Periodontitis. *J
683 Dent Res*, 102(8), 854-862. doi:10.1177/00220345231154567
- 684 Aquino-Martinez, R., Eckhardt, B. A., Rowsey, J. L., Fraser, D. G., Khosla, S., Farr, J. N., & Monroe, D.
685 G. (2021). Senescent cells exacerbate chronic inflammation and contribute to periodontal
686 disease progression in old mice. *J Periodontol*, 92(10), 1483-1495. doi:10.1002/jper.20-0529
- 687 Aquino-Martinez, R., Rowsey, J. L., Fraser, D. G., Eckhardt, B. A., Khosla, S., Farr, J. N., & Monroe, D.
688 G. (2020). LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar
689 bone loss and periodontal disease pathogenesis. *Bone*, 132, 115220.
690 doi:10.1016/j.bone.2019.115220
- 691 Armitage, G. C. (1999). Development of a classification system for periodontal diseases and conditions.
692 *Ann Periodontol*, 4(1), 1-6. doi:10.1902/annals.1999.4.1.1
- 693 Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence
694 data. *Bioinformatics*, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170
- 695 Caetano, A. J., Redhead, Y., Karim, F., Dhami, P., Kannambath, S., Nuamah, R., . . . Sharpe, P. T. (2023).
696 Spatially resolved transcriptomics reveals pro-inflammatory fibroblast involved in lymphocyte
697 recruitment through CXCL8 and CXCL10. *eLife*, 12, e81525. doi:10.7554/eLife.81525
- 698 Caetano, A. J., Yianni, V., Volponi, A., Booth, V., D'Agostino, E. M., & Sharpe, P. (2021). Defining
699 human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease.
700 *eLife*, 10, e62810. doi:10.7554/eLife.62810
- 701 Campisi, J. (2013). Aging, cellular senescence, and cancer. *Annu Rev Physiol*, 75, 685-705.
702 doi:10.1146/annurev-physiol-030212-183653
- 703 Chapple, I. L., & Matthews, J. B. (2007). The role of reactive oxygen and antioxidant species in
704 periodontal tissue destruction. *Periodontol 2000*, 43(1), 160-232. doi:10.1111/j.1600-
705 0757.2006.00178.x
- 706 Coppé, J. P., Desprez, P. Y., Krtolica, A., & Campisi, J. (2010). The senescence-associated secretory
707 phenotype: the dark side of tumor suppression. *Annu Rev Pathol*, 5, 99-118.
708 doi:10.1146/annurev-pathol-121808-102144
- 709 Ding, H., Dai, Y., Lei, Y., Wang, Z., Liu, D., Li, R., . . . Hu, Y. (2019). Upregulation of CD81 in
710 trophoblasts induces an imbalance of Treg/Th17 cells by promoting IL-6 expression in
711 preeclampsia. *Cell Mol Immunol*, 16(1), 302-312. doi:10.1038/s41423-018-0186-9
- 712 Eke, P. I., Borgnakke, W. S., & Genco, R. J. (2020). Recent epidemiologic trends in periodontitis in the

- 713 USA. *Periodontol 2000*, 82(1), 257-267. doi:10.1111/prd.12323
- 714 El-Awady, A. R., Elashiry, M., Morandini, A. C., Meghil, M. M., & Cutler, C. W. (2022). Dendritic cells
715 a critical link to alveolar bone loss and systemic disease risk in periodontitis:
716 Immunotherapeutic implications. *Periodontol 2000*, 89(1), 41-50. doi:10.1111/prd.12428
- 717 González-Osuna, L., Sierra-Cristancho, A., Cafferata, E. A., Melgar-Rodríguez, S., Rojas, C., Carvajal,
718 P., . . . Vernal, R. (2022). Senescent CD4(+)CD28(-) T Lymphocytes as a Potential Driver of
719 Th17/Treg Imbalance and Alveolar Bone Resorption during Periodontitis. *Int J Mol Sci*, 23(5),
720 2543. doi:10.3390/ijms23052543
- 721 Guo, S., Fu, L., Yin, C., Shao, W., Sun, Q., Chen, L., . . . Xia, H. (2024). ROS-Induced Gingival Fibroblast
722 Senescence: Implications in Exacerbating Inflammatory Responses in Periodontal Disease.
723 *Inflammation*, 47(6), 1918-1935. doi:10.1007/s10753-024-02014-5
- 724 Ha, D. Y., Jung, J. S., Choi, G. H., & Ji, S. (2022). Polarization of human gingival fibroblasts by Th1-,
725 Th2-, Th17-, and Treg-derived cytokines. *J Periodontal Res*, 57(3), 487-501.
726 doi:10.1111/jre.12978
- 727 Hajishengallis, G., & Chavakis, T. (2021). Local and systemic mechanisms linking periodontal disease
728 and inflammatory comorbidities. *Nat Rev Immunol*, 21(7), 426-440. doi:10.1038/s41577-020-
729 00488-6
- 730 Hanagata, N., & Li, X. (2011). Osteoblast-enriched membrane protein IFITM5 regulates the association
731 of CD9 with an FKBP11-CD81-FPRP complex and stimulates expression of interferon-induced
732 genes. *Biochem Biophys Res Commun*, 409(3), 378-384. doi:10.1016/j.bbrc.2011.04.136
- 733 Huttner, E. A., Machado, D. C., de Oliveira, R. B., Antunes, A. G., & Hebling, E. (2009). Effects of
734 human aging on periodontal tissues. *Spec Care Dentist*, 29(4), 149-155. doi:10.1111/j.1754-
735 4505.2009.00082.x
- 736 Jin, S., Guerrero-Juarez, C. F., Zhang, L., Chang, I., Ramos, R., Kuan, C. H., . . . Nie, Q. (2021). Inference
737 and analysis of cell-cell communication using CellChat. *Nat Commun*, 12(1), 1088.
738 doi:10.1038/s41467-021-21246-9
- 739 Jin, Y., Takeda, Y., Kondo, Y., Tripathi, L. P., Kang, S., Takeshita, H., . . . Kumanogoh, A. (2018). Double
740 deletion of tetraspanins CD9 and CD81 in mice leads to a syndrome resembling accelerated
741 aging. *Sci Rep*, 8(1), 5145. doi:10.1038/s41598-018-23338-x
- 742 Karam, J., Méresse, S., Kremer, L., & Daher, W. (2020). The roles of tetraspanins in bacterial infections.
743 *Cell Microbiol*, 22(12), e13260. doi:10.1111/cmi.13260
- 744 Kim, T. S., Silva, L. M., Theofilou, V. I., Greenwell-Wild, T., Li, L., Williams, D. W., . . . Moutsopoulos,
745 N. M. (2023). Neutrophil extracellular traps and extracellular histones potentiate IL-17
746 inflammation in periodontitis. *J Exp Med*, 220(9), e20221751. doi:10.1084/jem.20221751
- 747 Kodali, M., Attaluri, S., Madhu, L. N., Shuai, B., Upadhyaya, R., Gonzalez, J. J., . . . Shetty, A. K. (2021).
748 Metformin treatment in late middle age improves cognitive function with alleviation of
749 microglial activation and enhancement of autophagy in the hippocampus. *Aging Cell*, 20(2),
750 e13277. doi:10.1111/ace.13277
- 751 Kondo, T., Gleason, A., Okawa, H., Hokugo, A., & Nishimura, I. (2023). Mouse gingival single-cell
752 transcriptomic atlas identified a novel fibroblast subpopulation activated to guide oral barrier
753 immunity in periodontitis. *eLife*, 12, RP88183. doi:10.7554/eLife.88183
- 754 Kuang, Y., Hu, B., Feng, G., Xiang, M., Deng, Y., Tan, M., . . . Song, J. (2020). Metformin prevents
755 against oxidative stress-induced senescence in human periodontal ligament cells.
756 *Biogerontology*, 21(1), 13-27. doi:10.1007/s10522-019-09838-x

- 757 Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., . . . Ma'ayan, A.
758 (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. *Nucleic
759 Acids Res*, 44(W1), W90-97. doi:10.1093/nar/gkw377
- 760 Lagnado, A., Leslie, J., Ruchaud-Sparagano, M. H., Victorelli, S., Hirsova, P., Ogrodnik, M., . . . Passos,
761 J. F. (2021). Neutrophils induce paracrine telomere dysfunction and senescence in ROS-
762 dependent manner. *Embo j*, 40(9), e106048. doi:10.15252/embj.2020106048
- 763 Li, J., Fu, L., Lu, Q., Guo, S., Chen, S., Xia, T., . . . Xia, H. (2024). Comparison of the osteogenic potential
764 of fibroblasts from different sources. *Tissue Cell*, 88, 102358. doi:10.1016/j.tice.2024.102358
- 765 Li, S., Livingston, M. J., Ma, Z., Hu, X., Wen, L., Ding, H. F., . . . Dong, Z. (2023). Tubular cell
766 senescence promotes maladaptive kidney repair and chronic kidney disease after cisplatin
767 nephrotoxicity. *JCI Insight*, 8(8), e166643. doi:10.1172/jci.insight.166643
- 768 Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for
769 RNA-seq data with DESeq2. *Genome Biol*, 15(12), 550. doi:10.1186/s13059-014-0550-8
- 770 Neves, V. C. M., Satie Okajima, L., Elbahtety, E., Joseph, S., Daly, J., Menon, A., . . . Ide, M. (2023).
771 Repurposing Metformin for periodontal disease management as a form of oral-systemic
772 preventive medicine. *J Transl Med*, 21(1), 655. doi:10.1186/s12967-023-04456-1
- 773 New, C., Lee, Z. Y., Tan, K. S., Wong, A. H., Wang, Y., & Tran, T. (2021). Tetraspanins: Host Factors in
774 Viral Infections. *Int J Mol Sci*, 22(21), 11609. doi:10.3390/ijms222111609
- 775 Oguri, Y., Shinoda, K., Kim, H., Alba, D. L., Bolus, W. R., Wang, Q., . . . Kajimura, S. (2020). CD81
776 Controls Beige Fat Progenitor Cell Growth and Energy Balance via FAK Signaling. *Cell*, 182(3),
777 563-577.e520. doi:10.1016/j.cell.2020.06.021
- 778 Ohtani, N., & Hara, E. (2013). Roles and mechanisms of cellular senescence in regulation of tissue
779 homeostasis. *Cancer Sci*, 104(5), 525-530. doi:10.1111/cas.12118
- 780 Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression
781 analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. *Nat Protoc*, 11(9),
782 1650-1667. doi:10.1038/nprot.2016.095
- 783 Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla, R., Pliner, H. A., & Trapnell, C. (2017). Reversed graph
784 embedding resolves complex single-cell trajectories. *Nat Methods*, 14(10), 979-982.
785 doi:10.1038/nmeth.4402
- 786 Raynard, C., Ma, X., Huna, A., Tessier, N., Massemin, A., Zhu, K., . . . Bernard, D. (2022). NF-κB-
787 dependent secretome of senescent cells can trigger neuroendocrine transdifferentiation of breast
788 cancer cells. *Aging Cell*, 21(7), e13632. doi:10.1111/ace1.13632
- 789 Rodier, F., Coppé, J. P., Patil, C. K., Hoeijmakers, W. A., Muñoz, D. P., Raza, S. R., . . . Campisi, J.
790 (2009). Persistent DNA damage signalling triggers senescence-associated inflammatory
791 cytokine secretion. *Nat Cell Biol*, 11(8), 973-979. doi:10.1038/ncb1909
- 792 Sanz, M., Del Castillo, A. M., Jepsen, S., Gonzalez-Juanatey, J. R., D'Aiuto, F., Bouchard, P., . . . Wimmer,
793 G. (2020). Periodontitis and Cardiovascular Diseases. Consensus Report. *Glob Heart*, 15(1), 1.
794 doi:10.5334/gh.400
- 795 Saul, D., Kosinsky, R. L., Atkinson, E. J., Doolittle, M. L., Zhang, X., LeBrasseur, N. K., . . . Khosla, S.
796 (2022). A new gene set identifies senescent cells and predicts senescence-associated pathways
797 across tissues. *Nat Commun*, 13(1), 4827. doi:10.1038/s41467-022-32552-1
- 798 Sayegh, S., Fantecelle, C. H., Laphanuwat, P., Subramanian, P., Rustin, M. H. A., Gomes, D. C. O., . . .
799 Chambers, E. S. (2024). Vitamin D(3) inhibits p38 MAPK and senescence-associated
800 inflammatory mediator secretion by senescent fibroblasts that impacts immune responses during

- ageing. *Aging Cell*, 23(4), e14093. doi:10.1111/acel.14093

Song, J., Zhang, Y., Bai, Y., Sun, X., Lu, Y., Guo, Y., . . . Deng, X. (2023). The Deubiquitinase OTUD1 Suppresses Secretory Neutrophil Polarization And Ameliorates Immunopathology of Periodontitis. *Adv Sci (Weinh)*, 10(30), e2303207. doi:10.1002/advs.202303207

Soukas, A. A., Hao, H., & Wu, L. (2019). Metformin as Anti-Aging Therapy: Is It for Everyone? *Trends Endocrinol Metab*, 30(10), 745-755. doi:10.1016/j.tem.2019.07.015

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., . . . Mesirov, J. P. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc Natl Acad Sci U S A*, 102(43), 15545-15550. doi:10.1073/pnas.0506580102

Sun, B., Ying, S., Ma, Q., Li, H., Li, J., & Song, J. (2023). Metformin ameliorates HMGB1-mediated oxidative stress through mTOR pathway in experimental periodontitis. *Genes Dis*, 10(2), 542-553. doi:10.1016/j.gendis.2021.06.003

Tang, Q., Markby, G. R., MacNair, A. J., Tang, K., Tkacz, M., Parys, M., . . . Corcoran, B. M. (2023). TGF- β -induced PI3K/AKT/mTOR pathway controls myofibroblast differentiation and secretory phenotype of valvular interstitial cells through the modulation of cellular senescence in a naturally occurring in vitro canine model of myxomatous mitral valve disease. *Cell Prolif*, 56(6), e13435. doi:10.1111/cpr.13435

Tobon-Arroyave, S. I., Celis-Mejia, N., Cordoba-Hidalgo, M. P., & Isaza-Guzman, D. M. (2019). Decreased salivary concentration of CD9 and CD81 exosome-related tetraspanins may be associated with the periodontal clinical status. *J Clin Periodontol*, 46(4), 470-480. doi:10.1111/jcpe.13099

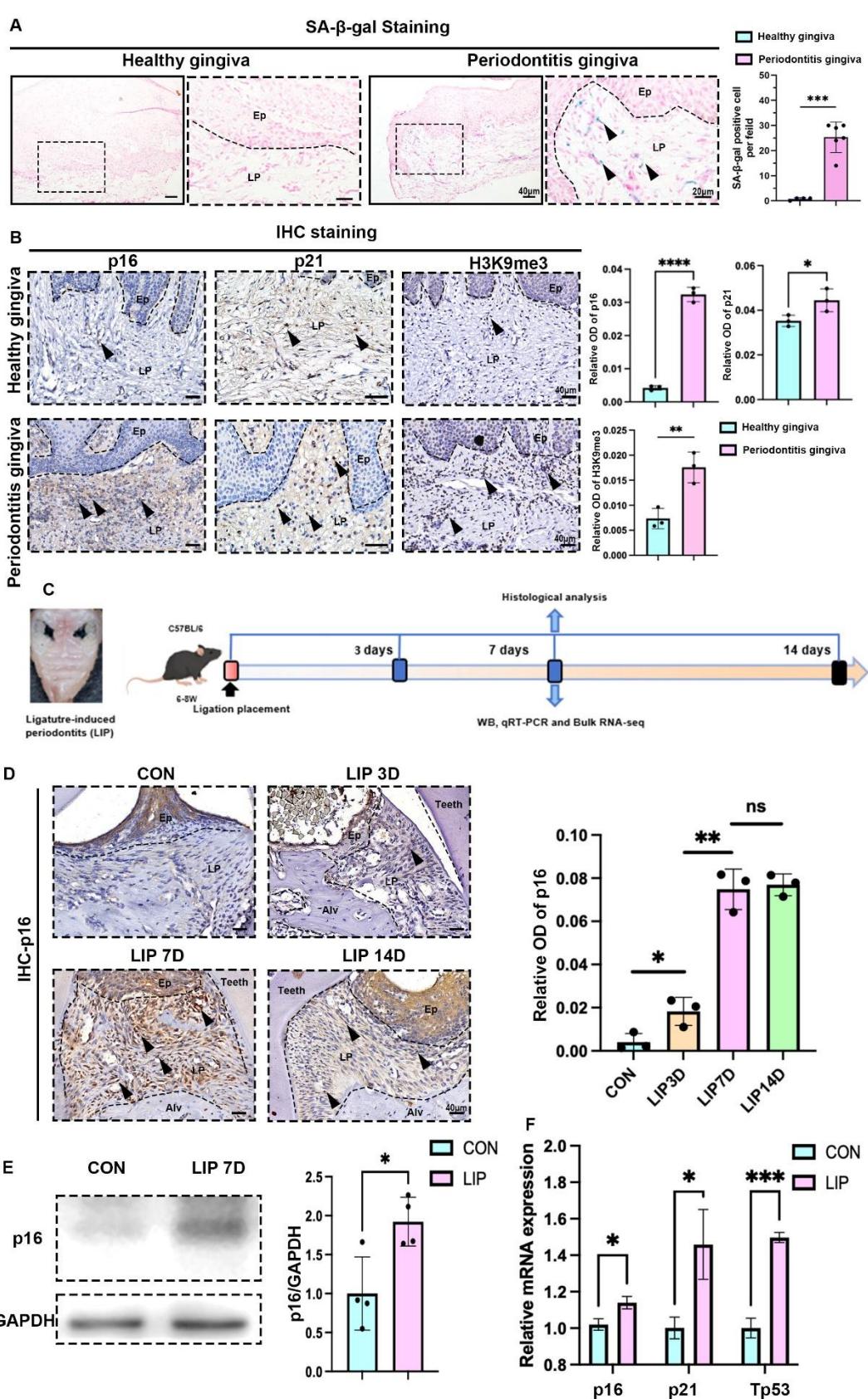
Uriarte, S. M., & Hajishengallis, G. (2023). Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. *Immunol Rev*, 314(1), 93-110. doi:10.1111/imr.13152

Wang, B., Wu, L., Chen, J., Dong, L., Chen, C., Wen, Z., . . . Wang, D. W. (2021). Metabolism pathways of arachidonic acids: mechanisms and potential therapeutic targets. *Signal Transduct Target Ther*, 6(1), 94. doi:10.1038/s41392-020-00443-w

Wielento, A., Lagosz-Cwik, K. B., Potempa, J., & Grabiec, A. M. (2023). The Role of Gingival Fibroblasts in the Pathogenesis of Periodontitis. *J Dent Res*, 102(5), 489-496. doi:10.1177/00220345231151921

Williams, D. W., Greenwell-Wild, T., Brenchley, L., Dutzan, N., Overmiller, A., Sawaya, A. P., . . . Moutsopoulos, N. M. (2021). Human oral mucosa cell atlas reveals a stromal-neutrophil axis regulating tissue immunity. *Cell*, 184(15), 4090-4104.e4015. doi:10.1016/j.cell.2021.05.013

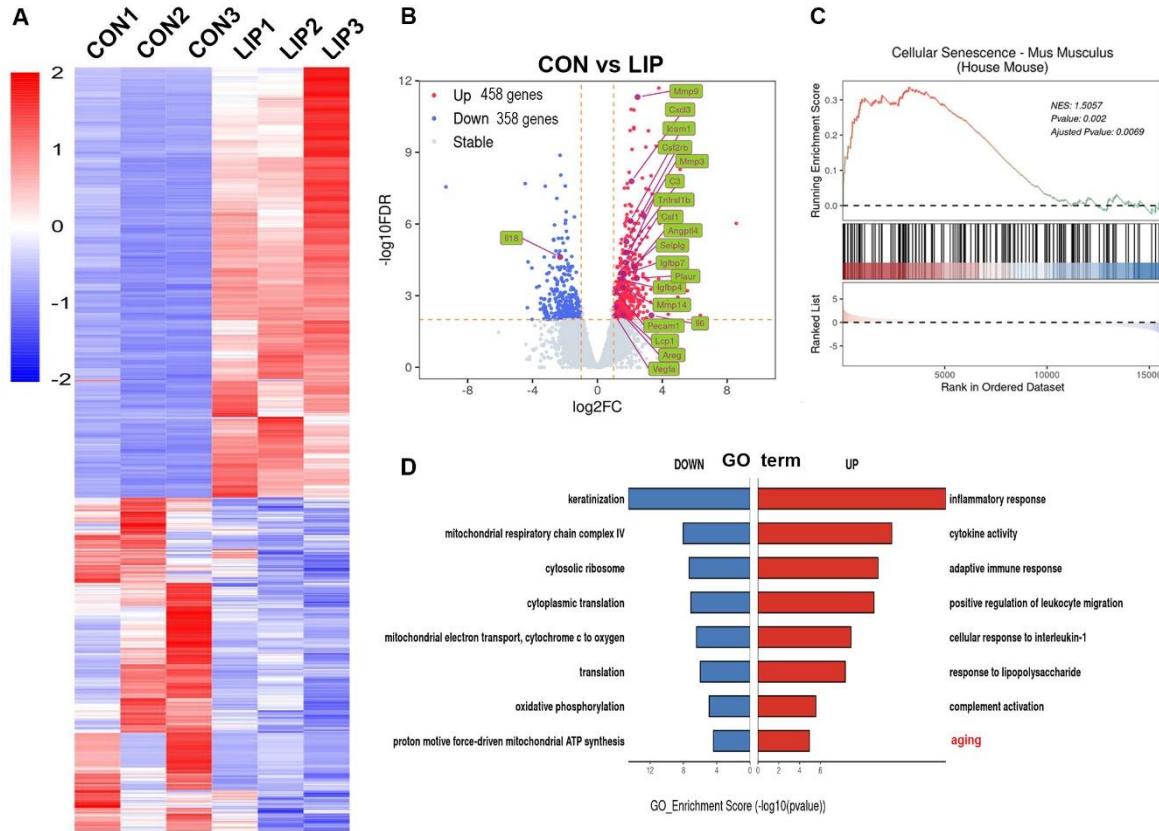
Wolff, L., Dahlén, G., & Aeppli, D. (1994). Bacteria as risk markers for periodontitis. *J Periodontol*, 65(5 Suppl), 498-510. doi:10.1902/jop.1994.65.5s.498


Wu, Y., Yang, S., Ma, J., Chen, Z., Song, G., Rao, D., . . . Gao, Q. (2022). Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. *Cancer Discov*, 12(1), 134-153. doi:10.1158/2159-8290.CD-21-0316

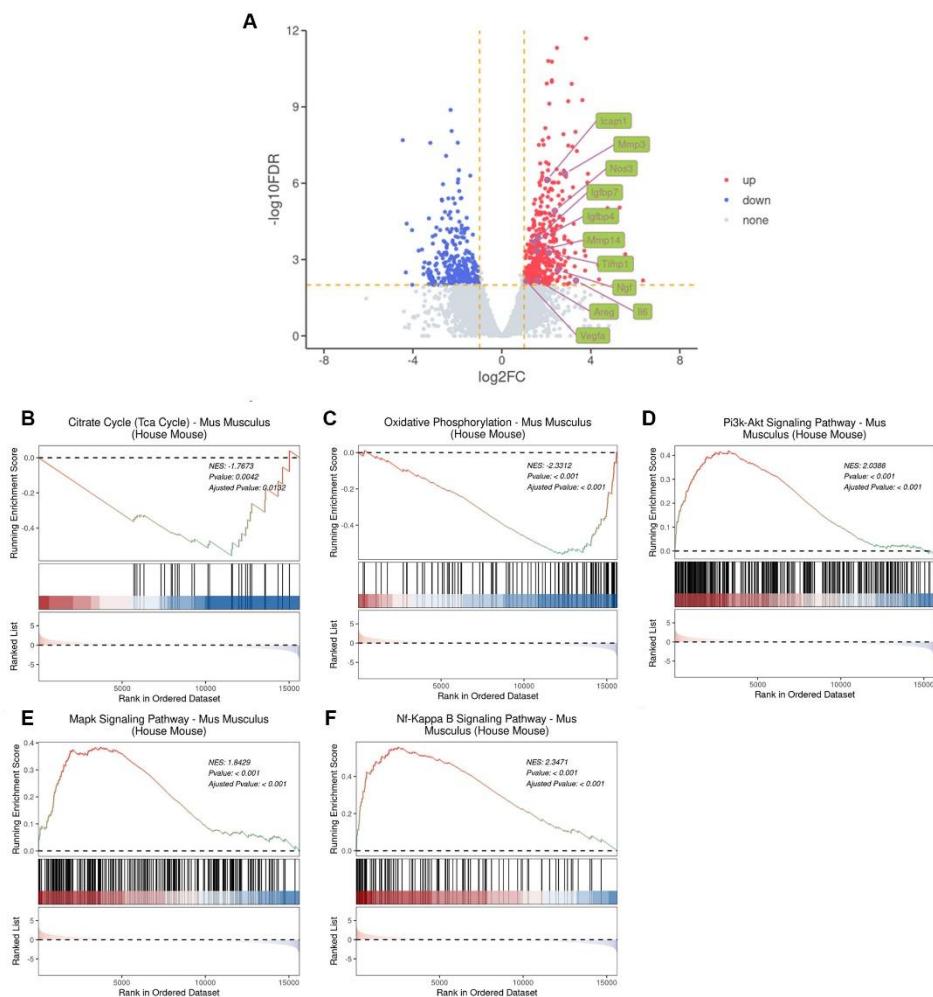
Yin, C., Fu, L., Guo, S., Liang, Y., Shu, T., Shao, W., . . . Wang, M. (2025). Senescent Fibroblasts Drive FAP/OLN Imbalance Through mTOR Signaling to Exacerbate Inflammation and Bone Resorption in Periodontitis. *Adv Sci (Weinh)*, 12(7), e2409398. doi:10.1002/advs.202409398

Yipp, B. G., Petri, B., Salina, D., Jenne, C. N., Scott, B. N., Zbytnuik, L. D., . . . Kubes, P. (2012). Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. *Nat*

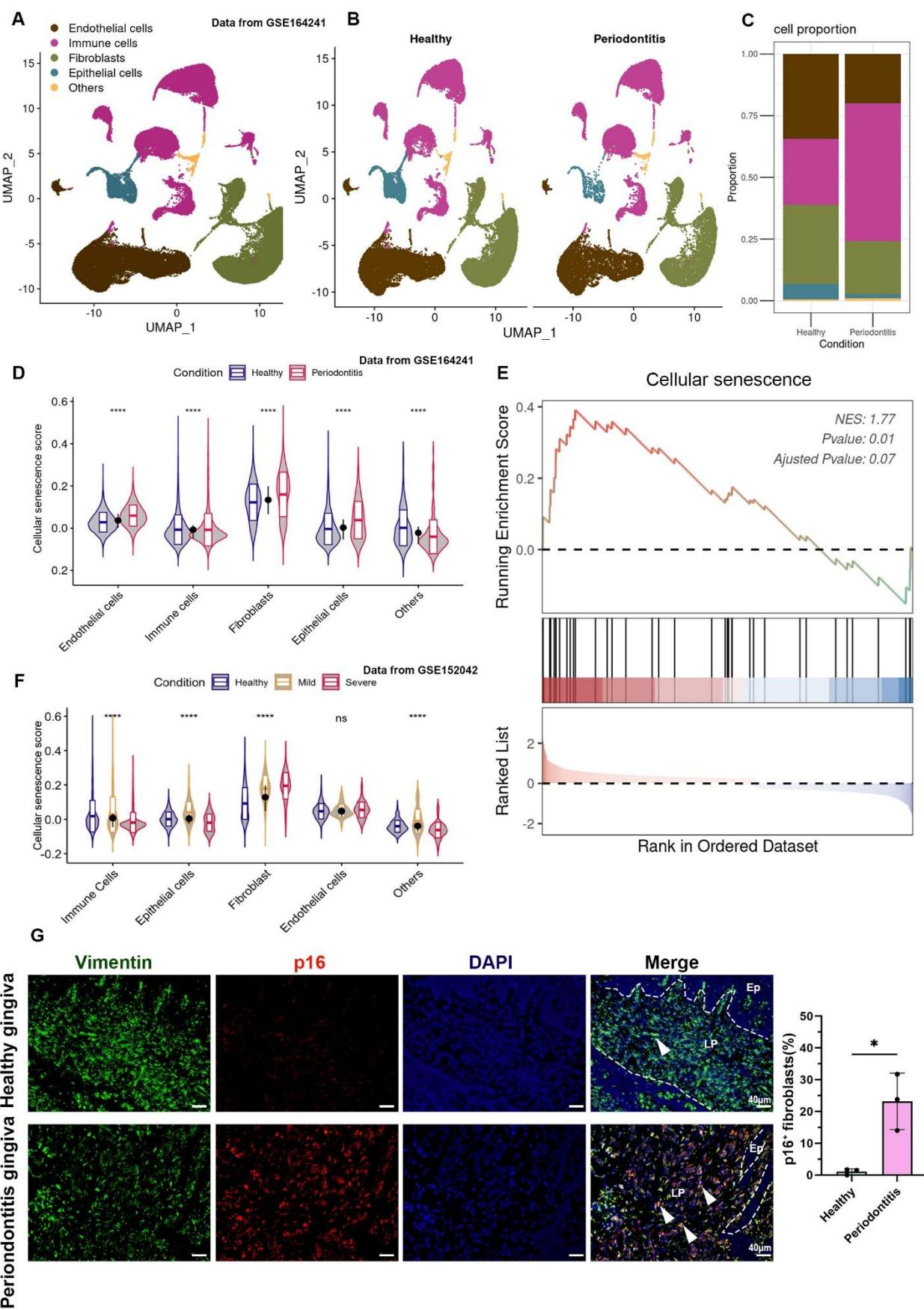
- 845 *Med*, 18(9), 1386-1393. doi:10.1038/nm.2847
- 846 Yu, Y. M., Lu, Y. P., Zhang, T., Zheng, Y. F., Liu, Y. S., & Xia, D. D. (2024). Biomaterials science and
847 surface engineering strategies for dental peri-implantitis management. *Mil Med Res*, 11(1), 29.
848 doi:10.1186/s40779-024-00532-9
- 849 Zhang, Z., Cui, F., Lin, C., Zhao, L., Wang, C., & Zou, Q. (2021). Critical downstream analysis steps for
850 single-cell RNA sequencing data. *Brief Bioinform*, 22(5), bbab105. doi:10.1093/bib/bbab105
- 851 Zhao, E., Stone, M. R., Ren, X., Guenthoer, J., Smythe, K. S., Pulliam, T., . . . Gottardo, R. (2021). Spatial
852 transcriptomics at subspot resolution with BayesSpace. *Nat Biotechnol*, 39(11), 1375-1384.
853 doi:10.1038/s41587-021-00935-2
- 854
- 855


856 **Figures**

857 **Figure 1. Characteristics of cellular senescence along with periodontitis progression. (A)**

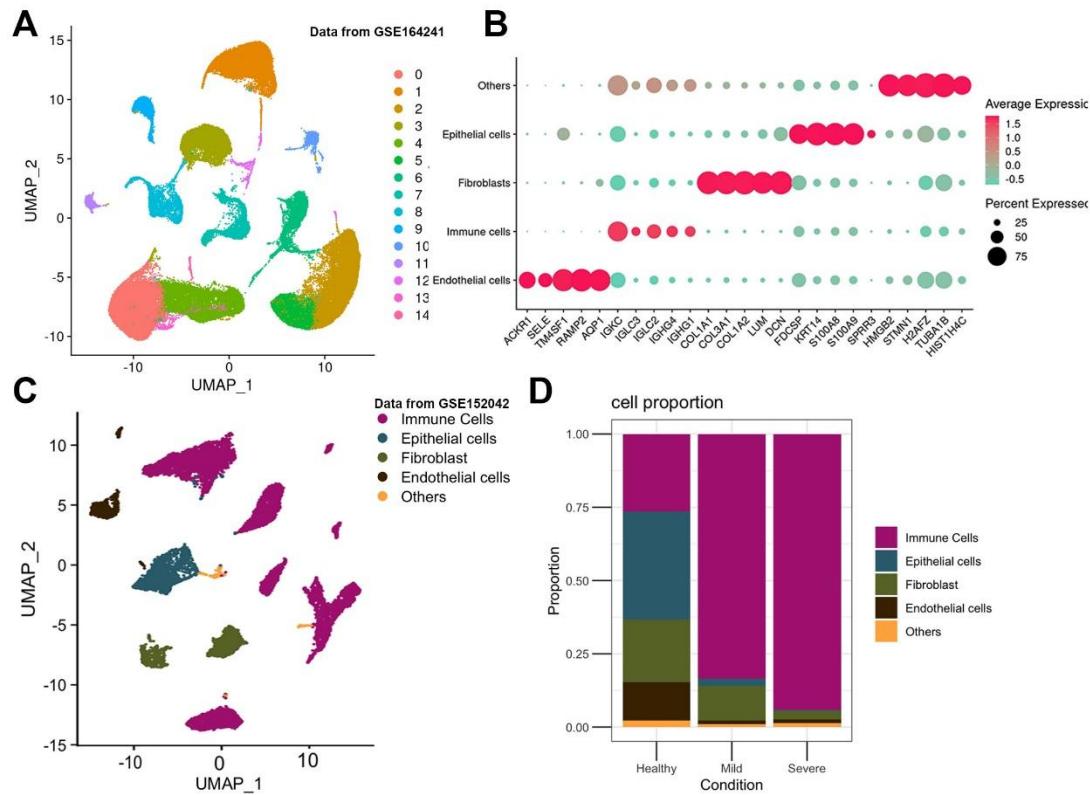

858 Representative image of and semi-quantification of SA- β -gal staining in healthy (n=4 field) and
859 periodontitis (n=6 field) patient gingiva, scale bar=40 μ m or 20 μ m. **(B)** Representative images of
860 IHC staining and semi-quantification of p16, p21 and H3K9me3 in healthy and periodontitis patient
861 gingiva (n=3 field), positive cells were indicated by black arrow, scale bar=40 μ m. **(C)** Analysis
862 strategy of ligature-induced periodontitis (LIP) mouse model. **(D)** Representative image of IHC
863 staining and semi-quantification of p16 in mouse gingiva of health and LIP post 3, 7 and 14 days
864 (n=3 field), scale bar=40 μ m. **(E)** Western blot images and semi-quantification of p16 protein levels
865 in control (CON) and LIP post 7 days (LIP 7D) mouse gingiva (n=4 independent experiments). **(F)**
866 qrt-PCR analysis of p16, p21and Tp53 in control (CON) and LIP 7D mouse gingiva (n=3
867 independent experiments). Ep: Epithelium; LP: Lamina propria; Alv: Alveolar bone; Teeth. Data are
868 expressed as mean \pm SD. *p<0.05, **p<0.01, ***p<0.001. ****p<0.0001.

869



870 **Figure 1-figure supplement 1. Bulk RNA-seq analysis of ligature-induced periodontitis mice**
871 **model. (A)** Heatmap and **(B)** Volcano plots of differentially expressed genes in mouse gingiva at
872 LIP 7D compared to the CON (n=3 samples each group). Representative senescence-related genes
873 are indicated as green. blue dots indicate differentially down-regulated genes; red dots indicate
874 differentially up-regulated genes. Significantly different expression genes with $|\log 2 \text{FC}| > 1$ and
875 $\text{FDR} < 0.05$. **(C)** GSEA enrichment analysis of cellular senescence gene sets in mouse gingiva at
876 LIP 7D compared to the CON. **(D)** GO enrichment analysis with upregulated (red) and
877 downregulated (blue) genes shown in **(A)**. Aging biological process was significantly enriched and
878 highlighted by red.

879

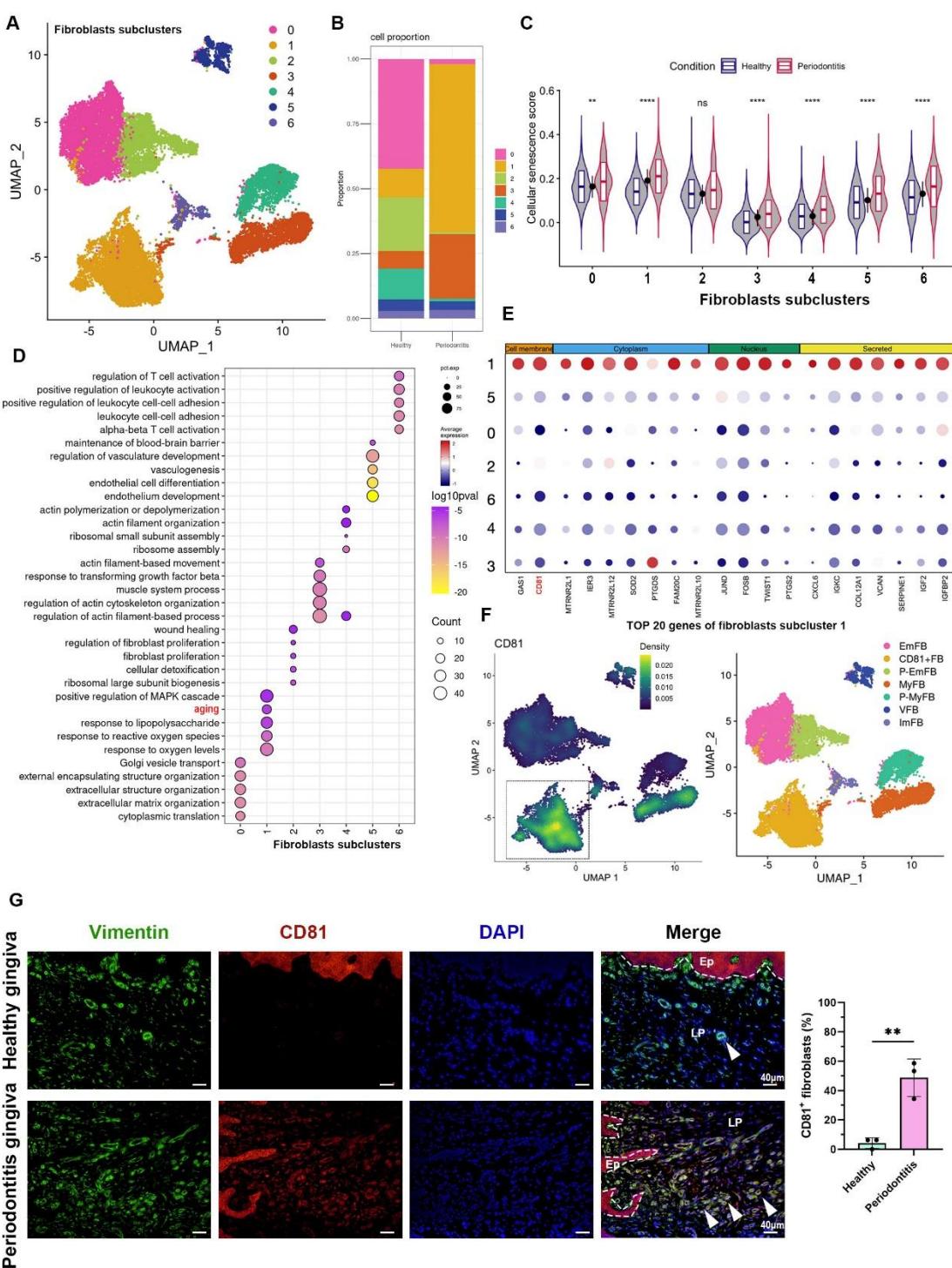

880 **Figure 1-figure supplement 2. Bulk RNA-seq analysis of ligature-induced periodontitis mice**
881 **model in regard to cellular senescence. (A)** Volcano plots of differentially expressed genes in
882 mouse gingiva at LIP 7D compared to the control (CON). Representative senescence-associated
883 secretory phenotypes (SASP) genes are indicated as green. **(B and C)** GSEA enrichment analysis
884 of Citrate Cycle and Oxidative Phosphorylation gene sets in mouse gingiva at LIP 7D compared to
885 the CON, which indicated mitochondrial dysfunction in periodontitis. **(D-F)** GSEA enrichment
886 analysis of Pi3k-Akt, Mapk and Nf-Kappa B signaling pathway gene sets in mouse gingiva at LIP
887 7D compared to the CON, which indicated senescence-associated signaling pathway were activated
888 in periodontitis.

891 **Figure 2. Cellular Senescence of gingival fibroblasts in periodontitis. (A and B) UMAP**
892 diagram and single-cell annotation of cells clusters for the healthy and periodontitis patient gingiva
893 from public dataset GSE164241. **(C)** Histogram of gingival tissue cell ratio in healthy and
894 periodontitis patients. **(D)** The violin plot showing cellular senescence score of cell groups in healthy
895 and periodontitis gingiva. **(E)** GSEA enrichment analysis of cellular senescence pathway in
896 fibroblasts among periodontitis compared to those in healthy gingiva. **(F)** The violin plot showing
897 cellular senescence score in subgroups in gingiva of healthy, mild and severe periodontitis patient
898 from public dataset GSE152042. **(G)** Immunofluorescence staining and semi-quantification of p16
899 positive fibroblasts in healthy and periodontitis patient gingiva. p16 (red), Vimentin (green), and
900 nuclei (blue), Ep: Epithelium; LP: Lamina propria. White arrow indicates double positive cells,
901 scale bar=40 μ m, n=3.

902

903

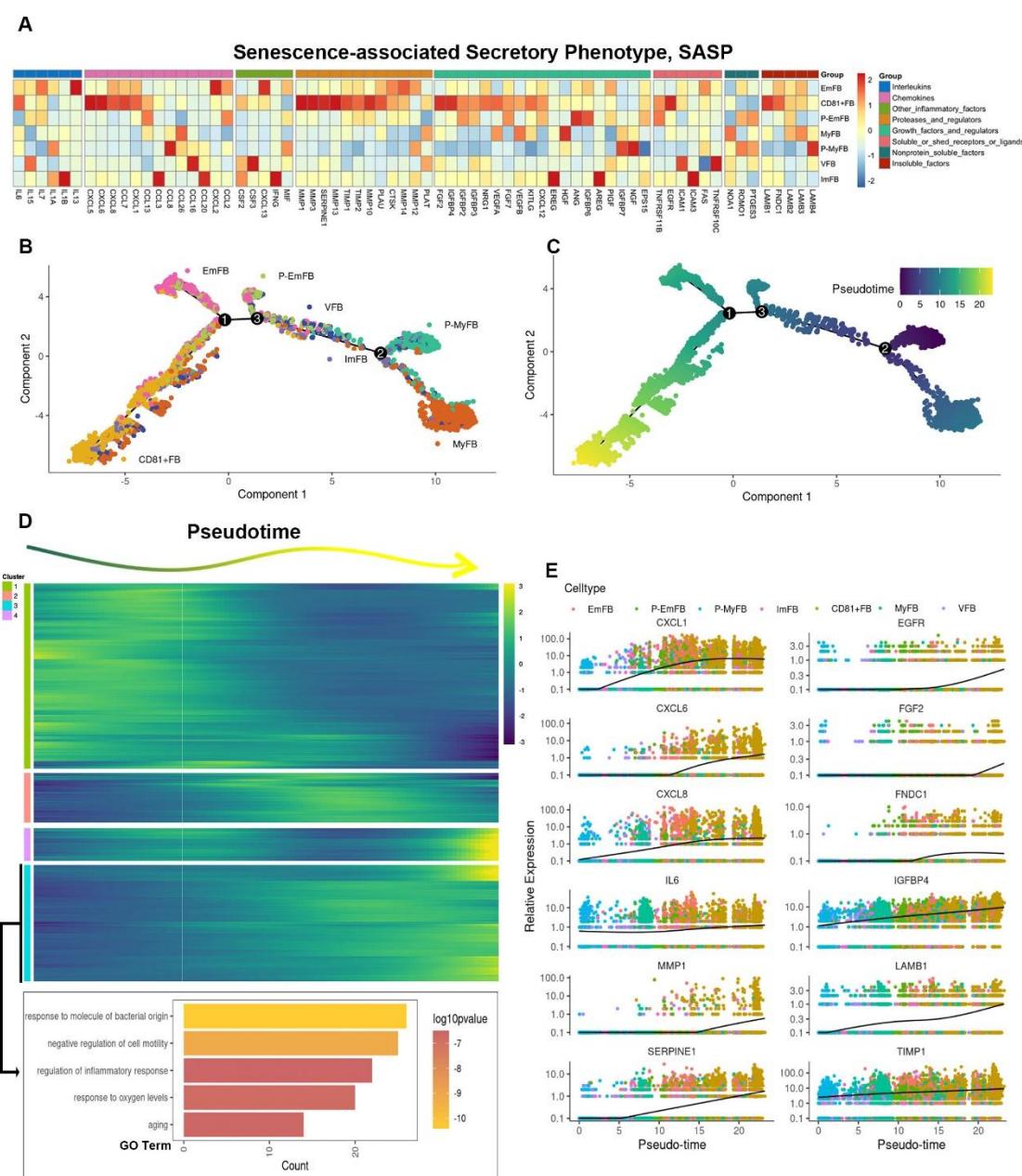
904


905 **Figure 2-figure supplement 1. (A)** UMAP diagram illustrated the cell clusters of GSE164241. **(B)**
906 Marker genes of each cell were shown in the dot plot. **(C)** UMAP diagram and single-cell annotation
907 of cells clusters from GSE152042. **(D)** Histogram of gingival tissue cell ratio in healthy, mild and
908 severe periodontitis patients from GSE152042.

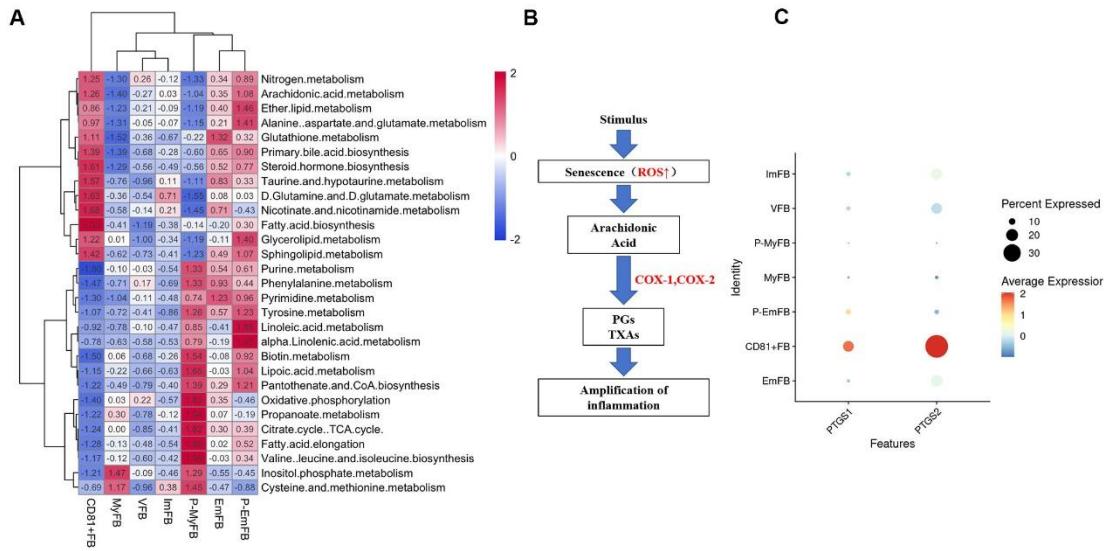
909

910 **Figure 2-figure supplement 2.** (A) SA- β -gal staining and (B) semi-quantification of human
911 gingival fibroblasts stimulated by different concentrations of Pg-LPS (n=3). Black arrow indicates
912 SA- β -gal positive cells. Data are expressed as mean \pm SD. *P \leq 0.05, **P \leq 0.01, ***P \leq 0.001,
913 ****P \leq 0.0001.

914

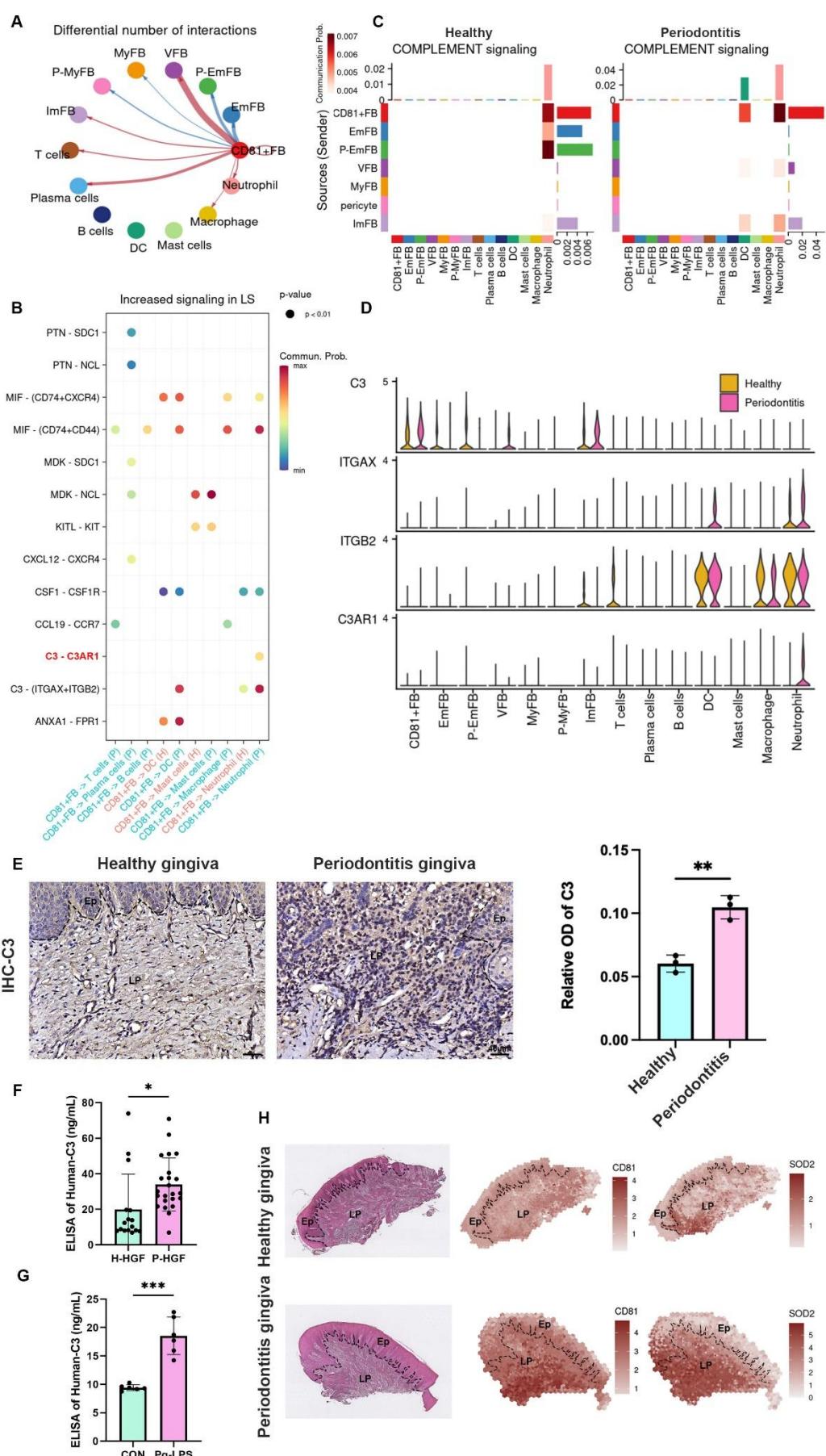


915

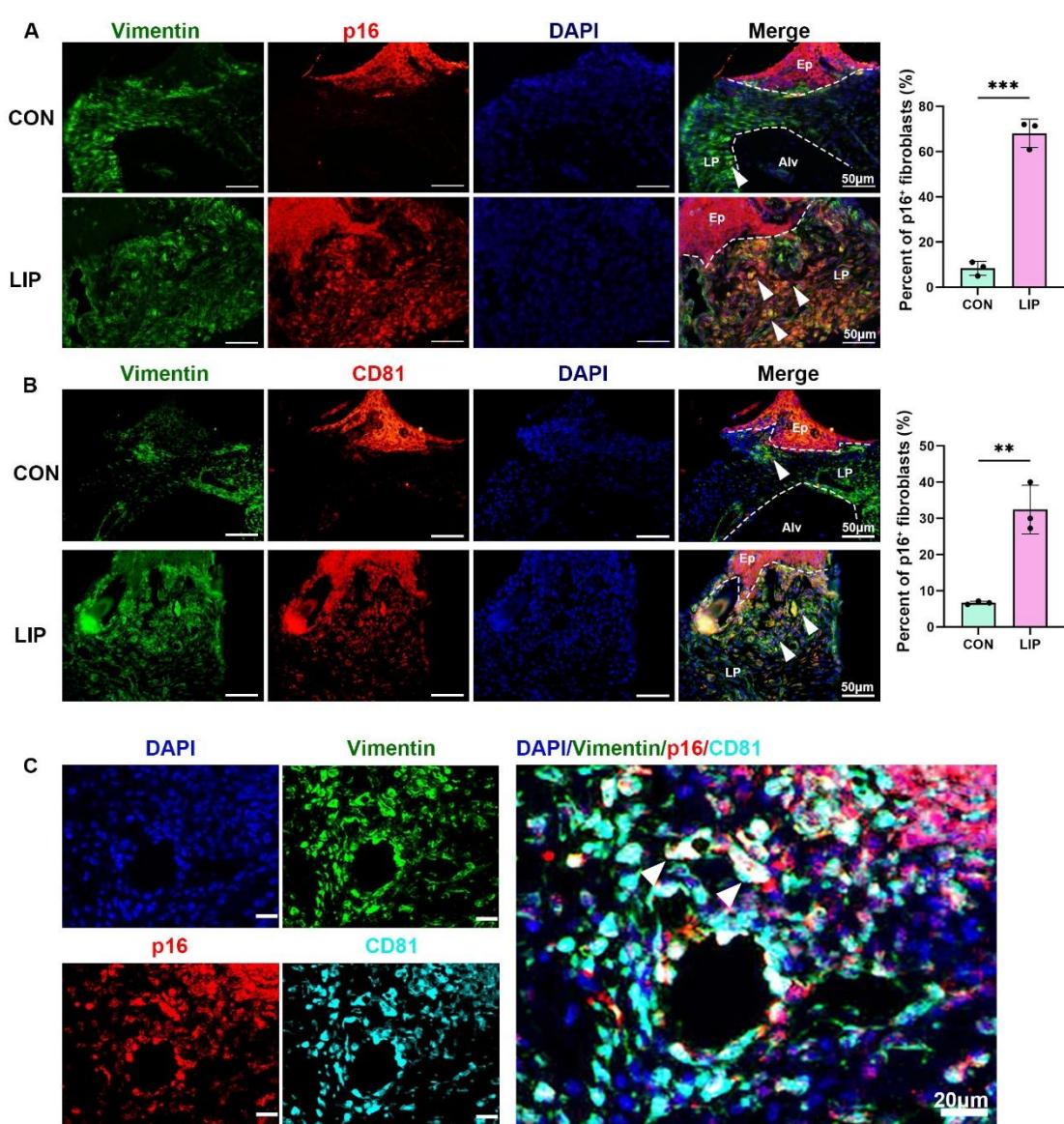

916 **Figure 3. CD81 is identified as the potential marker of senescent gingival fibroblast. (A)** UMAP
 917 diagram illustrated the cell subclusters of fibroblasts from public dataset GSE164241. **(B)**
 918 Histogram of fibroblasts subclusters ratio in healthy and periodontitis gingiva respectively. **(C)** The
 919 violin plot showing cellular senescence score of each fibroblast subcluster in healthy and
 920 periodontitis gingiva. **(D)** GO enrichment analysis of each fibroblast subcluster. Fibroblast
 921 subcluster 1 shows enrichment of aging process highlighted by red. **(E)** Cellular localization of the

922 top 20 marker molecules in fibroblasts subcluster 1. CD81 protein, located at cell membrane, was
923 highlighted by red. (F) Density map of CD81 expression among fibroblast subcluster and re-
924 annotation of fibroblast subcluster according to GO analysis. (G) Immunofluorescence staining and
925 semi-quantification of CD81 positive fibroblasts in healthy and periodontitis patient gingiva. VIM
926 (green), CD81 (red) and nuclei (blue), Ep: Epithelium; LP: Lamina propria. White arrow indicates
927 double positive cells, scale bar=40 μ m, n=3. Data are expressed as mean \pm SD. * P <= 0.05, **P<=
928 0.01, ***P<= 0.001, ****P<= 0.0001.

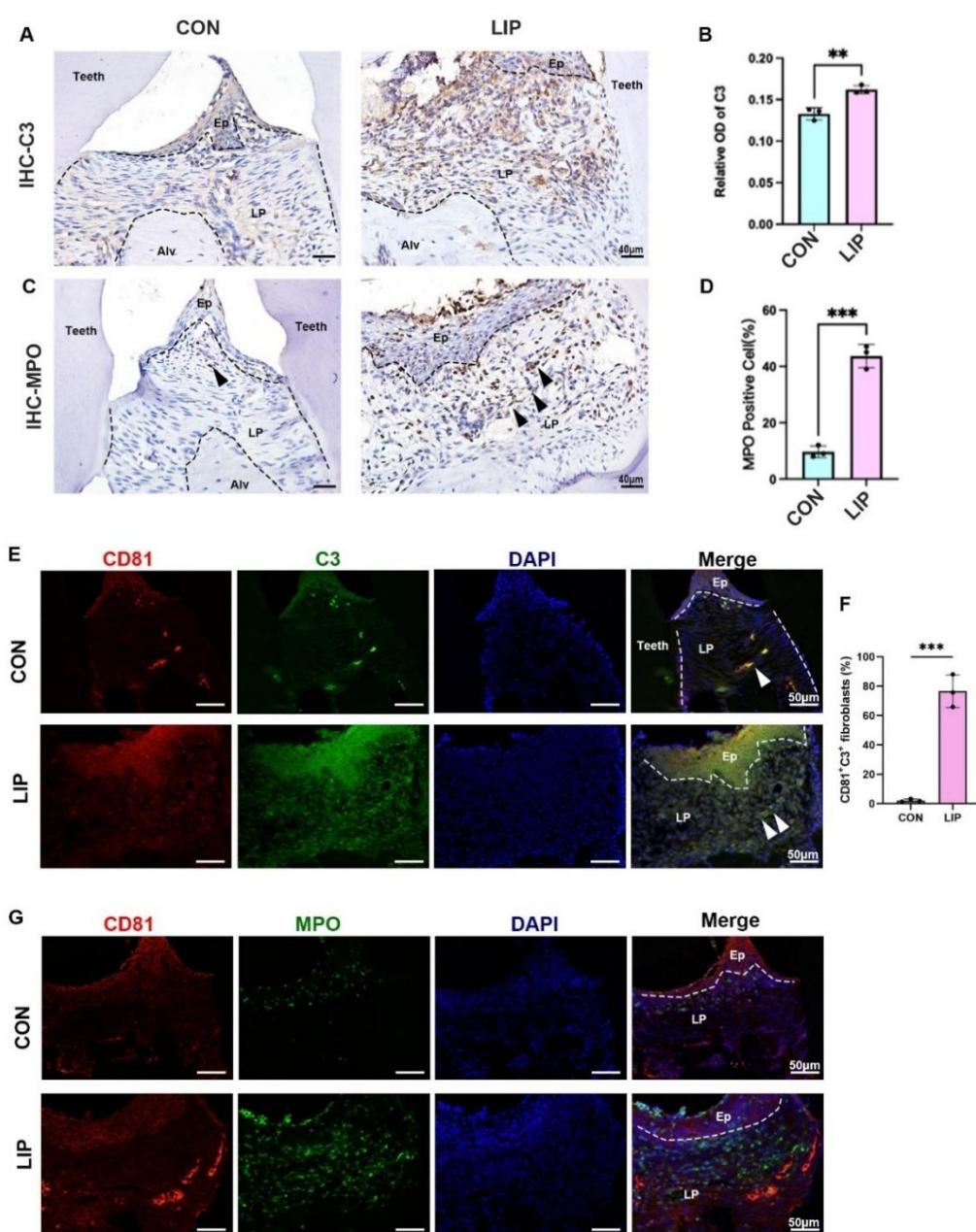
929

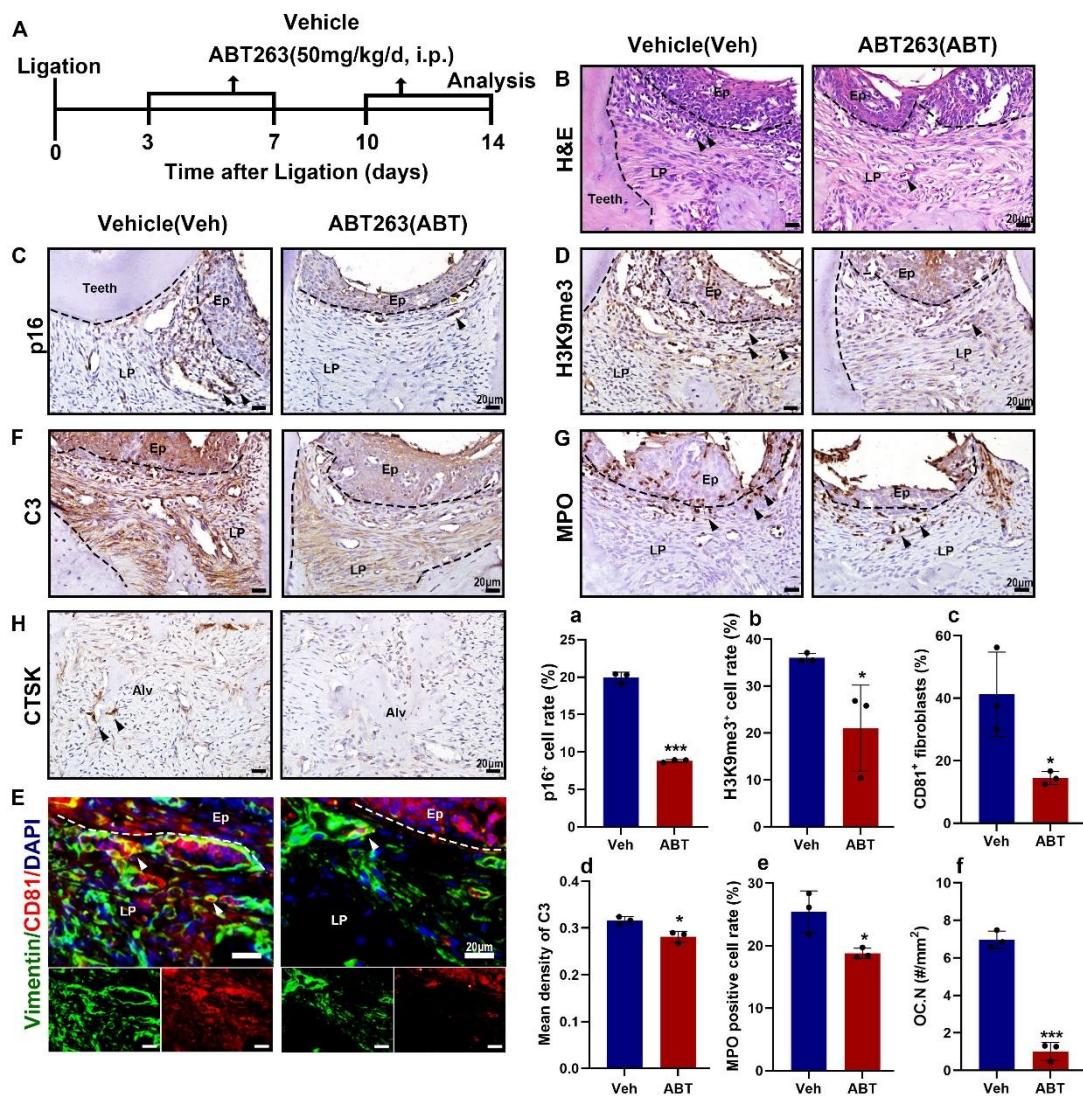


931 **Figure 4. CD81⁺ gingival fibroblasts are terminally differentiational cell with high SASP**
932 **expression.** (A) Heatmap showing the relative expression for SASP genes in each fibroblast
933 subclusters. (B) Trajectory reconstruction of each fibroblast subclusters. (C) Monocle pseudotime
934 analysis revealing the progression of gingival fibroblast clusters. (D) Upper panel: Heatmap
935 showing the scaled expression of differently expressed genes in trajectory as in (C), cataloged into
936 four gene clusters (labels on left). Bottom panel: GO analysis of expressed genes whose expression
937 increases as the differentiation trajectory progresses. (E) SASP-related genes with increased
938 expression as the differentiation trajectory progresses.


939 **Figure 4-figure supplement 1.** (A) The heatmap representing metabolic pathways in each
940 fibroblast subclusters, which indicated fatty acid biosynthesis, arachidonic acid metabolism, and
941 steroid biosynthesis were significantly upregulated in CD81⁺ fibroblasts. (B) The flow chart
942 representing the metabolism of arachidonic acid, which could be converted into prostaglandins (PGs)
943 and Thromboxane As (TXAs) by COX-1 or COX-2. (C) The dot plot representing that PTGS1 gene
944 (encoding COX1 protein) and PTGS2 gene (encoding COX2 protein) are significantly higher in
945 CD81⁺ gingival fibroblasts compared to other fibroblasts subclusters.

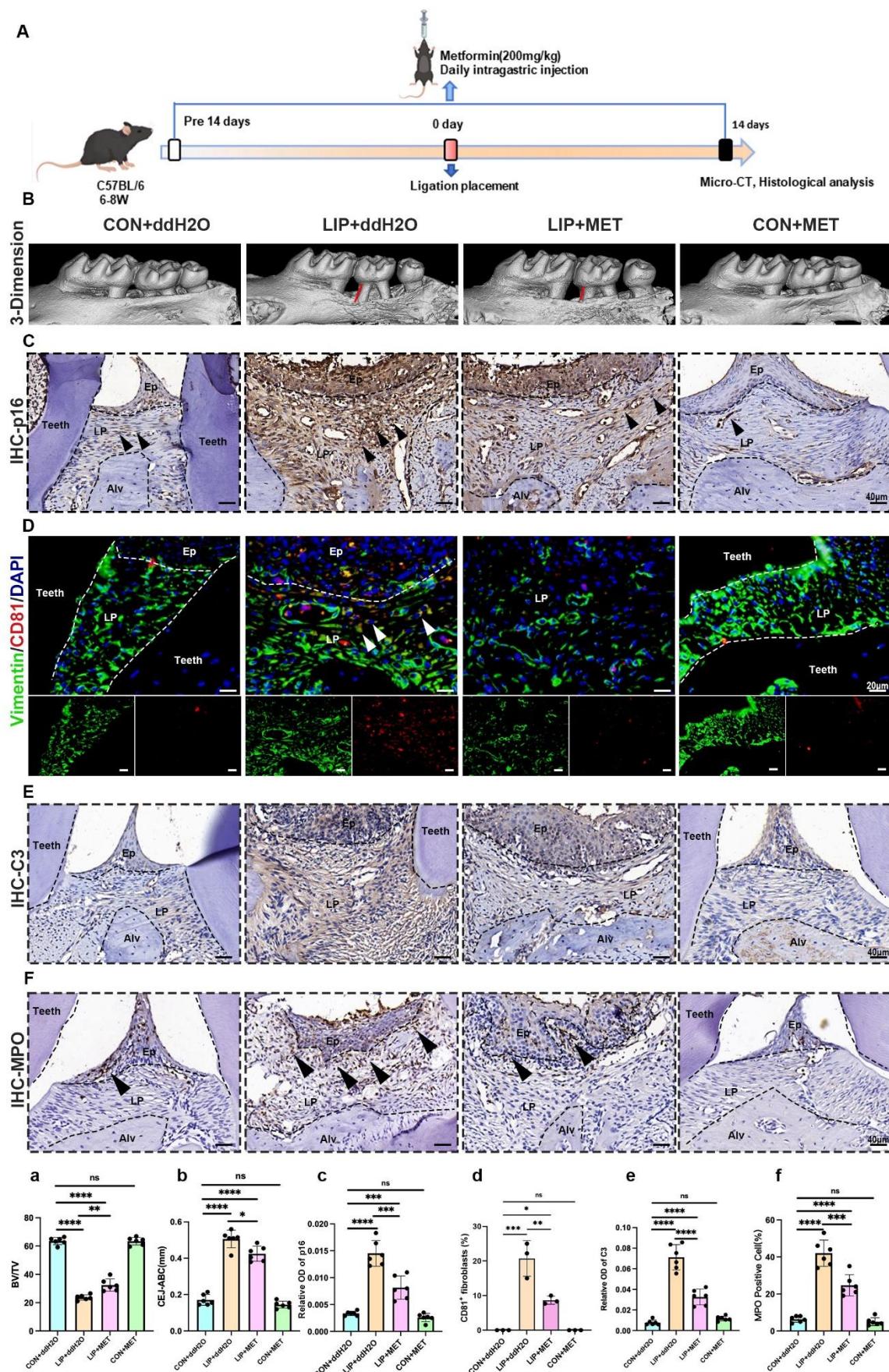
946
947

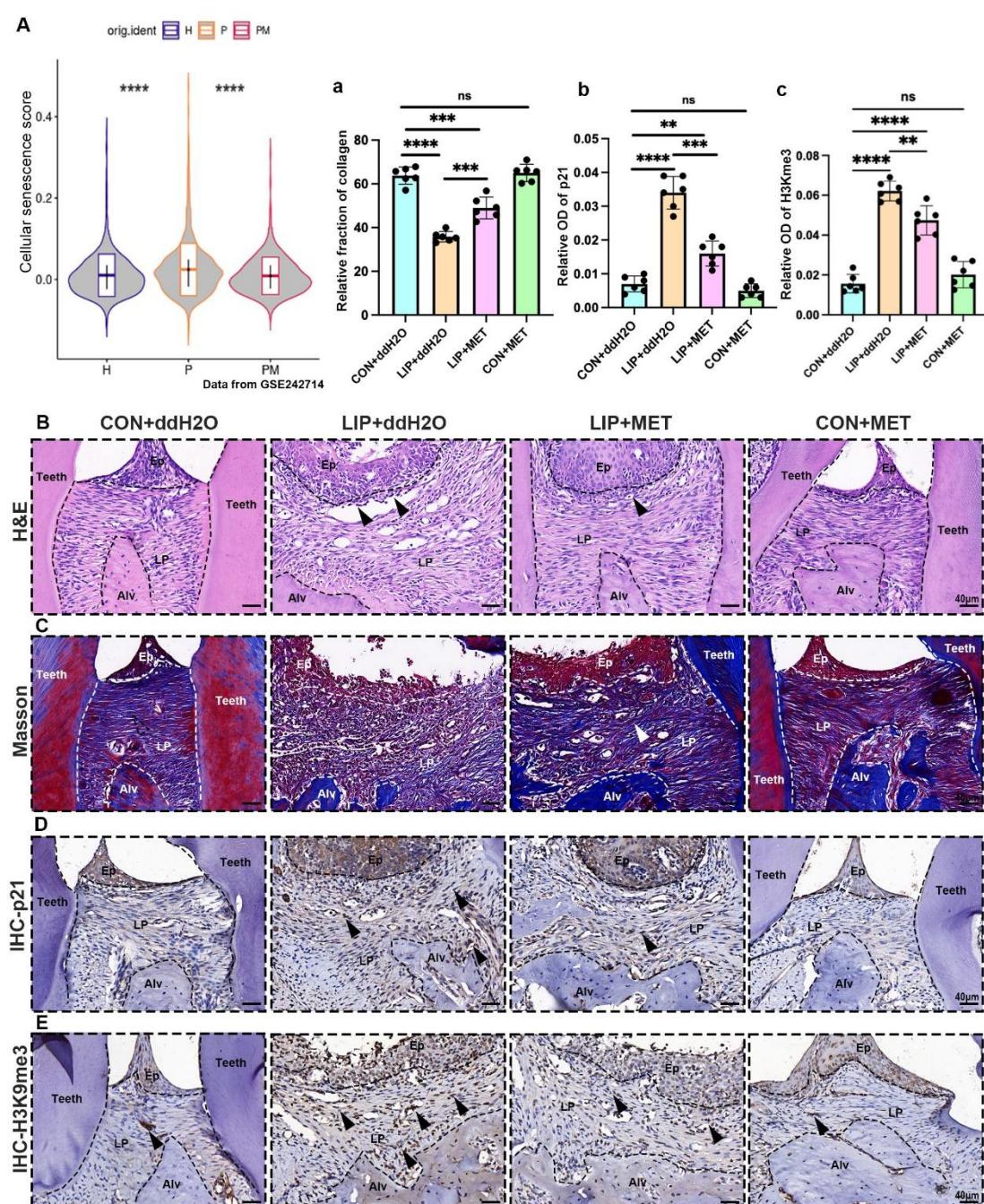

949 **Figure 5. CD81⁺fibroblasts possibly recruit neutrophils via C3/C3aR1 axis. (A)** The relative
950 number of interactions between CD81⁺fibroblasts and other cell type in periodontitis gingiva. **(B)**
951 Significant increased Ligand-Receptor interaction derived from CD81⁺fibroblasts. C3-C3aR1
952 signaling axis increased between CD81⁺ fibroblast and neutrophil especially, which was highlighted
953 by red. **(C)** The heatmap showing the communication patterns of the Complement signaling
954 pathway between fibroblasts and immune cell type in healthy and periodontitis gingiva. **(D)** The
955 expression level of four representative genes in Complement signaling pathway. **(E)** Representative
956 image of and semi-quantification of IHC staining regarding C3 in healthy and periodontitis gingiva.
957 Scale bar=40 μ m, n=3. **(F)** Elisa analysis of human-C3 secretion between healthy human gingival
958 fibroblasts (H-HGF, n= 16 samples) and periodontitis human gingival fibroblasts (P-HGF n= 23
959 samples). **(G)** Elisa analysis of human-C3 secretion in healthy human gingival fibroblasts with (Pg-
960 LPS group) or without (CON group) 1 μ g/mL Pg-LPS stimulated, n=6 samples. **(H)** H&E image
961 and representative spatial mapping of CD81 and SOD2 in healthy and periodontitis gingiva from
962 public dataset GSE152042. Co-localization in CD81 and SOD2, a neutrophil marker, was found in
963 the periodontitis gingiva. Ep: Epithelium; LP: Lamina propria. Data are expressed as mean \pm SD.
964 *P <= 0.05, **P <= 0.01, ***P <= 0.001, ****P <= 0.0001.


965
966

967

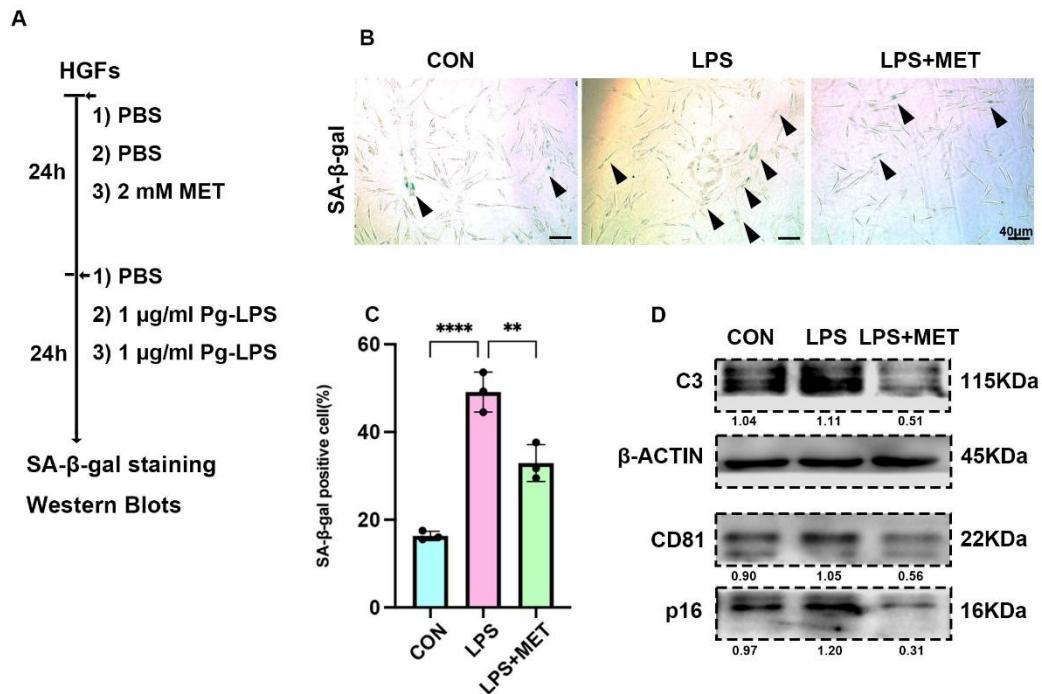
968 **Figure 5-figure supplement 1. (A)** Immunofluorescence staining and semi-quantification of p16
969 (red), Vimentin (green), and nuclei (blue) in control and LIP mouse gingiva, n=3 mice, scale
970 bar=50μm. **(B)** Immunofluorescence staining and semi-quantification of CD81 (red), Vimentin
971 (green), and nuclei (blue) in control and LIP mouse gingiva , n=3 mice, scale bar=50μm. **(C)**
972 Immunofluorescence staining of p16 (red), VIM (green), CD81 (cyan), and nuclei (blue) in LIP
973 mouse gingiva, scale bar=20μm. white arrow indicates triple positive cells. Ep: Epithelium; LP:
974 Lamina propria; Alv: Alveolar bone; Data are expressed as mean ± SD. *p<0.05, **p<0.01,
975 ***p<0.001. ****p<0.0001.




986

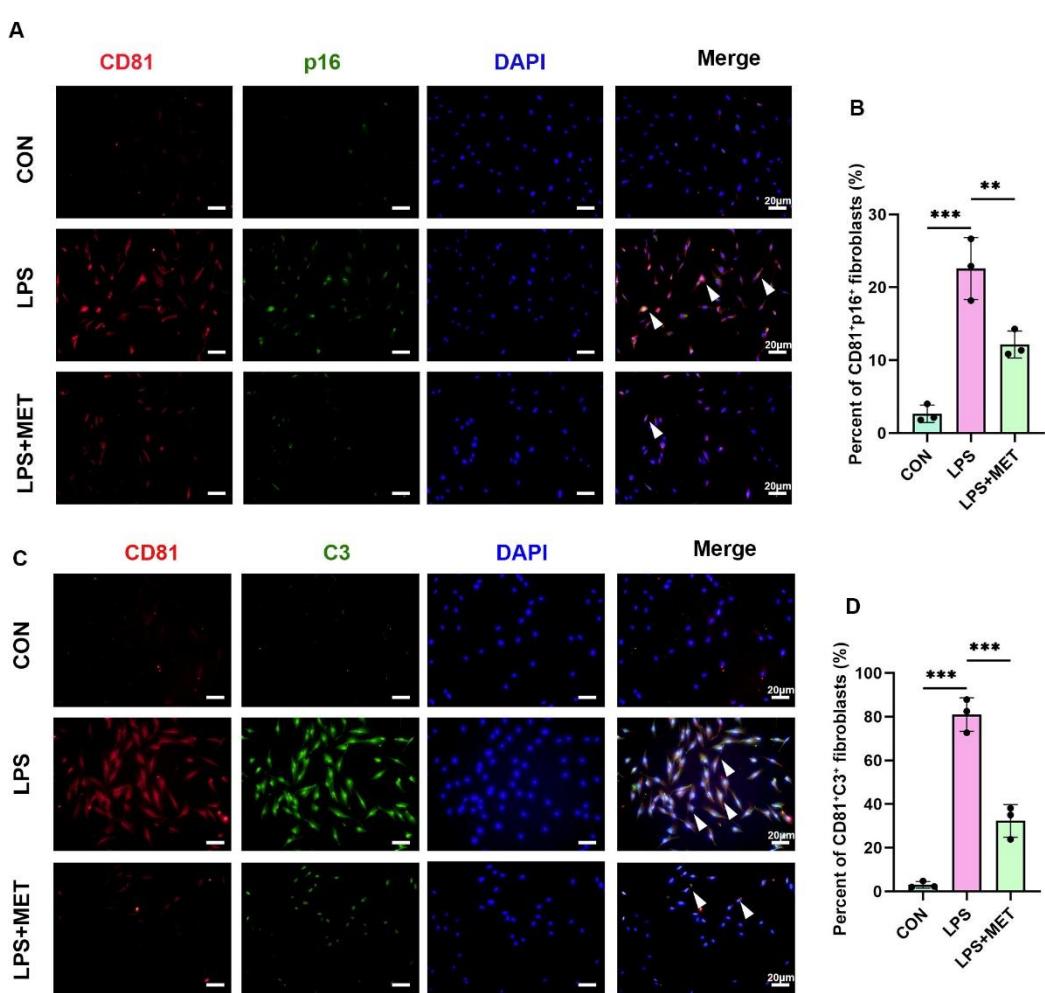
987 **Figure 6. Senolytics therapy alleviates inflammation and bone resorption in LIP model. (A)**
988 Strategy of LIP mouse model treated by a senolytic drug Navitoclax. **(B)** Representative H&E
989 staining image of each group, Inflammatory cells were labelled by black arrows, scale bar=20μm.
990 **(C)** IHC staining and **(a)** semi-quantification of p16 in each group, Positive cells were labelled by
991 black arrows, n=3, scale bar=20μm. **(D)** IHC staining and **(b)** semi-quantification of H3K29me3 in
992 each group, Positive cells were labelled by black arrows, n=3, scale bar=20μm. **(E)**
993 Immunofluorescence staining and **(c)** semi-quantification of CD81 (red), Vimentin (green), and
994 nuclei (blue) in control and LIP mouse gingiva, n=3 mice, scale bar=20μm. White arrow indicates
995 double positive cells. **(F)** IHC staining and **(d)** semi-quantification of C3 in each group, Positive
996 cells were labelled by black arrows, n=3, scale bar=20μm. **(G)** IHC staining and **(e)** semi-

997 quantification of MPO in each group, Positive cells were labelled by black arrows, n=3 field per
998 group, scale bar=20 μ m. (H) IHC staining and (f) semi-quantification of CTSK in each group,
999 Positive cells were labelled by black arrows, n=3 field per group, scale bar=20 μ m. Ep: Epithelium;
1000 LP: Lamina propria; Alv: Alveolar bone; Teeth. Data are expressed as mean \pm SD. *P <= 0.05,
1001 **P <= 0.01, ***P <= 0.001, ****P <= 0.0001.
1002


1004 **Figure 7. Metformin alleviates inflammation and bone resorption in LIP model via inhibiting**
1005 **the interaction between CD81⁺ fibroblasts and neutrophils. (A)** Strategy of LIP mouse model
1006 treated by metformin. **(B)** 3-D visualization of the maxilla and quantified by the Bone volume/ tissue
1007 volume (BV/TV) ratio **(a)** the cement-to-enamel to alveolar bone crest, CEJ-ABC distance **(b)**
1008 indicated by red line, n= 6 mice per group. **(C)** IHC staining and semi-quantification **(c)** of p16 in
1009 each group, Positive cells were labelled by black arrows, n= 6 field per group, scale bar=40 μ m. **(D)**
1010 Immunofluorescence staining and **(d)** semi-quantification of CD81 positive fibroblasts in each
1011 group. Vimentin (green), CD81 (red) and nuclei (blue). White arrow indicates double positive cells,
1012 n=3, scale bar=20 μ m. **(E)** IHC staining and **(e)** semi-quantification of C3 in each group, n=6, scale
1013 bar=40 μ m. **(F)** IHC staining and **(f)** semi-quantification of MPO, a neutrophils marker, in each
1014 group, Positive cells were labelled by black arrows, n=6, scale bar=40 μ m. Ep: Epithelium; LP:
1015 Lamina propria; Alv: Alveolar bone; Teeth. Data are expressed as mean \pm SD. *P <= 0.05, **P<=
1016 0.01, ***P<= 0.001, ****P<= 0.0001.
1017

1018

1019 **Figure 7-figure supplement 1. (A)** The violin plot showing cellular senescence score in mouse
1020 gingiva of healthy (H), LIP (P) and LIP treated with metformin (PM) groups from public data
1021 GSE242714. **(B)** H&E staining images in each group. Inflammatory cells were labelled by black
1022 arrows, scale bar=40μm. **(C)** Representative image and **(a)** semi-quantification of Masson staining,
1023 in which collagen fibers were stained into blue, in each group. Collagen fiber was labelled by white
1024 arrows, n= 6, scale bar=40μm. **(D)** IHC staining and **(b)** semi-quantification of p21 in each group.

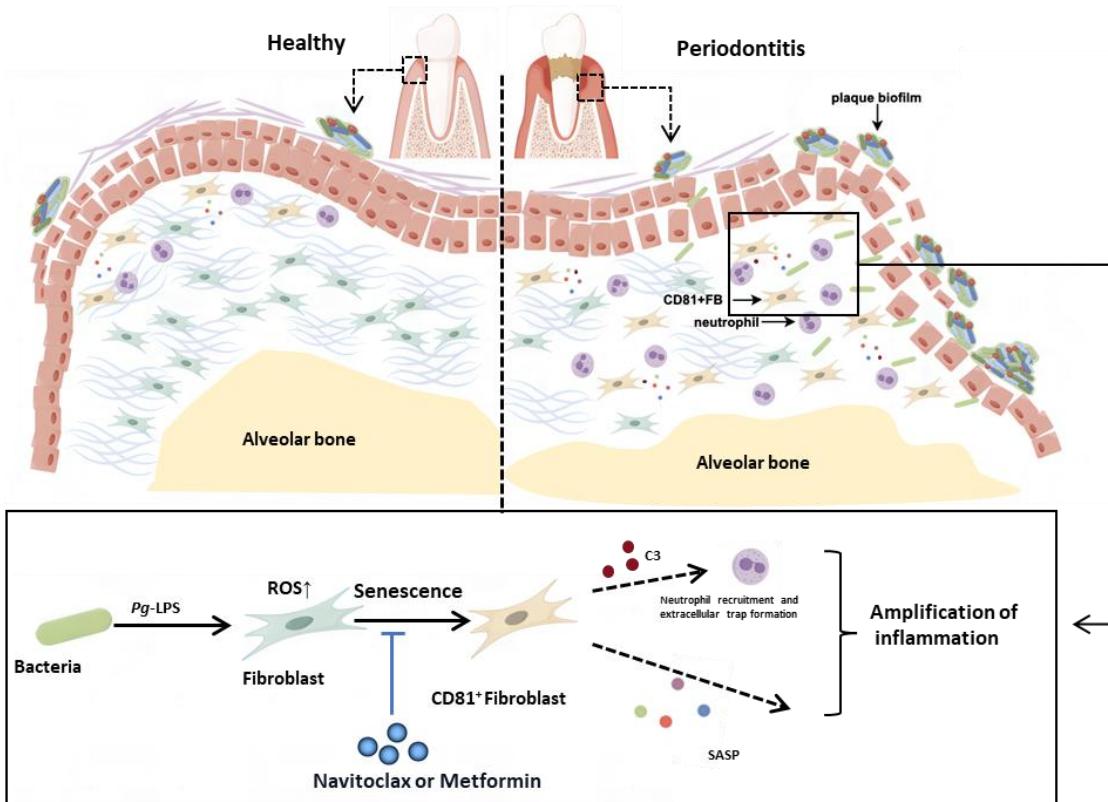

1025 Positive cells were labelled by black arrows, n=6, scale bar=40 μ m. **(E)** IHC staining and **(c)** semi-
1026 quantification of H3K9me3 in each group. Positive cells were labelled by black arrows, n=6, scale
1027 bar=40 μ m. Ep: Epithelium; LP: Lamina propria; Alv: Alveolar bone; Teeth. Data are expressed as
1028 mean \pm SD. *p<0.05, **p<0.01, ***p<0.001. ****p<0.0001.
1029

1030

1031 **Figure 7-figure supplement 2. (A)** In vitro experiment model of Pg-LPS induced senescence of
1032 human gingival fibroblasts (HGFs) treated with or without metformin (MET). **(B)** SA- β -Gal
1033 staining and **(C)** semi-quantification of Pg-LPS induced senescence of human gingival fibroblasts
1034 (HGFs) treated with or without metformin (MET). Black arrow indicates positive cells, n=3, scale
1035 bar=40 μ m. **(D)** Western blot image of human C3, CD81 and p16 protein levels of Pg-LPS induced
1036 senescence of human gingival fibroblasts (HGFs) treated with or without metformin (MET).

1037

1038


1039 **Figure 7-figure supplement 3.** (A) Immunofluorescence staining and (B) semi-quantification of
1040 CD81⁺ p16⁺fibroblasts in Pg-LPS induced senescence treated with or without metformin (MET).
1041 CD81 (red), P16 (green) and nuclei (blue). White arrow indicates double positive cells, n=3, scale
1042 bar=20μm. (C) Immunofluorescence staining and (D) semi-quantification of CD81⁺ C3⁺fibroblasts
1043 in Pg-LPS induced senescence treated with or without metformin (MET). CD81 (red), C3 (green)
1044 and nuclei (blue). White arrow indicates double positive cells, n=3, scale bar=20μm. Data are
1045 expressed as mean ± SD.* P <= 0.05, **P<= 0.01, ***P<= 0.001, ****P<= 0.0001.

1046

1047

1048

1049

1050
1051 **Scheme 1. Schematic overview of the CD81⁺ senescent gingival fibroblast-neutrophil axis in**
1052 **periodontitis progression.** We propose that the initial periodontal inflammation is triggered by the

1053 CD81⁺ senescent gingival fibroblast induced by bacterial virulence like Pg-LPS. CD81⁺ senescent

1054 gingival fibroblast could exaggerate inflammation in the periodontal tissue via secreting SASPs and

1055 recruiting neutrophils by C3. In addition, Navitoclax and Metformin could alleviate the cellular

1056 senescence of the fibroblast and rescue the uncontrolled inflammation and bone resorption.

1057

1058

1059

1060