

1 Evaluation of phantom doping materials in quantitative

2 susceptibility mapping

3 Padriac Hooper^{1,2}, Jin Jin^{1,2,3}, Kieran O'Brien^{1,2,3}, Monique Tourell^{1,2,6}, Simon Daniel
4 Robinson^{2,4,5} and Markus Barth^{1,2,6}

5 ¹ ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, Australia,

6 ² Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia,

7 ³ Siemens Healthcare Pty Ltd, Brisbane, Australia,

8 ⁴ High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy,
9 Medical University of Vienna, Austria,

10 ⁵ Christian Doppler Laboratory for MR Imaging Biomarkers, Department for Biomedical
11 Imaging and Image-Guided Therapy, Medical University of Vienna, Austria,

12 ⁶ School of Information Technology and Electrical Engineering, The University of Queensland,
13 Brisbane, Australia

14

1 Abstract

2 Purpose: To measure magnetic susceptibility (χ) with Quantitative Susceptibility Mapping
3 (QSM) and evaluate its repeatability using four phantom doping materials relevant to QSM
4 applications.

5 Methods: A cylindrical phantom was constructed containing vials of agarose gel doped with two
6 paramagnetic materials (ferritin, USPIO) and two diamagnetic materials (CaCl_2 , CaCO_3) at five
7 concentrations each. Single orientation QSM measurements (MEDI+0) were carried out on the
8 phantom at 3T and 7T. We measured molar susceptibility (χ_{mol}) from QSM and evaluated the test-
9 retest repeatability of χ using the standard error of the measurement (SEM). We evaluated material
10 lifespan by conducting a t-test of χ_{mol} at various timepoints.

11 Results: χ_{mol} ($\text{ppm}\cdot\text{L}\cdot\text{mmol}^{-1}$) were measured as 1.67 ± 0.24 and 0.74 ± 0.09 (USPIO: 3T and 7T,
12 respectively), $10^{-2} \times (8.13 \pm 1.35; 8.13 \pm 1.19)$ (Ferritin: 3T; 7T), $10^{-4} \times (-2.68 \pm 0.24; -2.71 \pm 0.37)$
13 (CaCl_2 : 3T; 7T), and $10^{-5} \times (-9.52 \pm 1.44; -9.53 \pm 1.18)$ (CaCO_3 : 3T; 7T). The USPIO SEM ($1.5 \pm$
14 2.0 ; 5.1 ± 2.0 ppb at 3T; 7T) was greater than the ferritin SEM (1.2 ± 1.0 ; 2.2 ± 1.3 ppb at 3T; 7T).
15 The CaCl_2 SEM (7.5 ± 5.5 ; 1.2 ± 0.6 ppb at 3T; 7T) was greater than the CaCO_3 SEM (1.2 ± 0.6 ; $0.9 \pm$
16 0.7 ppb at 3T; 7T). We observed no significant changes in molar susceptibility for ferritin and
17 CaCO_3 over the measured timeframes (24 months and 15 months, respectively).

18 Conclusion: We recommend using ferritin and CaCO_3 in the construction of susceptibility
19 phantoms, removing later echo times for CaCO_3 QSM reconstructions.

20 **Word count:** 5,034 words

21 **Corresponding author:** Markus Barth; m.barth@uq.edu.au

22

23

24

25

26

27

28

1 **1 Introduction**

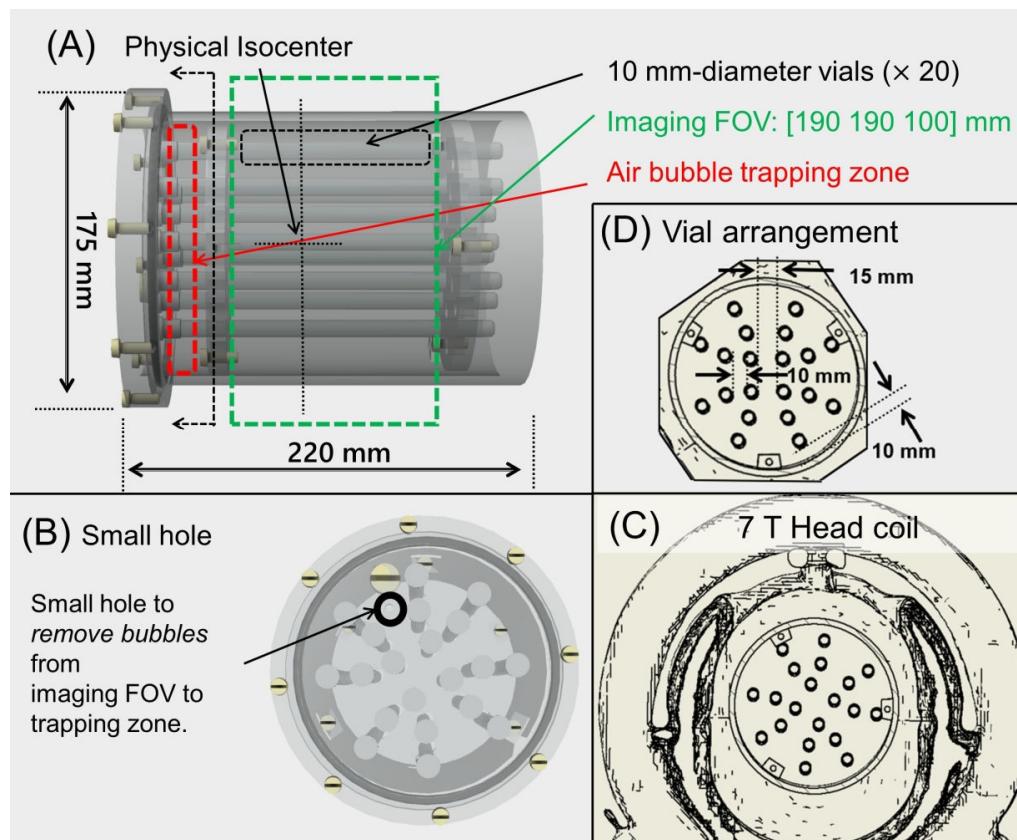
2 MRI employs electromagnetic fields to excite and detect nuclear spin resonance. These spins act
3 as probes of the local microenvironment, and with the appropriate model-based analysis, provide a
4 means for quantifying physical properties related to tissue structure and composition. Quantitative
5 parameters (e.g., T_1 , T_2 , diffusion coefficients) can be derived for every voxel in an MRI image and
6 can serve as biomarkers of disease profiles^{1,2}. The magnetic susceptibility of tissue, χ , is sensitive to
7 both tissue structure and composition and can be measured using the phase component of the MRI
8 signal acquired from T_2^* -weighted images in Quantitative Susceptibility Mapping (QSM). Clinically,
9 QSM has produced a groundswell of interest, finding applications in mapping calcifications³, venous
10 oxygenation⁴, and iron content^{5,6}. However, several challenges remain in QSM imaging. Firstly, local
11 χ variations (e.g., air-tissue interfaces) are a source of field distortions and produce regions of low
12 SNR⁷, which lead to artifacts in the susceptibility map⁸. Secondly, the dipole kernel contains zeros in
13 k-space at spatial frequencies corresponding to that of a double cone^{9,10}, making dipole inversion an
14 ill-posed problem necessitating regularization. Because of the absence of spatial frequencies at the
15 center of k-space, QSM requires referencing to a known susceptibility value, which is difficult to
16 define *in vivo*¹¹. Additionally, the susceptibility of some tissues are not scalar but tensor, and
17 susceptibility is affected by tissue microstructure, e.g., the radial anisotropy of the myelin sheath¹².

18 Susceptibility imaging phantoms that contain uniform regions of known susceptibility are not
19 affected by patient/biological factors¹³⁻¹⁶. As a result, they provide reliable reference values, assess
20 errors in MR acquisition and QSM reconstructions, and enable calibration across scanners and
21 imaging sites^{17,18}. *In vivo*, the predominant cause of tissue susceptibility are iron- or calcium-
22 containing materials that produce paramagnetic (positive) or diamagnetic (negative) susceptibility
23 contrast, motivating the use of iron-based or calcium-based materials, respectively, as χ sources in
24 phantom inclusions. Most phantom inclusions are composed of gel mixtures in place of aqueous
25 mixtures, since gels mimic the *in vivo* relaxation properties of soft tissues¹⁹ and embed particles in a
26 fixed position after solidification. Mimicking the signal relaxation and susceptibility of iron- and
27 calcium-based materials provides a realistic evaluation of QSM reconstructions. The protein ferritin,
28 is biologically relevant as a dominant form of iron stored within deep grey matter²⁰. To mimic ferritin
29 for QSM applications, Cuna et al. synthesized an iron-filled hydrogel phantom material with variable
30 cluster size, and a comparable molar susceptibility to ferritin *in vivo*¹⁸. The same research group
31 evaluated QSM susceptibility measurements with a SQUID magnetometer, showing the iron-filled
32 hydrogel phantom material had comparable measurements to those acquired with ultra-high-field
33 scanners²¹. An iron-filled hydrogel phantom material bears a resemblance to iron clustering systems,
34 which is observed Alzheimer's beta-amyloid plaques^{5,6}. Another paramagnetic material of interest is
35 ultrasmall superparamagnetic iron oxide (USPIO), which is applied to QSM as a blood-pool contrast
36 agent^{4,22,23} and in magnetic fluid hyperthermia²⁴. USPIO has been used to validate R_2^* mapping at

1 across various field strengths²⁵⁴. An important material observed *in vivo* are the insoluble polyhedral
2 salt crystals, calcium carbonate (CaCO_3), which are present in biochemical analyses within bone
3 mineralization and calcifications^{26–28}. Emmerich et al. evaluated CaCO_3 particles using clinical and
4 ultra-high-field scanners²⁹ and used CaCO_3 particles to study the separation of χ sources in QSM³⁰,
5 with *in vivo* comparison to multiple sclerosis lesions³¹. An alternative diamagnetic χ source is calcium
6 chloride (CaCl_2), which has been used previously by Hopkins et al. to match the susceptibility of
7 bone³², and is of practical utility in a phantom due to its high diamagnetism, water solubility and inert
8 chemical properties³³.

9 This study aimed to estimate χ and evaluate the repeatability of MR-based χ measurements of two
10 paramagnetic and two diamagnetic materials: USPIO, ferritin (paramagnetic), CaCl_2 and, CaCO_3
11 (diamagnetic). To do this, a cylindrical phantom was constructed containing vials of doped agarose
12 gel. Susceptibility measurements were carried out on the phantom at 3T and 7T, the test-retest
13 repeatability of susceptibility measurements were assessed and evaluated over a 9- to 24-month
14 period. Based on our results we draw conclusions on the suitability of doping materials in QSM
15 phantom studies.

16 2 Methods


17 2.1 Phantom design

18 Relevant design factors for producing the QSM phantom: it should (i) fit within most RF head
19 coils, (ii) reduce B_0 and B_1 inhomogeneities, (iii) provide a means to trap air bubbles, and (iv) be
20 stable over the long-term (≥ 12 months).

21 The phantom schematics are shown in Figure 1. To ensure fitting in what is probably the most
22 widely used head coil at ultra-high-field currently, the 7 Tesla Nova Medical 1Tx/32Rx head coil
23 (Nova Medical, Wilmington, MA), the outer diameter of the phantom was 150 mm. As most other
24 head coils – including other field strengths – are larger, they would be able to accommodate a phantom
25 of this size. The phantom contains 20 NMR vials (10 mm outer diameter, N-51A, Kimble Glass) of
26 doped agarose gel (details below) surrounded by a solution of ultrapure water (Milli-Q IQ 7000,
27 Merck & Co.), 44.3 weight percentage (wt.%) PVP-40 (PVP-40, Merck & Co.) and 1.7 wt.% NaCl
28 (746398, Merck & Co.) to mimic the electric permittivity and conductivity of white matter at 7T. To
29 reduce B_1 artifacts and errors during background field correction, vials were positioned at least 10
30 mm away from the phantom periphery. The phantom was designed to accommodate a bubble trapping
31 compartment outside the Field of View (FOV), connected to the main compartment by a small hole
32 (see Figure 1 a). The tight-fitting non-magnetic closure and an NMR tube cap prevented microbes
33 from entering the phantom and samples, respectively. The modification of electric permittivity in the
34 phantom was important to prevent standing wave artifacts at 7T that would lead to image

1 inhomogeneities.

2 Figure 1: Side (A) and top (B) views of phantom. (C) CAD drawing of the phantom within an
3 approximation of the 7T Nova Medical 32 Rx coil. (D) CAD drawing indicating relative positioning of
4 vials.

5 The phantom design features four quadrants, each containing five vials. The samples were
6 prepared by doping hot agarose gel with one of the four dopants (USPIO, ferritin, CaCl_2 and CaCO_3)
7 at five equally spaced concentrations. Other relevant dopants, Gd-DTPA³⁴, hydroxyapatite³⁵, and
8 tungsten carbide³⁰ were not covered in this study. The concentrations were chosen to more than cover
9 the magnetic susceptibility range expected for in vivo human brain scans, with USPIO ranging from
10 0.22 to 0.67 mmol/L, ferritin from 3.76 to 10.21 mmol/L, CaCl_2 from 0.9 to 4.5 mol/L and, CaCO_3
11 from 1.0 to 5.0 mol/L. Ultrapure water (Type 1) was used as a solution for the PVP-NaCl mixture to
12 limit the likelihood of microorganisms or magnetic ions entering the samples. The phantom was given
13 at least 48 hours for the PVP-NaCl mixture to settle before scanning³⁶.

14 2.2 MR acquisition

15 The phantom was scanned at two different field strengths of 3T and 7T (all Siemens Healthineers,
16 Erlangen, Germany) with a 20-channel and 32-channel head coil, respectively. Phase and magnitude
17 images were acquired with a multi-echo 3D GRE pulse sequence using the parameters shown in Table
18 1. We used bipolar acquisitions with shortest possible echo spacings as the results of phase

1 unwrapping are generally more reliable when the shortest possible echo spacings are used^{37,38} because
2 SNR is high and wraps fewer in number³⁹. B_0 shimming was performed using Siemens' GRE brain
3 sequence and Prescan normalize correction⁴⁰ was used with the 20-channel head coil at 3 T. Images
4 were reconstructed using ASPIRE⁴¹ for phase and root sum-of-squares for magnitude and converted to
5 NIFTI⁴² format for QSM processing. The phantom was scanned twice at baseline (t_0), again after 9
6 months (t_1), then again twice at 24 months (t_2). The test-retest scans were acquired within 15 minutes
7 of one another. Some materials were included and removed from the phantom at different timepoints;
8 USPIO and ferritin included at t_0 , t_1 and t_2 ; $CaCl_2$ included at t_0 , t_1 ; $CaCO_3$ included at t_1 , t_2 .

	3T	7T
Model	Magnetom Prisma	Magnetom 7T Plus
Gradient readout	Bipolar	
TE ₁ :ΔTE:TE _{max} ; TR (ms)	1.87:1.87:22.44; 26	3.15:3.15:28.35; 32
Coil	20-ch Rx head coil	32-ch Rx head coil
Voxel size	1.0 mm ³ isotropic	0.7 mm ³ isotropic
Acquisition matrix	192 × 192 × 112	272 × 272 × 160
Flip angle; Bandwidth; Averages	15°; 1000 Hz/pix; 1	15°; 340 Hz/pix; 1
Acceleration? type and factor	X	GRAPPA 2
Partial Fourier? factor; Elliptical scanning?	X;X	6/8 PFA; ✓
Prescan normalize correction?	✓	X

9 Table 1: MR acquisition parameters used in this study.

10

11 2.3 Image pre-processing and corrections

12 Noise was measured from unfiltered magnitude images as the standard deviation of the intensity
13 in air regions (SD_{air}), outside the phantom. Regions of interest (ROIs) 20 × 20 × 160 mm³ were drawn
14 manually at the image corners, ensuring ROIs were free of artifacts and matrix borders. SD_{air} has a
15 Rayleigh distribution, which can be corrected to give the expected noise level; $SD_{air} = SD_{air}/0.66$ ⁴³.
16 The signal was measured using cylindrical ROIs (7 mm diameter) drawn manually within each vial,
17 excluding partial volume and/or signal loss at the vial edge, and excluding aliasing artifacts at the 15
18 distal slices on either end.

19 The criterion for exclusion data at specific echo time for QSM and R_2^* was set to SNR less than
20 or equal to 10:1. No echo times were excluded for USPIO, ferritin, $CaCl_2$; however, for $CaCO_3$ echo
21 times longer than 11 ms at 3T and 3 ms at 7T (see Table S1) were excluded. For R_2^* mapping with
22 $CaCO_3$ at 7T, echo times longer than 9 ms were excluded. For the statistical analysis of R_2^* mapping,
23 we removed $CaCO_3$ concentrations $\geq 4.0 \text{ mol}\cdot\text{L}^{-1}$ since the SNR was less than or equal to 10:1 at echo
24 times 6 to 9 ms at 7T.

25 To correct for slight differences in the phantom orientation and positioning between longitudinal

1 acquisitions, the real and imaginary images were manually co-registered (ITK-SNAP v4.0⁴⁴) using
2 the 1st echo magnitude as a reference, interpolating using B-splines. Phase offsets associated with
3 opposite polarity of odd and even echoes due to a bipolar acquisition⁴⁵ were corrected using MCPC-3D-
4 S³⁷. χ -induced geometric distortions occur in the readout direction of bipolar GRE acquisitions due to
5 the opposing direction of odd and even readout gradients⁴⁶. Note that geometric distortions were not
6 observed at 3T due to the high readout pixel bandwidth (see Table 1). Field maps of odd and even
7 echoes were created, combining the phase using nonlinear complex fitting⁴⁷, then unwrapped using
8 SPURS⁴⁸. The voxel displacement map was calculated by dividing the field map by the readout pixel
9 bandwidth⁴⁹. The warped field was generated by applying smoothing to the voxel displacement map⁵⁰.
10 The real and imaginary images were unwarped (SPM12)⁵¹ with tri-linear interpolation. Gibbs artifacts
11 associated with sharp transitions in signal intensity were observed at the vial boundary. A Gibbs
12 ringing correction was applied to the real and imaginary images using sub-voxel shifts in all three
13 spatial dimensions^{52,53}.

14 Zero-padding of the complex GRE data matrix by a factor of 1.5 was used prior to non-linear field
15 map estimation as it is known to result in a more accurate field map⁵⁴. Moreover, it is well established
16 that zero-padding reduces aliasing associated with the Fourier Transform, which affects both
17 background field correction and dipole inversion stages of QSM processing.

18

19 **2.4 R_2^* mapping**

20 R_2^* maps were generated by voxel-wise nonlinear fitting of the multi-echo magnitude image using
21 the Levenberg-Marquardt algorithm. Clump/agglomerate masks were produced as follows: (1)
22 determining local R_2^* outliers (median + 3*IQR within each vial), then (2) finding continuous (6-
23 connectivity) regions of R_2^* outliers larger than 1 mm³. From the clump/agglomerate masks, we report
24 (i) the percentage of local R_2^* outliers per vial, and (ii) the range of clump/agglomerate sizes in mm³.

25 **2.5 QSM**

26 The phase across echo times was fitted using nonlinear complex fitting⁴⁷, then unwrapped using
27 SPURS⁴⁸. Background fields were then corrected using V-SHARP⁵⁵, SMV-radii = 1:1:10 mm
28 (rounding to the nearest integer towards infinity). An ‘initial mask’ was generated by thresholding
29 values within the 1st-echo magnitude image greater than 2 % of its maximum intensity. A
30 morphological opening operation, which removes disconnected voxels from the mask, was applied
31 using a structural spherical element of 5 mm radius. The maximum SMV radius was set to 10 mm
32 since the vials positioned close to the perimeter were 10 mm from the mask edge, which is a limitation
33 of V-SHARP⁵⁶. The mask imposed on the field map and on χ during dipole inversion was set as the
34 entire matrix as including the spatial distribution of all frequencies and χ sources improves background

1 field correction⁵⁷. For 7T data, residual RF transmit coil fields (B_1^+) were corrected by fitting and
2 subtracting a fourth-order 3D polynomial^{58,59}.

3 A ‘reference mask’ ($M_{\text{reference}}$) was derived analogous to the so-called ‘CSF mask’ for zero-
4 referencing in MEDI+0^{60,61} in 3 steps: (1) R_2^* thresholding at 5 s^{-1} , (2) morphological closing (3 mm
5 radius), then (3) morphological erosion (10 mm radius), see Figure S1. The ‘weighting map’ (used to
6 weigh the data consistency term) was computed as described in SEPIA documentation (<https://sepia-documentation.readthedocs.io/en/latest/method/weightings.html>)⁶². The field noise map was inverted,
7 normalized using the median and upper IQR, re-centered to 1, then global outliers (defined as median
8 + 3*IQR) were replaced with a $3 \times 3 \times 3$ voxel box filtered copy. The relative residual (Equation 3) of
9 S_{measured} (Equation 2) and $S_{\text{simulated}}$ (Equation 1) was computed as follows,
10

$$S_{\text{measured}} = S(\text{TE}) \cdot e^{-j \cdot \phi_{S(\text{TE}_1)}} \quad (1)$$
$$S_{\text{simulated}} = S_0 \cdot e^{-R_2^* \cdot \text{TE} + j \cdot \omega \cdot \text{TE} - j \cdot \omega \cdot \text{TE}_1} \quad (2)$$
$$\text{relative residual} = \frac{\sum_{\text{TE}} |S_{\text{simulated}}(\text{TE}) - S_{\text{measured}}(\text{TE})|^2}{\sum_{\text{TE}} |S_{\text{measured}}(\text{TE})|^2} \quad (3)$$

12 In these equations, ω was the angular frequency determined during field mapping, S_0 was the
13 extrapolated signal magnitude at $\text{TE}=0$, S_{measured} was the measured data with the phase subtracted from
14 the 1st echo, and $S_{\text{simulated}}$ was the simulated mono-exponential model signal with the phase subtracted
15 from the 1st echo. The relative residual map was brought into a weighting component using a threshold
16 of 0.3, which was then used to modulate the weighting map⁶².

17 For dipole inversion, we used MEDI+0^{60,61} using the default regularization parameters ($\lambda_1=1000$,
18 $\lambda_2=100$). The MERIT parameter was set to false. MEDI with SMV-filtering was not used since it may
19 emphasize the high frequency components more than low frequency components within a
20 susceptibility distribution⁸. The percentage threshold parameter (c_v) was optimized by minimizing
21 the streaking artifact with MEDI+0 turned ‘off’, which was quantified as the standard deviation within
22 the reference mask (SD_{Ref})^{60,63}. The optimal c_v was found to be 0.5 for both 3T and 7T scans (see
23 Figure S2) and was used for subsequent QSM reconstructions.

24 The phantom design and vial positioning lends itself to more direct quantification of susceptibility
25 without performing dipole inversion. We used the following analytical model⁷ (referred to as the
26 ‘infinite cylinder model’) to generate a simulated susceptibility map,

$$X_{\text{analytical}} = \frac{6\delta}{3 \cos^2 \theta - 1} \quad (4)$$

28 In Equation (4), $\delta = \Delta f_{\text{local}}/f_0$ is the local frequency in Hz (Δf_{local}) normalized to the Larmor
29 frequency (f_0) in parts-per-million (ppm). The angle relative to the applied field vector (θ) is assumed

1 to equal 0° , therefore making $\chi_{\text{analytical}} = 3\delta$.

2

3 **2.6 Automatic segmentation**

4 We performed automatic segmentation instead of manual segmentation to obtain clear and
5 consistent cylindrical ROIs for statistical analysis. The ‘initial mask’ (refer to section 2.5) was eroded
6 by 10 mm, which is the distance between the distal vials and the mask edge. The complement of the
7 non-eroded reference mask $M_{\text{reference}}$ (refer to Figure S1) was multiplied by the eroded initial mask,
8 obtaining a mask of the 10 mm vials. To exclude erroneous voxels at the vial edge, the obtained mask
9 was eroded by 3 mm. We also excluded the 15 distal slices on either end which were prone to aliasing
10 artifacts. Segmentation was performed on the obtained mask using the cluster function within FSL⁶⁴.

11 **2.7 Statistical analysis**

12 The molar concentration (c_{mol}) was fitted against the mean ROI measurement for χ and R_2^* ,
13 respectively, with a least-squares regression to determine the linear fit:

14
$$R_2^* = R_{20}^* + c_{\text{mol}} \cdot R_{2\text{mol}}^*(5)$$

15
$$\chi = \chi_0 + c_{\text{mol}} \cdot \chi_{\text{mol}}(6)$$

16 We used robust regression with a bisquare weighting function, which reduces the weight of
17 independent variables with a high least-squares residual. R_{20}^* ; χ_0 are equal to the agarose R_2^* value; χ
18 value, respectively. $R_{2\text{mol}}^*$; χ_{mol} are equal to the R_2^* relaxivity; molar susceptibility, respectively.

19 To assess test-retest repeatability of susceptibility measurements, a single-score coefficient of
20 reliability (ICC) was calculated using a two-way ANOVA model with absolute agreement (‘A-1’)^{66,67}.
21 We also computed standard error of the measurement (SEM), which is given in terms of the standard
22 deviation of test-retest measurements (SD) and the ICC¹⁷,

23
$$\text{SEM} = \text{SD} \cdot \sqrt{1 - \text{ICC}}(7)$$

24 Smaller values of SEM represent greater test-retest precision. To determine material lifespan, we
25 performed a t-test to detect a significant difference between baseline χ_{mol} values to timepoint χ_{mol}
26 value; the first timepoint at which there was a significant change was determined to be the material
27 lifespan. We also performed a t-test to detect a possible correlation between time ($t=0, 9, 24$ month)
28 and timepoint χ_{mol} values.

29 Bland–Altman (BA) analysis for repeated measurements per subject (phantom) was applied to
30 evaluate agreement between 3T and 7T scanners⁶⁸. We performed the following BA analyses: (1) to

1 determine the agreement in χ with field strength; ferritin, CaCl_2 and CaCO_3), (2) to determine the
2 agreement in the product of the magnetization ($M=\chi \cdot B_0$) with field strength; USPIO⁴, (3) to determine
3 the agreement in R_2^*/B_0 with field strength; CaCO_3 ³¹, (4) to determine the agreement in R_2^* with field
4 strength; USPIO, ferritin and CaCl_2 . We also performed a t-test to detect linear correlation between
5 cross-field measurements; if detected, then we performed linear regression to quantify the trend
6 between cross-field measurements. To validate the dipole inversion step, Bland–Altman (BA) analysis
7 for repeated measurements per subject (phantom)⁶⁶ was applied to evaluate agreement between the
8 simulated analytical susceptibility map ($\chi_{\text{analytical}}$ from Equation (4)) and the measured susceptibility
9 map ($\chi_{\text{MEDI+0}}$).

10 **3 Results**

11 Maps and plots of susceptibility for the four used materials and five concentrations are shown in
12 Figures 2 to 5. On the scatter plots, the fitted regression was dotted, and, where given, the 95%
13 confidence intervals were solid. The vertical error bars were the standard deviation of the ROI
14 measurement. The Bland-Altman mean difference (bias) line was solid, and the limits-of-agreement
15 were dotted. On the correlation plots, the identity line ($y = x$) was dotted; the fitted regression and
16 95% confidence interval lines were solid.

17

18

19

20

21

22

23

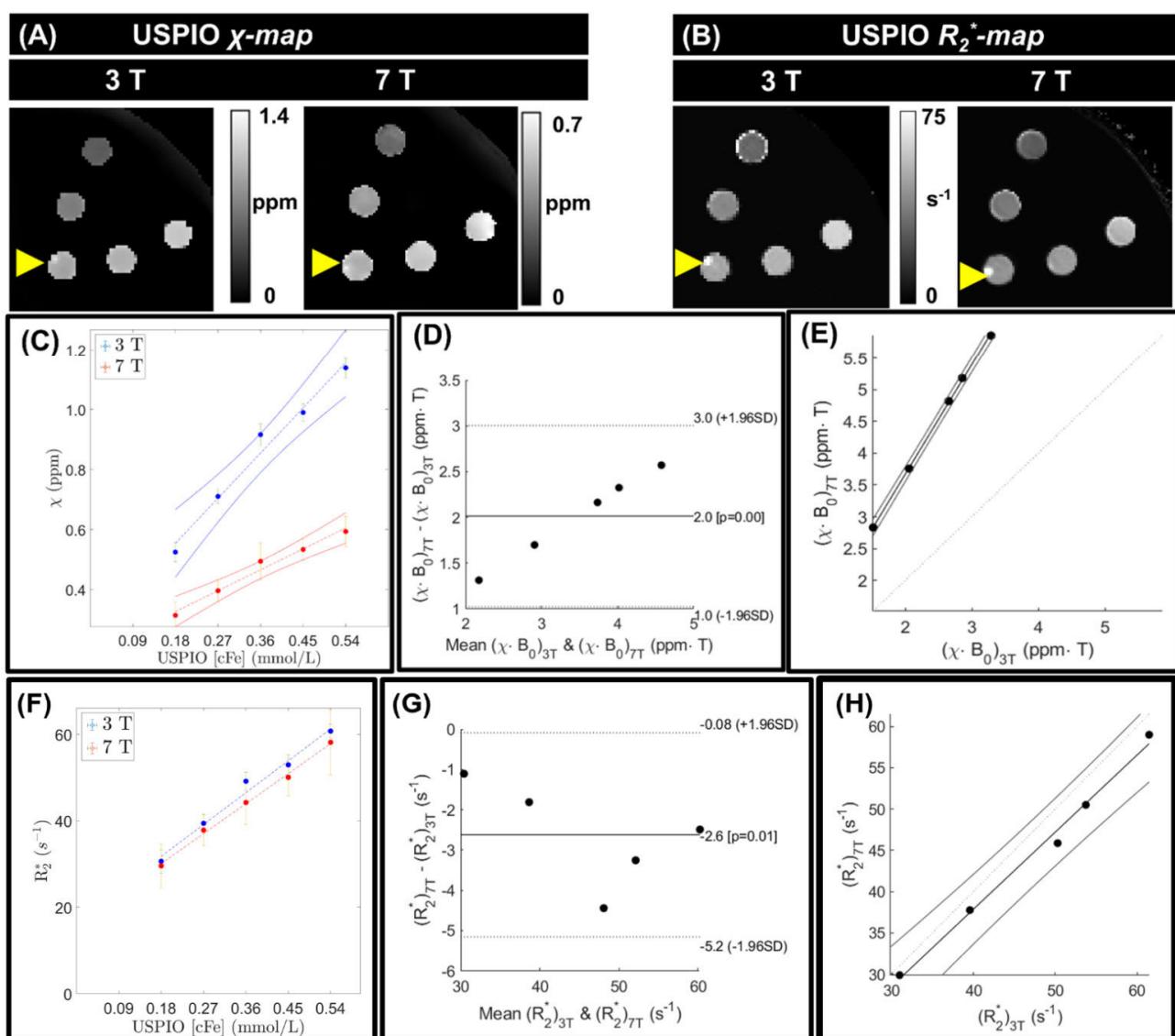
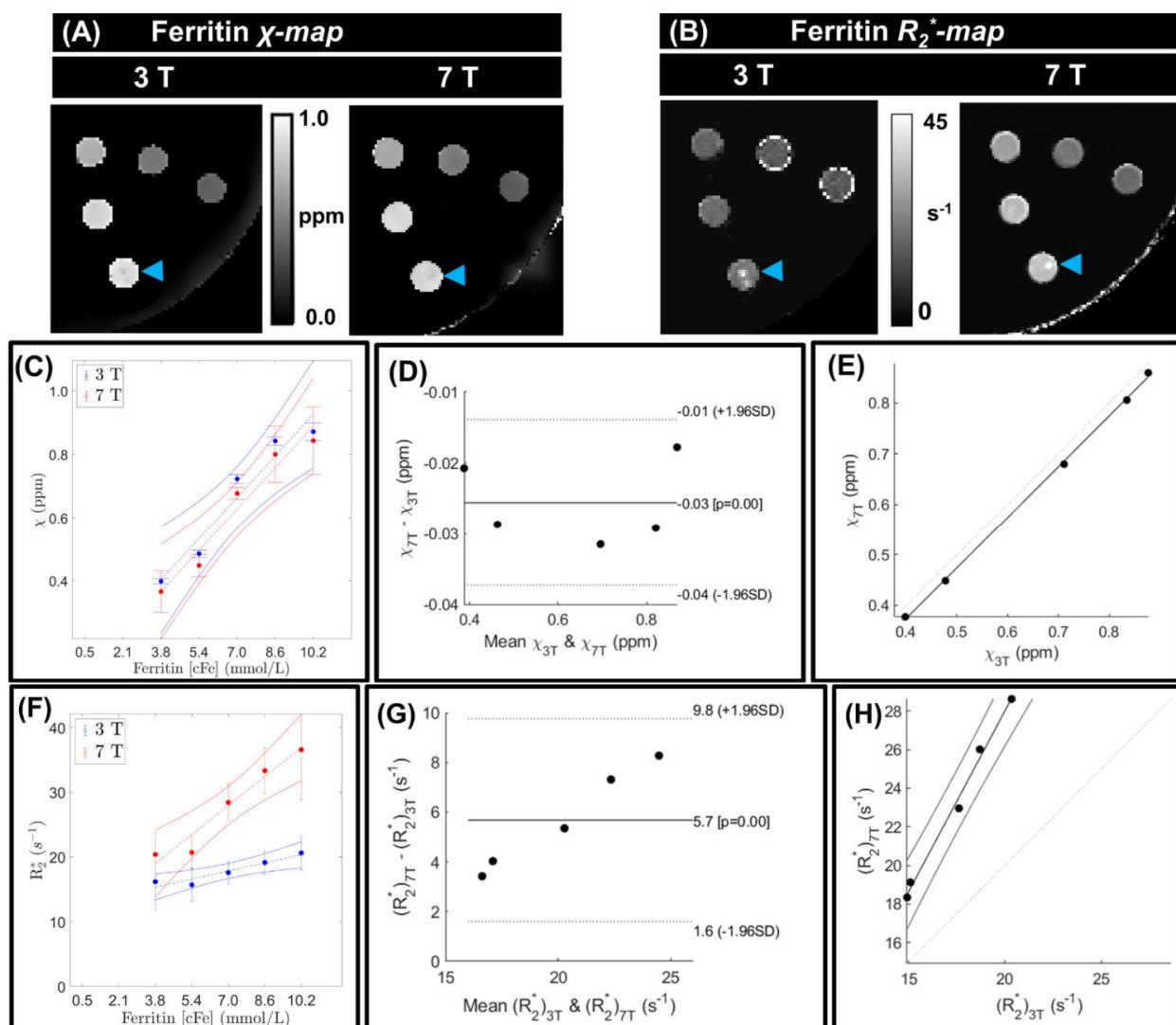


Figure 2: USPIO χ maps (A) and R_2^* maps (B). The windowing of the χ map at 7T was set to half that of 3T. The yellow arrowhead indicated the presence of an agglomerate at USPIO 0.36 mmol/L, manifesting as bright on both the χ and R_2^* maps. (C) Scatter plot of χ as a function of USPIO concentration. (D) Bland-Altman and (E) correlation plots of $(\chi \cdot B_0)_{3T}$ versus $(\chi \cdot B_0)_{7T}$. (F) Scatter plot of R_2^* as a function of USPIO concentration. (G) Bland-Altman and (H) correlation plots of $(R_2^*)_{3T}$ versus $(R_2^*)_{7T}$.

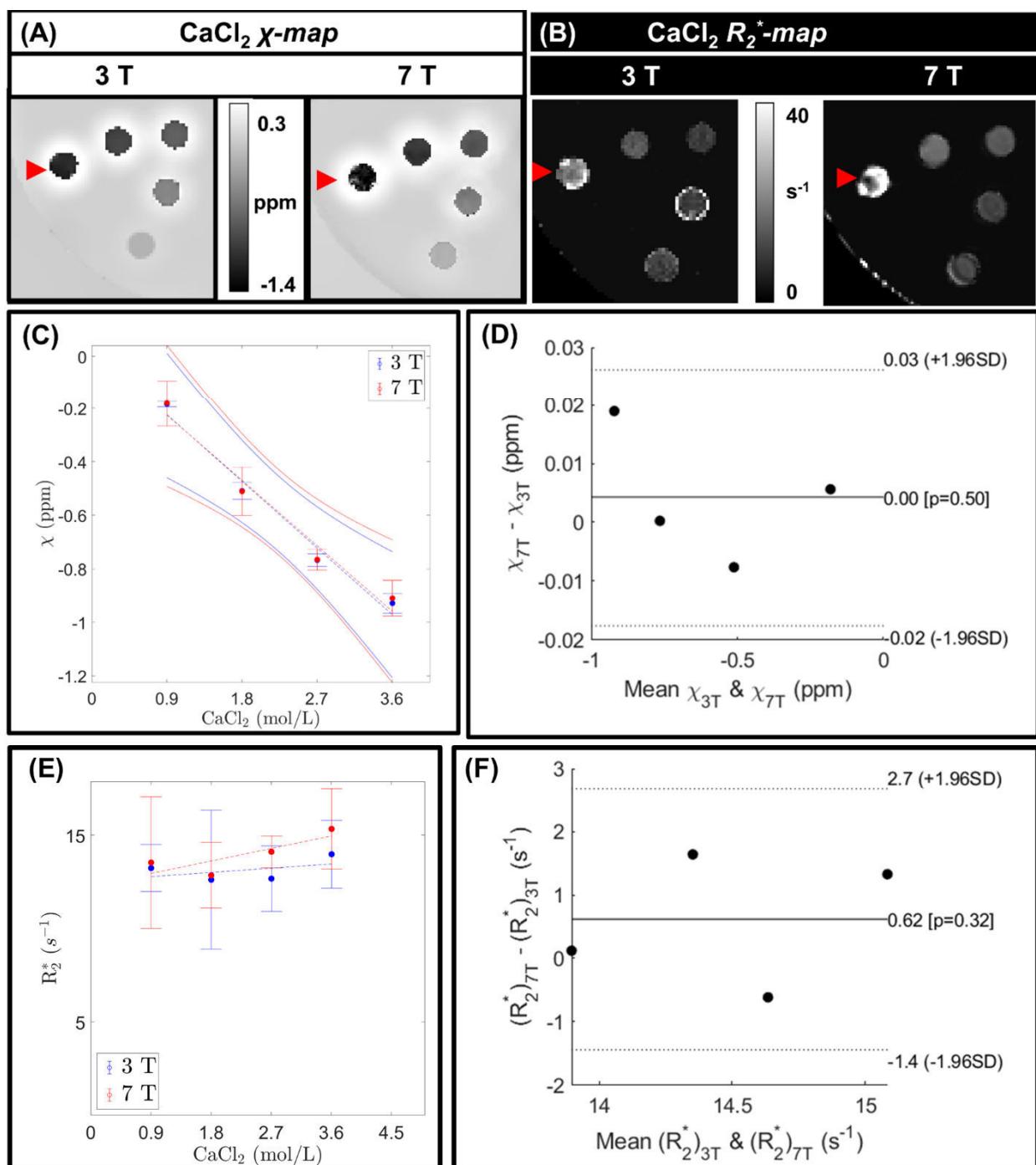

7

8

9

10

1

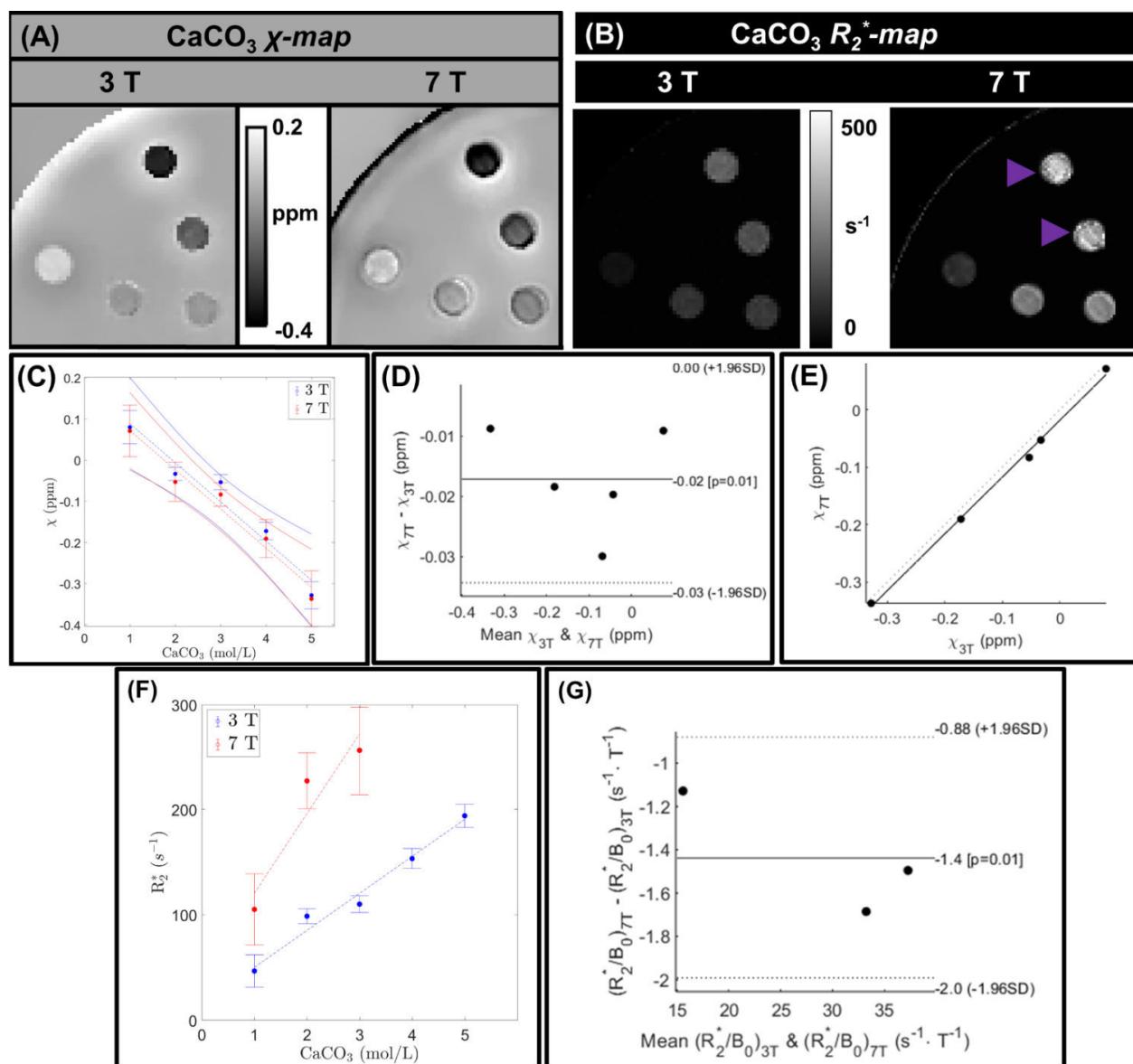


2 Figure 3: Ferritin χ maps (A) and R_2^* maps (B). At 10.2 mmol/L, ferritin clumps were marked with
3 a blue arrowhead, manifesting as dark on χ (diamagnetic) and bright on R_2^* . (C) Scatter plot of χ as a
4 function of ferritin concentration. (D) Bland-Altman and (E) correlation plots of χ_{3T} versus χ_{7T} . (F)
5 Scatter plot of R_2^* as a function of ferritin concentration. (G) Bland-Altman and (H) plots of $(R_2^*)_{3T}$
6 versus $(R_2^*)_{7T}$.

7

8

9


1 Figure 4: Calcium chloride (CaCl₂) χ maps (A) and R_2^* maps (B). The voxels corresponding to
2 CaCl₂ 4.5 mol/L were heterogeneous, as indicated with a red arrowhead on the 7T χ map. (C) Scatter
3 plot of χ as a function of concentration of CaCl₂. (D) Bland-Altman plot of χ_{3T} versus χ_{7T} . (E) Scatter
4 plot of R_2^* as a function of concentration of CaCl₂. (F) Bland-Altman plot of $(R_2^*)_{3T}$ versus $(R_2^*)_{7T}$.

5

6

7

1

2 Figure 5: Calcium carbonate (CaCO₃) χ maps (A) and R_2^* maps (B) of. At 7T, the R_2^* at
3 concentrations ≥ 4.0 mol/L were heterogeneous, indicated with a purple arrowhead. (C) Scatter plot
4 of χ as a function of concentration of CaCO₃. (D) Bland-Altman and (E) correlation plots of χ_{3T} versus
5 χ_{7T} . (F) Scatter plot of R_2^* as a function of concentration of CaCO₃. (G) Bland-Altman plot of
6 $(R_2^*/B_0)_{3T}$ versus $(R_2^*/B_0)_{7T}$.

7

8

9

10

1 3.1 Analysis of clumps/agglomerates and other confounds

2 We termed “agglomerates” as bright clusters on a susceptibility map and “clumps” as dark clusters
3 on a susceptibility map; clumps/agglomerates each were bright on the R_2^* maps. At 3T, the mean
4 clump/agglomerate volumes of ferritin (3.49 mm^3) were roughly 6% larger than those of USPIO (3.27
5 mm^3). At 7T, the mean clump/agglomerate volumes for ferritin (13.01 mm^3) were roughly twice those
6 of USPIO (6.40 mm^3). A single agglomerate was observed in USPIO 0.45 mmol/L (see Figure 2), and
7 several clumps were observed in ferritin 10.2 mmol/L (see Figure 3).

8 For CaCl_2 4.5 mol/L, we observed heterogeneity, which was attributed to it reaching the water
9 solubility limit³³; thus, we excluded CaCl_2 4.5 mol/L from all statistical analysis. CaCO_3
10 concentrations $\geq 4.0 \text{ mol/L}$ were heterogeneous on the R_2^* map (see Figure 5) due to low SNR; thus,
11 these two concentrations were excluded from the R_2^* statistical analysis. At 3T, the mean
12 clump/agglomerate volumes for CaCl_2 (1.46 mm^3) were roughly 15% larger than CaCO_3 (1.27 mm^3).
13 At 7T, the mean clump/agglomerate volumes for CaCl_2 (5.59 mm^3) were roughly half that of CaCO_3
14 (10.40 mm^3). The mean number of R_2^* map outlier voxels per vial was less than 3.0 % for each
15 material group at each field strength (see Table S2).

16 3.2 Linear regression (c_{mol} versus χ)

17 The linearity was excellent, $R^2 > 0.9$, for all 4 materials and field strengths. For USPIO, χ_{mol} at 3T
18 ($1.67 \text{ ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$) was roughly 2.3 times greater than its χ_{mol} at 7T ($0.74 \text{ ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$). For
19 ferritin, χ_{mol} at 3T and 7T were equal ($8.13 \times 10^{-2} \text{ ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$). For CaCl_2 , χ_{mol} at 3T (2.68×10^{-4}
20 $\text{ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$) was roughly 1% less than its χ_{mol} at 7T ($2.71 \times 10^{-4} \text{ ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$). For CaCO_3 , χ_{mol}
21 at 3T ($9.52 \times 10^{-5} \text{ ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$) was also roughly 1% less than its χ_{mol} at 7T (9.53×10^{-5}
22 $\text{ppm} \cdot \text{mmol}^{-1} \cdot \text{L}$).

	USPIO	Ferritin	CaCl_2	CaCO_3
χ_{mol} ($\text{ppm} \cdot \text{L} \cdot \text{mmol}^{-1}$)	1.67 ± 0.24 0.74 ± 0.09	$(8.13 \pm 1.35) \times 10^{-2}$ $(8.13 \pm 1.19) \times 10^{-2}$	$(-2.68 \pm 0.24) \times 10^{-4}$ $(-2.71 \pm 0.37) \times 10^{-4}$	$(-9.52 \pm 1.44) \times 10^{-5}$ $(-9.53 \pm 1.18) \times 10^{-5}$
χ_0 (ppb)	253 ± 61 188 ± 28	80 ± 81 53 ± 91	25 ± 80 19 ± 91	190 ± 43 165 ± 39
R^2 (c_{mol} versus χ)	0.95 0.95	0.95 0.94	0.98 0.97	0.94 0.96

23 Table 2: Linear fitting coefficients (c_{mol} versus χ) and linearity (R^2) at 3T and 7T, respectively,
24 from MEDI+0 reconstructed susceptibility maps. Coefficients are reported with standard error.

26 3.3 Linear regression (c_{mol} versus R_2^*)

1 The linearity was poor ($R^2 < 0.5$) for CaCl_2 at 3T, good ($0.75 < R^2 < 0.9$) for CaCl_2 at 7T and CaCO_3 at 7T, and excellent ($R^2 > 0.9$) for CaCO_3 at 3T, USPIO and ferritin at both field strengths (see Table 3). For USPIO, $R_2^* \text{ mol}$ at 7T ($77.5 \text{ s}^{-1} \cdot \text{mmol}^{-1} \cdot \text{L}$) was roughly 6% less than $R_2^* \text{ mol}$ at 3T ($82.3 \text{ s}^{-1} \cdot \text{mmol}^{-1} \cdot \text{L}$). For ferritin, $R_2^* \text{ mol}$ at 7T ($0.77 \text{ s}^{-1} \cdot \text{mmol}^{-1} \cdot \text{L}$) was roughly 3.6 times less than $R_2^* \text{ mol}$ at 7T ($2.78 \text{ s}^{-1} \cdot \text{mmol}^{-1} \cdot \text{L}$). The linearity of CaCl_2 was poor at 3T, we report $R_2^* \text{ mol}$ mean \pm standard deviation as $13.1 \pm 0.6 \text{ s}^{-1}$; $14.0 \pm 1.1 \text{ s}^{-1}$ at 3T; 7T, respectively. For CaCO_3 , $R_2^* \text{ mol}$ at 7T ($0.869 \text{ s}^{-1} \cdot \text{mmol}^{-1} \cdot \text{L}$) was roughly 2.5 times greater than $R_2^* \text{ mol}$ at 7T ($0.352 \text{ s}^{-1} \cdot \text{mmol}^{-1} \cdot \text{L}$).

3.4 Test-retest repeatability

9 Coefficient of reliability (ICC) and standard error of the measurement (SEM) of test-retest
10 measurements are shown in table 3. The test-retest repeatability was ‘excellent’ ($ICC > 0.90$) for each
11 material at each field strength. For ferritin and CaCO_3 , the SEM each were within 5 ppb at both field
12 strengths. At 3T, the USPIO SEM ($1.5 \pm 2.0 \text{ ppb}$) was 25% larger than the ferritin SEM ($1.2 \pm 1.0 \text{ ppb}$).
13 At 7T, the USPIO SEM ($5.1 \pm 2.0 \text{ ppb}$) was 1.8 times larger than the ferritin SEM ($2.2 \pm 1.3 \text{ ppb}$).
14 At 3T, the CaCl_2 SEM ($7.5 \pm 5.5 \text{ ppb}$) was 625 % larger than the CaCO_3 SEM ($1.2 \pm 0.6 \text{ ppb}$).
15 At 7T, the CaCl_2 SEM ($1.2 \pm 0.6 \text{ ppb}$) was 33% larger than the CaCO_3 SEM ($0.9 \pm 0.7 \text{ ppb}$).

3.5 Material lifespan

17 Comparing the molar susceptibility measurements from t_0 to t_1 showed no significant change for
18 USPIO ($p=0.32$; $p=0.06$ at 3T; 7T), ferritin ($p=0.55$; $p=0.11$ at 3T; 7T), CaCl_2 at 3T ($p=0.71$), but
19 there was a significant change for CaCl_2 at 7T ($p=0.04$), see table 3. Comparing the molar
20 susceptibility measurements from t_0 to t_2 showed a significant change for USPIO at 3T ($p=0.05$) but
21 not at 7T ($p=0.10$), and no significant change for ferritin ($p=0.24$; $p=0.32$ at 3T; 7T). Comparing the
22 molar susceptibility measurements from t_1 to t_2 showed no significant change for CaCO_3 ($p=0.38$;
23 $p=0.12$ at 3T; 7T). There was no significant linear correlation between time ($t_{\text{month}} = [0, 9, 24]$) and molar
24 susceptibility (χ_{mol}) for USPIO ($p=0.38$; $p=0.82$ at 3T; 7T) and ferritin ($p=0.28$; $p=0.70$ at 3T; 7T).

	USPIO	Ferritin	CaCl_2	CaCO_3
ICC, test-retest	0.99-1.00; 0.99-1.00	0.99-1.00; 1.00-1.00	0.99-1.00; 1.00-1.00	1.00-1.00; 1.00-1.00
SEM, test-retest (ppb)	1.5 ± 2.0 ; 5.1 ± 2.0	1.2 ± 1.0 ; 2.2 ± 1.3	7.5 ± 5.5 ; 1.2 ± 0.6	0.8 ± 0.6 ; 0.9 ± 0.7
Material lifespan	$\leq 24 \text{ months}$ ($p=0.05$ at 3T)	$> 24 \text{ months}$ (no significant change observed)	$\leq 9 \text{ months}$ ($p=0.04$ at 7T)	$> 15 \text{ months}$ (no significant change observed)

25 Table 3: Test-retest repeatability and lifespan of χ measurements for concentrations 1 to 5 of
26 each material group. Besides material lifespan, values given at 3T; 7T, respectively. Coefficient of
27 reliability (ICC) reported as: ICC lower interval to ICC upper interval. Standard error of the
28 measurement (SEM) of test-retest measurements reported as mean \pm standard deviation. Material
29 lifespan was based on the t-tests comparing baseline χ_{mol} values to χ_{mol} value at various timepoints.

1 3.6 Cross-field strength agreement

2 For both ferritin and CaCO_3 , the χ_{3T} versus χ_{7T} relationship showed a significant bias; -0.03 ppm
3 ($p=0.00$) for ferritin and -0.02 ppm ($p=0.01$) for CaCO_3 . For both ferritin and CaCO_3 , the correlation
4 between χ_{3T} versus χ_{7T} was significant ($p=0.02$), and the correlation line was $y=1.00x-0.03$ for ferritin,
5 and $y=0.99x-0.02$ for CaCO_3 . For CaCl_2 , the χ_{3T} versus χ_{7T} relationship showed no significant bias
6 ($p=0.50$), and no significant correlation ($p=0.08$). The product of USPIO susceptibility and field
7 strength, $\chi \cdot B_0$, showed a significant bias of 2.0 ppm·T ($p=0.00$). The correlation between $(\chi \cdot B_0)_{3T}$ and
8 $(\chi \cdot B_0)_{7T}$ was significant ($p=0.02$), and the correlation line was $y=1.69x+0.29$.

9 The USPIO $(R_2^*)_{3T}$ and $(R_2^*)_{7T}$ showed significant bias of -2.6 s^{-1} ($p=0.01$). The correlation
10 between $(R_2^*)_{3T}$ and $(R_2^*)_{7T}$ was significant ($p=0.02$), and the correlation line was $y=0.93x+0.55$. The
11 ferritin $(R_2^*)_{3T}$ and $(R_2^*)_{7T}$ showed significant bias 5.7 s^{-1} ($p=0.00$). The correlation between $(R_2^*)_{3T}$
12 and $(R_2^*)_{7T}$ was significant ($p=0.02$), and the correlation line was $y=1.87x-9.48$. The CaCl_2 $(R_2^*)_{3T}$
13 and $(R_2^*)_{7T}$ showed no significant bias ($p=0.32$), and no significant correlation ($p=1.00$). The quotient
14 of CaCO_3 R_2^* and field strength, R_2^*/B_0 , showed a significant bias of $-1.4 \text{ s}^{-1}\cdot\text{T}^{-1}$ ($p=0.01$). The
15 correlation between $(R_2^*/B_0)_{3T}$ and $(R_2^*/B_0)_{7T}$ was not significant ($p=0.33$).

16 3.7 Comparison to analytical model

17 $\chi_{\text{analytical}}$ and $\chi_{\text{MEDI}+0}$ showed no significant bias for each material (USPIO, ferritin, CaCl_2 , CaCO_3)
18 and field strength (3T, 7T) as indicated in Table S4 ($p>0.05$). The correlation between $\chi_{\text{analytical}}$ and
19 $\chi_{\text{MEDI}+0}$ was significant for each material (USPIO, ferritin, CaCl_2 , CaCO_3) and field strength (3T, 7T)
20 as indicated in Table S4 ($p=0.02$). At 3T, the correlation lines were $y=1.00x+0.00$ (USPIO),
21 $y=0.99x+0.01$ (ferritin), $y=0.99x+0.00$ (CaCl_2 and CaCO_3). At 3T, the correlation lines were
22 $y=0.97x+0.01$ (USPIO), $y=0.98x+0.01$ (ferritin), $y=0.97x-0.02$ (CaCl_2) and $y=0.98x+0.02$ (CaCO_3).

23

1 **4 Discussion**

2 **4.1 Acquisition and processing**

3 The field-to-susceptibility dipole inversion is formulated as a L_1/L_2 -norm regularization; requiring
4 careful tuning of the regularization terms, trading off excessive noise propagation (streaking artifacts)
5 versus the suppression of image features within the noise level⁶⁹. We used MEDI-based QSM
6 reconstruction as the information from magnitude images helped to accurately regularize
7 susceptibility gradients reducing error propagation during dipole inversion. Moreover, the MEDI
8 algorithm uses a non-linear data fidelity term, which better handles dipole incompatible fields than
9 the linear data fidelity variant⁸.

10 We observed minor deviations in SNR and local field surrounding the clumps/agglomerates. The
11 mean number of R_2^* map outlier voxels per vial was small (less than 3.0 % for each material group,
12 as indicated in Table S2). The SNR within phase images are higher than SNR within magnitude
13 images^{70,71}; which implies that SNR within susceptibility maps are higher than SNR within R_2^* maps.
14 This could explain why the minor deviations in SNR surrounding clumps/agglomerates led to larger
15 deviations in the R_2^* maps than in the susceptibility maps. Errors associated with clumps/agglomerates
16 were mitigated by modulating the weighting map using information from a simulated
17 monoexponential signal (as described in section 2.5).

18 **4.2 Test-retest repeatability and material lifespan**

19 A key aim within the quantitative MRI community is the development of phantoms that can assist
20 system stability^{72,73}. This requires materials that are stable within minutes of repeated measurements
21 (test-retest measurements), as well as within months (longitudinal measurements). At both field
22 strengths, our test-retest measurements indicated that the ferritin SEM was less than the USPIO SEM;
23 and the $CaCO_3$ SEM was less than the $CaCl_2$ SEM. Dielectric artifacts are an intrinsic limitation that
24 should be considered when using $CaCl_2$ in phantoms. The dielectric artifacts lead to the elevated $CaCl_2$
25 SEM in the test-retest measurement. At both 3T and 7T, shading about the $CaCl_2$ vials was observed
26 (see Figure 4B), and was attributed to the interaction between $CaCl_2$ conductivity and the B_1 field,
27 which leads to signal attenuations that are unevenly distributed throughout the imaging FOV⁷⁴. For
28 USPIO, the high R_2^* dephasing and the high local fields contributed to the elevated USPIO SEM. For
29 ferritin and $CaCO_3$, the SEM each were within 5 ppb at both field strengths. In terms of material
30 lifespan, ferritin and $CaCO_3$ each were stable over the measured timeframes (9 & 24 months for
31 ferritin; 15 months for $CaCO_3$). Ferritin and $CaCO_3$ could therefore be used within susceptibility
32 phantoms to support 3T/7T harmonization studies, using our measurement data as a reference when
33 constructing such a phantom.

1 4.3 Cross-field strength agreement

2 A key motivation of ultra-high-field MRI is the comparability of quantitative measurements of
3 phase and/or susceptibility to clinical MRI⁷⁵. Optimizing and standardizing QSM acquisition and
4 reconstruction protocols across field strength is essential to make susceptibility a robust biomarker.
5 Initiatives such as the German Ultrahigh Field Imaging network traveling heads study^{76,77} and the
6 United Kingdom 7T study⁷⁸ are steps in this direction. Cross-field strength agreement was conducted
7 in the current work using Bland-Altman analysis. For both ferritin and CaCO₃, the χ_{3T} versus χ_{7T}
8 relationship showed a significant bias; -0.03 ppm (p=0.00) for ferritin and -0.02 ppm (p=0.01) for
9 CaCO₃. Curiously, the agreement between χ_{3T} and χ_{7T} was best at concentrations 1 and 5 (vials
10 positioned closest to the edge). This could be due to the closer proximity to the receive elements,
11 therefore, resulting in a higher SNR than concentrations 2 to 4 (vials positioned closest to the center).
12 For both ferritin and CaCO₃, the correlation between χ_{3T} versus χ_{7T} was significant (p=0.02), and the
13 correlation line was $y=1.00x-0.03$ for ferritin, and $y=0.99x-0.02$ for CaCO₃. The consistent cross-field
14 strength bias might provide insight into future 3T/7T harmonization studies. An important property
15 of CaCO₃ is that the quotient of R_2^* and field strength, R_2^*/B_0 , is invariant with field strength³¹. The
16 correlation between $(R_2^*/B_0)_{3T}$ and $(R_2^*/B_0)_{7T}$ was $y=0.98x-0.81$ ($R^2=1.00$). The findings reinforce the
17 use of CaCO₃ in phantoms for susceptibility source differentiation which require diamagnetic
18 material.

19 4.4 Comparison to reference values

20 In a USPIO phantom study by Liu et al., it is described that USPIO's magnetization ($\chi \cdot B_0$) reaches
21 a saturation point prior to 3T, becoming invariant between 3T and 7T⁴. Liu et al. reported that
22 the USPIO χ_{mol} at 3T; 7T is approximately 1.79; 0.74 ppm·L·mmol⁻¹⁴. These values fall within the
23 standard errors of χ_{mol} measured in our study, 1.67 ± 0.24 ; 0.74 ± 0.09 ppm·L·mmol⁻¹ at 3T; 7T. Liu
24 et al. reported that the USPIO $R_2^*_{mol}$ at 3T; 7T is 87.2; 106.5 s⁻¹·L·mmol⁻¹⁴. Their data fall within the
25 standard errors of $R_2^*_{mol}$ at 3T (84.2 ± 7.9 s⁻¹·L·mmol⁻¹), but not at 7T (79.5 ± 4.4 s⁻¹·L·mmol⁻¹). A
26 possible explanation could be that the USPIO used in this study, Molday Ion, differs from the USPIO
27 used by Liu et al., Ferumoxytol⁴. Previous studies have reported the ferritin susceptibility at 293 K is
28 approximately 0.077 ppm·L·mmol⁻¹⁷⁹ and 0.080 ppm·L·mmol⁻¹⁸⁰. These values fall within the range
29 of ferritin χ_{mol} measured in our study, $(8.13 \pm 1.35) \times 10^{-2}$; $(8.13 \pm 1.19) \times 10^{-2}$ ppm·L·mmol⁻¹ at 3T; 7T.
30 The susceptibility value of any paramagnetic material may deviate with temperature (by Curie's
31 Law)⁷⁹, and the internal temperature of the phantom bore frequently deviates from the ambient
32 temperature of the scanner room⁷². Future studies would benefit from using integrated temperature
33 monitoring and/or control^{81,82}.

34 4.5 Recommendations

1 In future studies, we recommend susceptibility matching the undoped agarose to the surrounding
2 fluid by doping each agarose mixture with the same concentration of conductivity modifier used to
3 dope the surrounding fluid. By Equation (6), $\chi_{\text{undoped agarose}} = \chi_{\text{surrounding fluid}}$ would ensure that $\chi'_0 = 0$. We
4 recommend using ferritin and CaCO_3 as paramagnetic and diamagnetic susceptibility sources for the
5 validation of QSM imaging

6 Conclusion

7 This research performed a range of quantitative analysis of materials for QSM phantom
8 construction: signal-to-noise ratio, χ and R_2^* maps, outliers, test-retest repeatability, cross-field
9 strength agreement, and material lifespan. Based on the results, we recommend using ferritin and
10 CaCO_3 as paramagnetic and diamagnetic susceptibility sources for the validation of QSM imaging.

11 Acknowledgements

12 We are grateful to Carl Dixon from the CAI workshop for engineering design input and for
13 machining the phantom. We thank Martijn Cloos for providing a model of the 7T Nova Medical 32
14 RX-element coil. This work was published in preliminary form⁶⁵. This research was funded by the
15 Australian Government through the Australian Research Council (project number IC170100035). The
16 authors acknowledge the facilities and scientific and technical assistance of National Imaging Facility,
17 a National Collaborative Research Infrastructure Strategy (NCRIS) capability, at the University of
18 Queensland.

19 Data availability statement

20 We facilitate the reproducibility of this study and the phantom by providing scripts
21 (<https://github.com/paddyhooper93/Thesis>, commit hash 5ea6db1).

22 References

- 23 1. Russek SE, Stupic KF, Biller JR, Boss MA, Keenan KE, Mirowski E. Electromagnetics for Quantitative
24 Magnetic Resonance Imaging. In: *Compendium on Electromagnetic Analysis*. World Scientific; 2020:95-147.
- 25 2. Hall MG, Cashmore MTD, McGrath C, McCann A, Tofts PS. The perfect diagnostic imaging machine and
26 what it means for quantitative MRI reproducibility. *IPEM-Translation*. 2023;6-8:100019.
- 27 3. Deistung A, Schweser F, Wiestler B, et al. Quantitative Susceptibility Mapping Differentiates between Blood
28 Deposits and Calcifications in Patients with Glioblastoma. Kleinschmitz C, ed. *PLoS ONE*.
29 2013;8(3):e57924.
- 30 4. Liu S, Brisset JC, Hu J, Haacke EM, Ge Y. Susceptibility weighted imaging and quantitative susceptibility
31 mapping of the cerebral vasculature using ferumoxytol. *Journal of Magnetic Resonance Imaging*.
32 2018;47(3):621-633.

1 5. Ravanfar P, Loi SM, Syeda WT, et al. Systematic Review: Quantitative Susceptibility Mapping (QSM) of
2 Brain Iron Profile in Neurodegenerative Diseases. *Frontiers in Neuroscience*. 2021;15:618435.

3 6. Wang Y, Spincemaille P, Liu Z, et al. Clinical quantitative susceptibility mapping (QSM): Biometal imaging
4 and its emerging roles in patient care. *Journal of Magnetic Resonance Imaging*. 2017;46(4):951-971.

5 7. Neelavalli J, Cheng YCN. Magnetic Susceptibility. In: Haacke EM, Reichenbach JR, eds. *Susceptibility
6 Weighted Imaging in MRI: Basic Concepts and Clinical Applications*. 1st ed. Hoboken, N.J.; 2011:17-31.

7 8. Kee Y, Liu Z, Zhou L, et al. Quantitative Susceptibility Mapping (QSM) Algorithms: Mathematical Rationale
8 and Computational Implementations. *IEEE Transactions on Biomedical Engineering*. 2017;64(11):2531-2545.

9 9. Marques J, Bowtell R. Application of a Fourier-based method for rapid calculation of field inhomogeneity due
10 to spatial variation of magnetic susceptibility. *Concepts in Magnetic Resonance Part B: Magnetic Resonance
11 Engineering: An Educational Journal*. 2005;25(1):65-78.

12 10. Salomir R, de Senneville BD, Moonen CT. A fast calculation method for magnetic field inhomogeneity due to
13 an arbitrary distribution of bulk susceptibility. *Concepts in Magnetic Resonance*. 2003;19B(1):26-34.

14 11. Straub S, Schneider TM, Emmerich J, et al. Suitable reference tissues for quantitative susceptibility mapping of
15 the brain. *Magnetic Resonance in Medicine*. 2017;78(1):204-214.

16 12. Liu C. Susceptibility tensor imaging. *Magnetic Resonance in Medicine*. 2010;63(6):1471-1477.

17 13. Sullivan DC, Obuchowski NA, Kessler LG, et al. Metrology Standards for Quantitative Imaging Biomarkers.
18 *Radiology*. August 2015.

19 14. Raunig DL, McShane LM, Pennello G, et al. Quantitative imaging biomarkers: A review of statistical methods
20 for technical performance assessment. *Stat Methods Med Res*. 2015;24(1):27-67.

21 15. Obuchowski NA, Mozley PD, Matthews D, Buckler A, Bullen J, Jackson E. Statistical Considerations for
22 Planning Clinical Trials with Quantitative Imaging Biomarkers. *Journal of the National Cancer Institute*.
23 2019;111(1):19-26.

24 16. Ye S, Lim JY, Huang W. Statistical considerations for repeatability and reproducibility of quantitative imaging
25 biomarkers. *BJR|Open*. 2022;4(1):20210083.

26 17. Deh K, Kawaji K, Bulk M, et al. Multicenter reproducibility of quantitative susceptibility mapping in a
27 gadolinium phantom using MEDI+0 automatic zero referencing. *Magnetic Resonance in Medicine*.
28 2019;81(2):1229-1236.

29 18. Cuña EG, Schulz H, Tuzzi E, et al. Simulated and experimental phantom data for multi-center quality
30 assurance of quantitative susceptibility maps at 3 T, 7 T and 9.4 T. *Physica Medica: European Journal of
31 Medical Physics*. 2023;110.

32 19. Antoniou A, Georgiou L, Christodoulou T, et al. MR relaxation times of agar-based tissue-mimicking
33 phantoms. *Journal of Applied Clinical Medical Physics*. 2022;23(5):e13533.

34 20. Duyn JH, Schenck J. Contributions to magnetic susceptibility of brain tissue. *NMR in Biomedicine*.
35 2017;30(4):e3546.

36 21. Hagberg GE, Engelmann J, Göring E, Cuña EG, Scheffler K. Magnetic properties of iron-filled hydrogel
37 clusters: a model system for quantitative susceptibility mapping with MRI. *Frontiers in Physics*. 2023;11.
38 <https://www.frontiersin.org/articles/10.3389/fphy.2023.1209505>. Accessed August 21, 2023.

39 22. Shen Y, Hu J, Eteer K, et al. Detecting sub-voxel microvasculature with USPIO-enhanced susceptibility-
40 weighted MRI at 7 T. *Magnetic Resonance Imaging*. 2020;67:90-100.

41 23. Han SH, Cho JH, Jung HS, et al. Robust MR assessment of cerebral blood volume and mean vessel size using
42 SPION-enhanced ultrashort echo acquisition. *NeuroImage*. 2015;112:382-389.

1 24. Deh K, Zaman M, Vedvyas Y, et al. Validation of MRI quantitative susceptibility mapping of
2 superparamagnetic iron oxide nanoparticles for hyperthermia applications in live subjects. *Scientific Reports*.
3 2020;10(1):1171.

4 25. Brown GC, Cowin GJ, Galloway GJ. A USPIO doped gel phantom for R2* relaxometry. *Magn Reson Mater
5 Phy*. 2017;30(1):15-27. doi:10.1007/s10334-016-0576-x

6 26. Macpherson P, Matheson MS. Comparison of calcification of pineal, habenular commissure and choroid plexus
7 on plain films and computed tomography. *Neuroradiology*. 1979;18(2):67-72.

8 27. Du Boulay GH. *Principles of X-Ray Diagnosis of the Skull*. 2nd ed. Butterworth-Heinemann; 2016.

9 28. Baconnier S, Lang SB. Calcite microcrystals in the pineal gland of the human brain: second harmonic
10 generators and possible piezoelectric transducers. *IEEE Transactions on Dielectrics and Electrical Insulation*.
11 2004;11(2):203-209. doi:10.1109/TDEI.2004.1285888

12 29. Emmerich J, Bachert P, Ladd ME, Straub S. On the influence of two coexisting species of susceptibility-
13 producing structures on the R2* relaxation rate. *Magnetic Resonance Imaging*. 2020;71:170-177.

14 30. Emmerich J, Bachert P, Ladd ME, Straub S. A novel phantom with dia- and paramagnetic substructure for
15 quantitative susceptibility mapping and relaxometry. *Physica Medica*. 2021;88:278-284.

16 31. Emmerich J, Bachert P, Ladd ME, Straub S. On the separation of susceptibility sources in quantitative
17 susceptibility mapping: Theory and phantom validation with an in vivo application to multiple sclerosis lesions
18 of different age. *Journal of Magnetic Resonance*. 2021;330:107033. doi:10.1016/j.jmr.2021.107033

19 32. Hopkins JA, Wehrli FW. Magnetic susceptibility measurement of insoluble solids by NMR: Magnetic
20 susceptibility of bone. *Magnetic Resonance in Medicine*. 1997;37(4):494-500.

21 33. Rumble J R. Physical Constants of Organic Compounds. In: *CRC Handbook of Chemistry and Physics*. 104th
22 Edition (Internet Version 2023). Boca Raton, FL.: CRC Press/Taylor & Francis; 2023.

23 34. Weis J, Nilsson S, Ericsson A, Wikström M, Sperber GO, Hemmingsson A. Measurement of magnetic
24 susceptibility and MR contrast agent concentration. *Magnetic Resonance Imaging*. 1994;12(6):859-864.

25 35. Kanazawa Y, Matsumoto Y, Harada M, Hayashi H, Matsuda T, Otsuka H. Appropriate echo time selection for
26 quantitative susceptibility mapping. *Radiological Physics and Technology*. 2019;12(2):185-193.

27 36. Ianniello C, de Zwart JA, Duan Q, et al. Synthesized tissue-equivalent dielectric phantoms using salt and
28 polyvinylpyrrolidone solutions: Synthesized Tissue-Equivalent Dielectric Properties Using a Water-Soluble
29 Polymer. *Magnetic Resonance in Medicine*. 2018;80(1):413-419.

30 37. Eckstein K, Dymerska B, Bachrata B, et al. Computationally Efficient Combination of Multi-channel Phase
31 Data From Multi-echo Acquisitions (ASPIRE). *Magnetic Resonance in Medicine*. 2018;79(6):2996-3006.

32 38. Dymerska B, Eckstein K, Bachrata B, et al. Phase unwrapping with a rapid opensource minimum spanning tree
33 algorithm (ROMEO). *Magnetic Resonance in Medicine*. 2021;85(4):2294-2308.

34 39. Jutras JD, Wachowicz K, Gilbert G, De Zanche N. SNR efficiency of combined bipolar gradient echoes:
35 Comparison of three-dimensional FLASH, MPRAGE, and multiparameter mapping with VFA-FLASH and
36 MP2RAGE. *Magnetic Resonance in Medicine*. 2017;77(6):2186-2202.

37 40. Schmitt T, Rieger JW. Recommendations of Choice of Head Coil and Prescan Normalize Filter Depend on
38 Region of Interest and Task. *Front Neurosci*. 2021;15:735290. doi:10.3389/fnins.2021.735290

39 41. Eckstein K, Dymerska B, Bachrata B, et al. Computationally Efficient Combination of Multi-channel Phase
40 Data From Multi-echo Acquisitions (ASPIRE): Combination of Multi-Channel Phase Data from Multi-Echo
41 Acquisitions (ASPIRE). *Magn Reson Med*. 2018;79(6):2996-3006. doi:10.1002/mrm.26963

42 42. Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis: DICOM to
43 NIfTI conversion. *Journal of Neuroscience Methods*. 2016;264:47-56.

1 43. Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO. Measurement of signal-to-noise ratios in MR
2 images: Influence of multichannel coils, parallel imaging, and reconstruction filters. *Journal of Magnetic*
3 *Resonance Imaging*. 2007;26(2):375-385.

4 44. Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical
5 structures: Significantly improved efficiency and reliability. *NeuroImage*. 2006;31(3):1116-1128.

6 45. Li J, Chang S, Liu T, et al. Phase-corrected bipolar gradients in multi-echo gradient-echo sequences for
7 quantitative susceptibility mapping. *Magn Reson Mater Phy*. 2015;28(4):347-355.

8 46. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations.
9 *Magnetic Resonance in Medicine*. 1995;34(1):65-73.

10 47. Liu T, Wisniewski C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear formulation of the magnetic field to
11 source relationship for robust quantitative susceptibility mapping: Robust QSM With Nonlinear Data Fidelity
12 Constraint. *Magnetic Resonance in Medicine*. 2013;69(2):467-476.

13 48. Dong J, Liu T, Chen F, et al. Simultaneous Phase Unwrapping and Removal of Chemical Shift (SPURS) Using
14 Graph Cuts: Application in Quantitative Susceptibility Mapping. *IEEE Transactions on Medical Imaging*.
15 2015;34(2):531-540.

16 49. Dymerska B, Josephs O, Callaghan M. Characterising the impact of distortion correction in high-resolution 3D
17 GRE R_2^* mapping at 7T. In: *Proceedings of International Society for Magnetic Resonance in Medicine*.
18 London, UK; 2022.

19 50. Garcia D. Robust smoothing of gridded data in one and higher dimensions with missing values. *Computational*
20 *Statistics & Data Analysis*. 2010;54(4):1167-1178.

21 51. SPM 12 Software. Wellcome Trust Centre for Neuroimaging.
22 <https://www.fil.ion.ucl.ac.uk/spm/software/spm12/>. Published 2014. Accessed October 24, 2024.

23 52. Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts.
24 *Magnetic Resonance in Medicine*. 2016;76(5):1574-1581.

25 53. Tournier JD, Smith R, Raffelt D, et al. MRtrix3: A fast, flexible and open software framework for medical
26 image processing and visualisation. *NeuroImage*. 2019;202:116137.

27 54. Eskreis-Winkler S, Zhou D, Liu T, et al. On the influence of zero-padding on the nonlinear operations in
28 Quantitative Susceptibility Mapping. *Magn Reson Imaging*. 2017;35:154-159.

29 55. Li W, Wu B, Liu C. Quantitative susceptibility mapping of human brain reflects spatial variation in tissue
30 composition. *NeuroImage*. 2011;55(4):1645-1656.

31 56. Schweser F, Robinson SD, de Rochefort L, Li W, Bredies K. An illustrated comparison of processing methods
32 for phase MRI and QSM: removal of background field contributions from sources outside the region of
33 interest. *NMR in Biomedicine*. 2017;30(4):e3604.

34 57. Sandgaard AD, Shemesh N, Jespersen SN, Kiselev VG. To mask or not to mask? Investigating the impact of
35 accounting for spatial frequency distributions and susceptibility sources on QSM quality. *Magnetic Resonance*
36 *in Medicine*. 2023;90(1):353-362.

37 58. Langkammer C, Schweser F, Shmueli K, et al. Quantitative susceptibility mapping: Report from the 2016
38 reconstruction challenge. *Magnetic Resonance in Medicine*. 2018;79(3):1661-1673.

39 59. Bilgic B, Ye H, Wald LL, Setsompop K. Simultaneous Time Interleaved MultiSlice (STIMS) for Rapid
40 Susceptibility Weighted acquisition. *NeuroImage*. 2017;155:577-586.

41 60. Liu T, Xu W, Spincemaille P, Avestimehr AS, Wang Y. Accuracy of the Morphology Enabled Dipole
42 Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI. *IEEE Transactions on Medical*
43 *Imaging*. 2012;31(3):816-824.

1 61. Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y. MEDI+0: Morphology enabled dipole inversion with
2 automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping: QSM With
3 Automatic Uniform CSF Zero Reference. *Magnetic Resonance in Medicine*. 2018;79(5):2795-2803.

4 62. Chan KS, Marques JP. SEPIA—Susceptibility mapping pipeline tool for phase images. *NeuroImage*.
5 2021;227:117611.

6 63. Shmueli K, de Zwart JA, van Gelderen P, Li TQ, Dodd SJ, Duyn JH. Magnetic susceptibility mapping of brain
7 tissue in vivo using MRI phase data. *Magnetic Resonance in Medicine*. 2009;62(6):1510-1522.

8 64. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. *NeuroImage*. 2012;62(2):782-790.

9 65. Hooper P, Tourell M, O'Brien K, Jin J, Robinson SD, Barth M. Development of a Quantitative Susceptibility
10 Mapping (QSM) phantom for validation of acquisition strategies and post-processing tools at 3 T. In:
11 *Proceedings of the International Society for Magnetic Resonance in Medicine*. London, UK; 2022.

12 66. McGraw KO, Wong SP. Forming inferences about some intraclass correlation coefficients. *Psychological
13 Methods*. 1996;1(1):30-46.

14 67. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability
15 Research. *Journal of Chiropractic Medicine*. 2016;15(2):155-163.

16 68. Bland JM, Altman DG. Agreement Between Methods of Measurement with Multiple Observations Per
17 Individual. *Journal of Biopharmaceutical Statistics*. 2007;17(4):571-582.

18 69. QSM Consensus Organization Committee, Bilgic B, Costagli M, et al. Recommended implementation of
19 quantitative susceptibility mapping for clinical research in the brain: A consensus of the ISMRM electro-
20 magnetic tissue properties study group. *Magnetic Resonance in Medicine*. 2024;1-29.

21 70. Gudbjartsson H, Patz S. The Rician Distribution of Noisy MRI Data. *Magnetic Resonance in Medicine*.
22 1995;34(6):910-914.

23 71. Conturo TE, Smith GD. Signal-to-noise in phase angle reconstruction: Dynamic range extension using phase
24 reference offsets. *Magnetic Resonance in Medicine*. 1990;15(3):420-437.

25 72. Stupic KF, Ainslie M, Boss MA, et al. A standard system phantom for magnetic resonance imaging. *Magnetic
26 Resonance in Medicine*. 2021;86(3):1194-1211.

27 73. Keenan KE, Ainslie M, Barker AJ, et al. Quantitative magnetic resonance imaging phantoms: A review and the
28 need for a system phantom. *Magnetic Resonance in Medicine*. 2018;79(1):48-61.

29 74. Tropp J. Image brightening in samples of high dielectric constant. *Journal of Magnetic Resonance*.
30 2004;167(1):12-24.

31 75. Möller HE, Bossoni L, Connor JR, et al. Iron, Myelin, and the Brain: Neuroimaging Meets Neurobiology.
32 *Trends in Neurosciences*. 2019;42(6):384-401.

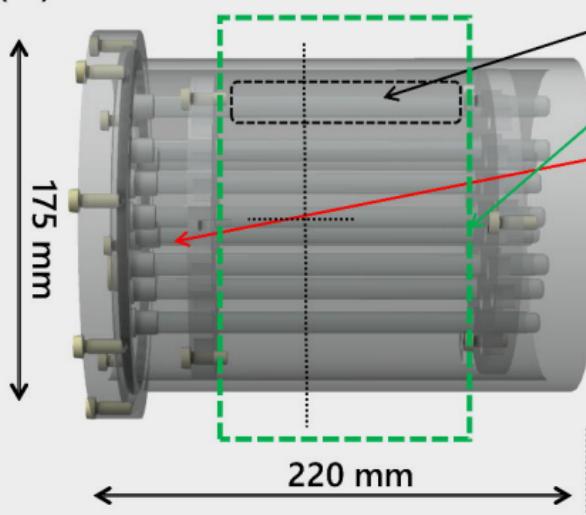
33 76. Voelker MN, Kraff O, Brenner D, et al. The traveling heads: multicenter brain imaging at 7 Tesla. *Magnetic
34 Resonance Materials in Physics, Biology and Medicine*. 2016;29(3):399-415.

35 77. Voelker MN, Kraff O, Goerke S, et al. The traveling heads 2.0: Multicenter reproducibility of quantitative
36 imaging methods at 7 Tesla. *NeuroImage*. 2021;232:117910.

37 78. Rua C, Clarke WT, Driver ID, et al. Multi-centre, multi-vendor reproducibility of 7T QSM and R2* in the
38 human brain: Results from the UK7T study. *NeuroImage*. 2020;223:117358.

39 79. Schenck JF. Health and Physiological Effects of Human Exposure to Whole-Body Four-Tesla Magnetic Fields
40 during MRI. *Annals of the New York Academy of Sciences*. 1992;649(1):285-301.

41 80. Xie H, Cheng YCN, Kokeny P, et al. A quantitative study of susceptibility and additional frequency shift of
42 three common materials in MRI. *Magnetic Resonance in Medicine*. 2016;76(4):1263-1269.

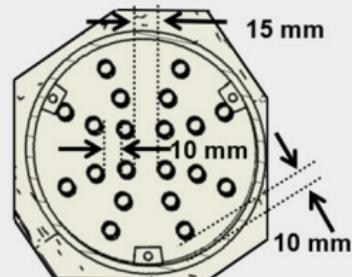

1 81. Keenan KE, Stupic KF, Russek SE, Mirowski E. MRI-visible liquid crystal thermometer. *Magnetic Resonance in Medicine*. 2020;84(3):1552-1563.

3 82. Kan H, Uchida Y, Arai N, et al. Decreasing iron susceptibility with temperature in quantitative susceptibility
4 mapping: A phantom study. *Magnetic Resonance Imaging*. 2020;73:55-61.

5

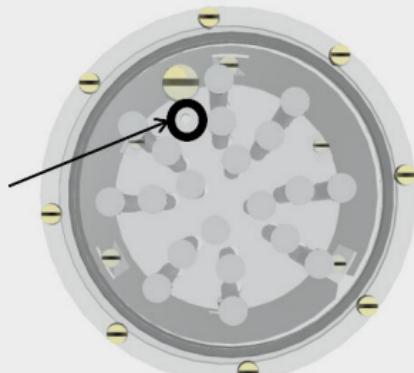
6

(A) Physical Isocenter

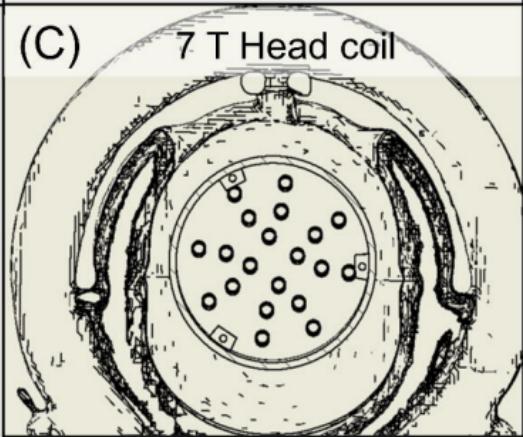


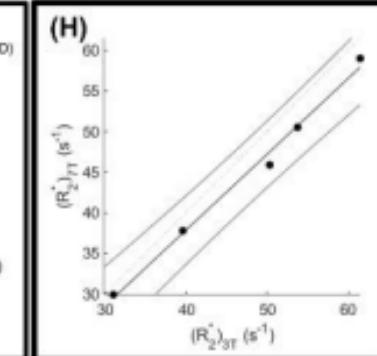
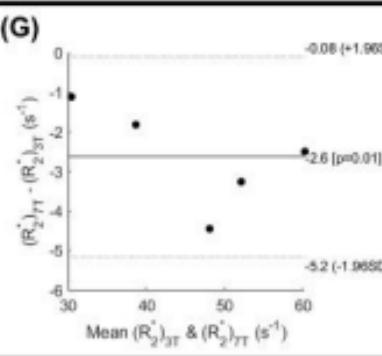
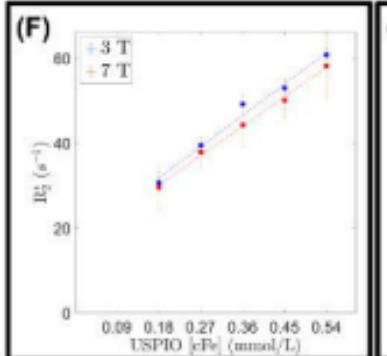
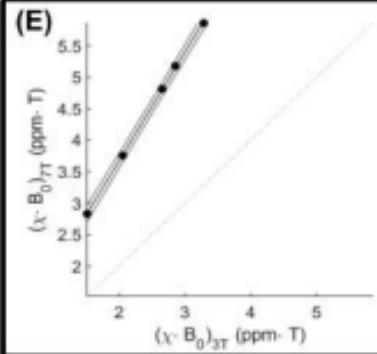
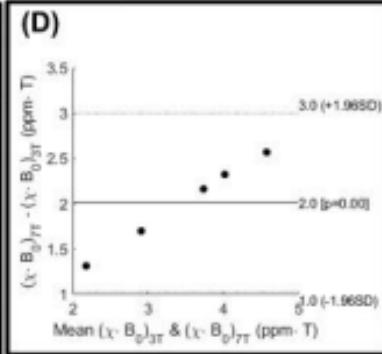
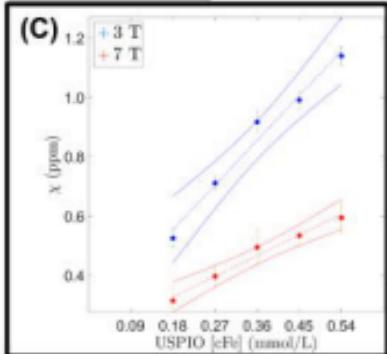
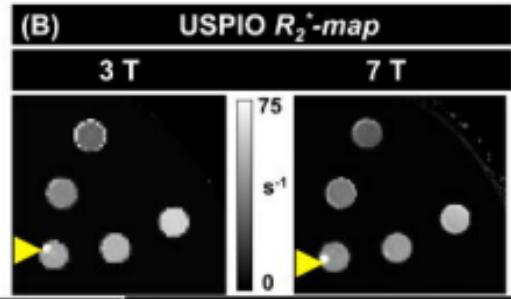
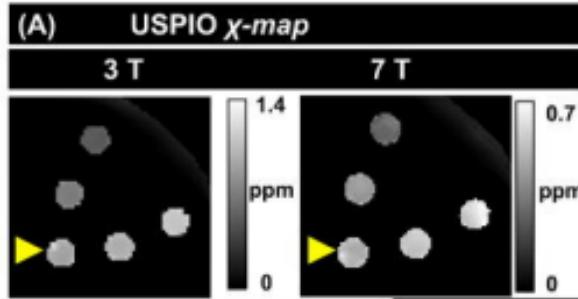
10 mm-diameter vials (x 20)

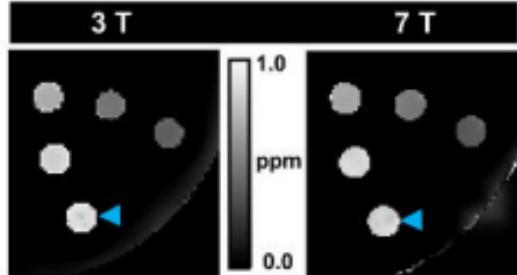
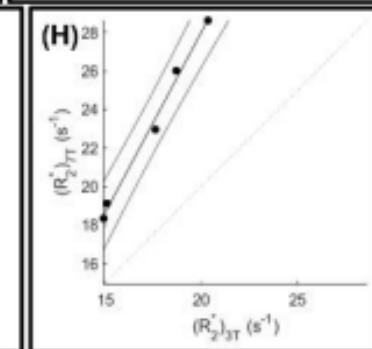
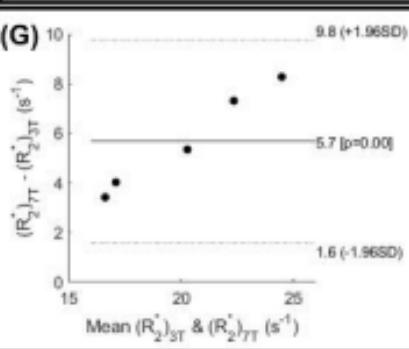
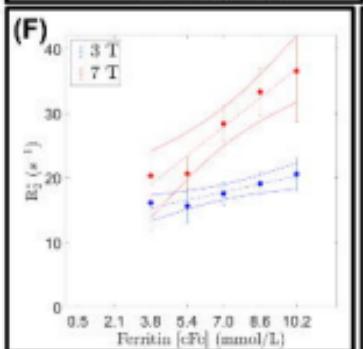
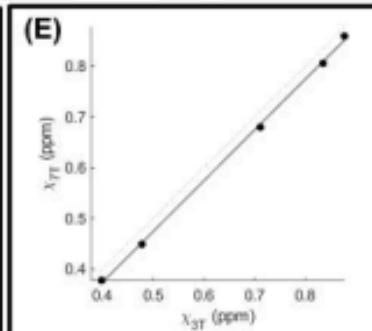
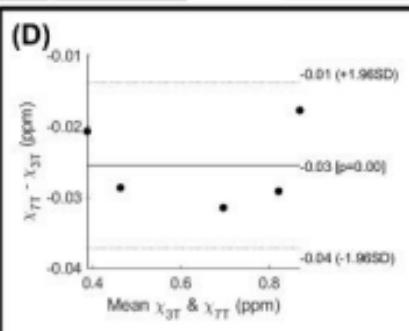
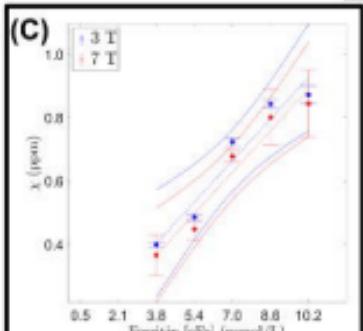
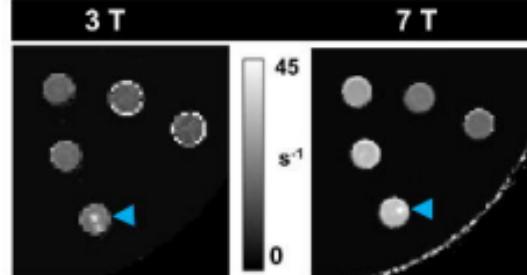
Imaging FOV: [190 190 100] mm

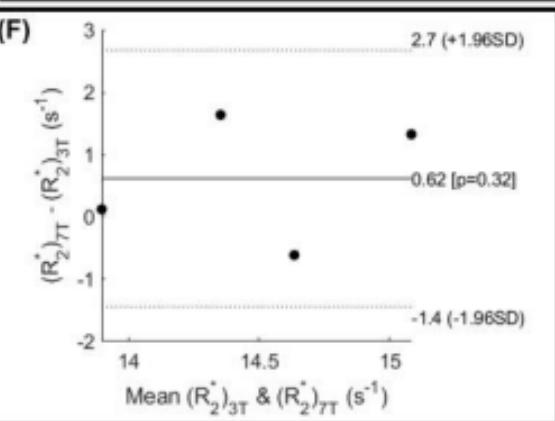
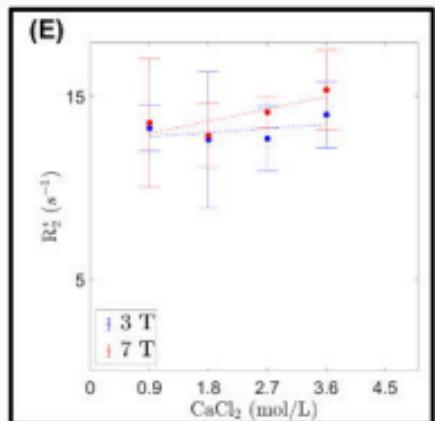
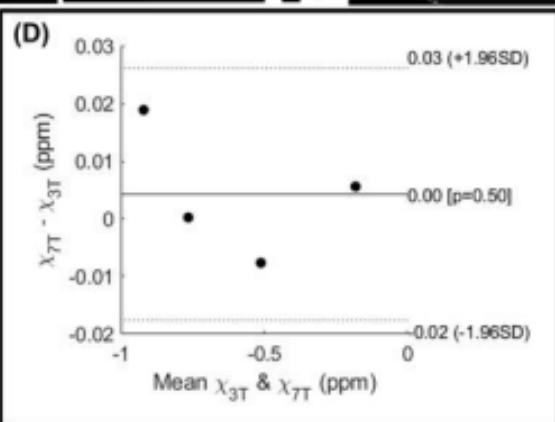
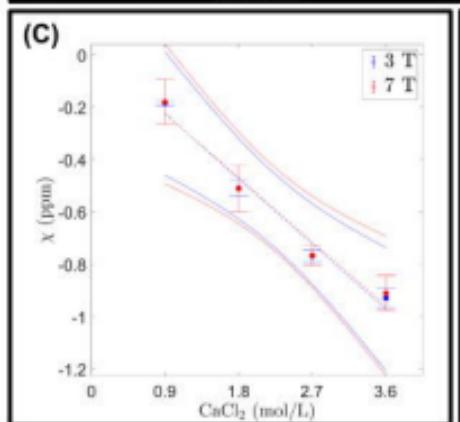
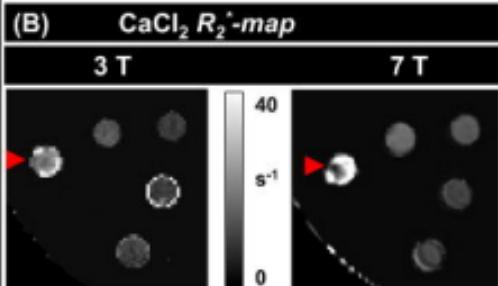
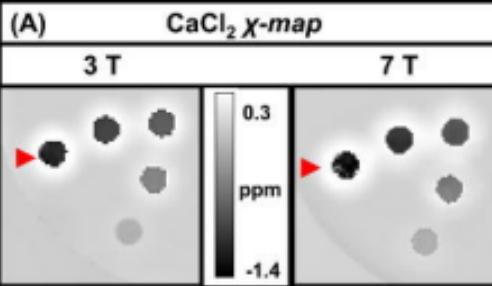

Air bubble trapping zone

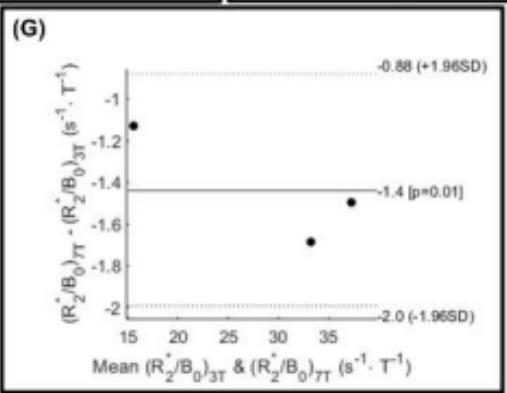
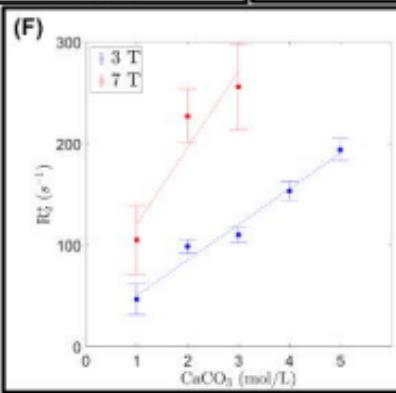
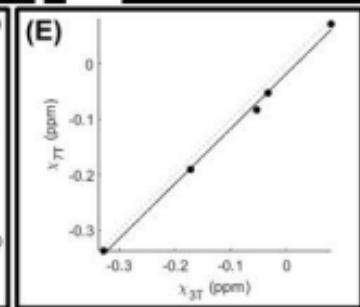
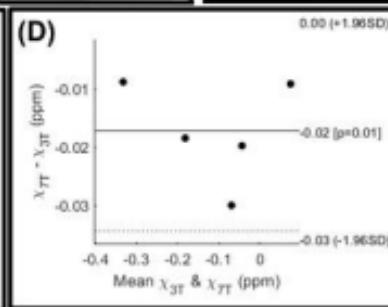
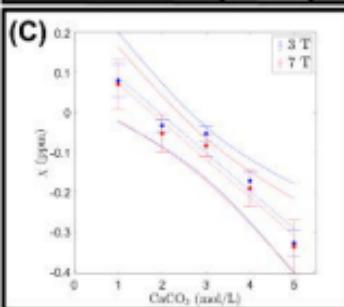
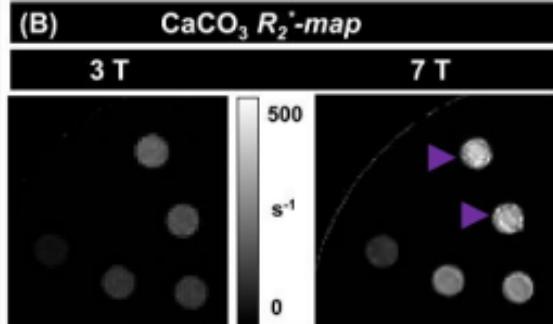
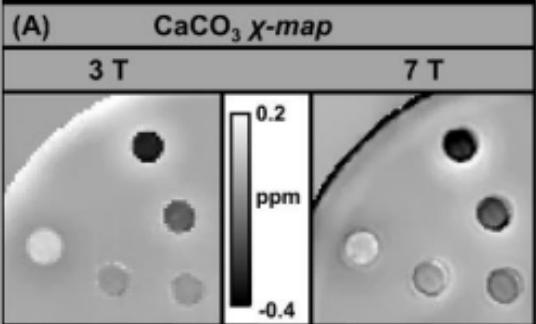
(D) Vial arrangement











(B) Small hole









Small hole to
remove bubbles
from
imaging FOV to
trapping zone.








(C) 7 T Head coil

(A) Ferritin χ -map**(B) Ferritin R_2^* -map**

