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Abstract21

Clustering is commonly used in single-cell RNA-sequencing (scRNA-seq) pipelines to characterize cellular22

heterogeneity. However, current methods face two main limitations. First, they require user-specified23

heuristics which add time and complexity to bioinformatic workflows; second, they rely on post-selective24

differential expression analyses to identify marker genes driving cluster differences, which has been shown25

to be subject to inflated false discovery rates. We address these challenges by introducing nonparamet-26

ric clustering of single-cell populations (NCLUSION): an infinite mixture model that leverages Bayesian27
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sparse priors to identify marker genes while simultaneously performing clustering on single-cell expression28

data. NCLUSION uses a scalable variational inference algorithm to perform these analyses on datasets29

with up to millions of cells. Through simulations and analyses of publicly available scRNA-seq studies,30

we demonstrate that NCLUSION (i) matches the performance of other state-of-the-art clustering tech-31

niques with significantly reduced runtime and (ii) provides statistically robust and biologically relevant32

transcriptomic signatures for each of the clusters it identifies. Overall, NCLUSION represents a reli-33

able hypothesis-generating tool for understanding patterns of expression variation present in single-cell34

populations.35

Introduction36

Recent advances in sequencing technologies have increased the throughput of genomic studies to millions37

of single cells, necessitating computational workflows to explore and analyze these data1. In single-cell38

RNA sequencing (scRNA-seq), unsupervised clustering and marker gene selection are integral steps in39

the exploratory phase of analyses2–5. Clustering facilitates the identification of cell types, while marker40

gene selection enables the annotation of gene modules and cluster-specific biological programs. However,41

there has yet to be a consensus on the best approach to clustering cells and identifying the transcriptomic42

signatures that characterize them6,7. This has resulted in a multitude of proposed clustering methods for43

single-cell data, many of which are reliant on various user-defined heuristics that prevent practitioners44

from performing an unbiased survey of data and limit each method’s “out-of-the-box” applicability when45

analyzing multiple studies.46

Many current clustering approaches take a subset of highly variable genes as input, use dimensionality47

reduction techniques to simplify the representation of single-cell expression for these genes, and then48

perform clustering on top of this reduced representation. K-nearest neighbor (KNN) algorithms8, for49

example, generate nearest-neighbor (NN) graphs using transcriptomic similarity scores between cells50

and then perform Louvain clustering on the estimated graphs. Popular methods such as Seurat9 and51

scLCA10 use principal component analysis (PCA) and singular value decomposition to learn a lower-52

dimensional representation of cells, respectively. Ensemble approaches such as scCCESS-SIMLR11 learn53

over a mixture of kernels to generate a final cell-cell similarity matrix which is then used in a spectral54

clustering algorithm.55
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Notably, selecting an appropriate embedding for single-cell data is not always a straightforward task.56

Previous studies have shown that if the generated lower-dimensional representation does not accurately57

capture underlying biological relationships between cells, then both the quality of clustering and the58

generalizability of findings in downstream analyses can be compromised12,13. Factors such as the number59

of highly variable genes retained during data preprocessing and the number of components used to define60

the lower-dimensional embedding can affect the ability of a clustering algorithm to identify fine-grained61

differences between cell types7,14. Furthermore, nearly all state-of-the-art clustering methods require62

users to specify the number of clusters K to be used in the algorithm. Strategies such as consensus-63

finding11,15, outlier detection16, and iterative cluster merging and splitting17–19 rely on human-in-the-64

loop interactive steps within their algorithms to determine an “optimal” choice forK. Generally, requiring65

users to make these additional decisions can add significant time and complexity when using clustering66

as a preliminary analysis in bioinformatic workflows.67

Perhaps the biggest limitation of current single-cell clustering algorithms is that most do not directly68

identify top marker genes that are driving the inference of different biologically significant clusters; in-69

stead, they use post-selective inference to find genes that are differentially expressed between the inferred70

cell groups7,20. Since the point of clustering algorithms is to separate dissimilar data into different groups,71

it is expected a priori that there are differences between the groups and any test statistics computed by72

comparing the groups are likely to be inflated due to “data double dipping”. Many studies have shown73

that performing this post-selective inference uncorrected can lead to inflated type I error rates20,21.74

Though there has been work developed to correct for post-selection, these are still in nascency, and most75

do not yet scale to high-dimensional settings22–27. Recently, others have proposed unified frameworks76

for simultaneous clustering and marker gene selection using hierarchical tree-based algorithms28, regular-77

ized copula models29, and post hoc sensitivity measures30. However, these approaches rely on arbitrary78

thresholding to find “significant” marker genes and fail to theoretically test a well-defined null hypothesis,79

making them difficult to biologically interpret.80

We present “Nonparametric CLustering of SIngle-cell populatiONs” (NCLUSION): a unified Bayesian81

nonparametric framework that simultaneously performs clustering and marker gene selection. NCLU-82

SION works directly on normalized single-cell count data, bypassing the need to perform dimensionality83

reduction. By modeling the expression of each gene as a sparse hierarchical Dirichlet process normal mix-84

ture model31–37, NCLUSION both learns the optimal number of clusters based on the variation observed85
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between cellular expression profiles and uses sparse prior distributions to identify genes that significantly86

influence cluster definitions. The key to our proposed integrative framework is that clustering and ex-87

tracting marker genes concurrently is a more efficient approach to the exploratory analysis of scRNA-seq88

data, as it effectively allows each process to inform the other. Most importantly, our approach eliminates89

the need for human-in-the-loop decisions, significantly reducing the runtime and complexity of these90

analyses. Altogether, NCLUSION mitigates the need for heuristic choices (e.g., choosing specific lower-91

dimensional embeddings), avoids iterative hyper-parameter optimization, bridges the interpretability gap92

suffered by many unsupervised learning algorithms in single-cell applications, and scales to accommodate93

the growing sizes of emerging scRNA-seq datasets.94

Results95

NCLUSION simplifies traditional clustering workflows96

Conventional scRNA-seq clustering approaches include numerous steps that require user heuristics or97

human-in-the-loop decisions which increase runtime and complexity (Fig 1A). These can range from98

deciding how to optimally embed high-dimensional expression data into a lower-dimensional space to99

selecting the number of clusters, K, to identify in the data. Furthermore, current methods require that100

marker gene selection is performed post-clustering, which can lead to inflated rates of false discovery20,21.101

In this work, we aim to address these challenges using a new approach: NCLUSION.102

NCLUSION leverages a Bayesian nonparametric mixture modeling framework to reduce the number103

of choices that users need to make while simultaneously performing variable selection to identify top104

cluster-specific marker genes for downstream analyses (Fig 1B; see Methods for details). There are three105

key components of our model formulation that distinguish it from traditional bioinformatic workflows.106

First, NCLUSION is fit directly on single-cell expression matrices and does not require the data to be107

embedded within a lower-dimensional space. Second, we implicitly assume a priori that cells can belong108

to one of infinitely many different clusters. This is captured by placing a Dirichlet process prior over the109

cluster assignment probabilities for each cell. By allowing the number of possible clusters K = ∞, we110

remove the need for users to iterate through different values until they find the optimal choice. Third,111

NCLUSION assumes that not all genes are important when assigning cells to a given cluster. To model112

this, we place a spike and slab prior on the mean expression of each gene within each cluster. This prior113
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shrinks the mean of genes that play an insignificant role in cluster formation towards zero.114

To identify cluster-specific marker genes, we start by estimating posterior inclusion probabilities115

(PIPs), which represent our confidence that a gene’s mean expression within a cluster is nonzero. These116

PIPs act as a signature that can be used to distinguish clusters. Since NCLUSION fits each gene and117

cell independently, signatures learned between clusters can share the same subsets of genes. To select for118

unique cell type markers, we multiply each PIP with a usage weight, which is calculated by performing119

min-max normalization over the proportion of clusters in which a gene is determined to be statistically120

significant (i.e., using the median probability model threshold38 PIP ≥ 0.5). We use these adjusted in-121

clusion probabilities with the effect size sign (ESS) and strictly standardized mean difference (SSMD) of122

each gene to filter for significant genes that are substantially up-regulated (indicated by positive ESS and123

large SSMD values). The genes remaining after filtering make up cluster-specific marker gene modules124

that provide insight into the biological features underlying cluster assignments.125

To enable efficient posterior inference that can scale as the size of scRNA-seq datasets continues to126

grow, we train NCLUSION using variational expectation-maximization (EM). This algorithm leverages a127

“mean-field” assumption to approximate the true posterior distribution over model parameter estimates128

with a product of simpler distributions39–41. In training, our objective is to minimize the Kullback–Leibler129

(KL) divergence between the variational posterior and the true posterior42. Optimization during model130

fitting occurs using a coordinate ascent procedure where parameters are sequentially updated based on131

their gradients (Methods and Supplementary Material). With this variational approach, NCLUSION is132

capable of scaling well up to 1 million cells without applying any dimensionality reduction to the input133

data.134

We evaluated the runtime of NCLUSION against a set of state-of-the-art single-cell clustering methods135

using publicly available datasets. The methods we used for comparison include: Seurat9, scLCA10, K-136

nearest neighbors followed by the Leiden clustering algorithm (KNN+Leiden)43, SOUP44, and scCCESS-137

SIMLR11. Each of these methods operates by first reducing the dimensionality of the input data and138

then performing clustering on the reduced representation. To the best of our knowledge, NCLUSION is139

the only method to date that clusters on the expression matrix directly while jointly identifying cluster-140

specific salient genes. NCLUSION does not incur additional runtime cost due to this model design choice.141

In fact, NCLUSION boasts a faster runtime compared to other methods, particularly as the number of142

cells in a dataset grows. We showcase this scalability on the BRAIN-LARGE45 dataset (Fig 1C). To143
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facilitate comparison across all baseline methods, we follow Lopez et al. 14 and limit the analysis to144

720 genes, while subsampling the number of cells from 500 to 1 million cells. As a practical reference,145

we use a grey dotted line to highlight the runtime for each method at the median scRNA-seq dataset146

size as determined in 2020: 31,000 cells46. We observed that only NCLUSION and KNN+Leiden were147

able to scale past 100,000 cells, while NCLUSION was the only method able to run on 1 million cells.148

Additionally, NCLUSION records competitive runtimes across varying numbers of genes (Fig S1). These149

scalability results show the potential of NCLUSION’s utility for emerging large-scale single-cell studies.150

NCLUSION accurately identifies clusters and marker genes in simulations151

We used simulations to evaluate the performance of NCLUSION in controlled settings. Here, we used152

scDesign347 to generate synthetic datasets consisting of 10,000 cells and 1,000 genes (due to computa-153

tional constraints of the software) distributed over five clusters. We considered four different scenarios154

(with 20 replicates per scenario), where we varied cluster size and marker gene composition (Methods).155

Scenario I was the simplest, where we evenly distributed all cells across the five clusters, and each cluster156

had 50 marker genes. In Scenarios II and III, all five clusters had 50 marker genes, but one cluster had157

significantly fewer cells than the other four clusters. Lastly, in Scenario IV, each of the five clusters had158

the same number of cells, but one cluster had a signature of only 20 marker genes, while the other four159

clusters had 50 marker genes each.160

We first compared the cluster identification accuracy of NCLUSION with the previously described al-161

gorithms: Seurat9, scLCA10, K-nearest neighbors followed by the Leiden clustering algorithm (KNN+Leiden)43,162

SOUP44, and scCCESS-SIMLR11. The relatively smaller size of these simulated datasets also allowed163

us to include three additional widely used methods: CIDR48, SC349, and scDeepCluster50. We should164

highlight that all competing methods, except for NCLUSION, first perform dimensionality reduction165

prior to clustering, allowing us to evaluate the impact of dimensionality reduction on cluster recovery.166

The normalized mutual information (NMI) and adjusted Rand index (ARI) were calculated to quan-167

titatively evaluate the clustering results given by each algorithm. In all scenarios, scDeepCluster had168

the best performance, with NCLUSION, scLCA, and scCCESS-SIMLR rounding out the top four. The169

reason for scDeepCluster’s top performance is that it first performs Leiden clustering on principal com-170

ponents from the expression data to obtain the initial cluster assignments. Then, it uses a deep neural171

network to refine the cluster assignments; therefore, performance is highly dependent on the initialization172
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of the cluster assignments and on the success of the initial clustering. NCLUSION, on the other hand,173

only performs clustering once to achieve comparable results. Notably, all methods performed relatively174

worse in Scenarios II and III than their performance in Scenarios I and IV (Fig S2; Table S1) due to the175

class imbalance in how the cells were distributed across clusters.176

We also evaluated the performance of NCLUSION on marker gene detection using the same simulated177

datasets and compared it with three popular differential expression algorithms: DUBStepR51, singleCell-178

Haystack25, and FESETM52. Notably, of these methods, only NCLUSION is able to find cluster-specific179

marker genes. FESTEM uses an alternative algorithm (via the Scott-Knott test) to assign marker genes180

to clusters found by an independent clustering method, while both DUBStepR and singleCellHaystack181

aim to identify differentially expressed genes. To that end, we evaluated the global marker gene detec-182

tion of each model using true positive rate (TPR), false discovery rate (FDR), and false positive rate183

(FPR; computed as 1-Specificity for each method). We found no statistically significant differences when184

comparing the median power of NCLUSION to the other approaches (Kruskal–Wallis H -test P > 0.99;185

Fig S3 and Table S2). However, importantly, NCLUSION and FESTEM were the only two methods to186

have high power while maintaining a low FDR and FPR. On the other hand, singleCellHaystack and187

DUBStepR achieved similar power but only because they incorrectly labeled many genes as being marker188

genes (resulting in markedly higher FDR and FPR).189

NCLUSION achieves competitive clustering performance on PBMC data with190

less runtime191

Next, we assessed the quality of clustering done by NCLUSION as compared to other baseline approaches192

on real data. Here, we analyzed scRNA-seq from FACS-purified peripheral blood mononuclear cells193

(PBMCs)53. This dataset captures 10 cellular populations, including CD14+ monocytes, CD34+ cells,194

major lymphoid lineages (B and T cells), as well as other phenotypic lineages within the T cell population,195

including CD4+ helper T cells, CD8+ cytotoxic T cells, CD4+ regulatory T cells, and CD4+ memory T196

cells. After quality control (Methods), the final dataset contained 94,615 cells and 5,000 genes with the197

highest standard deviation (post log-normalization)20,54. We evaluated the performance of NCLUSION,198

Seurat, scLCA, the KNN+Leiden algorithm, SOUP, and scCCESS-SIMLR by comparing inferred cluster199

assignments to the cell type annotations from the original study, which were obtained via a combination200

of FACS analysis and clustering with Seurat53 (Fig 3A-B).201
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To qualitatively assess clustering performance, we used contingency heat maps to evaluate how well202

each method captured the unique cell types across clusters (Fig 3C). For a given method, each n-th row203

of the heat map represents an annotation from the original study and each k-th column represents an204

inferred cluster identified by the method. The color saturation of each (n, k)-th element in the heat map205

indicates the fraction of a n-th cell annotation that a given method assigned to the k-th inferred cluster.206

Overall, all baselines were able to distinguish the B cell population from other cells, and each approach207

uniquely clustered a majority of the CD14+ monocytes together (Fig 3C). Furthermore, all methods208

except scCCESS-SIMLR and KNN+Leiden were able to separate the natural killer (NK) cell population209

with an inferred cluster occupancy rate of greater than 90% (Table S3). NCLUSION’s performance was210

most similar to that of Seurat (χ2-test P = 0.99 when assessing independence between their contingency211

tables). Both methods were able to identify major PBMC cell lineages and were the only approaches to212

divide the B cell, cytotoxic CD8+ T cells, and regulatory T cells into subpopulations55 (Fig 3C).213

As a quantitative assessment of each method’s clustering performance, we used the FACS-derived214

experimental annotations as reference labels and computed NMI and ARI, each measuring how well the215

clustering algorithm’s labels matched the reference labels (Methods). For both metrics, values closer to216

1 indicate better clustering performance. To assess the robustness and consistency of each method, we217

ran them on five different randomly subsampled partitions containing 80% of the cells in the dataset. We218

report the mean metric score for each clustering algorithm across these partitions, along with correspond-219

ing 95% confidence intervals (Fig 3D). NCLUSION outperformed all competing approaches across both220

metrics. It obtained the highest mean NMI coefficient of 0.80 (±1.62 × 10−2 standard deviation), with221

Seurat and scLCA each scoring lower values of 0.77 (±2.78×10−3) and 0.62 (±3.04×10−2), respectively.222

These differences were statistically significant, as determined by two-sided t-tests (P = 1.08× 10−3 and223

P = 1.90 × 10−6, respectively). When comparing performance using the ARI, NCLUSION remained224

competitive and significantly outperformed other methods (Table S4). Specifically, NCLUSION achieved225

a higher mean ARI of 0.67 (±2.02 × 10−2) when compared to 0.62 (±2.48 × 10−3; two-sided t-tests226

P = 1.17 × 10−3) for Seurat and 0.50 (±2.52 × 10−2; two-sided t-tests P = 3.10 × 10−6) for scLCA,227

respectively.228

Lastly, NCLUSION recorded the shortest runtime for this analysis without any iterative processes229

or optimization of hyperparameters. It finished approximately 254 seconds (4.23 minutes) faster than230

Seurat, more than 12,900 seconds (215.00 mins or 3.58 hrs) faster than scLCA, and more than 41,331231
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seconds (688.85 mins or 11.48 hrs) faster than scCCESS-SIMLR.232

NCLUSION is well-powered to identify PBMC-specific marker genes233

The key distinguishing property of NCLUSION is its inherent ability to perform variable selection. NCLU-234

SION thus provides users with cluster labels for each cell as well as unique gene signatures that define235

each cluster. The statistical model underlying NCLUSION selects cluster-specific marker genes based on236

two criteria: (i) an adjusted posterior inclusion probability, PIP(j; k), which provides evidence that the237

j-th gene’s mean expression is uniquely nonzero within the k-th cluster, (ii) the sign of the j-th gene’s238

effect, ESS(j; k), which is used to determine whether it is uniquely up-regulated or down-regulated within239

the k-th cluster, and (iii) the magnitude of the j-th gene’s effect, SSMD(j; k), on the definition of the240

k-th cluster (Methods). We assessed the marker genes identified by NCLUSION for each of the inferred241

clusters in the PBMC dataset to determine whether they provide insights into the biology of different242

cell types (Fig 4A-B).243

Overall, NCLUSION successfully identified cluster-specific marker genes that are known to be associ-244

ated with examined cell types (Fig 4C and Table S5). For example, in cluster 8 which has cells mapping245

back to the cytotoxic and naive cytotoxic T cell population, we observed that NCLUSION correctly iden-246

tified marker genes known to play an important role in cytotoxic T cell biology, such as CD8A (adjusted247

PIP = 0.90), CD8B (adjusted PIP = 0.70)56, and CD27 (adjusted PIP = 0.62)57. Furthermore, genes248

associated with cytotoxicity, such as GZMM, tended to be selected in clusters largely containing CD8+ T249

cells (Cluster 8; adjusted PIP = 0.60) and NK cells (Cluster 2; adjusted PIP = 0.61)—two cell types that250

have been shown to have functionally similar cytotoxic activity58. In other clusters, where we observed251

genes associated with both B cells (e.g., in Cluster 1, CD19, adjusted PIP = 1.00; LINC00926, adjusted252

PIP = 1.00; MS4A1, PIP = 0.90)59–61 and myeloid lineages (e.g., in Cluster 3, MS4A6A, PIP = 1.00;253

S100A8, adjusted PIP = 0.93; LYZ, PIP = 0.90)62, NCLUSION distinguished genes known to play an254

important role in T cell biology as statistically significant. This observation suggests that NCLUSION255

accounted for the variance among T cell and T cell-like expression patterns when distinguishing cell types256

in the PBMC dataset. We observed that our criteria for cluster-specific marker genes, based on high PIPs257

and positive ESS scores, strongly agreed with the relative over-expression of each gene in its respective258

cluster (Fig 4C). Imposing a threshold on SSMD allowed NCLUSION to filter out less relevant genes,259

narrowing the list of cluster-specific over-expressed genes to those most salient.260
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To further evaluate marker gene quality, we computed gene module scores in order to compare the261

normalized expression for signature genes across clusters (Fig 4D and Table S6). Here, we find that each262

module exhibits the highest expression within its respective cluster, with the most definitive signatures263

occurring within the B (inferred cluster 1), NK (inferred cluster 2), monocytic (inferred cluster 3),264

and CD34+ cells (inferred cluster 4) (Fig 4E and Fig S4). In clusters that contained heterogeneous265

combinations of T cell subpopulations, we still see an increased relative expression among cluster-specific266

marker genes, although not as distinct as in the other cell types.267

As an additional analysis, we compared the similarity between the marker genes identified by NCLU-268

SION with the list of marker genes that are identified by using a post hoc differential expression analysis269

with Seurat. Here, we took the FACS-derived experimental annotations from Zheng et al. 53 and found270

differentially expressed genes by doing a one-versus-all Wilcoxon rank sum test for each cluster (mirroring271

the typical procedure in a conventional bioinformatic workflow). As expected, this post-selective infer-272

ence procedure resulted in Seurat identifying a multitude of candidate marker genes for each cell type,273

even after Bonferroni correction. A direct comparison between NCLUSION and Seurat showed that the274

proposed Bayesian variable selection approach in the NCLUSION framework results in smaller and more275

refined transcriptomic signatures for downstream investigation (Fig 4F and Figs S5- S6). For example,276

NCLUSION identified 134 cluster-specific marker genes for NK cells, 97% of which were also included277

in the 1,780 marker genes selected post hoc by Seurat. In total, an average of 96% of the marker genes278

identified by NCLUSION were included in the much larger sets of differentially expressed genes selected279

by Seurat across each of the FACS-annotated cell types.280

Over-representation analysis using gene product annotations in Gene Ontology (GO) further confirmed281

that the selective set of gene modules inferred by NCLUSION reflect known immune cell biology63–65
282

(Fig 4G-H and Table S7). For example, in the cluster containing predominantly B cells (inferred cluster283

1), we observed an up-regulation of B cell receptor signaling (adjusted P = 6.68×10−7), B cell activation284

(adjusted P = 2.3×10−7), and B cell proliferation (adjusted P = 2.51×10−7)66,67. Notably, some of285

the biologically relevant GO terms found when using NCLUSION were not statistically significant when286

applying the larger sets of marker genes provided post hoc by Seurat. For instance, in the cluster with287

NK cells (inferred cluster 2), significant gene sets from NCLUSION included the positive regulation of288

leukocyte chemotaxis (adjusted P = 1.53×10−4) and positive regulation of natural killer cell chemotaxis289

(adjusted P = 4.88×10−6)68–70. We also observed enrichment of the up-regulation of natural killer cell290
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mediated cytotoxicity (adjusted P =3.81×10−5), consistent with the known highly cytotoxic behavior291

of NK cells68,71. Each of these gene sets was insignificant when using differentially expressed genes292

from Seurat (Fig 4G). Lastly, in the monocyte-dominated cluster (inferred cluster 3), the NCLUSION-293

generated module was enriched for macrophage activation involved in immune response (adjusted P294

= 2.41×10−5) and antigen-presenting activity (e.g., MHC Class II antigen presentation, adjusted P =295

5.39×10−4). Complete marker gene and GO analyses for all clusters inferred by NCLUSION and Seurat296

as a baseline in the PBMC dataset can be found in Table S7. Together, these results demonstrate that297

NCLUSION can identify cluster-specific gene signatures that reflect underlying cellular phenotypes.298

NCLUSION’s performance generalizes to the other single-cell datasets299

Finally, we assessed the generalizability of NCLUSION by testing it on three additional large scRNA-seq300

datasets of various sample sizes: a pancreatic ductal adenocarcinoma (PDAC) dataset from Raghavan301

et al. 72 with N = 23,042 cells; an acute myeloid leukemia (AML) dataset from van Galen et al. 73 with302

N = 43,690 cells; and a tissue immune (IMMUNE) atlas dataset from Domı́nguez Conde et al. 74 with303

N = 88,057 cells. These datasets represent a range of tissue and disease states to assess our method’s304

performance in different use cases. Both the PDAC and AML datasets contain a mixture of malignant305

and non-malignant cells from different patient biopsies, while the IMMUNE dataset contains healthy306

white blood cells from different anatomical locations. After performing quality control (Methods), we307

had a total of 5,000 genes with the highest standard deviation (after log-normalization) for the analysis.308

We observed similar scalability in the runtime of NCLUSION and competing baselines on all three309

datasets (Fig 5A). NCLUSION maintains its computational efficiency, now only being slightly outper-310

formed by Seurat on the PDAC and AML datasets due to longer convergence time in its variational311

EM algorithm. We also found that NCLUSION continued to remain competitive in terms of clustering312

performance. When quantitatively evaluating the clustering ability of NCLUSION versus the competing313

baselines using the annotations provided by the original studies, NCLUSION was often statistically sig-314

nificantly better (as determined via a two-sided t-test, P < 0.05) according to ARI and NMI across all315

datasets (Fig 5B-C, Figs S7-S19, and Table S4).316

We then analyzed the interpretability of the cluster-specific marker genes inferred by NCLUSION317

(Fig 5D-G, Figs S8-S24, and Tables S8-S19). For brevity, we highlight just notable results from the318

PDAC and IMMUNE datasets in the main text. Additional analyses for the AML dataset can be found319

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 22, 2025. ; https://doi.org/10.1101/2024.02.11.579839doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.11.579839
http://creativecommons.org/licenses/by-nc/4.0/


12

in the Supplementary Material (see Figs S12-S17 and Tables S16-S19).320

To begin, we focused on evaluating the gene modules generated from the NCLUSION inferred clusters321

in the PDAC dataset (Fig 5D-G). As with the PBMC data, we observed higher module expression within322

the respective clusters (Fig 5F). NCLUSION appeared to use immune cell signatures as the primary axis323

for distinguishing malignant and non-malignant populations (Fig 5E and Table S10). For example, the324

inferred cluster 6 predominantly contained cells that were originally annotated as NK and T cells by325

Raghavan et al. 72 . This inferred cluster had immune cell type specific marker genes such as CD2 (PIP =326

0.92), GZMB (PIP = 0.85), IL7R (PIP = 0.85), and NCAM1 (PIP = 1.00)75,76 (Fig 5D). An additional327

GO analysis of this cluster showed an enrichment of natural killer cell mediated cytotoxicity (adjusted P328

= 6.60×10−9) and T cell receptor signaling (adjusted P = 1.17×10−21) (Fig 5G).329

Notably, the other clusters that primarily contained non-malignant cells (inferred clusters 4, 5, 11,330

12, 13, and 14) also directly aligned with cell type labels originally annotated by Raghavan et al. 72 . For331

the clusters that primarily contained malignant and metastatic cells (i.e., inferred clusters 1, 2, 3, 9, and332

10), a GO analysis revealed an enrichment of extracellular matrix (ECM) organization and cell migration333

processes (Fig 5G). Importantly, however, NCLUSION also had the power to divide these cells into more334

granular subpopulations based on their level of differentiation. For example, the inferred cluster 9 was335

enriched for both cell migration processes (e.g., MET-activated PTK2 signaling, adjusted P = 2.97×10−5;336

MET-promoted cell motility, adjusted P = 4.02×10−5) and fibroblast cell activity (pancreatic fibroblasts,337

adjusted P = 2.1×10−9; collagen formation, adjusted P = 1.13×10−7)77,78.338

Finally, we evaluated the granularity of NCLUSION’s clustering on the IMMUNE dataset, which339

contained 33 manually annotated labels from experts74. When analyzing this study, NCLUSION was340

able to delineate between multiple T cell sub-lineages, whereas methods like Seurat, KNN+Leiden, and341

scCCESS SIMLR merged these subpopulations into 1 or 2 clusters. For example, the inferred cluster 12342

by NCLLUSION was enriched (∼95% occupancy rate) for CD8+ effector memory (TEM) and effector343

memory cells re-expressing CD45RA (TEMRA), while NCLUSION’s inferred cluster 8 was enriched (∼90%344

occupancy rate) for CD8+ tissue-resident memory (TRM). These two populations have been shown to345

be functionally distinct subpopulations in the CD8+ T cell lineage79,80. Likewise NCLUSION’s inferred346

clusters 6 and 10 were enriched (∼77% and ∼72% occupancy rates, respectively) for functionally distinct347

subpopulations of CD4+ T cells, namely T follicular helper cells (Tfh) and CD4+ effector/effector memory348

T cells, respectively79,81,82 (Table S12).349
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The GO analysis of NCLUSION-generated gene modules also showed an enrichment of T cell pheno-350

types. The inferred cluster 12’s top ontology term was indeed “CD8+ Effector Memory T4” (adjusted351

P = 4.18×10−9), while the inferred cluster 10 had “CD4+ Central Memory T1” as a top enriched term352

(adjusted P = 3.53×10−3). Similar results showing how NCLUSION-generated gene modules granularly353

distinguish these cellular populations can be found in the Supplementary Material (Table S15).354

Discussion355

We present NCLUSION: a scalable Bayesian nonparametric framework designed to serve as an unbiased356

method for inferring phenotypic clusters and identifying cluster-specific marker genes in scRNA-seq ex-357

periments. We show how our approach simplifies traditional single-cell transcriptomic workflows, which358

often rely on the transformation of the data to a lower-dimensional representation to facilitate clustering359

and iteratively tune the number of clusters used to obtain optimal results. In contrast, NCLUSION360

operates on the full normalized gene expression matrix, eliminating the need for transformation to a361

lower-dimensional space; infers the optimal number of clusters without iterative user refinement; and362

simultaneously identifies the cluster-specific marker genes that significantly drive the clustering. By363

leveraging a variational inference algorithm, NCLUSION can scale to scRNA-seq studies with a million364

cells. Through the analysis of a collection of large-scale publicly available datasets, we show that NCLU-365

SION not only achieves clustering performance comparable to state-of-the-art methods but also provides366

refined sets of gene candidates for downstream analyses. By unifying clustering and marker gene selec-367

tion, NCLUSION provides a flexible and unified statistical framework for inferring complex differential368

gene expression patterns observed in heterogeneous tissue populations21,83,84.369

The current implementation of the NCLUSION framework offers many directions for future devel-370

opment and applications. First, NCLUSION assumes a normal mixture model for log-normalized gene371

expression data. We use this assumption both because log-based transformations have been shown to372

reduce the effects of sparsity in single-cell analyses20,85 and because the Gaussian-based specification of-373

fers computational advantages for scalable posterior inference. Still, future extensions of the NCLUSION374

framework should explore the utility of Poisson- and negative binomial-based likelihoods to deal with the375

zero-inflated nature of scRNA-seq studies in their raw form.376

Second, the current formulation of NCLUSION models the gene expression of each cell indepen-377
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dently and does not consider, for example, the correlation between genes with similar functionality or378

co-expression patterns between genes within the same signaling pathway. One possible extension of379

NCLUSION would be to incorporate additional genomic information into the sparse prior distributions380

used for Bayesian variable selection. For example, previous studies have proposed an integrative approach381

where the importance of a variable also depends on an additional set of covariates40,86,87. In the case of382

single-cell applications, we could assume that the prior probability of the j-th gene being a marker of the383

k-th cluster is also dependent upon its cellular pathway membership. Unlike the current spike-and-slab384

prior NCLUSION implements, this new prior would assume that biologically related pathways contain385

shared marker genes, essentially integrating the concept of gene set enrichment analysis into cluster-386

ing. An alternative approach would be to extend NCLUSION to incorporate non-diagonal correlation387

structures by exploring sparse covariance models, which could provide a balance between the need for388

maintaining computational efficiency while representing a richer set of gene dependencies88,89.389

Third, although it helps NCLUSION scale to large datasets, variational expectation-maximization390

(EM) algorithms are known to both produce slightly miscalibrated parameter estimates and underes-391

timate the total variation present within a dataset41,90,91. While this does not greatly affect the per-392

formance of NCLUSION in the evaluations presented in this paper, this can be seen as a limitation393

depending on the application of interest. For example, in the PBMC dataset, NCLUSION is unable to394

resolve all the different T cell subtypes that were annotated by Zheng et al. 53 (Fig 3). This is most likely395

due to variational approximations being well-suited to describe the global variation across cells but at396

the cost of smoothing over local variation between smaller subpopulations. Considering other (equally397

scalable) ways to carry out approximate Bayesian inference may be relevant for future work92.398

Lastly, a thrust of recent work in genomics has been to develop methods that identify spatially variable399

marker genes as a key step during analyses of spatially-resolved transcriptomics data93. Future efforts400

could extend NCLUSION to this emerging modality by, for example, reformulating the method as a401

spatial Dirichlet process mixture model94.402

In sum, NCLUSION provides a unified framework for simultaneous clustering and marker gene selec-403

tion in single-cell transcriptomic data, yielding improvements in computational efficiency, interpretability,404

and scalability. We envision that NCLUSION will accelerate key analytic steps universal to single-cell405

analysis across diverse applications.406
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Materials and methods407

Overview of NCLUSION408

We provide a brief overview of the probabilistic framework underlying the “Nonparametric CLUstering409

of SIngle-cell populatiONs” (NCLUSION) model. Detailed derivations of the algorithm are provided in410

the Supplementary Material. Consider a study with single-cell RNA sequencing (scRNA-seq) expression411

data for n = 1, . . . , N cells that each have measurements for j = 1, . . . , J genes. Let this dataset be412

represented by the N × J matrix X where the row-vector xn = (xn1, . . . , xnJ) denotes the expression413

profile for the n-th cell. We assume that the log-normalized gene expression for each cell follows a sparse414

hierarchical Dirichlet process normal mixture model31–33 of the form415

xnj ∼
∞∑
k=1

πk N (νj + µjk, σ
2
j ) (1)416

where πk represents the marginal (unconditional) probability that a cell belongs to the k-th cluster, νj417

and σ2
j are the global means and variances for the j-th gene across all cells (i.e., not conditioned on418

cluster identity), and µjk is the mean shift of expression for the j-th gene within the k-th cluster. There419

are two key features in the model formulation of NCLUSION specified above. First, we assume that the420

formation of clusters is driven by a few important genes that have mean expression shifted away from a421

baseline gene-specific expression level, νj . To that end, we place a sparsity-inducing spike and slab prior422

distribution on the mean effect of each gene423

µjk ∼ ηN (0, λjkσ
2
j ) + (1− η)δ0, (2)424

where δ0 is a point mass at zero, λjk scales the global variance to form a cluster-specific “slab” distribution425

for each gene, and η is the prior probability that any given gene has a nonzero effect when assigning a cell426

to any cluster. In practice, there are many different ways to estimate η. Following previous work40,41,95–97,427

one choice would be to assume a uniform prior over log η to reflect our lack of knowledge about the correct428

number of “marker” genes for each cell type that is present in the data. Instead, in this work, we assume429

η ∼ Beta(1, 1) to represent this uncertainty and learn its value during model inference. To facilitate430

posterior computation and interpretable inference, we introduce a binary indicator variable ρjk ∈ {0, 1}431
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where we implicitly assume a priori that Pr[ρjk = 1] = η. Alternatively, we say that ρjk takes on a432

value of 1 when the effect of a gene µjk on cluster assignment is nonzero and deviates from the baseline433

gene expression level νj . As NCLUSION is trained, the posterior mean for unimportant genes will trend434

towards the global mean (i.e., µjk → 0) as the model attempts to identify subsets of marker genes that435

are relevant for each cluster. We then use posterior inclusion probabilities (PIPs) as general summaries436

of evidence that the j-th gene is statistically important in determining when a cell is assigned to the k-th437

cluster where438

PIP(j; k) ≡ Pr[µjk ̸= 0 |X]. (3)439

The second key feature in Eq. (1) is that we do not assume to know the true number of clusters K.440

Instead, we take a nonparametric approach and attempt to learn K directly from the data. Once again,441

to facilitate posterior computation, we introduce a categorical latent variable ψn which indicates that the442

n-th cell is in the k-th cluster with prior probability πk. Explicitly, we write this as Pr[ψn = k] = πk.443

Here, we implement the stick-breaking construction of the Dirichlet process31 where we say444

π ∼ Dir(α0β), βk ∼ χk

k−1∏
l=1

(1− χl), χk ∼ Beta(1, γ0) (4)445

with π = (π1, . . . , π>K) having mean β and variance determined by the concentration hyper-parameters446

α0 and γ0
98. The concentration hyper-parameters α0 and γ0 are both non-negative scalars that effectively447

help to determine the number of clusters used in the model31,39. Larger values for these parameters448

increase the model’s sensitivity to variation in the data and encourage the creation of a greater number449

of smaller clusters. Smaller values for these parameters, on the other hand, decrease the model’s sensitivity450

to variation in the data and encourage the creation of fewer larger clusters. In this work, we encourage the451

creation of fewer clusters and fix α0 and γ0 to be less than or equal to 1 (Supplementary Material). After452

model training, we use the posterior distribution over the latent categorical indicators Pr[ψn = k |X] to453

determine the cluster assignment for each cell. It is worth noting that, although the prior number of454

normal components is infinite in Eq. (1), the posterior number of components after model fitting will455

be finite. This truncation reflects the fact that not all infinite states are used when conditioning on456

finite data98. Additionally, the algorithm used to estimate the parameters in the NCLUSION software457
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penalizes empty clusters (see Supplementary Material), and, as a result, the model has the flexibility to458

automatically adjust its complexity based on the inferred complexity of the data being analyzed. This459

helps to increase the utility and adaptability of NCLUSION across a wide range of single-cell applications.460

Selection of cluster-specific marker genes461

NCLUSION jointly performs clustering on single-cell populations while also learning cluster-specific gene462

signatures. To achieve this, we use the spike and slab prior distribution specified in Eq. (2) and the463

resulting PIPs defined in Eq. (3) to find the most salient genes per cluster. Since the model fits to464

each j-th gene expression for the n-th cell independently, signatures learned between clusters can share465

subsets of the same genes. Genes that are identified as “important” across many different clusters can466

effectively be seen as ubiquitous housekeeping variables rather than significant marker genes of unique467

cell types. Therefore, we down-weight the inclusion probabilities to proportionally penalize genes based468

on the number of clusters in which they appear469

PIP∗(j; k) = wj × PIP(j; k), wj =

(
1− Sj

K∗

)/(
1− 1

K∗

)
(5)470

where K∗ ≤ K is the finite number of occupied clusters learned by the model, and Sj is the number of471

clusters that the j-th gene is significant in according to a given selection threshold. We set this threshold472

to be 0.5 which corresponds to the median probability criterion in Bayesian statistics38.473

While Eqs. (3) and (5) can be used to identify the genes that are differentially expressed in a given474

cluster, they do not indicate the direction or magnitude of this shift. Therefore, for each gene, we combine475

the adjusted posterior inclusion probabilities with effect size sign (ESS) and strictly standardized mean476

difference (SSMD) measures to find the most salient markers per cluster. Here, we obtain the effect size477

sign by taking the sign of Cohen’s d99 between the expression of the j-th gene for cells in the k-th cluster478

and cells not in the k-th cluster (denoted by k′)479

ESS(j; k) = sgn

(
ρjkµjk − m̄jk

σj

)
(6)480

where, in addition to previous notation, m̄jk′ =
∑

k′ ρjk′µjk′/(K∗ − 1) is the average mean shift for the481

j-th gene in all clusters outside of the k-th. Here, sgn(·) is the piecewise sign function where sgn(u) = +482
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(i.e., positive) when u > 0, sgn(u) = − (i.e., negative) when u < 0, and sgn(u) = 0 when u = 0.483

The strictly standardized mean difference (SSMD) is a metric often used in high-throughput screenings484

to test for the significance of an effect size magnitude100–103. It is computed as the following485

SSMD(j; k) =
µjk − µ̄jk′√

σ2
j [(Nk − 1)/Nk + (Nk′ − 1)/Nk′ ]

(7)486

where µ̄jk′ =
∑

k′ µjk′/(K∗ − 1) is the average global mean for the j-th gene in all clusters outside of the487

k-th. Asymptotically, the SSMD follows a normal distribution100,101,103. To determine a significant value,488

we follow a previous procedure103 by calculating a threshold |SSMD(j; k)| ≥ S∗(j; k) which controls for489

a predetermined false positive rate (FPR). Here, this threshold is given by490

S∗(j; k) = SSMDmin +Φ−1

(
1− FPR

2

)
ςjk (8)491

where FPR is set to 0.05, Φ−1(·) is the inverse cumulative distribution function of a standard normal,492

and SSMDmin is the minimum SSMD magnitude that one considers to be significant. In practice, this493

minimum value is often set between 0 and 0.25 in order to identify weak effect sizes. In the main text, we494

follow previous work103–105 and let SSMDmin = 0.15. The parameter ςjk is used to denote the asymptotic495

variance which is given by496

ςjk =
(Nk − 1)/N2

k + (Nk′ − 1)/N2
k′

(Nk − 1)/Nk + (Nk′ − 1)/Nk′
+

(Nk − 1)2/N2
k + (Nk′ − 1)2/N2

k′

2σ2
j [(Nk − 1)/Nk + (Nk′ − 1)/Nk′ ]

3 (µjk − µ̄jk′)
2
. (9)497

In the main text, cluster-specific marker genes are selected as those that have a significant adjusted inclu-498

sion probability and are notably up-regulated in a given cluster meaning that they satisfy the following499

criteria: (1) PIP∗(j; k) ≥ 0.5, (2) ESS(j; k) = +, and (3) SSMD(j; k) ≥ S∗(j; k), respectively.500

Posterior inference via variational EM algorithm501

We combine the likelihood in Eq. (1) and the prior distributions in Eqs. (2) and (4) to perform Bayesian502

inference. In current scRNA-seq datasets, it is less feasible to implement traditional Markov Chain503

Monte Carlo (MCMC) algorithms due to the large number of cells being studied. For model fitting, we504

instead use a variational expectation-maximization (EM) algorithm31,32,98, which allows us to estimate505
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parameters within an optimization framework. The overall goal of variational inference is to approximate506

the true posterior distribution for model parameters using a set of approximating distributions. The507

EM algorithm optimizes parameters such that it minimizes the Kullback-Leibler divergence between the508

exact and approximate posterior distributions. To compute the variational approximations, we make the509

mean-field assumption that the true posterior can be “fully-factorized”106. The algorithm then follows two510

general steps. In the first step, we iterate through a combination of hyper-parameter values and compute511

variational updates for the other parameters using coordinate ascent. In the second step, we empirically512

compute (approximate) posterior values for the main model parameters {µ,ρ,ψ}. Detailed steps in the513

variational EM algorithm, explicit coordinate ascent updates for the model parameters, pseudocode, and514

other derivations are given in the Supplementary Material. Parameters in the variational EM algorithm515

are initialized by taking random draws from their assumed prior distributions. Iterations in the algorithm516

are terminated when at least one of two stopping criteria are met: (i) the difference between the lower517

bound of two consecutive updates is within some small range (specified by argument ϵ), or (ii) a maximum518

number of iterations is reached. For the analyses run in this paper, we set ϵ = 1 for the first criterion519

and used a maximum of 1× 104 iterations for the second.520

Simulation study design521

Generating simulated datasets. To evaluate the robustness and sensitivity of NCLUSION under522

controlled conditions, we generated synthetic single-cell RNA-seq datasets using scDesign347 (v.1.4.0).523

The reference dataset we used was derived from the FACS-sorted peripheral blood mononuclear cell524

(PBMC) dataset produced by Zheng et al.53. Initial preprocessing for this reference dataset included525

mitochondrial gene content assessment, ribosomal and hemoglobin gene filtering, and quality control to526

remove both low-quality cells and lowly expressed genes. Highly variable genes (HVGs) were identified527

using the modelGeneVar function in the scran R package, and the top 1000 HVGs were retained for528

downstream simulation. We used five immune cell types (B cells, CD14+ monocytes, CD56+ natural529

killer (NK) cells, cytotoxic T cells, and regulatory T cells) for these analyses. To ensure balanced530

representation across cell types, we implemented a stratified subsampling scheme which selected an equal531

number of cells per type while enforcing non-zero gene expression across all selected cells and genes.532

Each simulated dataset comprised of N = 10,000 cells across five clusters and 1,000 genes where we533

preserved realistic transcriptomic correlation structures through Gaussian copula modeling. Simulations534
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were conducted across four different scenarios (with 20 replicates per scenario), each varying in cluster535

size imbalance and marker gene composition.536

• Scenario I: Balanced clusters of 2000 cells per cell type, each with 50 marker genes.537

• Scenario II: Imbalanced cluster design where one small cluster had 200 cells and the other four538

larger clusters each had 2450 cells. All clusters contained 50 marker genes.539

• Scenario III: Imbalanced cluster design where one cluster had 20 (rare) cells and the other four540

larger clusters each had 2495 cells each. All clusters contained 50 marker genes.541

• Scenario IV: Balanced clusters of 2000 cells per cell type, but one cluster had only 20 marker542

genes while the other four clusters had 50 marker genes.543

More specifically, synthetic datasets were generated using the construct data, fit marginal, fit copula,544

extract para, and simu new functions within scDesign3 to create gene expression vectors using a neg-545

ative binomial distribution that is conditioned on cell type from the reference data. To introduce differ-546

entially expressed genes (DEGs), we first ranked genes by their cell type specific mean expression in the547

reference data and sampled a number of top-ranked genes to be markers. Then in the synthetic data,548

these DEGs were then artificially upregulated in one cluster while maintaining the baseline expression in549

others. This was done by apply a log-fold change factor sampled uniformly over the interval [1.5, 2.5].550

This ensured that we maintained realistic variance but still had distinct signal between cell types.551

Real datasets and preprocessing552

Below we briefly describe all of the datasets and the preprocessing steps used in this work. Each of these553

datasets is relatively large (containing at least 20,000 cells) with unique molecular identifiers (UMI).554

The latter is important because prior research suggests that UMIs provide enough information to avoid555

overcounting issues due to amplification and zero-inflation14,107,108. We use an asterisk by the BRAIN-556

LARGE dataset to indicate that it was exclusively to test the scalability of NCLUSION and competing557

methods; therefore, clustering performance was not recorded. For the other datasets, we use cell type558

annotations provided by the original study as “true” reference labels during our analyses. Cells were559

filtered for quality using a custom scanpy109 (v.1.9.1) pipeline script (see Software availability). Unless560

otherwise stated, all data was preprocessed by taking the logarithm (to the base 2) of the counts, dividing561
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by a scaling factor of 10000, and then adding a pseudo-count of 1.0 for stability. Additionally, unless562

otherwise stated, all results were produced using the top 5000 highly variable genes (HVG), which were563

determined by sorting the standard deviation of the transformed counts33.564

BRAIN-LARGE*. This dataset originally contains 1.3 million mouse brain cells from 10x Genomics 45 .565

During preprocessing, we subset the data to a collection of 720 genes following a procedure outlined by566

Lopez et al. 14 . Next, we further filtered by only keeping cells that had at least one of these genes567

expressed. This left a total of 64,071 cells. Since the original study did not provide cell labels, we exclu-568

sively used this dataset to compare runtime performance. To do so, we up-sampled by randomly selecting569

groups of 64,071 cells to create a synthetic dataset of 1 million cells. We report the runtime for each570

method on datasets with 500, 1K, 5K, 10K, 50K, 100K, 500K, and 1M cells.571

PBMC. We took scRNA-seq data from fluorescence-activated cell sorted (FACS) populations of pe-572

ripheral blood mononuclear cells (PBMCs) provided by Zheng et al. 53 and concatenated each population573

into one dataset. During preprocessing, we filtered out genes that were expressed in fewer than three574

cells. We also dropped cells with (i) fewer than 200 genes expressed, (ii) greater than 20% mitochondrial575

reads, and (iii) fewer than 5% ribosomal reads. This resulted in a final dataset with 94,615 high-quality576

cells representing 10 distinct cell types.577

PDAC. We used scRNA-seq data from pancreatic ductal adenocarcinoma (PDAC) tissue obtained578

from 23 patients according to methods documented in Raghavan et al. 72 . This dataset contains 23,042579

total cells made up of 15,302 non-malignant cells of 11 distinct cell types and 7,740 malignant cells.580

AML. The scRNA-seq data obtained from van Galen et al. 73 contains 43,690 acute myeloid leukemia581

(AML) and non-malignant donor cells taken from 16 AML patients, 5 healthy donors, and 2 cell lines. It582

is comprised of 13,489 patient-derived malignant cells, 23,005 non-malignant donor cells, 6,018 cells from583

the MUTZ-3 AML cell line, and 1,178 cells from the OCI-AML3 cell line. To account for the biological584

differences between cell lines and donor cells of the same cell type annotation, we appended the cell line585

name onto cell type labels where applicable, producing 33 distinct cell types overall. To process the data,586

we filtered out all cells with “unclear” cell state labels, retaining only “malignant” or “non-malignant”587

cells.588
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IMMUNE. We obtained filtered scRNA-seq data from approximately 330,000 immune cells from 12589

organ donors in Domı́nguez Conde et al. 74 . To mitigate batch effects, we isolated 88,057 cells that were590

taken from a single organ donor (donor D496) with uniform chemistry annotations, containing 44 distinct591

immune cell types.592

Other methods593

We selected five additional methods to compare against the performance of NCLUSION in real data594

and in simulations: (1) a Louvain algorithm implemented using the FindClusters function in Seurat9595

(v.4.3.0.1); (2) a spectral clustering method called scLCA10 (v.0.0.0.9000), which optimizes both intra-596

and inter-cluster similarity; (3) a combination of a K-Nearest Neighbor (KNN) classifier with the Louvain597

community detection algorithm to find clusters implemented via scikit-learn43 (v.1.2.2) and scanpy109
598

(v.1.9.1), respectively; (4) a semi-soft clustering algorithm called SOUP44 (v.0.0.0.9000); and (5) an599

ensemble method called scCCESS-SIMLR (v.0.2.1), which leverages the spectral clustering approach600

SIMLR11,110. In the simulation experiments, we also compared the clustering performance of NCLUSION601

against three additional methods: (6) a consensus clustering method, SC349(v.1.34.0); (7) a deep-learning602

based method, scDeepCluster50 (v.1.0.0); and (8) an imputation and dimensionality reduction method,603

CIDR48 (v.0.1.5). Also in simulations, when assessing the ability of NCLUSION to perform robust marker604

gene selection, we compare it against: (9) a method that leverage differential correlation patterns in the605

local structure of a PCA-derived cell neighborhood graph, DUBStepR51 (v.1.2.0); (10) a feature selection606

via an EM algorithm, FESTEM52 (v.1.2.1); and (11) a divergence-based strategy with permutation tests,607

singleCellHaystack25 (v.1.0.2). Additional details about each method are provided in the Supplementary608

Material.609

Evaluation metrics610

Below we describe the metrics and approaches used to compare performance across all methods. Our611

clustering evaluation procedure used extrinsic metrics that require reference labels to serve as the ground612

truth in our calculations.613

Normalized mutual information (NMI). This metric is a normalized variant of mutual information614

(MI). It is an entropy-based metric that captures the amount of shared information between the inferred615
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label distribution and the reference label distribution. NMI ranges between [0, 1] where 1 represents total616

information sharing between label sets and 0 represents no information sharing between label sets. NMI617

is calculated by618

NMI =
I(Q;R)√
H(Q)H(R)

619

where Q and R are the empirical label distributions from the inferred and reference labels, respectively.620

The function I(·) is the mutual information between the inferred labels distribution and reference labels621

distributions; H(·) represents the Shannon entropy of a given label distribution110,111.622

Adjusted Rand index (ARI). This metric captures the similarity between labels inferred by a method623

and the reference labels. It is based on the Rand index (RI) but corrects for the measurement’s sensitivity624

to chance. ARI ranges between [-1, 1] where 1 represents perfect agreement between label sets, 0 represents625

random agreement, and -1 represents perfect disagreement. ARI is calculated by626

ARI =

∑
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where nij , ai, and bj are values obtained from a contingency table, and n =
∑

ij nij
110–112.628

Metrics to evaluate marker gene selection in simulations. In the simulation studies, we evaluated629

the accuracy of marker gene detection of NCLUSION and competing methods by treating the task as a630

classification problem. In order to do so, we defined the confusion matrix defined below.631

(Inferred Label)

Marker gene Non-marker gene Total

(True Label)
Marker gene TP FN b1

Non-marker gene FP TN b2

Total a1 a2 n

Table 1. Confusion matrix showing true and inferred marker gene labels.

Here, TP represents the number of correctly identified marker genes (true positives), FN represents the632

number of incorrectly identified marker genes (false negatives), TN represents the number of correctly633

identified non-marker genes (true negatives), and FP represents the number of incorrectly identified non-634
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marker genes (false positives). In the table above, we let a1 and a2 be the total number of genes inferred635

as markers and the total number of genes not inferred as markers, respectively. Likewise, we let b1 and636

b2 be the total number of genes that are truly markers and non-markers, respectively. It follows that637

the total number of genes is defined as n = a1 + b1 + a2 + b2. From here, we can compute the following638

metrics.639

• True positive rate (TPR; also referred to as power) captures the proportion of correctly640

identified marker genes using a given method. It is defined as TPR = TP/(TP+FP).641

• False discovery rate (FDR) details the proportion of all identified marker genes that are actually642

non-marker genes It is defined as FDR = FP/(TP + FP).643

• False positive rate (FPR) captures the proportion of non-marker genes that will be incorrectly644

labeled marker genes. It is defined as FP/(TN + FP).645

Note that the false positive rate can also be computed as FPR = 1-Specificity.646

Normalized module expression. Genes with significantly adjusted PIPs in Eq. (5), positive ESS647

in Eq. (6), and significant SSMD in Eq. (7) were used to generate modules (i.e., a collection of marker648

genes) for each cluster. We calculated a score for each cluster to asses the exclusivity of expression within649

each module. This was done using the score genes function in scanpy (v.1.10.4). The violin plots were650

generated using the violinplot function in matplotlib (v.3.10.0).651

Gene set over-enrichment analysis. We also performed gene set enrichment analysis on each of652

the learned gene modules across clusters. This was done via an over-enrichment analysis within the653

GSEApy package113 (v.1.1.5) in Python (v.3.11.0). This method uses a hypergeometric test to calculate654

the enrichment of genes in a supplied module with respect to the gene sets within an ontology. In655

this work, we use the ontology labeled GO Biological Process 202563–65,114, Tabula Sapiens115,116,656

Azimuth Cell Types 2021117, KEGG 2021 Human118–120, and Reactome 2022121–128. The gene sets in657

this particular ontology represent a combination of biological processes, pathways, and phenotypes. In658

this analysis, we use q-values to determine the enrichment of a given gene set with a significance threshold659

set to 0.05. The q-value is the analog of a p-value that has been corrected for testing multiple hypotheses660

(i.e., an adjusted P ).661
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Software availability662

An open-source software implementation of NCLUSION is available on GitHub at https://github.com663

/microsoft/Nclusion.jl. Guided tutorials and all code needed to reproduce the results and figures in664

this work can be found at https://microsoft.github.io/Nclusion.jl/.665

Data availability666

All of the datasets analyzed in this paper are publicly available. The PDAC dataset from Raghavan667

et al. 72 can be accessed at https://singlecell.broadinstitute.org/single_cell/study/SC668

P1644/microenvironment-drives-cell-state-plasticity-and-drug-response-in-pancrea669

tic-cancer#/. The AML data from van Galen et al. 73 can found at https://www.dropbox.co670

m/s/399x045zc57fiut/Seurat_AML.rds?dl=0. The BRAIN-LARGE dataset can be accessed at671

https://www.10xgenomics.com/datasets/1-3-million-brain-cells-from-e-18-mice-2-s672

tandard-1-3-0. The individual PBMC data from Zheng et al. 53 can be downloaded directly from673

https://www.10xgenomics.com/resources/datasets. Lastly, the immune cell atlas dataset can be674

accessed at https://cellgeni.cog.sanger.ac.uk/pan-immune/CountAdded_PIP_global_object_f675

or_cellxgene.h5ad.676
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Fig 1. NCLUSION provides a scalable, unified workflow for both clustering and marker gene
selection in single-cell analysis. (A) Conventional clustering algorithms require user heuristics and
decision making steps that increase wall clock runtime (e.g., selection and human-in-the-loop refinement
of the number of clusters K). (B) The nonparameteric workflow of NCLUSION reduces the number of
choices and heuristics that users have to make while also performing cluster-specific variable selection to
identify top marker genes for downstream investigation. (C) Runtimes of NCLUSION and other baselines
on the BRAIN-LARGE dataset with a fixed set of 720 genes and an increasing sample size ranging from
N = 500 to 1 million cells.
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Fig 2. Comparing NCLUSION and competing algorithms on performing clustering and
marker gene selection in a simulation study. Depicted are results for Scenario I where we evenly
distributed all synthetically generated cells across five clusters and each cluster had a unique set of 50
marker genes. (A) Overview of the simulation framework used for evaluating the quality of clustering
and marker gene selection for NCLUSION and each competing method. (B) Inferred cluster labels
were compared to “true” annotations created during the simulation, where performance was measured
according to (left) normalized mutual information (NMI) and (right) adjusted Rand index (ARI). (C)
Assessment of marker gene selection was done on the global scale, where methods were evaluated on how
well they could detect a “true” causal gene without taking cluster assignment into account. This was
due to the limitation of competing methods not being able to identify cluster-specific genes. Evaluations
were done by measuring the true positive rate (TPR; or power), false discovery rate (FDR), and false
positive rate (FPR; computed as 1-Specificity) for each approach. Results for (B) and (C) are based on
20 simulations, with each bar plot representing the mean and the error bars covering a ± 95% confidence
interval.
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Fig 3. Clustering performance for NCLUSION and other baseline methods on the PBMC
scRNA-seq dataset (N = 94,615 cells). (A) The framework used for evaluating the quality of
clustering in each method. (B)Overview of FACS-based cell type annotations, visualized via t-distributed
stochastic neighbor embedding (t-SNE), for the PBMC scRNA-seq dataset. These annotations serve as
labels during the evaluation. (C) Assessment of the inferred cluster labels versus the experimental
annotations, as quantified by two metrics: normalized mutual information (NMI) and adjusted Rand
index (ARI) (for each method, we take five random 80% splits of the PBMC dataset; depicted in each
bar plot is the mean ± 95% confidence interval). Asterisks indicate that there is a statistically significant
difference in performance between NCLUSION and a corresponding method (two-sided t-test P < 0.05).
(D) Visualizing the structure of the inferred clusters across all baselines using t-SNEs and a contingency
heat map showing the prevalence of each cell type within each cluster. Methods are ordered from fastest
(left) to slowest (right) in terms of runtime. The same lower dimensional representation of the data is
reused with relabeling of the plots according to the results from each clustering algorithm.
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Fig 4. (Continued on the following page).
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Fig 4. Evaluation of cluster-specific marker genes identified by NCLUSION on the PBMC
dataset (N = 94,615 cells). (A) The framework used for assessing cluster-specific marker genes.
(B) Embeddings of the experimental annotations for major cell types from the PBMC dataset compared
to the clusters inferred by NCLUSION. (C) Heat maps of the adjusted posterior inclusion probabilities
(PIPs) (left), effect size sign (ESS) (center), and strictly standardized mean difference (SSMD) (right) of
significant genes in each cluster. Cluster-specific marker genes are selected as those that have a significant
inclusion probability, are up-regulated in a given cluster, and have a large effect size magnitude such
that PIP ≥ 0.5, ESS = +, and |SSMD(j; k)| ≥ S∗(j; k), respectively. Here S∗(j; k) is a threshold set
to preserve a false positive rate of 0.05. (D) Highlighted location on t-SNEs of NCLUSION-inferred
clusters that contain predominantly one cell type. (E) Violin plots comparing the normalized expression
of cluster-specific marker genes in each of the inferred clusters. (F) Scatter plot comparing the marker
genes identified using post hoc differential expression analysis with Seurat (yellow) versus the variable
selection approach with NCLUSION (blue). Yellow points have PIP ≥ 0.5 and ESS = +, while purple
points have PIP ≥ 0.5 and ESS = −, respectively. The vertical dashed line marks the median probability
criterion38, and the horizontal dashed line marks the Bonferroni-corrected threshold for significant q-
values (i.e., an adjusted P ). Genes in the top right quadrant are identified by both methods. (G) Scatter
plot comparing gene ontology (GO) pathway enrichment analyses using cluster-specific marker genes
from Seurat versus NCLUSION. The horizontal and vertical lines correspond to significant q-values being
below 0.05. Pathways in the top right quadrant are selected by both approaches (red), while elements
in the bottom right and top left quadrants are uniquely identified by NCLUSION (blue) and Seurat
(orange), respectively. (H) Highlight of select top GO pathway enrichment analysis for the marker genes
identified by NCLUSION. Plotted on the x-axis are the negative log-transformed q-values for each GO
gene set. Gene sets with a q-value below 0.05 are deemed to be significant.
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Fig 5. (Continued on the following page).
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Fig 5. Scalability and generalizability of NCLUSION across diverse datasets. NCLUSION
and baselines were applied to the following scRNA-seq datasets: PDAC (N = 23,042 cells)72, AML (N =
43,690 cells)73, and IMMUNE (N = 88,057 cells)74. (A) Runtimes for all methods when applied to each
dataset. (B) Assessment of the inferred cluster labels from each method versus cell type annotations from
the original studies. Evaluation is quantified by normalized mutual information (NMI) and adjusted Rand
index (ARI). Asterisks indicate that there is a statistically significant difference in performance between
NCLUSION and a corresponding method (two-sided t-test P < 0.05). Panels (C)-(F) depict results from
running NCLUSION on the PDAC dataset. (C) Shown is a t-SNE visualization of the PDAC scRNA-seq
dataset, annotated by the cell type labels from the PDAC study (top) compared to the clusters inferred by
NCLUSION (bottom), where the “NM” labels indicate non-malignant cells and the “M” labels indicate
malignant cells. (D) Heat maps of the adjusted posterior inclusion probabilities (PIPs) (left), effect
size sign (ESS) (center), and strictly standardized mean difference (SSMD) (right) of the significant
genes in each cluster. (E) Highlighted location on t-SNEs of NCLUSION-inferred clusters that contain
predominantly one cell type. (F) Violin plots comparing the normalized expression of cluster-specific
marker genes across clusters. (G) Gene ontology (GO) pathway enrichment analysis for the marker genes
identified for each cluster. Gene sets with a q-value below 0.05 are deemed to be significant.
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Tyler Muser, Patrick Neuhöfer, Thi D. Nguyen, Kimberly Perez, Ragini Phansalkar, Nazan Pu-1146

luca, Zhen Qi, Poorvi Rao, Hayley Raquer-McKay, Nicholas Schaum, Bronwyn Scott, Bobak1147

Seddighzadeh, Joe Segal, Sushmita Sen, Shaheen Sikandar, Sean P. Spencer, Lea C. Steffes,1148

Varun R. Subramaniam, Aditi Swarup, Michael Swift, Will Van Treuren, Emily Trimm, Stefan1149

Veizades, Sivakamasundari Vijayakumar, Kim Chi Vo, Sevahn K. Vorperian, Wanxin Wang, Han-1150

nah N. W. Weinstein, Juliane Winkler, Timothy T. H. Wu, Jamie Xie, Andrea R. Yung, Yue1151

Zhang, Angela M. Detweiler, Honey Mekonen, Norma F. Neff, Rene V. Sit, Michelle Tan, Jia1152
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