

1 **Clearance of protein aggregates during cell division**

2

3 Shoukang Du^{1,3}, Yuhang Wang¹, Bowen Chen¹, Shuangshuang Xie¹, Kuan Yoow Chan^{1,3}, David C. Hay⁴,

4 Ting Gang Chew^{1,2,3,5,#}

5

6 **Affiliations**

7 ¹The Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine,

8 Zhejiang University, Haining 314400, China

9 ²Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine,

10 Zhejiang University, Hangzhou 310058, China

11 ³College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, EH4 2XR, UK

12 ⁴Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little

13 France Drive, Edinburgh EH16 4UU, UK

14 ⁵State Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Hangzhou

15 310027, China

16

17

18 #Corresponding author: Ting Gang Chew (tinggchew@intl.zju.edu.cn)

19

20

21

22

23 **Abstract**

24 Protein aggregates are spatially organized and regulated in cells to prevent deleterious effects of
25 proteostatic stress. Misfolding of proteins in the endoplasmic reticulum (ER) results in aggregate
26 formation, but how the aggregates are processed especially during cell division is not well
27 understood. Here, we induced proteostatic stress and protein aggregation using a proteostasis
28 reporter, which is prone to misfolding and aggregation in the ER. Unexpectedly, we detected solid-
29 like protein aggregates deposited mainly in the nucleus and surrounded by the ER membrane. The
30 membrane-bound aggregates were then cleared as cells progressed through mitosis and cytokinesis.
31 Aggregate clearance depended on Hsp70 family chaperones in the ER, particularly BiP, and
32 proteasomal activity. The clearance culminated at mitotic exit and required cyclin-dependent kinase
33 1 (Cdk1) inactivation but was independent of the anaphase-promoting complex (APC/C). The ER
34 reorganization that is active during mitosis and cytokinesis was required for the aggregate clearance.
35 Thus, dividing cells reorganize the ER networks to allow BiP to clear the protein aggregates to
36 maintain proteostasis in the newly divided cells.

37

38 **Introduction**

39 Nascent polypeptides fold into three-dimensional structures to perform their biological functions
40 (Hipp et al., 2019). Misfolded proteins tend to have their hydrophobic residues exposed and result
41 in aggregation of proteins (Hartl et al., 2011). Intramolecular beta-sheets in some proteins are also
42 structural elements prone for protein aggregation (Tyedmers et al., 2010). Protein misfolding and
43 aggregation not only disrupt the native function of the protein but also could interfere other proteins'
44 functions by co-aggregation (Olzscha et al., 2011; Woerner et al., 2016). This challenges proteome

45 homeostasis (proteostasis) and causes proteostatic stress in cells, which is a main driver of cellular
46 aging and neurodegenerative disorders (Balch et al., 2008; Labbadia and Morimoto, 2015).

47

48 Cells evolve several protein quality control (PQC) systems to maintain their proteostasis in which
49 components of PQC systems facilitate refolding, degradation, and spatial deposition of misfolded
50 protein aggregates (Jayaraj et al., 2020). Molecular chaperones are key players in the PQC system.

51 They are involved to fold nascent polypeptides, target misfolded proteins for degradation by
52 ubiquitin-proteasome system or autophagy, and promote solubilization of protein aggregates
53 (Tyedmers et al., 2010). Eukaryotic cells confine misfolded proteins and smaller aggregates into
54 distinct cellular deposition sites, which reduce the reactivity of these harmful species to the proteome
55 (Kaganovich et al., 2008). These deposition sites include aggresomes or aggresome-like induced
56 structures locating near centrosomes, INQ (intranuclear quality control compartment) residing in the
57 nucleus, cytosolic CytoQ, and the perivacuolar IPOD (insoluble protein deposit) (Kaganovich et al.,
58 2008). Confinement of protein aggregates in a deposition site facilitates retention of aggregates in
59 short-lived cells (mother cells) during asymmetric cell division (Aguilaniu et al., 2003; Fuentealba et
60 al., 2008; Rujano et al., 2006; Singhvi and Garriga, 2009; Zhou et al., 2014).

61

62 The endoplasmic reticulum (ER) processes one-third of cellular proteome and possesses stronger
63 ability to maintain aggregation-prone proteins in a non-toxic state than the cytosol owing to its
64 specific molecular chaperone environment (Vincenz-Donnelly et al., 2018). Chaperones in the ER
65 such as HSPA5/BiP regulates the unfolded protein response (UPR), which blocks instant protein
66 synthesis and activates transcription of genes involved in PQC (Preissler and Ron, 2019; Wiseman

67 et al., 2022). In addition, the proteostatic stress in the ER triggers ER-associated degradation (ERAD)
68 and ER-phagy to remove misfolded proteins (Mochida and Nakatogawa, 2022; Olzmann et al., 2013).
69 Despite the high capacity of proteostatic stress response in the ER (Rousseau et al., 2004; Vincenz-
70 Donnelly et al., 2018), excessive misfolded proteins still lead to formation of protein aggregates in
71 the ER (Melo et al., 2022; Miyata et al., 2020). In response to protein aggregation in the ER, BiP
72 functions as a disaggregase to promote solubilization of these aggregates. In cells undergoing
73 asymmetric cell division such as in the budding yeast, the ER diffusion barrier and the ER stress
74 surveillance (ERSU) pathway ensure ER protein aggregates are retained preferentially in the short-
75 lived mother cells during cell division (Clay et al., 2014; Pina and Niwa, 2015). How ER protein
76 aggregates are regulated in dividing cells, especially those that do not undergo asymmetric cell
77 division, is less well studied. We addressed the fate of ER protein aggregates in human cells
78 undergoing cell division symmetrically and identified a clearance mechanism of protein aggregates
79 when cells are progressing through mitosis and cytokinesis.

80

81 **Results**

82 **Targeting a proteostasis reporter to the ER results in protein aggregate formation in the** 83 **nucleus.**

84 To investigate how cells maintain their proteostasis during cell division, we employed a proteostasis
85 reporter consists of a firefly luciferase mutant prone for protein mis-folding and protein aggregation
86 fused to a green fluorescent protein (FlucDM-eGFP) (Gupta et al., 2011). Next, we targeted the
87 reporter to the ER by fusing a ER-targeting sequence at its N-terminus (ER-FlucDM-eGFP).
88 Interestingly, we found that ER-FlucDM-eGFP assembled into visible protein aggregates in the

89 nucleus when stably expressed in mammary epithelial MCF10A cells in the absence of any
90 perturbation of the proteome stability (Figure 1A). The protein aggregates were below detection limit
91 of our microscopy in first 2 days after lentivirus transduction but progressively accumulated in cells
92 and stabilized in the population several days after lentivirus transduction. This contrasted with a
93 previous study in which the ER-FlucDM-eGFP was transiently expressed in cells and hence did not
94 allow long term tracking of the protein (Sharma et al., 2018). ER-FlucDM-mCherry localized to the
95 ER network indicated by the ER membrane protein Sec61 β (Figure 1B). Since we detected
96 aggregate formation in the nucleus in cells expressing ER-FlucDM-eGFP, we tested if targeting
97 FlucDM-eGFP to the nucleus (NLS-FlucDM-eGFP) would result in the formation of visible protein
98 aggregates. Our data showed that NLS-FlucDM-eGFP did not form protein aggregates in the nucleus
99 and was not co-localized with the ER-FlucDM-mCherry and accumulated lower protein abundance
100 than ER-FlucDM-eGFP (Figure S1A-D).

101

102 Next, we expressed pathological mutants of cystic fibrosis transmembrane conductance regulator
103 (CFTR) and Alpha-1 antitrypsin (AAT), which are CFTR- Δ F508 and AAT S or Z variants, respectively.
104 These pathological mutants mis-fold and accumulate in the ER (Greene et al., 2016; Lukacs and
105 Verkman, 2012). However, expression of CFTR- Δ 508 and AAT S or Z variants did not result in the
106 aggregate accumulation in the nucleus as observed in ER-FlucDM-eGFP (Figure S1E and F). Thus,
107 a pathological mutant of ER proteins that are confined in the nucleus remain to be determined.
108 Luciferase activity measurement showed that ER-FlucDM-eGFP has significantly reduced enzymatic
109 activity and was not functional possibly due to mis-folding and protein aggregation (Figure 1C). ER-
110 FlucDM-eGFP was also detected in the insoluble fraction after heat stress (Figure S1G). Moreover,

111 we observed the colocalization of ER-FlucDM-eGFP aggregates and thioflavin T (ThT), a universal
112 dye to detect amyloid fibril, further supporting these aggregates were misfolded protein aggregates
113 (Figure S1H). Thus, expression of ER-FlucDM-eGFP results in proteostatic stress and allows us to
114 study how protein aggregates are regulated in human cells.

115

116 Formation of protein aggregates in the nucleus by ER-FlucDM-eGFP was not limited to MCF10A
117 cells. The protein aggregates were also detected in the nucleus when ER-FlucDM-eGFP was
118 expressed in other cell lines such as A549, MDA-MB-231 and U2OS cells (Figure 1A and S1I).
119 Similar observations were found when a different N-terminal signal peptide sequence was used
120 (Figure 1D and S1J). In addition, when ER-FlucDM was replaced by ER-HaloDM, which is a modified
121 haloalkane dehalogenase prone to mis-folding and aggregation (Melo et al., 2022), we observed
122 similar protein aggregates in the nucleus (Figures 1D and S1K). However, only very low number of
123 cells formed aggregates in the nucleus when intact GFP was targeted to the ER (Figure S1K). Thus,
124 ER-FlucDM-eGFP formed protein aggregates in the nucleus independent of cell line, fluorescent
125 protein types, specific ER targeting sequence and FlucDM.

126

127 Despite localizing in the nucleus, we found that the protein aggregates were surrounded by the ER
128 membrane as stained by the ER-tracker (Figure 1E). To further confirm this, we sectioned the cells
129 and used electron microscopy to observe the protein aggregates. We found that the aggregates
130 were surrounded by a single layer membrane closed to the inner membrane of the nucleus (Figure
131 1F). Thus, the aggregates are intra-nuclear membranous structure surrounded by the ER membrane.

132

133 **Differential and slow turnover of protein aggregates in cells at interphase and mitosis.**

134 Pathological proteins aggregates such as Z- α 1-antitrypsin accumulated in the ER exhibited minimal
135 turnover (Dickens et al., 2016). To test whether ER-FlucDM-eGFP aggregates has a reduced
136 dynamics as well, we performed fluorescence recovery after photobleaching (FRAP) in cells
137 expressing both ER-FlucDM-eGFP and ER-FlucDM-mCherry. The ER-FlucDM-eGFP signal served
138 as a tracker for the location of aggregates and the ER-FlucDM-mCherry was used to probe the
139 aggregate dynamics. We photobleached ER-FlucDM-mCherry with 561 nm laser while ensuring ER-
140 FlucDM-eGFP signal was not affected. In interphase cells, ER-FlucDM-mCherry aggregates
141 intensity barely recovered after 4.5 min post-bleaching, indicating that ER-FlucDM-mCherry
142 aggregates possessed minimal turnover similar to that of in other protein aggregates such as Z- α 1-
143 antitrypsin (Figure 2A). Similarly, ER-HaloDM-eGFP aggregates in the nucleus also displayed low
144 recovery after photobleaching (Figure S2A). When ER-FlucDM-mCherry aggregates were
145 photobleached in mitotic cells, the recovery of intensity was also much lesser than the ER-FlucDM-
146 mCherry signal present in the ER network (Figures 2B and 2C). However, ER-FlucDM-mCherry
147 aggregates in mitotic cells showed a higher recovery than that of in interphase cells (Figure 2D;
148 aggregates of interphase cells recovered from 0.131 ± 0.093 to 0.157 ± 0.095 ; aggregates of mitotic
149 cells recovered from 0.196 ± 0.137 to 0.356 ± 0.151).

150

151 Consistently, the single-cell analysis revealed that in mitotic cells, there was an increase of the
152 recovery intensity of ER-FlucDM-mCherry in late time-point as compared to that of in early time-
153 points after photobleaching. The increased recovery intensity was not observed in ER-FlucDM-
154 mCherry aggregates of interphase cells (Figure S2B). Taken together, ER-FlucDM-mCherry

155 aggregates in the nucleus have low turnover and the aggregate displays increased turnover in mitotic
156 cells.

157

158 **Protein aggregates are cleared during cell division.**

159 Since aggregates displayed some levels of turnover during mitosis (Figures 2B, 2C and 2D), we next
160 investigated the aggregate behaviour throughout cell division. To this end, we labelled cells
161 expressing ER-FlucDM-eGFP with SiR-Tubulin to distinguish cells at various stages based on the
162 microtubule organization. We categorized cells into interphase and prophase, prometaphase,
163 metaphase, anaphase, telophase and early G1 cells based on their microtubule structures (Figure
164 3A). Next, we analyzed the number and area of aggregates in cells of each category. Interestingly,
165 we observed that the number and area of aggregates in telophase and early G1 cells were
166 significantly lower than in interphase cells, suggesting that aggregates are cleared gradually when
167 cells progress through mitosis and cytokinesis (Figure 3B).

168

169 To test whether this was the case, we employed time-lapse imaging to profile aggregates in cells
170 undergoing division. To increase the number of dividing cells during imaging, we synchronized cells
171 at G2/M and released them into mitosis prior to imaging. We observed that upon entry into mitosis,
172 the ER-FlucDM-eGFP aggregates were released from the nucleus during nuclear envelope
173 breakdown and gradually decreased in numbers as cells progress through mitosis and cytokinesis
174 (Figure 3C and Video 1). In majority of early divided G1 cells, there was essentially no detectable
175 aggregates (Figure 3D). Interestingly, the aggregates released from the nucleus during mitosis were
176 still surrounded by the ER membrane as indicated by the ER-tracker (Figures S3A and S3B). The

177 decrease of aggregates appears to happen specifically in dividing cells as the number and area of
178 aggregates remained largely unchanged in interphase cells (Figures 3C and 3D). Furthermore,
179 aggregates formed in cells expressing ER-HaloDM-eGFP decreased in numbers when cells
180 progress through mitosis and cytokinesis (Figure S3C and Video 2), suggesting that the clearance
181 of protein aggregates during cell division was not specific to ER-FlucDM-eGFP.

182

183 **Effects of ER stress inducers on aggregate clearance in mitotic cells.**

184 Expression of ER-FlucDM-eGFP results in proteostatic stress in cells. Consistently, we observed
185 that gene expression for chaperones and co-chaperones in the ER were upregulated in these cells
186 (Figure 4A), indicating cells involved ER proteostasis control during adaptation. Proteomic analysis
187 of cells expressing ER-FlucDM-GFP showed up-regulation of proteins involved in ER stress
188 response (Figure S4A). We speculated that acute perturbation to ER homeostasis could exacerbate
189 the proteostatic stress in dividing cells expressing ER-FlucDM-eGFP and affect aggregate clearance
190 during mitosis. To test if this was the case, synchronized cells expressing ER-FlucDM-eGFP were
191 released into mitosis in the presence of either DMSO (control) or 1 μ M thapsigargin (Thaps), which
192 blocks the ER calcium ion pump and causes ER stress. In cells at prometaphase and metaphase
193 (35 min after release), DMSO and Thaps treatments showed comparable number and area of
194 aggregates in cells (Figures 4B and 4C). However, in cells at the late stage of cell division (65 min
195 after release), there were significantly higher number of aggregates retained in the cytosol of Thaps-
196 treated cells than DMSO (Figures 4B and 4C). Consistently, time-lapse microscopy revealed that
197 ER-FlucDM-eGFP aggregates retained in the cytosol after cytokinesis in Thaps-treated cells,
198 whereas the aggregates were largely cleared in control cells completing cytokinesis (Figures 4D, 4E,

199 S4B and Video 4). Thus, acute treatment of ER stress inducer Thaps in dividing cells prevents
200 clearance of ER-FlucDM-eGFP aggregates.

201

202 A previous study showed that cells with protein aggregates treated for hours with Thaps or
203 Tunicamycin (Tuni), which inhibits protein glycosylation in the ER, promotes aggregate clearance in
204 cells (Melo et al., 2022). To test if prolonged treatment of cells expressing ER-FlucDM-eGFP with
205 Tuni could promote aggregate clearance, we pretreated cells blocked at G2/M with varying
206 concentrations of Tuni for 3 hours and released cells into mitosis. Interestingly, prolonged
207 pretreatment of Tuni prior to mitosis promoted aggregate clearance in dividing cells (Figure S4C).
208 Thus, acute treatment of cells expressing ER-FlucDM-eGFP with ER stress inducers prevents
209 aggregate clearance in dividing cells while prolonged treatment with ER stress inducers promotes
210 aggregate clearance.

211

212 **Hsp70 family protein BiP is required for aggregate clearance during cell division.**

213 Since we observed that the expression of a chaperone Hsp70 (HSPA5/BiP) was upregulated in cells
214 expressing ER-FlucDM-eGFP (Figure 4A) and Hsp70 is involved in elimination of protein aggregates
215 (Melo et al., 2022; Nillegoda et al., 2015), we next tested whether the clearance of ER-FlucDM-eGFP
216 aggregates in dividing cells was mediated by Hsp70 family proteins. To this end, cells entering
217 mitosis were treated with either DMSO (control) or VER-155008 (VER), an inhibitor of HSP70's
218 ATPase activity (Samanta et al., 2021). We found that VER-treated dividing cells fixed after 65
219 minutes released from the G2/M boundary retained high number of ER-FlucDM-eGFP aggregates
220 in the cytosol compared to control treatment (Figures 5A and 5B). Time-lapse microscopy showed

221 that when cells were treated with VER, ER-FlucDM-eGFP aggregates released from the nucleus
222 upon entry into mitosis were not cleared as to the same extent as control cells (Figure 5C and Video
223 5).

224

225 HSPA5/BiP is a major Hsp70 family member in regulating ER proteostasis. We next tested whether
226 inhibition of BiP function could affect clearance of aggregates in dividing cells. Similar to VER
227 treatment, inhibition of BiP's ATPase activity by YUM-70 (Samanta et al., 2021) led to a dose-
228 dependent accumulation of ER-FlucDM-eGFP aggregates in cells (Figures 5D and 5E). Moreover,
229 by using immunofluorescence staining, we found a strong colocalization of BiP and ER-FlucDM-
230 eGFP, consistent with a role of BiP in regulating ER-FlucDM-eGFP aggregates (Figures S5A to S5C).
231 Collectively, our data demonstrated that the clearance of ER-FlucDM-eGFP aggregates was
232 regulated by the HSP70 family proteins, particularly BiP.

233

234 **Aggregate clearance is a mitotic exit event but is independent of the anaphase promoting
235 complex (APC/C).**

236 Protein aggregates are subjected to proteasomal degradation in cells (Tyedmers et al., 2010). To
237 test if aggregate clearance during cell division involves proteasomes, we inhibited the proteasome
238 activity with MG132 in dividing cells expressing ER-FlucDM-eGFP. After treating cells released from
239 the G2/M boundary with low or high concentrations of MG132 for 55 minutes, majority of mitotic cells
240 were arrested at metaphase and accumulated high number of aggregates as compared to control
241 cells treated with DMSO (Figures S6A and S6B). Next, we inhibited the proteasome with MG132 in
242 cells at late anaphase or telophase and examined the aggregates 35 minutes after MG132 treatment

243 (Figures S6C and S6F). In cells completing cytokinesis, there were significantly high number of
244 aggregates in the early divided cells treated with MG132 versus the control (Figures S6D, 6E, S6G
245 and S6H).

246

247 Since protein aggregates are cleared when cells progress through mitosis and cytokinesis, which
248 are the cell cycle stage with low Cyclin B/Cdk1 activity, we speculated that inactivation of Cdk1
249 activity in MG132-treated and metaphase-arrested cells could lead to clearance of ER-FlucDM-
250 eGFP aggregates in the cytosol. To test if this was the case, we released cells into mitosis in the
251 presence of MG132 for 55 minutes and treated metaphase-arrested cells with RO-3306 to inhibit
252 Cdk1 activity (Figure 6A). Interestingly, ER-FlucDM-eGFP aggregates were cleared in cells treated
253 with RO-3306 while the aggregates were retained in cells treated with DMSO (Figures 6B and S6I).
254 Consistently, live cell imaging demonstrated similar accelerated clearance in Cdk1 inhibited cells
255 (Figures 6C and 6D). Thus, clearance of the aggregates happens when cells exit from mitosis.

256

257 We established that clearance of aggregates during cell division requires proteasomes and Cdk1
258 inactivation, it is possible that the anaphase promoting complex (APC/C), which is a E3 ubiquitin
259 ligase regulating mitotic exit (Watson et al., 2019), is involved in clearing the aggregates. To test if
260 this was the case, we inhibited APC/C activity using a cocktail of APC/C inhibitors (APC/Ci) consists
261 of Apcin and ProTAME in dividing cells expressing ER-FlucDM-eGFP (Sackton et al., 2014).
262 Interestingly, inhibition of APC/C did not affect aggregate clearance as APC/Ci-treated cells that have
263 arrested at metaphase have comparable number of aggregates as in control DMSO-treated cells
264 (Figures 6E and 6F). When cells at late anaphase or telophase were treated with APC/Ci, the newly

265 divided cells have similar number of aggregates as in control cells (Figures 6G, 6H and 6I). Lastly,
266 we verified the efficacy of APC/C inhibition using cells expressing the APC/C reporter derived from
267 Geminin (Figure S6J). Consistently, APC/Ci treatment has prevented the removal of APC/C reporter
268 in newly divided cells indicating that the APC/C was inhibited by the dosage of APC/Ci used in our
269 experiments (Figure S6K). Taken together, our data showed that clearance of ER-FlucDM-eGFP
270 aggregates happens when cells exit from mitosis, is proteasome dependent but does not involve
271 APC/C.

272

273 To examine if ER-FlucDM-eGFP decreased in abundance while cells progressing through mitosis,
274 we inhibited protein translation using cycloheximide (CHX) in cells released from G2/M boundary.
275 Short half-life proteins like p53 showed a rapid decrease of abundance upon CHX treatment,
276 indicating CHX prevented new protein synthesis in our treatment (Figure S7A and S7B). ER-FlucDM-
277 eGFP did not show significant change of its abundance after CHX treatment, suggesting that ER-
278 FlucDM-eGFP aggregates were not cleared by the protein degradation mechanism directly (Figure
279 S7A and S7C). Consistently, when the total GFP intensity of ER-FlucDM-eGFP was quantitated in
280 dividing cells 20-30 min (early) or 85-95 min (late) released from G2/M boundary, there was no
281 significant change of GFP fluorescence intensity between early and late dividing cells (Figure S7D),
282 further supported that the protein degradation mechanism was not responsible for the ER-FlucDM-
283 eGFP aggregate clearance.

284

285 **Aggregate clearance depends on the ER reorganization during cell division**

286 Since we showed that ER-FlucDM-eGFP aggregates are not primarily cleared by the protein

287 degradation mechanism, we considered the possibility that aggregate clearance requires
288 reorganization of the ER that happens in cells exiting mitosis. To this end, we used CRISPR
289 interference (CRISPRi) technique to knock down ER membrane fusion proteins Atlastin 2 (ATL2)
290 and Atlastin 3 (ATL3) in cells expressing ER-FlucDM-eGFP and quantitated the aggregate numbers
291 in cells exiting mitosis (65 min after release). Interestingly, dividing cells depleted of ATL2 and ATL3
292 accumulated more ER-FlucDM-eGFP aggregates than in control cells (Figure 7A and B).

293

294 The mitotic kinase Aurora A has been recently shown to remodel the ER network during mitosis
295 (Zhang et al., 2024). We next tested if blocking Aurora A activity could affect aggregate clearance.
296 When mitotic cells expressing ER-FlucDM-eGFP were treated with Aurora A inhibitor, MLN-8237,
297 aggregate clearance was prevented compared to cells treated with DMSO (Figure 7C and D). Since
298 the ER reorganization involves microtubule dynamics, we also perturbed microtubule networks by
299 treating cells expressing ER-FlucDM-eGFP by nocodazole (Figure 7E and F). Our data showed that
300 mitotic cells treated with nocodazole accumulated higher number of aggregates. Taken together, we
301 found that clearance of ER-FlucDM-eGFP aggregates involves reorganization of the ER during
302 mitotic exit (Lee et al., 1989).

303

304 **Discussion**

305 We showed that stably expression of ER-FlucDM-eGFP leads to proteostatic stress and formation
306 of protein aggregates in human cells without the use of additional proteostatic stressors. ER-FlucDM-
307 eGFP aggregates may derive from the invagination of the inner nuclear membrane. Morris et al
308 reported a similar aggregate formation in the nuclues upon BiP overexpression (Morris et al., 1997).

309 This fluorescent based live-cell imaging reporter enables us to study how protein aggregates are
310 regulated in dividing cells, which are sensitive to genetic or environmental perturbations.
311 Conventional methods that use proteasomal inhibitors to cause proteome imbalance are not ideal to
312 investigate proteostasis in dividing cells given an essential role of proteasomes in driving mitotic exit
313 (Ghislain et al., 1993; Glotzer et al., 1991). Additionally, methods such as heat shock also perturb
314 mitotic progression, especially in human cells (Kakihana et al., 2019). By using ER-FlucDM-eGFP
315 that does not perturb cell cycle progression significantly, we reveal an unexpected process of
316 clearing protein aggregates in cells progressing through mitosis and cytokinesis. We found that ER-
317 FlucDM-eGFP aggregates are confined in the nucleus within the ER membrane during interphase.
318 When cells are progressing from mitosis to cytokinesis in which the Cdk1 activity is decreasing, the
319 ER networks reorganize allowing BiP that has disaggregation ability to clear the ER-FlucDM-eGFP
320 aggregates.

321
322 Previous studies showed that the proteome of mitotic cells have higher structural stability and less
323 aggregation prone compared to that of in interphase cells (Becher et al., 2018; Wirth et al., 2013).
324 Post-translational modifications such as phosphorylation of mitotic proteins are suggested to be
325 responsible for the protein stability during cell division (Becher et al., 2018). The aggregate clearance
326 we identified in this study could represent an active mechanism that increases proteome stability in
327 dividing cells. We found that aggregate clearance requires Cdk1 inactivation, which is a hallmark of
328 mitotic exit, however, does not involve APC/C that is important in driving mitotic exit through protein
329 degradation. It is possible that APC/C targets mostly cytosolic proteins whereas ER-FlucDM-eGFP
330 aggregates are confined in a membrane during mitosis. Furthermore, the clearance of protein

331 aggregates coincides with ER reorganization that happens throughout mitosis and cytokinesis, which
332 may contribute to the aggregate clearance (Bergman et al., 2015; Schlaitz et al., 2013). A previous
333 study showed that the size of protein aggregates is limited by the ER tubules (Parashar et al., 2021).
334 In fact, when the ER reorganization is perturbed by depleting ER membrane fusion proteins ATL2
335 and 3, clearance of ER-FlucDM-eGFP aggregates is affected. Consistently, ER-FlucDM-eGFP
336 proteins do not turn over significantly in cells progressing through mitosis and cytokinesis. Thus, it is
337 less likely that ER-FlucDM-eGFP is ubiquitinated by APC/C and targeted for protein degradation.

338

339 Misfolded or damaged proteins form protein aggregates and are spatially organized into specific
340 subcellular sites to sequester them from other cellular processes (Hill et al., 2017). These aggregate
341 deposition sites are localized in the cytosol or in the nucleus to confine misfolded proteins and
342 aggregates for elimination from cells (Kaganovich et al., 2008). Similarly, we identified confinement
343 of ER-FlucDM-eGFP aggregates in the nucleus and are surrounded by a single layer membrane.
344 These intranuclear membranous structures contain ER membranes and BiP, which is a key Hsp70
345 family chaperone in the ER and translocates into the nucleus under stress (Liu et al., 2023). How
346 protein aggregates are targeted and assembled into the intranuclear membranous structure awaits
347 future investigation. Interestingly, upon entry into mitosis, concomitant with the nuclear membrane
348 breakdown, the membranous structure is released from the nucleus and the aggregates are cleared
349 when cells progress through mitosis till early G1 phase of the daughter cells. The confinement and
350 clearance of protein aggregates during cell division presumably protect dividing cells from harmful
351 effects of protein misfolding and aggregation and to ensure reliable inheritance of genetic materials.
352 It has been reported that aggregates are asymmetrically retained in one of the daughter cells that

353 are usually short-lived (Rujano et al., 2006). The aggregate clearance mechanism we report here
354 may provide an additional cellular defense strategy to overcome proteostatic stress and to maintain
355 proteome integrity during cell division. Proteomic analysis of cells expressing ER-FlucDM-eGFP
356 identified up-regulation of multiple proteins involved in ER stress response, indicating that cells
357 experience significant proteostatic stress upon expression of ER-FlucDM-eGFP. Moreover, several
358 proteins regulating cell cycle displayed higher abundance in the proteome, which together with
359 proteostatic stress indicate a perturbed cellular health. It is possible that higher proteostatic stress
360 renders cells more sensitive to perturbation of the protein expression at the proteome-level. Changes
361 of cell cycle protein levels may affect the cell cycle transition and result in longer or shorter
362 timeframes in certain cell cycle phases. Future studies addressing these will reveal the physiological
363 consequences of aggregate clearance.

364

365 Hsp70 chaperones regulate proteostasis by preventing protein aggregation, promoting
366 disaggregation and subjecting solubilized aggregates to degradation or refolding (Rosenzweig et al.,
367 2019). Our proteomic analysis revealed significant expression of BiP (HSPA5) in cells expressing
368 ER-FlucDM-eGFP but not other Hsp70 family members. A recent study showed that BiP solubilizes
369 aggregates and drives aggregate clearance in the ER (Melo et al., 2022). Our study of mitotic
370 aggregate clearance in dividing cells further extend the role of BiP in disaggregation. Consistently,
371 we found that Cdk1 inactivation in the presence of the proteasomal inhibitor could still lead to
372 aggregate clearance, suggesting a partial role of the proteasome in clearing aggregates and the
373 disaggregation breaks down the aggregates into smaller and possibly soluble species. The role of
374 proteasome in regulating ER-FlucDM-eGFP aggregate clearance appears indirect as ER-FlucDM-

375 eGFP proteins are stable throughout cell division. It is possible that players involved in ER-FlucDM-
376 eGFP aggregate clearance are regulated by proteasomal degradation, which are affected when
377 proteasomes are inhibited. Interestingly, Melo et al. showed that aggregate clearance is promoted
378 by treating ER-cells with ER stressors as the treatment triggers UPR, which in turn leads to higher
379 activity of BiP to cope with the ER stress. We observed differential responses of aggregate clearance
380 to ER stressors depending on the duration of the treatments. It is possible that acute treatment of
381 the ER stressor on dividing cells does not provide sufficient time for cells to accumulate abundant
382 amount of BiP given that mitotic cells are not very transcriptionally active (Palozola et al., 2017). Also,
383 degradation of BiP could be accelerated upon the treatment of ER stressors, which in turn
384 undermines the abundance of BiP in disaggregation (Shim et al., 2018). Thus, short term treatment
385 of the ER stressor in cells exacerbates the ER stress and affects aggregate clearance during cell
386 division, whereas longer treatment of the ER stressor promotes aggregate clearance.

387
388 While the molecular mechanism by which the ER-FlucDM-eGFP is cleared during mitosis and
389 cytokinesis remains to be elucidated, we favour a model in which proteins involved in the ER
390 reorganization are regulated through protein modifications or proteasomal degradation to promote
391 aggregate clearance in cell division. Also, BiP might function as a disaggregase to disassemble the
392 ER-FlucDM-eGFP when cells exit mitosis. Furthermore, the pathological aggregates that are formed
393 and cleared in a similar manner as the ER-FlucDM-eGFP are yet to be identified. We believe that
394 identification of the pathological targets and mechanistic understanding of aggregate clearance
395 during cell division could offer new insights to understand disaggregation in proteostasis control.

396

397 **Materials and methods**

398 **Cell lines and culture**

399 MCF10A cells were cultured in DMEM F-12 (Sigma) supplemented with 1% Glutamax (Gibco), 5%
400 horse serum (Biological Industries), 20 ng/ml EGF (Gibco), 0.5 mg/ml Hydrocortisone
401 (MedChemExpress), 100 ng/ml Cholera toxin (Sigma), 10 µg/ml Insulin (Biological Industries), and
402 1% Pen/Strep (Biological Industries). U2OS, A549, and HEK293Ta cells were maintained in DMEM
403 (Sigma) with Glutamax (Gibco), 6% fetal bovine serum (Biological Industries), and 1% Pen/Strep
404 (Biological Industries). MDA-MB-231 cells were cultured in DMEM F-12 (Sigma) with 1% Glutamax
405 (Gibco) and 1% Pen/Strep (Biological Industries). All cell cultures were maintained at 37°C with 5%
406 CO₂ in a humidified incubator. Cells expressing ER-FlucDM-eGFP, ER-eGFP, ER-HaloDM-eGFP,
407 ER-FlucWT-eGFP, and ER^{FSHR}-FlucDM-eGFP, ER-FlucDM-mCherry, NLS-FlucDM-eGFP, CFTR
408 wild type, CFTR-ΔF508, AAT wild type, AAT S and Z variants were generated through lentivirus
409 transduction and selected with 5 µg/mL puromycin (Sangon Biotech). MCF10A cells expressing
410 mStayGold-Sec61β were prepared by lentivirus transduction, selected with 50 µg/mL hygromycin B
411 and only used in three days after transduction (Ando et al., 2024). MCF10A cells expressing
412 CRISPRi plasmids to knock down ATL2 and ATL3 were selected by 6 µg/mL Blasticidin (Solarbio,
413 703X023) and only used in five days after transduction. MCF10A cells co-expressing ER-FlucDM-
414 eGFP and ER-FlucDM-mCherry for FRAP or co-expressing ER-FlucDM-mCherry and
415 mGreenLantern-hGeminin (degron) or co-expressing ER-FlucDM-mCherry and NLS-FlucDM-eGFP
416 were generated by lentivirus transduction and selected by 5 ug/mL puromycin and followed by
417 fluorescence-activated cell sorting (FACS) to enrich double-positive cells.

418

419 **Lentivirus packaging**

420 Lentiviral particles were generated using the 3rd generation lentiviral packaging system. Packaging
421 plasmids pRSV-Rev, pMDLg/pRRE, pMD2.G (kindly provided by Didier Trono) and the transfer
422 plasmid were chemically transfected using GeneTwin transfection reagent (Biomed, TG101) into the
423 HEK293Ta packaging cell line (Genecopoeia, LT008). The cell culture medium was harvested after
424 2 days and filtered through a 0.45 µm filter. The filtrate was concentrated using a 5X precipitation
425 solution (250 g/L PEG 8,000 and 43.83 g/L NaCl in ddH₂O) for overnight, and precipitated by
426 centrifuging at 4000 × g for 25 min at 4°C. Lentiviral particles were resuspended in phosphate
427 buffered saline (PBS) and added to the culture medium, which were supplemented with 1 µg/mL
428 polybrene (HanBio).

429

430 **Lentivirus expression constructs**

431 Lentiviral transfer plasmids used in this study were listed below: pTGL0563 containing FlucDM-eGFP
432 in which FlucDM was mutated from FlucWT (a gift from Dr. Mikael Bjorklund); pTGL0645 containing
433 ER-FlucDM-eGFP-KDEL; pTGL0662 containing NLS-FlucDM-eGFP; pTGL0673 containing ER-
434 FlucDM-mCherry-KDEL; pTGL0698 containing ER-FlucWT-eGFP-KDEL; pTGL0703 containing ER-
435 HaloDM-eGFP-KDEL in which HaloDM was mutated from HaloWT; pTGL0707 containing ER-
436 HaloWT-eGFP-KDEL; pTGL0733 containing ER-eGFP-KDEL; pTGL0743 containing ER^{FSHR}-
437 FlucDM-eGFP; pTGL0737 containing CFTR-wt-eGFP; pTGL0738 containing CFTR-ΔF508-eGFP;
438 pTGL0739 containing AAT-wt-eGFP; pTGL0740 containing AAT (S variant)-eGFP; pTGL0741
439 containing AAT (Z variant)-eGFP; pTGL0828 containing mGreenLantern-hGeminin (degron);
440 pTGL0891 was the empty plasmid used in constructing pTGL0645 and used as a control for

441 proteomics; pTGL0914 containing mStayGold-Sec61 β ; pTGL0386 was the empty plasmid in
442 constructing CRISPRi plasmids; pCRISPRi0249 to knockdown ATL2 containing gRNA 5'
443 GAGGGCAGCAACCGCACCAG 3'; pCRISPRi0252 to knockdown ATL3 containing gRNA 5'
444 GAGCAGGGGTGCAGAGGAGA 3'.

445

446 **Quantitative real-time PCR (qPCR)**

447 Total RNA was extracted from cells using the FastPure Cell/Tissue Total RNA Isolation Kit V2
448 (Vazyme, RC112-01). Subsequently, the RNA was reversely transcribed into complementary DNA
449 (cDNA) using the HiScript II Q RT SuperMix for qPCR (Vazyme, R223-01). The levels of the cDNAs
450 were quantified using real-time PCR with the ChamQ Universal SYBR qPCR Master Mix (Vazyme,
451 Q711-02). The PCR reaction mix was prepared on a hard-shell PCR plate (Bio-Rad, HSP9655),
452 sealed with Microseal 'B' seals (Bio-Rad, MSB1001), and conducted in the CFX96 Touch Real-Time
453 PCR Detection System (Bio-RAD, C1000). Primers used in the qPCR: GAPDH, 5'
454 CAGGAGGCATTGCTGATGAT 3' and 5' GAAGGCTGGGGCTCATT 3'; HSPA5, 5'
455 CACAGTGGTGCCTACCAAGA 3' and 5' TGTCTTTGTCAGGGGTCTT 3'; Calreticulin, 5'
456 ATAAAGGTTGCAGACAAGC 3' and 5' CCACAGTCGATGTTCTGCTC 3'; HSP90B1, 5'
457 TCCAGCAGAAAAGAGGCTGA 3' and 5' CAAATTGGAAAGGGCCTGA 3'; CANX, 5'
458 GCACCTATTCTGGAGGCGAG 3' and 5' ACAGCAACCACCTCCCTTCC 3'; P4HB, 5'
459 TTCAGGAATGGAGACACGGC 3' and 5' TCCACGTCCTGAAGAAGCC 3'; DNAJB9, 5'
460 GTGGAGGAGCAGCAGTAGTC 3' and 5' CGCTCTGATGCCGATTTGG 3'; ATL2, 5'
461 CTGGTTCCATTGCTGCTTGC 3' and 5' CTTCAGCTGTTGCCTGAAGC 3'; ATL3, 5'
462 TCACCCCCAAGTCCATGCTTC 3' and 5' CTCCCCCACAAACCTCTTCC 3'.. The C_T value for

463 GAPDH was used for normalization to obtain the relative expression level.

464

465 Protein immunoblotting

466 Adherent cells were lysed with 1x LDS sample buffer (Beyotime) and boiled at 95°C for 10 min. The

467 1x LDS sample buffer was prepared by diluting 4 X LDS sample buffer (Beyotime) in 100 mM Tris-

468 HCl (pH 7.4) with 2.5% v/v β-mercaptoethanol. Protein samples were separated by pre-cast SDS-

469 PAGE gels (GenScript) and blotted to a PVDF membrane (EMD Millipore). Blots were blocked with

470 Quick Block buffer (Beyotime) for at least 20 min at room temperature and were incubated at 4°C

471 overnight with the primary antibody. After rinsing blots with TBS containing 0.05% Tween-20 for four

472 times (5 min each time), blots were incubated at room temperature with the secondary antibody for

473 1h, followed by washing with TBS containing 0.05% Tween-20. Odyssey CLX was employed to

474 image the blots and LI-COR Image Studio software was used to quantify the band intensity. To

475 incubate different primary antibodies in the same blot, the blot was vigorously rinsed with the

476 stripping buffer (CWBIO, 01427/12724) and washed 3 times with TBS containing 0.05% Tween-20

477 and processed as described before.

478

479 To examine the solubility of ER-FlucDM-eGFP in Figure S1E, the lysis buffer containing 100 mM

480 Tris-HCl (pH 7.4), 1% protease inhibitor cocktail (Lablead, C0101) and different concentrations of

481 NP-40 (Sigma) was used. To prepare supernatant and pellet fractions of ER-FlucDM-eGFP, cells

482 were lysed with the lysis buffer containing 0.2%, 0.5% or 1.0% v/v NP-40. The lysate was then

483 centrifuged at 14,000 ×g for 10 min at 4°C and the supernatant was collected. The cell pellet was

484 further lysed with 1x LDS buffer on ice for 40 min and vortexed vigorously for 10 seconds every 10

485 min.

486

487 Primary antibodies used were: 1:3000 anti-GFP (Huabio, ET1601-13); 1:5000 anti- β -actin (Genscript,
488 A00702); 1:1000 anti-Cyclin B1 (Proteintech, 55004-1-AP); 1:1000 anti-p53 (Huabio, ET1601-13).
489 Secondary antibodies were goat anti-Rabbit IgG (H+L) Highly Cross-Adsorbed Secondary Antibody
490 conjugated to Alexa FluorTM Plus 800 (Invitrogen, A32735) and goat anti-Mouse IgG (H+L) Highly
491 Cross-Adsorbed Secondary Antibody conjugated to Alexa FluorTM Plus 680 (Invitrogen, A32729)

492

493 Proteomics

494 MCF10A cells transduced with pTGL0891 (empty vector) or pTGL0645 (ER-FlucDM-eGFP) for six
495 days were trypsinized, centrifuged and washed twice with ice-cold PBS. The pellets were quickly
496 frozen by liquid nitrogen and then sent to Tsingke (Wuhan, China) for further processing for
497 proteomics. In brief, cell pellets were lysed with buffer containing 8 M urea, 1 mM PMSF and 2 mM
498 EDTA. Samples were subjected to ultrasound sonication on ice for five minutes and followed by
499 centrifugation at 15,000 xg for 10 minutes. The supernatants were then collected, and their
500 concentrations were measured using BCA method (Beyotime). Solutions containing 100 μ g was
501 topped up to 200 μ l with 8M urea and DTT (final concentration 5 mM) was added before incubation
502 at 37°C for 45 min. Protein samples were alkylated using iodoacetamide (final concentration 11 mM)
503 in a dark room at room temperature for 15 min. The solutions were then subjected to trypsin digestion
504 and further analyzed using LC-MS/MS analysis. The MS/MS data were processed using DIA-NN
505 (v1.8.1). The protein quantification of DIA-NN software is done by MaxLFQ algorithm.

506

507 **Luciferase activity test**

508 Each well of 96-well plates (Biosharp, BS-MP-96W for luminescence, BS-MP-96B for fluorescence)
509 was seeded with 10,000 cells in 100 μ L of medium. After incubation for 18 hours, 5 μ M MG132 was
510 added to the MG132+FlucDM-eGFP group, while other untreated wells remained unchanged.
511 Following an additional 6 hours, cells were washed once with PBS.

512

513 For luminescence detection, cell lysis was achieved by adding 50 μ L of Steady-Glo Luciferase Assay
514 System buffer (Promega, E2510) to the wells, followed by a 15-minute incubation at room
515 temperature. Luminescence in each well was then recorded three times over 5 minutes using the
516 Spark® Multimode Microplate Reader (Tecan, 1000 ms exposure). Luminescence intensity in each
517 well was calculated by normalizing these three measurements and subtracting the background signal
518 from empty wells.

519

520 To determine abundance of luciferase in each treatments, 1×10^5 MCF10A cells were seeded in 12-
521 well for 24 h. The cells were lysed with 1x LDS sample buffer (Beyotime) and protein immunoblotting
522 using anti- β -actin and anti-GFP, respectively was performed. β -actin was first used to normalized the
523 GFP intensity, and the value was used to normalize the luminescence to calculate the luciferase
524 activity.

525

526 **Mitotic cell preparation**

527 To increase the quantity of dividing cells, cells were first seeded on imaging chambers (ibidi, 80826)
528 and were synchronized to the G2/M boundary by treating cells with 7.5 μ m RO-3306 (Selleckchem,

529 S7747) for 16 to 20 hours. Cells were released to enter into mitosis synchronously by washing once
530 with pre-warmed fresh medium.

531

532 **Drug treatments**

533 The following drugs were used in this study: Thapsigargin (Abcam, ab120286), Tunicamycin (GlpBio,
534 GC16738), MG132 (CSN Pharm, CSN11436), YUM70 (Aladdin, Y413413), VER-155008 (CSN
535 Pharm, CSN13116), Apcin (Sigma, SML1503), proTAME (Cayman Chemical, 25835),
536 Cycloheximide (AbMole, M4879), Nocodazole (Beyotime, S1765), MLN-8237 (TargetMol, T2241).

537

538 **Immunofluorescence staining**

539 For HSPA5/BiP staining, MCF10A cells expressing ER-FlucDM-eGFP were seeded in 8-well ibidi
540 plates, fixed with 100% methanol for 10 minutes and permeabilized with 0.5% Triton X-100 for 15
541 minutes. The fixed cells were blocked with 5% FBS in PBS for 30 minutes. Subsequently, cells were
542 incubated with the mouse anti-BiP antibody (Huabio, HA601076) at 1:200 dilution in 1% FBS
543 overnight at 4°C. The secondary antibody used was Donkey Anti-Mouse IgG H&L (Alexa Fluor® 568,
544 ab175472, Abcam) at 1:2000 dilution for one hour. For Tubulin staining, cells were fixed using 4%
545 PFA for 20 minutes and permeabilized with 0.5% Triton X-100 for 15 minutes. After blocking the fixed
546 cells with 5% FBS in PBS for 30 minutes, cells were stained with the mouse anti- α -tubulin
547 monoclonal antibody (Proteintech, 66031-1-IG) at 1:200 dilution. The secondary antibody used was
548 Donkey Anti-Mouse IgG H&L (Alexa Fluor® 568, ab175472, Abcam) at 1:2000 dilution for one hour.
549 To stain DNA, DAPI Staining Solution (Sangon Biotech, E607303, 5 mg/L) was diluted in PBS to 50
550 ng/mL and applied to cells for 10 minutes. After the DAPI solution was removed, fixed cells were

551 washed with PBS twice before imaging.

552

553 **Transmission Electron Microscopy (TEM)**

554 To prepare samples for TEM, MCF10A cells expressing ER-FlucDM-eGFP were synchronized to the
555 G2/M boundary by treating cells with RO-3306 for 16 to 20 h and were released into mitosis by
556 removing RO-3306. After 45 min released from the G2/M boundary, cells were trypsinized for 10 min
557 before centrifugation. The cell pellet was fixed by 2.5% paraformaldehyde (in PBS) for 30 min at
558 room temperature before overnight at 4°C. Fixed pellet was further fixed by 1% osmium tetroxide
559 and then 2% uranium acetate. Ethanol and acetone were used to dehydrate samples before
560 embedding them into epoxy resin. Sectioned samples were observed by Tecnai G2 spirit 120kV
561 transmission electron microscopy (Thermo FEI).

562

563 **Live-cell staining**

564 The live-cell staining dyes used are as follow: 100 nM SiR-Tubulin (Cytoskeleton, CY-SC002), 1 μM
565 ER-tracker Red (Beyotime, C1041S) or 10 μM Thioflavin T (ThT) in the medium to label cells for
566 about 30 min in the incubator before imaging. For ThT staining, about ten percent aggregates could
567 be stained by ThT in ER-FlucDM-mCherry cells.

568

569 **Spinning-disk confocal microscopy imaging**

570 The hardware configuration of the spinning-disk confocal microscopy system was as described
571 previously (Wang et al., 2023). Imaging utilized a z-step size of 0.5 μm, with a x-y plane resolution
572 of 183.3 nm/pixel for the 60× lens and 110 nm/pixel for the 100× lens. Fluorophores were excited

573 using laser lines at wavelengths of 405, 488, 561, or 640 nm.

574

575 For FRAP analysis, images were acquired with 488 nm and 561 nm laser lines through the 100×
576 lens. The procedure involved acquiring three pre-bleach images every 30 seconds, followed by
577 bleaching the mCherry signal using the 561 nm laser. Subsequently, one image was acquired
578 immediately post-bleaching, followed by ten images acquired every 30 seconds. In total, fourteen
579 time-point images were acquired, and the total duration of each FRAP experiment was 6.5 minutes.

580

581 **Image analysis and processing**

582 Fiji was used to process images. Z-stack images for quantification were first projected using max-
583 intensity projection (Fiji/image/stacks/Z project). To quantify aggregates, projected images were
584 classified by Trainable Weka Segmentation (Fiji/Plugins/Segmentation/Trainable Weka
585 Segmentation). The segmented images were processed by using the ImageJ Macro commands:
586 run("8-bit"); setOption("BlackBackground", true); run("Convert to Mask"); run("Watershed") before
587 using Analyze Particles (Fiji/Analyze/Analyze Particles). For time-lapse images except images from
588 FRAP, the segmented images were processed by using the ImageJ Macro commands: run("8-bit");
589 setThreshold(0, 120); run("Make Binary", "method=Default background=Light black"); run("Invert
590 LUT"); run("Watershed", "stack") before using Analyze Particles (Fiji/Analyze/Analyze Particles).

591

592 To quantify total GFP intensities in live cells, Z-stack images (24 μ m) were acquired and projected
593 using sum slices projection. Cell outlines were segmented using polygon selection in Fiji. To
594 quantitate the background intensity, the mean intensity of a small dark region of the field-of-view was

595 measured and multiplied by the area of the segmented cell. The background was subtracted from
596 the GFP intensity of segmented cells.

597

598 For FRAP analysis of ER-eGFP and ER-HaloDM-eGFP, region-of-interests (ROI) in projected
599 images were manually selected and the average fluorescence intensity of ROIs was measured in
600 Fiji. For FRAP analysis of aggregates in cells co-expressing ER-FlucDM-eGFP and ER-FlucDM-
601 mCherry (both interphase and mitosis), the aggregates were first segmented by Weka Segmentation.
602 The unsegmented images from the mCherry channel were processed by Analyze Particles
603 (Fiji/Analyze/Analyze Particles) based on the corresponding segmented images from the GFP
604 channel. For fluorescence intensity quantification, background in all FRAP experiments were
605 subtracted by one hundreds.

606

607 **Quantification and statistical analysis**

608 Datasets were analysed by Student's t test or Mann-Whitney test. Prism 8 (GraphPad) was used for
609 the statistical analysis and data plotting. Statistical details are indicated in the figure legends.

610

611 **Author contributions**

612 S.D conceived the study, designed and performed experiments, and analyzed data. Y.W, B.C, S.X,
613 K.Y.C provided some reagents used in the study. D.H participated in the discussion during project
614 development. T.G.C. conceived the study, designed experiments and supervised the study. D.S and
615 T.G.C prepared the manuscript with inputs from D.H.

616

617 **Acknowledgements**

618 This study was funded by National Natural Science Foundation of China (NSFC) RFIS-II grant
619 (32350610247) and NFSC grant (32270770) given to T.G.C. We thank Xiaoxia Wan and Chenyu
620 Yang in the Center of Cryo-Electron Microscopy (CCEM), Zhejiang University for their technical
621 assistance on Transmission Electron Microscopy. We thank Xuqi Chen, Xukai Gao and Zihan Chu
622 for participating in the early stage of the project. We thank Dr. Mike Shipston for participating in the
623 discussion. We thank all lab members for discussion.

624

625 **Conflict of interest**

626 The authors declare that they have no conflict of interest.

627

628 **Figure legends**

629 **Figure 1. ER-FlucDM-eGFP forms protein aggregates in the nucleus.**

630 (A) Representative images of ER-FlucDM-eGFP expressed in different cell lines. Maximum
631 projected images were shown.

632 (B) Microscopy images of cells expressing ER-FlucDM-mCherry and mStayGold-Sec61 β . Single Z-
633 slice images were shown.

634 (C) Quantification of the luciferase activity in MCF10A cells expressing different constructs. Unpaired
635 t-test. Data were collected from three independent experiments. Abundance of GFP fusion
636 proteins was determined using protein blotting and was used in normalization.

637 (D) Representative images to show MCF10A cells expressing ER-FlucDM-mCherry, ER^{FSHR}-
638 FlucDM-eGFP (signal peptide sequence from the N-terminus of FSHR), ER-HaloDM-eGFP or

639 ER-eGFP. Maximum projected images were shown.

640 (E) Images of ER-FlucDM-eGFP aggregates surrounded by the ER membrane in a MCF10A cell.

641 Single Z-slice images were shown.

642 (F) TEM images of sectioned MCF10A interphase cells expressing ER-FlucDM-eGFP.

643 Data represent mean + SD. Scale bar, 10 μ m (A to E).

644

645 **Figure 2. Differential aggregate dynamics in cells at interphase and mitosis.**

646 (A) Representative images of interphase cells co-expressing ER-FlucDM-eGFP and ER-FlucDM-

647 mCherry before and after photobleaching. Yellow rectangles indicate bleached aggregates.

648 Maximum projected images were shown.

649 (B) Representative images of mitotic cells co-expressing ER-FlucDM-eGFP and ER-FlucDM-

650 mCherry before and after photobleaching. Yellow circles indicate bleached aggregates.

651 Maximum projected images were shown.

652 (C) Recovery curves of ER-FlucDM-mCherry intensity after photobleaching. 14 ROIs from the ER of

653 interphase cells, 14 aggregates from mitotic cells, 26 aggregates from interphase cells. Data

654 represent mean + SD. A small region of ER-FlucDM-mCherry in the ER network was chosen as

655 a control for photobleaching.

656 (D) Quantification of the ER-FlucDM-mCherry intensity of bleached aggregates right after bleaching

657 and after 5 min of recovery. 0 min and 5 min refer to the time points in (C). Paired t-test (two-

658 tailed).

659 Data were collected from four independent experiments. Scale bar, 10 μ m.

660

661 **Figure 3. Aggregates are cleared during cell division.**

662 (A) Representative images of fixed dividing ER-FlucDM-eGFP cells at different cell cycle phases.

663 Grey scale bar: telophase and early G1 cells; black scale bar: interphase and prophase,

664 prometaphase, metaphase, anaphase. Maximum projected images were shown. Scale bar, 10

665 μ m.

666 (B) Quantification of ER-FlucDM-eGFP aggregates from dividing cells. Count and area are individual

667 cell data. Each grey ring represents aggregates from one cell. Interphase and prophase, 91 cells;

668 prometaphase, 45 cells; metaphase, 60 cells; anaphase, 20 cells; telophase and early G1, 73

669 cells. From three independent experiments. Unpaired two side Mann-Whitney U-test. Data

670 represent mean \pm SD

671 (C) Representative time-lapse images of cells expressing ER-FlucDM-eGFP released from the G2/M

672 boundary. NEB (nuclear envelop breakdown) is set to be t = 0 min. Maximum projected images

673 were shown. Scale bar, 10 μ m.

674 (D) Quantification of aggregate number and area of dividing cells expressing ER-FlucDM-eGFP. Left

675 panel: data of individual cells. Right panel: mean values + SD of single-cell data (left panel). Time

676 point of NEB in each cell was set to 0 min. Aggregate count and total area of each cell at each

677 time point is normalized to its own value at t = 0 min. Aggregate count data are from 61 interphase

678 and 73 dividing cells of four independent experiments. Aggregate area of each cell is calculated

679 from 32 interphase and 34 dividing cells of two independent experiments.

680

681

682 **Figure 4. Effects of ER stressors on aggregate clearance.**

683 (A) Relative gene expression levels of chaperones and co-chaperones in cells expressing ER-
684 FlucDM-eGFP. Four independent experiments.

685 (B) Images of cells treated with DMSO or 1 μ M Thaps and fixed at 35 min or 65 min after released
686 from the G2/M boundary. Maximum projected images were shown.

687 (C) Quantification of cells treated with DMSO or 1 μ M Thaps and fixed at 35 min or 65 min after
688 released from the G2/M boundary. 35 min_DMSO, 207 cells; 35 min_Thaps, 173 cells;
689 65min_DMSO, 244 cells; 65 min_Thaps, 209 cells. Unpaired two side Mann-Whitney U-test. The
690 solid black line in violin plot indicates median of data in the column. Gray dotted lines are quartiles.
691 Each light pink circle indicates measurements of individual cells.

692 (D) Representative time-lapse images of cells expressing ER-FlucDM-eGFP treated with DMSO or
693 1 μ M Thaps after released from the G2/M boundary. Maximum projected images were shown.

694 (E) Quantification of cells expressing ER-FlucDM-eGFP treated with DMSO or 1 μ M Thaps. Time
695 point of NEB in each cell was set to 0 min. Aggregates count and total area of each cell is
696 normalized to its own value at $t = 0$ min. Black dotted lines are 90 min since NEB. DMSO, 89
697 cells; Thaps, 65 cells.

698 Scale bar, 10 μ m. Three (C and E) or four (A) independent experiments.

699

700 **Figure 5. Inhibition of HSP70 and BiP prevents aggregate clearance.**

701 (A) Representative images of cells expressing ER-FlucDM-eGFP treated with DMSO or 50 μ M VER
702 and fixed at 65 min after released from the G2/M boundary. Maximum projected images were
703 shown.

704 (B) Quantification of cells expressing ER-FlucDM-eGFP treated with DMSO or 50 μ M VER and fixed

705 at 65 min after released from the G2/M boundary. DMSO, 357 cells; VER, 465 cells.

706 (C) Time-lapse images of dividing cells expressing ER-FlucDM-eGFP treated with DMSO or 50 μ M
707 VER. Maximum projected images were shown.

708 (D) Representative images of cells expressing ER-FlucDM-eGFP treated with DMSO or different
709 concentrations of YUM70. Maximum projected images were shown.

710 (E) Quantification of cells expressing ER-FlucDM-eGFP treated with DMSO or YUM70 and fixed at
711 65 min after released from the G2/M boundary. DMSO, 310 cells; 5 μ M YUM70, 258 cells; 20 μ M
712 YUM70, 215 cells; 50 μ M YUM70, 209 cells; 100 μ M YUM70, 287 cells.

713 Scale bar, 10 μ m. Unpaired two side Mann-Whitney U-test. Each solid line in violin plot indicates
714 median of data in the column. Gray dotted lines are quartiles. A, B, D and E are from three
715 independent experiments. C is from two independent experiments

716

717 **Figure 6. Effects of MG132, APCi and RO-3306 (Cdk1i) on aggregate clearance.**

718 (A) Representative images of cells expressing ER-FlucDM-eGFP arrested at mitosis by MG132 and
719 further treated with Cdk1i to induce mitotic exit. Cells were first treated with 25 μ M MG132 for 55
720 min and mitotic arrested cells were further treated with 25 μ M MG132 plus 10 μ M RO-3306 or
721 25 μ M MG132 only. Cells were fixed 40 min after the second treatment. Maximum projected
722 images were shown.

723 (B) Quantification of (A). MG132 only, 442 cells; MG132 + RO-3306, 374 cells.

724 (C) Time-lapse images of cells expressing ER-FlucDM-eGFP arrested at mitosis by MG132 and
725 further treated with RO-3306 to induce mitotic exit. Cells were treated with 25 μ M MG132 for 55
726 min, and further treated with 25 μ M MG132 plus 10 μ M RO-3306 or 25 μ M MG132 before imaging.

727 Maximum projected images were shown.

728 (D) Quantification of (C). Remaining aggregates at 40 min were calculated for their aggregates count

729 or area and compared to that of in 0 min. MG132 only, 125 cells; MG132 + RO-3306, 134 cells.

730 (E) Images of cells expressing ER-FlucDM-eGFP treated with DMSO or APCi (20 μ M proTAME and

731 300 μ M Apcin) and fixed at 55 min after released from the G2/M boundary. Maximum projected

732 images were shown.

733 (F) Quantifications of cells expressing ER-FlucDM-eGFP treated with DMSO or APCi (20 μ M

734 proTAME and 300 μ M Apcin). DMSO, 450 cells; APCi, 549 cells.

735 (G) Images of cells at telophase or cells of newly divided upon treatment of DMSO or APCi for 35 to

736 40 min. Maximum projected images were shown.

737 (H) Cells at telophase or newly divided cells that have aggregates upon treatment of DMSO or APCi

738 were counted.

739 (I) Aggregates number and area were counted in cells at telophase or in newly divided cells after

740 treated with DMSO or APCi. Only cells with aggregates were included in the quantification.

741 DMSO, 297 cells; APCi, 319 cells.

742 Scale bar, 10 μ m. Data are from at least three independent experiments and analysed by unpaired

743 two side Mann-Whitney U-test (B, D, F and I) or paired t-test (H).

744

745 **Figure 7. Perturbation of proteins that regulate ER reorganization in aggregate clearance**

746 (A) Images of cells expressing ER-FlucDM-eGFP after depletion of Atlastin 2 and Atlastin 3 and fixed

747 at 65 min after released from the G2/M boundary. Maximum projected images were shown.

748 (B) Quantification of cells expressing ER-FlucDM-eGFP after depletion of Atlastin 2 and Atlastin 3

749 and fixed at 65 min after released from the G2/M boundary. Control, 396 cells; ATL2/ATL3 KD,
750 362 cells.

751 (C) Images of cells expressing ER-FlucDM-eGFP treated with DMSO or 100 nM MLN-8237 and fixed
752 at 65 min after released from the G2/M boundary. Maximum projected images were shown.

753 (D) Quantification of cells expressing ER-FlucDM-eGFP treated with DMSO or 100 nM MLN-8237
754 and fixed at 65 min after released from the G2/M boundary. Only round mitotic cells were counted.

755 DMSO, 102 cells; MLN-8237, 288 cells.

756 (E) Images of cells expressing ER-FlucDM-eGFP treated with DMSO or 331nM nocodazole and
757 fixed at 65 min after released from the G2/M boundary. Maximum projected images were shown.

758 (F) Quantification of cells expressing ER-FlucDM-eGFP treated with DMSO or 331nM nocodazole
759 and fixed at 65 min after released from the G2/M boundary. Only round mitotic cells were counted.

760 DMSO, 122 cells; nocodazole, 320 cells.

761 Scale bar, 10 μ m. Data are from three independent experiments and analysed by unpaired two side
762 Mann-Whitney U-test.

763

764 **Supplementary figures**

765 **Figure S1. ER-FlucDM-eGFP forms protein aggregates, related to Figure 1**

766 (A) Microscopy images of cells expressing NLS-FlucDM-eGFP. Two cell lines were used to express
767 NLS-FlucDM-eGFP. Single Z-slice images were shown.

768 (B) Microscopy images of cells expressing NLS-FlucDM-eGFP and ER-FlucDM-mCherry in MCF10A
769 cells. Single Z-slice images were shown.

770 (C) Protein blots for ER-FlucDM-eGFP and NLS-FlucDM-eGFP using anti-GFP or anti- β -actin

771 antibodies.

772 (D) Relative GFP protein intensity in S1(C) was quantitated and plotted. The intensity of β -actin was
773 used in normalization.

774 (E) Representative images of cells expressing CFTR-wt-eGFP and CFTR- Δ F508-eGFP. Single Z-
775 slice images were shown.

776 (F) Representative images of cells expressing AAT-wt-eGFP, AAT (S variant)-eGFP and AAT (Z
777 variant)-eGFP. Single Z-slice images were shown.

778 (G) Protein blotting to examine solubility of ER-FlucDM-eGFP under different concentrations of
779 detergents, NP-40. Cells expressing ER-FlucDM-eGFP were subjected to 45 °C for 1 hour before
780 harvesting cell lysates in heat shock experiments. Insoluble fractions were quantitated and
781 plotted.

782 (H) Colocalization of ER-FlucDM-eGFP and Thioflavin T (ThT), a marker for protein aggregates.
783 Single Z-slice images were shown.

784 (I) Quantification of ER-FlucDM-eGFP aggregate number (left) and total aggregate area (right) of
785 individual cells in different cell lines. MCF10A, 516 cells; A549, 395 cells; MDA-MB-231, 369
786 cells; U2OS, 528 cells.

787 (J) Schematic representation of different constructs used in this study.

788 (K) Quantification of aggregate number in cells expressing ER-eGFP, ER-HaloWT-eGFP, ER-
789 HaloDM-eGFP. ER-eGFP, 612 cells; ER-HaloWT-eGFP, 405 cells; 546 ER-HaloDM-eGFP, 546
790 cells; ER-FlucDM-eGFP, 516 cells.

791 Data are from three independent experiments, analysed by unpaired t-test and represented by mean
792 + SD. Scale bar, 10 μ m.

793

794 **Figure S2. FRAP analysis of protein aggregates, related to Figure 2.**

795 (A) Recovery curve of ER-HaloDM-eGFP before and after photobleaching. Seven interphase cells
796 from three independent experiments. Data represent mean + SD.

797 (B) Recovery curve of individual cell data in ER-FlucDM-eGFP before and after photobleaching. 14
798 ROIs from the ER of interphase cell, 14 aggregates from cells at mitosis, 26 aggregates from
799 cells at interphase. Data were collected from four independent experiments.

800 (C) Recovery curve of ER-eGFP before and after photobleaching. Seven interphase cells from three
801 independent experiments. Data represent mean + SD.

802 (D) Quantification of protein fluorescence intensity of different constructs right after photobleaching
803 and 5 min after recovery. 0 min is the protein intensity right after photobleaching and 5 min is the
804 protein intensity 5 min after recovery from photobleaching. At least three independent
805 experiments. Data represent mean \pm SD.

806

807 **Figure S3. Aggregates in dividing cells, related to Figure 3.**

808 (A) Images to show ER-FlucDM-eGFP aggregates of dividing cells were surrounded by the
809 membrane stained by the ER-tracker. Scale bar, 10 μ m. Single Z-slice images were shown.

810 (B) TEM images of sectioned MCF10A mitotic cells expressing ER-FlucDM-eGFP.

811 (C) Time-lapse images of cells expressing ER-HaloDM-eGFP released from the G2/M boundary.
812 NEB (nuclear envelop breakdown) is set to be t = 0 min. Maximum projected images were shown.
813 Scale bar, 10 μ m.

814 (D) Linear regression analysis to show that cell division process is not linearly dependent on

815 aggregates quantity. 74 dividing cells are from four independent experiments.

816

817 **Figure S4. Effect of Thapsigargin or Tunicamycin on aggregates clearance, related to Figure**
818 **4.**

819 (A) Proteomic analysis of cells expressing ER-FlucDM-eGFP. Three independent experiments.
820 Proteins involved in ER stress and unfolded protein response (blue) or cell cycle and cell division
821 (pink) were highlighted.

822 (B) Changes of aggregate number and total area as a function of time after cells expressing ER-
823 FlucDM-eGFP were treated with DMSO or 1 μ M Thaps.

824 (C) Quantification of aggregate number and total area of cells expressing ER-FlucDM-eGFP treated
825 with DMSO or Tunicamycin (Tuni) during mitosis. DMSO, 542 cells; 200 ng/mL Tuni, 385 cells;
826 2 μ g/mL Tuni, 471 cells; 10 μ g/mL Tuni, 439 cells. Four independent experiments. Unpaired two
827 side Mann-Whitney U-test. Each solid thick line in violin plot indicates median of data in the
828 column. Gray lines are quartiles.

829

830 **Figure S5. Colocalization of BiP and ER-FlucDM-eGFP, related to Figure 5.**

831 (A) Immunofluorescence staining of BiP and ER-FlucDM-eGFP in dividing cells. Maximum projected
832 images were shown.

833 (B) Colocalization analysis of BiP and ER-FlucDM-eGFP. R represents Pearson correlation
834 coefficient (r).

835 (C) Immunofluorescence staining of BiP and ER-FlucDM-eGFP in interphase cells. Single Z-slice
836 images were shown.

837 Scale bar, 10 μ m. Three independent experiments.

838

839 **Figure S6. MG132, APCi and RO-3306 treatments on aggregate clearance, related to Figure 6.**

840 (A) Quantification of the aggregate number in cells expressing ER-FlucDM-eGFP treated with DMSO
841 or 25 μ M MG132 and fixed at 55 min after released from the G2/M boundary. DMSO, 293 cells;
842 MG132, 350 cells. Maximum projected images were shown.

843 (B) Quantification of the aggregate number in cells expressing ER-FlucDM-eGFP treated with DMSO
844 or 5 μ M MG132 and fixed at 55 min since release. DMSO, 295 cells; MG132, 436 cells. Maximum
845 projected images were shown.

846 (C) Images of cells at telophase or newly divided cells after treated with DMSO or 25 μ M MG132 for
847 35 min. Maximum projected images were shown.

848 (D) Cells at telophase or newly divided cells that have aggregates upon treatment of 25 μ M MG132
849 were counted. DMSO, 455 cells; MG132, 393 cells.

850 (E) Aggregates number and area were counted in cells at telophase or in newly divided cells after
851 treated with DMSO or 25 μ M MG132. Only cells with aggregates were included in the
852 quantification. DMSO, 294 cells; MG132, 339 cells.

853 (F) Images of cells at telophase and newly divided cells after treated with DMSO or 5 μ M MG132 for
854 35 min. Maximum projected images were shown.

855 (G) Cells at telophase or newly divided cells that have aggregates upon treatment of DMSO or 5 μ M
856 MG132. DMSO, 676 cells; APCi, 646 cells.

857 (H) Aggregates number and area were counted in cells at telophase or in newly divided cells after
858 treated with DMSO or 5 μ M MG132. Only cells with aggregates were included in the

859 quantification. DMSO, 227 cells; MG132, 297 cells.

860 (I) Quantification of the aggregate number in cells expressing ER-FlucDM-eGFP treated with 5 μ M
861 MG132 or 5 μ M MG132 + RO-3306.

862 (J) Images of cells co-expressing ER-FlucDM-mCherry and mGreenLantern-hGeminin (degron).
863 Left panel: cells were treated with DMSO or APC/Ci after 65 min released from the G2/M. Right
864 panel: after 65 min released from the G2/M, cells were treated with DMSO or APC/Ci for 40
865 minutes using live-cell imaging. Maximum projected images were shown.

866 (K) Quantification of mGreenLantern-hGeminin (degron) intensity of cells treated with DMSO or
867 APC/Ci for 40 min.

868 Scale bar, 10 μ m. Data are from at least three independent experiments and analysed by unpaired
869 two side Mann-Whitney U-test (A, B, E, H and I), unpaired t-test (K) and paired t-test (D and G).

870

871 **Figure S7. Cycloheximide chase experiment and microscopy quantification of cells**
872 **expressing ER-FlucDM-eGFP, related to Figure 6.**

873 (A) Protein blots of ER-FlucDM-eGFP, Cyclin B1, p53 and β -actin under DMSO or 200 μ M CHX
874 treatments. Cells were synchronized to the G2/M boundary and released into medium containing
875 DMSO or CHX and lysates were harvested.

876 (B) Protein levels of p53 and Cyclin B1 in different time points after DMSO or CHX treatments were
877 measured and plotted. Levels of β -actin were used in normalization.

878 (C) Protein levels of ER-FlucDM-eGFP in different time points after DMSO or CHX treatments were
879 measured and plotted. Levels of β -actin were used in normalization.

880 (D) Relative intensity of ER-FlucDM-eGFP in early and late dividing cells.

881 Scale bar, 10 μ m. Data are from three independent experiments and analysed by unpaired t-test.

882

883 **References**

884 Aguilaniu, H., L. Gustafsson, M. Rigoulet, and T. Nystrom. 2003. Asymmetric inheritance of oxidatively damaged
885 proteins during cytokinesis. *Science*. 299:1751-1753.

886 Ando, R., S. Shimozono, H. Ago, M. Takagi, M. Sugiyama, H. Kurokawa, M. Hirano, Y. Niino, G. Ueno, F. Ishidate, T.
887 Fujiwara, Y. Okada, M. Yamamoto, and A. Miyawaki. 2024. StayGold variants for molecular fusion and
888 membrane-targeting applications. *Nat Methods*. 21:648-656.

889 Balch, W.E., R.I. Morimoto, A. Dillin, and J.W. Kelly. 2008. Adapting proteostasis for disease intervention. *Science*.
890 319:916-919.

891 Becher, I., A. Andres-Pons, N. Romanov, F. Stein, M. Schramm, F. Baudin, D. Helm, N. Kurzawa, A. Mateus, M.T.
892 Mackmull, A. Typas, C.W. Muller, P. Bork, M. Beck, and M.M. Savitski. 2018. Pervasive Protein Thermal
893 Stability Variation during the Cell Cycle. *Cell*. 173:1495-1507 e1418.

894 Bergman, Z.J., J.D. McLaurin, A.S. Eritano, B.M. Johnson, A.Q. Sims, and B. Riggs. 2015. Spatial reorganization of
895 the endoplasmic reticulum during mitosis relies on mitotic kinase cyclin A in the early Drosophila embryo.
896 *PLoS One*. 10:e0117859.

897 Clay, L., F. Caudron, A. Denoth-Lippuner, B. Boettcher, S. Buvelot Frei, E.L. Snapp, and Y. Barral. 2014. A
898 sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. *Elife*. 3:e01883.

899 Dickens, J.A., A. Ordonez, J.E. Chambers, A.J. Beckett, V. Patel, E. Malzer, C.S. Dominicus, J. Bradley, A.A. Peden, I.A.
900 Prior, D.A. Lomas, and S.J. Marciniak. 2016. The endoplasmic reticulum remains functionally connected by
901 vesicular transport after its fragmentation in cells expressing Z-alpha1-antitrypsin. *FASEB J*. 30:4083-4097.

902 Fuentealba, L.C., E. Eivers, D. Geissert, V. Taelman, and E.M. De Robertis. 2008. Asymmetric mitosis: Unequal
903 segregation of proteins destined for degradation. *Proc Natl Acad Sci U S A*. 105:7732-7737.

904 Ghislain, M., A. Udvardy, and C. Mann. 1993. *S. cerevisiae* 26S protease mutants arrest cell division in
905 G2/metaphase. *Nature*. 366:358-362.

906 Glotzer, M., A.W. Murray, and M.W. Kirschner. 1991. Cyclin is degraded by the ubiquitin pathway. *Nature*. 349:132-
907 138.

908 Greene, C.M., S.J. Marciniak, J. Teckman, I. Ferrarotti, M.L. Brantly, D.A. Lomas, J.K. Stoller, and N.G. McElvaney.
909 2016. alpha1-Antitrypsin deficiency. *Nat Rev Dis Primers*. 2:16051.

910 Gupta, R., P. Kasturi, A. Bracher, C. Loew, M. Zheng, A. Villella, D. Garza, F.U. Hartl, and S. Raychaudhuri. 2011.
911 Firefly luciferase mutants as sensors of proteome stress. *Nat Methods*. 8:879-884.

912 Hartl, F.U., A. Bracher, and M. Hayer-Hartl. 2011. Molecular chaperones in protein folding and proteostasis. *Nature*.
913 475:324-332.

914 Hill, S.M., S. Hanzen, and T. Nystrom. 2017. Restricted access: spatial sequestration of damaged proteins during
915 stress and aging. *EMBO Rep*. 18:377-391.

916 Hipp, M.S., P. Kasturi, and F.U. Hartl. 2019. The proteostasis network and its decline in ageing. *Nat Rev Mol Cell
917 Biol*. 20:421-435.

918 Jayaraj, G.G., M.S. Hipp, and F.U. Hartl. 2020. Functional Modules of the Proteostasis Network. *Cold Spring Harb
919 Perspect Biol*. 12.

920 Kaganovich, D., R. Kopito, and J. Frydman. 2008. Misfolded proteins partition between two distinct quality control
921 compartments. *Nature*. 454:1088-1095.

922 Kakihana, A., Y. Oto, Y. Saito, and Y. Nakayama. 2019. Heat shock-induced mitotic arrest requires heat shock

923 protein 105 for the activation of spindle assembly checkpoint. *FASEB J.* 33:3936-3953.

924 Labbadia, J., and R.I. Morimoto. 2015. The biology of proteostasis in aging and disease. *Annu Rev Biochem.*
925 84:435-464.

926 Lee, C., M. Ferguson, and L.B. Chen. 1989. Construction of the endoplasmic reticulum. *J Cell Biol.* 109:2045-2055.

927 Liu, Z., G. Liu, D.P. Ha, J. Wang, M. Xiong, and A.S. Lee. 2023. ER chaperone GRP78/BiP translocates to the nucleus
928 under stress and acts as a transcriptional regulator. *Proc Natl Acad Sci U S A.* 120:e2303448120.

929 Lukacs, G.L., and A.S. Verkman. 2012. CFTR: folding, misfolding and correcting the DeltaF508 conformational
930 defect. *Trends Mol Med.* 18:81-91.

931 Melo, E.P., T. Konno, I. Farace, M.A. Awadelkareem, L.R. Skov, F. Teodoro, T.P. Sancho, A.W. Paton, J.C. Paton, M.
932 Fares, P.M.R. Paulo, X. Zhang, and E. Avezov. 2022. Stress-induced protein disaggregation in the
933 endoplasmic reticulum catalysed by BiP. *Nat Commun.* 13:2501.

934 Miyata, T., D. Hagiwara, Y. Hodai, T. Miwata, Y. Kawaguchi, J. Kurimoto, H. Ozaki, K. Mitsumoto, H. Takagi, H. Suga,
935 T. Kobayashi, M. Sugiyama, T. Onoue, Y. Ito, S. Iwama, R. Banno, M. Matsumoto, N. Kawakami, N. Ohno,
936 H. Sakamoto, and H. Arima. 2020. Degradation of Mutant Protein Aggregates within the Endoplasmic
937 Reticulum of Vasopressin Neurons. *iScience.* 23:101648.

938 Mochida, K., and H. Nakatogawa. 2022. ER-phagy: selective autophagy of the endoplasmic reticulum. *EMBO Rep.*
939 23:e55192.

940 Morris, J.A., A.J. Dorner, C.A. Edwards, L.M. Hendershot, and R.J. Kaufman. 1997. Immunoglobulin binding protein
941 (BiP) function is required to protect cells from endoplasmic reticulum stress but is not required for the
942 secretion of selective proteins. *J Biol Chem.* 272:4327-4334.

943 Nillegoda, N.B., J. Kirstein, A. Szlachcic, M. Berynskyy, A. Stank, F. Stengel, K. Arnsburg, X. Gao, A. Scior, R. Aebersold,
944 D.L. Guilbride, R.C. Wade, R.I. Morimoto, M.P. Mayer, and B. Bukau. 2015. Crucial HSP70 co-chaperone
945 complex unlocks metazoan protein disaggregation. *Nature.* 524:247-251.

946 Olzmann, J.A., R.R. Kopito, and J.C. Christianson. 2013. The mammalian endoplasmic reticulum-associated
947 degradation system. *Cold Spring Harb Perspect Biol.* 5.

948 Olzscha, H., S.M. Schermann, A.C. Woerner, S. Pinkert, M.H. Hecht, G.G. Tartaglia, M. Vendruscolo, M. Hayer-Hartl,
949 F.U. Hartl, and R.M. Vabulas. 2011. Amyloid-like aggregates sequester numerous metastable proteins
950 with essential cellular functions. *Cell.* 144:67-78.

951 Palozola, K.C., G. Donahue, H. Liu, G.R. Grant, J.S. Becker, A. Cote, H. Yu, A. Raj, and K.S. Zaret. 2017. Mitotic
952 transcription and waves of gene reactivation during mitotic exit. *Science.* 358:119-122.

953 Parashar, S., R. Chidambaram, S. Chen, C.R. Liem, E. Griffis, G.G. Lambert, N.C. Shaner, M. Wortham, J.C. Hay, and
954 S. Ferro-Novick. 2021. Endoplasmic reticulum tubules limit the size of misfolded protein condensates.
955 *Elife.* 10.

956 Pina, F.J., and M. Niwa. 2015. The ER Stress Surveillance (ERSU) pathway regulates daughter cell ER protein
957 aggregate inheritance. *Elife.* 4.

958 Preissler, S., and D. Ron. 2019. Early Events in the Endoplasmic Reticulum Unfolded Protein Response. *Cold Spring
959 Harb Perspect Biol.* 11.

960 Rosenzweig, R., N.B. Nillegoda, M.P. Mayer, and B. Bukau. 2019. The Hsp70 chaperone network. *Nat Rev Mol Cell
961 Biol.* 20:665-680.

962 Rousseau, E., B. Dehay, L. Ben-Haim, Y. Trottier, M. Morange, and A. Bertolotti. 2004. Targeting expression of
963 expanded polyglutamine proteins to the endoplasmic reticulum or mitochondria prevents their
964 aggregation. *Proc Natl Acad Sci U S A.* 101:9648-9653.

965 Rujano, M.A., F. Bosveld, F.A. Salomons, F. Dijk, M.A. van Waarde, J.J. van der Want, R.A. de Vos, E.R. Brunt, O.C.
966 Sibon, and H.H. Kampinga. 2006. Polarised asymmetric inheritance of accumulated protein damage in
967 higher eukaryotes. *PLoS Biol.* 4:e417.

968 Sackton, K.L., N. Dimova, X. Zeng, W. Tian, M. Zhang, T.B. Sackton, J. Meaders, K.L. Pfaff, F. Sigoillot, H. Yu, X. Luo,
969 and R.W. King. 2014. Synergistic blockade of mitotic exit by two chemical inhibitors of the APC/C. *Nature*.
970 514:646-649.

971 Samanta, S., S. Yang, B. Debnath, D. Xue, Y. Kuang, K. Ramkumar, A.S. Lee, M. Ljungman, and N. Neamati. 2021.
972 The Hydroxyquinoline Analogue YUM70 Inhibits GRP78 to Induce ER Stress-Mediated Apoptosis in
973 Pancreatic Cancer. *Cancer Res.* 81:1883-1895.

974 Schlaitz, A.L., J. Thompson, C.C. Wong, J.R. Yates, 3rd, and R. Heald. 2013. REEP3/4 ensure endoplasmic reticulum
975 clearance from metaphase chromatin and proper nuclear envelope architecture. *Dev Cell.* 26:315-323.

976 Sharma, R., M.M.D. Pramanik, B. Chandramouli, N. Rastogi, and N. Kumar. 2018. Understanding organellar protein
977 folding capacities and assessing their pharmacological modulation by small molecules. *Eur J Cell Biol.*
978 97:114-125.

979 Shim, S.M., H.R. Choi, K.W. Sung, Y.J. Lee, S.T. Kim, D. Kim, S.R. Mun, J. Hwang, H. Cha-Molstad, A. Ciechanover,
980 B.Y. Kim, and Y.T. Kwon. 2018. The endoplasmic reticulum-residing chaperone BiP is short-lived and
981 metabolized through N-terminal arginylation. *Sci Signal.* 11.

982 Singhvi, A., and G. Garriga. 2009. Asymmetric divisions, aggresomes and apoptosis. *Trends Cell Biol.* 19:1-7.

983 Tyedmers, J., A. Mogk, and B. Bukau. 2010. Cellular strategies for controlling protein aggregation. *Nat Rev Mol
984 Cell Biol.* 11:777-788.

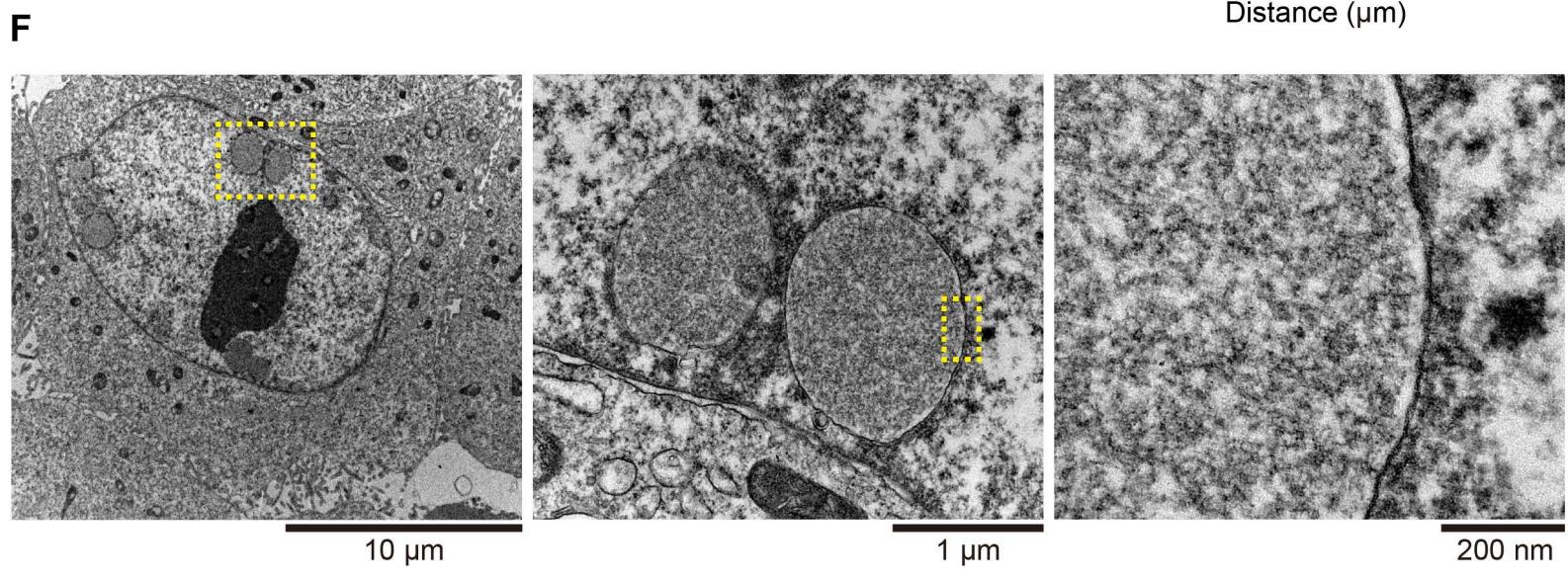
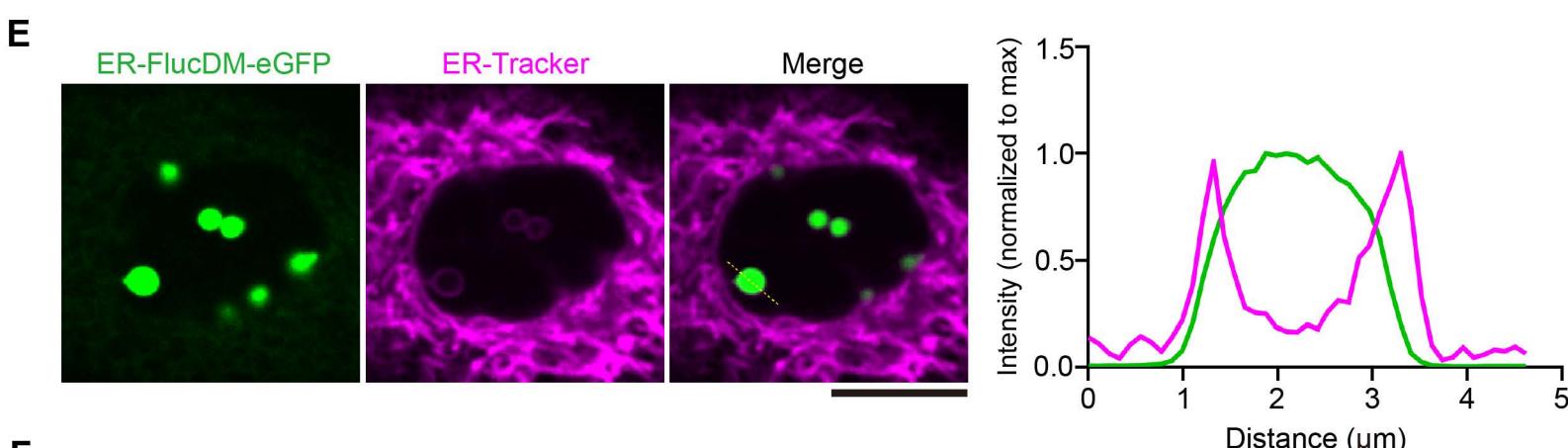
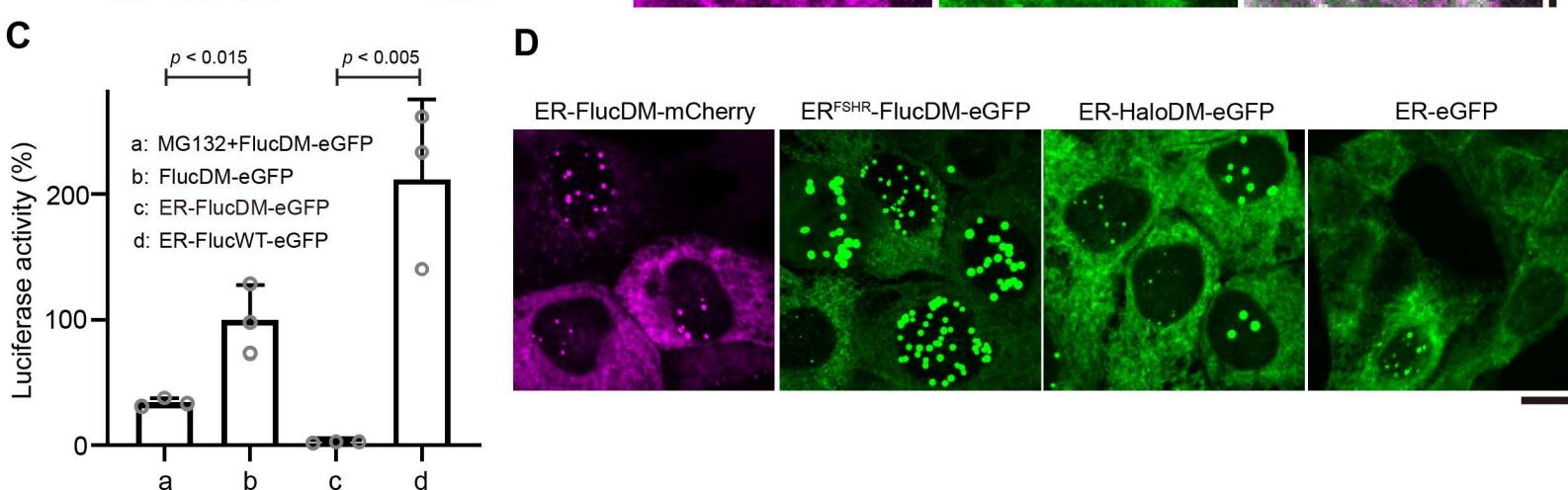
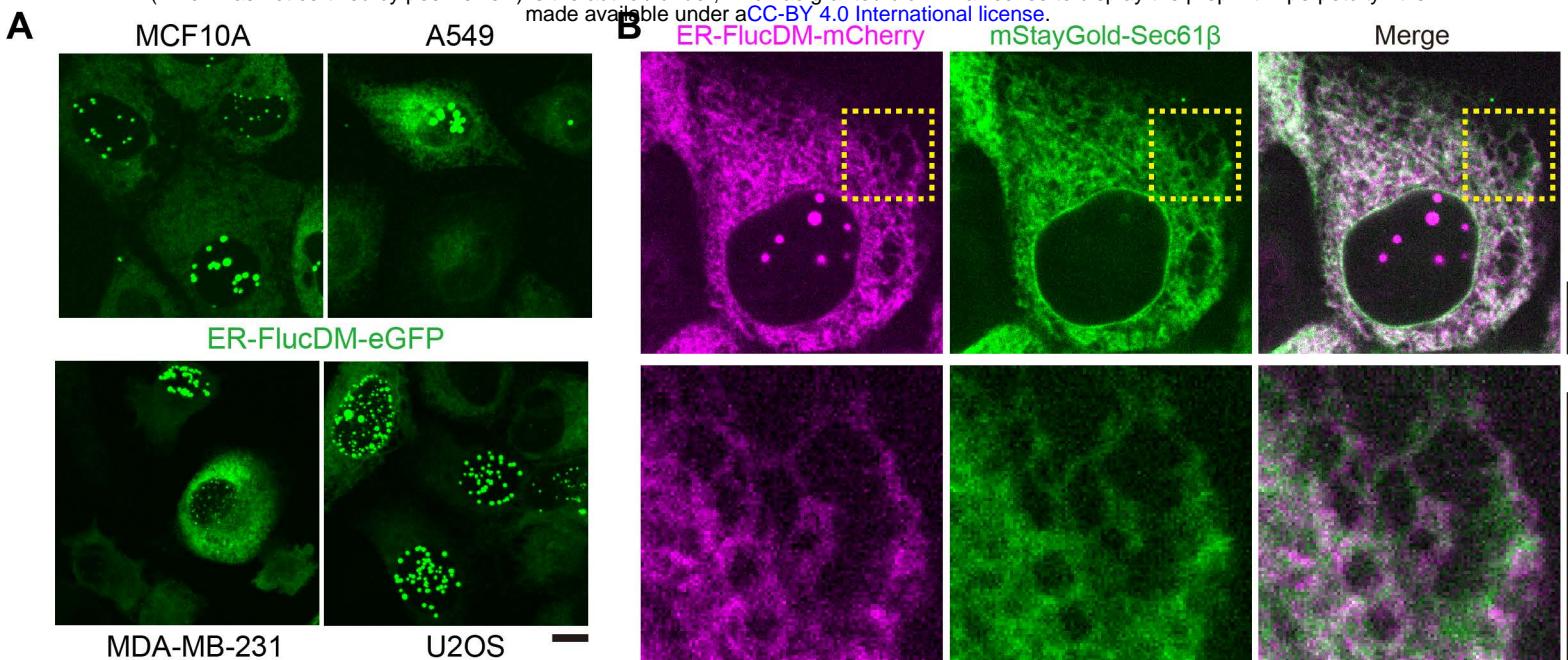
985 Vincenz-Donnelly, L., H. Holthusen, R. Korner, E.C. Hansen, J. Presto, J. Johansson, R. Sawarkar, F.U. Hartl, and M.S.
986 Hipp. 2018. High capacity of the endoplasmic reticulum to prevent secretion and aggregation of
987 amyloidogenic proteins. *EMBO J.* 37:337-350.

988 Wang, C., J. Ding, Q. Wei, S. Du, X. Gong, and T.G. Chew. 2023. Mechanosensitive accumulation of non-muscle
989 myosin IIB during mitosis requires its translocation activity. *iScience.* 26:107773.

990 Watson, E.R., N.G. Brown, J.M. Peters, H. Stark, and B.A. Schulman. 2019. Posing the APC/C E3 Ubiquitin Ligase to
991 Orchestrate Cell Division. *Trends Cell Biol.* 29:117-134.

992 Wirth, A.J., M. Platkov, and M. Gruebele. 2013. Temporal variation of a protein folding energy landscape in the
993 cell. *J Am Chem Soc.* 135:19215-19221.

994 Wiseman, R.L., J.S. Mesgarzadeh, and L.M. Hendershot. 2022. Reshaping endoplasmic reticulum quality control
995 through the unfolded protein response. *Mol Cell.* 82:1477-1491.





996 Woerner, A.C., F. Frottin, D. Hornburg, L.R. Feng, F. Meissner, M. Patra, J. Tatzelt, M. Mann, K.F. Winklhofer, F.U.
997 Hartl, and M.S. Hipp. 2016. Cytoplasmic protein aggregates interfere with nucleocytoplasmic transport of
998 protein and RNA. *Science.* 351:173-176.

999 Zhang, W., Z. Zhang, Y. Xiang, D.D. Gu, J. Chen, Y. Chen, S. Zhai, Y. Liu, T. Jiang, C. Liu, B. He, M. Yan, Z. Wang, J.
1000 Xu, Y.L. Cao, B. Deng, D. Zeng, J. Lei, J. Zhuo, X. Lei, Z. Long, B. Jin, T. Chen, D. Li, Y. Shen, J. Hu, S. Gao,
1001 and Q. Liu. 2024. Aurora kinase A-mediated phosphorylation triggers structural alteration of Rab1A to
1002 enhance ER complexity during mitosis. *Nat Struct Mol Biol.* 31:219-231.

1003 Zhou, C., B.D. Slaughter, J.R. Unruh, F. Guo, Z. Yu, K. Mickey, A. Narkar, R.T. Ross, M. McClain, and R. Li. 2014.
1004 Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. *Cell.*
1005 159:530-542.

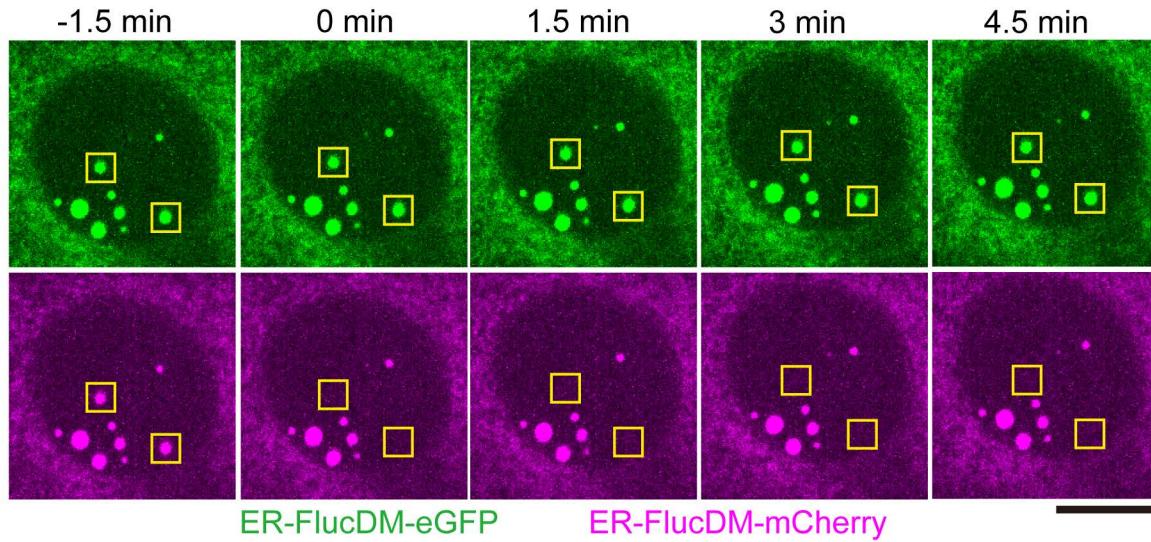

1006

Figure 1

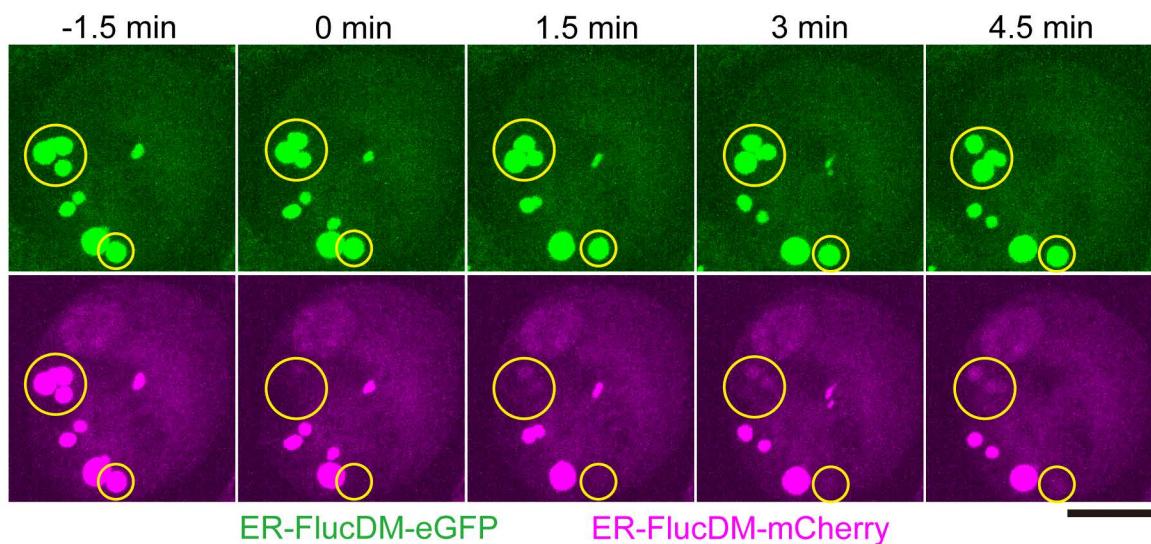
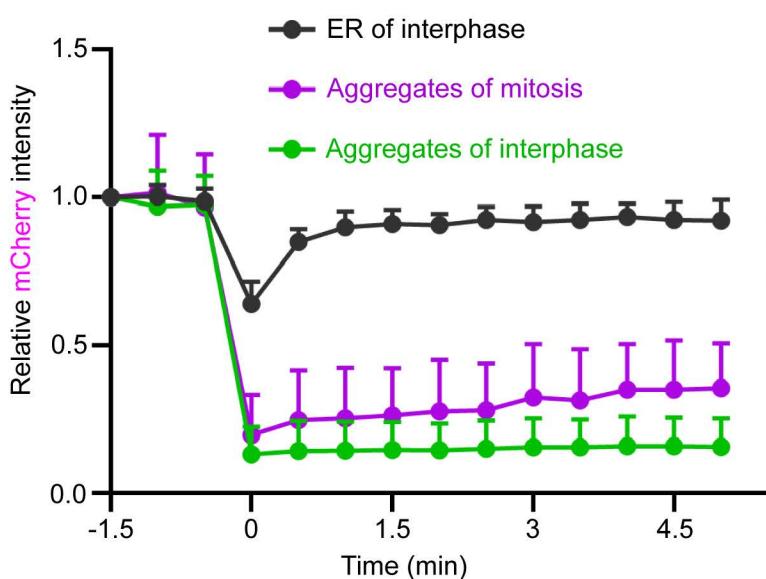
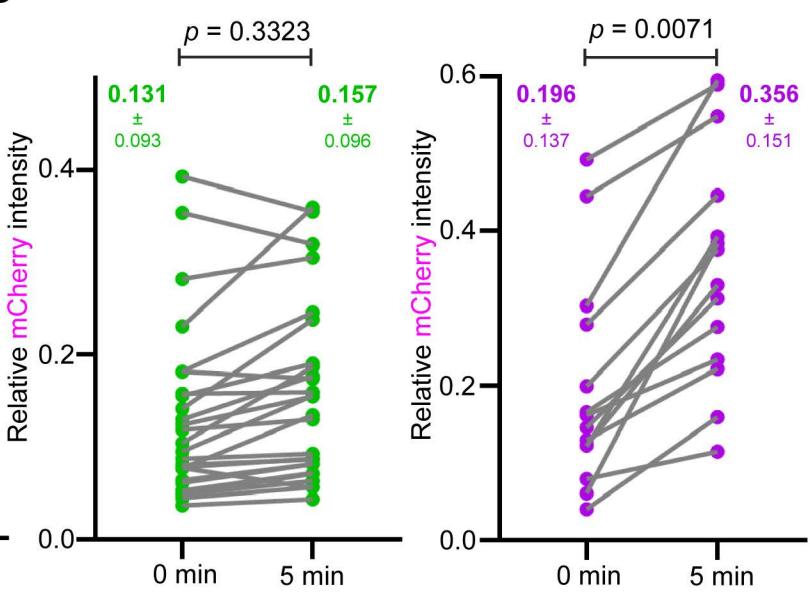
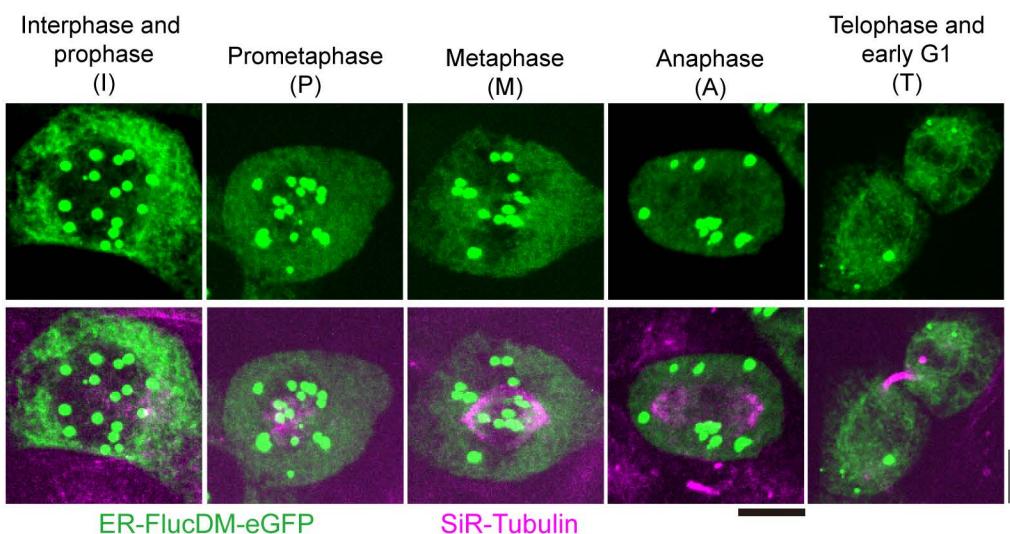


Figure 2


A Interphase


B Mitosis

C



D

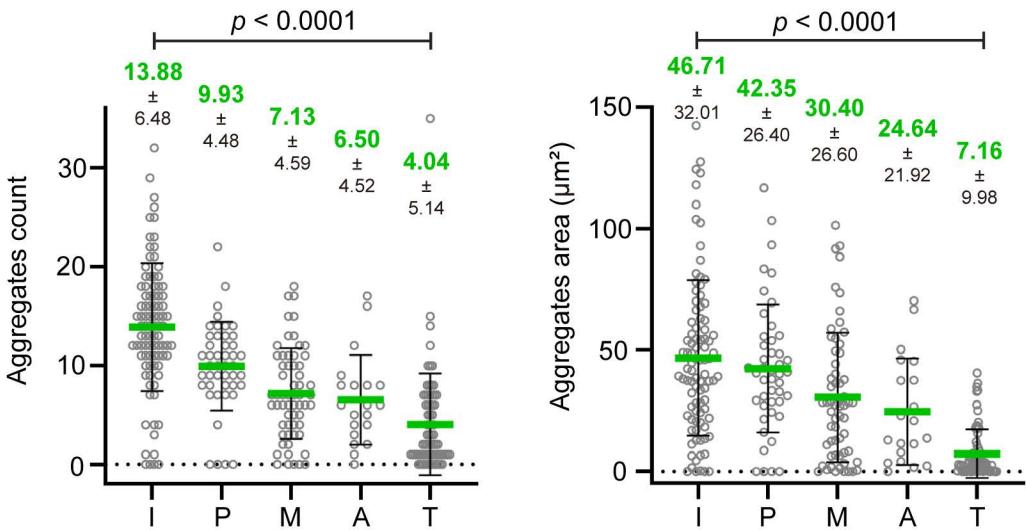
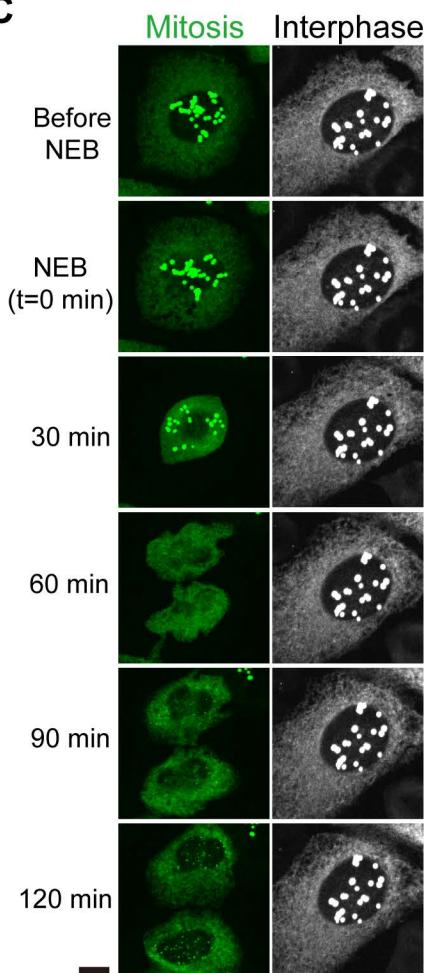
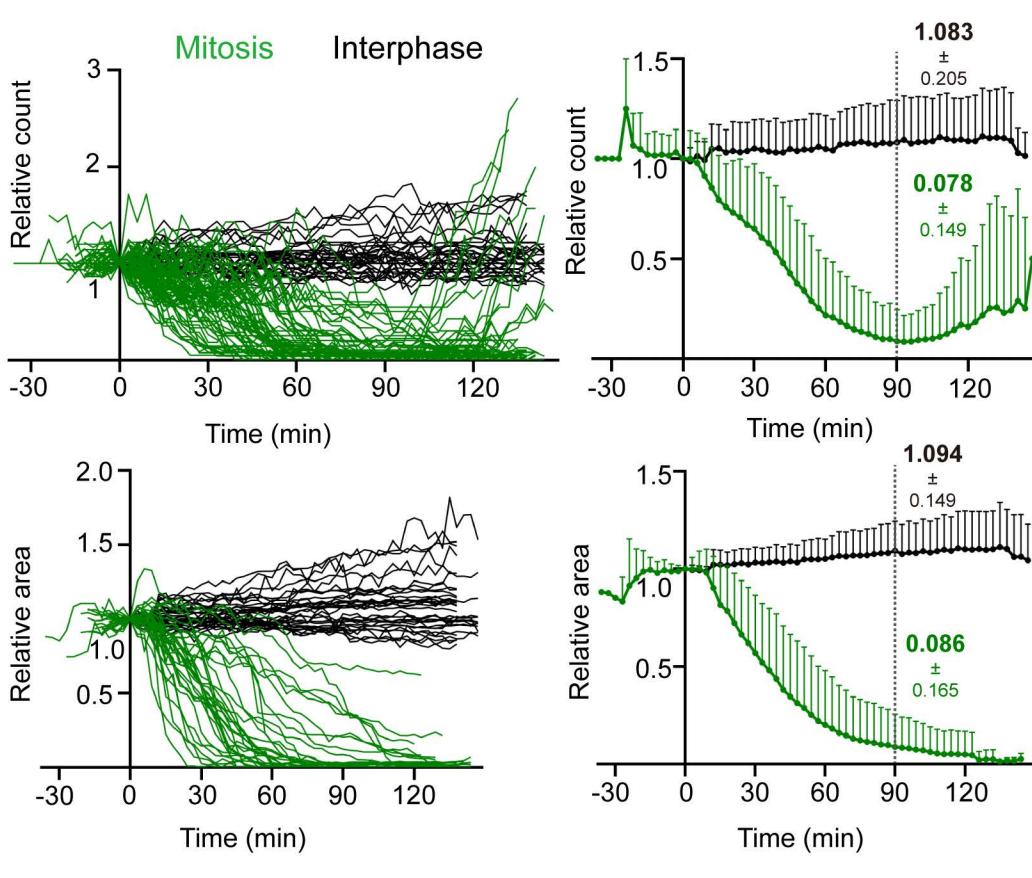
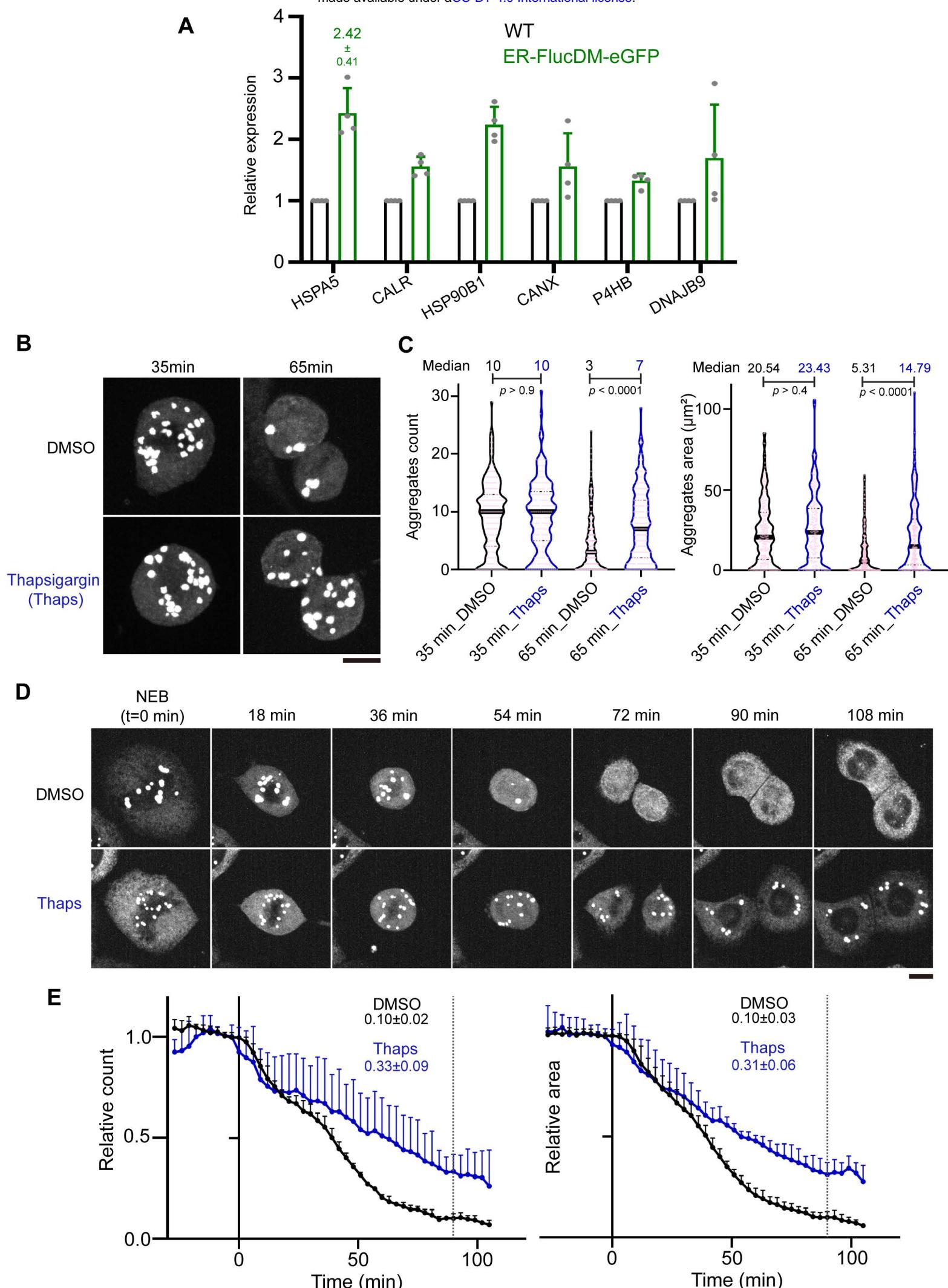


Figure 3


A


B


C

D

Figure 4

Figure 5

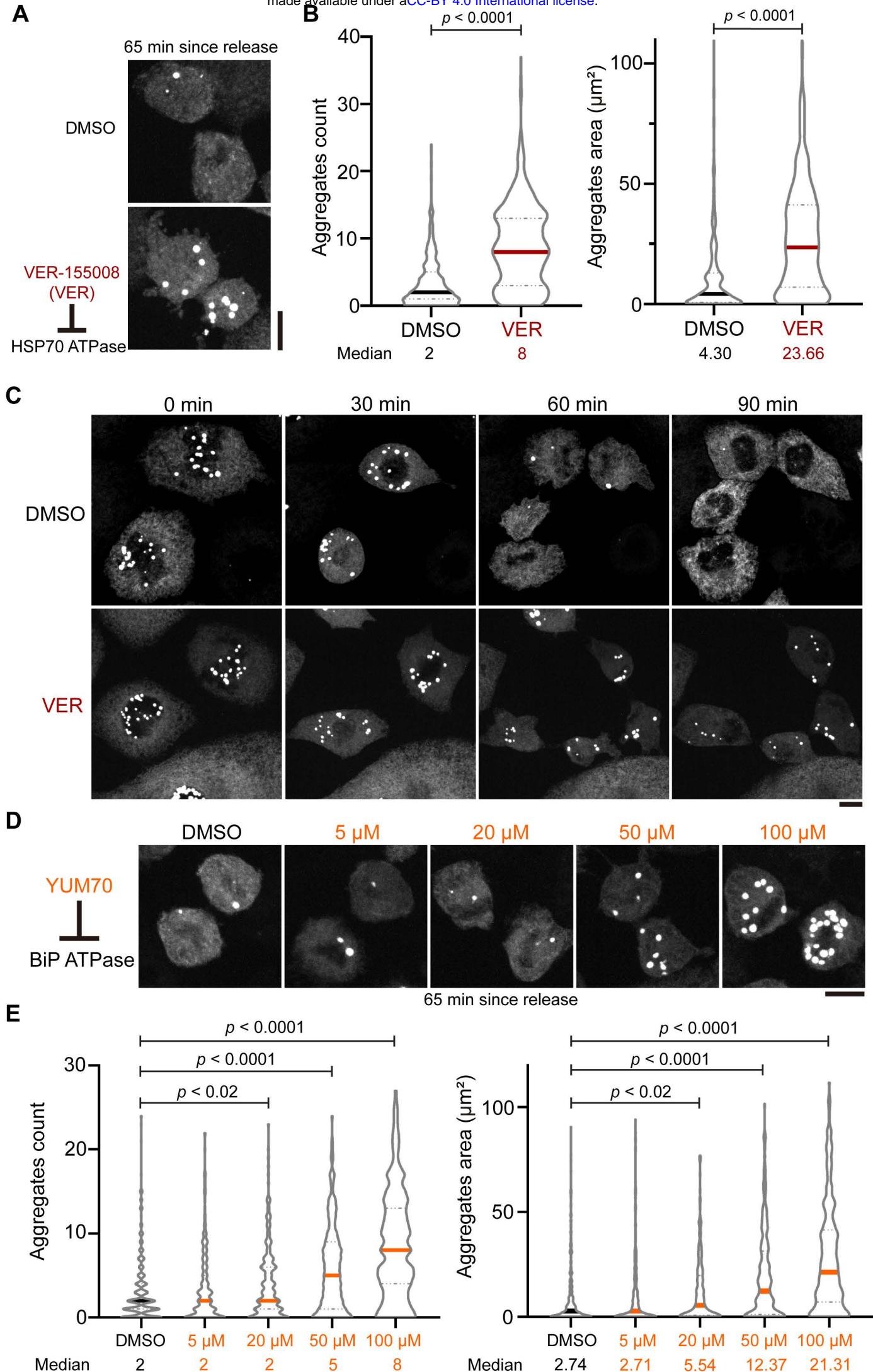


Figure 6

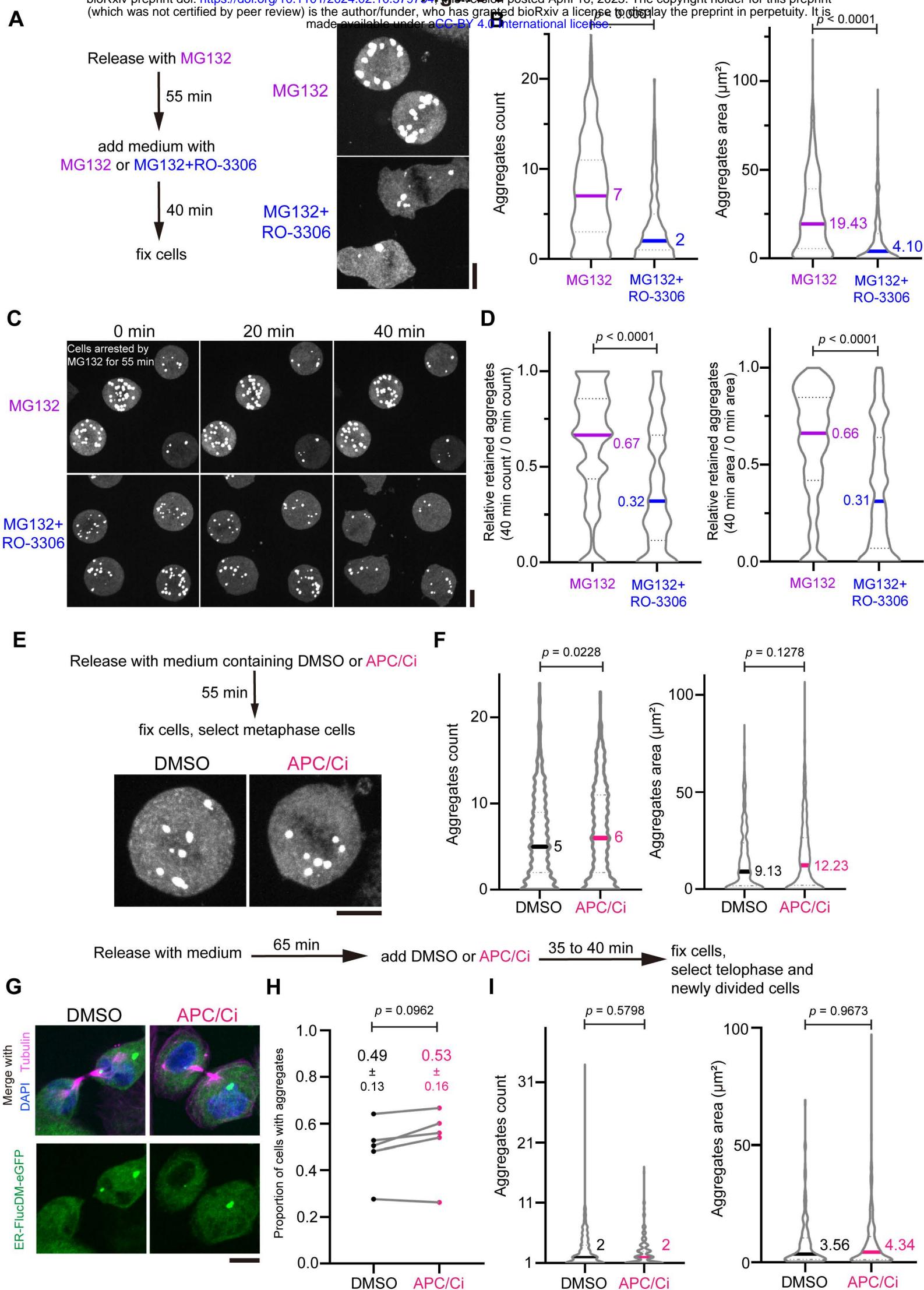
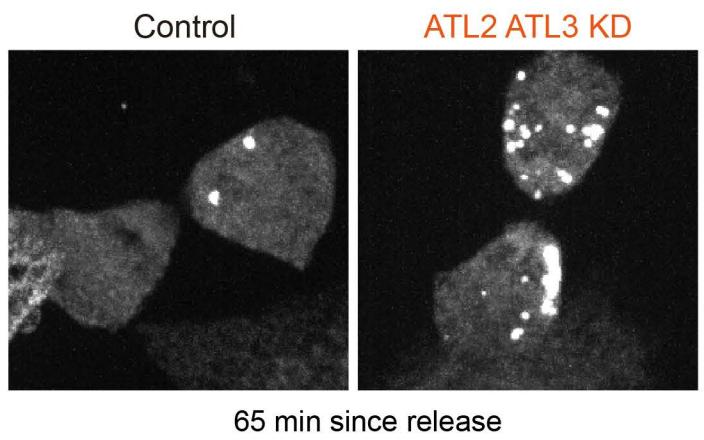
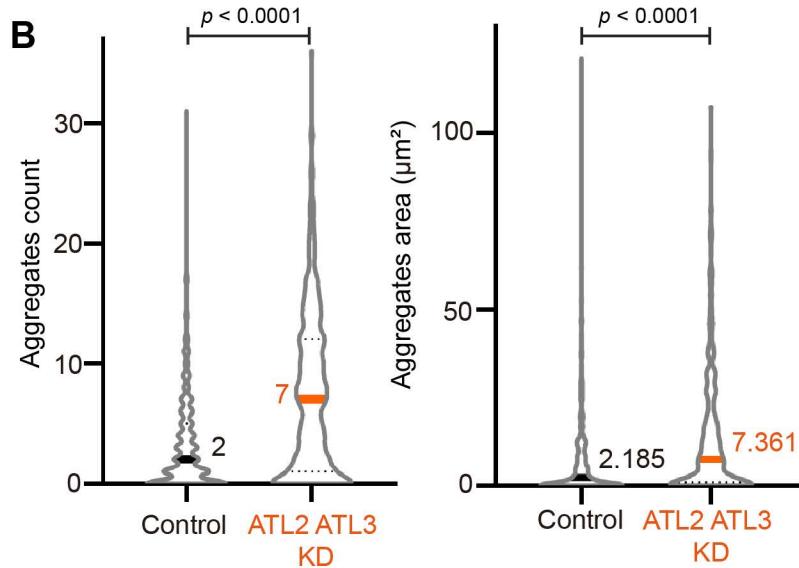
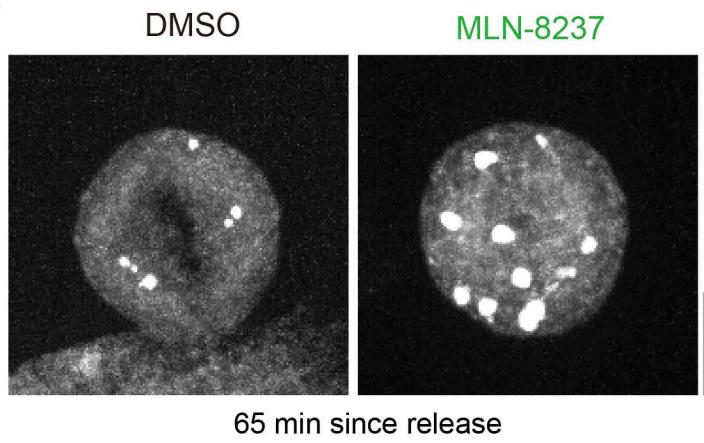
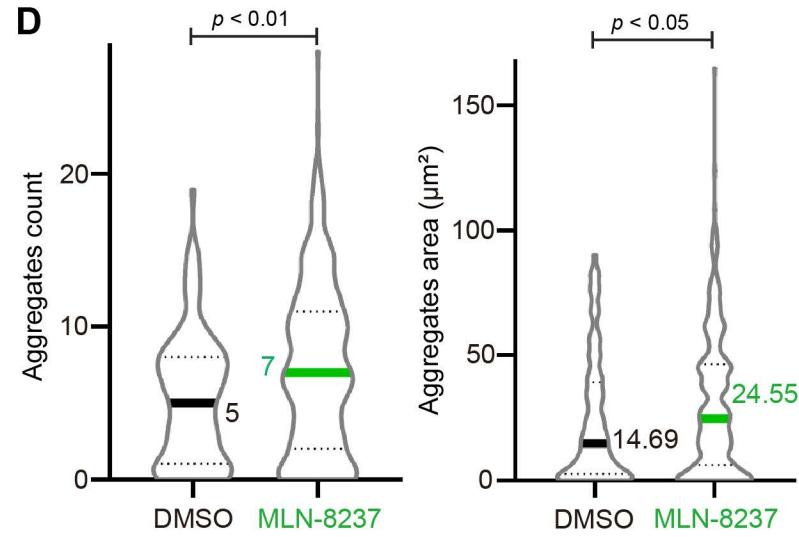
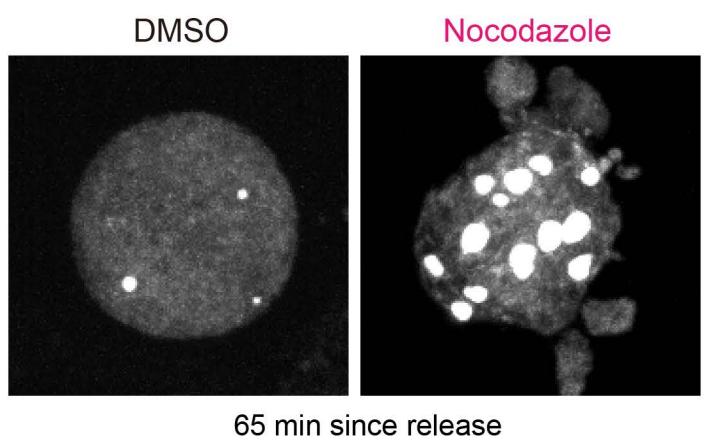
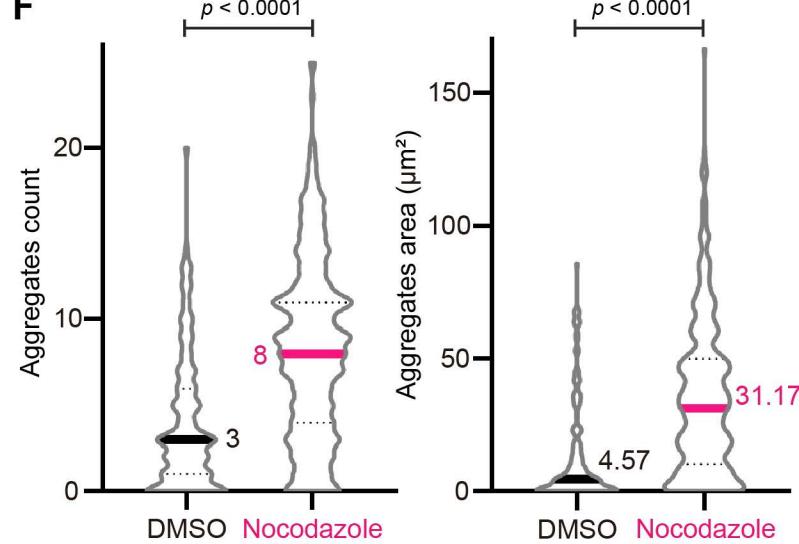




Figure 7


A


B


C


D

E

F

