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Abstract. BiaPy is an open-source library and application that streamlines the use
of common deep learning approaches for bioimage analysis. Designed to simplify tech-
nical complexities, it offers an intuitive interface, zero-code notebooks, and Docker
integration, catering to both users and developers. While focused on deep learning
workflows for 2D and 3D image data, it enhances performance with multi-GPU capa-
bilities, memory optimization, and scalability for large datasets. Although BiaPy does
not encompass all aspects of bioimage analysis, such as visualization and manual an-
notation tools, it empowers researchers by providing a ready-to-use environment with
customizable templates that facilitate sophisticated bioimage analysis workflows.

Keywords: Bioimage analysis, deep learning, image segmentation, object detection, denois-
ing, single image super-resolution, self-supervised learning, image classification, image-to-
image translation.

Bioimage analysis is a cornerstone of modern life sciences, powering discoveries and insights
derived from biological image data. Deep learning has become an invaluable tool for analyzing
microscopy datasets, and its application is increasingly widespread in biomedical research [1].
However, the prerequisite for high-level programming skills has often acted as a barrier,
limiting accessibility to researchers without a specific computational background [2, 3].
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The rapid evolution of deep learning methods, along with the diverse range of bioimage
analysis applications, has created a dynamic landscape that requires researchers to adapt con-
tinuously. These applications often involve navigating multiple tools and integrating workflows
that handle tasks such as image segmentation, object detection, tracking, image classifica-
tion, and reconstruction. To support this diversity, many solutions now either build upon or
integrate deep learning approaches in some form [4-15].

For example, deeplmageJ [5] integrates pretrained deep learning models into Fiji [4], lever-
aging resources like the Biolmage Model Zoo [16], which facilitates the sharing and reuse of
models across a broad spectrum of workflows. Similarly, tools like ZeroCostDL4Mic [6] and
ImJoy [7] simplify access to deep learning workflows through Jupyter notebooks and web inter-
faces. QuPath [14], lastik [10], and Icy [17], all Community Partners of the Biolmage Model
Zoo, offer additional frameworks for incorporating deep learning approaches into bioimage
analysis workflows.

Several tools have been developed to support the creation of pipelines for image classi-
fication and segmentation [8-11, 15]. In addition, image classification and object detection
workflows can be constructed using some of these tools [9, 10, 14, 15].

A great many tools have been developed to support functionalities such as image classifi-
cation, segmentation, and object detection [4, 7-11, 14-17]. Some of these tools, like Fiji [4]
and Icy [17], provide features for building workflows in a pipeline-based paradigm through
plugins such as Jipipe and Protocols, respectively. Others, such as Cellpose [8], CellProfiler [9],
Tastik [10], PlantSeg [11], and QuPath [14], are designed with accessibility in mind and offer
user-friendly graphical interfaces that lower the barrier for users without a computational
background. Tools like QuPath [14] and Cellpose [8] have further enhanced accessibility by
integrating deep learning functionalities into their GUIs, enabling seamless workflows for
biologists and researchers. However, some tools, such as InstantDL [15], rely primarily on
command-line interfaces, which can present challenges for certain user groups. This variety
highlights the diverse approaches taken to meet the needs of different audiences in the bioim-
age analysis community.

Web-based platforms, such as ZeroCostDL4Mic [6] and ImJoy [7], attempt to mitigate the
barriers of software installation, though this comes with trade-offs, such as reduced flexibility.
For example, ZeroCostDL4Mic relies on Google Colab, which requires ongoing updates to
align with changes on the platform. To improve portability and reproducibility, the same
authors introduce [18], which uses Docker containers to encapsulate the notebooks along with
their dependencies.

In terms of versatility, tools like deepImagel] [5] are primarily focused on making predic-
tions with pretrained models and do not yet support training on custom datasets, limiting
their adaptability for researchers with more specific experimental needs. These constraints can
be a drawback for users seeking tools that offer flexibility for customized bioimage analysis
setups.

To address specific gaps in the current bioimage analysis landscape, we present BiaPy
(https://biapyx.github.io), an open-source library designed to streamline a variety of
bioimage analysis tasks, particularly for multi-channel, multi-dimensional microscopy data
(Fig. 1a). BiaPy simplifies the analytical process by supporting both traditional convolutional
neural networks (CNNs) and modern Transformer architectures [19] within a single unified
interface. This mix of established and advanced models allows researchers to apply deep
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learning consistently, accurately, and flexibly, aligning with the rapidly evolving methods of
bioimage analysis.

BiaPy is designed to serve life scientists needing accessible tools to accelerate their re-
search, as well as advanced users and developers wishing to integrate custom algorithms
from the computer vision research community. Unlike several existing tools that heavily rely
on command-line interactions, BiaPy offers a user-friendly interface (Fig. 1b) and zero-code
online notebooks (Fig. 1c¢), making it accessible to users with different levels of technical ex-
pertise. The platform uses a single Docker container for its installation, in contrast to other
tools that require separate containers for each workflow [18]. This design simplifies installation
and enables tighter and more efficient integration between workflows. However, this simplicity
comes with trade-offs, such as managing a single dependency set for all supported workflows,
which may reduce flexibility compared to the one-container-per-workflow approach. While
both approaches enhance portability and minimize conflicts with other software, the single-
container design prioritizes ease of use and standardization. However, while BiaPy simplifies
certain aspects of deep learning workflows compared to traditional methods, considerable
effort is still required for tasks such as data preparation, model training, and result interpre-
tation. These steps remain essential to ensure the effectiveness of the tool in bioimage analysis
applications. Additionally, BiaPy is intended to integrate with established platforms, such as
through a Fiji plugin and its connection with Brainglobe !, offering users increased flexibility
to enhance and streamline their existing bioimage analysis workflows.

BiaPy offers advanced capabilities designed for both local computational environments
and larger image facility frameworks. It supports multi-GPU setups and handles large file
formats like Zarr and H5, offering scalability for processing substantial datasets and perform-
ing computationally intensive analyses (Fig. 1c). Furthermore, BiaPy integrates with popular
deep learning ecosystems, such as the Biolmage Model Zoo [16]. This integration allows
users to import, execute, fine-tune, and export pretrained models within BiaPy’s framework,
capitalizing on its computational infrastructure (Fig. 1a). Such interoperability enhances Bi-
aPy’s adaptability for a variety of bioimage analysis tasks. The models can be accessed via
the command line, zero-code notebooks, or the GUI, which provides guidance for selecting
models compatible with the chosen workflow.

BiaPy follows a streamlined workflow structure consisting of three key elements: data pre-
processing, model training (which includes microscopy-specific data augmentation methods),
or inference, and data post-processing (Fig. 1c¢). This structure facilitates the prototyping of
new workflows by enabling users to easily select pre- and post-processing methods suited to
their specific data and tasks. The library also allows users to switch between various state-
of-the-art deep learning models available within BiaPy and its compatible projects, such as
TorchVision ? and the Biolmage Model Zoo. This design simplifies the process for developers,
enabling them to focus on individual parts of workflows rather than needing to build entire
pipelines from scratch.

BiaPy is built on Python and PyTorch as its backend for deep learning, leveraging an
accessible and widely adopted computational environment. It includes memory optimization
strategies, such as automatic mixed precision for faster training on GPUs and efficient RAM
utilization, making it adaptable to a variety of computational setups and hardware configura-

! https://brainglobe.info/
2 https://pypi.org/project/torchvision/0.1.9/
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Fig.1: BiaPy environment and scope. a. General overview. By addressing their distinct
needs, BiaPy accommodates life science users and computer vision developers. Multi-channel,
2D /3D microscopy datasets serve as inputs for BiaPy workflows. Recurrent bioimage analysis
tasks are executed by workflows that can be customized, imported/exported from/to the
Biolmage Model Zoo [16], or leverage pretrained models from TorchVision. The backend
allows for customization, while the frontend caters to a broader user base. b. Graphical User
Interface (GUI): BiaPy’s GUI serves as an intuitive interface for user interaction, featuring a
guiding wizard to assist first-time users through the necessary steps and decisions. c. Users
have the flexibility to install and run BiaPy through different methods tailored to various
experience levels. During execution, a YAML configuration file is created, defining input data
and providing instructions for the chosen workflow. BiaPy supports classic image formats
(TIFF, Numpy) and modern, memory-efficient formats (H5, Zarr). The workflow consists of
three key stages: 1) Pre-processing to prepare the input data. 2) Model training or inference,
which processes data segment by segment or patch by patch, employing overlapping/padding
strategies and supporting multi-GPU configurations. 3) Post-processing, where probability
maps are refined to produce the final results. BiaPy outputs are generated in various formats
(e.g., images, tables, text files) and dimensions, with evaluation metrics and morphological
statistics provided for comparison with ground truth images where available.
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tions. For more demanding analyses, BiaPy supports multi-GPU configurations, allowing both
training and inference tasks to be efficiently distributed across multiple GPUs, reducing com-
putational bottlenecks. Multi-GPU operations are implemented in chunks to accommodate
different system capabilities, enhancing flexibility and scalability (see Fig. 1c).

Each BiaPy workflow is encapsulated in a single configuration file (Fig. 1¢), which users can
modify directly in a standard text editor or generate through the GUI or zero-code notebooks.
Sharing workflows is facilitated by sharing this configuration file, along with model weights if
needed for inference. BiaPy workflows are designed to process raw images and corresponding
labels or annotations, producing outputs such as predicted annotations, analysis reports, or
pretrained models, depending on the task at hand. To improve user accessibility, the GUI
includes a Wizard feature that guides users through the workflow setup process by asking
simple, task-oriented questions, thereby avoiding technical language that may require prior
knowledge [20]. The final configuration is determined based on user input, supplemented by
default settings to foster optimal performance across a range of scenarios, making it easier
for users to generate configuration files without needing advanced technical expertise.

In its current release, BiaPy supports various workflows for both 2D and 3D image data,
including instance and semantic segmentation, object detection, image denoising, single-image
super-resolution, self-supervised learning, image classification, and image-to-image translation
(see Methods). The instance segmentation workflow follows a bottom-up approach (Fig. 2a),
where objects of interest in the input image are detected, segmented, and classified. The
model learns binary masks, contours, and, optionally, the distance map of the objects. These
representations are combined to generate seeds for a marker-controlled watershed transform,
which produces individual instances.

In the semantic segmentation workflows (Fig. 2b), each pixel or voxel in the input image is
assigned a label that defines its class or category. For object detection (Fig. 2¢), BiaPy employs
a center-of-mass strategy, commonly used in bioimage analysis, instead of using bounding box
annotations.

BiaPy also offers workflows to enhance image quality, such as denoising (Fig. 2d) and
super-resolution (Fig. 2e), which produce cleaner or higher-resolution versions of the input
images. Additionally, BiaPy includes self-supervised learning workflows (Fig.2f), where mod-
els are pretrained on a pretext task without labels. This method allows models to learn a
representation that can later be fine-tuned for downstream tasks on smaller, labeled datasets.

Finally, BiaPy provides both image classification workflows (Fig.2g), where models are
trained to classify the entire input images into predefined classes, and image-to-image trans-
lation workflows (Fig.2h), where input images are mapped to target images, e.g., to convert
them to another modality. Further details on these workflows can be found in the Methods
section.

In conclusion, BiaPy offers a versatile and portable solution, providing a range of work-
flows for bioimage analysis that support both 2D and 3D image data. Its combination of
an intuitive GUI, zero-code notebooks, and Docker integration makes it accessible to users
with different levels of technical expertise. Furthermore, this combination ensures accessibility
across a range of hardware configurations, from high-performance machines with GPUs to
basic setups without GPU support. BiaPy is designed with a focus on reproducibility and
flexibility, making it a valuable tool for both computer vision experts and life scientists. While
it does not aim to replace existing platforms, it complements current tools by addressing spe-
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Fig. 2: Overview of BiaPy workflows. BiaPy supports the following workflows for 2D/3D
grayscale, RGB and multi-channel images: a. Instance segmentation involves detecting, seg-
menting, and classifying individual objects using a bottom-up approach by learning the binary
masks, contours, and (optionally) the distance map of the objects of interest. b. Semantic
segmentation associates a label to every pixel or voxel of the input image. c¢. Object detection
localizes objects in the input image, not requiring a pixel-level class, by extracting individual
points at their center of mass. d. Image denoising removes noise from the input image with-
out needing clean reference data. e. Single image super-resolution reconstructs high-resolution
(HR) images from low-resolution (LR) ones. f. Self-supervised learning pretrains a backbone
model on a pretext task without labels, enabling transfer to downstream tasks in labeled
datasets. g. Image classification labels full input images as belonging to a predefined set of
classes. h. Image-to-image translation maps input images into target images, e.g., to produce
stained images from unstained ones.


https://doi.org/10.1101/2024.02.03.576026
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2024.02.03.576026; this version posted January 24, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

BiaPy 7

cific gaps, such as multi-GPU support and adaptability to large datasets. As an open-source
initiative, BiaPy encourages collaboration and contributions from the scientific community
with the goal of empowering researchers and supporting advancements in bioimage analysis.

Future developments of BiaPy will focus on integrating with established platforms like
Fiji, QuPath, napari, CellProfiler, and Icy, enhancing accessibility and usability for biologists.
This integration aims to make deep learning workflows more seamless within existing analysis
pipelines, addressing the broader challenge of navigating an expanding array of frameworks
in bioimage analysis.

Code availability

The complete source code for the BiaPy platform, encompassing the library’s main code,
GUI, and associated documentation, is accessible at https://github.com/BiaPyX. For com-
prehensive documentation, video tutorials, and use-case examples, please refer to BiaPy’s
documentation website (https://biapy.readthedocs.io/en/latest/).
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Methods

The following sections provide technical descriptions and outline the software requirements
for using BiaPy. Given that BiaPy is an actively evolving project, users and developers are
encouraged to refer to the official documentation on the BiaPy website (https://biapyx.
github.io/) for the most up-to-date information.

Design goals of BiaPy

The design philosophy of BiaPy addresses the multifaceted challenges inherent in the field of
bioimage analysis while democratizing access to cutting-edge computational techniques. At
its core, BiaPy strives to fulfill several key objectives:

1. Unified framework: BiaPy is crafted as a unified platform, integrating both backend
and frontend functionalities. This design ensures accessibility and benefits for both novice
and expert users.

2. Versatility in handling image modalities: BiaPy is engineered to support a wide
range of image modalities, including multi-channel, frequently anisotropic, 2D, and 3D
images, addressing the diversity of bioimaging data.

3. Customizable for various output targets/tasks: BiaPy’s architecture is designed
to be adaptable to different output targets and tasks, offering customizable solutions for
tasks such as semantic segmentation, instance segmentation, object detection, denoising,
and super-resolution.

4. Scalability and optimization: BiaPy focuses on scalability and optimization, incorpo-
rating multi-GPU capabilities and memory optimization strategies to handle computa-
tionally demanding bioimage analyses with large datasets.

5. Community-driven and collaborative approach: BiaPy is envisioned as a collabo-
rative tool, encouraging contributions and feedback from the research community. This
open-source nature fosters continuous improvement and innovation in bioimage analysis.

Through these design goals, BiaPy aims to provide an accessible, portable, and flexible
tool for the bioimage analysis community, enabling researchers to harness the power of deep
learning and other advanced computational methods in their work. Table 1 provides a detailed
comparison of BiaPy’s features with those of similar tools currently available in the bioimage
analysis ecosystem.

Installation and usage: from novice to expert

For a comprehensive guide to installation, refer to https://biapy.readthedocs.io/en/
latest/get_started/installation.html. BiaPy offers multiple avenues for installation and
usage to accommodate users with varying technical proficiencies:

— Graphical user interface (GUI): BiaPy includes a GUI for users seeking a user-friendly
interface. The GUI performs checks for Docker image installation and GPU availability,
enabling easy workflow execution. Currently, the GUI is designed to operate with a single
GPU (no multi-GPU).
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— Google Colab integration: BiaPy provides code-free notebooks in Google Colab, low-
ering entry barriers and enabling researchers to use BiaPy without local installations.

— Jupyter notebooks: Users can access templates and executable Jupyter notebooks lo-
cally for each workflow, accompanied by example datasets for better understanding.

— Docker: BiaPy is available as a Docker image, ensuring a consistent environment across
systems. Two containers support different PyTorch/CUDA versions for broader accessi-
bility.

— Command line: For users familiar with conventional workflows, obtaining BiaPy is
as straightforward as executing a repository clone command or using standard package
installation tools (e.g., pip). Subsequent installation of dependencies grants users direct
access to BiaPy’s functionalities.

Software dependencies and hardware requirements

BiaPy has undergone successful testing on Linux, MacOS, and Windows operating systems.
Given the deep-learning core of BiaPy, a machine equipped with a GPU is recommended
for optimal training and execution speed. Users accessing BiaPy through its GUI need only
Docker, as the GUI operates BiaPy indirectly using Docker. The GUI is provided as a binary
file, available for download from BiaPy’s documentation (https://biapy.readthedocs.io/
en/latest/get_started/installation.html) or GitHub (https://github.com/BiaPyX/
BiaPy-GUI) pages. After downloading, it can be launched with a simple double-click. For
other cases, such as Google Colab, BiaPy’s dependencies are installed using pip.

To accommodate a broader user base, BiaPy is distributed through two separate Docker
containers: one based on PyTorch 2.1 and another on PyTorch version 1.2.1, corresponding
to CUDA versions 11.8 and 10.2, respectively. This approach ensures compatibility with older
GPUs that may have outdated drivers while retaining full functionality in BiaPy.

Multi-GPU setting

BiaPy offers training on a multi-GPU setting using PyTorch’s distributed data-parallel (DDP)
training, a widely adopted paradigm for single-program multiple-data training. Moreover,
BiaPy introduces a novel strategy for multi-GPU inference (depicted in Fig. 1c). Unlike the
conventional method of distributing all test images across available GPUs for accelerated pro-
cessing, BiaPy’s approach is built to accommodate biological microscopy image data at scale,
addressing challenges posed by very large images. More specifically, our method addresses
the constraints related to memory and disk space. BiaPy enables multi-GPU processing per
image by chunking large images into patches with overlap and padding to mitigate artifacts at
the edges. Each GPU processes a chunk of the large image, storing the patch in its designated
location within an output file, typically in Zarr or H5 format. These file formats facilitate
reading and storing data chunks without requiring the entire file to be loaded into memory.
Consequently, our approach allows the generation of predictions for large images, overcoming
potential memory bottlenecks.

BiaPy workflows

BiaPy is designed to process multi-channel, frequently anisotropic, 2D, and 3D images by
means of a variety of workflows. These workflows are enhanced by the integration of models
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from the pretrained Biolmage Model Zoo [16] and TorchVision models 3, accessible via their
official repository, when applicable to the specific task. Additionally, BiaPy supports our
own custom deep learning models, details of which are provided for each specific task. The
following section outlines the technical specifics and the diverse model support of the existing
BiaPy workflows:

Semantic segmentation. Images are processed to assign a class to each pixel or voxel
of the input image. For this task, the deep learning models currently available in BiaPy are
custom U-Net [21, 22], Residual U-Net [22, 23], ResUNet++ [24], Attention U-Net [22, 25],
MultiResUnet [26], Squeeze-and-Excitation (SE) block U-Net [22] and UNETR [27]. Training
image patches can be selected based on a probability map generated from the ground truth
masks. This approach ensures a higher frequency of patches containing a foreground class is
input into the deep learning model. Apart from the full 3D workflow implemented, at test time,
a workflow segmenting 2D images can also produce a 3D output if test images constitute a 3D
stack. To address potential 3D inconsistencies and enhance the smoothness of the predictions,
BiaPy offers two post-processing methods. These include applying median filtering either
along the z-axis or concurrently on the x- and y-axes. The semantic segmentation results are
evaluated using the intersection over union (IoU) score.

Instance segmentation. The goal of this workflow is to assign a unique identifier, i.e.,
integer, to each object of interest in the input image. For this task, BiaPy currently supports
the following models: U-Net [21, 22], Residual U-Net [22, 23], ResUNet++ [24], Attention
U-Net [22, 25], MultiResUnet [26], SE U-Net [22] and UNETR [27]. BiaPy uses a bottom-up
approach for instance segmentation, where models are trained to predict intermediate rep-
resentations of the object masks, such as binary masks, boundaries, central points, and/or
distance maps [28, 29]. Then, marker-controlled watershed [30] is used to convert these rep-
resentations into object instances. In addition to the post-processing methods described for
semantic segmentation, predicted instances can be refined using morphological operators or
based on a Voronoi tessellation [31]. The quality of the output instances can be measured by
a large variety of metrics, including average precision, association, and matching metrics [29].

Object detection. This workflow aims to localize objects within the input image with-
out requiring pixel-level classification. Common strategies include producing bounding boxes
around objects or pinpointing their center of mass [32], the latter being the approach employed
by our tool. Multi-class central points are also supported in this workflow. BiaPy supports
several models for this task, such as U-Net [21, 22], Residual U-Net [22, 23], ResUNet++ [24],
Attention U-Net [22, 25] and SE U-Net [22]. For training, BiaPy uses additional input CSV
files that list the coordinates for the center of mass of each object within each class. Then, those
coordinates are used to create a target image with point masks. During inference, the model
computes probabilities for each center of mass, which are subsequently processed to iden-
tify final detections. BiaPy includes several post-processing methods, such as non-maximum
suppression, to remove close points based on a predefined radius. Complete instances can
be reconstructed from the predicted centers using marker-controlled watershed [30], offering
adaptability to various object shapes. The same filtering techniques applied in the instance
segmentation workflow are available here, tailored to the instances’ shapes. For evaluation,
BiaPy computes precision, recall, and F1 metrics for the final predicted points based on a
predetermined tolerance to assess the model’s accuracy.

3 https://pytorch.org/vision/stable/models.html
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Image denoising. This workflow aims to eliminate noise from images. Our library in-
corporates the Noise2Void framework [33], an unsupervised method that only needs as input
the noisy images and tries to reduce the probabilistic noise. Available models for this task
include U-Net [21, 22], Residual U-Net [22, 23], ResUNet++ [24], Attention U-Net [22, 25]
and SE U-Net [22].

Single image super-resolution. This workflow focuses on reconstructing high-resolution
(HR) images from their low-resolution (LR) counterparts. Available models include the En-
hanced Deep Residual Network (EDSR) [34], Deep Residual Channel Attention Networks
(RCAN) [35], Deep Fourier Channel Attention Network (DFCAN) [36], Wide Activation for
Efficient and Accurate Image Super-Resolution (WDSR) [37], U-Net [21, 22|, Residual U-
Net [22, 23], ResUNet++ [24], Attention U-Net [22, 25], MultiResUnet[26], SE U-Net [22].
For 3D images, only the custom U-Net-like models are supported. For evaluation, the popular
peak signal-to-noise ratio (PSNR) metric is calculated between the reconstructed HR images
and the available ground truth data.

Self-supervised learning. In this workflow, a backbone model is pretrained by solving
a so-called pretext task without the need for labels. This approach allows the model to learn
a representation that can later be transferred to solve a downstream task using a labeled,
albeit smaller, dataset. In BiaPy, we adopt two pretext tasks: reconstruction and masking.
The reconstruction task involves recovering the original image from a degraded version of
it [38]. In the masking pretext task, random patches of the input image are masked, and the
network is trained to reconstruct the missing pixels or voxels [39]. Available models include
the Vision Transformer (ViT) [19], Masked Autoencoder (MAE) [39], EDSR [34], RCAN [35],
DFCAN [36], WDSR, [37], U-Net [21, 22], Residual U-Net [22, 23], ResUNet++ [24], Attention
U-Net [22, 25], MultiResUnet[26], SE U-Net [22] and UNETR [27]. For evaluation purposes,
the PSNR metric is calculated, as both pretext tasks aim to recover an image from a distorted
input.

Image classification. The aim of this workflow is to assign a specific label to the whole
input image. The custom models available for this task include a simple convolutional neural
network, EfficientNet [40] and ViT [19]. Popular evaluation metrics such as accuracy, precision,
recall, and F1 score are calculated to assess the performance of the models.

Image-to-image translation. This workflow aims to map input images to corresponding
target images, a process commonly referred to as “image-to-image translation”. It can be
applied to various tasks, such as image inpainting, colorization, or super-resolution (with
a scale factor of 1x). In bioimage analysis, this approach is useful for virtual staining [41,
42], where a model is trained to produce stained images from unstained tissue images or to
transfer information between different stains. All models available in BiaPy for single-image
super-resolution are compatible with this workflow.

Microscopy-tailored data augmentation

BiaPy incorporates a range of data augmentation methods commonly used in the classifica-
tion of natural images but customized for 3D and multi-channel microscopy images of various
resolutions. These methods encompass Cutout [43], CutBlur [44], CutMix [45], CutNoise (a
variation of CutBlur with additional noise), and GridMask [46], among others. Additionally,
BiaPy introduces novel data augmentation techniques specifically designed to mimic typical
distortions found in microscope image acquisition, such as misalignment or missing sections
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(e.g., z-slices). BiaPy also integrates with the imgaug library 4, allowing for the implementa-
tion of custom augmentation strategies.

Input and output data management

BiaPy provides two distinct approaches to data management for training, validation, and
testing datasets. The first approach involves loading data into memory, which accelerates pro-
cessing but requires considerable memory allocation. In this approach, the validation dataset
can be generated by partitioning the training dataset. The alternative approach is to dynam-
ically load data from the disk as needed, which conserves memory but may result in slower
processing times.

For all workflows, except for classification, data loaded into memory is cropped to a specific
patch size. This cropping can accommodate predefined overlap and padding. In this context,
having images stored with uniform size is not necessary. Nevertheless, when data is dynam-
ically loaded from disk, it should be uniform in size to facilitate consistent patch cropping,
which is not always the default condition. To address this, BiaPy includes a random cropping
feature, allowing users to ensure consistent patch sizes throughout datasets. In the classifica-
tion workflows, random cropping is automatically implemented whenever the selected patch
size does not correspond with the dimensions of the loaded image.

During the inference phase, each test image can be processed in a full-sized setting or
by cropping it to a predetermined patch size. In the latter, this cropping process may also
incorporate predetermined overlap and padding, similar to the method applied to training
and validation datasets. This technique facilitates the reconstruction of the final image while
efficiently minimizing memory usage, thereby ensuring scalability, as detailed in Section 1 of
the Online Methods. Furthermore, BiaPy employs test-time augmentation by averaging the
predictions from multiple orientations of each patch, specifically creating 8 versions in 2D and
16 in 3D, achieved through multiple 90-degree rotations and mirrored versions of the input
images.

Use case examples

BiaPy has been employed in diverse projects encompassing various image modalities, includ-
ing electron microscopy (EM), confocal microscopy, microcomputed tomography (uCT), and
fluorescence microscopy. The range of object shapes, image resolution, and image contrast
in those examples illustrate BiaPy’s adaptability to varied scenarios. The following section
briefly describes some representative research projects already published using BiaPy:
Mitochondria instance segmentation in large EM volumes ([28, 29]). In a previous
work [28], we introduced the MitoEM dataset, a large 3D EM volume including mitochon-
dria of very complex morphology and varying size. This dataset challenged existing instance
segmentation methods and motivated the creation of the MitoEM challenge® on 3D instance
segmentation of mitochondria in EM images. Together with our report of the findings of
the challenge [29], we published our own baseline method (U2D-BC) as a BiaPy workflow,

4 https://github.com/aleju/imgaug
5 https://mitoem.grand-challenge.org/
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which is fully reproducible using the detailed instructions contained in the tutorials section
of BiaPy’s documentation site.

Modeling of wound healing in Drosophila embryos ([47]). This study compiled a
dataset of time-lapse sequences showing Drosophila embryos as they recover from a laser-made
incision. We approached the modeling of the wound-healing process as a video prediction task,
employing a two-stage strategy that combines a vector quantized variational autoencoder with
an autoregressive transformer. Our trained model successfully generates realistic videos based
on the initial frames of the healing process. In this work, a BiaPy workflow was used for the
semantic segmentation of the wounds on each video frame.

CartoCell: large-scale analysis of epithelial cysts ([31]). A significant challenge in
creating neural networks for cell segmentation is the requirement for labor-intensive man-
ual curation to develop training datasets. CartoCell overcomes this limitation by creating
an automated image-analysis pipeline in BiaPy, which efficiently leverages small datasets to
generate accurate cell labels in intricate 3D epithelial settings. This workflow enables fast
generation of high-quality epithelial reconstructions and, thus, detailed analysis of morpho-
logical features. A detailed description and step-by-step tutorial of this workflow are available
in BiaPy’s documentation site under ” Tutorials”.

Analysis of stable deep learning architectures for mitochondria segmenta-
tion ([22]). Recent advancements in deep learning models have demonstrated remarkable
results in mitochondria segmentation; however, the absence of code and detailed training
information frequently impedes their reproducibility. This study adheres to best practices,
thoroughly comparing leading-edge architectures and various U-net model adaptations, all
implemented as full workflows in BiaPy.

Limitations of BiaPy

While BiaPy covers a wide range of bioimage analysis tasks (see BiaPy workflows), it does
not include functionalities for other common tasks like image visualization, registration, or
manual annotation. These tasks are fundamental to many bioimage analysis pipelines and are
often required for preprocessing or downstream analysis. For such purposes, users are advised
to use other established software platforms.

For example, visualization is not natively supported in BiaPy. To address this, we have
collaborated with the Brainglobe project (https://brainglobe.info/), an open-source ini-
tiative focused on computational neuroanatomy. In this partnership, BiaPy handles large-
scale image processing, such as brain-wide cell detection, while Brainglobe’s framework is
used for visualizing and further analyzing the results. To aid users in implementing this inte-
gration, a detailed tutorial is available, which guides users through the setup and execution of
workflows combining BiaPy and Brainglobe: https://biapy.readthedocs.io/en/latest/
tutorials/detection/brain_cell_detection.html.
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