

A lncRNA-mediated metabolic rewiring of cell senescence

Elena Grossi^{1,2#}, Francesco P. Marchese^{1,2}, Jovanna González^{1,2}, Enrique Goñi^{1,2}, José Miguel Fernandez-Justel^{1,2}, Alicia Amadoz^{1,2}, Nicolás Herranz³, Leonor Puchades-Carrasco⁴, Marta Montes^{1,2 *}, Maite Huarte^{1,2 *}

¹Center for Applied Medical Research, University of Navarra, Pamplona, Spain

² Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain

³ Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Barcelona, Spain

⁴ Drug Discovery Unit, Instituto de Investigación Sanitaria La Fe (IISLAFe), 46026 Valencia, Spain.

[#] Current address: Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

* Co-corresponding authors: mmontesr@unav.es; maitehuarte@unav.es

ABSTRACT

Despite the classical view of senescence as passive growth arrest, senescent cells remain metabolically active to be able to cope with the energetic demand of the senescence program. However, the mechanisms underlying this metabolic reprogramming remain poorly understood. We have identified *sin-*lncRNA**, a previously uncharacterized lncRNA, that plays a pivotal role in this response. *Sin-*lncRNA** is only expressed by senescent cells, induced by the senescence master regulator C/EBP β . While strongly activated in senescence, *sin-*lncRNA** loss reinforces the senescence program by altering oxidative phosphorylation and rewiring mitochondrial metabolism. By interacting with the TCA enzyme dihydrolipoamide S-succinyltransferase (DLST) it facilitates its

28 localization to the mitochondria. On the other hand, *sin-*lncRNA** depletion results in DLST nuclear
29 translocation linked to DLST-dependent transcriptional alteration of OXPHOS genes. While in highly
30 proliferative cancer cells, *sin-*lncRNA** expression remains undetected, it is strongly induced upon
31 cisplatin-induced senescence. Depletion of *sin-*lncRNA** in ovarian cancer cells results in deficient
32 oxygen consumption and increased extracellular acidification, sensitizing the cells to cisplatin
33 treatment. Altogether, these results indicate that *sin-*lncRNA** is specifically induced in cellular
34 senescence to maintain metabolic homeostasis. Our findings reveal a new regulatory mechanism
35 in which a *lncRNA* contributes to the adaptive metabolic changes in senescent cells, unveiling the
36 existence of an RNA-dependent metabolic rewiring specific to senescent cells.

37 **INTRODUCTION**

38 Senescence is a permanent state of growth arrest that can be induced by different types of stress,
39 such as shortening of telomeres due to extensive replication, DNA damage, oxidative stress,
40 chemotherapy treatment or oncogene overexpression ¹. Senescent cells present characteristic
41 morphological and biochemical features such as enlarged size, halted proliferation, activation of
42 senescence-associated (SA) β -galactosidase activity and increased expression of cell cycle
43 inhibitors ¹. Furthermore, in several types of senescence the cells secrete a combination of
44 interleukins, metalloproteases and growth factors, collectively known as the senescence-
45 associated secretory phenotype (SASP) ²⁻⁴. While the SASP reinforces senescence, its chronic
46 activation can have pro-tumorigenic effects and contribute to several aging related pathologies ⁵.
47 In fact, the persistence of therapy-induced senescent cancer cells in the tumor has been linked to
48 resistance to chemotherapy ^{6, 7}. There is, therefore, a critical need to develop combinatorial
49 approaches to not only stop proliferation, but also induce the elimination of the senescent tumor
50 cells.

51 Despite their decreased proliferative potential, senescent cells are metabolically active in order to
52 cope with the energetic demands of the senescence program ⁸. Indeed, metabolic reprogramming
53 is considered a hallmark of senescence ⁹. In general, senescent cells accumulate dysfunctional
54 mitochondria resulting in an increase of reactive oxygen species (ROS)¹⁰⁻¹². Although different
55 triggers of senescence result in broad metabolic differences, the interplay between senescent cells
56 and metabolism is highly dynamic and context dependent, and the underlying mechanisms remain
57 largely unexplored. In this context, long noncoding RNAs (lncRNAs) represent a relatively uncharted
58 territory for investigation.

59 lncRNAs are transcripts recently defined as longer than 500 nucleotides with exquisite cell-type
60 specific expression patterns that lack protein-coding potential ¹³. They are tightly regulated during
61 development or in response to signaling pathways ¹⁴. Although it is still unclear how many of the
62 thousands of annotated lncRNAs have a significant biological role, several have been found to be

63 essential for the regulation of key cellular processes, such as proliferation and differentiation, as
64 well as a broad range of diseases including cancer^{15, 16}. Notably, our previous work and other
65 laboratories' have reported that specific lncRNAs are differentially expressed during senescence
66 induction^{17, 18}, regulating multiple senescence aspects, from transcriptional response to SASP
67 production¹⁹⁻²². Intriguingly, recent studies have involved a number of lncRNAs in the regulation of
68 cellular metabolism²³⁻²⁶, and ncRNAs are emerging as interactors and regulators of metabolic
69 enzymes²⁷. However, the contribution of this functional diverse class of molecules to the metabolic
70 reprogramming of senescent cells remains unknown.

71 Here we report the identification of the senescence-specific lncRNA, *sin-lncRNA*, which is induced
72 in senescence to prevent uncontrolled metabolic alterations, by regulating the function of a key
73 metabolic enzyme and the transcription of metabolic genes. Together, our results provide evidence
74 of an RNA-dependent metabolic rewiring specific to the senescent cellular state.

75

76 RESULTS

77 Oncogene-induced senescence leads to broad changes in gene expression, encompassing 78 alterations in lncRNAs

79 Although the importance of lncRNAs in a variety of cellular processes is now fully recognized, only
80 a handful of them have been described as directly implicated in cellular senescence. To identify
81 novel regulators of this process, we analyzed RNA-seq data from a cellular system that
82 recapitulates senescence induction *in vitro* thanks to the controlled activation of an oncogene²⁸.
83 IMR90 non-immortalized lung fibroblasts were engineered to express an oncogenic HRAS variant
84 (HRAS^{G12V}) fused to the estrogen receptor (ER:RAS), which is activated following 4-hydroxy-
85 tamoxifen (4OHT) administration (Figure 1A)^{3, 29}. Multiple senescence markers, such as arrest of
86 proliferation, increased expression of pro-inflammatory factors and tumor suppressors along with
87 detectable β-galactosidase staining, were observed, ensuring a proper senescence progression
88 (Suppl. Figure 1A-E). Furthermore, the presence of senescence-associated heterochromatin foci

89 (SAHF) as well as an increase in H3K9me3 and γH2AX foci, confirmed the chromatin remodeling
90 linked to oncogene-induced senescence (OIS) (Suppl. Figure 1F, G). RNAseq data generated in this
91 cell system ²⁸, detected more than 4720 genes differentially expressed upon induction of
92 senescence ($\log_{2}FC > 1$; $padj < 0.05$), including not only many coding genes (3456) but also lncRNAs
93 (951) (Figure 1B and Suppl. Figure 1H). The majority of lncRNAs (62%) were downregulated, which
94 might reflect cell cycle inhibition during senescence, whereas the remaining 38% of lncRNAs were
95 upregulated. We focused our attention on lncRNAs highly induced upon OIS, as we speculated,
96 they might play a role in the senescence process, and we verified their upregulation at different time
97 points of OIS progression (Figure 1C and Suppl. Figure 1I).

98 Interestingly, we observed a previously uncharacterized lncRNA (*ENSG00000234693*) as one of the
99 most significantly and strongly upregulated genes, with an induction comparable to that of key
100 senescence genes *CKN2A*, *CXCL1* and *IL6* (Figure 1B and Suppl. Table 1). We consequently
101 renamed it *senescence-induced lncRNA* or *sin-lncRNA*. *sin-lncRNA* is an intronic lncRNA located
102 in chromosome 20 and transcribed in the antisense orientation of the protein-coding gene *RIPOR3*
103 (Figure 1D, Suppl. Figure 2A, B). *sin-lncRNA* lacks coding potential (Suppl. Figure 2C) and presents
104 two poly-adenylated isoforms annotated by GENCODE (v41); a longer one (638 nts), composed by
105 three exons, and a shorter one (539 nts) of four exons. However, only the shorter isoform is
106 expressed and highly upregulated upon 4OHT treatment in IMR90 fibroblasts, according to both
107 sequencing data and RT-qPCR performed with different primer sets (Figure 1D and Suppl. Figure
108 2A). This observation was confirmed by absolute quantification by RT-qPCR, which showed that
109 *sin-lncRNA* is lowly expressed in proliferating conditions with ~9 copies per cell, while, upon
110 senescence induction, the expression of its short isoform increases up to ~86 copies (Suppl. Figure
111 2D).

112 Interestingly, *sin-lncRNA* levels increased only at later stages of senescence (Figure 1C and Suppl.
113 Figure 2A), prompting us to investigate whether its upregulation was dependent on the full activation
114 of a senescence program or rather related to the induction of the HRAS oncogene in OIS. To this

115 aim, we analyzed *sin-IncRNA* expression levels in different types of senescence, such as replicative
116 senescence - achieved by prolonged culture of untransformed IMR90 fibroblasts - and senescence
117 induced by ionizing radiation (γ -irradiation). **In all the systems analyzed *sin-IncRNA* expression was**
118 **strongly induced in the senescent context, correlating with known senescence markers**, such as
119 *CDKN2A* and *IL6* (Figure 1E and Suppl. Figure 2E).

120 Due to the strong and highly specific *sin-IncRNA* induction in senescence, we speculated that
121 senescence-specific factors could regulate the expression of this IncRNA. We took advantage of
122 ChIP-seq data generated in IMR90³⁰ cells to examine *sin-IncRNA* genomic region finding that the
123 transcription factor C/EBP β was bound to several positions in the proximity of *sin-IncRNA*
124 transcription start site (TSS) and gene body (Figure 1D). Interestingly, C/EBP β exerts an important
125 role in the later stages of senescence induction, mainly by activating genes related to inflammation
126 and SASP³¹. After confirming the previously reported C/EBP β upregulation in OIS² (Suppl. Figure
127 2F), we depleted C/EBP β in senescent cells and analyzed *sin-IncRNA* expression (Figure 1F, G and
128 Suppl. Figure 2G). Notably, the induction of *sin-IncRNA* in senescence was prevented by C/EBP β
129 depletion, similarly to what occurred to *IL1 β* , *IL6* and *IL8*, other canonical targets of this transcription
130 factor (Figure 1G). To further investigate whether or not *sin-IncRNA* is a C/EBP β transcriptional
131 target, we performed ChIP-qPCR of this transcription factor in proliferative and senescent
132 conditions (Figure 1H). C/EBP β was found enriched at *sin-IncRNA* regulatory regions and its binding
133 increased in senescent cells (Figure 1H), supporting the evidence that the senescence driver
134 C/EBP β controls *sin-IncRNA* expression at later stages of senescence induction and suggesting
135 that the IncRNA might exert a role in this response.

136 ***sin-IncRNA* loss contributes to the senescent phenotype through increase of oxidative stress**
137 To explore the function of *sin-IncRNA*, we depleted it in senescent IMR90 ER:RAS fibroblasts
138 (Suppl. Figure 3A) and analyzed several senescence markers at 5 days of induction to detect
139 intermediate states before the cells enter a fully stable senescent phenotype³². Interestingly, *sin-*
140 *IncRNA* KD further decreased proliferation of senescent cells (Figure 2A, C and Suppl. Figure 3B),

141 increased the percentage of β -galactosidase positive cells (Figure 2C) and activated the p53
142 signaling pathway (Figure 2D), without changing levels of apoptosis (Suppl. Figure 3C), indicating
143 that *sin*-lncRNA knockdown reinforces the senescent phenotype.

144 To investigate the broader significance of these results, we investigated other senescence systems
145 and methods for *sin*-lncRNA loss-of-function. We took advantage of TIG3 hTERT lung fibroblasts
146 engineered to express an inducible and constitutively active portion of the human BRAF oncogene
147 to drive OIS (TIG3 Δ BRAF:ER)³³. In this cell system, we again observed reduced proliferation upon
148 *sin*-lncRNA downregulation by RNAi (Suppl. Figure 3D-F), indicating that *sin*-lncRNA depletion
149 leads to the same phenotype regardless of the type of oncogene expressed. We also generated
150 TIG3 Δ BRAF:ER cell lines stably depleted of *sin*-lncRNA by CRISPR/Cas9 technology. Despite not
151 being able to isolate viable cell clones with *sin*-lncRNA biallelic deletion, we found that the removal
152 of just one allele was sufficient to decrease *sin*-lncRNA expression, leading to a consistent
153 strengthening of the senescence phenotype (Figure 2E-F and Suppl. Figure 3G-H). Altogether,
154 these results suggest that the loss of *sin*-lncRNA reinforces the induction of cellular senescence.

155 To investigate which aspect of the complex senescence response is influenced by *sin*-lncRNA, we
156 analyzed the global changes in gene expression by RNA-seq of *sin*-lncRNA-depleted ER:RAS
157 fibroblasts upon senescence induction (Figure 3A, Suppl. Figure 4A and Suppl. Table 2), and
158 employed Gene Set Enrichment Analysis (GSEA) to determine enriched pathways associated with
159 the observed changes in gene expression (Figure 3B and Suppl. Figure 4B). Interestingly, among
160 the most significantly reduced terms were several metabolic pathways, such as cholesterol
161 homeostasis and fatty acid metabolism. Moreover, mRNAs belonging to oxidative phosphorylation
162 pathway were significantly downregulated, including the mitochondrial ADP/ATP carrier ACC 1, 2,
163 3 (*SLC25A4*, *SLC25A5*, *SLC25A6*, respectively), which regulate key transport steps for cellular ATP
164 production³⁴ (Figure 3B-C).

165 Since metabolic rearrangements and altered oxidative phosphorylation (OXPHOS) are known to be
166 linked to senescence^{13, 35}, we speculated that *sin*-lncRNA could influence the metabolic states of

167 senescent cells. To analyze metabolic alterations upon *sin-*lncRNA** depletion, we measured the
168 oxygen consumption rate (OCR) coupled to ATP production during OXPHOS by Seahorse assay³⁶.
169 Compared to control senescent cells, *sin-*lncRNA** knockdown led to the reduction of several key
170 parameters of mitochondrial function, most significantly impacting maximal respiration rate,
171 mitochondrial spare capacity and coupling efficiency (Figure 3D, and Suppl. Figure 4C). We also
172 observed an increment in extracellular acidification rate (ECAR) in *sin-*lncRNA* depleted cells*, a
173 reflection of increased aerobic glycolysis that has been linked to defects in ATP production³⁷ (Figure
174 3E).

175 Since alterations in OXPHOS are also linked to increased oxidative stress³⁸⁻⁴⁰, we measured
176 intracellular levels of reactive oxygen and nitrogen species (ROS/RNS) and observed a significant
177 enrichment of oxidant species in *sin-*lncRNA*-depleted* senescent ER:RAS cells (Figure 3F),
178 suggesting that *sin-*lncRNA** is involved in the control of oxidative stress in senescent cells. The
179 increase in oxidant species and metabolic dysfunctions can reinforce senescence^{41, 42}. We
180 therefore hypothesized that *sin-*lncRNA** depletion might exacerbate senescence-related
181 mitochondrial alteration and promote oxidative stress, thereby leading to the observed senescence
182 reinforcement. Indeed, blocking ROS accumulation by N-acetyl-L-cysteine (NAC) treatment^{43, 44}
183 restored cell growth and reduced SA- β -galactosidase activation in senescent cells depleted for *sin-*
184 *lncRNA* (Figure 3G and Suppl. Figure 4D). Together these data support the notion that *sin-*lncRNA**
185 contributes to manage the metabolic rewiring and oxidative stress response of senescent cells.

186 ***sin-*lncRNA* interacts with DLST and controls its subcellular localization***

187 LncRNAs have been previously associated with defects in oxidative stress and metabolic pathways,
188 in particular in cancer, where they alter gene programs through different mechanisms^{19, 45}. To
189 elucidate how *sin-*lncRNA** regulates metabolic response of senescent cells, we first analyzed *sin-*
190 *lncRNA* subcellular localization by RNA-FISH and found it to be mainly enriched in the cytoplasm
191 of senescent fibroblasts (Figure 4A and Suppl. Figure 5A). Interestingly, an independent study⁴⁶
192 indicated that *sin-*lncRNA** is enriched in the mitoplasts of senescent cells (Suppl. Figure 5B). We

193 purified mitochondria from senescent cells by FACS sorting, and detected the presence of *sin-*
194 *lncRNA* along with mitochondrially encoded transcripts (Figure 4B and Suppl. Figure 5C). Together,
195 these data suggest that *sin-lncRNA* acts in the mitochondria to control proliferative and metabolic
196 pathways of senescent cells.

197 Reasoning that *sin-lncRNA* function could be mediated through interacting proteins, we set to
198 unbiasedly identify its protein partners by RNA pulldown. We incubated *in vitro* transcribed *sin-*
199 *lncRNA* or an unrelated control RNA with senescent IMR90 ER:RAS extracts and isolated
200 interacting proteins (material and methods) (Suppl. Figure 5D). Mass spectrometry (MS) revealed
201 several proteins enriched (>2 unique peptides) specifically associated with *sin-lncRNA* but not to
202 the control RNA (Suppl. Figure 5E and Suppl. Table 3). Notably, the most abundant proteins
203 retrieved by MS analysis were Dihydrolipoamide S-succinyltransferase (DLST) and DEAD-Box
204 Helicase 28 (DDX28), which localize in the mitochondria and have a recognized role in that
205 compartment⁴⁷, in line with our findings linking *sin-lncRNA* to senescent cell metabolism.

206 DLST, identified as the main *sin-lncRNA* interactor, is the E2 component of the α -ketoglutarate (α KG)
207 dehydrogenase complex (KGDH), which is essential for the entry of glutamine into the tricarboxylic
208 acid (TCA) cycle⁴⁸ (Figure 4C). DLST has been recently identified as an RNA binding protein in an
209 RNA binding screen⁴⁹. We orthogonally confirmed the interaction between the endogenous *sin-*
210 *lncRNA* and DLST by RNA Immunoprecipitation in senescent fibroblasts (Figure 4D and Suppl. Fig
211 5F), suggesting they are functionally related. In order to map the region of *sin-lncRNA* interacting
212 with DLST, we performed *in vitro* pulldown with biotinylated fragments spanning the 539
213 nucleotides of the full-length transcript. We observed that all fragments except F1 (1-150 nts) are
214 involved in the binding (Suppl. Fig 5G).

215 We then sought to investigate whether *sin-lncRNA* would regulate DLST expression or stability.
216 However, DLST mRNA and protein levels were not affected upon *sin-lncRNA* knockdown and
217 remained stable upon senescence induction (Suppl. Figure 5H, I), indicating that neither *sin-lncRNA*
218 nor cellular senescence modulate DLST expression. Of note, DLST is a protein that shuttles

219 between different subcellular compartments. While its main activity takes place in the mitochondria,
220 it is also localized in the nucleus, where it is known to regulate gene expression⁵⁰⁻⁵². We therefore
221 investigated whether DLST localization might be regulated by the lncRNA. Interestingly, cellular
222 fractionation of senescent cells upon *sin-lncRNA* depletion showed that DLST levels were
223 significantly decreased in the cytoplasm and increased in the nuclear fraction of cells (Figure 4E) in
224 contrast to control senescence conditions (Suppl. Figure 5J), suggesting that *sin-lncRNA* controls
225 the subcellular localization of the metabolic enzyme DLST.

226 ***sin-lncRNA* rewires metabolic activity in senescent cells**

227 Given the change of DLST localization observed upon *sin-lncRNA* depletion, we sought to compare
228 the phenotype of DLST depletion with the phenotypic alterations observed upon *sin-lncRNA*
229 knockdown in senescent cells, as previous reports demonstrated increased ROS production upon
230 DLST knockdown⁵³. DLST knockdown in senescent fibroblasts led to an increase in the percentage
231 of β-galactosidase positive cells and decreased cell growth (Figure 5A, B), thus phenocopying in
232 this regard *sin-lncRNA* knockdown. Deeper analysis of metabolic alterations showed an increase
233 in lactate secretion in both *sin-lncRNA* and DLST-depleted senescent cells compared to control
234 cells (Figure 5C), probably as a result of higher glycolytic activity in these cells (Figure 3C).

235 We further investigated the role of *sin-lncRNA* in metabolism by comparing changes in the levels of
236 glutamine-derived metabolites upon *sin-lncRNA* and DLST knockdown in senescent cells using
237 Liquid Chromatography - Mass Spectrometry (LC-MS) and fully labeled [$U-^{13}C$] glutamine as a
238 tracer (Figure 5D). The glutamine labeled fraction in cells grown with [$U-^{13}C$] glutamine consisted of
239 >90% M+5 glutamine in all conditions, demonstrating equal incorporation of the labeled substrate
240 (Suppl. Figure 6A). While DLST knockdown strongly affected the TCA cycle, by decreasing the rate
241 of glutamine oxidative metabolism, depletion of *sin-lncRNA* did not alter either oxidative or
242 reductive TCA cycle activity (Suppl. Figure 6A, B and Suppl. Table 4). [These results indicate that](#)
243 [depletion of *sin-lncRNA* does not fully reproduce the metabolic effects of the knockdown of DLST,](#)
244 [as expected, based on the protein relocalization caused by *sin-lncRNA* downregulation.](#)

245 We hypothesized that, upon *sin-*lncRNA** knockdown, alternative mechanisms might intervene to
246 maintain a metabolic balance and compensate for deficiencies in KGDH complex activity. In
247 agreement with this idea, the expression levels of the main enzymes implicated in the GABA shunt,
248 an alternative route for the conversion of glutamate to succinate bypassing the TCA cycle⁵⁴ were
249 upregulated in *sin-*lncRNA** knockdown cells (Figure 5D). We thus reasoned that the lack of the
250 *lncRNA* resulted in a phenotypic output consequence of the decrease of DLST mitochondrial levels
251 combined with events driven by increased nuclear levels of the protein.

252 DLST harbors a nuclear localization signal (NLS) that allows its translocation to the nucleus
253 promoting the succinylation of H3K79⁵². Of note, we observed a significant overlap between
254 mRNAs regulated by *sin-*lncRNA** and genes regulated by KGDH-mediated H3K79 succinylation
255 according to a prior study⁵² (Suppl. Figure 6C). We therefore investigated if DLST translocation
256 could be involved in the observed transcriptional changes. Interestingly, overexpression of the wild
257 type DLST in senescent cells decreased the transcription of a subset of metabolic mRNAs,
258 mimicking the effect of the depletion of *sin-*lncRNA** (Fig 5E and Suppl. Figure 6E, F). In contrast, a
259 mutant DLST that is not able to enter the nucleus, (R224A/K226E)⁵² had no effect (Figure 5E). In
260 fact, a previous study showed that relevant metabolic genes present H3K79Succ chromatin mark⁵²
261 (Suppl. Figure 6D). Strikingly, we observed that H3K79Succ increased on these genes upon *sin-*lncRNA**
262 depletion in senescent cells, correlating with an increase in nuclear DLST (Figure 5F). These
263 results show that the nuclear, but not the cytoplasmic form of DLST, was able to reproduce the
264 gene expression changes observed upon depletion of *sin-*lncRNA**, supporting that the nuclear
265 shuttling of DLST causes compensatory transcriptional changes observed in *sin-*lncRNA**
266 knockdown condition.

267 ***sin-*lncRNA** regulates OXPHOS in ovarian cancer cells**

268 Our results indicate that *sin-*lncRNA** is a regulator of the metabolic state of the senescent cells. To
269 gain insight into the potential significance of *sin-*lncRNA** function in a physio-pathological context,
270 we interrogated gene expression data of tumor samples available through The Cancer Genome

271 Atlas (TCGA). *sin-*lncRNA** presented low expression across cancer types (Suppl. Figure 7A.), its
272 expression negatively correlated with that of genes involved in active cell division, such as cyclins,
273 as *CCNA2*, and members of the origin replication complex, such as *ORC1* and *MCM6*⁵⁵ (Suppl.
274 Figure 7B). Accordingly, terms related to cell cycle and mitosis were the most enriched Gene
275 Ontology pathways associated with these genes (Suppl. Figure 7C). Since all these cell division-
276 related genes presented a negative correlation with the senescence-specific *sin-*lncRNA**, we
277 speculated that a high expression of this noncoding transcript would predict cells with arrested cell
278 cycle (e.g. senescent/quiescent cells), in line with the upregulation of *sin-*lncRNA** upon OIS.
279 While tumor cells are highly proliferative, it has been shown that chemotherapy can induce cellular
280 senescence, which can be linked to the resistance to treatment⁷. To investigate the potential
281 significance of *sin-*lncRNA** in response to cancer therapy, we analyzed the expression of the *lncRNA*
282 in cisplatin-treated ovarian cancer cells, given their ability to undergo senescence upon treatment
283 with platinum-based agents⁵⁶. 10 days after cisplatin treatment, COV362 cells displayed a fully
284 senescent phenotype, as confirmed by the expression of senescence markers, such as β -
285 galactosidase and the induction of cell cycle inhibitors and SASP components (Figure 6A-B).
286 Interestingly, we observed a strong increase of *sin-*lncRNA** expression in the senescent cells,
287 whereas it was undetectable in untreated cells (Figure 6C). Cisplatin treatment also upregulated
288 C/EBP β expression (Figure 6D), suggesting that, also in the cancer cells, this transcription factor is
289 responsible for the transcriptional activation of *sin-*lncRNA**. As previously shown for senescent
290 fibroblasts, knockdown of *sin-*lncRNA** in cisplatin-treated COV362 cells reduced the expression of
291 mRNAs involved in OXPHOS pathway (Figure 6E), which was reflected in alterations in the
292 metabolic functions, as a decreased maximal respiration and increased ECAR (Figure 6F, G).
293 Moreover, knockdown of either *sin-*lncRNA** or DLST further decreased cell growth compared to
294 control senescent cells (Figure 6H) indicating that depletion of the senescence-specific *lncRNA*
295 sensitizes ovarian cancer senescent cells to cisplatin treatment.

296 Altogether, these data provide evidence that a lncRNA uniquely expressed in senescent cells
297 contributes to the configuration of their metabolic state, also when senescence is induced in cancer
298 cells, thus representing a valuable marker and potential target in aging and cancer.

299 **DISCUSSION**

300 Although senescence has been traditionally considered a static terminal condition, it is now
301 recognized as a dynamic stepwise process, which involves a plethora of factors that coordinately
302 ensure its correct progress. We have identified a lncRNA that is specifically expressed at later
303 stages of senescence induction to maintain the metabolic balance of these cells. Such precise
304 induction is linked to a timely transcriptional activation mediated by the SASP master regulator
305 C/EBP β ; a transcription factor known to promote the later inflammatory phase of the senescent
306 program³¹. Remarkably, depletion of *sin-lncRNA* is linked to the activation of some inflammatory
307 signals as well as extracellular matrix remodeling pathways, gene networks that are induced during
308 the second phase of senescence induction. *sin-lncRNA* depletion reinforces the senescence
309 response, altering many of the canonical senescence markers. This is likely a consequence of the
310 augmented ROS production, which feeds forward the senescent phenotype.

311 Mitochondria are the main source of ROS in the cell⁵⁷. Interestingly, one of the most deregulated
312 pathways upon *sin-lncRNA* depletion is OXPHOS, which reflects mitochondrial dysfunction and
313 results in high levels of ROS production⁵⁸. High levels of ROS are critical for onset and maintenance
314 of cellular senescence, although it remains difficult to decipher whether they are the cause or
315 consequence of the senescence process⁵⁹. Nevertheless, several factors are involved in feedback
316 mechanisms to prevent an uncontrolled ROS increase⁶⁰. We have found that *sin-lncRNA* interacts
317 with DLST, an enzyme of the TCA cycle, a process that is tightly interconnected to OXPHOS and a
318 main source of ROS⁶¹. Interestingly, it has been previously shown that the KGDH complex is
319 sensitive to ROS and involved in ROS production⁶², and inhibition of this enzyme might be critical
320 in the metabolic deficiency induced by oxidative stress⁶³. DLST depletion in senescent cells mimics

321 *sin*-lncRNA knockdown by exacerbating growth arrest and β -galactosidase staining. Moreover,
322 both *sin*-lncRNA and DLST downregulation result in increased extracellular acidification rate and
323 lactate production, suggesting a shift in the energy production pathway towards glycolysis. This
324 may reflect a mechanism for escaping the restrictions caused by the increased oxidative stress.
325 Interestingly, we have observed different effects when measuring the specific glutamine-derived
326 TCA metabolites by LC-MS. Whereas inhibition of DLST strongly affects different steps of the TCA
327 cycle, *sin*-lncRNA depletion does not result in such changes. The fact that different enzymes
328 involved in the GABA shunt pathway are found to be overexpressed in these cells, would explain
329 these differences as it could contribute to maintaining TCA cycle activity in *sin*-lncRNA depleted
330 cells. This compensatory mechanism might also explain the fact that the basal respiration rate is
331 not affected in *sin*-lncRNA knockdown cells, while the maximal respiration and the spare capacity
332 are strongly decreased. Previous studies have described similar changes in mitochondrial capacity
333 following silencing of the ACC ADP/ATP carriers, suggesting an important role for AACs in
334 maintaining metabolic spare capacity ⁶⁴. Besides, inhibition of ATP synthase activity has been
335 shown to promote metabolic rewiring to an enhanced aerobic glycolysis and the subsequent
336 production of mitochondrial reactive oxygen species ³⁷. Additional transcriptional alterations
337 observed in metabolic genes such as ADP/ATP carriers might contribute to the phenotypic
338 alterations observed upon *sin*-lncRNA knockdown.

339 Of note, we have identified as a potential *sin*-lncRNA interactor DDX28, which plays a role in
340 OXPHOS and is also known to shuttle from the nucleus to the cytoplasm and mitochondria ⁴⁷.
341 Therefore, we cannot exclude that *sin*-lncRNA might regulate other aspects of metabolism at the
342 interface between cytoplasm and mitochondria or even other subcellular compartments.
343 Interestingly, TCA enzymes have been found to translocate into the nucleus where they have roles
344 in epigenetic regulation ⁶⁵⁻⁶⁸. In particular, the KGDH complex which generates succinyl-CoA, has
345 been demonstrated to contribute to histone succinylation affecting expression of cell cycle genes
346 ⁵² and altering metabolic states ⁶⁹. Overexpression of wild type DLST is able to reproduce the effect

347 of *sin-*lncRNA** depletion on the transcription of metabolic genes, whereas a mutant which is not
348 able to translocate to the nucleus does not (Figure 5E). Although the mechanism underlying this
349 response needs to be further explored, these results indicate that the two forms have a different
350 impact in transcriptional regulation. Interestingly, we observed a significant overlap between the
351 genes deregulated by the knockdown of *sin-*lncRNA** and the H3K79Succ peaks, with key metabolic
352 genes affected⁵² (Suppl. Figure 6D, E and Fig. 5F), suggesting that *sin-*lncRNA** knockdown leads
353 to changes in this histone mark regulating metabolic transcription programs. Thus, while *sin-*
354 *lncRNA* expression in senescent cells is relatively high (~80 molecules per cell), it does not appear
355 sufficient to serve as a structural scaffold for the KGDH complex. Instead, *sin-*lncRNA** likely
356 functions as a signal amplifier, linking mitochondrial processes to nuclear transcriptional programs.
357 The molecular mechanism of interaction between DLST (KGDH complex) and *sin-*lncRNA**, and how
358 it influences the localization of the protein remains to be understood, our observations are in line
359 with the growing evidence that many metabolic enzymes interact with regulatory RNAs^{27, 70}. For
360 instance, recent pre-print work from the Hentze laboratory has shown that RNA is required for
361 proper mitochondrial import of ATP5A1⁷¹. All this emerging evidence suggests the presence of an
362 undiscovered RNA-protein network with significant implications for regulating cellular energy
363 metabolism.

364 Platinum-based therapies, currently used as the first line of treatment for patients with ovarian
365 cancer, are known to induce senescence in cancer cells⁷². Although therapy-induced senescence
366 (TIS) has been considered a desirable outcome of cancer therapy, the activation of the senescence
367 program has been shown to induce the rewiring of cellular metabolism promoting the pro-tumorigenic
368 and pro-metastatic potential of ovarian cancer cells⁷³. Here, we show that *sin-*lncRNA** is specifically
369 induced in ovarian cancer cells that undergo senescence and contributes to sustain the metabolic
370 demands to maintain senescence in cancer cells upon drug treatment. Emerging studies link
371 metabolic reprogramming to cancer drug resistance⁷⁴. Indeed, cisplatin-resistant cells exhibit
372 increased fatty acids (FA) uptake, accompanied by decreased glucose uptake and lipogenesis,

373 indicating reprogramming from glucose to FA dependent anabolic and energy metabolism ⁷⁵.
374 Importantly, other metabolic processes affected by *sin-*lncRNA** depletion in senescent fibroblasts
375 seen at the transcriptional level include fatty-acid metabolism. Depletion of *sin-*lncRNA** might
376 sensitize ovarian tumor cells to cisplatin by metabolic reprogramming at different levels.
377 Metabolic enzymes required for the tricarboxylic acid cycle have been shown to affect senescence
378 by regulating p53 ⁷⁶. Importantly, advances in the field of RNA interactome capture have
379 demonstrated that the interplay between metabolic enzymes and RNA is broader than previously
380 considered ^{27, 70}. These studies have revealed the RNA binding capacity of many enzymes, although
381 the precise mechanism or the physiological relevance requires deeper characterization. Emerging
382 evidence indicates that lncRNAs may contribute to cellular processes in order to adapt and
383 coordinate mitochondrial function to adjust their activities to the environmental conditions ^{27, 77, 78}.
384 We propose that distinct cellular states or stresses that result in metabolic changes involve the
385 function of ncRNAs that contribute to the reconfiguration of the cell metabolism. The exquisite
386 specificity of *sin-*lncRNA** in senescence highlights its potential role as a therapeutic target. This
387 discovery paves the way for better comprehension of therapy-induced senescence and its
388 associated implications.

389

390 MATERIALS AND METHODS

391 Cell culture, retroviral infection and treatments

392 IMR90 lung fibroblasts and HEK-293T cells were purchased from ATCC. TIG3 hTERT pMSCV-
393 ER:ΔBRAF lung fibroblasts ³³ were kindly provided by Dr. Lund's laboratory (BRIC - Copenhagen,
394 Denmark). All cell lines were cultured in DMEM medium (GIBCO), supplemented with 10% fetal
395 bovine serum (GIBCO) and 1x penicillin/streptomycin (Lonza). Cells were maintained at 37°C in the
396 presence of 5% CO₂ and tested for mycoplasma contamination regularly, using the MycoAlert
397 Mycoplasma Detection Kit (Lonza).

398 To generate OIS cell systems, viruses were first produced in HEK-293T cells transfected with 12μg
399 of either pLNC-ER:RAS or pLNCX (Empty) vectors, 6μg of gag-pol plasmid, 3μg of pVSVG vector

400 and 1 μ g of pMAX-GFP plasmid (to check transfection efficiency). Transfection reaction was carried
401 out in opti-MEM medium (GIBCO) using Lipofectamine 2000 (Invitrogen), following manufacturer's
402 instructions. 48 hours after transfection, filtered supernatant supplemented with 4 μ g/ml polybrene
403 (Santa Cruz), was used to transduce low passage IMR90. Cells were selected with Neomycin-G418
404 (Sigma) at a final concentration of 400 μ g/ml for at least one week.

405 For senescence induction studies, IMR90 ER:RAS or TIG3-hTERT Δ ER:BRAF fibroblasts have been
406 treated with 200nM of 4-hydroxy-tamoxifen (4OHT) for three days unless specified otherwise in the
407 text. When longer time courses were needed, medium was replaced on day 3. Only normal
408 fibroblasts cell lines with less than 20-25 passages were used for experiments.

409 COV362 cells were obtained from SIGMA, kindly provided by Dr. Beatriz Tavira (CIMA) and cultured
410 in DMEM medium (GIBCO), supplemented with 10% fetal bovine serum (GIBCO) and 1x
411 penicillin/streptomycin (Lonza). For senescence induction the cells were treated with 10 μ M
412 cisplatin for 10 days.

413 N-Acetyl-L-cysteine (NAC, SIGMA) was added at 5 mM 1h prior 4-OHT treatment and for the
414 duration of the experiment.

415 ***DLST WT and DLST NLS mutant -overexpressing cell lines***

416 To generate lentiviral constructs, we cloned the full-length *DLST* sequence amplified from cDNA
417 into the inducible vector pLVX-TetOne Puro Vector (Clontech). For the mutant form, we used as a
418 template a plasmid synthesized by Genescrypt. We used In-Fusion HD Cloning designing primers
419 according to the manufacturer's indications (see primer sequences in Suppl. Table 5).

420 For the lentiviral production, HEK293T cells were transfected using Lipofectamine 2000 (Life
421 Technologies) with 7 μ g of pLTVX-WT-DLST or pLTVX-Mut-DLST (R224A/K226E), together with 6 μ g
422 of VsVg and 5 μ g Pax8 viral plasmids. After 48h, supernatants containing the viral particles were
423 filtered through a 0.45- μ m filter. Confluent IMR90 ER:RAS cells were then infected with one-third
424 of the viral supernatant and 8 μ g/ μ l polybrene. Twenty-four hours post infection, the cells were

425 selected with 1µg/µl puromycin. Cells were maintained in tetracycline-free tested serum (Clontech).

426 For the expression of the protein 100ng/ml doxycycline was used for 72h.

427 **Irradiation**

428 To induce senescence by ionizing radiation, IMR90 cells were γ -irradiated at 5Gy and harvested at
429 the indicated times. Radiation was delivered at 180 cGy/min using a Siemens Oncor Impression
430 Plus linear accelerator equipped with 6MeV X rays.

431 **RNAi studies**

432 For siRNA studies, cells were transfected once with a final concentration of 40nM siRNA using
433 Lipofectamine 2000 (Invitrogen) in opti-MEM medium (GIBCO), unless differently stated in the text.
434 Scrambled siRNA (siRNA CTRL in the text) was used as transfection control. All siRNAs employed
435 in this study were designed using BLOCK-iTTM RNAi Designer
436 (<https://rnaidesigner.thermofisher.com/rnaiexpress/>) and purchased from Sigma, except C/EBP β
437 siRNA, a kind gift of Dr. Aragón (CIMA - Pamplona, Spain).

438 To induce senescence in transfected cells, the transfection medium was replaced after 6 hours with
439 complete medium containing 200nM 4OHT. When a senescence induction longer than 3 days was
440 needed, transfected cells were trypsinized and re-plated to perform multiple analyses in parallel. All
441 siRNAs used in this study are listed in Suppl. Table 5.

442 **CRISPR-Cas9 gene editing and CRISPR clonal cell lines generation**

443 The CRISPR Design Tool from the Zhang Lab (<http://crispr.mit.edu/>) was used to find suitable target
444 sites for the Streptococcus pyogenes Cas9 (SpCas9) in *sin-IncRNA* genomic region. Specific guide
445 RNAs (sgRNA_up and sgRNA_dw, see Suppl. Table 5) were cloned into the lentiviral plasmid
446 lentiCRISPRv2 carrying spCas9 gene and puromycin resistance, a kind gift from Dr. Agami's lab
447 (NKI - Amsterdam, Netherlands) and originally generated in Dr. Zhang's lab (for details, see plasmid
448 reference #5296113 on Addgene website).
449 LentiCRISPR vectors carrying the two independent sgRNAs were separately transfected in HEK-
450 293T cells to generate viral particles, as described above. LentiCRISPR viruses were mixed (ratio

451 1:1) and used to transduce TIG3-hTERT ΔER:BRAF fibroblasts, then selected with 1µg/ml of
452 puromycin. Single puromycin-resistant TIG3 cells were sorted in 96-well plates, using untreated
453 TIG3 fibroblasts as feeder cells, which were then eliminated by a second round of puromycin
454 selection (0.5µg/ml). Genomic DNA was isolated from puromycin-resistant clones using
455 QuickExtract DNA extraction solution (Lucigen), PCR amplified and tested on agarose gel for
456 accurate deletion.

457 **Cell proliferation assays**

458 For crystal violet assay upon OIS, 1-2×10⁴ untreated or transfected cells were plated in 6-well plates
459 and senescence induction was prolonged for 5 days in 4-OHT medium. Cells were fixed with 0.5%
460 glutaraldehyde for 15 min and stained with 0.1% Crystal Violet solution (Sigma) for 30 min. To
461 quantify cell density, cells were incubated with 500µl of 10% acetic acid (Sigma) and collected in
462 ELISA plates. Absorbance was measured by spectrophotometry at 570 nm in a SPECTROstar Nano
463 equipment.

464 For BrdU incorporation assay, cells were labeled with 50 µM BrdU solution (BD Pharmingen) for 16-
465 18 hours. In case of senescent cells, OIS was previously induced for 5 days before starting BrdU
466 assay. Then, cells were harvested by trypsinization and BrdU staining was performed using BrdU
467 Flow Kits (BD Pharmingen), according to manufacturer's instructions. Amount of BrdU
468 incorporation was measured by flow cytometry using a FACSCalibur Cell Analyzer (BD Bioscience).

469 **Apoptosis staining**

470 Apoptosis was measured using BD Pharmingen™ PE Annexin V Apoptosis Detection Kit I (BD
471 Bioscience). Briefly, cells were washed twice with cold PBS and then resuspend cells in 1X Binding
472 Buffer at a concentration of 1 x 10⁶ cells/ml. 1 x 10⁵ cells were stained with 5 µl of PE Annexin
473 V and 5 µl 7-AAD. After 15 mins incubation at RT in the dark. 400 µl of 1X Binding Buffer was added
474 to each tube. Apoptosis levels were measured by flow cytometry using a FACSCalibur Cell Analyzer
475 (BD Bioscience).

476 **Senescence Associated galactosidase (SA- β -gal) staining**

477 To detect SA- β -gal activity, 1×10^3 of untreated or transfected cells were plated in 6-well plates and
478 senescence was induced for 8 days upon 4-OHT treatment. Cells were fixed with 0.5%
479 glutaraldehyde solution for 15 min at RT and washed with PBS containing 1mM MgCl₂ (pH 6.0).
480 Then, cells were incubated overnight at 37°C in X-gal staining solution (1mg/ml X-gal [Thermo
481 Fisher], 0.12 mM K3Fe(CN)6 [Merk], 0.12 mM K4Fe(CN)6 [Merk], PBS/MgCl₂ [pH 6.0]). Cells were
482 washed and percentage of blue cells was counted manually using an inverted microscope.

483 **ROS/RNS measurement assay**

484 Senescent IMR90 ER:RAS fibroblasts transfected with *sin-IncRNA* targeting or control siRNAs were
485 collected by trypsinization and re-suspended at $0.5-1 \times 10^6$ cells/ml in Hypotonic Buffer (10mM Tris
486 HCl [pH 7.5], 10mM NaCl, 1.5mM MgCl₂). To facilitate membrane lysis, cells were incubated for 10
487 min at 4°C and sonicated for 5 cycles (30"ON-30"OFF) in a Bioruptor sonication device. Cell extract
488 was cleared by centrifugation and assayed for ROS/RNS accumulation by fluorescence-based
489 approach using OxiSelect in vitro ROS/RNS Assay Kit (Cell Biolabs), following manufacturer's
490 instructions. The amount of fluorescent oxidized probe (2', 7' -dichlorodihydrofluorescein or DCF)
491 was measured with a fluorescence plate reader at 480nm excitation / 530nM emission. Data were
492 interpolated to a DCF standard curve to obtain absolute values.

493 **Measurement of oxygen consumption and extracellular acidification**

494 Cellular OCR was measured using a Seahorse XF Cell Mito Stress Test and a Seahorse Bioanalyzer
495 XFe96 (Agilent Technologies) according to the manufacturer's standard protocol. Briefly, 200,000
496 IMR90 cells were reverse transfected with the corresponding siRNAs in 6 well plates. After 24h cells
497 were treated with 500 nM 4-OHT. After 3 days of treatment, cells were trypsinized and seeded on
498 Seahorse XF96 Cell Culture microplates to confluence (10000 cells/well) and were subjected to
499 metabolic profiling the next day. For Mito stress tests, cells were cultured for 1 h in a CO₂-free
500 incubator at 37 °C. Oxygen consumption rates (OCR) were monitored at basal conditions and, after
501 sequential injections of 1 μ M oligomycin to block the mitochondrial ATP synthase, 1.5 μ M FCCP to

502 uncouple oxidative phosphorylation, 1 μM antimycin A and 1 μM rotenone were used to fully inhibit
503 mitochondrial respiration and 50 mM 2-deoxyglucose (2-dG) to block glycolysis. Two separate
504 measurements of OCR and extracellular acidification rate (ECAR) from 4 independent experiments
505 were taken after the addition of each inhibitor. Samples were normalized based on the protein
506 concentration. All reagents were purchased from Agilent Technologies.

507 **Lactate measurements**

508 IMR90 ER:RAS fibroblasts were transfected with *sin-*lncRNA** targeting or control siRNAs and
509 treated with 4-OHT for 6 days. The supernatant was harvested and centrifuged for 5 min at 500 g.
510 Lactate levels were measured using Cobas C311 Analyzer with LACT2 kits (Roche Diagnostics
511 GmbH). Human Precinorm y Precipath were used as controls.

512 **Liquid Chromatographic -Mass Spectrometry (LC-MS) metabolomics**

513 *Isotope labelling*

514 6-days senescent IMR90 ER:RAS fibroblasts transfected with siRNA control or siRNA against *sin-*
515 *lncRNA* or DLST were incubated with glutamine-free DMEM supplemented with 4mM L-¹³C₅-
516 Glutamine (Cambridge Isotopes Laboratories) . After 6 hours the cells were washed with PBS 1x
517 and snap-freeze in liquid nitrogen.

518 *Sample preparation and LC/MS methods*

519 LCMS was performed at the Metabolomics Platform at CIC bioGUNE (Donostia, Spain). Cells from
520 three wells (1E6 cells/well) were pooled to obtain one LCMS sample. Therefore, cells were extracted
521 with 200 μL icecold extraction liquid per well. The volume from one well was transferred to the next
522 and finally the resulting 600 μL volume was passed over the three wells two times. The extraction
523 liquid consisted of a mixture of ice-cold methanol/water (50/50 %v/v). Subsequently 400 μL of the
524 cell homogenate plus 400μL of chloroform was transferred to a new aliquot and shaken at 1400
525 rpm for 60 minutes at 4 °C. Next the aliquots were centrifuged for 30 minutes at 14000 rpm at 4 °C.
526 250μL of the aqueous phase was transferred to a fresh aliquot. The chilled supernatants were
527 evaporated with a speedvac in approximately 2h. The resulting pellets were resuspended in 150 μL

528 water/MeOH (75/25 %v/v). Samples were measured with a UPLC system (Acquity, Waters Inc.,
529 Manchester, UK) coupled to a Time-of-Flight mass spectrometer (ToF MS, SYNAPT G2S, Waters
530 Inc.). A 2.1 x 100 mm, 1.7 μ m Phenyl-Hexyl column (Waters Inc.), thermostated at 40 °C, was used
531 to separate the analytes before entering the MS. Mobile phase solvent A (aqueous phase) consisted
532 of 99.5% water and 0.5% FA while solvent B (organic phase) consisted of 99.5% MeCN and 0.5%
533 FA. In order to obtain a good separation of the analytes the following gradient was used: from 98%
534 A to 0% A in 2 minutes in curved gradient (#8, as defined by Waters), constant at 0% A for 1 minute,
535 back to 98% A in 0.2 minutes. The flow rate was 0.250 mL/min and the injection volume was 3 μ L.
536 After every 6 injections, a sample was injected. The MS was operated in negative electrospray
537 ionization in full scan mode. The cone voltage was 10 V, cone offset was 50V and capillary voltage
538 was 400 V. Source temperature was set to 120 °C and capillary temperature to 500 °C. The flow of
539 the cone, desolvation and nebulizer gas (nitrogen) were set to 5 L/h, 6 L/h and 850 L/h, respectively.
540 A 2 ng/mL leucine-enkephalin solution in water/acetonitrile/formic acid (49.9/50/0.1 %v/v/v) was
541 infused at 10 μ L/min and used for a lock mass which was measured each 36 seconds for 0.5
542 seconds. Spectral peaks were automatically corrected for deviations in the lock mass. Extracted
543 ion traces for relevant analytes were obtained in a 10 mDa window in their expected *m/z*-channels.
544 These traces were subsequently smoothed and peak areas integrated with TargetLynx software.
545 Signals of labeled analytes were corrected for naturally occurring isotopes. Since we also had
546 unlabeled experiments, for some metabolites we could determine the naturally occurring isotope-
547 distribution empirically. This was necessary for the first and second isotopomers since correcting
548 with theoretical values did not eliminate these isotopes from unlabeled experiments. This is
549 probably because signals are non-linear with respect to ion-counts, *i.e.* higher ion-counts tend to
550 have *relatively* lower signals than lower ion-counts due to saturation of the detector. The calculated
551 raw signals were adjusted by median fold-change (MFC) adjustment. This is a robust adjustment
552 factor for global variations in signal due to e.g. difference in tissue amounts, signal drift or
553 evaporation. The MFC is based on the total amount of detected mass spectrometric features

554 (unique retention time/mass pairs). The calculations and performance of the MFC adjustment
555 factors are described in the following publications^{79, 80}.

556 **Immunofluorescence and RNA fluorescence in situ hybridization (RNA-FISH)**

557 For fluorescence-based studies, IMR90 ER:RAS cells were collected by trypsinization after required
558 treatments (as specified in the text) and re-plated on top of cover glasses placed on clean 6-well
559 plates. The following day, cells were washed and fixed for 15 min at room temperature (RT) using
560 3% methanol-free formaldehyde solution (Thermo Fisher).
561 For immunofluorescence studies, fixed cells were washed (PBS/0.5% NP-40) and incubated first
562 with block solution (10% FBS in wash buffer) for 20 min and then with primary antibody diluted in
563 block solution for 1 hour at RT. Antibody solution was washed out and cells were incubated with
564 fluorophore-conjugated secondary antibody for 30 min. After extensive washes, cover glasses were
565 mounted on microscope slides using DAPI-containing mounting solution (Palex Medicals) and
566 pictures were collected with an automated optical microscope running Zen 2 core imaging software
567 (Zeiss), according to standard procedures.

568 For RNA-ISH studies, fluorescein-labeled Locked Nucleic Acid (LNA) DNA probes were designed
569 and synthesized by Exiqon and were hybridized according to manufacturer's protocol with some
570 modifications. Briefly, fixed cells were first incubated with 70% ethanol for 1 hour and then with
571 Acetylation Buffer (0.1M Triethanol Amine, 0.5% (v/v) Acetic Anhydride) for 30 min at RT. To avoid
572 non-specific probe binding, cells were incubated with Hybridization buffer (10% dextran sulfate,
573 50% formamide, 2x saline-sodium citrate [SSC] buffer) for 1 hour at 55°C. Specific LNA probes
574 were denatured at 92°C for 4 min and then mixed with Hybridization buffer at a final concentration
575 of 20nM. Hybridization was carried out overnight at 55°C. The following day, probes residues were
576 eliminated using 2x SSC wash buffer and fixed cells were treated with 3% Hydrogen Peroxide for
577 30 min at RT. For fluorescein (FAM) detection, cells were first incubated 1 hour with Blocking Buffer
578 (10% heat-inactivated Goat Serum, 0.5% Blocking Reagent [Roche] in PBS-0.5% Tween) and then
579 1 hour with 1.5U/ml αFAM-POD antibody (Roche) diluted in Blocking Buffer. After extensive

580 washes, fluorescent signal was developed by 10 min incubation with TSA-Cy3 solution (Perkin
581 Elmer). Residues were eliminated through stringent 4x SSC washing and slides were prepared for
582 microscope detection using DAPI mounting solution, as mentioned above.
583 Slides were imaged on a fluorescence inverted microscope using a 63x objective. At least 10 optical
584 stacks were acquired per image for DAPI (nuclear stain) and for the fluorescence channel
585 corresponding to the RNA FISH probe (Cy3). Image processing was performed using Zen software
586 (version 2.3 - Zeiss) and for each condition, signal was adjusted on a sample incubated with no
587 probes and used as control for background detection. ImageJ software was employed for stacks
588 deconvolution.

589 **Protein extraction and immunoblot analysis**

590 Cells were lysed for 15 min in rotation at 4 °C using RIPA buffer (150mM NaCl, 25mM Tris HCl [pH
591 7.5], 2mM EDTA, 0.1% sodium deoxycholate [Na-DOC], 0.1% SDS, 1% Triton X-100) supplemented
592 with 1x cOmplete Protease Inhibitor Cocktail [Roche]. For detection of phosphoproteins, 1x
593 PhosSTOP phosphatase inhibitor [Roche] was freshly added to RIPA solution. Lysed cells were
594 centrifuged at max speed for 10 min at 4 °C and the insoluble pellet was discarded. Protein
595 concentration was estimated by Pierce BCA Protein Assay Kit, using BSA curve as reference and
596 according to manufacturer's instructions. Proteins were separated on denaturing SDS-PAGE gels
597 and transferred to a nitrocellulose membrane [Biorad] following standard procedures. Membranes
598 were blocked using skim milk or BSA (VWR) and probed first for primary and then for HRP-
599 conjugated secondary antibody. Western Lightening ECL- Plus (Perkin Elmer) was employed for
600 chemiluminescence detection of proteins. The list of antibodies used in this study can be found in
601 Suppl. Table 5.

602 **Cellular Fractionation**

603 IMR90 cells were reverse transfected with control or siRNA 1/3 *sin-IncRNA*. The day after
604 transfection cells were treated with 500 nM 4-OHT for 5 days. Cells were scrapped in cold PBS and
605 centrifuge 5 min 0.2g. Pellets were resuspended in NIB buffer (1.28 M Sucrose, 40 mM Tris pH 7.4,

606 20 mM MgCl₂, 4% Triton X-100), incubated on ice for 20 min and centrifuged 15 min at 2500rpm.
607 The supernatant was kept as the cytosolic fraction and further cleaned by an extra centrifugation
608 step. Nuclear pellets were washed twice with NWB (40 mM Tris pH 7.4, 20 mM MgCl₂) by
609 centrifugation 15 min at 2500 rpm. RIPA (150 mM NaCl, 25 mM Tris pH 8, 0.1% SDS, 0.1 % Na-
610 Deoxycholate, 2 mM EDTA, 1% Triton X-100) buffer was used to lyse the nuclei. After 10 min
611 centrifugation at max speed the supernatant was isolated as the nuclear fraction. Immunoblot
612 analysis was performed as described above.

613 **Mitochondria isolation**

614 10 cm plates of senescent cells were incubated with 200nM of MitoTracker for 30 min (Invitrogen).
615 Cells were collected by trypsinization and resuspended in 1ml of PBS. Cells were lysed using by
616 20 strokes up and down using a 2 ml cell douncer. After 5 min centrifugation at 700g at 4°C the
617 supernatant was collected. Mitochondria were pellet by centrifugation at 12,000g for 5 min at 4°C,
618 washed with PBS once and resuspended in 200 ml of filtered PBS. Mitochondria were purified by
619 FACS sorter using Flow Cytometry Size Calibration Kit (Invitrogen).

620 **Native RNA immunoprecipitation**

621 20×10⁶ cells were collected in cold PBS by scraping and lysed in RIP buffer (25mM Tris-HCl pH
622 7.4, 150mM KCl, 5mM EDTA, 0.5% Nonidet P-40, 20Uml⁻¹ RNAsin (Promega), 0,5mM dithiothreitol
623 (DTT) and 1× protease inhibitor mixture Complete (Roche)). After centrifugation, the samples were
624 precleared with Dynabeads Protein A (Invitrogen) for 1h. One per cent of the sample was used as
625 the input control and the remaining extracts were incubated with 10 µg DLST antibody (Bethyl) or
626 IgG at 4°C overnight. RNA–antibody complexes were collected by incubation with Dynabeads
627 Protein A. After extensive washing in RIP buffer (25mM Tris-HCl pH 7.4, 150mM KCl, 5mM EDTA,
628 0.5% Nonidet P-40, 20Uml⁻¹ RNAsin (Promega), 0,5mM dithiothreitol (DTT) and 1× protease
629 inhibitor mixture Complete (Roche)), 1/5 of the sample was used for western blotting control and
630 the remaining for RNA extraction and qRT–PCR analysis, as described below.

631 ***In vitro* RNA pulldown**

632 RNA pulldown was performed according to ⁸¹. Briefly, biotin-labeled *sin-*lncRNA** and control RNA
633 (cloned in a pcDNA3.1(+) plasmid) were generated in vitro using T7 or T3 RNA polymerase,
634 respectively (Applied Biosystems). The fragments used for the mapping were
635 in vitro transcribed from PCR products carrying the sequence of the T7 promoter in the forward
636 primer (see Suppl. Table 5), Biotinylated RNAs were treated with RNase-free DNase I (Promega),
637 purified on G-50 MicroSpin columns (GE Healthcare) and heated to 65°C for 10 min and cooled
638 down slowly to 4°C to allow proper RNA folding. 10×10⁶ IMR90 ER:RAS were collected after 6 days
639 of senescence induction and total protein extracts were prepared using RIPA buffer. Cell extracts
640 were then incubated with 10 µg of biotinylated RNA in Buffer A (150mM KCl, 25mM Tris pH 7.4,
641 5mM EDTA, 0.5mM DTT, 0.5% NP40) supplemented with fresh protease inhibitors and yeast tRNA
642 (0.1µg/ml) and rotated overnight at 4C. Dynabeads MyOne Streptavidin T1 beads (Invitrogen) were
643 used to isolate RNA-protein complexes. Beads were washed 5 times in buffer A (150 mM KCl, 25
644 mM Tris pH 7.4, 5 mM EDTA, 0.5 mM DTT, 0.5 % NP40, 1x protease inhibitor cocktail (Roche), 1
645 mM PMSF, 100 U/ml SUPERASin) and boiled in 2X Laemmli loading buffer, and retrieved proteins
646 were loaded in a NuPAGE 4%–12% bis-Tris gel (Invitrogen). Gel was stained with the SilverQuest
647 Silver Staining Kit (Thermo Fisher) to identify differential bands comparing *sin-*lncRNA** and control
648 RNA samples. We isolated a band of ~50-55 kDa unique for *sin-*lncRNA** (Suppl. Figure 5). Unique
649 bands were cut and submitted for Mass Spectrometry (MS) analysis to the Taplin MS Facility
650 (Harvard University).

651 For the mapping of the fragments, the pull down was done as indicated above but cisplatin-induced
652 senescence COV362 cells were used.

653 **Chromatin Immunoprecipitation (ChIP)**

654 10×10⁶ cells were crosslinked with 1% formaldehyde for 10 minutes at RT and nuclei were isolated
655 with cell lysis buffer (5mM Tris pH8.0, 85mM KCl, 0.5% NP40, supplemented with fresh 0,5mM
656 DTT and 1× protease inhibitor mixture Complete (Roche)). Nuclear pellet was then resuspended in

657 RIPA buffer (1X PBS, 1% NP40, 0.5% Na-deoxycholate, 0.1% SDS, supplemented with 1×
658 protease inhibitor mixture Complete (Roche)) and chromatin was sheared to a range of 200-500 bp
659 by using a Bioruptor instrument (Diagenode) with the following settings: 8 cycles LOW,
660 30"ON/30"OFF. Sonicated chromatin was incubated overnight with 6µg of C/EBP β , H3K79Succ
661 or IgG antibody (listed in Suppl. Table 5) followed by 2h incubation with Dynabeads Protein G beads
662 (Invitrogen). After five washes with LiCl buffer (100mM Tris pH 7.5, 500mM LiCl, 1% NP40, 1% Na-
663 deoxycholate) and TE buffer, DNA was reverse crosslinked by incubating beads in Elution buffer
664 (1% SDS, 0.1M NaHCO3 and Proteinase K (NEB)). C/EBP β and H3K79Succ binding was analyzed
665 by qPCR using specific primers (see Suppl. Table 5).

666 **RNA extraction and RT-qPCR analysis**

667 Total RNA was isolated using TRI reagent (Sigma), treated with DNase I (Invitrogen) and reverse-
668 transcribed using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystem) with
669 random hexamer primers following manufacturer's instructions. The obtained cDNA was analyzed
670 by quantitative PCR using iTaq Universal SYBR Green supermix (Bio-Rad) in a ViiATM 7 Real-Time
671 PCR System machine (Thermo-Fisher). All reactions were performed in triplicate or quadruplicate
672 and HPRT1 (Hypoxanthine Phosphoribosyl transferase 1) RNA levels were used for normalization,
673 unless specified otherwise in figure legend.

674 To calculate the number of *sin-lncRNA* molecules per cell, *sin-lncRNA* cloned in pcDNA3.1 vector
675 was in vitro transcribed, quantified and converted to number of copies based on its predicted
676 molecular weight. Dilutions of this transcript were retro-transcribed and used as standard curve for
677 qPCR analysis along with cDNA obtained from a precise number of IMR90 proliferating or
678 senescent cells. All qPCR primer sequences are provided in Suppl. Table 5.

679 **RNA sequencing and data analysis**

680 Raw data of Poly-A+ RNA-seq from proliferating and senescent IMR90 fibroblasts were kindly
681 provided by Dr. Gil's laboratory (Imperial College London, UK) before their publication and are now
682 available at the Gene Expression Omnibus under the accession number GSE61130²⁸. For RNA-seq

683 of IMR90 ER:RAS fibroblasts treated with sin-lncRNA or control siRNA, cells were transfected and
684 4OHT-treated for 3 days, as described above. Total RNA from samples prepared in biological
685 triplicate was isolated with TRI reagent, purified and treated with DNase I using RNAeasy mini-Kit
686 (Qiagen). After quality evaluation by Experion kit and quantification by Qubit, 1 μ g of RNA was used
687 for library preparation and sequenced on Illumina HiSeq 2000 (33 \times 10⁶ reads per sample, 50bp
688 single-end sequencing modality). Sequenced reads from three different replicates were aligned to
689 hg19 genome using the BOWTIE2 algorithm (v.2.1.0) was used to quantify the number of reads in
690 annotated genes ^{82, 83}. To identify enriched molecular pathways associated with differences in gene
691 expression, Gene Set Enrichment Analysis (GSEA, Broad Institute,
692 <http://www.broadinstitute.org/gsea/index.jsp>) was performed using the Hallmark gene sets in the
693 Human MSigDB database ⁸⁴. Enriched pathways were selected with Normalized Enrichment Score
694 (NES) $>\pm 1$ and adj.Pvalue $<1e^{-4}$.

695 ***Sin-lncRNA expression analysis in tumor samples***

696 TCGA RNA-seq expression data was retrieved using R bioconductor library TCGAbiolinks, and
697 represented using R.

698 **Statistical analysis**

699 Unless specified otherwise, experimental data were represented as mean \pm standard deviation of
700 at least three biological replicates (unless otherwise stated in figure legends) and significance was
701 determined by two-tailed unpaired or Student's t-test or one sample using GraphPad software.
702 Significant P values were summarized as follows: not significant (ns); p-value <0.05 (*); p- value <0.01
703 (**); p-value <0.001 (***)
704

705 **DATA AVAILABILITY**

706 RNA-seq from proliferating and senescent IMR90 fibroblasts were retrieved from public data
707 (GSE61130) ²⁸. RNA-seq from replicative senescence mitoplasts were retrieved from public data
708 (GSE73458) ⁴⁶. H3K79Succ peaks were retrieved from public data (GSE97994) ⁵².

709 RNA-seq of *sin-*lncRNA** KD and control senescent cells have been deposited in NCBI's Gene
710 Expression Omnibus and are accessible through Gene Expression Omnibus (GEO)⁸⁵ repository
711 under the accession number GSE241620
712 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE241620>) with the reviewers token
713 mvylowqmjtotnwx. The mass spectrometry data have been deposited to the ProteomeXchange
714 Consortium via the PRIDE ⁸⁶ partner repository with the dataset
715 identifier PXD044718 (Username: reviewer_pxd044718@ebi.ac.uk, Password: 8egDSySE).
716

717 **ACKNOWLEDGEMENTS**

718 We thank Eva Santamaría for her input and help with the seahorse experiments. We thank Beatriz
719 Tavira (CIMA, Universidad de Navarra) for providing the COD362 cells. We thank Sebastiaan Martijn
720 Van Liempd and Juan Manuel Falcón (Metabolomic Platform, CIC bioGUNE) and Lorea Válcarcel
721 (UPV) and Arkaitz Carrasco (CIC bioGUNE) for their input on the metabolic experiments. We thank
722 Victor Segura and Eli Guruceaga, for the guilt-by-association analysis. We thank Jesus Gil (MRC,
723 London) for his input. We acknowledge the ENCODE project and The Cancer Genome Atlas
724 database for their valuable data sets. We thank the rest of the Huarte lab for contributing with helpful
725 discussions. The work was supported by Project PID2020-113683GB-I00 financed by MICIU/AEI
726 /10.13039/501100011033; La Caixa Foundation [LCF/PR/HR21/00176], Worldwide Cancer
727 Research grant 25-0335 and Ayuda Proyectos Generales AECC 2024. M.M was funded by a MSCA
728 fellowship (HORIZON-MSCA- 2021-PF-01: 101066499) and currently by Ministerio de Ciencia e
729 Innovación through Programa Ramón y Cajal (RYC2022-036819-I). and currently by Programa
730 Ramón y Cajal (RYC2022-036819-I). L.P is supported by Instituto de Salud Carlos III (Ministerio de
731 Ciencia e Innovación) through a Miguel Servet contract (CP22/00005), co-funded by the European
732 Union.
733

734

735 **AUTHORS CONTRIBUTION**

736 M.H., M.M. and E.G. conceived the study. E.G., M.M. and M.H. designed the experiments, analyzed
737 the data and wrote the manuscript with the comments of co-authors. E.G., F.M., J.G. and M.M.
738 performed the experiments. E. G., J.M.F and A.A. performed bioinformatic analyses. L.P. provided
739 interpretation and made figures of the metabolomics experiment. N.H. contributed to the original
740 set-up of the project.

741

742 **COMPETING INTEREST**

743 The authors declare no competing interest.

744

745 **REFERENCES**

- 746 1. Kuilman, T., Michaloglou, C., Mooi, W.J. & Peper, D.S. The essence of senescence. *Genes &*
747 *development* **24**, 2463-2479 (2010).
- 748 2. Kuilman, T. *et al.* Oncogene-induced senescence relayed by an interleukin-dependent inflammatory
749 network. *Cell* **133**, 1019-1031 (2008).
- 750 3. Acosta, J.C. *et al.* Chemokine signaling via the CXCR2 receptor reinforces senescence. *Cell* **133**, 1006-
751 1018 (2008).
- 752 4. Coppe, J.P. *et al.* Senescence-associated secretory phenotypes reveal cell-nonautonomous functions
753 of oncogenic RAS and the p53 tumor suppressor. *PLoS biology* **6**, 2853-2868 (2008).
- 754 5. Coppe, J.P., Desprez, P.Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype:
755 the dark side of tumor suppression. *Annu Rev Pathol* **5**, 99-118 (2010).
- 756 6. Nardella, C., Clohessy, J.G., Alimonti, A. & Pandolfi, P.P. Pro-senescence therapy for cancer
757 treatment. *Nat Rev Cancer* **11**, 503-511 (2011).
- 758 7. Milanovic, M. *et al.* Senescence-associated reprogramming promotes cancer stemness. *Nature* **553**,
759 96-100 (2018).
- 760 8. Dorr, J.R. *et al.* Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. *Nature*
761 **501**, 421-425 (2013).
- 762 9. Gonzalez-Gualda, E., Baker, A.G., Fruk, L. & Munoz-Espin, D. A guide to assessing cellular senescence
763 in vitro and in vivo. *FEBS J* **288**, 56-80 (2021).
- 764 10. Kwon, S.M., Hong, S.M., Lee, Y.K., Min, S. & Yoon, G. Metabolic features and regulation in cell
765 senescence. *BMB Rep* **52**, 5-12 (2019).
- 766 11. Lee, A.C. *et al.* Ras proteins induce senescence by altering the intracellular levels of reactive oxygen
767 species. *The Journal of biological chemistry* **274**, 7936-7940 (1999).
- 768 12. Moiseeva, O., Bourdeau, V., Roux, A., Deschenes-Simard, X. & Ferbeyre, G. Mitochondrial dysfunction
769 contributes to oncogene-induced senescence. *Mol Cell Biol* **29**, 4495-4507 (2009).
- 770 13. Mattick, J.S. *et al.* Long non-coding RNAs: definitions, functions, challenges and recommendations.
771 *Nat Rev Mol Cell Biol* **24**, 430-447 (2023).
- 772 14. Statello, L., Guo, C.J., Chen, L.L. & Huarte, M. Gene regulation by long non-coding RNAs and its
773 biological functions. *Nat Rev Mol Cell Biol* **22**, 96-118 (2021).

775 15. Qureshi, I.A. & Mehler, M.F. Emerging roles of non-coding RNAs in brain evolution, development,
776 plasticity and disease. *Nat Rev Neurosci* **13**, 528-541 (2012).

777 16. Huarte, M. The emerging role of lncRNAs in cancer. *Nat Med* **21**, 1253-1261 (2015).

778 17. Abdelmohsen, K. *et al.* Senescence-associated lncRNAs: senescence-associated long noncoding
779 RNAs. *Aging cell* **12**, 890-900 (2013).

780 18. Montes, M. *et al.* The lncRNA MIR31HG regulates p16(INK4A) expression to modulate senescence.
781 *Nat Commun* **6**, 6967 (2015).

782 19. Montes, M. *et al.* The long non-coding RNA MIR31HG regulates the senescence associated secretory
783 phenotype. *Nat Commun* **12**, 2459 (2021).

784 20. Montes, M. & Lund, A.H. Emerging roles of lncRNAs in senescence. *FEBS J* (2016).

785 21. Puvvula, P.K. *et al.* Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control
786 senescence entry and exit. *Nat Commun* **5**, 5323 (2014).

787 22. Grossi, E. *et al.* A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific
788 promoter regions. *Nat Commun* **11**, 936 (2020).

789 23. Zhu, Y. *et al.* The long noncoding RNA glycoLINC assembles a lower glycolytic metabolon to promote
790 glycolysis. *Mol Cell* **82**, 542-554 e546 (2022).

791 24. Wang, P., Xu, J., Wang, Y. & Cao, X. An interferon-independent lncRNA promotes viral replication by
792 modulating cellular metabolism. *Science* **358**, 1051-1055 (2017).

793 25. Gandhi, M. *et al.* The lncRNA lincNMR regulates nucleotide metabolism via a YBX1 - RRM2 axis in
794 cancer. *Nat Commun* **11**, 3214 (2020).

795 26. Ding, C. *et al.* A T(reg)-specific long noncoding RNA maintains immune-metabolic homeostasis in
796 aging liver. *Nat Aging* **3**, 813-828 (2023).

797 27. Castello, A., Hentze, M.W. & Preiss, T. Metabolic Enzymes Enjoying New Partnerships as RNA-Binding
798 Proteins. *Trends Endocrinol Metab* **26**, 746-757 (2015).

799 28. Herranz, N. *et al.* mTOR regulates MAPKAPK2 translation to control the senescence-associated
800 secretory phenotype. *Nat Cell Biol* **17**, 1205-1217 (2015).

801 29. Vater, C.A., Bartle, L.M., Dionne, C.A., Littlewood, T.D. & Goldmacher, V.S. Induction of apoptosis by
802 tamoxifen-activation of a p53-estrogen receptor fusion protein expressed in E1A and T24 H-ras
803 transformed p53-/ mouse embryo fibroblasts. *Oncogene* **13**, 739-748 (1996).

804 30. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome.
805 *Nature*, **489**(7414):57-74 (2012)

806 31. Hoare, M. *et al.* NOTCH1 mediates a switch between two distinct secretomes during senescence. *Nat
807 Cell Biol* **18**, 979-992 (2016).

808 32. Innes, A.J. & Gil, J. IMR90 ER:RAS: A Cell Model of Oncogene-Induced Senescence. *Methods Mol Biol*
809 **1896**, 83-92 (2019).

810 33. Woods, D. *et al.* Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity
811 with arrest mediated by p21Cip1. *Mol Cell Biol* **17**, 5598-5611 (1997).

812 34. Nuskova, H. *et al.* Mitochondrial ATP synthasome: Expression and structural interaction of its
813 components. *Biochem Biophys Res Commun* **464**, 787-793 (2015).

814 35. Hutter, E. *et al.* Senescence-associated changes in respiration and oxidative phosphorylation in
815 primary human fibroblasts. *Biochem J* **380**, 919-928 (2004).

816 36. Zhang, J. & Zhang, Q. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells. *Methods
817 Mol Biol* **1928**, 353-363 (2019).

818 37. Martinez-Reyes, I. & Cuevza, J.M. The H(+)-ATP synthase: a gate to ROS-mediated cell death or cell
819 survival. *Biochim Biophys Acta* **1837**, 1099-1112 (2014).

820 38. Santamaria, G., Martinez-Diez, M., Fabregat, I. & Cuevza, J.M. Efficient execution of cell death in non-
821 glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+-ATP
822 synthase. *Carcinogenesis* **27**, 925-935 (2006).

823 39. Ni, R. *et al.* Mitochondrial Calpain-1 Disrupts ATP Synthase and Induces Superoxide Generation in
824 Type 1 Diabetic Hearts: A Novel Mechanism Contributing to Diabetic Cardiomyopathy. *Diabetes* **65**,
825 255-268 (2016).

826 40. Johnson, K.M. *et al.* Identification and validation of the mitochondrial F1F0-ATPase as the molecular
827 target of the immunomodulatory benzodiazepine Bz-423. *Chem Biol* **12**, 485-496 (2005).

828 41. Vizioli, M.G. *et al.* Mitochondria-to-nucleus retrograde signaling drives formation of cytoplasmic
829 chromatin and inflammation in senescence. *Genes & development* **34**, 428-445 (2020).

830 42. Velarde, M.C., Flynn, J.M., Day, N.U., Melov, S. & Campisi, J. Mitochondrial oxidative stress caused
831 by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin. *Aging (Albany
832 NY)* **4**, 3-12 (2012).

833 43. Macip, S. *et al.* Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence.
834 *EMBO J* **21**, 2180-2188 (2002).

835 44. Staal, F.J., Roederer, M., Herzenberg, L.A. & Herzenberg, L.A. Intracellular thiols regulate activation
836 of nuclear factor kappa B and transcription of human immunodeficiency virus. *Proc Natl Acad Sci U
837 S A* **87**, 9943-9947 (1990).

838 45. Leucci, E. *et al.* Melanoma addiction to the long non-coding RNA SAMMSON. *Nature* **531**, 518-522
839 (2016).

840 46. Noh, J.H. *et al.* HuR and GRSF1 modulate the nuclear export and mitochondrial localization of the
841 lncRNA RMRP. *Genes & development* **30**, 1224-1239 (2016).

842 47. Tu, Y.T. & Barrientos, A. The Human Mitochondrial DEAD-Box Protein DDX28 Resides in RNA Granules
843 and Functions in Mitoribosome Assembly. *Cell Rep* **10**, 854-864 (2015).

844 48. Sheu, K.F. & Blass, J.P. The alpha-ketoglutarate dehydrogenase complex. *Ann N Y Acad Sci* **893**, 61-
845 78 (1999).

846 49. Street, L.A. *et al.* Large-scale map of RNA-binding protein interactomes across the mRNA life cycle.
847 *Mol Cell* **84**, 3790-3809.e8 (2024).

848 50. Shen, N. *et al.* DLST-dependence dictates metabolic heterogeneity in TCA-cycle usage among triple-
849 negative breast cancer. *Commun Biol* **4**, 1289 (2021).

850 51. Qattan, A.T., Radulovic, M., Crawford, M. & Godovac-Zimmermann, J. Spatial distribution of cellular
851 function: the partitioning of proteins between mitochondria and the nucleus in MCF7 breast cancer
852 cells. *J Proteome Res* **11**, 6080-6101 (2012).

853 52. Wang, Y. *et al.* KAT2A coupled with the alpha-KGDH complex acts as a histone H3 succinyltransferase.
854 *Nature* **552**, 273-277 (2017).

855 53. Shen, N. *et al.* DLST-dependence dictates metabolic heterogeneity in TCA-cycle usage among triple-
856 negative breast cancer. *Commun Biol* **4**, 1289 (2021).

857 54. Bodineau C, et al. Two parallel pathways connect glutamine metabolism and mTORC1 activity to
858 regulate glutamoptosis. *Nat Commun.* 2021 Aug 10;12(1):4814.

859 55. Frigola, J., Remus, D., Mehanna, A. & Diffley, J. F. ATPase-dependent quality control of DNA
860 replication origin licensing. *Nature* **495**, 339-343 (2013).

861 56. Alvarez-Abril, B., Garcia-Martinez, E. & Galluzzi, L. Platinum-based chemotherapy inflames the
862 ovarian carcinoma microenvironment through cellular senescence. *Oncoimmunology* **11**, 2052411
863 (2022).

864 57. Murphy, M.P. How mitochondria produce reactive oxygen species. *Biochem J* **417**, 1-13 (2009).

865 58. Hamanaka, R.B. & Chandel, N.S. Mitochondrial reactive oxygen species regulate cellular signaling and
866 dictate biological outcomes. *Trends Biochem Sci* **35**, 505-513 (2010).

867 59. Davalli, P., Mitic, T., Caporali, A., Lauriola, A. & D'Arca, D. ROS, Cell Senescence, and Novel Molecular
868 Mechanisms in Aging and Age-Related Diseases. *Oxid Med Cell Longev* **2016**, 3565127 (2016).

869 60. Wei, Z. *et al.* CUL4B impedes stress-induced cellular senescence by dampening a p53-reactive oxygen
870 species positive feedback loop. *Free Radic Biol Med* **79**, 1-13 (2015).

871 61. Martinez-Reyes, I. & Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and
872 disease. *Nat Commun* **11**, 102 (2020).

873 62. Hansen, G.E. & Gibson, G.E. The alpha-Ketoglutarate Dehydrogenase Complex as a Hub of Plasticity
874 in Neurodegeneration and Regeneration. *Int J Mol Sci* **23** (2022).

875 63. Tretter, L. & Adam-Vizi, V. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of
876 [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. *J Neurosci*
877 **20**, 8972-8979 (2000).

878 64. Hoogstraten, C.A. *et al.* Metabolic impact of genetic and chemical ADP/ATP carrier inhibition in renal
879 proximal tubule epithelial cells. *Arch Toxicol* **97**, 1927-1941 (2023).

880 65. Sutendra, G. *et al.* A nuclear pyruvate dehydrogenase complex is important for the generation of
881 acetyl-CoA and histone acetylation. *Cell* **158**, 84-97 (2014).

882 66. Kafkia, E. *et al.* Operation of a TCA cycle subnetwork in the mammalian nucleus. *Sci Adv* **8**, eabq5206
883 (2022).

884 67. Li, W. *et al.* Nuclear localization of mitochondrial TCA cycle enzymes modulates pluripotency via
885 histone acetylation. *Nat Commun* **13**, 7414 (2022).

886 68. Chen, J. *et al.* Compartmentalized activities of the pyruvate dehydrogenase complex sustain
887 lipogenesis in prostate cancer. *Nat Genet* **50**, 219-228 (2018).

888 69. Mellid, S. *et al.* DLST mutations in pheochromocytoma and paraganglioma cause proteome
889 hyposuccinylation and metabolic remodeling. *Cancer Commun (Lond)* (2023).

890 70. Castello, A. *et al.* Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.
891 *Methods Mol Biol* **1358**, 131-139 (2016).

892 71. Chatterjee, A. *et al.* RNA promotes mitochondrial import of F1-ATP synthase subunit alpha (ATP5A1)
893 bioRxiv 2024.08.19.608659; doi: <https://doi.org/10.1101/2024.08.19.608659>

894 72. Ewald, J.A., Desotelle, J.A., Wilding, G. & Jarrard, D.F. Therapy-induced senescence in cancer. *J Natl
895 Cancer Inst* **102**, 1536-1546 (2010).

896 73. Pardella, E. *et al.* Therapy-Induced Stromal Senescence Promoting Aggressiveness of Prostate and
897 Ovarian Cancer. *Cells* **11** (2022).

898 74. Pranzini, E., Pardella, E., Paoli, P., Fendt, S.M. & Taddei, M.L. Metabolic Reprogramming in Anticancer
899 Drug Resistance: A Focus on Amino Acids. *Trends Cancer* **7**, 682-699 (2021).

900 75. Tan, Y. *et al.* Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in
901 platinum-resistant cancer cells. *Nat Commun* **13**, 4554 (2022).

902 76. Jiang, P., Du, W., Mancuso, A., Wellen, K.E. & Yang, X. Reciprocal regulation of p53 and malic enzymes
903 modulates metabolism and senescence. *Nature* **493**, 689-693 (2013).

904 77. Zhang, H. *et al.* LncRNA NEAT1 controls the lineage fates of BMSCs during skeletal aging by impairing
905 mitochondrial function and pluripotency maintenance. *Cell Death Differ* **29**, 351-365 (2022).

906 78. Vendramin, R., Marine, J.C. & Leucci, E. Non-coding RNAs: the dark side of nuclear-mitochondrial
907 communication. *EMBO J* **36**, 1123-1133 (2017).

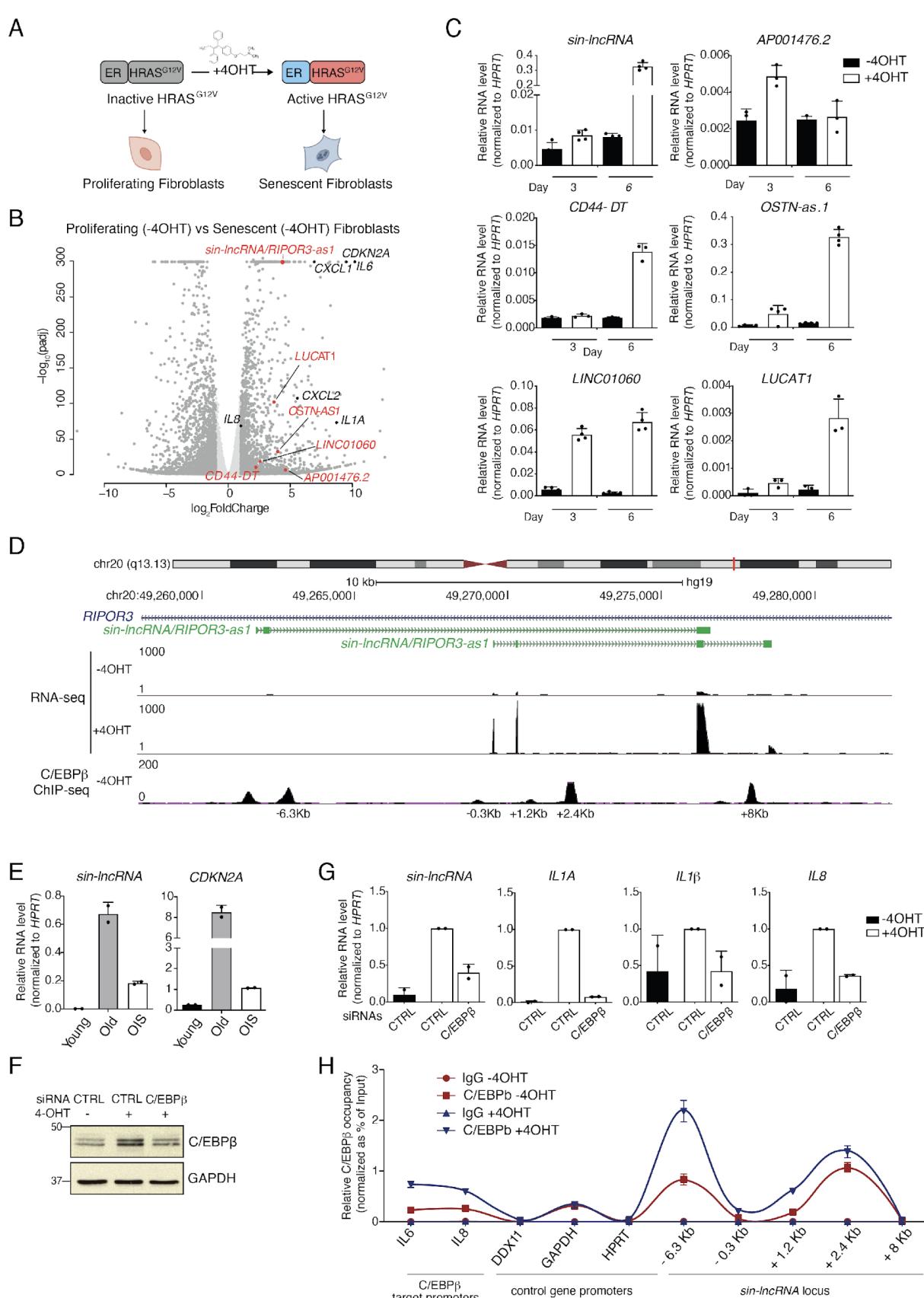
908 79. Dieterle, F., Ross, A., Schlotterbeck, G. & Senn, H. Probabilistic quotient normalization as robust
909 method to account for dilution of complex biological mixtures. Application in ¹H NMR
910 metabonomics. *Anal Chem* **78**, 4281-4290 (2006).

911 80. Veselkov, K.A. *et al.* Optimized preprocessing of ultra-performance liquid chromatography/mass
912 spectrometry urinary metabolic profiles for improved information recovery. *Anal Chem* **83**, 5864-
913 5872 (2011).

914 81. Marin-Bejar, O. *et al.* The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly
915 conserved sequence element. *Genome Biol* **18**, 202 (2017).

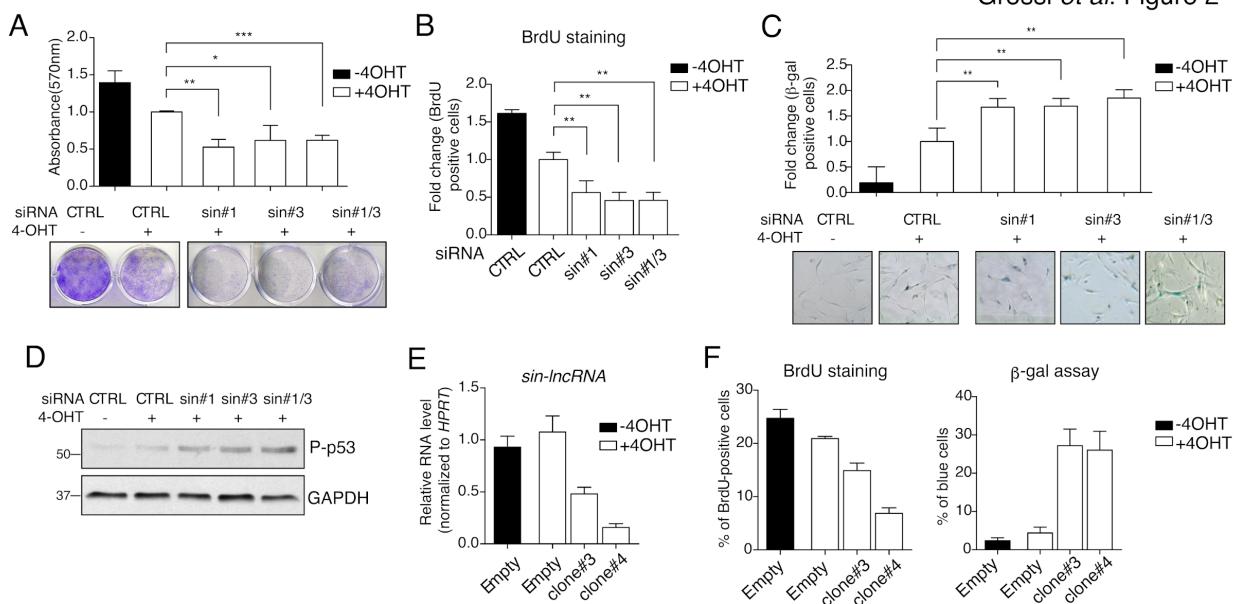
916 82. Liao, Y., Smyth, G.K. & Shi, W. featureCounts: an efficient general purpose program for assigning
917 sequence reads to genomic features. *Bioinformatics* **30**, 923-930 (2014).

918 83. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. *Nat Methods* **9**, 357-359
919 (2012).


920 84. Liberzon, A. *et al.* The Molecular Signatures Database (MSigDB) hallmark gene set collection. *Cell Syst*
921 **1**, 417-425 (2015).

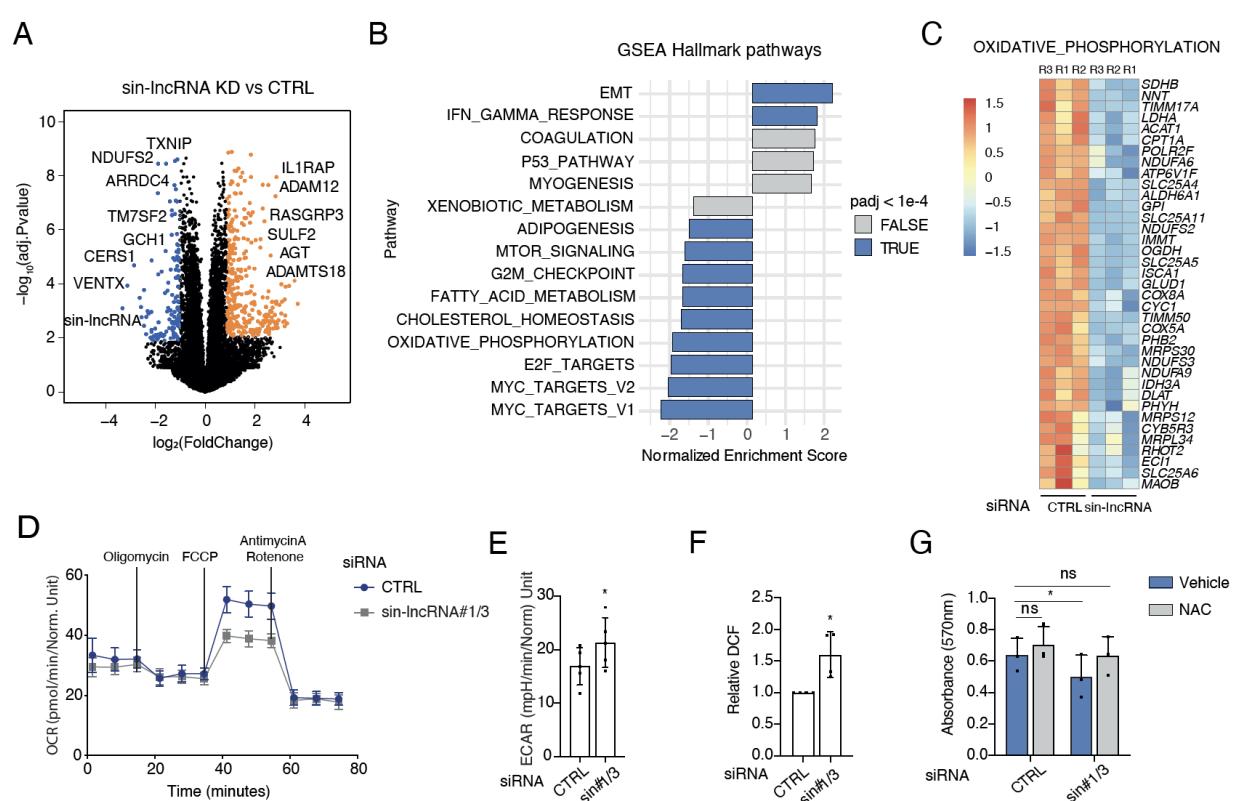
922 85. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and
923 hybridization array data repository. *Nucleic Acids Res* **30**, 207-210 (2002).

924 86. Perez-Riverol, Y. *et al.* The PRIDE database resources in 2022: a hub for mass spectrometry-based
925 proteomics evidences. *Nucleic Acids Res* **50**, D543-D552 (2022).


926 **FIGURES**

Grossi et al. Figure 1

928 **Figure 1.** *sin-*lncRNA** is a senescence-specific lncRNA transcriptionally induced by C/EBP β . **A)**
929 Schematic representation of normal fibroblasts undergoing OIS upon 4OHT-mediated activation of
930 an oncogenic form of HRAS. **B)** Volcano plot depicting differential gene expression data
931 (GSE61130) comparing IMR90 ER:RAS proliferating and senescent cells. Cut-off for significance
932 $\log_2\text{FC} > \pm 1$; adj.Pvalue < 0.05. A selection of canonical senescence markers (in black) and lncRNAs
933 (in red) is shown. **C)** RT-qPCR analysis of a set of lncRNA candidates upregulated upon 4OHT time
934 course (3 or 6 days) in IMR90 ER:RAS cells; *RIPOR3-as1* was amplified with primer set#2 (see
935 Suppl. Figure 2A for details) Data are presented as mean values \pm s.d. n=3/4. **D)** Genomic snapshot
936 of *sin-lncRNA* locus with RNA-seq tracks of untreated and 4OHT-treated IMR90 ER:RAS
937 fibroblasts, as well as C/EBP β ChIP-seq ENCODE data generated in IMR90 cells. **E)** RT-qPCR
938 analysis of “young” (<14 passages), “old” (>30 passages) IMR90 fibroblasts and 4OHT-induced
939 “OIS” IMR90 ER:RAS cells, shows that *sin-lncRNA* upregulation is maintained in replicative
940 senescence, compared to p16 positive control. (n=2) **F)** Western blot analysis of control and
941 C/EBP β -depleted senescent IMR90 ER:RAS cells. Proliferating fibroblasts were used as further
942 control. **G)** RT-qPCR analysis of *sin-lncRNA*, as well as a set of C/EBP β -target genes in control and
943 C/EBP β -depleted senescent IMR90 ER:RAS cells. Data are represented as mean values \pm s.d. (n=2)
944 **H)** ChIP-qPCR analysis of C/EBP β in proliferating and senescent IMR90 ER:RAS cells upon 6 days
945 of 4OHT treatment. IgG IP was used as IP control; C/EBP β peaks at *sin-lncRNA* locus are labeled
946 according to their distance from *sin-lncRNA* TSS; regions located in *DDX11*, *GAPDH* and *HPRT*
947 promoters served as negative controls, *IL6* and *IL8* promoter regions as positive controls (n=2).
948
949


Grossi et al. Figure 2

950

951 **Figure 2.** *sin-ncRNA* depletion reinforces the senescent phenotype. **A)** Crystal violet assay and **B)**
 952 BrdU analysis assessing cell growth of control and *sin-ncRNA* depleted IMR90 ER:RAS fibroblasts
 953 after 5 days of senescence induction. **C)** β -galactosidase analysis of control and *sin-ncRNA*
 954 depleted IMR90 cells induced to senescence for 8 days. **D)** Western blot analysis of control and
 955 *sin-ncRNA* depleted IMR90 cells treated with 4OHT for 5 days. **E)** RT-qPCR analysis of TIG3
 956 Δ BRaf cell clones infected with *sin-ncRNA* sgRNA or an empty plasmid. **F)** BrdU (left) and β -
 957 galactosidase (right) assays of control or *sin-ncRNA* sgRNA TIG3 Δ BRaf clones.

Grossi et al. Figure 3

958

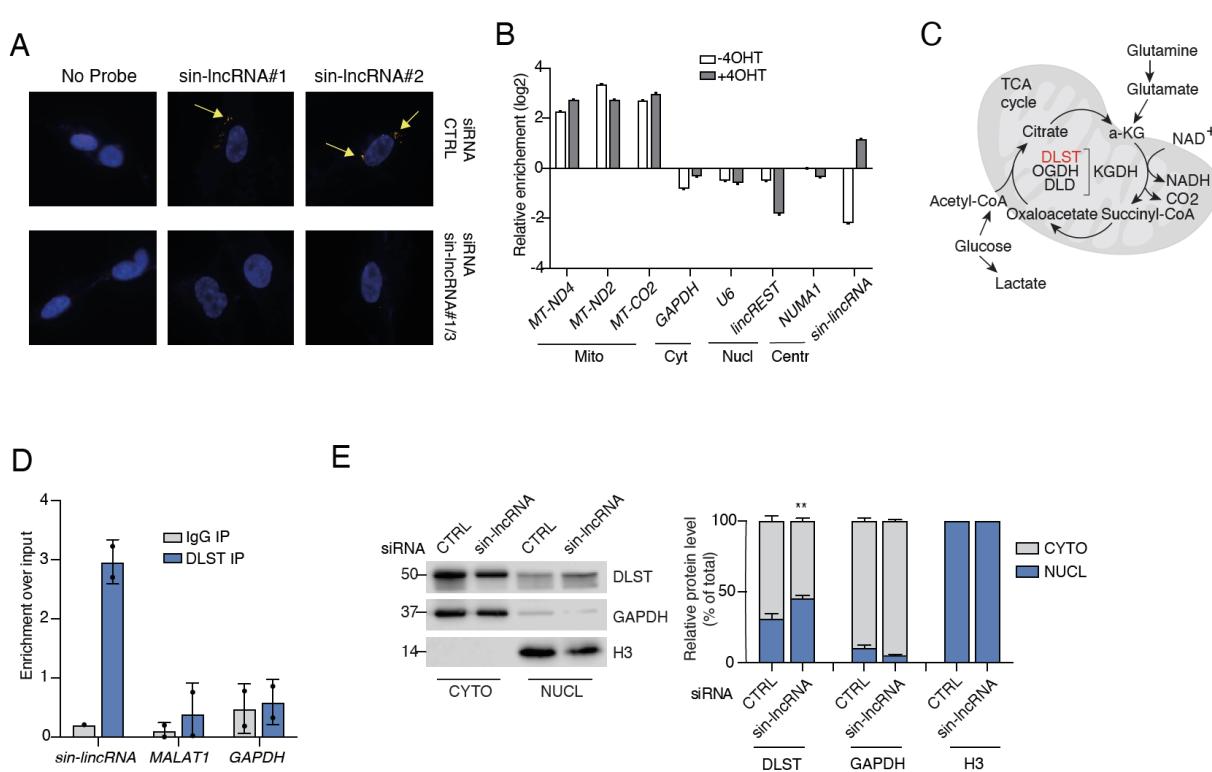
959 **Figure 3.** *sin-IncRNA* KD alters oxidative stress response and metabolic pathways in senescent
 960 cells. **A)** Volcano plot depicting differentially expressed genes comparing *sin-IncRNA* KD vs control
 961 IMR90 ER:RAS senescent cells. Upregulated genes ($\text{adj.Pvalue} < 0.01$; $\log_2\text{FC} > 1$) are labeled in
 962 red, downregulated genes ($\text{adj.Pvalue} < 0.01$; $\log_2\text{FC} < -1$) in blue. **B)** Hallmark Gene Set Enrichment
 963 Analysis (GSEA) reporting the most enriched pathways associated to the genes differentially
 964 expressed (DE) upon *sin-IncRNA* depletion (threshold: $\text{adj.Pvalue} < 1e-4$). **C)** Heatmap highlighting
 965 expression changes across RNA-seq replicates of genes belonging to
 966 OXIDATIVE_PHOSPHORILATION GSEA pathway. **D)** Oxygen Consumption Rate (OCR) of control
 967 or *sin-IncRNA* depleted IMR90 ER:RAS senescent cells obtained using the Seahorse XFe96
 968 Analyzer following injections of oligomycin, FCCP, and rotenone/antimycin A, as indicated. Data is
 969 presented as mean \pm s.d. ($n = 4$). 2-way ANOVA and Sidak's multiple comparisons test, $*p < 0.05$.
 970 **E)** Basal extracellular acidification rate (ECAR) measured using the Seahorse XFe96 Analyzer, in the
 971 same conditions as in D, and following injections of glucose, oligomycin, and 2-deoxy-D-glucose,

972 as indicated in the Glycolysis Stress Test. Data is presented as mean \pm s.d. (n = 4). Two tailed
973 student's *t*-test, **p*<0.05. **F)** Fluorometric analysis measuring the amount of the fluorescent oxidized
974 probe 2',7'-dichlorofluorescein (DCF), as indicative of ROS/NOS intracellular levels in control and
975 *sin*-*lncRNA* depleted IMR90 ER:RAS fibroblasts induced to senescence for 5 days. Proliferating
976 control cells were used as further control. **G)** Absorbance levels of crystal violet solution measured
977 at 560nm from vehicle or N-acetyl-L-cisteine (NAC)-treated IMR90 ER:RAS fibroblasts transfected
978 with siRNA control (CTRL) or against *sin*-*lncRNA* (*sin*#1/3) and induced to senescence for 5 days.
979 The graph represents the mean \pm s.d. (n=3). Two tailed student's *t*-test, **p*<0.05.

980

981

982


983

984

985

986

Grossi et al. Figure 4

987

988 **Figure 4.** *sin-lncRNA* interacts with DLST and controls its subcellular localization. **A)** RNA-FISH
 989 based on locked nucleic acid (LNA) technology on fixed IMR90 ER:RAS cells depleted or not of *sin-*
 990 *lncRNA* (siRNA_ *sin-lncRNA*#1/3) and treated for 5 days with 4OHT. Two different LNAs were used.
 991 Incubation without LNA probe (“No_probe”) was used as control. **B)** RT-qPCR analysis of a set of
 992 genes after mitochondria purification from proliferating (-4OHT) or senescent cells (+4OHT) using
 993 Mitotracker (green, 488) staining and FACS sorter. The graph shows a representative experiment.
 994 **C)** Schematic representation of the TCA cycle that takes place in the mitochondria. DLST enzyme
 995 is highlighted in red. **D)** RNA immunoprecipitation analysis monitoring DLST binding to *sin-lncRNA*,
 996 *MALAT1* and *GAPDH* RNA in control and *sin-lncRNA* depleted (siRNA#1/3) senescent IMR90
 997 ER:RAS, using anti-DLST antibody or IgG as a negative control. The graph represents the mean \pm
 998 s.d. (n=2). **E)** *Left*, western blot analysis of DLST cellular fractionation in control and *sin-lncRNA*
 999 depleted (siRNA#1/3) senescent IMR90 ER:RAS. GAPDH and H3 were used as cytoplasmic and
 1000 nuclear controls respectively. *Right*, percentage of nuclear and cytoplasmic distribution of DLST

1001 normalized to GAPDH (cyto) or H3 (nucl). The graph represents the mean \pm s.d. (n=3). Two tailed
1002 student's *t*-test, ***p*<0.01.

1003

1004

1005

1006

1007

1008

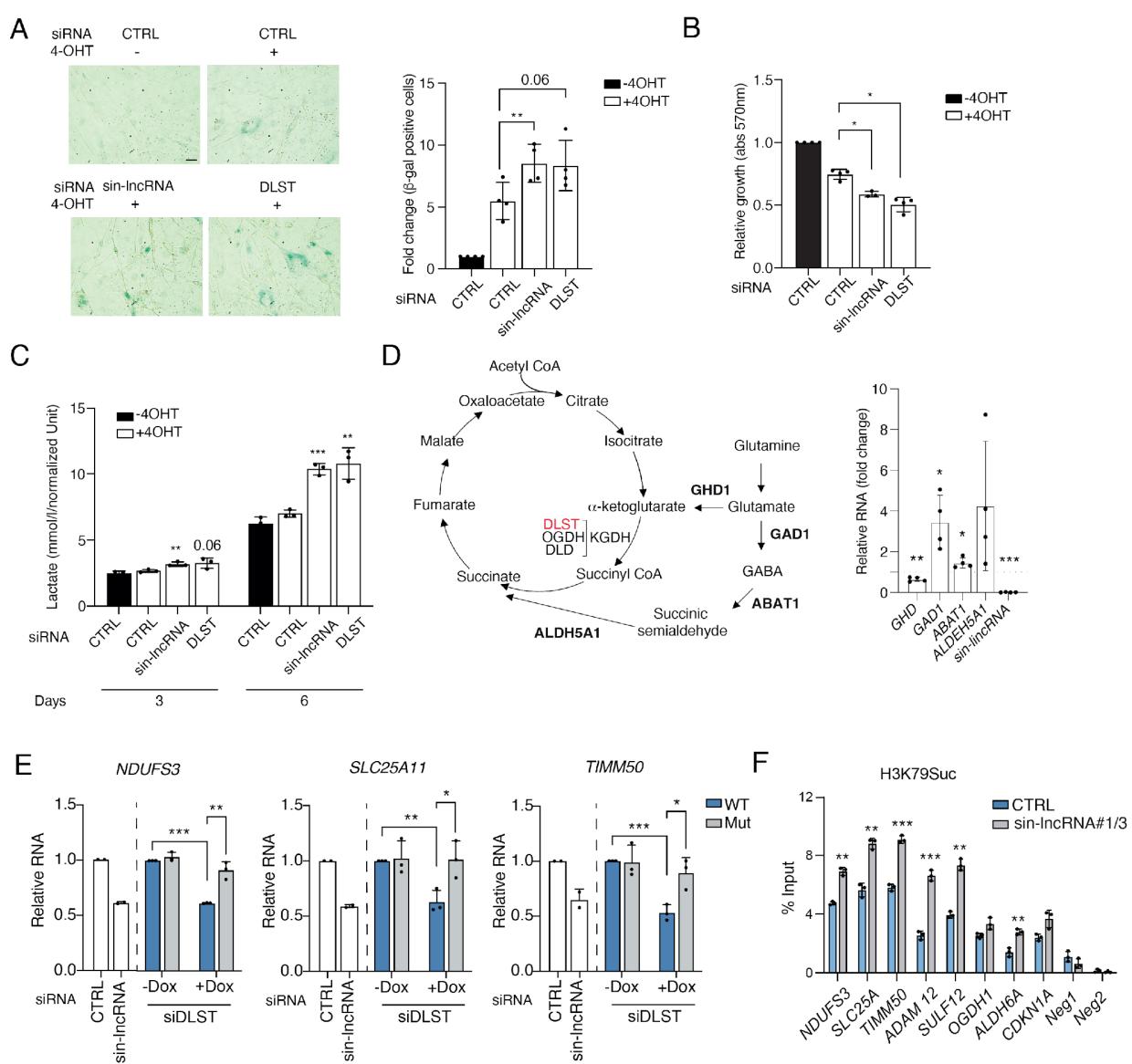
1009

1010

1011

1012

1013

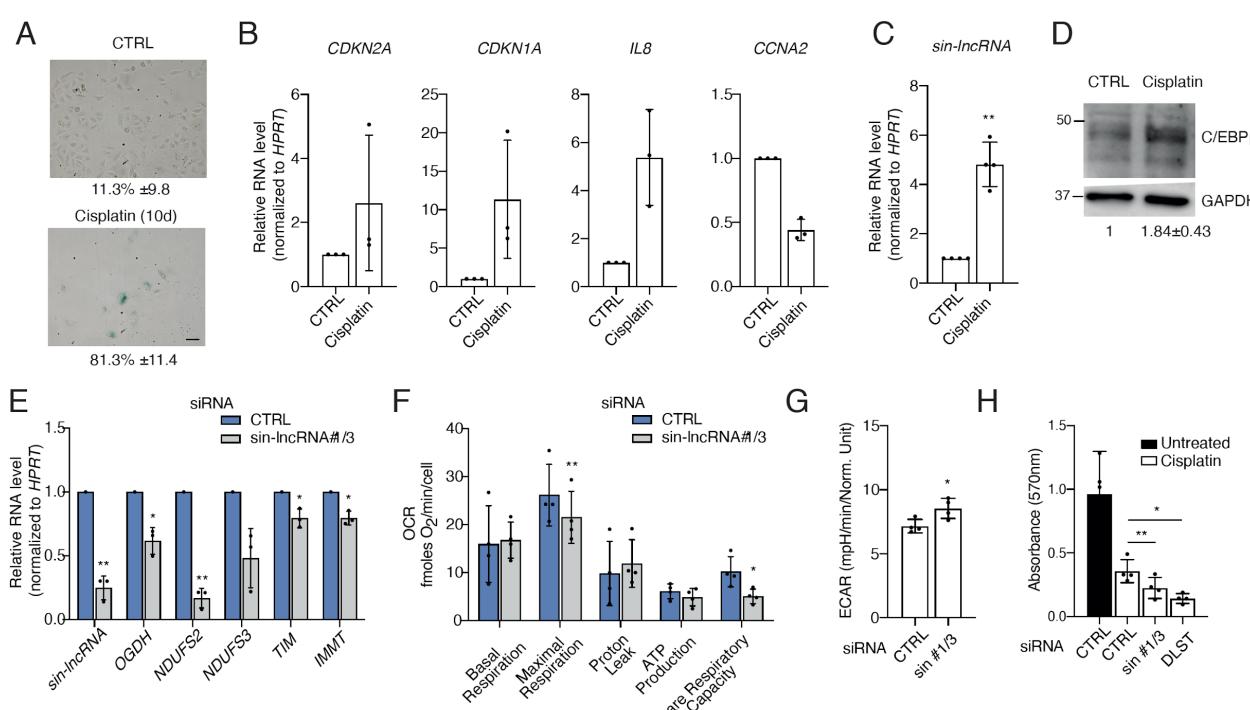

1014

1015

1016

1017

Grossi et al. Figure 5

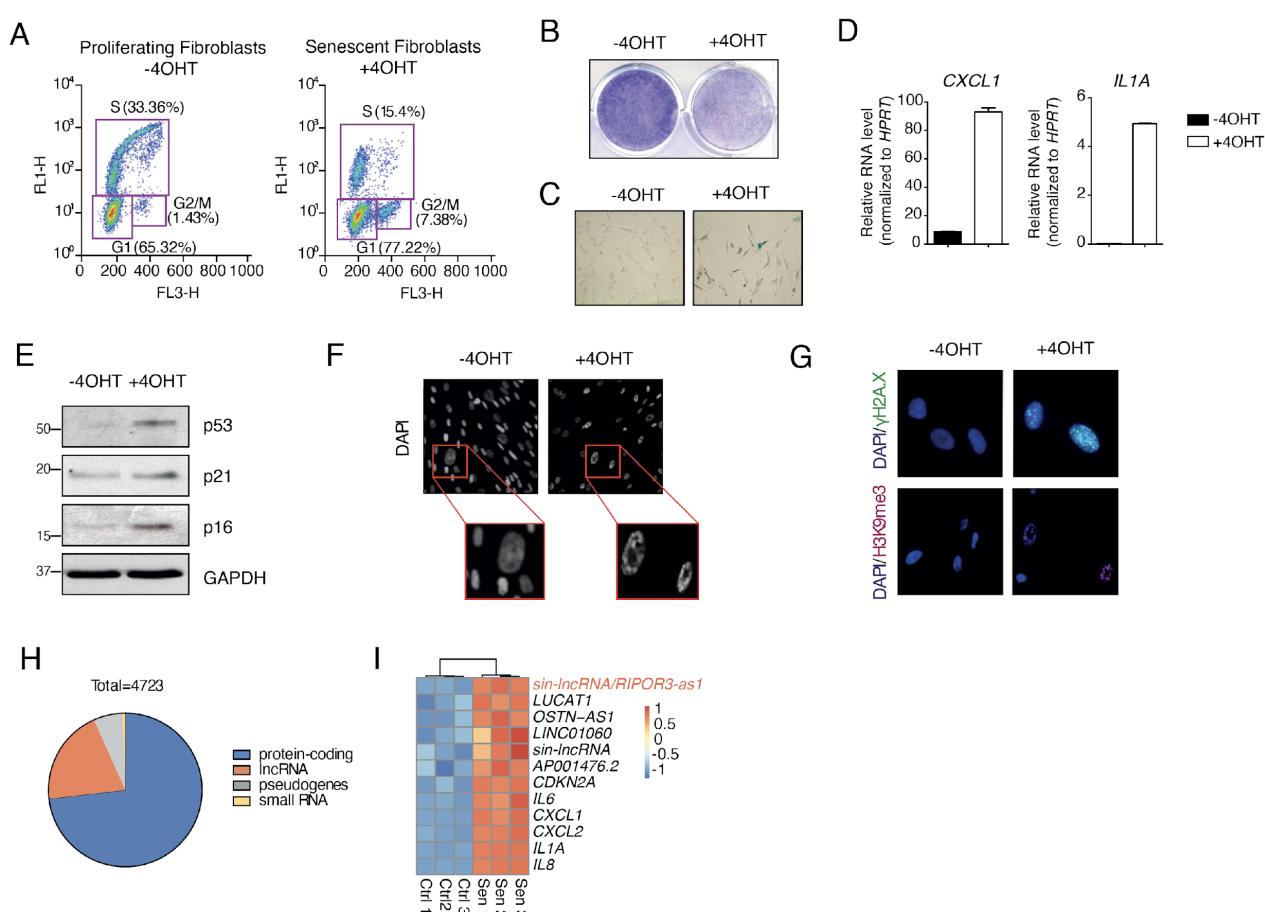


1018

1019 **Figure 5.** *sin-IncRNA* rewires metabolic activity in senescent cells. **A)** *Left*, representative β-
 1020 galactosidase images of untreated control cells and control, *sin-IncRNA* depleted or DLST-depleted
 1021 IMR90 cells induced to senescence for 5 days. Scale bar: 50 μm. *Right*, quantification of the
 1022 percentage of β-galactosidase positive cells in each condition normalized to control untreated cells
 1023 set as 1. The graph represents the mean ± s.d. (n=4). Two tailed student's *t*-test, ***p*<0.01. **B)**
 1024 Absorbance levels of crystal violet solution measured at 560nm in the conditions described in E.
 1025 The graph represents the mean ± s.d. (n=4). Two tailed student's *t*-test, **p*<0.05. **C)** Lactate levels
 1026 measured from the supernatant of IMR90 ER:RAS fibroblasts transfected with the indicated siRNA

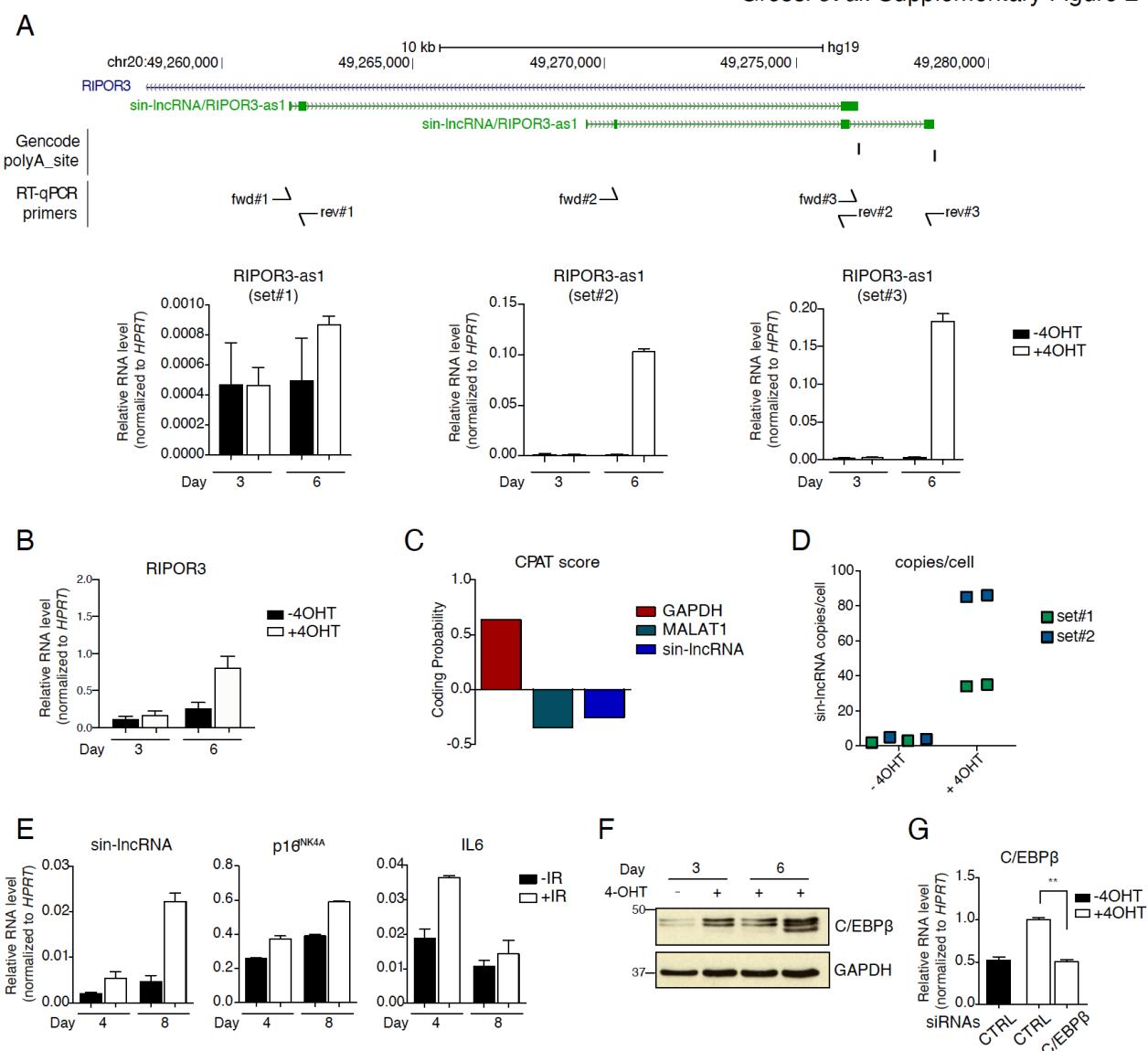
1027 and induced with 4OHT for 3 or 6 days. The graph represents the mean \pm s.d. (n=3). Two tailed
1028 student's *t*-test, **p*<0.05; ***p*<0.01; ****p*<0.001. **D)** Left panel, schematic showing alternative
1029 metabolic pathways. Right panner, qRT-PCR of the corresponding transcripts in *sin*-lncRNA
1030 knockdown cells relative to control. (n=3). The graph represents the mean \pm s.d. (n=4). Two tailed
1031 student's *t*-test, **p*<0.05; ***p*<0.01; ****p*<0.001. **E)** qRT-PCR of metabolic transcripts in the cells in
1032 stable senescent IMR90 ER:RAS cells expressing a doxycycline-inducible wild type (WT) or NLS
1033 mutant (Mut) (R224A/K226E) DLST construct in the absence (-Dox) or presence (+Dox) of 100ng/ml
1034 of doxycycline for 72h (n=3). **F)** ChIP-qPCR analysis of H3K79 Succinylation in senescent IMR90
1035 ER:RAS cells upon 6 days of 4OHT treatment transfected with siRNA control or siRNA against *sin*-
1036 lncRNA at the promoters of different metabolic genes. Regions located at intergenic regions (Neg1
1037 and Neg2) served as negative controls. The graph shows a representative experiment (n=2).
1038
1039
1040
1041
1042

Grossi et al. Figure 6


1043

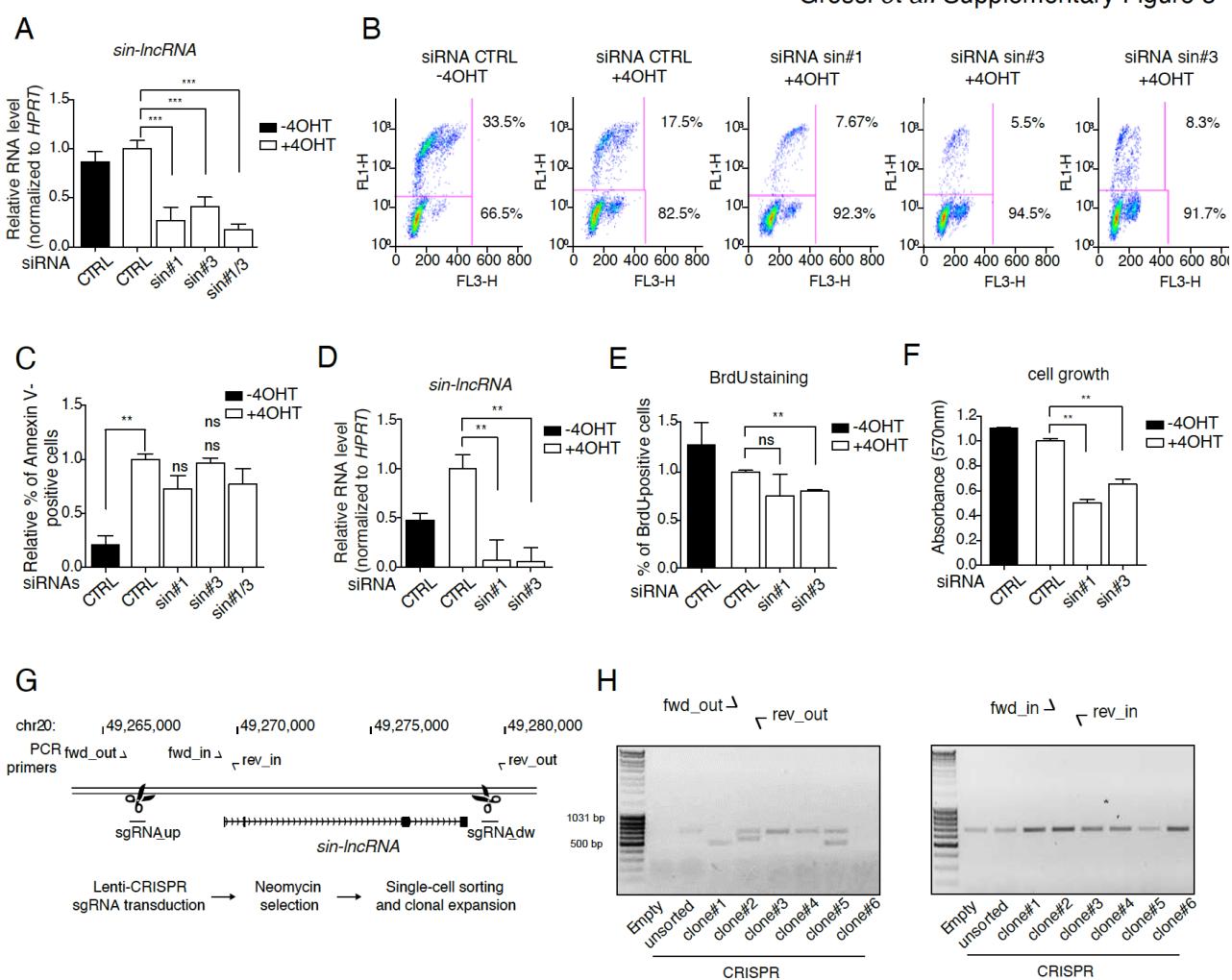
1044 **Figure 6.** *sin-IncRNA* regulates OXPHOS in ovarian cancer cells. **A)** Representative β -galactosidase
1045 images of untreated COV362 cells (upper panel) or treated for 10 days with μ M cisplatin. Scale bar:
1046 50 μ m. Numbers represent the mean \pm s.d. (n=3). **B)** RT-qPCR analysis of senescence markers
1047 genes in cisplatin treated COV362 for 10 days compared to untreated controls (set as 1). **C)** RT-
1048 qPCR analysis of *sin-IncRNA* in the cells described in B. The graph represents the mean \pm s.d.
1049 (n=4). One sample *t*-test, ***p*<0.01. **D)** Western blot analysis of C/EBP β protein levels in the cells
1050 described in B. Numbers represent the mean \pm s.d. (n=3). **E)** RT-qPCR analysis of OXPHOS GSEA
1051 pathway genes in control and *sin-IncRNA* depleted (siRNA#1/3) COV362 senescent cells treated
1052 with cisplatin for 10 days. **F)** Oxygen Consumption Rate (OCR) of control or *sin-IncRNA* depleted
1053 (siRNA#1/3) senescent COV362 cells obtained using the Seahorse XFe96 Analyzer following
1054 injections of oligomycin, FCCP, and rotenone/antimycin A, as indicated in the Cell Mito Stress Test.
1055 Data is presented as mean \pm s.d. (n = 4). Two tailed student's *t*-test, **p*<0.05; ***p*<0.01. **G)** Basal
1056 extracellular acidification rate (ECAR) measured using the Seahorse XFe96 Analyzer, in the same
1057 conditions as in F, and following injections of glucose, oligomycin, and 2-deoxy-D-glucose, as

1058 indicated in the Glycolysis Stress Test. Data is presented as mean \pm s.d. (n = 4). Two tailed
1059 student's *t*-test, **p*<0.05. **H)** Absorbance levels of crystal violet solution measured at 560nm in
1060 proliferating or senescent COV362 cells transfected with control, *sin*-*lncRNA* or DLST siRNA treated
1061 for 10 days with 10 μ M cisplatin.


1062

Grossi et al. Supplementary Figure 1

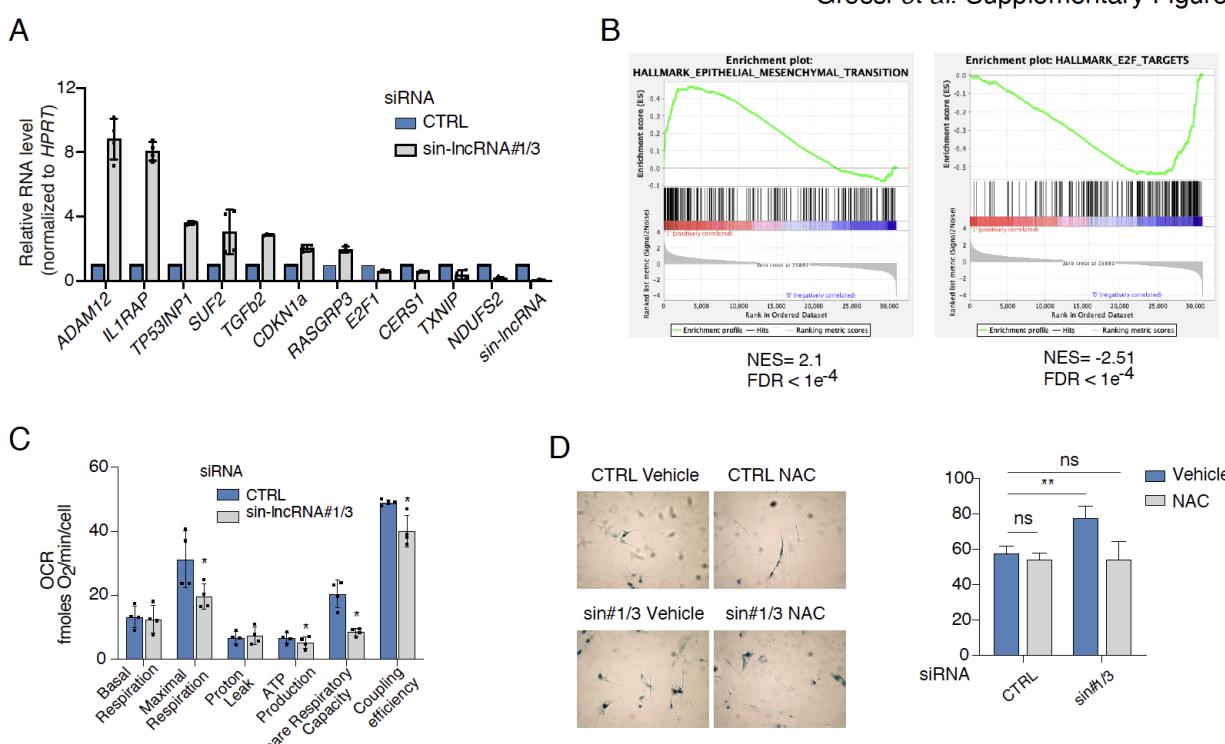
1063
1064 **Suppl. Figure 1. A)** Change in proliferation rate comparing proliferating and senescent IMR90
1065 ER:RAS fibroblasts, as measured by BrdU assay. **B)** Representative images of crystal violet staining
1066 in untreated or 4-OHT treated cells for 5 days. **C)** Representative images of the β -galactosidase
1067 staining in untreated cells or treated with 4-OHT for 8 days. **D)** qRT-PCR analysis of CXCL1 and
1068 IL1A upregulation in untreated or 4-OHT treated cells for 5 days. **E)** Western blot analysis of
1069 senescence markers p53, p21 and p16 in untreated or 4-OHT treated cells for 5 days. **F)** DAPI
1070 staining and **G)** Immunostaining images of gH2A.X, H3K9me3 and DAPI of untreated or 4OHT
1071 treated IMR90 ER:RAS for 5 days. **H)** Pie chart representation of the number of biotype distribution
1072 of transcripts deregulated during OIS (log₂-fold change $>\pm 1$, adj.Pvalue <0.05). **I)** Heat map
1073 showing relative expression of senescence markers and lncRNAs deregulated in IMR90 ER:RAS
1074 untreated or treated with 4-OHT for 8 days.


Grossi et al. Supplementary Figure 2

1079
1080

1081 **Suppl. Figure 2. A)** Genomic snapshot of *sin-IncRNA* (RIPOR3-as) locus PolyA sites annotated by
1082 Genecode v19 are indicated as well as the position of qPCR primers used to amplify the different
1083 isoforms. Bottom panel, qRT-PCR analysis of the different annotated isoforms of *sin-IncRNA*
1084 (RIPOR3-as) using different set of primers (set1-3) in a time course of 3 and 6 days of senescence
1085 induction in IMR90 ER:RAS cells. **B)** qRT-PCR analysis of protein-coding gene RIPOR3 in a time
1086 course of 3 and 6 days of senescence induction in IMR90 ER:RAS cells. **C)** CPAT software was
1087 interrogated to determine the coding probability of *sin-IncRNA*. GAPDH mRNA and MALAT1
1088 lncRNA were used as coding and noncoding references, respectively. **D)** Number of copies per cell
1089 of *sin-IncRNA* in control untreated cells and in 4-OHT-treated cells measured by qRT-PCR using
1090 dilutions of a pcDNA3.1-*sin-IncRNA* plasmid as standard curve. **E)** RT-qPCR analysis showing
1091 *sin-IncRNA* upregulation upon treatment with γ -irradiation at 5Gy in IMR90 fibroblasts. *p16* and *IL6*
1092 levels served as positive controls. **F)** Western blot analysis of C/EBP β of IMR90 ER:RAS cells
1093 treated or not with 4OHT for 3 or 6 days. **G)** qRT-PCR analysis of the levels of C/EBP β in control
1094 and C/EBP β -depleted senescent IMR90 ER:RAS cells

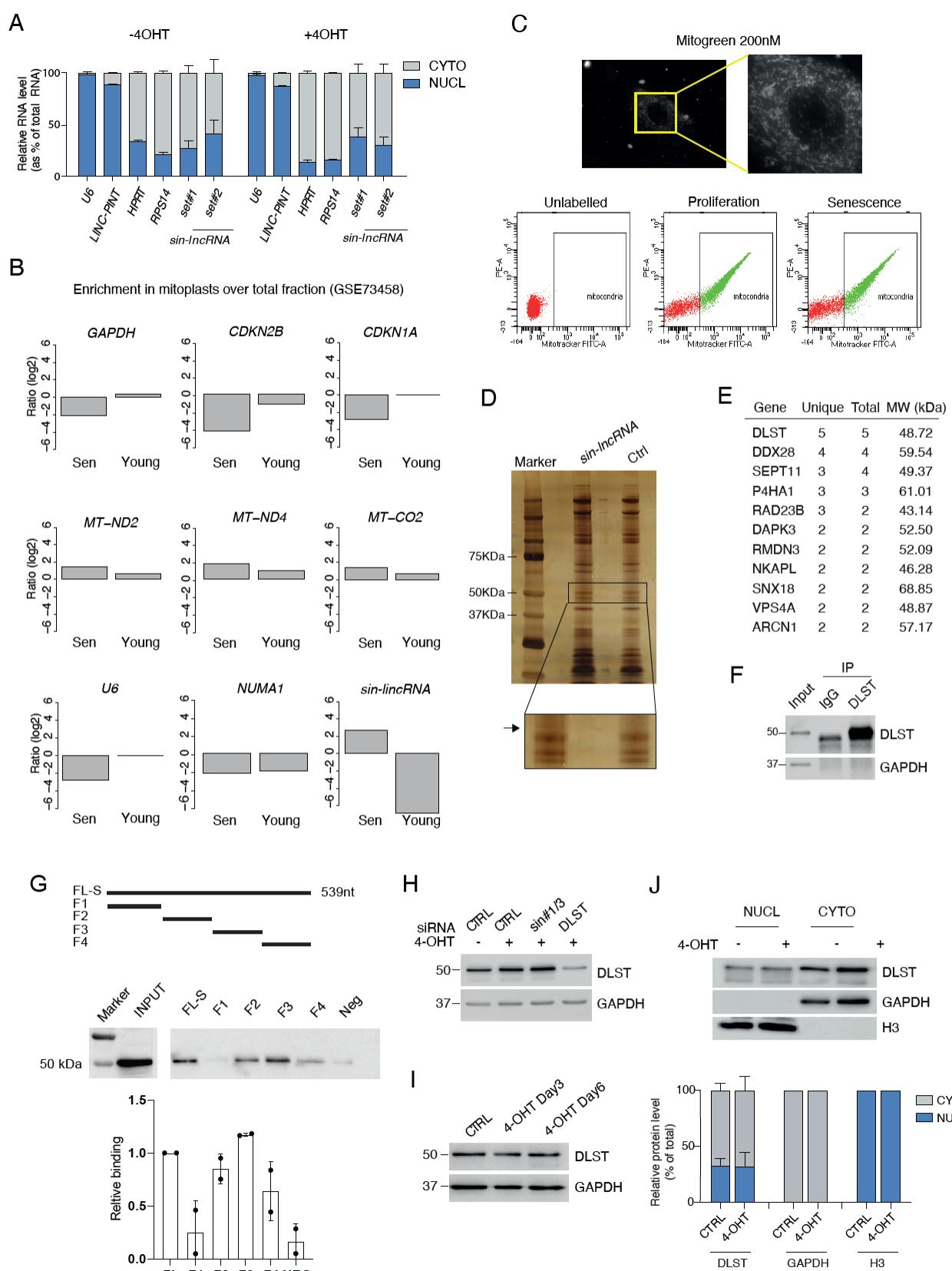
Grossi *et al.* Supplementary Figure 3



1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115

Suppl. Figure 3. A) RT-qPCR analysis of control and *sin-IncRNA* depleted IMR90 ER:RAS cells after 3 days of senescence induction. Proliferating control cells were used as further control. Primer sets #2 (Suppl. Figure 2A) were used to amplify *sin-IncRNA*. Values were normalized to senescent control cells. **B)** BrdU analysis measuring the proliferation of control and *sin-IncRNA* depleted IMR90 ER:RAS cells after 5 days of senescence induction. Proliferating control cells were used as further control. Values were normalized to senescent control cells. **C)** Apoptosis levels measure by Annexin V incorporation in control and *sin-IncRNA* depleted IMR90 ER:RAS cells after 5 days of senescence induction. Proliferating cells were used as further control (n=3). **D)** RT-qPCR analysis of control and *sin-IncRNA* depleted TIG3-hTERT:BRAF cells after 3 days of senescence induction. Proliferating control cells were used as further control. Primer sets #3 (Suppl. Figure 2A) were used to amplify *sin-IncRNA*. Values were normalized to senescent control cells. **E)** BrdU staining and **F)** relative growth measured by crystal violet at 570nm absorbance of control and *sin-IncRNA* depleted TIG3-hTERT:BRAF cells after 5 days of senescence induction. Proliferating control cells were used as further control. Values were normalized to senescent control cells. **G)** Schematic representation of the CIRSPR/Cas9 strategy applied to remove *sin-IncRNA* genetic loci. sgRNAs guiding Cas9 protein are indicated (sgRNA_up and sgRNA_dw), as well as inner and outer primer couples to screen engineered cell clones (fwd/rev_in and fwd/rev_out, respectively) **H)** Gel images showing PCR products obtained using outer (left) or inner primer sets (right) to amplify the genome of TIG3 BRAF single cell clones after infection with the lentiCRISPR carrying *sin-IncRNA* sgRNAs and selection (clone#n). TIG3 BRAF fibroblasts infected with empty lentiviral vector (Empty) or infected

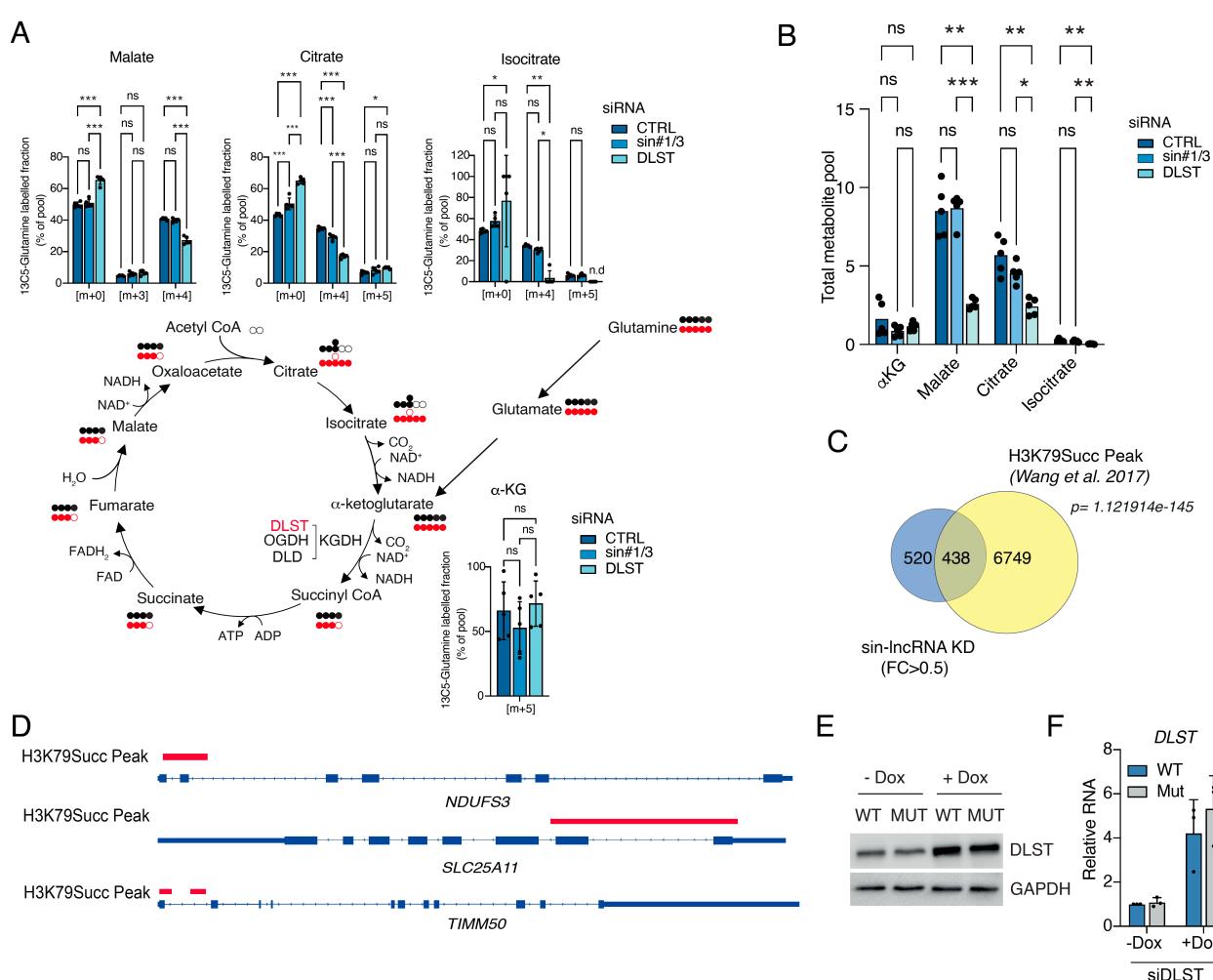
1116 with vector carrying *sin-*lncRNA** sgRNAs but without single cell separation and puro selection
1117 (CRISPR_unsorted) were used as control.
1118


Grossi et al. Supplementary Figure 4

1119
1120

1121 **Suppl. Figure 4. A)** RT-qPCR analysis of the indicated transcripts in control and *sin-ncRNA*
1122 depleted IMR90 ER:RAS cells after 5 days of senescence induction. Proliferating control cells were
1123 used as further control. Values were normalized to senescent control cells. **B)** Gene Set Enrichment
1124 Analysis (GSEA) for genes belonging to epithelial to mesenchymal transition and E2F-targets
1125 pathways. **C)** Oxygen Consumption Rate (OCR) of control or *sin-ncRNA* depleted IMR90 ER:RAS
1126 senescent cells obtained using the Seahorse XFe96 Analyzer following injections of oligomycin,
1127 FCCP, and rotenone/antimycin A, as indicated in the Cell Mito Stress Test. Data is presented as
1128 mean \pm s.d. (n = 4). Two tailed student's t-test, *p<0.05. **D)** Percentage of β -galactosidase positive
1129 cells in control or *sin-ncRNA* depleted IMR90 ER:RAS senescent cells treated with 5mM vehicle
1130 (DMSO) or N-acetyl-L-cisteine (NAC).
1131

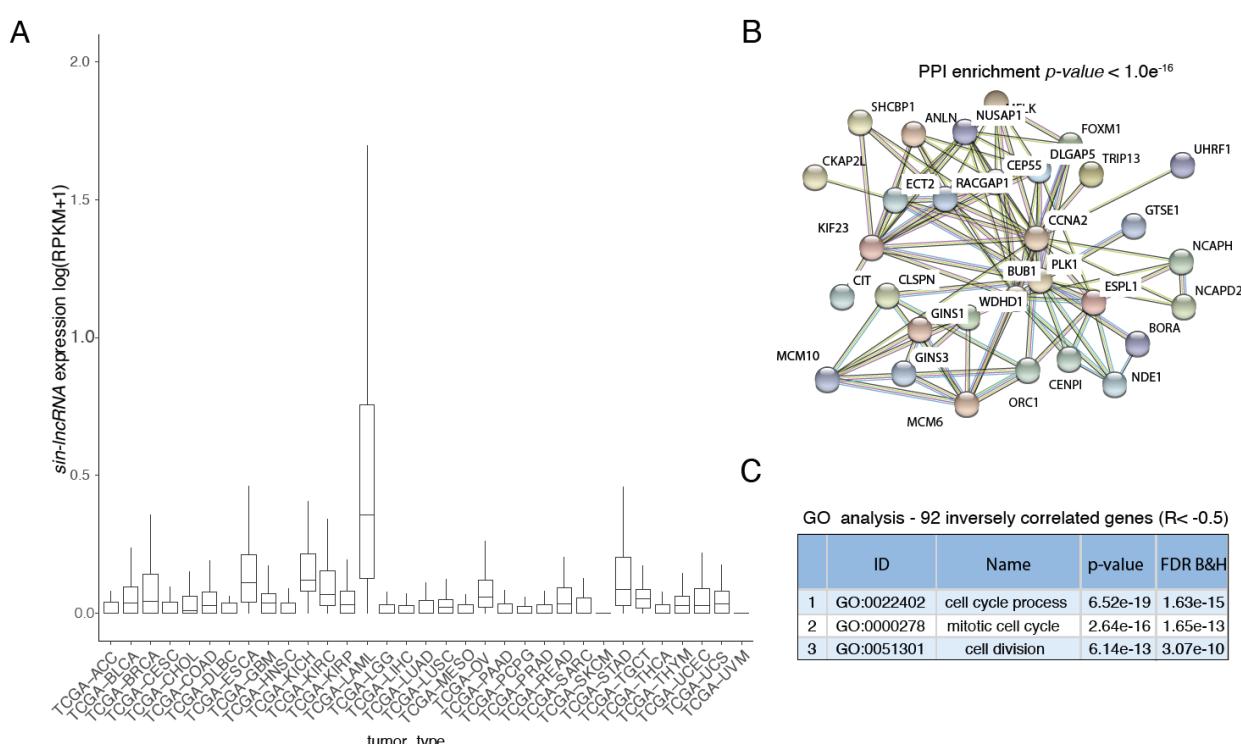
Grossi *et al.* Supplementary Figure 5


1131
1132

1133 **Suppl. Figure 5. A)** Percentage of nuclear and cytoplasmic RNA levels of *sin-IncRNA* measured
1134 by qRT-PCR after cell fractionation with two different set of primers (set#1 and set#2) in untreated

1135 or 4OHT-induced senescent cells. **B)** Enrichment of RNA in mitoplasts over the input (shown as
1136 log2) of the indicated genes in young and senescent WI38 fibroblasts analyzed from public available
1137 data (GSE73458). **C)** *Upper panel*, representative microscope images of mitochondrial staining in
1138 senescent cells using 200 nM of MitoTracker for 30min at 37°C. The white box shows the amplified
1139 area. Bottom panel, FACS plots indicating the isolation of mitochondria in proliferating and
1140 senescent cells. **D)** Representative image of the silver-stained gel. We show the band that was
1141 isolated and analyzed by mass spectrometry. **E)** List of top candidate proteins identified by mass
1142 spectrometry after pulldown with in vitro biotinylated *sin-IncRNA*. **F)** Western blot analysis of the
1143 immunoprecipitated DLST using anti-DLST antibody or IgG as a negative control. GAPDH was used
1144 as control. (n=2). **G)** Schematic representation of the fragments (full length (FL) and (F1-F5) used
1145 for the in vitro pulldown experiment. A nuclear IncRNA (CONCR) was used as negative control (Neg).
1146 *Bottom*, western blot to detect DLST using the fragments shown above. The graph shows the
1147 quantification of the binding relative to the full length (FL), (n=2). **H)** Western blot analysis of control
1148 IMR90 ER:RAS cells or cells transfected with siRNAs against *sin-IncRNA* or DLST. Proliferating
1149 control cells were used as further control. **I)** Western blot analysis of DLST protein levels in
1150 untreated IMR90 ER:RAS cells or treated for 3 or 6 days. GAPDH was used as a loading control. **J)**
1151 *Upper panel*, western blot analysis of DLST cellular fractionation in control and 4OHT-senescence
1152 induced IMR90 ER:RAS. GAPDH and H3 were used as cytoplasmic and nuclear controls
1153 respectively. *Bottom panel*, percentage of nuclear and cytoplasmic distribution of DLST normalized
1154 to GAPDH (cyto) or H3 (nucl). The graph represents the mean ± s.d. (n=2).

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178


Grossi et al. Supplementary Figure 6

1179
1180 **Suppl. Figure 6. A)** Carbon labelling TCA cycle intermediates from $^{13}\text{C}_5$ -Glutamine via oxidative
1181 (carbon marked with black) and reductive carboxylation (carbon marked with red) pathway.
1182 Labelling pattern of intracellular metabolites in senescent IMR90 ER:RAS fibroblasts transfecte
1183 with siRNA control or siRNA against *sin-IncRNA* or DLST. Bar graphs represent the mean \pm s.d.
1184 ($n=5$) for the isotopologues of most interest for each metabolite. Two tailed student's *t*-
1185 test, * $p<0.05$; ** $p<0.01$; *** $p<0.001$. **B)** Bar plot showing differences in total metabolite pool size
1186 between control senescent cells or senescent cells depleted for *sin-IncRNA* or DLST ($n=5$). **C)** Venn
1187 diagram showing the overlap of genes deregulated in *sin-IncRNA* knock down cells ($FC>0.5$) and the H3K79Succ
1188 peaks. *p* value determined by hypergeometric test. **D)** IGV tracks showing the
1189 presence of H3K79Succ peak (red) in the corresponding genes. **E)** Western blot detection of DLST
1190 and GAPDH as housekeeping control in stable senescent IMR90 ER:RAS cells expressing a
1191 doxycycline-inducible wild type (WT) or NLS mutant (Mut) (R224A/K226E) DLST construct in the
1192 absence (-Dox) or presence (+Dox) of 100ng/ml of doxycycline for 72h ($n=2$). **F)** qRT-PCR of the
1193 DLST RNA level in the conditions described above ($n=3$).

1194
1195

Grossi *et al.* Supplementary Figure 7

1196
1197 **Suppl. Figure 7. A)** *Sin-IncRNA* expression (as FPKM + pseudocount value) across tumor samples
1198 from the TCGA database. **B)** Protein-Protein Interaction network ($p\text{-value} < 1.0\text{e}^{-16}$) by STRING
1199 analysis of genes inversely correlated with *sin-IncRNA* (92 genes; $R < -0.5$). **C)** Gene Ontology (GO)
1200 pathways associated with the inversely correlated genes.

1201