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1 Abstract 
Functional hyperaemia is a well-established hallmark of healthy brain function, whereby 

local brain blood flow adjusts in response to a change in the activity of the surrounding neurons. 
Although functional hyperemia has been extensively studied at the level of both tissue and 
individual vessels, vascular network-level coordination remains largely unknown. To bridge this 
gap, we developed a deep learning-based computational pipeline that uses two-photon 
fluorescence microscopy images of cerebral microcirculation to enable automated reconstruction 
and quantification of the geometric changes across the microvascular network, comprising 
hundreds of interconnected blood vessels, pre and post-activation of the neighbouring neurons. 
The pipeline’s utility was demonstrated in the Thy1-ChR2 optogenetic mouse model, where we 
observed network-wide vessel radius changes to depend on the photostimulation intensity, with 
both dilations and constrictions occurring across the cortical depth, at an average of 16.1±14.3 
μm (mean±stddev) away from the most proximal neuron for dilations; and at 21.9±14.6 μm away 
for constrictions. We observed a significant heterogeneity of the vascular radius changes within 
vessels, with radius adjustment varying by an average of 24 ± 28% of the resting diameter, likely 
reflecting the heterogeneity of the distribution of contractile cells on the vessel walls. A graph 
theory-based network analysis revealed that the assortativity of adjacent blood vessel responses 
rose by 152 ± 65% at 4.3 mW/mm2 of blue photostimulation vs. the control, with a 4% median 
increase in the efficiency of the capillary networks during this level of blue photostimulation in 
relation to the baseline. Interrogating individual vessels is thus not sufficient to predict how the 
blood flow is modulated in the network. Our computational pipeline, to be made openly 
available, enables tracking of the microvascular network geometry over time, relating caliber 
adjustments to vessel wall-associated cells’ state, and mapping network-level flow distribution 
impairments in experimental models of disease.   
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2 Introduction
To support healthy brain functioning, the cerebrovascular network undergoes continual 

adjustments in vessel calibers [1], [2], [3]. Neurovascular coupling refers to the change in blood 
flow following changes in the level of neuronal activity: under physiological conditions, a 
generous buffer of nutrients is granted to activated parenchyma via the capillary network [1], [4]. 
This buffer is maintained through finely tuned regulation of flow through changes in the vessel 
caliber, mediated via contractile cells in the vessel walls. In the absence of such tuning, pockets 
of tissue could experience inadequate access to metabolites [5]. Alterations in smooth muscle 
cells, pericytes, and astrocytes may lead to compromises in vessels’ dilatory capacity and thus 
deficits in neurovascular coupling [6], [7], [8], [9]. In various brain pathologies, including 
Alzheimer’s disease, stroke, and trauma, regional blood flow regulation gets impaired through 
vessel loss and/or dysfunction of the vessels’ dilatory capacity, resulting in regions of 
ischemia/hypoxia [10], [11]. Previous studies have examined either individual vessels or the 
tissue level responses, with little attention having been paid to the vascular network, though 
network dysfunction frequently is associated with accelerated disease progression and long-term 
symptomatology [3], [12], [13], [14], [15], [16], [17], [18], [19], [20].  

While there is copious data on the functioning of individual vessels, interrogation of the 
microvascular network remains a challenge, in terms of both data acquisition and analysis [6], 
[7], [21], [22], [23]. To date, studies on the brain vasculature have been done by sparsely 
imaging individual blood vessels at the cellular scale [6], [7], [21], [24], [25], [26], [27], [28], 
[29], [30], [31], [32], thereby severely undersampling the microvascular network; or by 
evaluating the averaged flow over many vessels at the mesoscopic scale, thus failing to discern 
the flow through individual vessels. A critical gap in the field is the characterization of flow 
across hundreds of individual vessels, while imaging the network structure that links them 
together to determine how the vascular response is coordinated across the network. This gap is 
particularly significant as studies investigating blood flow across several vessels at a time 
(imaged by varying the line acquisition pattern [6], [24]) have shown highly heterogeneous 
responses among capillaries. Neuronal function impairments arise wherever local metabolite 
supply becomes inadequate, notwithstanding the physiological level of flow across the network 
as a whole, making mapping of vessel changes across the network of particular importance.  

To address the limitations of previous work, we developed a novel deep learning (DL)-
based pipeline for mapping changes to the geometry of the brain vascular network following 
neuronal activation, from a time series of volumetric two-photon fluorescence microscopy 
(2PFM) data. Neuronal activation was elicited by photostimulation of pyramidal neurons 
expressing Channelrhodopsin-2 (ChR2) [33] in the Thy1-ChR2-YFP mouse model [34]. Our DL 
pipeline enabled automatic and accurate segmentation, registration and network analysis of large 
2PFM datasets across time. We applied our pipeline in a dataset of 17 Thy1-ChR2-YFP mice to 
map photostimulation-induced changes across the microvascular network - at the level of 
individual vessels and at the level of vertices spaced every micrometre along the vessels - in 
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relation to the distance to the closest pyramidal neurons expressing the optogenetic actuator and 
across the cortical depth. Our findings demonstrate the utility of our pipeline for studying in situ 
microvascular morphology and function to address various neuroscientific hypotheses.

3 Methods 

3.1 Cohort  

Animals 
All experimental procedures in this study followed the ARRIVE 2.0 guidelines [35]. They 

were approved by the Animal Care Committee of the Sunnybrook Research Institute, which 
adheres to the policies and guidelines of the Canadian Council on Animal Care and meets all the 
requirements of the Provincial Statute of Ontario, Animals for Research Act, and the Canadian 
Federal Health of Animals Act. We used 15 male and 13 female Thy1-ChR2-YFP mice (#007612, 
line 18, Jackson Laboratory) at 6-12 months of age (283.9 ± 67.0 days), weighing 28.8±7.1g on 
the day of imaging. The mice were bred in-house and housed under a 12-hr light/dark cycle [34]. 
In this mouse line, Channelrhodopsin-2 is expressed preponderantly by pyramidal neurons with 
soma in cortical layer 5 and dendrites projecting to the cortical surface, enabling depolarization of 
their cellular membranes and action potential generation upon blue light illumination [30], [34]. 
An attrition schematic is provided in Supplementary Figure 1. 

Surgical Preparation 
On the day of imaging, mice were induced with 5% isoflurane, transferred to a rectal probe 

feedback-regulated heating pad (CWE Inc, Ardmore PA) to maintain a temperature of 37 °C, and 
maintained under 2% isoflurane. A subcutaneous injection of 1 mL of lactated Ringer’s solution 
was administered at the start of surgery. Throughout the surgical preparation and imaging, we 
monitored breath rate, heart rate, arterial blood oxygen saturation, pulse distention, and breath 
distention via a pulse oximeter, with a probe mounted on the thigh (MouseOx, STARR Life 
Sciences) (Supplementary Table 1). For fine control over respiration, the mice were 
tracheostomized with an endotracheal tube (20 Ga catheter) and ventilated with a gas mixture of 
20-30% O2 and medical air using a small animal ventilator (SAR 830/P, CWE Inc, Ardmore PA) 
set to 115-130 breaths per minute at an inspiratory/expiratory ratio of 1:3-4. Their heads were 
immobilized via ear bars during the placement of the cranial window and imaging. The tail vein 
was cannulated with a 26 Ga catheter to enable fluorophore and anesthetic delivery. A cranial 
window was implanted over the forelimb region of the primary somatosensory cortex (AP 
0.25mm, ML 2.0 mm); the dura was excised, and 1% agarose was applied between the brain and 
the glass coverslip. A well was built using dental cement to allow water immersion of the objective. 
Texas Red dextran (70 kDa MW, Thermo Fisher Scientific Inc, Waltham MA) was diluted in PBS 
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and injected through the tail vein catheter at a concentration of 33 mg/kg for a total injection 
volume between 0.1 and 0.2 mL. A line containing 0.01 g/ml alpha chloralose was connected to 
the tail vein catheter. The animal was then positioned underneath the microscope objective, and 
the structural 2PFM scan acquired, as detailed below. Seventeen mice (nine male and eight female) 
made it through the surgical preparation (cf. Supplementary Figure 1). Following the structural 
acquisition, the isoflurane was discontinued, and the continuous infusion of alpha chloralose 
commenced at 40 mg/kg/hr.  

3.2 Imaging  

Two-photon Fluorescence Imaging and Optogenetic Stimulation 
Mice were imaged on an FVMPE-RS microscope (Olympus, Japan) using a 25x/1.05NA 

objective. An Insight tunable Ti:Saphire near-infrared laser (SpectraPhysics, USA) was used for 
900 nm excitation of Texas Red-labelled vasculature and YFP-labeled ChR2-expressing pyramidal 
neurons. Two visible light stimulation lasers were used to excite ChR2 at either 458 nm or 552 nm 
(control). The optical setup is shown in Figure 1. The imaging field-of-view was selected to include 
at least one penetrating artery and vein yet avoid major pial vessels and thus signal loss in the 
underlying cortex. Structural scans were acquired under 2% isoflurane using a Galvano scanner, 
with 2x averaging, a z-step of 0.99 μm, and a nominal lateral resolution of 0.99 μm. Following 
structural scanning, mice were allowed to rest for 5 minutes to let blood flow equilibrate from 
brain exposure to room light. The five-minute resting period was observed due to prior reports of 
red blood cell velocities following optogenetic ChR2 stimulation in the same mouse strain 
remaining altered for a minute following photostimulation and due to potential pericyte-mediated 
responses via cytoskeleton reorganization occurring over a minute [6], [30]. 
 Functional scans were acquired over baseline and post-stimulus periods, flanking a period 
of blue light illumination. The haemodynamic response to optogenetic stimulation in the Thy1-
ChR2-EYFP mouse model was previously observed to last about 45 seconds, and observed to last 
for minutes in our experimental model (cf. Supplementary Figure 2) [30] These vascular radius 
time courses were similar to data collected in other optogenetic models of mural cell stimulation 
where arteries were observed to dilate for approximately 60 and 20 seconds respectively, and 
capillaries were observed to dilate on the scale of minutes [6], [23]. We thus constrained our 
volumetric acquisitions to 45 seconds. Each volumetric scan lasted for 42.98 seconds and used the 
resonant scanner with 5x frame averaging (resulting in a signal-to-noise ratio on the vasculature 
channel of 6.9±1.6), a nominal lateral resolution of 0.99 μm, a z-step of 2.64 μm, and traversed 
250.8 μm of cortical depth. This z-step was chosen because larger z-steps led to discontinuities in 
the capillary bed segmentation. We imaged the brain in sections from the cortical surface to a depth 
of 250 μm and from 250 μm to 500 μm of cortical depth. The acquisitions were split into two slabs 
to maximize the volume coverage without creating discontinuities in the capillary segmentation 
masks while maintaining a scan duration of under 45 seconds. Stacks were acquired either from 
the cortical surface down or from the bottom of the stacks toward the cortical surface on different 
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paired acquisitions, so that the post-stimulus delay of image acquisition at different cortical depths 
was not constant. A 239-μm diameter circular photostimulation region was positioned 250 μm 
beneath the cortical surface. The photostimulation light was raster scanned over this ROI for 5 
seconds between imaging scans, with a pixel dwell time of 4 μs for each pixel of the stimulation 
ROI. Each pixel in the photostimulation ROI was thus excited every 501.55 milliseconds, i.e. at 
about 2Hz. We used two laser powers for 458-nm photostimulation: 1.1 mW/mm2 and 4.3 
mW/mm2. The 1.1 mW/mm2 is just above the threshold for ChR2 photoactivation and is expected 
to elicit a small degree of neuronal activity, whereas the 4.3 mW/mm2 photoactivation elicits more 
neuronal activity while still being below ChR2 saturation level [33], [36]. Low powers were used 
to activate ChR2-expressing neurons to minimize tissue heating [37]. We also performed control 
experiments via 552-nm photostimulation (where ChR2 excitation falls to 4% of its peak) at 4.3 
mW/mm2 [38]. Mice rested for approximately 5-7 minutes between scan pairs for the vascular tone 
to return to its resting state. Photostimulation parameters were presented in randomized order for 
each mouse.  
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Figure 1: Photostimulation setup: The excitation and stimulation light pass through a FV30-
NDM690 dichroic mirror with two notch filters, at 458 nm and 552 nm, to excite TexasRed, EYFP 
and ChR2 within the mouse. The emitted light passes through the objective, is reflected off the 
FV30-NDM690 dichroic mirror, and passes through a 650 nm barrier filter before reaching a 570 
nm long pass filter (LPF) separating emitted light from EYFP and TexasRed, which respectively 
pass through 495-540 nm and 575-630 nm barrier filters to be collected via GaAsP detectors. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2024.01.24.577045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577045
http://creativecommons.org/licenses/by/4.0/


 

8 

3.3 Segmentation and Graph Extraction 

Ground truth generation 
To generate ground truths, we used ilastik’s pixel classification workflow, which relies on 

random forests, to annotate blood vessels and pyramidal excitatory neurons soma’s in 42 volumes 
from 25 Thy1-ChR2-EYFP mice for training our DL model (24 images from 16 Thy1-ChR2-EYFP 
mice from other studies were included in the training, validation, and test cohorts to increase our 
dataset size). Images were semi-automatically segmented in groups of up to 4 each, with a size of 
507x507x250 μm each, due to ilastik’s inability to handle large amounts of annotations over more 
than a few volumes. The rater labelled targets (neurons vs. blood vessels), corrected mistakes, and 
classified the pixels where the output was uncertain (as shown using ilastik’s uncertainty guidance 
feature). During the manual annotation, feature selection was repeatedly optimized using ilastik’s 
suggest feature function (wrapper method), leading to different features being used for the random 
forest model for each set of images. Small (under 50 pixels) isolated vascular components were 
removed with connected component analysis in Python using scikit-image and connected-
components-3d. Testing data was withheld until the final model was selected based on the models’ 
performance evaluation on the validation data set.  

Data preprocessing and augmentation 
We used the MONAI python package for data preprocessing, augmentation, model 

training, and prediction [39]. All images and ground truth segmentation masks were up-sampled 
to an isotropic voxel size using bilinear and nearest neighbour interpolation. Raw 10-bit image 
intensities were normalized to range from 0 to 1.0. Each volume had eight 128x128x128 pixel 
patches randomly cropped out for training. Data augmentation, transformations and parameters are 
listed in Supplementary Table 2. Spatial transformations were selected to expand data variety via 
cropping, rotations, and mirroring hence exposing the network to images that would be acquired 
on different positioning of the animal under the microscope. Zooming and deformation 
transformations were included to expose the network to small changes in the size and morphology 
of the vasculature. Intensity and Gaussian transformations exposed the network to signal intensity 
and contrast variations. Dropping pixels was included as the resonant scanner acquisition 
occasionally yields images with some relatively low signal pixels.  

Model Architecture 
We trained a state-of-the-art 3D vision transformer (UNETR) model and the U-Net model 

for baseline comparison, as implemented in PyTorch using the MONAI library [39]. UNETR is a 
U-Net style architecture with a transformer-based multi-attention head encoder and a CNN 
decoder [40], [41]. The encoder takes an input image (or patch from each batch) and breaks it 
down into a sequence of non-overlapping patches, each of size 16x16x16 pixels, which are 
weighted differently to account for variation in signal intensities and patterns within an image. The 
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sequence of patches is then passed through a multi-head self-attention and multilayer perceptron 
encoder to capture self-attention between different pixels of the patch to encode long-range 
relationships between patches. The encoder is then connected to a CNN decoder with skipped 
connections to the encoder to map features back onto the original image at multiple spatial scales 
[40]. The model was trained on 2-channel images (EYFP-expressing neurons and Texas Red-
labelled vasculature) as inputs to segment neurons and vasculature. We chose the following 
parameters for the UNETR architecture: a 12 multi-attention head encoder, 16 convolutional 
features in the first layer of the encoder, a hidden layer size of 768, a multilayer perceptron size of 
3072, and Monte Carlo dropout, where on each run of the model 10% of weights were zeroed [40], 
[41], [42]. 

The U-net model used is based on the original 2D U-net proposed by Ronneberger et al. in 
2015 and extended into 3D via 3D convolutional operations and features residual blocks, 
parametric rectifying linear units, and instance normalization as described by Kerfoot et al. [41], 
[43], [44], [45], [46], [47]. The residual blocks were implemented for better gradient flow during 
the network training. At the same time, the parametric ReLU activation functions were used to 
improve the ability of the model to adjust its weights during training. Instance normalization was 
implemented to reduce contrast differences between images fed into the network to improve model 
robustness. The model was implemented with five layers featuring 16, 32, 64, 128, and 256 
channels and dropout. The U-net model was trained using the same data augmentation employed 
during the UNETR model training.  

Model Hyperparameter Optimization, Training, and Prediction 
We used a grid search to determine optimal hyperparameters for the UNETR and UNet 

models within the following parameter space [43], [48]: loss functions (Dice Loss, Dice + Cross 
Entropy Loss, Dice + Focal Loss, or Tversky Loss), dropout rates (0.1, 0.2, or 0.3), learning rates 
(5e-3, 1e-3, 5e-4, 1e-4, or 1e-5), and the number of residual units for the Unet model (2 or 3) [49], 
[50]. We utilized the Adam optimizer [51], and the best model during hyperparameter optimization 
was selected based on the validation Dice similarity coefficient (DSC) and trained for a maximum 
of 2400 epochs. The Dice score was the principal evaluation metric, to maximize the overlap 
between ground truth and prediction masks. Precision and recall were used as secondary metrics 
to achieve balanced precision and recall where over-segmented results were produced. For early 
stopping, the epoch with the best performance of the DSC on the validation dataset was selected. 
The final model that had the best Dice score during hyper-parameter optimization was trained with 
a Dice + Cross Entropy Loss function, a dropout rate of 0.1, 2 residual units, a learning rate of 1e-
5, and a batch size of 1 image with 8 crops per image. Training and optimization were performed 
on the Narval cluster of Calcul Quebec and the Digital Research Alliance of Canada, with each 
node using 498 GB of RAM and 4 Nvidia A100 GPUs, each with 40GB HBM2 VRAM.  

Ilastik utilized a random forest model from the Vigra library with the default parameters 
and 100 trees [52], [53]. We initially utilized all default 3D Colour/Intensity/Texture/Edge features 
during ilastik feature selection and added 2D Colour/Intensity/Texture/Edge features with a sigma 
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of 20.0 pixels. These 2D features were added as a strong, largely planar artifact was observed 
towards the surface of the images in the neuron channel. We used the wrapper method for feature 
selection with a set size penalty of 0.10 to determine the optimal features from the starting set. The 
model was then trained using live updates on the Narval cluster of Calcul Quebec and the Digital 
Research Alliance of Canada, with each node using 249 GB of RAM and 2 x AMD Rome 7532 
CPUs with 64 cores. 

For the ilastik model, a subset of 3 training images from 3 mice was used as ilastik’s 
random forest was unable to train a model with more data even on compute nodes with large 
memory and CPU resources. The model could never complete training within the time limits of 
the resource allocations. This inability to complete model optimization was expected as ilastik’s 
documentation does not recommend training random forest models with full annotation datasets, 
and increasing the number of annotations does not necessarily lead to better predictions for the 
pixel classification workflow [52]. The ilastik random forest model was trained with whole images 
rather than with patches. 

Model Comparison 
 To compare models, we employed several metrics evaluating the similarity between the 
ground truth and prediction: the Dice Similarity Coefficient (DSC), Precision, and Recall, as well 
as surface-based metrics: 95% Hausdorff distance (HD95) and mean surface distance. We 
specifically focused on mean surface distance and HD95 distance since the centerline extraction 
used in the downstream analysis was highly sensitive to surface irregularities. The model with 
the lowest standard deviation on the mean surface distance was to be selected absent statistically 
significant differences in the average mean surface distance between different models. 
Consistency in surface placement was key for extracting good centerlines and graphs from the 
segmentation masks. The metrics utilized are defined as follows: 
 
 

𝐷𝑆𝐶	 = 	
2|𝑋 ∩ 𝑌|
|𝑋| + |𝑌| 

(1) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (2) 

 𝑅𝑒𝑐𝑎𝑙𝑙	 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠	 + 	𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (3) 

 𝐻𝐷95 = 	MaxD𝑠𝑢𝑝!"%,%∈'𝑑(𝑥, 𝑌), 𝑠𝑢𝑝!"%,(∈)𝑑(𝑋, 𝑦)L (4) 
 

𝑀𝑒𝑎𝑛	𝑆𝑢𝑟𝑓𝑎𝑐𝑒	𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒	 = 	
1

𝑁' + 𝑁)
PQ𝑑(𝑝, 𝑛))
*!

+,-

+Q𝑑(𝑞, 𝑛')
*"

.,-

S 
(5) 

The DSC measures the overlap between the prediction and ground truth with a value of 1 
corresponding to complete overlap, X represents the ground truth and Y represents the predicted 
value. Precision measures the rate of correctly returned predicted values, whereas recall accesses 
the rate of return of targeted values. For the Hausdorff 95% distance (HD95), the distance d is the 
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infimum of the Euclidean distance between points x and y (from the surface of segmentation masks 
X and Y) to segmentation masks Y and X, respectively. HD95 computes the maximum of the 95th 
percentile of the supremums (sup) of these minimum surface distances (d(x,Y) and d(X,y)) 
between the boundaries of the ground truth and the predicted segmentation mask. The mean 
surface distance measures the average minimum distance between the boundary of the ground truth 
and the boundary of the predicted segmentation mask. In Equation (5), nx and ny are the sets of 
boundary points of X and Y, respectively, and Nx and Ny are total number of boundary points nx 
and ny. The infimum of the minimum Euclidean distance, d, from boundary points p from nx, and 
q from ny to sets nx and ny are then computed and averaged to compute the Mean Surface Distance. 
Together, the HD95 and Mean Surface Distance assess model performance at the boundaries of 
the segmentation masks.  

Graph extraction of cerebrovascular networks 
Graph extraction was performed in Python except for the centerline calculation, which was 

performed in MatLab (R2021a). Upsampled image acquisitions (0.99 μm isotropic voxel size) 
were registered with ANTsPy using the rigid registration method with a total sigma of 2 pixels (for 
smoothing within the registration function) and mean squared error as the similarity metric as input 
parameters of the registration function (Figure 2A,B). We selected the first baseline scan from 
each region of interest that was scanned from the bottom to the top to serve as a reference to which 
all other images from the same region were aligned. The calculated transforms were used to 
transform images from the same ROI to the space of the reference image using linear interpolation 
[54]. We then generated segmentation masks for each aligned image using our trained UNETR 
model with sliding window inference, and we retained Monte Carlo dropout during prediction to 
create an ensemble of 20 UNETR models, so as to assess the model uncertainty (Figure 2D) [55].  

To extract the centerlines, we assumed that no background was present within the vessels, 
as regions of background within vessels disrupt the centerline extraction algorithm. Background 
labelled pixels surrounded by blood vessel segmentations were thus filled in using connected 
component analysis. Disconnected vascular components under 50 pixels were assumed to be noise 
and removed. Each aligned binary segmentation mask was dilated three times with a footprint 
defined by scikit-image’s disk function with a radius of 1 pixel. Next, we computed the union of 
all segmentation masks from the same ROI generated from registered images (Figure 2E). This 
common segmentation mask for all time points was eroded to a centerline via a medial axis 
transformation (bwskel function in Matlab (R2021a)). Critically, using the union of all time points 
minimized the sensitivity of centreline identification to red blood cell (RBC) stalls at individual 
time points. “Hair” segments shorter than 20 μm and terminal on one end were iteratively removed, 
starting with the shortest hairs and merging the longest hairs at junctions with 2 terminal branches 
with the main vessel branch to reduce false positive vascular branches and minimize the amount 
of centerlines removed. This iterative hair removal functionality of the skeletonization algorithm 
is currently unavailable in python, but is available in Matlab [56]. The vascular centerlines were 
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next used to construct vascular graphs (with sknw) for each ROI, rendering coordinates of vertices 
along the vessel’s centreline as edges, and branch points as nodes [57].  

Based on the vascular graphs, we computed vascular radius estimates at each vertex at each 
timepoint and then calculated the vertex’s distance to the nearest YFP-expressing pyramidal 
neuron (as measured by the distance transformation at the vertex to the nearest labelled neuron, 
with the radius of the vessel subtracted off). We employed a two-stage approach to estimate the 
radius for each point on the centerline. First, using the binary segmentation mask, we calculated 
the distance from every vessel pixel in the mask to the nearest background pixel. These values 
were averaged for each vessel to estimate its radius. The radius estimate defined the size of the 
Gaussian kernel that was convolved with the 2d image slice to smooth the vessel: smaller vessels 
were thus convolved with narrower kernels.  

In the second stage, the registered raw image was deconvolved with the point spread 
function of the microscope, as measured via FluoSpheres carboxylate-modified Microspheres 
(Cat# F8803, Thermo Fisher Scientific Inc, Waltham MA), using Richardson-Lucy deconvolution. 
To low pass filter the centreline in advance of computing the tangent vector at each vertex, the 
coordinates of the vertices along the centerline were smoothed using a Gaussian with a sigma of 
3. Next, the tangent vector to the centerline was specified by calculating the gradient of the 
centerline path. Given this local tangent to the vessel’s direction of travel at a given vertex, we 
extracted image intensities in the orthogonal plane from the deconvolved raw registered image. A 
2D Gaussian kernel with sigma equal to 80% of the estimated vessel-wise radius was used to low-
pass filter the extracted orthogonal plane image and find the local signal intensity maximum 
searching, in 2D, from the center of the image to the radius of 10 pixels from the center. The 
orthogonal plane image was sampled every 10 degrees (as finer radial sampling did not improve 
the estimation cf. Supplementary Figure 3) along radial lines emanating from the local signal 
intensity maximum closest to the center of the image and 5x bicubic upsampled to extract thirty-
six 1D signal intensity profiles at that vertex, as shown in Figure 2H. These line profiles were then 
convolved with a 1D Gaussian kernel with a sigma of 80% of the estimated radius of that vessel, 
and the gradient of each profile was calculated as shown in Figure 2I, J. The vessel boundary was 
then placed at the local minimum of the gradient of each profile. The mean and standard deviation 
of the boundary distances for the thirty-six 1D line profiles were calculated, and boundary points 
greater than 2 standard deviations away from the mean were excluded (Figure 2K). This radius 
estimation procedure was repeated for all vertices of all vessels.  

In the last step, we computed the distance from each image voxel to the nearest YFP-
expressing pyramidal neuron by computing the distance from every image pixel not belonging to 
the neuron mask to the closest YFP-expressing neuron’s soma boundary (based on the neuron’s 
binary segmentation mask). At the vessel vertices, these distances were adjusted by subtracting the 
vessel’s radius. We thereby captured the distance from the vessel surface to the closest YFP-
expressing neuron.  
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Figure 2. Computational analysis pipeline: A. The stacks of 2PFM slices were registered using 
ANTS rigid registration and aligned to the reference time point. B. Images were upsampled using 
bicubic interpolation to an isotropic resolution of 0.99x0.99x0.99 μm. C. An ensemble of 
UNETR deep learning models with dropout generated segmentation masks at each time point, 
producing probability maps. D. The mean and standard deviation of the probability of each pixel 
being vasculature were computed and used to create binary vascular segmentation masks. E. The 
union over the vascular segmentation masks for all time points was computed, and background 
pixel clusters within vessel masks were removed. F. The vascular segmentation mask was 
thinned down to centerlines and rendered as a graph, where edges were vessel segments 
connecting branch points (nodes). This skeleton was overlaid on the vasculature channel from 
which the neuron channel was subtracted. G. The plane orthogonal to the tangent to the vessel's 
travel direction was computed every micrometre along the centerline. H,I. 1D signal intensity 
profiles at each centerline vertex were computed in the orthogonal plane every 10°. J. The 
boundary for each profile was placed at the minimum of the signal gradient for that signal 
intensity profile. K. The raw intensity image with the detected boundary points, where outlier 
boundary points (in green) were defined as points over 2 standard deviations from the mean and 
excluded. L. Visualization of the changes in vertex-wise radii on a sample vascular network. 
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Boundary detection validation 
To assess the uncertainty in the radius estimates at each vertex, we simulated changes to 

the vascular diameter by “resizing” the extracted orthogonal plane image and adding Gaussian 
noise to it. These steps were undertaken to validate the ability of the boundary detection method 
to estimate diameter changes and evaluate the robustness of the estimates to increased amounts of 
noise. For the diameter change estimation, images were resampled from the orthogonal plane by a 
random factor, uniformly distributed in the range of 0.5x to 2x. Then, the aforementioned boundary 
detection methods were used to estimate vertex-wise calibre changes. The end goal of the 
assessment was to see how close the boundary detection method-based radius change matched the 
prescribed diameter change. In the second task, we added Gaussian noise with a sigma randomly 
chosen from a uniform distribution ranging from 0 to 500 SU to the orthogonal plane image. The 
noise was added to the image after deconvolution with the PSF and the extraction of the orthogonal 
plane but before Gaussian smoothing. We then reported on the percent change in the radius as a 
result of resizing or adding noise in relation to the baseline radius. 

Second, our boundary detection algorithm was used to estimate the diameters of fluorescent 
beads of a known radius imaged under similar acquisition parameters. Polystyrene microspheres 
labelled with Flash Red (Bangs Laboratories, inc, CAT# FSFR007) with a nominal diameter of 
7.32 μm and a specified range of 7.32 ± 0.27 μm as determined by the manufacturer using a Coulter 
counter were imaged on the same multiphoton fluorescence microscope set-up used in the 
experiment (identical light path, resonant scanner, objective, detector, excitation wavelength and 
nominal lateral and axial resolutions, with 5x averaging). The images of the beads had a higher 
SNR than our images of the vasculature, so Gaussian noise was added to the images to degrade 
the SNR to the same level of that of the blood vessels (SNR value of 5.05 ± 0.15). The images of 
the beads were segmented with a threshold, centroids calculated for individual spheres, and planes 
with a random normal vector extracted from each bead and used to estimate the diameter of the 
beads. The same smoothing and PSF deconvolution steps were applied in this task. We then 
reported the mean and standard deviation of the distribution of the diameter estimates. A variety 
of planes were used to estimate the diameters. 

 

3.4 Vascular Network Analysis 
 Leveraging the graph representation of the vasculature in our pipeline, we next used 
graph theory to better understand the networks’ behaviour upon neuronal activation. We looked 
at morphometrics including vascular segment count density, vascular length density, and mean 
vessel length for comparison with other work. To demonstrate the benefits of extracting a 
graphical representation of the vasculature in situ, we looked at graph theory metrics including 
the assortativity of vascular radius changes and changes to the global efficiency of the capillary 
(below 5 μm in radius) network following optogenetic stimulation. The assortativity measures 
the tendency for one vessel to dilate or constrict by a similar amount as its neighbours. The 
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assortativity (q) of radius changes in response to stimulation is defined as the Pearson correlation 
coefficient of these changes on connected vessels:  
 

Assortativity  𝑞 = 	
∑ %((1#$23#4$)#$

6%6&
 (6) 

 

where exy represents the fraction of vessels (edges) in the network that join together nodes with 
values x and y (i.e. radius changes with values x and y); ax and by are the percentages of edges 
connecting nodes with values x and y, and 𝝈a and 𝝈b are the standard deviations of ax and by [58]. 
The efficiency, in turn, captures how easily the graph can be traversed. For vascular graphs, 
efficiency can be conceptualized as the average of the inverse of the total resistive distance of the 
shortest paths of all combinations of vascular junctions, with the hydraulic resistivity serving as 
the distance between them. The resistivity (equation 7) is summed along the shortest paths, and 
the inverse of this sum is then averaged across all shortest paths to compute the efficiency (equation 
8). Finally, photostimulation-induced change in the efficiency, from its baseline level, is reported.  
 

Resistivity 𝜌	 = 	
8𝜇𝐿
𝜋𝑅4

 (7) 

Efficiency 
𝐸	 = 	

1
𝑁(𝑁 − 1) Q

1
𝜌787≄8∈:

 
(8) 

 
In computing resistivity, we assumed a fluidic viscosity (μ) of 4 cP which is within the 
physiological range [59]; L was the length of the capillary; and R was the radius of the capillary. 
Vessels greater than 10 μm in diameter were excluded from the efficiency calculation as we wanted 
to examine blood flow through the capillary nexus between arteries and veins where blood flow 
may be reversible [60]. The sum of the resistivities along the least resistive path specified ⍴ij in 
the efficiency calculation: this sum quantifies how hard it is for blood to move through the said 
microvascular bed. N refers to the number of nodes in the network. The efficiency was calculated 
as the average of the inverse of the least resistive paths between all pairs of nodes. The efficiency 
increases with increasing radius on the shortest paths through the network.  

3.5 Statistical models 
To statistically compare deep learning model performance, we used the Wilcoxon signed-

rank test as implemented in scipy (1.9.3) [61]. Statistics for vascular radius and network metrics 
were performed in R (4.3.1) using restricted maximum likelihood mixed effects models as 
implemented in lme4 (1.134) [62], with post hoc comparisons done using emmeans (1.8.8) [63]. 
We ran the following linear mixed effects model, separately on dilating and constricting vessels 
that exhibited radius changes above two standard deviations of the vessel’s baseline radius, to 
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examine the effects of photostimulation power on microvascular radius changes in responding 
vessels:  

ΔRadius ~ Stimulation + (1|Vessel)  

Due to the difference in their vessel wall ultrastructure, larger microvessels (above 5 μm in 
radius) were examined separately from capillaries (radius < 5 μm).  

For graph metrics, we included nesting of the field of view within each subject as a random 
effect so as to account for differences in vascular network architecture within an individual. The 
linear mixed effects models for the graph metrics used were as follows: 

Assortativity ~ Stimulation + (1|Subject/Field of View) 

Δ Efficiency ~ Stimulation + (1|Subject/Field of View) 

In Tables and text, all values have been quoted as mean ± standard deviation, unless otherwise 
specified. 

4 Results 
Application of our computational pipeline resulted in robust segmentation of the 

vasculature and neurons from 4D in situ 2PFM images and rendering of the microvasculature as a 
graph. The vessel-wise and vertex-wise calibres were tracked across stimulation conditions and 
related to the cortical depth and the distance to the closest YFP-expressing neuron, mapping the 
network-level vascular responses to ChR2 activation and revealing the coordination of the 
microvascular responses following neuronal activation. 

4.1 Segmentation model results and comparisons 

  We compared an ensemble of UNETR models, an ensemble of U-Net models, and an 
ilastik random forest model on a test dataset of 9 images (507x507x250 μm each) from 6 mice. 
Examples of segmentation masks produced by each of the models are shown in Figure 4 and 
Supplementary Figure 4. When evaluating model performance, we paid close attention to the 
smoothness of the surface of the segmentation masks due to the sensitivity of the centerline 
extraction algorithms to irregularities in the surface of the masks: smoother vascular segmentation 
masks resulted in fewer falsely identified vessel branches. Ilastik tended to over-segment vessels, 
i.e. the model returned numerous false positives, having a high recall (0.89±0.19) but low precision 
(0.37±0.33) (Figure 3, Supplementary Table 3). When comparing the UNETR and U-Net models, 
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we focused on the surface-based mean surface distance and HD95 distance metrics. Since we 
observed no significant differences in these metrics between the two models, we selected the 
UNETR model as our final model because it produced more consistent segmentations on visual 
inspection and showed significantly better performance than ilastik on HD95 for both vessel and 
neuron segmentation (p < 0.05). 

 
Figure 3. Model performance metrics: The Dice, precision, recall, mean surface distance, and 
HD95 distance for the vascular (A) and neuron (B) channels. Each model was evaluated on the 
same test dataset composed of 9 images (250x507x507 μm each) from 6 mice. A Wilcoxon 
signed-rank test was used to compare the model’s performance on each performance metric for 
images from the test dataset. * p < 0.05, ** p < 0.005, and *** p < 0.0005. p-values were not 
adjusted.  
 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2024.01.24.577045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577045
http://creativecommons.org/licenses/by/4.0/


 

18 

 
Figure 4. Visual model comparison: A. Raw images of the vascular channel with the neuron 
channel subtracted to facilitate vessel visualization. The first and last stacks in each row span 
from the cortical surface to 250 μm below the surface, while the middle stack spans from 250 μm 
below the surface to 500 μm below the surface. All images were from the test dataset, which was 
unseen during model training. B. Ground truth segmentation masks for the vasculature were 
generated by a rater who utilized ilastik-assisted manual segmentation. C. Ilastik predictions 
generated via a random forest model. D. Binary segmentation masks generated by an ensemble 
of 3D UNet Models. E. Binary segmentation masks generated by an ensemble of 3D UNETR 
models.  

4.2 Vessel extraction improvements via image registration  
Rigid registration across all time points from the same field of view improved the ability 

to trace vascular paths from in situ 2PFM data. Firstly, registration decreased the mean squared 
error (MSE) between acquisitions from 1306±747 to 0.008±0.003 Signal Units. The number of 
images acquired per field of view ranged from a total of 2 to 10 depending on how many repeats 
were able to be acquired. Registration enabled the computation of the union of segmentation masks 
from all time points. This increased the number of vessel segments identified in each field of view 
from 241±174 based on a single time point to 412±281 vessel segments per field of view 
(507x507x250 μm, n=107 fields of view). Taking the union of segmentation masks of an image 
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stack across all time points substantially decreased the incidence of gaps in capillaries, likely 
arising due to “transient RBC plugs.” The pipeline’s ability to reconstruct the cortical vascular 
network was thus significantly improved by registering data obtained at different time points.  

4.3 Validation of pipeline sensitivity to geometric changes 
 To evaluate the ability of our computational pipeline to detect vessel caliber changes of 
various magnitudes, we simulated a range of vascular caliber changes and injected various levels 
of Gaussian noise. Across >100,000 simulations, the fit of the estimated radius following rescaling 
against the simulated radius had an R2 value of 0.68. Figure 5B presents a heatmap of the estimated 
radius post-scaling vs. simulated radius, across different vertices of vessel centerlines, highlighting 
the ability of our pipeline to estimate vascular radii accurately. The addition of Gaussian noise 
revealed the robustness of the pipeline: radius estimates remained stable with increasing noise 
levels, until the addition of noise with a standard deviation of over 200 SU (with the intensity of 
the images ranging from 0 to 1023 SU).  
  
 

 
Figure 5. Estimation of simulated radii changes: A. An image in the plane orthogonal to the 
local tangent to a capillary with the detected boundary (in blue) and with the estimated radius of 
2.28 μm. On the right, this image was resized (upsampling, via bicubic interpolation, by 1.10 
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times) to simulate dilation. B. The plot shows correspondence between the estimated radius 
following scaling and the simulated level of scaling. C. An image in the plane orthogonal to the 
local tangent of a capillary with the detected boundary (in blue) and with the estimated radius of 
3.65 μm. On the right, Gaussian noise with a sigma of 205.36 SU was added to the image. D. 
The estimated % change in the vessel's radius after the addition of varying levels of Gaussian 
noise, demonstrating the robustness of the radius estimated to noise. 
 Our boundary detection algorithm successfully estimated the radius of precisely specified 
fluorescent beads. The bead images had a signal-to-noise ratio of 6.79 ± 0.16 (about 35% higher 
than our in vivo images): to match their SNR to that of in vivo vessel data, following 
deconvolution, we added Gaussian noise with a standard deviation of 85 SU to the images, 
bringing the SNR down to 5.05 ± 0.15. The data processing pipeline was kept unaltered except 
for the bead segmentation, performed via image thresholding instead of our deep learning model 
(trained on vessel data). The bead boundary was computed following the same algorithm used on 
vessel data: i.e., by the average of the minimum intensity gradients computed along 36 radial 
spokes emanating from the centreline vertex in the orthogonal plane. To demonstrate an 
averaging-induced decrease in the uncertainty of the bead radius estimates on a scale that is finer 
than the nominal resolution of the imaging configuration, we tested four averaging levels in 289 
beads. Three of these averaging levels were lower than that used on the vessels, and one matched 
that used on the vessels (36 spokes per orthogonal plane and a minimum of 10 orthogonal planes 
per vessel). As the amount of averaging increased, the uncertainty on the diameter of the beads 
decreased, and our estimate of the bead's diameter converged upon the manufacturer's Coulter 
counter-based specifications (7.32 ± 0.27 μm), as tabulated below in Table 1. 
 
Table 1: Bead Diameter Estimates 

Number of Orthogonal 
Planes 

Number of Spokes 
per Plane 

Mean Diameter Estimate  
(μm) 

1 3 7.54 ± 0.68 

2 4 7.44 ± 0.51 

4 12 7.34 ± 0.38 

10 36 7.34 ± 0.32 

 

4.4 Vascular morphology and heterogeneity within and among vessels 
Segmentation coupled with graph extraction enabled a detailed characterization of the 

microvascular network properties. The morphological properties of extracted networks are listed 
in Table 2, with the probability densities of the vessel length, baseline vessel radius, mean vessel 
segment depth, and vessel branch point depth shown in Supplementary Figure 5. On the extracted 
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graphs, the vascular radius and distance to labelled neurons were sampled every 1-1.73 μm, 
enabling detailed analysis of the relationship between the vessel radius change and the proximity 
to the YFP-expressing neurons. The radius was tracked across different time points, permitting the 
analysis of the stimulation-induced change in the vascular caliber. To highlight the ability of the 
pipeline to detect vessels that significantly change their radius after stimulation, Figure 6A shows 
the standard deviation of the average radii on each vessel segment during baseline frames for three 
mice. There was a large difference in this standard deviation across various blood vessels, 
showcasing the model's ability to reveal baseline variations within each subject. We examined the 
average change in the vascular radius of each vessel segment after vs. before photostimulation 
(Figure 6B), with even finer spatial patterns detected by analyzing the vertex-wise radius changes 
(Figure 6C). The vascular diameter changes were related to the distance from the vessel's surface 
to the closest labelled pyramidal neuron at each vertex of the centerline (Figure 6D). The vertex-
wise radii estimation allowed the assessment of the variations in radii changes within individual 
blood vessels (Figure 7). Notably, capillary radius varied along the vessel length across the 
baseline frames, by 24 ± 28% of the mean resting radius. Consequently, point measurements in 
vessel calibers - that are widely reported in the literature - do not permit accurate estimation of the 
microvessel volume changes. Together, the within- and across-vessel radii estimations illustrate 
the pipeline's ability to capture spatial variations in the vascular reactivity and relate it to other 
morphological features (e.g., the distance to the closest labelled neuron).  

 
Table 2: S1FL Vascular Network Morphological Properties  

Metric Mean ± SD  N = 17 Mice (9M/8F) 

Number of Individual Vessels 
per Volume 

368 ± 239  32 FOVs 

Vessel Density 5705 ± 3705 mm-3 32 FOVs 

Number of Vascular 
Junctions per Volume 

207 ± 154 32 FOVs 

Vascular Junction Density 3215 ± 2385 mm-3 32 FOVs 

Number of Terminal Vessels 
per Volume 

128 ± 52 32 FOVs 

Individual Vessel Length 70.7 ± 61.1 μm 12555 vessel segments 

Cumulative Vessel Length 
Density  

0.40 ± 0.22 m/mm3 32 FOVs 

Baseline Vessel Radius 2.19 ± 1.66 μm 
Range: 0.66-15.88μm 

12555 vessel segments 
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Baseline Intra-Vessel Radius 
Standard Deviation 

0.53 ± 0.47 μm 12555 vessel segments 

Baseline Vascular Volume 
Density 

0.010 ± 0.007 mm3/mm3 32 FOVs 

Number of Pyramidal 
Neurons per Volume 

313 ± 202 Neuronal Somas 32 FOVs 

Pyramidal Neuron Density 4872 ± 3145 Neuronal 
Somas/mm3 

32 FOVs 

 
 

 
Figure 6. Vascular graph examples: A. Baseline variability in vessel diameter estimated by the 
standard deviation of each vessel’s mean radius across baseline time frames. B. Mean change in 
the vessel radius induced by optogenetic stimulation. C. Mean change in the vertexwise radius, 
allowing the visualization of heterogeneity of radius changes within each vessel. D. Distance 
from each vertex to the closest pyramidal neuron. Each row corresponds to the vascular graph of 
a different mouse.  
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Figure 7. Vertex-wise radii along vessel lengths of a sample artery, capillary and venule at 
baseline vs. post-stimulation: A. MIP of an artery, vein, and capillary segments before (left) 
and after (right) optogenetic stimulation with 458nm light at 1.1 mW/mm2. The artery and 
capillary dilated by 1.33±0.86 μm and 0.42±0.39 μm, respectively (for both p<1e-4, Mann-
Whitney U test), whereas there was no significant change in the venular caliber upon 
photostimulation (p=0.22, Mann-Whitney U test). B. Estimates of the vertex-wise radius 
obtained along each of the three vessels’ centrelines, before and after stimulation. C. Vertex-wise 
radii changes in response to optogenetic stimulation. D. The vertex-wise distance from the 
vascular surface to the closest YFP-expressing neuron. 
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4.5 Vascular reactivity to optogenetic stimulation 

The ability of the pipeline to reveal novel spatial relationships between the vascular 
network reactivity and labelled neurons was demonstrated by examining the relationship 
between photostimulation-induced microvascular radii responses and 1) the closest YFP-labelled 
pyramidal neurons within 80μm, and 2) the cortical depth, at the vertex-wise level and across 
different photostimulations (Figure 8). Vessels were coarsely segregated into small (average 
radius < 5 μm) and large (average radius > 5 μm) vessels, as we expected them to respond 
differently due to their differential wall-associated cell composition [6], [64], [65], [66], [67], 
[68], [69], [70], [71]. Only vessels longer than 20 μm (i.e. vessels whose radius was computed by 
averaging over many cross-sectional planes) that significantly responded following optogenetic 
stimulation were analyzed: a vessel was deemed a responder if its radius changed by more than 
twice the baseline standard deviation in the vessel’s radius. The morphometric properties of the 
responders, under different stimulation conditions, are listed in Table 3. The average magnitude 
of significant microvascular radius changes across all stimulation conditions was 1.04 ± 1.11 μm 
(62±47%). The variability in the radius change within the vessel was higher in the dilating 
vessels, 0.77 ± 0.61 μm (66±72%) than in the constricting vessels, 0.69 ± 0.49 μm (46±18%), for 
458-nm, 4.3	 ;<

;;2
 photostimulation (p<1e-4) (with no statistically significant changes detected for 

either 458-nm, 1.1	 ;<
;;2

 photostimulation or 552-nm, 4.3	 ;<
;;2

 photostimulation). Excluding 
vessels that did not change their radius by over twice the baseline standard deviation removed 
almost all large vessels from this analysis. (Notwithstanding, Supplementary Figure 5 depicts 
unfiltered large vessel constrictions and dilations.) We ran mixed effects models (at the vessel 
level) separately on constricting and dilating vessels to investigate the effect of optogenetic 
stimulation power on the vessel radius changes. Each of the models was run separately on small 
and large vessels.  
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Table 3: Details of responder (ΔR > 2 * 𝝈Rbaseline) vessels 
Stimulation 
Condition 

Total 
number of 
vessel 
estimates 

Average 
Minimum 
distance to 
the closest 
neuron 
(μm) 

Number of 
Dilators 

Minimum 
distance 
from 
dilators to 
the closest 
neuron(μm) 

Average 
vessel depth 
of dilators 
(μm) 

Diameter 
change 
(μm) 

Number of 
constrictors  

Minimum 
distance 
from 
constrictors 
to the 
closest 
neuron(μm) 

Average 
vessel depth 
of 
constrictors 
(μm) 

Diameter 
change 
(μm) 

                                 All Vessels  Dilators Constrictors 

Capillaries 

552 nm 4.3 𝒎𝑾
𝒎𝒎𝟐 5036 21.2 ± 16.2  144 (2.9%) 25.5 ± 19.0 186 ± 114 0.58 ± 0.92 49 (1.0%) 26.5 ± 19.5  247 ± 122 -0.37 ± 0.30 

458 nm 1.1 𝒎𝑾
𝒎𝒎𝟐 10136 18.7 ± 14.5  317 (3.1%) 16.8 ± 13.5  196 ±138 0.90 ± 0.93 255 (2.5%) 22.7 ± 16.3  254 ± 126 -1.39 ± 1.51 

458 nm 4.3 𝒎𝑾
𝒎𝒎𝟐 12537 20.6 ± 15.4  575 (4.6%) 16.1 ± 14.3  237 ± 146 0.90 ± 0.77 874 (7.0%) 21.9 ± 14.6  274 ± 103 -1.19 ± 1.13 

Large Vessels 

552 nm 4.3 𝒎𝑾
𝒎𝒎𝟐 225 43.1 ± 19.5  1(0.4%) 75.4 82 13.98 0 (0%) NA NA NA 

458 nm 1.1 𝒎𝑾
𝒎𝒎𝟐 545 38.4 ±19.5  1 (0.2%) 26.1  402 1.97 1 (0.2%) 19.0  179 -3.65 

458 nm 4.3 𝒎𝑾
𝒎𝒎𝟐 569 38.4 ± 20.1  2 (0.35%) 53.1 ± 6.3  84 ± 34 2.47 ± 2.93 6 (1.1%) 43.1 ± 16.3  290 ± 125 -6.07 ± 2.45 

4.5.1 Vessels further away from labelled neurons constrict while those closer to the 
activated neurons dilate 

We examined the relationship between vascular radius changes and the distance to the 
closest labelled pyramidal neuron, as microvascular response is thought to result from neuronal 
activation-elicited generation of vasoactive molecules that diffuse to the neighbouring vessels. 
For the control condition (552nm, 4.3	 ;<

;;2
 photostimulation), 2.9% of small capillaries dilated 

while 1.0% of small capillaries constricted; in larger vessels, barely any responded (0.4% 
dilated). For this control condition, there was no significant difference in the distance from 
constrictors or dilators to the closest pyramidal neuron. For the 458 nm photostimulation, 
capillary constrictors were on average farther away than were dilators from the labelledlabelled 
pyramidal neuron: dilations occurred 16.8 ± 13.5 μm away from labelledlabelled neurons while 
constrictions occurred 22.7 ± 16.3 μm for 1.1	 ;<

;;2
 photostimulation (p=1.5e-3) whereas the 

4.3	 ;<
;;2

 photostimulation had dilations occur 16.1 ± 14.3 μm away and 21.9 ± 14.6 μm for 
constrictors (p<1e-4). There was no significant shift between the distance from vessels to 
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neurons for the 1.1	;<
;;2

 and 4.3	;<
;;2

 stimulations with 458 nm light. Dilations in capillaries 
following 458 nm photostimulation were larger than those following the 552 nm control 
photostimulation: 0.90 ± 0.93 μm dilatations occurred with 1.1	;<

;;2
 and 0.90 ± 0.78 μm with 

4.3	;<
;;2

 at 458 nm; vs. 0.58 ± 0.92 μm with 4.3	;<
;;2

 at 552 nm (p<1e-4). For constrictions, 458 

nm photostimulations led to -1.39 ± 1.51 μm radius changes with 1.1	;<
;;2

 and -1.20 ± 1.13 μm 

radius changes with 4.3	;<
;;2

 (p=4.4e-3); whereas 552 nm photostimulation induced -0.37 ± 0.30 

μm radius changes with 4.3	;<
;;2

 of power, which was smaller than the 458-nm induced 
responses (p=0.02). 

4.5.2 Vascular radius changes at increasing cortical depths 

Vascular responses were next segregated by the cortical depth of the vessel (i.e. the 
average vessel distance from the cortical surface) [72]. Dilators tended to be located closer to the 
cortical surface across all stimulation conditions. Constricting vessels were located at an average 
58 ± 187 μm deeper than dilators for 458-nm stimulation at 1.1 ;<

;;2
	(p=0.02), and 37 ± 179 μm 

deeper for 458-nm photostimulation at 4.3 ;<
;;2

 (p<1e-4) (with no change in the mean depth of 
either constricting or dilating vessels with changes in the photostimulation power). 
 
 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2024.01.24.577045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577045
http://creativecommons.org/licenses/by/4.0/


 

27 

Figure 8. Optogenetic activation-induced changes in vessel-wise microvascular radii: 
Capillary responses included both dilatations, shown in A. and constrictions, shown in B., with 
changes in the magnitude of the capillary response with increased photostimulation power. * p < 
0.05, ** p < 0.005, and *** p < 0.0005. p-values were not adjusted. C. Probability density 
function of constrictions and dilations for the 4.3 mW/mm2 photostimulation. D. Changes to 
capillary radii are displayed in relation to the closest pyramidal neurons. The proportion of 
vessels constricting increased with the higher intensity of blue light stimulation, and 
constrictions tended to occur further away from pyramidal neurons than did dilations. E. Mean 
cortical depth of responding capillaries showed a tendency for dilators to be closer to the surface 
and for constrictors to be deeper in the tissue.  

4.5.3 Vascular Network Coordination Following Optogenetic Stimulation 

We examined the coordination of changes in the microvascular network as a whole via 
assortativity of radius changes and network efficiency changes. The vessel responses were 
observed to be assortative, i.e., capillaries mirrored the responses in their neighbours. The 
increases in stimulation power were accompanied by increases in the assortativity of capillary 
responses: increasing stimulation level resulted in heightened coordination between adjacent 
capillaries.  

The efficiency increased only at the strongest blue photostimulation, i.e., only at this 
level of stimulation did the resistivity along the average of all of the shortest paths between 
junctions in the vascular network decrease, resulting in attenuated resistance to flow through the 
network. The distribution of changes to the efficiency were highly skewed (with a coefficient of 
skewness of -1.06 for green illumination, 2.92 for lower intensity blue photostimulation, and 
4.87 for higher intensity blue photostimulation). The median increase in the efficiency induced 
by the higher intensity blue photostimulation, of 4% (IQR: -8% to 38%), was significantly higher 
than the median -6% (IQR=-9% to 4%) efficiency change following the control green 
illumination  

 
Figure 9. Microvascular Network Coordination Following Optogenetic Stimulation: A. 
Graph representation of a vascular network of 425 vascular segments from a single image stack. 
Vessel segments are depicted as nodes of the graph; vascular segments that are joined at 
junctions are connected by edges. Nodes are coloured by the change in the mean vessel-wise 
radius following photostimulation with 458 nm light at 4.3 mW/mm2. B. Assortativity of 
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photostimulation-induced changes in mean capillary radius increased with increasing 
photostimulation power. C. Photostimulation-induced changes in the efficiency of the capillary 
network. The capillary network efficiency changed by a median -0.16 P𝛀-1 (IQR: -0.39 to 0.10 
P𝛀-1) in response to green light; -0.14 P𝛀-1 (IQR: -0.55 to 0.27 P𝛀-1) in response to lower 
intensity blue light; and 0.22 P𝛀-1 (IQR = -0.43;1.47 P𝛀-1) in response to higher intensity blue 
light. There was a significant increase (p = 0.03) in the capillary network efficiency post 458-nm 
light at 4.3 mW/mm2, when compared to that following the control green illumination. The 
measurements came from 72 paired acquisitions of 32 image stacks acquired in 17 mice 
(9M/8F). * p < 0.05, ** p < 0.005, and *** p < 0.0005. p-values were not adjusted. 

5 Discussion 
 Recent studies have demonstrated temporal propagation and coordination in 
cerebrovascular responses to neuronal activation, whereby arteries dilated after capillary 
exposure to increased potassium ion concentration [73]; opposing geometric changes have been 
reported by some studies in capillaries connected by intercapillary tunnelling nanotubes [24]. 
However, how the effects of these and other mechanisms influence in situ reactivity of the 3D 
brain capillary network remains unknown. Here, we developed a pipeline for extracting graphs 
of brain microvascular networks from in situ 2PFM and examine coordination within and across 
capillaries. Capillary networks and their geometrical changes were imaged via 2PFM during 
periods of baseline alternated with photostimulation of ChR2 in pyramidal neurons of transgenic 
mice, and the microvascular mesh was evaluated every 1-1.73 μm. The vascular morphology was 
then analyzed vertex- and vessel-wise across the entire network. All vessels exhibited significant 
heterogeneity in caliber changes along their length. Neuronal activation induced both dilations 
and constrictions of vessels and the incidence of constrictions increased with increasing cortical 
depth. As the stimulation power increased, the tendency for vessels to change their radius by an 
amount similar to their neighbours increased. Only the highest photostimulation intensity elicited 
an increase in the network efficiency. Our findings reveal an intricate level of coordination 
among brain microvessels and provide a computational analysis platform for interrogating a host 
of hypotheses on cerebral microvascular reactivity.  

Vascular Segmentation and Network Extraction  
 Intensity thresholding-based image processing pipelines have been used to examine 
vascular networks and quantify vascular morphology, but they have not gained widespread use 
due to difficulties in adapting them to highly heterogeneous levels of noise across samples [68], 
[74], [75], [76]. Deep learning-based methods for analyzing vascular morphology from 3D 
microscopy images have become prevalent as they provide robust segmentation results over a 
wide range of signal-to-noise ratios. Recent work has demonstrated steady improvements of 
segmentation models’ performance with respect to similarity-based metrics (i.e., Dice scores) 
[77], [78], [79], [80], [81], [82]; though surface-based metrics may be better predictors of how 
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amenable segmentation outputs will be to subsequent morphological analysis of the 
microvascular network. Our final UNETR model was selected based on a combination of 
performance metrics including mean surface distance, Hausdorf 95% distance, and rater 
evaluation, to maximize the smoothness of the surface of generated segmentation masks and 
reduce false positive branch points during centerline extraction; thereby leading to higher fidelity 
rendering of microvascular networks. Graph generation was greatly facilitated by computing the 
union of the vascular segmentation masks across all time points as it enabled tracing of 
capillaries that had stalls at the individual time points (since the accompanying loss of the 
fluorescent label otherwise resulted in graph discontinuities).  
 We tested the ability of the pipeline to detect changes to simulated changes to images and 
the pipeline’s sensitivity to perturbations to extracted vascular morphology. Using resizing, we 
confirmed that the boundary detection algorithm was able to detect prescribed changes (cf. 
Figure 5). The average radius estimates for vessels were then shown to vary by 0.64±3.44% upon 
changes in centerline position, demonstrating that the radius estimates have a low sensitivity to small (2-
3 μm) perturbations in centerline placement. Visual examples of vessels repeatedly dilating or 
constricting are shown in Supplementary Figures 7 and 8. 

Network morphological properties at baseline were in line with prior work. The vascular 
length density measured from fixed tissue ranged from 0.44 to 1.10 m/mm3 [74], [83], [84], [85], 
[86], [87]. Our reported vascular density in the forelimb region of the primary somatosensory 
cortex was 0.40 ± 0.22 m/mm3, with the low end of the range value expected due to fluorescence 
absorption by hemoglobin in the large pial vessels leading to signal dropout (or shadowing) in 
the underlying tissue. Our reported average capillary radius of 2.19 ± 1.66 μm was also in line 
with other studies, where the mean capillary radius ranged from 1.75 to 2.2 μm as measured with 
confocal microscopy or 2PFM [7], [74].  

Next In Situ Changes to Vessel Calibers Upon Neuronal Activation 
 Caliber changes at individual vertices along vessel centerlines exhibited significant 
heterogeneity. Such heterogeneity is expected due to non-uniformly distributed alpha smooth 
muscle actin-containing cells along vessel walls, as well as differential activations leading to 
heterogeneous metabolic demand within the tissue [1], [6], [88], [89], [90], [91]. Many previous 
studies assumed vessel caliber changes to be uniform, compromising the accuracy of the 
estimates.  

As expected, the control 552 nm stimulation led to minimal changes in vessel calibers. To 
probe for off-target effects, non-transgenic mice were also tested with the same optical setup and 
photostimulation, with no changes to vascular diameters observed at any of the photostimulation 
powers utilized (cf. Supplementary Figure 9). In transgenic mice, we detected an average 
capillary dilation in significantly responding vessels of 70±83% with low-intensity 458 nm 
stimulation, and 67±61% with higher intensity 458 nm stimulation. Across photostimulation 
conditions, the capillary dilations ranged from 2% to 805%. These calibre changes were higher 
than those previously reported, which varied from 2% to 20% depending on the capillary branch 
order [6], [7], [23], [92], [93]. Far less data are available on constrictions. In the current work, 
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constrictions averaged 47±20% for lower-intensity blue light stimulation and 47±17% for 
higher-intensity blue light stimulation, with a constriction range of 5% to 97% of the baseline 
radius. These are higher than the previously reported constrictions of 20% [6], [23], likely due to 
our identifying as responding vessels only those whose caliber changed by at least twice their 
baseline caliber variation. It is also worth noting that vessels’ response directions were consistent 
on repeated trials. Of the vessels whose radius change exceeded twice the baseline variability 
across time, 31.7% dilated on some trials while constricting on others; 41.1% dilated on each 
trial; and 27.2% constricted on each trial. (Note that some trials use 1.1 vs. 4.3 mW/mm2 and 
some have opposite scanning directions). 

458-nm photostimulation resulted in a mix of constrictions and dilations with 44.1% of 
significantly responding vessels within 10 μm of a labelled pyramidal neuron constricting and 
55.1% dilating, while 53.3% of vessels further than 30 μm constricted and 46.7% dilated. The 
cutoff distances from the closest labelled neuron were based on estimates of cerebral metabolic 
rate of oxygen consumption that showed a steep gradient in oxygen consumption with distance 
from arteries, CMRO2 being halved by 30 μm away [94]. The stronger blue light stimulation led 
to an increased rate of constrictions, double that of the low-powered blue light stimulation. For 
larger vessels, both 458 nm stimulation powers led to a similar dilation level that diminished 
with increasing distance from labelled pyramidal neurons. This tendency for vessels close to 
neurons to dilate and further away ones to constrict would be expected in flow redirection into 
regions of high level of neuronal activity. Stimulation power dependence in blood flow changes 
has previously been reported in optogenetic mouse models with diffuse stimulation via LED 
probes, and following transcranial alternating current stimulation [95], [96]. However, neither of 
the previously employed methods was able to discern the spatial relationship between the 
vascular caliber changes, or relate these changes to the distribution of the stimulated neurons.  

As the blue light stimulation power increased, the mean depth of both constricting and 
dilating vessels increased, likely resulting from higher intensity light reaching pyramidal neurons 
deeper in the tissue [97], [98]. The blue light would be expected to excite a lower number of 
neurons farther from the cortical surface at lower powers. Our results underscore that the 
haemodynamic response following targeted neuronal activation is not uniformly distributed 
across the microvascular network: accurate neurovascular coupling assessment thus requires 
network-based analysis.  

Vascular Network Reactivity 
 To study the microvascular network response as a whole, we examined the assortativity 
between capillary radius changes and network efficiency changes following optogenetic 
stimulation. These two graph theory metrics were selected as they both leverage the knowledge 
of the vascular network structure. Assortativity sheds light on how the vascular network 
coordinates its responses, while efficiency provides insight into the extent to which those 
changes facilitate flow through the network. The assortativity revealed that as the stimulation 
power increased, the tendency of vessels to match their changes to those of their neighbours 
increased. Previously characterized assortative mechanisms include endothelial cell cation 
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conduction via Kir2.1 channels to synchronize vascular responses [73], and spatial adjacency of 
pericytes on in vitro retinal preparation leading to assortative changes in neighbouring capillaries 
[88]. Disassortative (causing opposite changes) mechanisms of capillary coordination have also 
previously been observed in situ and may result from intercapillary nanotubules’ signalling 
causing connected pericytes to undergo opposing changes [24]. While not ruling out the presence 
of disassortative control mechanisms, our results suggest that assortative mechanisms dominate 
capillary responses to neuronal activation in the somatosensory cortex. 

The network efficiency here can be thought of as paralleling mean transit time, i.e., the 
time it takes blood to traverse the capillary network from the arteries to the veins. In situ studies 
of mean transit time have revealed a high heterogeneity of plasma traversal of the capillary bed 
during stimulation, with stimulation reducing plasma transit times by 11% to 20% from its 
resting levels [93], [99], and simulations suggesting that capillary network geometry and 
locations of caliber changes exert a substantial influence on these responses [100]. The efficiency 
of the vascular network here increased significantly only with the strongest 458 nm stimulation. 
Small dilatations may thus not increase flow in the cortex. The differences in efficiency are 
likely due to the patterns of localized dilations and constrictions within the vascular network. 
Efficiency calculations are sensitive to bottlenecks when traversing meshes and certain locations 
constricting or dilating can have profound impacts on the shortest paths between nodes and the 
path’s resistivity. The highest powered 458 nm stimulation increasing efficiency may have 
resulted from increased assortativity causing dilation in key locations within the microvascular 
network, leading to a significant reduction in shortest path resistivity.  

 
Comparison with commercial and open-source vascular analysis pipelines 

To compare our results with those achievable on these data with other pipelines for 
segmentation and graph network extraction, we compared segmentation results qualitatively with 
Imaris version 9.2.1 (Bitplane) and vascular graph extraction with VesselVio [101]. For the 
Imaris comparison, three small volumes were annotated by hand to label vessels. Example slices 
of the segmentation results are shown in Supplementary Figure 10. Imaris tended to either over- 
or under-segment vessels, disregard fine details of the vascular boundaries, and produce jagged 
edges in the vascular segmentation masks. In addition to these issues with segmentation mask 
quality, manual segmentation of a single volume took days for a rater to annotate. To compare to 
VesselVio, binary segmentation masks (one before and one after photostimulation) generated 
with our deep learning models were loaded into VesselVio for graph extraction, as VesselVio 
does not have its own method for generating segmentation masks. This also facilitates a direct 
comparison of the benefits of our graph extraction pipeline to VesselVio. Visualizations of the 
two graphs are shown in Supplementary Figure 11. Vesselvio produced many hairs at both time 
points, and the total number of segments varied considerably between the two sequential stacks: 
while the baseline scan resulted in 546 vessel segments, the second scan had 642 vessel 
segments. These discrepancies are difficult to resolve in post-processing and preclude a direct 
comparison of individual vessel segments across time. As the segmentation masks we used in 
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graph extraction derive from the union of multiple time points, we could better trace the 
vasculature and identify more connections in our extracted graph. Furthermore, VesselVio relies 
on the distance transform of the user supplied segmentation mask to estimate vascular radii; 
consequently, these estimates are highly susceptible to variations in the input segmentation 
masks.We repeatedly saw slight variations between boundary placements of all of the models we 
utilized (ilastik, UNet, and UNETR) and those produced by raters. Our pipeline mitigates this 
segmentation method bias by using intensity gradient-based boundary detection from centerlines 
in the image (as opposed to using the distance transform of the segmentation mask, as in 
VesselVio). 

 
Pipeline Limitations and Adaptability 
 The segmentation model was trained only on vascular and neuronal labels, limiting its 
generalizability to segmenting alternative cells in the current state. However, it can easily be 
fine-tuned or retrained to label other brain cells (e.g., pericytes, astrocytes, or endothelial cells). 
Our vascular segmentation model generalized well to C57BL/6 mouse and Fischer rat data, as 
well as to Thy1-ChR2 light-sheet fluorescence microscopy images gathered on an 
UltraMicroscope Blaze lightsheet fluorescence microscope (Miltenyi Biotech) (cf. 
Supplementary Figure 12, 13 and Supplementary Table 3). However, the segmentation model 
performed poorly when significant bleeding occurred in the cranial window, compromising the 
vascular contrast. Our imaging protocol, in turn, was challenged by the desire to resolve 
individual vessel responses yet capture the entire network within the span of the microvascular 
response to stimulation: we prioritized network assessment and thereby compromised our 
temporal sampling (every 42 seconds), so that our ensuing classification of vessels as dilators or 
constrictors was based on their caliber at this, rather delayed timepoint. Accordingly, we are 
unable to comment on finer temporal scale network behaviour or the kinetics of the 
microvascular network response; but the present analysis pipeline can readily be applied to 
2PFM data obtained with finer temporal (e.g., via a Piezo objective positioner) or spatial 
resolution, and/or different size fields of view. The temporal evolution of the response in 
individual vessels, however, has been reported on using line scanning acquisitions to measure 
red blood cell velocity and flux and in some cases vessels [6], [9], [23], [30], [32], [93]. It is 
worth noting that the cases where vascular responses are drawn out following optogenetic 
stimulation use raster scanning over small regions of interest, and that optogenetic stimulations 
utilizing fiber optic probes shining light over large areas led to fast vascular responses. Our study 
utilized raster scanning over small regions of interest. Nevertheless, long drawn out vascular 
responses following optogenetic stimulation remain controversial and still need further study at 
higher temporal sampling, which our pipeline can readily adapt to, to be demonstrated 
conclusively. Additionally, alternative definitions of responding vessels may be useful depending 
on the end goal of a study (e.g. selecting a threshold for the radius change based on a percentage 
change from the baseline level: cf. Supplementary Figure 14 for capillary changes above 10% of 
the baseline radius). Finally, microvascular networks in different brain areas may show distinct 
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spatiotemporal profiles of response to neuronal activation. Future work is required to test the 
generalizability of present findings across different brain regions. 

6 Conclusion 
We developed a novel deep learning-based computational pipeline for analysis of a time 

series of 3D 2PFM images and investigation of spatial patterns in microvascular network 
reactivity to neuronal activation. The microvascular network was represented as a graph, 
allowing for the evaluation of network geometry changes over time. We tracked the size of blood 
vessels throughout the network and related vessel radius changes to the distance from the 
stimulated neurons and the cortical depth. Neuronal activation induced both dilatations and 
constrictions of capillaries, and the magnitude of these responses increased with increased 
photostimulation levels while showing significant heterogeneity within and between vessels. In 
the analysis presented, vertex-wise measurements were aggregated for vessel-wise analysis 
resulting in highly robust estimates of vessels’ calibers and allowing ready comparisons to 
literature. Notwithstanding, the pipeline also affords vertex-wise analysis and thus registration of 
microvascular reactivity with other local morphological features, at an unprecedented spatial 
scale. With increasing distance of the vessel from the most proximal activated neuron, dilatation 
magnitude decreased and the incidence of constrictions increased. At the highest stimulation 
level investigated, the incidence of vessel constrictions also increased with cortical depth. With 
increasing activation levels, capillaries displayed diameter changes that were similar to their 
immediate neighbours, while vascular network efficiency increased only under the strongest 
stimulation. Our computational analysis pipeline permits probing microvascular network 
reactivity and sheds light on the heterogeneity and coordination of vessel caliber changes across 
the microvascular network. The pipeline will be made available to the research community to 
propel future studies of neurovascular coupling and network reactivity.   
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Videos 
Video 1. Example of vascular segmentation overlaid on raw 2PFM data: 
https://www.youtube.com/watch?v=djpC0fZQL6w 
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Supplementary Figure 1. Attrition: Flow chart of animal numbers at each step of the 
experiment. 
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Supplementary Figure 2. High temporal resolution (1.9 to 3.2 seconds per frame) time 
courses of microvascular radii: Loess smoothed vascular radius estimates over time in 
significantly responding vessels as determined by an F-test comparing the variance in vascular 
radius before and after stimulation. Light blue corresponds to trials with 1.1 mW/mm2 
photostimulation at 458 nm; dark blue, 4.3 mW/mm2 at 458 nm; green, 4.3 mW/mm2 
photostimulation at 552 nm; and red, 2 mA, 3 Hz, 10 seconds on, 10 seconds off stimulation of 
the contralateral forepaw. Images were acquired for 5 minutes prior to stimulation, and for 5 
minutes following the end of the stimulation. Optogenetic stimuli were parametrized as 
described in section 3.2. The forepaw stimulation started at the vertical blue line time and lasted 
for the duration of the scan. A. Sample murine radii traces in vessels whose radius was 
significantly altered following photostimulations. This volume was acquired from a depth of 156 
- 94 μm below the cortical surface with each volume acquisition lasting 2.98 seconds. B. Another 
sample murine radii traces in vessels whose radius was significantly altered following 
photostimulations. This volume was acquired from a depth of 75 - 5 μm below the cortical 
surface with each volume acquisition lasting 3.17 seconds. C, D. Traces of responding vessel 
radii from the third mouse. C. This volume was acquired from a depth of 305 - 341 μm below the 
cortical surface with each volume acquisition lasting 1.93 seconds. D. This volume was acquired 
from a depth of 276 - 235 μm below the cortical surface with each volume acquisition lasting 
2.16 seconds.  
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Supplementary Figure 3. A. Sensitivity of vessel-wise radius estimate on the number of spokes 
used to estimate the radius. The radius estimate converges after 20 spokes have been used for 
estimation. Using 36 spokes initially, the vesselwise mean radius estimation was within 
0.24±0.62% of the mean of radius estimates using 40-60 spokes. B. The centerline was jittered in 
the perpendicular plane at each point along the line and then mean radius was estimated in 71 
larger vessels (mean radius > 5 μm). The percent difference in the estimated radius at our 
selected vessel centrepoints vs. the jittered centrepoints are plotted. The percent difference in the 
mean radius estimation was 0.64±3.44% (eg. 0.032±0.17μm for a vessel with a radius of 5 μm) 
with 2.45±0.30 μm centerline jittering. (In contrast, photostimulation was estimated to elicit an 
average 25.4±18.1% change in the magnitude of the radius of larger vessels, i.e. those with the 
baseline radius >5 μm.) 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2024.01.24.577045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577045
http://creativecommons.org/licenses/by/4.0/


 

38 

 
Supplementary Figure 4. Sample 2D slices of segmentation results: A. Raw slices of the vascular 
channel with the neuron channel subtracted to facilitate vessel visualization. The first slice was 29 μm 
below the cortical surface; the second slice 200 μm; and the third image 300 μm. Each slice is from a 
separate mouse. All images were taken from the test dataset, unseen during model training. B. Ground 
truth segmentation masks for the vasculature were generated by a rater who utilized ilastik assisted 
manual segmentation. C. Ilastik predictions generated via a random forest model. D. Binary segmentation 
masks generated by an ensemble of 3D UNet Models. E. Binary segmentation masks generated by an 
ensemble of 3D UNETR models.  
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Supplementary Figure 5. Vascular Network Characteristics: A. Probability density of the 
extracted mean radii of vascular segments. B. Probability density of the lengths of extracted 
vessel segments between branch points or terminal ends. C. Probability density of the mean 
vessel segment depths. D. Probability density of the depths of vessel branch points. Terminal 
nodes were excluded from this probability density. 12555 vessels, and 6421 vascular junctions 
from 17 mice (9M/8F) were used to estimate these PDFs.  
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Supplementary Figure 6. Large Vessels Radius Changes Following Optogenetic 
Stimulation:  
All vascular responses in large vessels (radius > 5μm) separated into dilators A. and constrictors 
B. showing an increase in the magnitude of the vascular response as the photostimulation power 
increases. C. Probability density function of diameter changes across all large vessels. D. Radius 
changes to vascular radii in relation to the closest pyramidal neurons (within 80 μm). E. Mean 
depth of the responding large vessels.   
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Supplementary Figure 7. Registered images of the cortical microvasculature before and after 
optogenetic stimulation for five scan pairs over three different stimulation conditions. The 
estimated radii changes along vessel segments are shown in the third row.  
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Supplementary Figure 8. Maximum intensity projections of sample capillary constrictions at 
repeated time points following optogenetic stimulation. Baseline (pre-stimulation) image is 
shown on the left and the post-stimulation image, on the right, with the estimated radius changes 
listed to the left. 
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Supplementary Figure 9. A. Vessel radius in responding vessels of the Thy1-ChR2 mice 
described in the manuscript vs. B. Four wild-type C57BL6/J mice. Response to photostimulation 
was defined as a radius change above twice the standard deviation in the radius across baseline 
frames. 552 nm light was applied at 4.3 mW/mm2, while 458nm light was applied at 1.1 
mW/mm2 and 4.3 mW/mm2. In C57BL6/J mice (B), the radii distributions following either blue 
light photostimulation were not statistically distinguishable from that resulting from green 
photostimulation (“response” to control condition) using a Wilcoxon test.  
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Supplementary Figure 10. Imaris Segmentation examples: A. Raw slices of the vascular channel with 
the neuronal channel subtracted to facilitate vessel visualization. B. Corresponding slices of the 
segmentation mask generated in Imaris 9.2.1 manually by a rater overlaid onto the raw data. C. 
Corresponding segmentation masks generated by our UNETR segmentation model overlaid onto the raw 
data.  
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Supplementary Figure 11. Results of VesselVio graph generation on our segmentation masks: 
Graphs were generated on the images shown in column 4 of Supplementary Figure 7. A. VesselVio 
vascular graph extraction on a volume before blue light photostimulation produced 546 vessel segments. 
B. VesselVio vascular graph extraction on the same imaging volume after blue light stimulation produced 
642 vessel segments. C. NOVAS3D generated graph of the vasculature with direct tracking of 
morphological changes.  
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Supplementary Figure 12. Examples of the predictions of the deep learning model applied on 
out-of-distribution data from a different mouse strain (C57Bl6), a different species (Fischer rat), 
and a different microscope (light sheet fluorescence microscope, Miltenyi UltraMicroscope Blaze). 
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Supplementary Figure 13. Examples of 2D slices of the predictions of the NOVAS3D deep learning 
model applied on out-of-distribution data from a different mouse strain (C57Bl6), a different species 
(Fischer rat), and a different microscope (light sheet fluorescence microscope, Miltenyi UltraMicroscope 
Blaze). 
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Supplementary Figure 14. Optogenetic activation-induced changes in vessel-wise 
microvascular radii with responders defined as vessels changing their radius by more than 
10%: 
Capillary responses included both dilatations, shown in A. and constrictions, shown in B., with 
potentiation of the capillary response with increased photostimulation power. * p < 0.05, ** p < 
0.005, and *** p < 0.0005. p-values were not adjusted. C. Changes to capillary radii are 
displayed in relation to the closest labelled neuron. The proportion of vessels constricting 
increased with the higher intensity of blue light stimulation, and constrictions tended to occur 
further away from labelled neurons than did dilations. D. Mean cortical depth of responding 
capillaries showed a tendency for dilators to be closer to the surface and for constrictors to be 
deeper in the tissue.  
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Supplementary Table 1: Physiological Monitoring Data 

 Mean Across Subjects During Imaging 

End-tidal pCO2 15.93 ± 5.07 mmHg 

Heart rate 318.30 ± 28.69 BPM 

O2 Saturation 96.30 ± 3.50 % 

Breath Rate 123.89 ± 12.47 BPM 

Temperature 37.15 ± 0.30 °C 

Weight 27.94 ± 6.03 g 

  

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 25, 2025. ; https://doi.org/10.1101/2024.01.24.577045doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.24.577045
http://creativecommons.org/licenses/by/4.0/


 

50 

Supplementary Table 2: Data Augmentations 

Category Transformation Parameters 

Cropping Random spatial cropping Crops: 8 
Crop size: 128x128x128 

Rotations Random rotation 90 degrees Max rotations: 3 

Mirroring Random flipping Axes: all 

Rotations Random affine transformation Rotation restriction: 20° 

Zoom Random zooming Min zoom: 0.3 
Max zoom: 3 

Deformations Random 3D elastic 
deformation 

Sigma: 1 and 3 SU 
Magnitude: 3-15 μm 

Random grid distortion Cells: 8 
Magnitude: -0.3 to 0.3 of cell 
 width 

Intensity Transformations Random intensity shift Offset: 0.4 SU  

Random contrast adjustment Gamma: 0.5 to 5.5 

Random histogram shift Control points: 4 

Gaussian Transformation Random Gaussian sharpening Sigma1: 0.5 to 1 SU 
Sigma2: 0.5 SU 
Alpha: 10 to 30 SU  

Random Gaussian smoothing Sigma: 0.25 to 1.25 SU 

Random Gaussian noise Mean : 0 SU 
STD: 0.2 SU 

Drop pixels Random coarse dropout Minimum holes: 50 
Maximum holes: 1000 
Spatial size: 2 pixels 
Fill: 0.0001 to 0.1 SU  
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Supplementary Table 3: Model Performance Comparisons 

 UNETR UNet Ilastik 

Vessels 

Dice 0.763±0.096 0.790±0.088 0.449±0.375 

Precision 0.811±0.089 0.813±0.076 0.377±0.347 

Recall 0.750±0.172 0.797±0.165 0.893±0.198 

Hausdorff 95% 13.567±12.131 12.116±12.144 38.921±35.706 

Mean Surface 
Distance 

1.900±1.545 1.737±1.622 1.675±1.355 

Neurons 

Dice 0.712±0.062 0.766±0.044 0.487±0.196 

Precision 0.628±0.111 0.698±0.091 0.435±0.239 

Recall 0.841±0.053 0.860±0.061 0.814±252 

Hausdorff 95% 23.654±19.299 20.340±22.67 50.000±26.660 

Mean Surface 
Distance 

1.248±0.569 2.409±3.901 4.450±7.315 
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Supplementary Table 4: UNETR Model Generalizability for Vascular Segmentation 
 

 THY1-ChR2-EYFP 
(Current Study) 

C57 
(Different Mouse 
Species) 

Fischer Rats 
(Different Species) 

Vessels 

Dice 0.763±0.096 0.663±0.124 0.704±0.046 

Precision 0.811±0.089 0.632±0.225 0.723±0.117 

Recall 0.750±0.172 0.766±0.052 0.741±0.178 

Hausdorff 95% 13.567±12.131 75.548±52.978 65.961±46.077 

Mean Surface 
Distance 

1.900±1.545 18.482±17.918 22.184±22.204  
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