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Abstract

Cryo-electron tomography (cryo-ET) provides unique insights into macromolecular
complexes in their native environments, yet membrane analysis remains a major bottleneck
due to low signal-to-noise ratios, missing wedge artifacts, and the complexity of membrane-
associated proteins. Existing tools often require extensive manual annotation, struggle with
generalization across datasets, and lack integrated solutions for segmentation, protein
localization, and quantitative analysis. We introduce MemBrain v2, a deep learning-enabled
framework that unifies these tasks into a streamlined pipeline. MemBrain-seg leverages a
diverse, collaboratively generated training dataset and specialized model training strategies to
achieve generalizable membrane segmentation across variable tomographic conditions.
MemBrain-pick enables data-efficient localization of membrane-bound proteins by integrating
geometric constraints with deep learning, reducing the need for extensive manual annotation.
MemBrain-stats provides quantitative insights into protein distributions, computing spatial
metrics to analyze intra-membrane particle organization. MemBrain v2 integrates seamlessly
into cryo-ET workflows, providing an accessible and structured approach to membrane
analysis. The full package is available at https://github.com/CellArchLab/MemBrain-v2.
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Introduction

Cryo-electron tomography (cryo-ET) is a powerful technique for imaging the molecular
environment inside native cells in three dimensions (3D) at sub-nanometer resolution'. By
capturing all densities inside a cellular volume frozen in vitreous ice, cryo-ET provides detailed
insights into the structures, interactions, and spatial arrangements of diverse organellar and
macromolecular components. However, the biological complexity captured by cryo-ET also
presents significant challenges for annotation and analysis?. Membranes and their embedded
protein complexes play fundamental roles in numerous cellular processes, including the ER-
Golgi secretory pathway®®, autophagy®’, vesicular transport®, synaptic transmission®"'?,
energy conversion in mitochondrial cristae and chloroplast thylakoids'>??, organelle contact
sites?>?* cell membrane protrusions?®%, viral replication?’ =%, and bacterial cell division®*%.
Accurate segmentation of membranes and precise localization of membrane-associated
proteins are essential for understanding how membrane architecture and molecular
organization drive cellular functions.

Membrane analysis in cryo-ET is challenging due to the inherently low signal-to-noise ratio
(SNR), which obscures structural details and complicates accurate interpretation. Additionally,
the missing wedge effect — caused by limited angular sampling — introduces anisotropic
distortions that particularly affect membrane structures oriented perpendicular to the electron
beam, making them difficult to resolve. While computational approaches for denoising®*-° and
missing wedge correction*®*! attempt to mitigate these issues, their restorations are not always
reliable and may introduce artifacts.

Several methods attempt to tackle membrane segmentation in cryo-ET, yet each comes
with inherent limitations. Classically, TomoSegMemTV*? incorporates local membrane
curvature via tensor voting, but can struggle in areas with complex or rapidly varying
membrane shapes. Deep learning-based approaches, particularly U-Net-based**~*® models,
have driven significant advancements. However, many implementations lack generalizability,
because they have been trained on only a single cell or membrane type. Therefore, specialized
models are often trained for single projects or datasets*’. TARDIS*® represents a promising
step toward more generalizable segmentation by incorporating diverse datasets into training
and offering pretrained models, making segmentation tools more accessible. Despite these
advancements, it remains an open challenge to develop a widely applicable approach that
ensures robust segmentation across diverse membrane architectures, tomographic
conditions, and biological contexts.

Beyond membrane segmentation, the automated localization of membrane-associated
particles (e.g., integral membrane proteins) in cryo-ET remains a major challenge. Because
these particles are embedded in the lipid bilayer, they are difficult to distinguish from the
surrounding membrane. Classical template-matching approaches**->" often fail in this context,
as strong membrane contrast dominates cross-correlation scores, reducing detection
accuracy. Deep learning methods offer an alternative, with several CNN-based approaches
recently introduced for particle localization in cryo-ET*?"". However, many of these heavily
rely on extensively annotated volumes, which are labor-intensive and often not technically
feasible to generate. These models also struggle with sparsely annotated membranes, limiting
their generalizability. The high variability in particle appearances further complicates training
of generalist models, making each individual membrane annotation particularly valuable and
motivating the need for specialized models that can operate with individual membrane
annotations. To streamline this annotation process, MPicker® flattens membranes into 2D
stacks, but this transformation can introduce distortions and fail to preserve physical distances.
To address these issues, annotation tools such as membranorama'’*® and Surforama®
project tomographic densities onto 3D meshes, allowing for more interactive exploration and
particle localization. Among existing tools, MemBrain v1°' was designed to leverage these
limited annotations, but its performance remains constrained by its small receptive field. A
more refined, interactive approach could better leverage sparse annotations to improve both
the accuracy and efficiency of particle localization.
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Quantitative tools for analysis of membrane segmentations include PyCurv®?, which
estimates membrane curvature, and a surface morphometrics pipeline'®, which extracts
properties such as inter-membrane distances. PyOrg® analyzes protein distributions but does
not directly relate them to membrane features. Thus, these tools analyze either membrane
geometry or protein distributions separately, lacking an integrated approach to quantitatively
assess protein-membrane interactions.

To address the challenges described above, MemBrain v2 unifies cryo-ET membrane
analysis in a single integrated framework: MemBrain-seg produces generalizable membrane
segmentations using a collaboratively generated, diverse ground truth dataset. MemBrain-
pick efficiently localizes membrane-bound particles with interactive annotation support via
Napari and Surforama. MemBrain-stats computes descriptive statistics such as particle
concentrations and geodesic nearest neighbor distances along the segmented membrane.
Together, these modules enable end-to-end analysis of membranes from segmentation to
particle localization and statistical analysis (Fig. 1). By combining versatility with usability,
MemBrain v2 provides an intuitive solution that can be applied to diverse data sources to
explore a broad spectrum of biological questions.

A MemBrain-seg B MemBrain-pick C MemBrain-stats

direct learning
on 3D meshes membrane-particle statistics
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Figure 1. MemBrain v2 provides an end-to-end pipeline for analyzing membranes and membrane-
associated particles in cryo-ET data. A: MemBrain-seg produces generalizable membrane segmentations
out-of-the-box. B: MemBrain-pick efficiently localizes membrane-associated particles by iterative annotation
and training directly on mesh surfaces. C: MemBrain-stats evaluates the outputs of MemBrain-seg and
MemBrain-pick, providing particle-surface metrics.

Results

Overview of MemBrain v2 modules

MemBrain v2 is a modular pipeline designed to streamline the analysis of membranes and
their associated proteins in cryo-ET datasets. Its three core modules — MemBrain-seg,
MemBrain-pick, and MemBrain-stats — work together to enable membrane segmentation,
particle localization, and quantification. MemBrain-seg (Fig. 1A) employs a U-Net-based
approach to achieve robust membrane segmentation across a variety of experimental and
tomography setups. It is trained on a diverse, iteratively refined dataset, which was generated
using careful manual annotations and corrections in close collaboration with the community to
ensure broad coverage of different membrane appearances. Together with our cryo-ET-
specific data augmentations and membrane-focused loss functions in the network training, this
approach ensures accurate and continuous membrane delineation, facilitating visualization
and downstream analysis. MemBrain-pick (Fig. 1B) specializes in the efficient localization of
membrane-bound particles (e.g., membrane proteins). By training a neural network to operate
directly on membrane surfaces, it incorporates the membrane geometry into its prediction and
thus reduces the search space, enhancing both accuracy and data efficiency. Its integration
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with interactive Napari® tools, such as Surforama®, allows for rapid annotation and refinement
of particle positions, facilitating seamless transitions between ground truth (GT) generation
and model training. MemBrain-stats (Fig. 1C) leverages the outputs of MemBrain-seg and
MemBrain-pick to provide quantitative insights into particle distributions on membranes. It
computes key metrics such as particle concentrations, geodesic nearest-neighbor distances,
and Ripley’s statistics. By linking membrane morphology with protein organization, MemBrain-
stats enables investigation of the structural and functional relationships in cryo-ET datasets.
MemBrain v2’s modular design ensures both flexibility and accessibility, featuring
straightforward command-line interfaces and seamless integration with Napari plugins for
interactive annotation and visualization.

MemBrain-seg: a generalized approach for membrane segmentation

MemBrain-seg is a U-Net-based program that generates 3D membrane segmentations
from input tomograms with a single command (Fig. 2A, Supp. Fig. S1). It delivers robust
segmentation performance across diverse tomograms containing a variety of organelles from
various species, acquired with different microscope types, imaging settings, and processing
conditions, ranging from raw to denoised tomograms (Fig. 2E, Supp. Fig. S2). While strong
segmentation performance on thylakoid membranes was expected due to the high
representation of spinach chloroplasts in our training data (see Supp. Fig. S3, Supp. Table 1),
MemBrain-seg also achieves satisfactory results on vesicular structures and convoluted
mitochondrial membranes. This adaptability is further demonstrated in the CZIl data portal®
(Supp. Fig. S4), where MemBrain-seg was applied to all tomograms present in the portal,
allowing users to conveniently inspect segmentations together with the corresponding
tomograms in the browser.

To ensure consistent and robust model performance, MemBrain-seg was trained on a
diverse dataset, iteratively refined through manual corrections (Supp. Fig. S3). In each training
round, segmentation predictions were reviewed and corrected to improve the dataset for
subsequent iterations (see Fig. 2B). The first two rounds (1 and 2) focused on training patches
from our Spinacia oleracea (“Spinach”, EMPIAR-12612) and Chlamydomonas reinhardltii
(“Chlamy”, EMPIAR-11830) datasets, followed by contributions from external collaborators
(“Collaborators”) to introduce additional diversity. To further enhance robustness, synthetic
data from publicly available generators®*® (“Synthetic”) and patches from the DeePiCt
dataset* (“DeePiCt’, EMPIAR-10988) were integrated in the last two training rounds (4 and 5,
respectively). Expanding the dataset incrementally across different tomography sources
further enhanced the model’s generalization, as demonstrated by its progressively improving
performance across datasets with each additional training round (Supp. Fig. S5). Here, we
monitored performance by calculating the Dice score (a standard metric for segmentation
accuracy) for different test datasets. The improved generalization is particularly evident in the
“DeePiCt” test dataset, where Dice scores improved from 39% to 66% (and up to 55% in
rounds without any DeePiCt training data).

In addition to evaluating network performance across different training datasets, we also
compared MemBrain-seg to TARDIS*, a recent method designed for membrane and filament
segmentation. In our test datasets, MemBrain-seg achieved higher Dice scores compared to
TARDIS (Supp. Fig. S5A). However, this comparison should be interpreted carefully because
our GT annotations were generated by iteratively predicting with MemBrain-seg and manually
correcting these predictions. As a result, a substantial portion of the GT voxels still originates
directly from MemBrain-seg outputs, and may inherently favor its performance. To address
this issue, we additionally assessed performance using fully synthetic datasets with absolute
GT annotations, providing a more unbiased, but also less realistic, benchmark. Here, both
MemBrain-seg and TARDIS achieved good values (66% in Round 3 vs. 59% Dice,
respectively), hinting at strong generalization capabilities for both methods. To further mitigate
potential bias — particularly differences in membrane thickness annotations, which may favor
MemBrain-seg’s predicted segmentation thickness — we introduced the Surface-Dice score
(Fig. 2C). Unlike standard Dice scores, which compare segmentations at the voxel level,
Surface-Dice evaluates the structural consistency of predicted and GT segmentations by
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Figure 2. MemBrain-seg achieves accurate and generalizable membrane segmentation across diverse
cryo-ET datasets through iterative active learning, membrane-specific loss function and Fourier-based
augmentation. A: MemBrain-seg is based on a U-Net architecture and produces accurate 3D segmentations
from input tomograms. B: Our diverse training dataset was generated iteratively via an active learning
approach: For a model in training round N, we extracted patches in difficult regions, manually corrected the
network prediction using membrane, background, and ignore labels (see Supp. Fig. S3), and merged them
into our training dataset. The next round (N+1) shows improved segmentation performance. C: Surface-Dice
evaluates segmentation quality by comparing the skeletons (see Supp. Fig. S15) of the predicted
segmentation with the ground truth (GT) segmentation (yellow), and the GT skeleton with the predicted
segmentation (pink). This emphasizes membrane continuity more efficiently than the conventional Dice metric,
which directly compares voxel-wise overlap. D: MemBrain-seg’s Fourier-based augmentations: Fourier
amplitude (FA) augmentation randomly rescales intensities of Fourier frequency bands, altering image
contrast. The missing wedge (MW) augmentation randomly applies an artificial missing wedge in Fourier space
to imitate the effects of the real missing wedge. E: Examples of MemBrain-seg predictions on diverse public
datasets, demonstrating robust out-of-the-box segmentation performance across a wide range of membrane
architectures in tomograms acquired with diverse instrumentation. Top row: slices through tomograms, bottom
row: corresponding MemBrain-seg predictions (light blue). For more examples, see Supp. Fig. S2.
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comparing their skeletons (see Supp. Fig. S6). This metric better captures membrane
continuity and is invariant to annotation style (e.g., Supp. Fig. S7). Evaluations with Surface-
Dice were consistent with the standard Dice assessments (Supp. Fig. S5A). By combining
Dice and Surface-Dice metrics with our diverse dataset, we provide a publicly available
benchmarking resource for membrane segmentation tools.

In addition to our base model, we provide versions trained with enhanced augmentations.
These Fourier-based augmentations (Fig. 2D, Supp. Fig. S8B,C) simulate tomographic style
variations and missing wedge distortions, improving model robustness. Specifically, our
missing wedge augmentation artificially introduces an additional missing wedge in training
patches to mimic real-world artifacts, while Fourier amplitude augmentation randomly rescales
Fourier frequency bands to simulate tomographic variability. These enhancements improved
generalization across diverse tomographic conditions (Supp. Fig. S5B). Notably, for round 4
data (i.e., excluding DeePiCt training data), we evaluated models trained with either Fourier
amplitude or missing wedge augmentation. Fourier amplitude increased Surface-Dice scores
on the DeePiCt test set from 55% to 59%, while missing wedge augmentation improved scores
to 57%, demonstrating their effectiveness in adapting to unseen datasets. Overall, MemBrain-
seg delivers strong out-of-the-box segmentation performance across a wide range of cryo-ET
datasets. However, its performance may degrade when applied to datasets with substantial
domain shifts, particularly under varying microscopy conditions. In such cases, fine-tuning the
model on a specific dataset (e.g., with patches generated as shown in Supp. Fig. S3A) can
further optimize segmentation quality. We demonstrate this capability in Supp. Fig. S9, where
fine-tuning with only DeePiCt dataset patches in the training set improved Surface-Dice scores
from 58% to 67%. To prevent overfitting, we continuously monitored performance on the full
validation set depicting a broader range of membranes than the test set, using both the Dice
score and Surface-Dice score. Notably, monitoring Surface-Dice during fine-tuning
outperformed monitoring only Dice scores (67% vs. 60%, respectively), avoiding premature
early stopping due to the different membrane thicknesses in the fine-tuning dataset (Supp. Fig.
S7) and highlighting the effective adaptation of MemBrain-seg to domain shifts.

MemBrain-pick: an interactive tool to efficiently localize membrane-

associated particles

Identification of membrane-associated particles (e.g., integral membrane proteins or
membrane-bound ribosomes) in cryo-ET data is a challenging task. In MemBrain-pick, we aim
to facilitate this process by enabling a smooth transition from MemBrain-seg outputs to the
area of interest for particle localization and training an automated model. With our MemBrain
Napari plugin and its integrated 3D lasso functionality, users can isolate single membrane
instances from full-tomogram segmentations (Fig. 3A, Supp. Fig. S1B), which can
subsequently be visualized and annotated in Surforama®®* (Fig. 3B) for manual annotation of
particle locations.

These annotations allow the training of a specialized particle localization model: MemBrain-
pick enables efficient and accurate localization of membrane-bound particles by integrating
membrane geometry into the particle detection pipeline. It employs a DiffusionNet-based®’
neural network to directly operate on membrane meshes with projected tomographic densities
(Fig. 3A, Supp. Fig. S10), which reduces the search space to membrane-associated regions
and improves detection efficiency. Additionally, this network design is aligned with the
visualizations in Surforama, making the output more interpretable. The network predicts a
heatmap representing the distance to the nearest particle center, which is then further
processed with our score-guided mean shift clustering®® to predict precise particle positions
(see example in Supp. Fig. S11).

We tested MemBrain-pick on stacked Spinach thylakoid membranes, demonstrating
exceptional performance for Photosystem Il (PSII) localization (Fig. 3C, D). Even with only a
single annotated membrane, our model achieved robust performance with an F4-score of 91%,
highlighting its ability to operate with minimal training data. In contrast, other deep learning
approaches such as DeepFinder and crYOLO require extensive volumetric annotations (Supp.
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Figure 3. MemBrain-pick accurately localizes membrane-associated particles through efficient
learning on mesh surfaces. A: MemBrain-pick projects tomographic densities onto a triangular mesh
surface at multiple distances along the membrane normal vector. The DiffusionNet®*-based architecture
operates directly on the surface and predicts a heatmap depicting the distance to the nearest particle position
(magenta). Particle positions are subsequently identified using Mean Shift clustering on the heatmap and
exported as .star files. See detailed workflow in Supp. Fig. S10. B: Surforama interface enables interactive
annotation and correction of MemBrain-pick outputs to generate or refine ground-truth particle positions.
C: MemBrain-pick predictions on the Spinach test dataset after training with the Spinach training dataset.
D: MemBrain-pick training results with incremental numbers of training membranes and comparison with
other methods (see also Supp. Fig. S13). crYOLO and DeepFinder were only trained with 25 membranes
(validation split based on tomogram), and MPicker with 29 membranes. Template matching was performed
in PyTOM. E: Predictions on the Chlamyoiq dataset with the same model as in B. Inset shows the F1-Score
performance evaluated with GT particle positions. F: Predictions on the Chlamynew dataset with the same
model as in B. G: MemBrain-stats quantifies nearest neighbor distances and particle concentration (Supp
Fig. S14) for the predictions in B, C, and D.

Fig. S12) and struggle with sparsely annotated training data (DeepFinder 60%, crYOLO 26%
Fi-score when trained with 25 membranes, Supp. Fig. S13B,C). Similarly, specialized
approaches like MPicker (combined with EPicker, Supp. Fig. S13A, 42% Fi-score) and
MemBrain v1 (90% F4-score) also fail to match MemBrain-pick’s performance (93% Fi-score
when trained on 29 membranes). Template matching (performed in PyTOM?*®*%) achieved an
Fi-score of 52%.

To evaluate MemBrain-pick’s generalizability across datasets, we applied one of these
Spinach-trained models (i.e., trained with 29 membranes) to stacked thylakoid membranes in
two Chlamydomonas datasets (Chlamy.q and Chlamynew). Despite differences in species and
imaging setups, MemBrain-pick maintained robust localization with high Fi-scores (84%) on
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the Chlamyo.q dataset (Fig. 3E). Predictions on the Chlamy.w dataset (which lacked GT
annotations) also appeared clean and plausible (Fig. 3F).

MemBrain-stats: quantitative analysis of particle distributions

MemBrain-stats complements MemBrain-seg and MemBrain-pick by providing quantitative
analysis of particle distributions on membrane surfaces. The module computes particle surface
concentrations, geodesic nearest-neighbor distances, and spatial distribution statistics such
as the Ripley’s functions (see Supp. Fig. S14). These metrics allow users to quantitatively
interpret membrane protein organization within cryo-ET data, enabling deeper biological
insights into membrane-associated processes.

Using MemBrain-stats, we quantified the distribution of the above-predicted thylakoid
membrane particles and compared to previously published values of total particles in stacked
thylakoids (Fig. 3G). For Spinach, our results closely align with the published particle
concentration' (Spinach vs. published: 1688 vs. 1714 particles/um?). For Chlamydomonas,
our predicted values are slightly higher than the reported concentration' (Chlamyos and
Chlamynew Vs. published: 1492 and 1316 vs. 1292 particles/um?). Because the previous studies
only measured PSII-PSII nearest neighbor distances and neglected some densities marked
as “unknown”, our computed nearest neighbor distances between all particles (corresponding
to PSII + “unknown”) are slightly shorter (Spinach vs. published: 18.8 vs. 21.2 nm; Chlamyoiq
and Chlamynew vs. published: 20.7 and 21.2 vs. 24.4 nm).

In summary, this streamlined MemBrain v2 workflow achieved comparable results to
previously published manual analysis of stacked thylakoids, but with greatly accelerated speed
and throughput that opens the door to studies with more biological conditions and
reproducibility. Below, we apply this pipeline to analyze the higher-order organization of
additional types of membrane-bound particles — phycobilisomes and ribosomes.

Test application: phycobilisome organization on thylakoid membranes

Phycobilisomes are large light harvesting antennae, found in cyanobacteria and some
species of eukaryotic algae, that capture light and transfer the excitation energy to thylakoid
membrane-embedded photosystems. Phycobilisomes from different species were previously
shown by cryo-ET to assemble into rows®"°, and the function of this higher-order organization
in photosynthesis remains an open question. Previous studies of phycobilisome organization
in cryo-ET relied heavily on manual annotations, making a large-scale analysis extremely time-
consuming’""2, By applying MemBrain v2 to a high-resolution cryo-ET dataset of red algae
chloroplasts (EMD-31244""), we demonstrate how our approach can efficiently extract particle
positions and spatial patterns of phycobilisome chains (Fig. 4).

In a first processing step, MemBrain-seg consistently produced clearly separated, high-
precision segmentations of all thylakoid membranes (Fig. 4B). For further processing, we
utilized the MemBrain lasso tool (Supp. Fig. S1B) to perform connected component analysis,
allowing us to extract individual membrane instances and visualize them in Surforama®. This
interactive visualization enabled efficient manual annotation of phycobilisome chain unit
positions in six selected membrane instances (Fig. 4C). These manually determined positions
served as GT data to train a MemBrain-pick model. Once trained, MemBrain-pick was applied
to the remaining 23 membranes in the tomogram, successfully identifying phycobilisome
positions across the entire tomogram. The predicted positions exhibited a clear periodic
arrangement of phycobilisomes along the membranes (Fig. 4D). To quantify this spatial
organization, we applied MemBrain-stats to compute the Ripley’s O function, which confirmed
the regular spacing of phycobilisomes (~35 nm) (Fig. 4E). This periodicity is consistent with
previous manually determined values (34.5 nm’'), demonstrating the reliability of our
automated approach. This end-to-end MemBrain analysis from raw tomograms to extracted
phycobilisome chains can rapidly extract spatial information from large datasets to investigate
native membrane organization in many cells and experimental conditions.
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Figure 4. MemBrain v2 end-to-end workflow detects periodic phycobilisome organization. A: Raw
tomogram slice of EMD-31244. B: Out-of-the-box MemBrain-seg segmentation (light blue). C: A single
membrane instance can be visualized in Surforama and manually annotated with GT phycobilisome positions
(magenta). D: MemBrain-pick localizes particles (trained with data from C) on all membranes in the
tomogram. E: MemBrain-stats computes Ripley’s O statistic using the positions from D with a bin size of 5nm.
The distance between peaks (35 nm) was measured to estimate chain unit spacings.

Test application: poly-ribosome chain organization on nuclear envelope

In another end-to-end application of MemBrain v2, we analyzed ribosome distributions on
the outer membrane of the nuclear envelope, aiming to identify patterns in their localization
and orientation. The EMPIAR-11830"® dataset contains over 1800 tomograms capturing
diverse organelles in Chlamydomonas reinhardtii. When analyzing tomograms containing the
nuclear periphery, MemBrain-seg accurately segmented the nuclear envelope as well as all
cytoplasmic membrane structures around it (Fig. 5A). Using the MemBrain lasso tool, we
isolated the nuclear envelope membranes of interest and visualized them in Surforama,
enabling efficient annotation of GT ribosome positions (Fig. 5B).

To automate ribosome localization, we manually annotated 13 membranes, trained a
MemBrain-pick model, and predicted ribosome positions across the remaining 79 membranes,
detecting a total of 4515 positions (example predictions in Fig. 5C). To validate these
predictions, we performed subtomogram averaging (STA) in STOPGAP®', which resulted in a
map clearly depicting a membrane-bound ribosome (Fig. 5D), including density for the
transmembrane TRAP complex’*. The average also contains fuzzy peripheral densities likely
corresponding to neighboring ribosomes, which can also be inferred by inspecting the
distribution of the picks (Fig. 5E). In addition to structural validation, STA provided protein
orientation estimates, enabling further spatial analysis with MemBrain-stats.

To further quantify ribosome organization, we analyzed nearest-neighbor orientation
patterns. The distribution of minimum angles among the three geodesic nearest neighbors
revealed a shift towards smaller angles compared to a uniformly random orientation model
(Fig. 5E left). This result aligns with previous studies reporting ribosome clustering in chains
along the nuclear envelope®’>’®. Leveraging MemBrain-stats output, we extracted poly-
ribosome chains by integrating constraints on nearest-neighbor angles, distances, and chain
continuity (Fig. 5E right). This end-to-end MemBrain analysis from raw tomograms to extracted
poly-ribosome chains can facilitate the study of ribosome biology in diverse organisms.
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Figure 5. MemBrain v2 end-to-end workflow analyzes nearest neighbor orientations and finds poly-
ribosome chains on outer membranes of the nuclear envelope. A: MemBrain-seg prediction (light blue)
on an entire tomogram from EMPIAR-11830 depicting a nuclear envelope and surrounding membranes. The
nuclear envelope is isolated using the MemBrain lasso tool in Napari (green: selected volume). B: Top:
Visualization of the extracted membrane from A in Surforama. Bottom: GT ribosome positions (magenta) are
manually annotated to train MemBrain-pick. C: MemBrain-pick predictions (magenta) on another nuclear
envelope from the same dataset after training with data from B. D: Subtomogram averaging results. Left:
subtomogram average depicting a membrane-bound ribosome (22.7 A resolution from all 4515 particles
identified by MemBrain-pick), with a clipped view highlighting the transmembrane TRAP complex. Right: .star
file as output giving protein orientations in addition to positions. E: Left: Histogram of three-nearest-neighbor
(3-NN) minimum angles: For each position, we plotted the minimum angle between the corresponding
orientation and the three nearest neighbors’ orientations. The theoretical density depicts the behavior for
uniformly random angles between 0 and 180 degrees. Right: Extracted poly-ribosome chains (different colors)
using a combination of in-plane angles and distances between nearest neighbors. Grey ribosomes: not part
of a chain of length at least 3.

Discussion

The analysis of membranes by cryo-ET is beneficial for many biological studies, as
membranes and their associated proteins play central roles in cellular processes. However,
the 3D nature of cryo-ET data introduces significant challenges. Manual segmentation of
membranes and annotation of their embedded proteins is tedious and time-consuming,
particularly because 3D structures require inspection from many orientations and on different
planes. Additionally, a fundamental challenge in cryo-ET remains the lack of publicly available
GT annotations, limiting the development of robust machine learning models.

MemBrain v2 addresses these challenges by providing an integrated solution for robust
membrane segmentation, membrane-associated particle localization, and quantitative spatial
analysis. The MemBrain-seg module generates generalizable membrane segmentations
using a diverse, well-annotated training dataset and specialized augmentations. By making
this dataset publicly available, we provide a foundation for further development and
benchmarking of different segmentation methods. To facilitate benchmarking, we include the
Surface-Dice metric, which is more sensitive to topological continuity than the traditional Dice
score. The MemBrain-pick module offers interactive and data-efficient model training for the
localization of membrane-bound particles, significantly reducing the effort required for large-
scale analysis. Finally, MemBrain-stats provides quantitative tools for analyzing membrane-
bound particle distributions, enabling users to extract meaningful biological insights from native
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membranes. Together, these components form an end-to-end pipeline for membrane analysis
in cryo-ET.

Despite these advancements, certain limitations remain. While MemBrain-seg robustly
captures membrane morphology, the resulting segmentation thickness does not necessarily
reflect the true biological membrane thickness. Variations in segmentation thickness may stem
from annotator-dependent biases, such as differing brush sizes (see Supp. Fig. S7). Another
challenge is to maintain MemBrain-pick’'s performance when trying to localize diverse
membrane protein complexes, as the heterogeneity of targets can complicate universal model
performance. Future improvements could involve integrating MemBrain v2 with
complementary tools like TomoTwin®, to improve versatility across various membrane and
protein complex types. For MemBrain-pick, this could lead to more expressive network input
features, while MemBrain-seg could also potentially benefit in that this would enable it to
distinguish different membrane types in a self-supervised way. Another challenge stems from
the inherent constraints of cryo-ET data — feature visibility depends on contrast and noise
levels of the tomograms, meaning faint or occluded proteins may be overlooked or poorly
annotated. Additionally, strong membrane density signals may dominate and obscure weaker
signals from small integral membrane proteins, complicating their accurate detection. These
challenges point toward opportunities for future innovation.

MemBrain v2 is built with accessibility and practicality in mind. Ilts command-line interface
for MemBrain-seg simplifies segmentation workflows, making advanced membrane analysis
accessible even to users without programming expertise. The seamless integration of
MemBrain-pick with Napari plugins fosters an intuitive and interactive experience for protein
localization, enabling rapid model refinement and validation. Importantly, MemBrain-seg has
already gained significant traction within the cryo-ET community. Many groups have adopted
it for their membrane segmentation tasks'21%21:2231.33.77-91 'g3n( it has been applied by the Chan
Zuckerberg Imaging Institute to their extensive public cryo-ET dataset®®. By making all
components and datasets open source, MemBrain v2 aims to support collaboration and
transparency within the scientific community, offering a versatile and reliable tool for advancing
cryo-ET research.

Data Availability

All tomograms used in this study are publicly available. The latest version of our MemBrain-
seg training dataset is accessible via Zenodo: https://zenodo.org/records/15089686

For MemBrain-seg demonstrations, we used tomograms from: CZII-DS-10007, CZII-DS-
10224, CZI1-DS-10442, CZII-DS-10443, CZII-DS-10444, EMD-3977, EMD-4869, EMD-12329,
EMD-12727, EMD-12749, EMD-15407, EMD-16084, EMD-18306, EMD-18748, EMD-30364,
EMD-35019, EMD-43050, EMD-44176, EMD-50605, EMPIAR-10988, EMPIAR-11058,
EMPIAR-11370, EMPIAR-11830, and EMPIAR-12612.

For MemBrain-pick training and evaluation, we used tomograms from EMPIAR-12612,
EMD-10780-10783, EMPIAR-11830, and EMD-10409. To showcase the entire MemBrain v2
workflow, we utilized data from EMPIAR-11830 and EMD-31244.

The GT annotations used for performing the efficiency analysis in MemBrain-pick are
available via Zenodo: https://zenodo.org/records/15090084

The Chlamydomonas nuclear envelope-bound ribosome subtomogram average will be
deposited under EMD-XXXXX.

Code Availability

The full MemBrain v2 program is pip-installable via PyPl (pip install membrain)and via
https://github.com/CellArchLab/MemBrain-v2 . Individual modules modules can be accessed
via the following repositories, each of which contains detailed documentation:

« https://github.com/teamtomo/membrain-seg
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* https://github.com/CellArchLab/membrain-pick
* https://github.com/CellArchLab/membrain-stats
* https://github.com/CellArchLab/napari-lasso-3d
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Methods

MemBrain-seg

MemBrain-seg is a 3D U-Net-based tool designed for generalizable membrane
segmentation in cryo-ET data. It incorporates an iteratively generated training set, specialized
augmentations, and a Surface-Dice loss function to enhance segmentation accuracy.

U-Net

Architecture

MemBrain-seg’s U-Net architecture is based on design choices from nnU-Net®, a leading
biomedical image segmentation framework, and is implemented using MONAI®. It consists of
five downsampling and upsampling blocks, with deep supervision®* to improve gradient flow
and convergence.

Loss function

We use a composite loss function combining binary cross-entropy, Dice loss, and Surface-
Dice loss (see Section “Surface-Dice”). To handle uncertain image regions, an ignore feature
excludes certain voxels from loss calculations (see Section “lterative Dataset Generation” and

Supp. Fig. S3).

Training setup

All models were trained for 1000 epochs using stochastic gradient descent, a batch size of
2, and 1603-shaped training patches on RTX 4090 GPUs. We apply a polynomial learning rate
scheduler decreasing from 0.01 to 0.0. Before training, patch intensities are normalized per-
patch by subtracting the mean and dividing by the standard deviation.

Inference

For inference, tomograms are processed using a sliding window approach with Gaussian-
weighted patch aggregation of scores. Each tomogram is divided into overlapping 160°
patches, and we apply 8-fold test-time augmentation by flipping along all axis combinations,
averaging predictions before thresholding. MemBrain-seg also supports internal rescaling to a
specified pixel size (default 104). In this mode, patches are extracted at the original resolution,
rescaled before passing through the network, then restored to the original scale before
aggregation. As rescaling occurs entirely on GPU, this approach significantly speeds up
processing compared to full tomogram rescaling.

Data augmentations

Data augmentation is critical for improving generalization by simulating the diverse
appearances of tomograms and membranes®. Below, we describe the geometric, intensity-
based, and Fourier-based augmentations applied during training.

Conventional data augmentations

We apply a mix of classically used geometric and intensity transformations. These
augmentations, applied randomly and on-the-fly, introduce strong variation in training samples,
enhancing the network’s adaptability (see Supp. Fig. S8A).

Geometric Transforms: These transformations aim to show the image from different viewing
points, and include rotation at arbitrary angles, zooming within a range of 0.7 to 1.4, and both
shuffling and flipping of axes.

Intensity Transforms. Applied to alter image characteristics, these encompass median
filtering, Gaussian blurring, Gaussian noise addition, brightness and contrast adjustments,
low-resolution simulation, random erasing, additive brightness gradient, local Gamma
transform, and sharpening.
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Fourier Amplitude Augmentation

Fourier Amplitude Spectrum Matching, as introduced in DeePiCt*, adjusts tomogram styles
by matching their frequency-domain amplitudes. It does so by rotationally averaging Fourier
intensities per frequency band, generating a 1D sequence for both input and target
tomograms. The ratio of these sequences is used to create a 3D radial filter, which is then
multiplied in Fourier space to transform the input tomogram.

In MemBrain-seg, however, our goal is to improve generalization without requiring explicit
style normalization before inference. Previous studies have shown that training with style
augmentations is more effective for generalization than pre-prediction normalization®" . We
therefore introduce Fourier Amplitude augmentation, which randomly modifies tomogram
styles during training. Rather than deriving transformations from a limited set of reference
tomograms, we generate random normalization sequences to simulate diverse styles
dynamically.

To achieve this, we create a 1D sequence x of length 80 (i.e., half the patch size) using a
random walk:

xo = 1.0
Xnt1 = |xXn + 4yl
4, ~ N(0,0%)

where 0 = 0.2, | . | is the absolute value, and N is a normal distribution. This sequence is
expanded into a 3D radial kernel and multiplied with the Fourier transform of the input volume,
introducing random style variations. The effects on image appearance are illustrated in
Supp. Fig. S8B: Up-scaling of higher frequencies results in noisier images with weaker
membrane contrast (2nd row), whereas down-scaling of high frequencies enhances coarse
structures, making membranes more prominent (3rd row).

Missing Wedge augmentation

Segmenting membranes in regions affected by the missing wedge presents a significant
challenge due to the anisotropic distortions it introduces. To mitigate this, we adopt an
approach inspired by IsoNet*’, in which we rotate input subvolumes randomly before applying
an artificial missing wedge by masking Fourier coefficients in a wedge-like shape. This
controlled simulation (Supp. Fig. S8C) replicates the characteristic loss of densities caused by
incomplete angular sampling in cryo-ET. In experimental data, the information lost due to the
missing wedge is not directly visible, yet in some cases, the image context provides hints about
where membranes should be. By artificially replicating these effects, we train the network to
infer missing structures based on contextual information. Training pairs are generated by
applying this transformation to subvolumes while preserving their unaltered ground truth (GT)
labels, pushing the model to learn to accurately segment membranes even in wedge-impacted
regions.

Surface-Dice

Surface-Dice extends Centerline-Dice®® to 3D membrane segmentation, serving as both a
metric for evaluating binarized membrane segmentation outputs and a loss function during
network training. By leveraging a differentiable skeletonization approach, Surface-Dice better
reflects the continuity and consistency of membrane structures in 3D than normal Dice scores.

Computation.

Similar to Centerline-Dice, Surface-Dice relies on skeletonizations of both the predicted
segmentation (Mpred) and the ground truth (Mer), denoted as Spreds @and Ser, respectively.
Skeletonization in Surface-Dice reduces the membrane segmentation to a 1-voxel-thick
surface, forming a 2D manifold in 3D space (illustrated in Supp. Fig. S6A,B). To compute
Surface-Dice (Dicesur), we define Surface-precision (Precsus) and Surface-recall (Recsur) as
follows:

Precsurf(Mpred'MGT) = |Spred N Mgr|/ |Spred|
Recsurf(MpredeGT)) = |S¢r N Mpredl / 1Serl
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The |-|-operator sums up all positive voxels in the respective set. Surface-Dice (Dicesur) is
then computed as the harmonic mean of these two terms:
Precsurf (Mpredr MGT) X Recsurf (Mpred' MGT)

Dicesyrr(Mprea, Mgr) = 2 X
surf L pred» TIGT Precsyrf(Mprea» Mgry + ReCsurf(Mprea, Mgr)

Surface-Dice as a Loss Function.

To use Surface-Dice as a loss function during training, we avoid thresholding network
outputs, as this operation is non-differentiable. Instead, we employ a differentiable
skeletonization approach, similar to the method used in Centerline-Dice. This process involves
iterative membrane erosion to progressively thin the segmentation. At each iteration, an
additional erosion and dilation step is applied, and differences between the segmentation
before and after these operations are evaluated. The presence of differences indicates that
erosion has removed portions of the membrane, meaning the current iteration already
represents a thin surface in those regions. Both erosion and dilation are implemented via min-
and max-pooling, ensuring that all operations remain differentiable and efficient. For further
details, please refer to the Centerline-Dice publication®.

Iterative Dataset Generation

To efficiently build a well-annotated membrane segmentation dataset, we employed an
iterative approach inspired by active learning principles®. This strategy minimized manual
annotation efforts by focusing on areas where the network struggled with segmentation. The
schematic correction workflow and different iterations are visualized in Fig. 2B and Supp. Fig.
S3. During the annotation process, we pay particular attention to the quality of the training
dataset, i.e., the accuracy of the segmentation. The ignore label is particularly helpful here, as
it prevents the model from learning uncertain regions simply as non-membrane background.
This annotation quality is a key factor for the generalization capability of our network. Detailed
instructions on how users can annotate training patches to customize the model can be found
in our online documentation:
https://github.com/teamtomo/membrain-seg/blob/main/docs/Usage/Annotations.md

Initial Dataset and First Iteration

We initiated our project with membrane segmentation patches from the Spinacia oleracea
dataset, initially annotated using TomoSegMemTV*2. Using MITK Workbench'®, we manually
refined these patches, each sized 160° voxels, assigning to every voxel either the background,
membrane, or ignore classes — the latter not being evaluated by the loss function during
training as it marks uncertain membrane regions, where exact delineation of membranes was
challenging. The process of correcting predicted membrane segmentations is depicted in
Supp. Fig. S3B, where we remove false positive voxels from the segmentation, add falsely
negative voxels to it, and assign the ignore class in uncertain regions. Using these corrected
annotations, we trained an initial U-Net***> model for membrane segmentation. While this
model outperformed TomoSegMemTYV, its segmentations remained suboptimal. We therefore
conducted a second round of annotations, targeting patches where the model’s predictions
were weak. This refinement process resulted in 69 accurately annotated spinach chloroplast
patches (Supp. Table 1, column "Spinach”; Supp. Fig. S3B, "Round 17”).

Expansion to Further Datasets

To improve generalization across different imaging setups, we extended our approach to
Chlamydomonas reinhardtii tomograms from EMPIAR-11830"2. Due to differences in imaging
conditions, initial segmentations performed worse than in the spinach dataset. By iteratively
re-annotating 33 patches (covering thylakoid membranes, mitochondria, and the Golgi
apparatus), we aimed to improve performance on this dataset (Supp. Table 1, column
"Chlamy”; Supp. Fig. S3B, "Round 2”). To further expand the model’s applicability beyond our
own data, we collaborated with other research groups who tested MemBrain-seg on their own
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datasets and provided re-annotated patches from regions where MemBrain-seg struggled.
After careful quality assessment, these contributed 27 additional patches, significantly
increasing dataset diversity (Supp. Table 1, column "Community”; Supp. Fig. S3B, "Round 3”).
This ongoing collaboration continues to improve MemBrain-seg’s performance across a wide
range of tomograms. Instructions on how to annotate and share patches can be found on the
MemBrain-seg Github repository.

Adding Publicly Available Sources

We further leveraged the few existing publicly available segmentation sources to improve
our model even further. To achieve this, we generated 40 membrane patches using the open-
source tomography simulators PolNet®® and CryoTomoSim® (20 patches each; Supp. Table
1, column "Synthetic”; Supp. Fig. S3B, "Round 4”). Additionally, we integrated an externally
annotated dataset by extracting 15 reliable segmentation patches from the publicly available
DeePiCt dataset** (EMPIAR-10988). These regions were selected from areas where
MemBrain-seg initially struggled, enhancing dataset diversity (Supp. Table 1, column
"DeePiCt”; Supp. Fig. S3B, "Round 5”).

Skeletonization

MemBrain-seg provides a functionality to convert binary segmentations into 1-voxel thick
membrane sheets, which is essential for several downstream applications and the
computation of Surface-Dice. We solve this task similarly to TomoSegMemTV*?: First, we
compute a distance transform (DT), converting the segmentation into a distance map relative
to membrane boundaries. The goal is to identify the center sheet, which corresponds to the
regions with the highest distance values. To extract this center sheet, we approximate
membrane normal vectors by calculating the Hessian matrix of the distance transform and
extracting its eigenvectors at each voxel p. The eigenvector n associated with the largest
intensity curvature provides the direction pointing outward from the membrane. We then apply
non-maximum suppression (NMS) along these normal vectors: A voxel is retained if it has the
highest DT value along its normal vector; otherwise, it is suppressed:

{ 1,if DT(p) = DT(p + d * n) Vvd € [-1,1]
NMS =
0, otherwise

This process yields a 1-voxel-thick sheet, representing the center sheet of the membrane
segmentation.

Model Fine-tuning

MemBrain-seg’s segmentation performance can be affected by batch shifts, leading to
suboptimal results when tomogram or membrane appearances deviate significantly from the
training domain. To mitigate this, we implemented a fine-tuning strategy that allows users to
quickly adapt the model to their specific datasets. Fine-tuning requires a small number of
annotated patches (typically 10-20, each 160° voxels at 104 pixel size) and follows a transfer
learning approach', where pretrained model weights serve as initialization. To prevent
overfitting and reduce computational costs, we limit training to 100 epochs (instead of 1000)

and lower the learning rate to 10-5 from 10-2. An early stopping criterion halts training if

validation performance deviates too far from the original model’s performance, ensuring
stability. To enable this, the original, full validation dataset serves also as validation dataset in
this task.

For fine-tuning, incorporating the Surface-Dice loss can be beneficial, as it disregards
variations in annotation thickness (e.g., Supp. Fig. S7), preventing premature stopping due to
segmentation thickness differences. This strategy enables MemBrain-seg to efficiently adapt
to new datasets, enhancing performance across diverse tomographic conditions. The workflow

is illustrated in Supp. Fig. S9.
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MemBrain-seg usability

MemBrain-seg is designed to be as easy to use as possible. The default way of using it is
by a command line interface. Via its APl, membrain-seg is also easy to integrate into other
software packages and existing pipelines, allowing subsequent analysis of membrane
segmentations. Additionally, MemBrain-seg is already integrated into other packages with a

graphical user interface, like ColabSeg'*? and Scipion'®,

MemBrain-pick
MemBrain-pick enables the automated localization of membrane-associated proteins in
cryo-electron tomograms. Unlike other deep learning approaches, it operates directly on

membrane surfaces rather than voxel-based representations, allowing for a more specialized
and focused detection of membrane-bound proteins.

Workflow

The MemBrain-pick workflow consists of three key steps: data preparation, model training,
and prediction. Data preparation consists of extracting relevant membrane areas from
MemBrain-seg segmentations, and conversion to mesh representations. The model is then
trained with membrane meshes as input, where we project tomographic densities onto the
mesh triangles (see Fig. 3, Supp. Fig. S10). We train the DiffusionNet-model®’ to predict a
membrane particle distance map. During inference, we extract particle positions using Mean

Shift clustering'®*.

Data Preparation

Mesh generation and projection

To represent membranes as analyzable surfaces, we first extract membrane
segmentations from MemBrain-seg (e.g. crop using our Lasso tool, see Section “Napari
Tools”) and convert them into triangular mesh representations. This is achieved using the
Marching Cubes algorithm'®. To ensure a uniform mesh resolution, we resample triangle sizes
through Voronoi clustering’®, which redistributes vertices to achieve evenly sized barycentric
areas per vertex. Once the mesh is generated, we leverage its per-vertex normal vectors to
extract relevant tomographic information. For each vertex, we sample intensity values along
its normal vector in both directions, generating a feature vector of N sampled density values
per vertex.

Training data generation

MemBrain-pick requires GT annotations for training. To facilitate accurate annotation,
MemBrain-pick is compatible with Surforama®, a Napari-based® annotation tool that operates
similarly to MemBrain-pick by displaying tomographic densities projected onto a membrane
surface. Using Surforama, users can efficiently annotate protein center positions directly on
membrane meshes. These annotations are exported as STAR files'”’, ensuring seamless
integration with MemBrain-pick’s training pipeline, as well as other processing software.

Surface partitioning

To optimize model efficiency and prevent overfitting to global membrane geometries, we
partition each membrane into smaller overlapping surface crops before feeding them into
MemBrain-pick. Each partition consists of 2,000 triangles, selected by initializing at a random
seed triangle and iteratively expanding to include the 2,000 nearest neighbors based on
geodesic distance. To ensure comprehensive coverage, partitions are generated with
sufficient overlap so that each mesh vertex has a neighboring seed within close proximity. This
procedure maintains enough in-plane context per-patch for accurate protein localization while
reducing computational complexity and avoiding learning global geometries.
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Training

Training objective from GT

Rather than directly predicting protein center locations, MemBrain-pick is trained to
estimate a continuous distance field relative to the nearest GT protein position. For each mesh
vertex, we compute the Euclidean distance to its closest annotated protein center, generating
a smooth distance map that serves as the training target. The network is optimized using a
Mean Squared Error (MSE) loss, minimizing the discrepancy between predicted and GT
distance values.

Data Augmentations

To enhance generalization and prevent overfitting, we developed a suite of point cloud
augmentations to be applied during training. These augmentations introduce controlled
variations in spatial and feature domains, mimicking fluctuations in tomographic appearance:

e Spatial Gaussian Smoothing: Smooths point cloud features by computing a weighted
average of neighboring points, with Gaussian weights based on spatial distance and a
randomly drawn sigma.

e [eature Gaussian Smoothing: Applies a Gaussian filter along the normal vector
direction to reduce noise in per-vertex features.

e [Feature Dropout. Randomly sets a fraction of features to zero.

e Feature Noise: Adds Gaussian noise to each feature to simulate signal variability in
tomographic data.

e Feature Shift. Offsets feature values by adding a random constant, introducing
brightness shifts.

e [eature Scale: Scales feature intensities by a random factor to account for contrast
variations.

e Random Erasing: Selects small patches in the sample and zeroes out all features
within them.

e Random Brightness Gradient. Scales feature intensities proportionally to the dis tance
from a randomly chosen point within or near the sample.

e Random Brightness Gamma: Applies a gamma correction, where the gamma value is
determined based on distance from a randomly sampled point.

Effects of combinations of these augmentations during training are visualized in Supp. Fig.
S16.

Network Architecture

We use DiffusionNet®”, a deep learning framework designed for learning on mesh surfaces.
DiffusionNet propagates per-vertex features using a learned diffusion process, incorporating
both geometric and contextual information. We apply it to membrane meshes, where input
features are derived from tomographic intensity projections, and training targets are distance
maps representing protein localization. To enhance performance, we integrate a learnable 1D
convolutional layer that processes features along the membrane normal before diffusion. This
is inspired by the concept of separable convolution'®. Additionally, we stack multiple
DiffusionNet blocks to capture both local curvature and broader membrane context.

Inference

Merging Overlapping Partitions

Each partition is processed independently, producing per-vertex protein distance maps. To
ensure seamless predictions, we assign each vertex a Gaussian-decaying weight from the
partition seed and merge overlapping predictions using a weighted average, similar to a sliding
window approach. This reduces edge artifacts and ensures continuity across partitions.
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Membrane Normal Distance Shifts

To compensate for segmentation inaccuracies, we perform inference multiple times with
shifted feature extraction windows. Instead of using a single fixed range along the membrane
normal, we iteratively shift the sampled density range in small steps. The final prediction is
obtained by averaging across shifts, improving robustness to variations in membrane
thickness and segmentation offsets.

Mean Shift Clustering

After generating protein center distance maps with DiffusionNet, we apply Mean Shift
clustering’*1% to extract protein center locations. First, we threshold predicted distances to
remove clear background regions. For the remaining vertices, we refine cluster centers using
a score-guided adaptation of Mean Shift, similar to [63], where each vertex p updates its
position based on a weighted average of its neighbors:

Ygen, k(@—p)* (1—5s9) *q

ZqENp k(q_p) * (1_ Sq)

Here, Npincludes all points within a radius b around p, excluding p itself, and sq represents
the normalized predicted distance score. The bandwidth b, defining the neighborhood size, is
set to match the maximum allowed distance score in our training data. We use Euclidean
distance as the kernel function k, and the additional weighting by predicted scores to improve
convergence towards high-confidence protein centers.

To accelerate clustering, we use a PyTorch-based GPU implementation'®, significantly
reducing inference time. Once mean shift has converged, we apply density-based spatial
clustering (DBSCAN'"°) to merge redundant cluster centers and eliminate outliers, refining the
final protein localizations.

m(p) =

MemBrain-stats

Particle Concentration

Particle concentration is computed as the number of detected particles divided by the total
surface area of the membrane mesh. For analyses focused on a single membrane side, we
provide two approaches to ensure accurate estimation: either by dividing the total area by two,
assuming particles appear only on one side and both sides are of roughly equal size (i.e. not
much membrane curvature), or by isolating a single membrane side surface through edge
exclusion (see Section “Edge Exclusion for Robust Analysis”), followed by connected
component filtering.

Geodesic Distance Calculation

Geodesic nearest neighbors are computed using either an exact shortest-path algorithm
for triangular meshes'"! or an approximate method based on the heat diffusion equation''2.
The latter provides a computationally efficient alternative by leveraging the heat method to
estimate geodesic distances. In practice, both approaches yield nearly identical results, with

the heat method offering a significant speed advantage.

Geodesic Nearest Neighbors

To compute geodesic nearest neighbor distances, each detected protein center is first
projected onto its nearest mesh vertex. Accurate distance estimation requires a sufficiently
fine-grained mesh to minimize quantization errors. Once projected, the N nearest geodesic
neighbors are determined for each protein center using one of the above methods.

Ripley’s statistics
To compute Ripley’s statistics, we follow the framework described in PyOrg®®, adapting the
formulation to 2D geodesic distances on membrane surfaces, which are modeled as 2D
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manifolds in 3D space. For a set of membrane particle locations S and a set of triangles T
forming the membrane mesh, we define:

Ypes 1S N B(p)

K(r) = nr? «
Ypes AT N B.(p))
K(r)
L(r) = -
0(7") _ Zpes |S n Br,Ar(p)l

- ZpES A(T n Br,Ar(p))

where |.| denotes the number of particle in a given region, A(.) computes the area of
triangles in a set, Bi(p) is the geodesic ball of radius r around particle p, and B a(p) is the

geodesic ring around p, extending from radius r to r + Ar:

B.(r) = {q1d(q,p) < 7}
Brsr(p) = {q|7 < d(q,p) <1 + Ar}

where d(.,.) represents the geodesic distance between two points on the membrane
surface.

By restricting area computations to the triangular mesh T, we automatically normalize
protein concentration based on the connected membrane surface rather than the entire
tomographic volume. As in PyOrg, the functions K, L, and O are closely related: L stabilizes
the variance of K, and O can be understood as the derivative of K, providing information on
local protein clustering patterns.

Edge Exclusion for Robust Analysis

Particle localization can become unreliable near the boundaries of membrane
segmentations due to the lack of in-plane context. Additionally, segmented membranes are
often truncated at arbitrary heights, meaning that segmentation edges do not necessarily
correspond to actual membrane boundaries. This can distort spatial metrics such as nearest
neighbor distances. To mitigate these issues, we aim to automatically exclude edge regions
from certain analyses.

The marching cubes algorithm gives us triangular meshes depicting the segmentations’
hulls. Since membranes are thin sheets, their edges are represented by regions with high
curvature. We detect these areas by computing the discrete mean curvature at each vertex,
defined as the average angle between all neighboring triangles within a geodesic sphere of
radius R. Membrane edge regions are then approximated by selecting the top 5% of vertices
with the highest curvature values. Finally, all points within a distance d from these edge
vertices are excluded from the analysis to prevent artifacts in localization and spatial
measurements. An example of the edge exclusion is visualized in Supp. Fig. S141.

In-plane Orientation Comparison

To analyze the relative in-plane orientations of nearest-neighbor particles, we first compute
geodesic nearest-neighbor pairs as described above. We assume that particle orientations are
known, for instance, from subtomogram averaging, where each particle is aligned such that its
z-axis is parallel to the local membrane normal.

To express the particle’s orientation in the membrane plane, we construct a rotation matrix
that aligns the standard unit vector (0, 0, 1)" with the membrane normal at the particle’s
location. This rotation matrix transforms the basis vectors, mapping (0, 1, 0)" into the
membrane plane, providing a reference direction for in-plane orientation.
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For a pair of particles, we compare their in-plane orientations by computing the angle 0
between their respective in-plane vectors:

||171|| * ||U2||

where v4and vz are the in-plane orientation vectors of the two particles, - represents the dot
product, and ||. || is the vector’'s Lo-norm. This provides a quantitative measure of orientation
similarity within the membrane plane.

Napari tools

Compatibility with Surforama

MemBrain-pick is fully compatible with Surforama, a Napari-based® tool for annotating
membrane proteins in cryo-ET. Similar to MemBrain-pick’s network input, Surforama projects
tomographic densities onto the membrane mesh, allowing users to navigate along the
membrane normal vector to visually inspect the in-plane densities of embedded particles.
Surforama exports annotations in STAR format'®’, which also serves as the preferred input
format for training MemBrain-pick. To ensure seamless integration, MemBrain-pick outputs
are made compatible with Surforama by generating both STAR files and .h5 containers, which
can be directly visualized in Surforama with a single MemBrain-pick command.

Lasso functionality (Lasso, masking, connected components)

We developed a MemBrain-pick Napari®* plugin to facilitate the transition from MemBrain-
seg outputs (full tomogram segmentations) to MemBrain-pick inputs (segmented single-
membrane instances). The plugin includes a lasso functionality, allowing users to interactively
select and extract 3D regions of interest. Following selection, a connected component analysis
is performed to isolate individual membrane segments, which can then be saved for further
processing. Additionally, users can refine segmentations using standard Napari annotation
tools, enabling cleaner and more precise membrane instance selection. For example use
cases, see Supp. Fig. S1B-E.

Applications

MemBrain-seg experiments

All membrane segmentations shown in Fig. 2, Supp. Fig. S2 were generated using
MemBrain-seg’s membrain segment command using the MemBrain_seg_v10_alpha
model. Visualizations were generated using ChimeraX'"?,

MemBrain-seg Ablation Studies

To assess the impact of different dataset components, we conducted a five-fold cross
validation experiment (see Supp. Table 1). Each fold consists of patches from distinct
tomograms, ensuring no tomogram appears in both the training and test sets at the same time.
Given the limited size of our dataset, this cross-validation strategy provides a more robust
evaluation of model performance.

For each iteration, the model was trained using four folds and evaluated on the remaining
one, cycling through all folds so that each served as the test set once. Performance was
measured using the Surface-Dice and standard Dice score, offering a comprehensive
assessment of segmentation quality. In the plots (Supp. Fig. S5), we report the mean and
standard deviation across all folds, along with individual run results.

Incremental Training

To evaluate how increasing dataset diversity enhances MemBrain-seg’s performance and
generalization, we incrementally trained models by sequentially incorporating the five rounds
of annotations as detailed in Section “lierative Dataset Generation”. Each step followed the
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same cross-validation setup described above. The results of this incremental training
approach are presented in Supp. Fig. S5A.

Data Augmentations

To analyze the effect of Fourier-based data augmentations, we trained models using the
dataset from incremental training round 4, i.e., excluding the DeePiCt data. By training on this
subset, we specifically examined the impact of augmentations on generalization to the
DeePiCt test set, serving as an external generalization dataset. The results, are shown in
Supp. Fig. S5B, highlighting the improved performance with augmentations.

Fine-tuning with Surface-Dice

To evaluate the performance of fine-tuning, we initialized models using those trained in
incremental training round 4 and fine-tuned them with round 5 data (DeePiCt) while ensuring
fold separation remained consistent. We tested two fine-tuning strategies: one using Dice and
BCE loss for optimization and validation tracking, and another incorporating Surface-Dice into
the loss function. The impact of these strategies is shown in Supp. Fig. S9B,C.

TARDIS Comparison

To compare MemBrain-seg with TARDIS, we downloaded the latest available TARDIS
model for 3D membrane segmentation (download date: 6th February 2024). We applied the
model to all our patches using the tardis_mem command to obtain binary segmentations for
each patch. For the evaluation presented in Supp. Fig. S5A, we computed Dice and Surface-
Dice scores relative to our GT, excluding regions labeled as “ignore”.

It is important to note that our GT dataset was generated iteratively, incorporating
incremental versions of MemBrain-seg. Although we manually corrected segmentation errors,
the dataset still exhibits some bias toward MemBrain-seg predictions. As such, direct
comparisons with other programs should be interpreted with caution.

MemBrain-pick quantitative evaluation

Evaluation Metric
To make results comparable with metrics reported in MemBrain v1°', we also adopted the

same calculation of F1—Scores to quantify the MemBrain-pick performance: Given a radius r,

161

for a predicted position, we define it a true positive (TPp ) if it is within distance r of a GT
position, and a false positive (FPp ) otherwise. Similarly, for a GT position, a (TPr) is within
distance r or a predicted position, and a (FNr) is not. With this, we can define recall, precision,
and the F4-Score (harmonic mean of precision and recall):

R TPy

TP + FNg
TPy
~ TPp + FPp
F_Z*R*P
7 R+ P

In our experiments, we chpse the same radius also used in [63], which is 4.5 bin-4 voxels,
corresponding to 4.5 * 14.08A = 63.36A.

Spinach data

The Spinach dataset used to evaluate MemBrain-pick’s performance is described in more
detail in a separate publication'®. To train the MemBrain-pick model used in Fig. 3C, we used
the same dataset as in MemBrain v1°', consisting of 45 membrane segmentations from nine
tomograms of Spinacia oleracea thylakoid membranes. Previously existing GT annotations
used in MemBrain v1 were manually refined to improve accuracy and to classify particles into
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three categories: Photosystem Il (PSIl), Cytochrome b6f (b6f), and unidentifiable densities
(UK).

Following the protocol in MemBrain v1, we designated all ten membranes from two
tomograms as the test dataset. For the incremental training performance plot in Fig. 3D, five
membranes from the remaining 35 (fixed across runs) were assigned to the validation set.
Training sets were constructed by randomly sampling N membranes from the remaining 30,
where for each value of N, five independent subsets were drawn, and a separate model was
trained for each subset. The same dataset splits were used for training both MemBrain-pick
and MemBrain v1 models.

Chlamy Generalization

To evaluate the generalization performance of MemBrain-pick, we applied a model trained
exclusively on Spinacia oleracea data to two independent Chlamydomonas reinhardtii
datasets, acquired under different imaging conditions but both depicting thylakoid membranes
with embedded PSII and b6f complexes (Fig. 3E, F). Details on the acquisition and setup of
the Chlamyos'” and Chlamynew”® datasets can be found in their respective publications.

For Chlamyo4, we used 28 segmented membranes extracted from four tomograms, along
with GT annotations from the original publication'’, enabling the computation of F1-Scores (Fig.
3E inset). The Spinach-trained MemBrain-pick model was applied directly to these membranes
to predict particle positions.

For Chlamynew, we first segmented all membranes in four tomograms by applying
MemBrain-seg to Cryo-CARE-denoised® tomograms. Using the MemBrain Napari plugin, we
extracted 23 thylakoid membranes from these full-tomogram segmentations. To further
enhance image interpretability, we applied IsoNet*® before predicting particle positions with the
Spinach-trained MemBrain-pick model (Fig. 3F).

Phycobilisomes

For the analysis presented in Fig. 4, we used data from red algae’’, which depicts
phycobilisome-photosystem |l supercomplexes (EMD-31244). Membrane segmentations
were generated using MemBrain-seg (MemBrain_seg_v10_alpha model), followed by
connected component splitting via the MemBrain Napari plugin, yielding 29 individual
membrane segmentations. To provide GT annotations, we manually labeled phycobilisome
positions on five membranes using Surforama and trained MemBrain-pick with its default
parameters. The trained model was then applied to the remaining 24 membranes in the
tomogram, enabling us to compute Ripley’s statistics on this dataset. For computing Ripley’s O
statistic, we divided all distances into bins of size 5 nm.

Ribosome Analysis in EMPIAR-11830

MemBrain-pick prediction

For the ribosome analysis shown in Fig. 5, we extracted particle positions from the
Chlamydomonas reinhardtii dataset (EMPIAR-118307), focusing on the outer membrane of
the nuclear envelope and the endoplasmic reticulum. To scale up the analysis, MemBrain-seg
was applied to 140 tomograms (MemBrain_seg v10_alpha model), extracting the largest
connected component from each segmentation. After removing segmentations containing
membrane structures of other classes or excessive noise, 97 tomograms remained for further
processing. Ribosome GT annotations were manually assigned to 13 membranes using
Surforama, and MemBrain-pick was trained with its default parameters. The trained model was
then used to predict ribosome positions across the remaining membranes, yielding 4515
predicted positions. Both MemBrain-seg and MemBrain-pick were applied to Cryo-CARE-
denoised*® tomograms to enhance contrast and improve localization accuracy.

Subtomogram Averaging
The endoplasmic reticulum- and nuclear envelope-bound ribosomes from the MemBrain-
pick predictions were further processed in subtomogram averaging. Averaging was performed
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in STOPGAP®'. Bin4 3D CTF-corrected tomograms were generated as implemented in
IMOD", from which subtomograms for all ribosome positions were extracted with a box size
of 80 pixels. Since all particles were already pre-aligned normal to the membrane from
MemBrain-pick, initial alignment was performed using a so-called “cone-search” which
corresponds to a global search around one axis (perpendicular to the membrane) while
restricting the search for the other 2 angles. After initial alignment, all angular searches were
iteratively reduced as resolution increased, reaching 22.7 A resolution after 14 iterations. The
Fourier Shell Correlation plot using a soft spherical mask is visualized in Supp. Fig. S17.

Ribosome Chains

For the analysis shown in Fig. 5E, we first computed the three nearest neighbors for each
ribosome and determined the in-plane angles between them using MemBrain-stats, based on
orientation estimates from subtomogram averaging. We plotted the smallest of these three
angles for each ribosome position and compared it to a theoretical distribution. The theoretical
distribution was generated by randomly sampling 100,000 triplets of uniformly distributed
angles between 0 and 180 degrees and plotting their distribution. Next, we extracted ribosome
chains by iteratively adding chain units based on three spatial constraints: (1) a center-to-
center distance below 40 nm, (2) an in-plane angle below 60 degrees, and (3) an angle
between the current chain end-connection and a potential new end-connection below 80
degrees. Using these criteria, we identified and reconstructed the ribosome chains shown in
Fig. 5E. An example jupyter notebook with showing the extraction of these ribosome chains
can be accessed on the MemBrain-stats Github repository.

Note: we used three nearest neighbors instead of only the first nearest neighbor, as the
closest ribosomes often did not appear to be part of the same chain (see Fig. 5E, right). This
approach allowed for a more reliable identification of polysome-like arrangements.

Ribosomes in EMD-10409

To generate the visualization of ER-bound ribosomes in Supp. Fig. S11B, we processed
the tomogram from EMD-10409* using MemBrain-seg and MemBrain-pick. All membranes in
the tomogram were first segmented using MemBrain-seg (MemBrain_seg_v10_alpha
model). The segmented membrane was then divided into six non-overlapping regions using
the MemBrain Napari tool. Ribosome GT annotations were manually assigned to three of these
regions in Surforama, which were subsequently used for training MemBrain-pick. The trained
model was then applied to the remaining three regions to predict ribosome positions, as shown
in Supp. Fig. S11B. For MemBrain-seg, the raw tomogram was used directly, whereas for
MemBrain-pick, we applied IsoNet*° to enhance contrast and improve protein localization.

Respirasomes

To evaluate MemBrain-pick’'s performance on mitochondrial membrane-associated
complexes, we analyzed respirasomes in Chlamydomonas reinhardtii mitochondria in
tomograms from EMPIAR-11830%. Membrane segmentations were generated from four
tomograms using MemBrain-seg (MemBrain_seg_v10_alpha model), and 45 individual
cristae segmentations were extracted using the MemBrain Napari plugin. To provide GT
particle positions, we used previously generated template-matching-based coordinates?,
projected them onto the membrane surfaces, and used these as training data for MemBrain-
pick. The model was trained on 35 membranes from three tomograms and then applied to the
remaining ten membranes from the fourth tomogram (shown in Supp. Fig. S11A). All
tomograms were denoised using Cryo-CARE® prior to membrane segmentation and particle
localization.

MemBrain-pick comparisons to other methods

In Fig. 3 and Supp. Fig. S13, we compare the performance of MemBrain-pick with other
particle picking methods commonly used in cryo-ET. Below, we provide details on the
applications of these methods using our Spinach dataset (see Section “Spinach data”).
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Template Matching (PyTOM)

Template matching (TM) was performed using pytom-match-pick *° on the two test set
Spinach tomograms. The single-particle cryo-EM map of spinach PSIl (EMDB-6617) ''° was
chosen as a template. The template was resampled to a pixel size of 14.08 A to match the
tomogram'’s, and cropped to a box size of 32 pixels. Finally, the contrast was inverted to match
that of the tomograms (protein density being black). A slab mask for the tomogram was created
using Slabify'"®. The program pytom_match_template.py was run using a fan (per-tilt)
wedge model, a particle diameter of 310 A (corresponding to the longest axis of PSII), a high-
pass filter of 400 A, C2 symmetry and random phase correction. The angular sampling was
calculated automatically from the particle diameter and pixel size, corresponding to 4.89
degrees along Z1 and X and 5.14 degrees along Z2 (Euler angles in PyTOM conventions).

For extraction, the score maps were masked with individual single membrane masks of the
test membranes. Automated extraction using pytom_extract_candidates.py with the -
-number-of-false-positives option failed to provide meaningful results, so a custom
procedure was adopted. For each membrane, the threshold was calculated by finding the 99th
percentile of the scores within the mask. This roughly corresponds to the noise threshold when
sorting all the scores within the mask (see Supp. Fig. S13D). A script for this calculation
(tm_find_thresh) is provided at https://github.com/CellArchLab/cryoet-scripts. Then
pytom_extract_candidates.py was used to extract up to 100 candidates above this
threshold per membrane, with an exclusion radius of 6 pixels (84.48 A) around each peak,
corresponding to the shortest axis of PSII.

DeepFinder

To train DeepFinder®, we performed a training-validation split at the tomogram level to
prevent overlapping patches within a single tomogram. From the total nine tomograms, five
tomograms were used for training, two for validation, and the remaining two were reserved for
testing (same as in the split described in 6.5.4), resulting in a training set of 25 membranes
and a validation set of eleven membranes.

GT segmentation masks were generated using the spheres approach, where spheres of
radius 4 voxels were placed at the 3D GT positions. DeepFinder was trained using a patch
size of 40 voxels for 100 epochs with 20 steps per epoch and a step size of 9 voxels for random
shifts. After training, segmentation masks were predicted for the test tomograms, and protein
positions were extracted using DeepFinder’s clustering module with a bandwidth parameter of
3 voxels.

All mentioned hyperparameters were optimized through grid search using the validation
tomograms. To associate predicted protein positions with membranes, we considered only
positions within a maximum distance of 4 voxels from the membrane surface.

CrYOLO

For CrYOLO®, we used the same data split as for DeepFinder, ensuring non-overlapping
training and validation patches per tomogram. GT positions were converted into CrYOLO-
compatible format by generating .cbox files containing bounding box coordinates. A box size
of 10 voxels was chosen, with bounding boxes propagated across three slices above and
below each GT position.

Hyperparameter tuning was performed on the validation dataset to determine the optimal
settings, resulting in the following parameters: threshold = 0.05,
tracing_min_length = 3, distance = 6, min_num_boxes = 5, and
positive_weight = 50.

Membrane-position associations were performed following the same approach as for
DeepFinder, considering only predicted positions within 4 voxels of the membrane surface.
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MPicker / EPicker

For the comparison with MPicker®® and EPicker'", we first flattened our membranes using
the MPicker GUI. This involved manually selecting several points per membrane on the luminal
side of the segmentation to define a reference surface on the correct membrane side.
MPicker’s built-in functionality was then used to flatten the membrane, generating a 2D image
stack representation. Next, we utilized MPicker’'s "Load raw coordinates” function to import a
text file containing our GT positions for PSIl and UK particles. MPicker transformed these 3D
coordinates to their corresponding positions on the flattened membrane stack (see Supp. Fig.
S13). Finally, for each membrane, we saved the flattened membrane stack as an .mrc file and
the transformed GT positions as a .txt file.

To train EPicker, we needed pairs of 2D images (.mrc files) and their corresponding 2D
coordinates (.thi files). These were prepared by extracting the 2D slice from the flattened
membrane array that contained the most protein center positions. Additionally, we included
the coordinates from the adjacent slices in both directions along the z-axis, as the center slice
still retained enough protein density to confirm the presence of these proteins.

EPicker training was conducted using a learning rate of 0.0001, a batch size of 4, and 140
epochs, executed via the script epicker_train.sh. We trained separate models for each
of our four training folds, matching the same folds used in the MemBrain-pick and MemBrain
v1 analyses. After training, we predicted positions on the validation membranes and optimized
the parameters --thres (score thresholding) and --dist (minimum distance between
detected particles) using the Mpicker epicker_batch.py script. These parameters were
fine-tuned separately for each data fold.

Once the optimal parameters were determined, we applied EPicker to our test set. MPicker
then converted the predicted 2D coordinates back into 3D tomogram coordinates, enabling
direct comparison with the GT positions. This allowed us to compute performance metrics and
assess the accuracy of the MPicker-EPicker pipeline relative to our GT annotations.
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Fold \ Dataset Spinach Chlamy Community Synthetic DeePiCt
Fold 1 10 7 5 8 4
Fold 2 12 6 6 8 4
Fold 3 17 7 5 8 4
Fold 4 19 7 5 8 0
Fold 5 11 6 6 8 3
Total 69 33 27 40 15

Supplementary Table 1. Overview of data folds in ablation studies. Columns represent different datasets
(Spinach, Chlamy, Community, Synthetic, DeePiCt), and rows indicate the number of tomogram patches
allocated to each cross-validation fold. The “Total” row shows the cumulative number of patches per dataset.
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Supplementary Figure S1. Napari plugins. A: MemBrain-seg can be used with a single command line
membrain segment and outputs binary segmentations from a tomogram. B-D: MemBrain lasso plugin. B:
Click and drag to draw a 3D lasso to select an area of interest. C: Either isolate or remove the selected area
from the segmentation. D: Extract connected components of the remaining segmentation to find the
membrane instances of interest, and save them out as .mrc files. E: Extracted membranes can be visualized
in Surforama.
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¥
Supplementary Figure S2. More examples of MemBrain-seg segmentations from different datasets
and data sources. For each EMPIAR or EMDB dataset shown, top row: slice through tomogram, bottom
row: corresponding MemBrain-seg prediction (light blue).
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Supplementary Figure S3. MemBrain-seg iterative annotation process. A: Correction of a single patch. An
initial prediction of MemBrain-seg (left) is padded with ignore labels towards its edges to account for lack of
context towards the edges. The correction (middle) includes added segmentations (blue), removal of false
positive segments (red), and ignore labels in uncertain regions (green), where it's not possible to perfectly
delineate the membrane. The merged segmentation is visualized on the right. B: Example corrected patches
from the datasets added in each iterative training round.
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DS-10224
RN-10229

DS-10443
RN-16638

Supplementary Figure S4. MemBrain-seg segmentations on the CZIl CryoET Data Portal. All tomograms
on the portal include MemBrain-seg segmentations, which can be viewed directly in the browser via

Neuroglancer!'®. Shown are example segmentations from datasets DS-10442, DS-10444, DS-10223, and DS-
10443.
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Supplementary Figure S5. MemBrain-seg Evaluations. A: Evaluation of incremental training performance
on different datasets with Dice and Surface-Dice scores, and comparison with TARDIS. MemBrain-seg models
were trained with increasingly bigger training sets from rounds 1 to 5. B: Evaluation of the effect of our Fourier-
based augmentations on generalization performance. Both models for Fourier Amplitude and Missing Wedge
augmentations were trained with data from incremental training round 4, and compared to plain incremental
training with rounds 4 and 5. All means, standard deviations and single points correspond to runs of the 5- fold
cross-validation per experiment. TARDIS was evaluated only once on the entire dataset.
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Supplementary Figure S6. Surface-Dice. A: 2D slices of a corrected training patch. Comparison of full GT
and prediction segmentation leads to false positive (FP) and false negative (FN) pixel for non-perfect
agreement of segmentations, particularly visible at the segmentation edges. Bottom row: Comparing
prediction skeletons with full GT segmentation (and vice versa) leads to bigger focus on membrane topology
and gives false positives / negatives only in wrongly captured membranes. B: Same components as in A, but
in 3D. C: Computation of Dice and Surface-Dice on a synthetic membrane patch: Both Dice score and
Surface-Dice scores are computed by comparing a fixed predicted membrane segmentation with GT
segmentations that is grown up to three times, leading to decreasing Dice scores, but consistent Surface-
Dice scores.
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Supplementary Figure S7. Differences in annotation thicknesses. Example segmentations provided in

the DeePiCt dataset. Even though membrane topology is correctly captured, segmentation thickness varies
among the different membrane instances.
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Supplementary Figure S8. MemBrain-seg augmentations. A: Combinations of classical geometric and
intensity transforms used in MemBrain-seg. B: Fourier Amplitude Augmentation: A patch and its Fourier
transform is shown for the original patch (row “original”) and the same patch after drawing two random 1D plots
(column ”"Scaling Factors”) and applying the corresponding rotational kernel. C: Missing Wedge Augmentation:
A patch and its Fourier transform is shown for the original patch (rows 1 and 2), and for the same patch after
applying an artificial missing wedge with different strengths (rows 3&4 and 5&6).
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Supplementary Figure S9. MemBrain-seg finetuning. A: Schematic of finetuning learning curves: Green
training curve decreases while blue validation curve first decreases and then increases, indicating overfitting.
We implement early stopping when validation performance deviates too far from original performance. B:
Dice scores of incremental training rounds 4 and 5, compared to finetuning of a model trained using data from
round 4 using only DeePiCt data. Finetuning models were trained with only Dice and BCE as loss function,
as well as with added Surface-Dice. C: Surface-Dice of models described in B. D: Prediction on DeePiCt’s
tomogram TS_0002 before finetuning (i.e. Round 4). E: Prediction on tomogram from D after finetuning with
Surface-Dice.
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Supplementary Figure S10. MemBrain-pick processing steps. A: Triangular mesh representation of a
segmented membrane. B: Tomographic densities projected onto the mesh with GT particle positions
(magenta). C: Training target: Geodesic distance map to the nearest particle center. D: MemBrain-pick
architecture: Tomographic densities are projected onto the mesh from multiple distances from the membrane
surface, creating N feature channels per vertex. The mesh is partitioned into overlapping, evenly sized regions
to ensure shape consistency and prevent overfitting to global structures. Each partition is first processed by a
1D convolution along the channel dimension, followed by four DiffusionNet blocks. Finally, an MLP predicts the
geodesic distance map to the nearest particle center. E: Score-guided mean shift clustering refines particle
localization. F: Example iterations of a clustering seed (black) converging toward a predicted particle center.
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Supplementary Figure S11. MemBrain-pick additional applications. A: MemBrain-pick predictions of
respirasome particles on mitochondrial crista membranes in EMPIAR-11830%%7%, B: MemBrain-pick
predictions of ribosome positions on ER membranes in EMD-10409.
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Training Annotations Prediction

Ideal Setting: Training with fully annotated volume

\l\volumetric approaches struggle with sparse annotations/l/

\‘\MemBrain-pick can be trained with sparse annotations/l/

Supplementary Figure S12. Volumetric approaches vs. specialized approaches. Upper panel:
Volumetric approaches give good prediction results when trained with fully annotated tomogram regions.
Middle panel: VVolumetric approaches struggle to give good predictions when trained with sparsely labeled
regions due to high amounts of false negative GT positions. Bottom panel: MemBrain pick and other
membrane-specialized approaches require annotations only on a membrane-level instead of full-region
annotations.
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Supplementary Figure S13. MemBrain-pick Compared Methods. A: Left: GUlI window of MPicker
visualizing a flattened training membrane from the Spinach dataset, together with our GT PSII positions
mapped to the flattened 2D image. Right: Magnified view of GT positions on a Spinach test membrane, as
well as positions predicted with EPicker. B: CrYOLO-predicted PSII positions on a spinach test tomogram,
visualized in CrYOLO’s Napari plugin. C: DeepFinder predicted PSIl segmentations on a Spinach test
tomogram. D: PyTOM template matching (TM) results. Left: Example test membrane with detected positions
(blue) mapped in. Right: sorted TM scores for this membrane with threshold used for extraction.
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Supplementary Fig. S14. MemBrain-stats visualizations. A: Particle (magenta) concentrations for different
membranes. Membrane surfaces are colored according to their concentrations. B: Particle concentrations with
respect to distance to the membrane borders (cyan). Distances are divided in equally-spaced bins, and each
bin is colored according to its concentration. Bin concentrations are computed from all membranes in one
tomogram. C: Geodesic nearest neighbor distances: Membranes are colored according to their average nearest
neighbor distances. Single particles are colored according to their respective nearest neighbor distances. White
lines represent nearest neighbor connections. D: Membrane is divided into bins and colored according to
average bin nearest neighbor distances, similar to B. E: Ripley’s K plot is visualized for a single starting protein.
Membranes are colored according to their Ripley’s K value for the vertices’ geodesic distances to the starting
proteins. F: Same as E for Ripley’s L. G: Same as E for Ripley’s O. H: Particle concentrations / Geodesic
nearest neighbor distances per binned distances to the membrane edge, corresponding to the membranes
shown in B and D. I: Segmentation edge exclusion: Particle positions close to the segmentation edge (cyan)
can be excluded from some analyses.
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Supplementary Figure S15. MemBrain-seg

skeletonization. Top row: Example raw binary segmentation

outputs from MemBrain-seg. Bottom row: The same segmentations skeletonized with the membrain
skeletonize command.
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original densities

random augmentations

Supplementary Figure S16. MemBrain-pick Augmentations. The top row shows a MemBrain-pick partition

with one channel of original tomographic densities projected onto the surface. The rows below show examples
of the same densities after random combinations of augmentations applied during training.
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Supplementary Figure S17. Fourier Shell Correlation (FSC) for the nuclear envelope-bound ribosome
average shown in Figure 5. The final resolution is 22.7 A based on the 0.143 cutoff criterion after correcting
for artificial correlations induced by the mask''®. Shown are unmasked (green), soft-edged spherical mask
(blue), corrected (black) and phase-randomized (red) FSC curves. The spike close to Nyquist frequency in the
unmasked (green) curve is due to membrane signal extending all the way to the edge of the boxes since the
half-map reconstructions not masked in STOPGAP.
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