
MemBrain v2: an end-to-end tool for the analysis of 
membranes in cryo-electron tomography   

Lorenz Lamm1,2,3*, Simon Zufferey2, Hanyi Zhang1,3, Ricardo D. Righetto2, 
Florent Waltz2, Wojciech Wietrzynski2, Kevin A. Yamauchi4,5, Alister Burt6,7, 
Ye Liu1,3, Antonio Martinez-Sanchez8, Sebastian Ziegler9,10, Fabian Isensee9,10, 
Julia A. Schnabel1,3,11, Benjamin D. Engel2*, Tingying Peng1,3*  
1 Helmholtz Munich, German Research Center for Environment and Health, Munich, Germany.  
2 Biozentrum, University of Basel, Basel, Switzerland.  
3 School of Computation, Information and Technology, Technical University of Munich, Munich, 
Germany.  
4 Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.  
5 Swiss Institute of Bioinformatics, Basel, Switzerland.  
6 MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK. 
7 Department of Structural Biology, Genentech, South San Francisco, CA, USA. 
8 Department of Information and Communications Engineering, Faculty of Computers Sciences, 
University of Murcia, Murcia, Spain.  
9 German Cancer Research Center (DKFZ), Division of Medical Image Computing, Heidelberg, 
Germany.  
10 Helmholtz Imaging, German Cancer Research Center (DKFZ), Heidelberg, Germany.  
11 School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK.  

*Corresponding authors: 
lorenz.lamm@tum.de; ben.engel@unibas.ch; tingying.peng@helmholtz-munich.de 

Abstract  
Cryo-electron tomography (cryo-ET) provides unique insights into macromolecular 

complexes in their native environments, yet membrane analysis remains a major bottleneck 
due to low signal-to-noise ratios, missing wedge artifacts, and the complexity of membrane-
associated proteins. Existing tools often require extensive manual annotation, struggle with 
generalization across datasets, and lack integrated solutions for segmentation, protein 
localization, and quantitative analysis. We introduce MemBrain v2, a deep learning-enabled 
framework that unifies these tasks into a streamlined pipeline. MemBrain-seg leverages a 
diverse, collaboratively generated training dataset and specialized model training strategies to 
achieve generalizable membrane segmentation across variable tomographic conditions. 
MemBrain-pick enables data-efficient localization of membrane-bound proteins by integrating 
geometric constraints with deep learning, reducing the need for extensive manual annotation. 
MemBrain-stats provides quantitative insights into protein distributions, computing spatial 
metrics to analyze intra-membrane particle organization. MemBrain v2 integrates seamlessly 
into cryo-ET workflows, providing an accessible and structured approach to membrane 
analysis. The full package is available at https://github.com/CellArchLab/MemBrain-v2.  

Keywords: cryo-electron tomography, membrane segmentation, particle localization, 
deep learning, spatial analysis, MemBrain  
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Introduction  
Cryo-electron tomography (cryo-ET) is a powerful technique for imaging the molecular 

environment inside native cells in three dimensions (3D) at sub-nanometer resolution1. By 
capturing all densities inside a cellular volume frozen in vitreous ice, cryo-ET provides detailed 
insights into the structures, interactions, and spatial arrangements of diverse organellar and 
macromolecular components. However, the biological complexity captured by cryo-ET also 
presents significant challenges for annotation and analysis2. Membranes and their embedded 
protein complexes play fundamental roles in numerous cellular processes, including the ER-
Golgi secretory pathway3–5, autophagy6,7, vesicular transport8, synaptic transmission9–12, 
energy conversion in mitochondrial cristae and chloroplast thylakoids13–22, organelle contact 
sites23,24, cell membrane protrusions25,26, viral replication27–33, and bacterial cell division34,35. 
Accurate segmentation of membranes and precise localization of membrane-associated 
proteins are essential for understanding how membrane architecture and molecular 
organization drive cellular functions.  

Membrane analysis in cryo-ET is challenging due to the inherently low signal-to-noise ratio 
(SNR), which obscures structural details and complicates accurate interpretation. Additionally, 
the missing wedge effect – caused by limited angular sampling – introduces anisotropic 
distortions that particularly affect membrane structures oriented perpendicular to the electron 
beam, making them difficult to resolve. While computational approaches for denoising36–39 and 
missing wedge correction40,41 attempt to mitigate these issues, their restorations are not always 
reliable and may introduce artifacts. 

Several methods attempt to tackle membrane segmentation in cryo-ET, yet each comes 
with inherent limitations. Classically, TomoSegMemTV42 incorporates local membrane 
curvature via tensor voting, but can struggle in areas with complex or rapidly varying 
membrane shapes. Deep learning-based approaches, particularly U-Net-based43–46 models, 
have driven significant advancements. However, many implementations lack generalizability, 
because they have been trained on only a single cell or membrane type. Therefore, specialized 
models are often trained for single projects or datasets47. TARDIS48 represents a promising 
step toward more generalizable segmentation by incorporating diverse datasets into training 
and offering pretrained models, making segmentation tools more accessible. Despite these 
advancements, it remains an open challenge to develop a widely applicable approach that 
ensures robust segmentation across diverse membrane architectures, tomographic 
conditions, and biological contexts. 

Beyond membrane segmentation, the automated localization of membrane-associated 
particles (e.g., integral membrane proteins) in cryo-ET remains a major challenge. Because 
these particles are embedded in the lipid bilayer, they are difficult to distinguish from the 
surrounding membrane. Classical template-matching approaches49–51 often fail in this context, 
as strong membrane contrast dominates cross-correlation scores, reducing detection 
accuracy. Deep learning methods offer an alternative, with several CNN-based approaches 
recently introduced for particle localization in cryo-ET52–57. However, many of these heavily 
rely on extensively annotated volumes, which are labor-intensive and often not technically 
feasible to generate. These models also struggle with sparsely annotated membranes, limiting 
their generalizability. The high variability in particle appearances further complicates training 
of generalist models, making each individual membrane annotation particularly valuable and 
motivating the need for specialized models that can operate with individual membrane 
annotations. To streamline this annotation process, MPicker58 flattens membranes into 2D 
stacks, but this transformation can introduce distortions and fail to preserve physical distances. 
To address these issues, annotation tools such as membranorama17,59 and Surforama60 
project tomographic densities onto 3D meshes, allowing for more interactive exploration and 
particle localization. Among existing tools, MemBrain v161 was designed to leverage these 
limited annotations, but its performance remains constrained by its small receptive field. A 
more refined, interactive approach could better leverage sparse annotations to improve both 
the accuracy and efficiency of particle localization. 
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Quantitative tools for analysis of membrane segmentations include PyCurv62, which 
estimates membrane curvature, and a surface morphometrics pipeline13, which extracts 
properties such as inter-membrane distances. PyOrg63 analyzes protein distributions but does 
not directly relate them to membrane features. Thus, these tools analyze either membrane 
geometry or protein distributions separately, lacking an integrated approach to quantitatively 
assess protein-membrane interactions. 

To address the challenges described above, MemBrain v2 unifies cryo-ET membrane 
analysis in a single integrated framework: MemBrain-seg produces generalizable membrane 
segmentations using a collaboratively generated, diverse ground truth dataset. MemBrain-
pick efficiently localizes membrane-bound particles with interactive annotation support via 
Napari and Surforama. MemBrain-stats computes descriptive statistics such as particle 
concentrations and geodesic nearest neighbor distances along the segmented membrane. 
Together, these modules enable end-to-end analysis of membranes from segmentation to 
particle localization and statistical analysis (Fig. 1). By combining versatility with usability, 
MemBrain v2 provides an intuitive solution that can be applied to diverse data sources to 
explore a broad spectrum of biological questions.  
 

 
 
Figure 1. MemBrain v2 provides an end-to-end pipeline for analyzing membranes and membrane-
associated particles in cryo-ET data. A: MemBrain-seg produces generalizable membrane segmentations 
out-of-the-box. B: MemBrain-pick efficiently localizes membrane-associated particles by iterative annotation 
and training directly on mesh surfaces. C: MemBrain-stats evaluates the outputs of MemBrain-seg and 
MemBrain-pick, providing particle-surface metrics. 

 
Results  
Overview of MemBrain v2 modules  

MemBrain v2 is a modular pipeline designed to streamline the analysis of membranes and 
their associated proteins in cryo-ET datasets. Its three core modules — MemBrain-seg, 
MemBrain-pick, and MemBrain-stats — work together to enable membrane segmentation, 
particle localization, and quantification. MemBrain-seg (Fig. 1A) employs a U-Net-based 
approach to achieve robust membrane segmentation across a variety of experimental and 
tomography setups. It is trained on a diverse, iteratively refined dataset, which was generated 
using careful manual annotations and corrections in close collaboration with the community to 
ensure broad coverage of different membrane appearances. Together with our cryo-ET-
specific data augmentations and membrane-focused loss functions in the network training, this 
approach ensures accurate and continuous membrane delineation, facilitating visualization 
and downstream analysis. MemBrain-pick (Fig. 1B) specializes in the efficient localization of 
membrane-bound particles (e.g., membrane proteins). By training a neural network to operate 
directly on membrane surfaces, it incorporates the membrane geometry into its prediction and 
thus reduces the search space, enhancing both accuracy and data efficiency. Its integration 
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with interactive Napari64 tools, such as Surforama60, allows for rapid annotation and refinement 
of particle positions, facilitating seamless transitions between ground truth (GT) generation 
and model training. MemBrain-stats (Fig. 1C) leverages the outputs of MemBrain-seg and 
MemBrain-pick to provide quantitative insights into particle distributions on membranes. It 
computes key metrics such as particle concentrations, geodesic nearest-neighbor distances, 
and Ripley’s statistics. By linking membrane morphology with protein organization, MemBrain-
stats enables investigation of the structural and functional relationships in cryo-ET datasets. 
MemBrain v2’s modular design ensures both flexibility and accessibility, featuring 
straightforward command-line interfaces and seamless integration with Napari plugins for 
interactive annotation and visualization. 

MemBrain-seg: a generalized approach for membrane segmentation  
MemBrain-seg is a U-Net-based program that generates 3D membrane segmentations 

from input tomograms with a single command (Fig. 2A, Supp. Fig. S1). It delivers robust 
segmentation performance across diverse tomograms containing a variety of organelles from 
various species, acquired with different microscope types, imaging settings, and processing 
conditions, ranging from raw to denoised tomograms (Fig. 2E, Supp. Fig. S2). While strong 
segmentation performance on thylakoid membranes was expected due to the high 
representation of spinach chloroplasts in our training data (see Supp. Fig. S3, Supp. Table 1), 
MemBrain-seg also achieves satisfactory results on vesicular structures and convoluted 
mitochondrial membranes. This adaptability is further demonstrated in the CZII data portal65 
(Supp. Fig. S4), where MemBrain-seg was applied to all tomograms present in the portal, 
allowing users to conveniently inspect segmentations together with the corresponding 
tomograms in the browser.  

To ensure consistent and robust model performance, MemBrain-seg was trained on a 
diverse dataset, iteratively refined through manual corrections (Supp. Fig. S3). In each training 
round, segmentation predictions were reviewed and corrected to improve the dataset for 
subsequent iterations (see Fig. 2B). The first two rounds (1 and 2) focused on training patches 
from our Spinacia oleracea (“Spinach”, EMPIAR-12612) and Chlamydomonas reinhardtii 
(“Chlamy”, EMPIAR-11830) datasets, followed by contributions from external collaborators 
(“Collaborators”) to introduce additional diversity. To further enhance robustness, synthetic 
data from publicly available generators39,66 (“Synthetic”) and patches from the DeePiCt 
dataset44 (“DeePiCt”, EMPIAR-10988) were integrated in the last two training rounds (4 and 5, 
respectively). Expanding the dataset incrementally across different tomography sources 
further enhanced the model’s generalization, as demonstrated by its progressively improving 
performance across datasets with each additional training round (Supp. Fig. S5). Here, we 
monitored performance by calculating the Dice score (a standard metric for segmentation 
accuracy) for different test datasets. The improved generalization is particularly evident in the 
“DeePiCt” test dataset, where Dice scores improved from 39% to 66% (and up to 55% in 
rounds without any DeePiCt training data).  

In addition to evaluating network performance across different training datasets, we also 
compared MemBrain-seg to TARDIS48, a recent method designed for membrane and filament 
segmentation. In our test datasets, MemBrain-seg achieved higher Dice scores compared to 
TARDIS (Supp. Fig. S5A). However, this comparison should be interpreted carefully because 
our GT annotations were generated by iteratively predicting with MemBrain-seg and manually 
correcting these predictions. As a result, a substantial portion of the GT voxels still originates 
directly from MemBrain-seg outputs, and may inherently favor its performance. To address 
this issue, we additionally assessed performance using fully synthetic datasets with absolute 
GT annotations, providing a more unbiased, but also less realistic, benchmark. Here, both 
MemBrain-seg and TARDIS achieved good values (66% in Round 3 vs. 59% Dice, 
respectively), hinting at strong generalization capabilities for both methods. To further mitigate 
potential bias — particularly differences in membrane thickness annotations, which may favor 
MemBrain-seg’s predicted segmentation thickness — we introduced the Surface-Dice score 
(Fig. 2C). Unlike standard Dice scores, which compare segmentations at the voxel level, 
Surface-Dice evaluates the structural consistency of predicted and GT segmentations by 
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Figure 2. MemBrain-seg achieves accurate and generalizable membrane segmentation across diverse 
cryo-ET datasets through iterative active learning, membrane-specific loss function and Fourier-based 
augmentation. A: MemBrain-seg is based on a U-Net architecture and produces accurate 3D segmentations 
from input tomograms. B: Our diverse training dataset was generated iteratively via an active learning 
approach: For a model in training round N, we extracted patches in difficult regions, manually corrected the 
network prediction using membrane, background, and ignore labels (see Supp. Fig. S3), and merged them 
into our training dataset. The next round (N+1) shows improved segmentation performance. C: Surface-Dice 
evaluates segmentation quality by comparing the skeletons (see Supp. Fig. S15) of the predicted 
segmentation with the ground truth (GT) segmentation (yellow), and the GT skeleton with the predicted 
segmentation (pink). This emphasizes membrane continuity more efficiently than the conventional Dice metric, 
which directly compares voxel-wise overlap. D: MemBrain-seg’s Fourier-based augmentations: Fourier 
amplitude (FA) augmentation randomly rescales intensities of Fourier frequency bands, altering image 
contrast. The missing wedge (MW) augmentation randomly applies an artificial missing wedge in Fourier space 
to imitate the effects of the real missing wedge. E: Examples of MemBrain-seg predictions on diverse public 
datasets, demonstrating robust out-of-the-box segmentation performance across a wide range of membrane 
architectures in tomograms acquired with diverse instrumentation. Top row: slices through tomograms, bottom 
row: corresponding MemBrain-seg predictions (light blue). For more examples, see Supp. Fig. S2. 
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comparing their skeletons (see Supp. Fig. S6). This metric better captures membrane 
continuity and is invariant to annotation style (e.g., Supp. Fig. S7). Evaluations with Surface-
Dice were consistent with the standard Dice assessments (Supp. Fig. S5A). By combining 
Dice and Surface-Dice metrics with our diverse dataset, we provide a publicly available 
benchmarking resource for membrane segmentation tools.  

In addition to our base model, we provide versions trained with enhanced augmentations. 
These Fourier-based augmentations (Fig. 2D, Supp. Fig. S8B,C) simulate tomographic style 
variations and missing wedge distortions, improving model robustness. Specifically, our 
missing wedge augmentation artificially introduces an additional missing wedge in training 
patches to mimic real-world artifacts, while Fourier amplitude augmentation randomly rescales 
Fourier frequency bands to simulate tomographic variability. These enhancements improved 
generalization across diverse tomographic conditions (Supp. Fig. S5B). Notably, for round 4 
data (i.e., excluding DeePiCt training data), we evaluated models trained with either Fourier 
amplitude or missing wedge augmentation. Fourier amplitude increased Surface-Dice scores 
on the DeePiCt test set from 55% to 59%, while missing wedge augmentation improved scores 
to 57%, demonstrating their effectiveness in adapting to unseen datasets. Overall, MemBrain-
seg delivers strong out-of-the-box segmentation performance across a wide range of cryo-ET 
datasets. However, its performance may degrade when applied to datasets with substantial 
domain shifts, particularly under varying microscopy conditions. In such cases, fine-tuning the 
model on a specific dataset (e.g., with patches generated as shown in Supp. Fig. S3A) can 
further optimize segmentation quality. We demonstrate this capability in Supp. Fig. S9, where 
fine-tuning with only DeePiCt dataset patches in the training set improved Surface-Dice scores 
from 58% to 67%. To prevent overfitting, we continuously monitored performance on the full 
validation set depicting a broader range of membranes than the test set, using both the Dice 
score and Surface-Dice score. Notably, monitoring Surface-Dice during fine-tuning 
outperformed monitoring only Dice scores (67% vs. 60%, respectively), avoiding premature 
early stopping due to the different membrane thicknesses in the fine-tuning dataset (Supp. Fig. 
S7) and highlighting the effective adaptation of MemBrain-seg to domain shifts.  

MemBrain-pick: an interactive tool to efficiently localize membrane-
associated particles  

Identification of membrane-associated particles (e.g., integral membrane proteins or 
membrane-bound ribosomes) in cryo-ET data is a challenging task. In MemBrain-pick, we aim 
to facilitate this process by enabling a smooth transition from MemBrain-seg outputs to the 
area of interest for particle localization and training an automated model. With our MemBrain 
Napari plugin and its integrated 3D lasso functionality, users can isolate single membrane 
instances from full-tomogram segmentations (Fig. 3A, Supp. Fig. S1B), which can 
subsequently be visualized and annotated in Surforama60,64 (Fig. 3B) for manual annotation of 
particle locations.  

These annotations allow the training of a specialized particle localization model: MemBrain-
pick enables efficient and accurate localization of membrane-bound particles by integrating 
membrane geometry into the particle detection pipeline. It employs a DiffusionNet-based67 
neural network to directly operate on membrane meshes with projected tomographic densities 
(Fig. 3A, Supp. Fig. S10), which reduces the search space to membrane-associated regions 
and improves detection efficiency. Additionally, this network design is aligned with the 
visualizations in Surforama, making the output more interpretable. The network predicts a 
heatmap representing the distance to the nearest particle center, which is then further 
processed with our score-guided mean shift clustering68 to predict precise particle positions 
(see example in Supp. Fig. S11). 

 We tested MemBrain-pick on stacked Spinach thylakoid membranes, demonstrating 
exceptional performance for Photosystem II (PSII) localization (Fig. 3C, D). Even with only a 
single annotated membrane, our model achieved robust performance with an F1-score of 91%, 
highlighting its ability to operate with minimal training data. In contrast, other deep learning 
approaches such as DeepFinder and crYOLO require extensive volumetric annotations (Supp. 
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Fig. S12) and struggle with sparsely annotated training data (DeepFinder 60%, crYOLO 26% 
F1-score when trained with 25 membranes, Supp. Fig. S13B,C). Similarly, specialized 
approaches like MPicker (combined with EPicker, Supp. Fig. S13A, 42% F1-score) and 
MemBrain v1 (90% F1-score) also fail to match MemBrain-pick’s performance (93% F1-score 
when trained on 29 membranes). Template matching (performed in PyTOM49,50) achieved an 
F1-score of 52%.  

To evaluate MemBrain-pick’s generalizability across datasets, we applied one of these 
Spinach-trained models (i.e., trained with 29 membranes) to stacked thylakoid membranes in 
two Chlamydomonas datasets (Chlamyold and Chlamynew). Despite differences in species and 
imaging setups, MemBrain-pick maintained robust localization with high F1-scores (84%) on 

 
 
Figure 3. MemBrain-pick accurately localizes membrane-associated particles through efficient 
learning on mesh surfaces. A: MemBrain-pick projects tomographic densities onto a triangular mesh 
surface at multiple distances along the membrane normal vector. The DiffusionNet64-based architecture 
operates directly on the surface and predicts a heatmap depicting the distance to the nearest particle position 
(magenta). Particle positions are subsequently identified using Mean Shift clustering on the heatmap and 
exported as .star files. See detailed workflow in Supp. Fig. S10. B: Surforama interface enables interactive 
annotation and correction of MemBrain-pick outputs to generate or refine ground-truth particle positions. 
C: MemBrain-pick predictions on the Spinach test dataset after training with the Spinach training dataset. 
D: MemBrain-pick training results with incremental numbers of training membranes and comparison with 
other methods (see also Supp. Fig. S13). crYOLO and DeepFinder were only trained with 25 membranes 
(validation split based on tomogram), and MPicker with 29 membranes. Template matching was performed 
in PyTOM. E: Predictions on the Chlamyold dataset with the same model as in B. Inset shows the F1-Score 
performance evaluated with GT particle positions. F: Predictions on the Chlamynew dataset with the same 
model as in B. G: MemBrain-stats quantifies nearest neighbor distances and particle concentration (Supp. 
Fig. S14) for the predictions in B, C, and D. 
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the Chlamyold dataset (Fig. 3E). Predictions on the Chlamynew dataset (which lacked GT 
annotations) also appeared clean and plausible (Fig. 3F).  

MemBrain-stats: quantitative analysis of particle distributions 
MemBrain-stats complements MemBrain-seg and MemBrain-pick by providing quantitative 

analysis of particle distributions on membrane surfaces. The module computes particle surface 
concentrations, geodesic nearest-neighbor distances, and spatial distribution statistics such 
as the Ripley’s functions (see Supp. Fig. S14). These metrics allow users to quantitatively 
interpret membrane protein organization within cryo-ET data, enabling deeper biological 
insights into membrane-associated processes. 

Using MemBrain-stats, we quantified the distribution of the above-predicted thylakoid 
membrane particles and compared to previously published values of total particles in stacked 
thylakoids (Fig. 3G). For Spinach, our results closely align with the published particle 
concentration19 (Spinach vs. published: 1688 vs. 1714 particles/µm2). For Chlamydomonas, 
our predicted values are slightly higher than the reported concentration17 (Chlamyold and 
Chlamynew vs. published: 1492 and 1316 vs. 1292 particles/µm2). Because the previous studies 
only measured PSII-PSII nearest neighbor distances and neglected some densities marked 
as “unknown”, our computed nearest neighbor distances between all particles (corresponding 
to PSII + “unknown”) are slightly shorter (Spinach vs. published: 18.8 vs. 21.2 nm; Chlamyold 
and Chlamynew vs. published: 20.7 and 21.2 vs. 24.4 nm). 

In summary, this streamlined MemBrain v2 workflow achieved comparable results to 
previously published manual analysis of stacked thylakoids, but with greatly accelerated speed 
and throughput that opens the door to studies with more biological conditions and 
reproducibility. Below, we apply this pipeline to analyze the higher-order organization of 
additional types of membrane-bound particles – phycobilisomes and ribosomes. 

Test application: phycobilisome organization on thylakoid membranes  
Phycobilisomes are large light harvesting antennae, found in cyanobacteria and some 

species of eukaryotic algae, that capture light and transfer the excitation energy to thylakoid 
membrane-embedded photosystems. Phycobilisomes from different species were previously 
shown by cryo-ET to assemble into rows69,70, and the function of this higher-order organization 
in photosynthesis remains an open question. Previous studies of phycobilisome organization 
in cryo-ET relied heavily on manual annotations, making a large-scale analysis extremely time-
consuming71,72. By applying MemBrain v2 to a high-resolution cryo-ET dataset of red algae 
chloroplasts (EMD-3124471), we demonstrate how our approach can efficiently extract particle 
positions and spatial patterns of phycobilisome chains (Fig. 4).  

In a first processing step, MemBrain-seg consistently produced clearly separated, high-
precision segmentations of all thylakoid membranes (Fig. 4B). For further processing, we 
utilized the MemBrain lasso tool (Supp. Fig. S1B) to perform connected component analysis, 
allowing us to extract individual membrane instances and visualize them in Surforama60. This 
interactive visualization enabled efficient manual annotation of phycobilisome chain unit 
positions in six selected membrane instances (Fig. 4C). These manually determined positions 
served as GT data to train a MemBrain-pick model. Once trained, MemBrain-pick was applied 
to the remaining 23 membranes in the tomogram, successfully identifying phycobilisome 
positions across the entire tomogram. The predicted positions exhibited a clear periodic 
arrangement of phycobilisomes along the membranes (Fig. 4D). To quantify this spatial 
organization, we applied MemBrain-stats to compute the Ripley’s O function, which confirmed 
the regular spacing of phycobilisomes (~35 nm) (Fig. 4E). This periodicity is consistent with 
previous manually determined values (34.5 nm71), demonstrating the reliability of our 
automated approach. This end-to-end MemBrain analysis from raw tomograms to extracted 
phycobilisome chains can rapidly extract spatial information from large datasets to investigate 
native membrane organization in many cells and experimental conditions. 
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Figure 4. MemBrain v2 end-to-end workflow detects periodic phycobilisome organization. A: Raw 
tomogram slice of EMD-31244. B: Out-of-the-box MemBrain-seg segmentation (light blue). C: A single 
membrane instance can be visualized in Surforama and manually annotated with GT phycobilisome positions 
(magenta). D: MemBrain-pick localizes particles (trained with data from C) on all membranes in the 
tomogram. E: MemBrain-stats computes Ripley’s O statistic using the positions from D with a bin size of 5nm. 
The distance between peaks (35 nm) was measured to estimate chain unit spacings. 

 
Test application: poly-ribosome chain organization on nuclear envelope 

In another end-to-end application of MemBrain v2, we analyzed ribosome distributions on 
the outer membrane of the nuclear envelope, aiming to identify patterns in their localization 
and orientation. The EMPIAR-1183073 dataset contains over 1800 tomograms capturing 
diverse organelles in Chlamydomonas reinhardtii. When analyzing tomograms containing the 
nuclear periphery, MemBrain-seg accurately segmented the nuclear envelope as well as all 
cytoplasmic membrane structures around it (Fig. 5A). Using the MemBrain lasso tool, we 
isolated the nuclear envelope membranes of interest and visualized them in Surforama, 
enabling efficient annotation of GT ribosome positions (Fig. 5B).  

To automate ribosome localization, we manually annotated 13 membranes, trained a 
MemBrain-pick model, and predicted ribosome positions across the remaining 79 membranes, 
detecting a total of 4515 positions (example predictions in Fig. 5C). To validate these 
predictions, we performed subtomogram averaging (STA) in STOPGAP51, which resulted in a 
map clearly depicting a membrane-bound ribosome (Fig. 5D), including density for the 
transmembrane TRAP complex74. The average also contains fuzzy peripheral densities likely 
corresponding to neighboring ribosomes, which can also be inferred by inspecting the 
distribution of the picks (Fig. 5E). In addition to structural validation, STA provided protein 
orientation estimates, enabling further spatial analysis with MemBrain-stats. 

To further quantify ribosome organization, we analyzed nearest-neighbor orientation 
patterns. The distribution of minimum angles among the three geodesic nearest neighbors 
revealed a shift towards smaller angles compared to a uniformly random orientation model 
(Fig. 5E left). This result aligns with previous studies reporting ribosome clustering in chains 
along the nuclear envelope3,75,76. Leveraging MemBrain-stats output, we extracted poly-
ribosome chains by integrating constraints on nearest-neighbor angles, distances, and chain 
continuity (Fig. 5E right). This end-to-end MemBrain analysis from raw tomograms to extracted 
poly-ribosome chains can facilitate the study of ribosome biology in diverse organisms. 
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Figure 5. MemBrain v2 end-to-end workflow analyzes nearest neighbor orientations and finds poly-
ribosome chains on outer membranes of the nuclear envelope. A: MemBrain-seg prediction (light blue) 
on an entire tomogram from EMPIAR-11830 depicting a nuclear envelope and surrounding membranes. The 
nuclear envelope is isolated using the MemBrain lasso tool in Napari (green: selected volume). B: Top: 
Visualization of the extracted membrane from A in Surforama. Bottom: GT ribosome positions (magenta) are 
manually annotated to train MemBrain-pick. C: MemBrain-pick predictions (magenta) on another nuclear 
envelope from the same dataset after training with data from B. D: Subtomogram averaging results. Left: 
subtomogram average depicting a membrane-bound ribosome (22.7 Å resolution from all 4515 particles 
identified by MemBrain-pick), with a clipped view highlighting the transmembrane TRAP complex. Right: .star 
file as output giving protein orientations in addition to positions. E: Left: Histogram of three-nearest-neighbor 
(3-NN) minimum angles: For each position, we plotted the minimum angle between the corresponding 
orientation and the three nearest neighbors’ orientations. The theoretical density depicts the behavior for 
uniformly random angles between 0 and 180 degrees. Right: Extracted poly-ribosome chains (different colors) 
using a combination of in-plane angles and distances between nearest neighbors. Grey ribosomes: not part 
of a chain of length at least 3. 
 
 
Discussion  

The analysis of membranes by cryo-ET is beneficial for many biological studies, as 
membranes and their associated proteins play central roles in cellular processes. However, 
the 3D nature of cryo-ET data introduces significant challenges. Manual segmentation of 
membranes and annotation of their embedded proteins is tedious and time-consuming, 
particularly because 3D structures require inspection from many orientations and on different 
planes. Additionally, a fundamental challenge in cryo-ET remains the lack of publicly available 
GT annotations, limiting the development of robust machine learning models.  

MemBrain v2 addresses these challenges by providing an integrated solution for robust 
membrane segmentation, membrane-associated particle localization, and quantitative spatial 
analysis. The MemBrain-seg module generates generalizable membrane segmentations 
using a diverse, well-annotated training dataset and specialized augmentations. By making 
this dataset publicly available, we provide a foundation for further development and 
benchmarking of different segmentation methods. To facilitate benchmarking, we include the 
Surface-Dice metric, which is more sensitive to topological continuity than the traditional Dice 
score. The MemBrain-pick module offers interactive and data-efficient model training for the 
localization of membrane-bound particles, significantly reducing the effort required for large-
scale analysis. Finally, MemBrain-stats provides quantitative tools for analyzing membrane-
bound particle distributions, enabling users to extract meaningful biological insights from native 
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membranes. Together, these components form an end-to-end pipeline for membrane analysis 
in cryo-ET.  

Despite these advancements, certain limitations remain. While MemBrain-seg robustly 
captures membrane morphology, the resulting segmentation thickness does not necessarily 
reflect the true biological membrane thickness. Variations in segmentation thickness may stem 
from annotator-dependent biases, such as differing brush sizes (see Supp. Fig. S7). Another 
challenge is to maintain MemBrain-pick’s performance when trying to localize diverse 
membrane protein complexes, as the heterogeneity of targets can complicate universal model 
performance. Future improvements could involve integrating MemBrain v2 with 
complementary tools like TomoTwin56, to improve versatility across various membrane and 
protein complex types. For MemBrain-pick, this could lead to more expressive network input 
features, while MemBrain-seg could also potentially benefit in that this would enable it to 
distinguish different membrane types in a self-supervised way. Another challenge stems from 
the inherent constraints of cryo-ET data – feature visibility depends on contrast and noise 
levels of the tomograms, meaning faint or occluded proteins may be overlooked or poorly 
annotated. Additionally, strong membrane density signals may dominate and obscure weaker 
signals from small integral membrane proteins, complicating their accurate detection. These 
challenges point toward opportunities for future innovation.  

MemBrain v2 is built with accessibility and practicality in mind. Its command-line interface 
for MemBrain-seg simplifies segmentation workflows, making advanced membrane analysis 
accessible even to users without programming expertise. The seamless integration of 
MemBrain-pick with Napari plugins fosters an intuitive and interactive experience for protein 
localization, enabling rapid model refinement and validation. Importantly, MemBrain-seg has 
already gained significant traction within the cryo-ET community. Many groups have adopted 
it for their membrane segmentation tasks12,15,21,22,31,33,77–91, and it has been applied by the Chan 
Zuckerberg Imaging Institute to their extensive public cryo-ET dataset65. By making all 
components and datasets open source, MemBrain v2 aims to support collaboration and 
transparency within the scientific community, offering a versatile and reliable tool for advancing 
cryo-ET research.  

 
Data Availability  

All tomograms used in this study are publicly available. The latest version of our MemBrain-
seg training dataset is accessible via Zenodo: https://zenodo.org/records/15089686  

For MemBrain-seg demonstrations, we used tomograms from: CZII-DS-10007, CZII-DS-
10224, CZII-DS-10442, CZII-DS-10443, CZII-DS-10444, EMD-3977, EMD-4869, EMD-12329, 
EMD-12727, EMD-12749, EMD-15407, EMD-16084, EMD-18306, EMD-18748, EMD-30364, 
EMD-35019, EMD-43050, EMD-44176, EMD-50605, EMPIAR-10988, EMPIAR-11058, 
EMPIAR-11370, EMPIAR-11830, and EMPIAR-12612. 

For MemBrain-pick training and evaluation, we used tomograms from EMPIAR-12612, 
EMD-10780-10783, EMPIAR-11830, and EMD-10409. To showcase the entire MemBrain v2 
workflow, we utilized data from EMPIAR-11830 and EMD-31244.  

The GT annotations used for performing the efficiency analysis in MemBrain-pick are 
available via Zenodo: https://zenodo.org/records/15090084 

The Chlamydomonas nuclear envelope-bound ribosome subtomogram average will be 
deposited under EMD-XXXXX. 

Code Availability  
The full MemBrain v2 program is pip-installable via PyPI (pip install membrain) and via 
https://github.com/CellArchLab/MemBrain-v2.Individual modules modules can be accessed 
via the following repositories, each of which contains detailed documentation: 

• https://github.com/teamtomo/membrain-seg   
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• https://github.com/CellArchLab/membrain-pick   
• https://github.com/CellArchLab/membrain-stats   
• https://github.com/CellArchLab/napari-lasso-3d   
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Methods  
MemBrain-seg  

MemBrain-seg is a 3D U-Net-based tool designed for generalizable membrane 
segmentation in cryo-ET data. It incorporates an iteratively generated training set, specialized 
augmentations, and a Surface-Dice loss function to enhance segmentation accuracy.  

U-Net  
Architecture  

MemBrain-seg’s U-Net architecture is based on design choices from nnU-Net92, a leading 
biomedical image segmentation framework, and is implemented using MONAI93. It consists of 
five downsampling and upsampling blocks, with deep supervision94 to improve gradient flow 
and convergence.  

Loss function  
We use a composite loss function combining binary cross-entropy, Dice loss, and Surface-

Dice loss (see Section “Surface-Dice”). To handle uncertain image regions, an ignore feature 
excludes certain voxels from loss calculations (see Section “Iterative Dataset Generation” and 
Supp. Fig. S3).  

Training setup  
All models were trained for 1000 epochs using stochastic gradient descent, a batch size of 

2, and 1603-shaped training patches on RTX 4090 GPUs. We apply a polynomial learning rate 
scheduler decreasing from 0.01 to 0.0. Before training, patch intensities are normalized per-
patch by subtracting the mean and dividing by the standard deviation.  

Inference  
For inference, tomograms are processed using a sliding window approach with Gaussian-

weighted patch aggregation of scores. Each tomogram is divided into overlapping 1603 

patches, and we apply 8-fold test-time augmentation by flipping along all axis combinations, 
averaging predictions before thresholding. MemBrain-seg also supports internal rescaling to a 
specified pixel size (default 10Å). In this mode, patches are extracted at the original resolution, 
rescaled before passing through the network, then restored to the original scale before 
aggregation. As rescaling occurs entirely on GPU, this approach significantly speeds up 
processing compared to full tomogram rescaling.  

Data augmentations  
Data augmentation is critical for improving generalization by simulating the diverse 

appearances of tomograms and membranes95. Below, we describe the geometric, intensity-
based, and Fourier-based augmentations applied during training.  
 
Conventional data augmentations  

We apply a mix of classically used geometric and intensity transformations. These 
augmentations, applied randomly and on-the-fly, introduce strong variation in training samples, 
enhancing the network’s adaptability (see Supp. Fig. S8A).  

Geometric Transforms: These transformations aim to show the image from different viewing 
points, and include rotation at arbitrary angles, zooming within a range of 0.7 to 1.4, and both 
shuffling and flipping of axes.  

Intensity Transforms. Applied to alter image characteristics, these encompass median 
filtering, Gaussian blurring, Gaussian noise addition, brightness and contrast adjustments, 
low-resolution simulation, random erasing, additive brightness gradient, local Gamma 
transform, and sharpening.  
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Fourier Amplitude Augmentation  
Fourier Amplitude Spectrum Matching, as introduced in DeePiCt44, adjusts tomogram styles 

by matching their frequency-domain amplitudes. It does so by rotationally averaging Fourier 
intensities per frequency band, generating a 1D sequence for both input and target 
tomograms. The ratio of these sequences is used to create a 3D radial filter, which is then 
multiplied in Fourier space to transform the input tomogram.  

In MemBrain-seg, however, our goal is to improve generalization without requiring explicit 
style normalization before inference. Previous studies have shown that training with style 
augmentations is more effective for generalization than pre-prediction normalization96,97 . We 
therefore introduce Fourier Amplitude augmentation, which randomly modifies tomogram 
styles during training. Rather than deriving transformations from a limited set of reference 
tomograms, we generate random normalization sequences to simulate diverse styles 
dynamically.  

To achieve this, we create a 1D sequence x of length 80 (i.e., half the patch size) using a 
random walk:  

𝑥! 	= 	1.0 
𝑥"#$ 	= 	 |𝑥" 	+ 	𝛥"| 
	𝛥" 	∼ 	𝑁(0, 𝜎%) 

where σ = 0.2, | . | is the absolute value, and 𝑁 is a normal distribution. This sequence is 
expanded into a 3D radial kernel and multiplied with the Fourier transform of the input volume, 
introducing random style variations. The effects on image appearance are illustrated in 
Supp. Fig. S8B: Up-scaling of higher frequencies results in noisier images with weaker 
membrane contrast (2nd row), whereas down-scaling of high frequencies enhances coarse 
structures, making membranes more prominent (3rd row).  

Missing Wedge augmentation  
Segmenting membranes in regions affected by the missing wedge presents a significant 

challenge due to the anisotropic distortions it introduces. To mitigate this, we adopt an 
approach inspired by IsoNet40, in which we rotate input subvolumes randomly before applying 
an artificial missing wedge by masking Fourier coefficients in a wedge-like shape. This 
controlled simulation (Supp. Fig. S8C) replicates the characteristic loss of densities caused by 
incomplete angular sampling in cryo-ET. In experimental data, the information lost due to the 
missing wedge is not directly visible, yet in some cases, the image context provides hints about 
where membranes should be. By artificially replicating these effects, we train the network to 
infer missing structures based on contextual information. Training pairs are generated by 
applying this transformation to subvolumes while preserving their unaltered ground truth (GT) 
labels, pushing the model to learn to accurately segment membranes even in wedge-impacted 
regions.  

Surface-Dice  
Surface-Dice extends Centerline-Dice98 to 3D membrane segmentation, serving as both a 

metric for evaluating binarized membrane segmentation outputs and a loss function during 
network training. By leveraging a differentiable skeletonization approach, Surface-Dice better 
reflects the continuity and consistency of membrane structures in 3D than normal Dice scores.  

Computation.  
Similar to Centerline-Dice, Surface-Dice relies on skeletonizations of both the predicted 

segmentation (Mpred) and the ground truth (MGT), denoted as Spred and SGT, respectively. 
Skeletonization in Surface-Dice reduces the membrane segmentation to a 1-voxel-thick 
surface, forming a 2D manifold in 3D space (illustrated in Supp. Fig. S6A,B). To compute 
Surface-Dice (Dicesurf), we define Surface-precision (Precsurf) and Surface-recall (Recsurf) as 
follows:  

		𝑃𝑟𝑒𝑐&'()(𝑀*(+, , 𝑀-.) 	= 	 |𝑆*(+, 	∩ 	𝑀-.|	/	|𝑆*(+,| 
𝑅𝑒𝑐&'()(𝑀*(+, , 𝑀-.)) 	= 	 |𝑆-. 	∩ 	𝑀*(+,|	/	|𝑆-.| 
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The |·|-operator sums up all positive voxels in the respective set. Surface-Dice (Dicesurf) is 

then computed as the harmonic mean of these two terms:  

𝐷𝑖𝑐𝑒&'()(𝑀*(+, , 𝑀-.) 	= 	2	 ×	
𝑃𝑟𝑒𝑐&'()(𝑀*(+, , 𝑀-.) 	× 	𝑅𝑒𝑐&'()(𝑀*(+, , 𝑀-.)
𝑃𝑟𝑒𝑐&'()(𝑀*(+, , 𝑀-.) 	+ 	𝑅𝑒𝑐&'()(𝑀*(+, , 𝑀-.)

 

 
Surface-Dice as a Loss Function.  

To use Surface-Dice as a loss function during training, we avoid thresholding network 
outputs, as this operation is non-differentiable. Instead, we employ a differentiable 
skeletonization approach, similar to the method used in Centerline-Dice. This process involves 
iterative membrane erosion to progressively thin the segmentation. At each iteration, an 
additional erosion and dilation step is applied, and differences between the segmentation 
before and after these operations are evaluated. The presence of differences indicates that 
erosion has removed portions of the membrane, meaning the current iteration already 
represents a thin surface in those regions. Both erosion and dilation are implemented via min- 
and max-pooling, ensuring that all operations remain differentiable and efficient. For further 
details, please refer to the Centerline-Dice publication98.  

Iterative Dataset Generation  
To efficiently build a well-annotated membrane segmentation dataset, we employed an 

iterative approach inspired by active learning principles99. This strategy minimized manual 
annotation efforts by focusing on areas where the network struggled with segmentation. The 
schematic correction workflow and different iterations are visualized in Fig. 2B and Supp. Fig. 
S3. During the annotation process, we pay particular attention to the quality of the training 
dataset, i.e., the accuracy of the segmentation. The ignore label is particularly helpful here, as 
it prevents the model from learning uncertain regions simply as non-membrane background. 
This annotation quality is a key factor for the generalization capability of our network. Detailed 
instructions on how users can annotate training patches to customize the model can be found 
in our online documentation: 
https://github.com/teamtomo/membrain-seg/blob/main/docs/Usage/Annotations.md   

Initial Dataset and First Iteration  
We initiated our project with membrane segmentation patches from the Spinacia oleracea 

dataset, initially annotated using TomoSegMemTV42. Using MITK Workbench100, we manually 
refined these patches, each sized 1603 voxels, assigning to every voxel either the background, 
membrane, or ignore classes – the latter not being evaluated by the loss function during 
training as it marks uncertain membrane regions, where exact delineation of membranes was 
challenging. The process of correcting predicted membrane segmentations is depicted in 
Supp. Fig. S3B, where we remove false positive voxels from the segmentation, add falsely 
negative voxels to it, and assign the ignore class in uncertain regions. Using these corrected 
annotations, we trained an initial U-Net43,92 model for membrane segmentation. While this 
model outperformed TomoSegMemTV, its segmentations remained suboptimal. We therefore 
conducted a second round of annotations, targeting patches where the model’s predictions 
were weak. This refinement process resulted in 69 accurately annotated spinach chloroplast 
patches (Supp. Table 1, column ”Spinach”; Supp. Fig. S3B, ”Round 1”).  

Expansion to Further Datasets  
To improve generalization across different imaging setups, we extended our approach to 

Chlamydomonas reinhardtii tomograms from EMPIAR-1183073. Due to differences in imaging 
conditions, initial segmentations performed worse than in the spinach dataset. By iteratively 
re-annotating 33 patches (covering thylakoid membranes, mitochondria, and the Golgi 
apparatus), we aimed to improve performance on this dataset (Supp. Table 1, column 
”Chlamy”; Supp. Fig. S3B, ”Round 2”). To further expand the model’s applicability beyond our 
own data, we collaborated with other research groups who tested MemBrain-seg on their own 
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datasets and provided re-annotated patches from regions where MemBrain-seg struggled. 
After careful quality assessment, these contributed 27 additional patches, significantly 
increasing dataset diversity (Supp. Table 1, column ”Community”; Supp. Fig. S3B, ”Round 3”). 
This ongoing collaboration continues to improve MemBrain-seg’s performance across a wide 
range of tomograms. Instructions on how to annotate and share patches can be found on the 
MemBrain-seg Github repository. 

 
Adding Publicly Available Sources  

We further leveraged the few existing publicly available segmentation sources to improve 
our model even further. To achieve this, we generated 40 membrane patches using the open-
source tomography simulators PolNet66 and CryoTomoSim39 (20 patches each; Supp. Table 
1, column ”Synthetic”; Supp. Fig. S3B, ”Round 4”). Additionally, we integrated an externally 
annotated dataset by extracting 15 reliable segmentation patches from the publicly available 
DeePiCt dataset44 (EMPIAR-10988). These regions were selected from areas where 
MemBrain-seg initially struggled, enhancing dataset diversity (Supp. Table 1, column 
”DeePiCt”; Supp. Fig. S3B, ”Round 5”).  

Skeletonization  
MemBrain-seg provides a functionality to convert binary segmentations into 1-voxel thick 

membrane sheets, which is essential for several downstream applications and the 
computation of Surface-Dice. We solve this task similarly to TomoSegMemTV42: First, we 
compute a distance transform (DT), converting the segmentation into a distance map relative 
to membrane boundaries. The goal is to identify the center sheet, which corresponds to the 
regions with the highest distance values. To extract this center sheet, we approximate 
membrane normal vectors by calculating the Hessian matrix of the distance transform and 
extracting its eigenvectors at each voxel p. The eigenvector n associated with the largest 
intensity curvature provides the direction pointing outward from the membrane. We then apply 
non-maximum suppression (NMS) along these normal vectors: A voxel is retained if it has the 
highest DT value along its normal vector; otherwise, it is suppressed:  

𝑁𝑀𝑆	 = 	{ 
1, if 𝐷𝑇(𝑝) 	≥ 	𝐷𝑇(𝑝	 + 	𝑑	 ∗ 	𝑛)								∀𝑑	 ∈ 	 [−1, 1] 

0, otherwise 

This process yields a 1-voxel-thick sheet, representing the center sheet of the membrane 
segmentation.  

Model Fine-tuning  
MemBrain-seg’s segmentation performance can be affected by batch shifts, leading to 

suboptimal results when tomogram or membrane appearances deviate significantly from the 
training domain. To mitigate this, we implemented a fine-tuning strategy that allows users to 
quickly adapt the model to their specific datasets. Fine-tuning requires a small number of 
annotated patches (typically 10–20, each 1603 voxels at 10Å pixel size) and follows a transfer 
learning approach101, where pretrained model weights serve as initialization. To prevent 
overfitting and reduce computational costs, we limit training to 100 epochs (instead of 1000) 
and lower the learning rate to 10!"# from 10!$. An early stopping criterion halts training if 
validation performance deviates too far from the original model’s performance, ensuring 
stability. To enable this, the original, full validation dataset serves also as validation dataset in 
this task.  

For fine-tuning, incorporating the Surface-Dice loss can be beneficial, as it disregards 
variations in annotation thickness (e.g., Supp. Fig. S7), preventing premature stopping due to 
segmentation thickness differences. This strategy enables MemBrain-seg to efficiently adapt 
to new datasets, enhancing performance across diverse tomographic conditions. The workflow 
is illustrated in Supp. Fig. S9.  
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MemBrain-seg usability  
MemBrain-seg is designed to be as easy to use as possible. The default way of using it is 

by a command line interface. Via its API, membrain-seg is also easy to integrate into other 
software packages and existing pipelines, allowing subsequent analysis of membrane 
segmentations. Additionally, MemBrain-seg is already integrated into other packages with a 
graphical user interface, like ColabSeg102 and Scipion103. 

MemBrain-pick  
MemBrain-pick enables the automated localization of membrane-associated proteins in 

cryo-electron tomograms. Unlike other deep learning approaches, it operates directly on 
membrane surfaces rather than voxel-based representations, allowing for a more specialized 
and focused detection of membrane-bound proteins.  

Workflow  
The MemBrain-pick workflow consists of three key steps: data preparation, model training, 

and prediction. Data preparation consists of extracting relevant membrane areas from 
MemBrain-seg segmentations, and conversion to mesh representations. The model is then 
trained with membrane meshes as input, where we project tomographic densities onto the 
mesh triangles (see Fig. 3, Supp. Fig. S10). We train the DiffusionNet-model67 to predict a 
membrane particle distance map. During inference, we extract particle positions using Mean 
Shift clustering104.  

Data Preparation  
Mesh generation and projection  

To represent membranes as analyzable surfaces, we first extract membrane 
segmentations from MemBrain-seg (e.g. crop using our Lasso tool, see Section “Napari 
Tools”) and convert them into triangular mesh representations. This is achieved using the 
Marching Cubes algorithm105. To ensure a uniform mesh resolution, we resample triangle sizes 
through Voronoi clustering106, which redistributes vertices to achieve evenly sized barycentric 
areas per vertex. Once the mesh is generated, we leverage its per-vertex normal vectors to 
extract relevant tomographic information. For each vertex, we sample intensity values along 
its normal vector in both directions, generating a feature vector of N sampled density values 
per vertex.  

Training data generation  
MemBrain-pick requires GT annotations for training. To facilitate accurate annotation, 

MemBrain-pick is compatible with Surforama60, a Napari-based64 annotation tool that operates 
similarly to MemBrain-pick by displaying tomographic densities projected onto a membrane 
surface. Using Surforama, users can efficiently annotate protein center positions directly on 
membrane meshes. These annotations are exported as STAR files107, ensuring seamless 
integration with MemBrain-pick’s training pipeline, as well as other processing software.  

Surface partitioning  
To optimize model efficiency and prevent overfitting to global membrane geometries, we 

partition each membrane into smaller overlapping surface crops before feeding them into 
MemBrain-pick. Each partition consists of 2,000 triangles, selected by initializing at a random 
seed triangle and iteratively expanding to include the 2,000 nearest neighbors based on 
geodesic distance. To ensure comprehensive coverage, partitions are generated with 
sufficient overlap so that each mesh vertex has a neighboring seed within close proximity. This 
procedure maintains enough in-plane context per-patch for accurate protein localization while 
reducing computational complexity and avoiding learning global geometries.  
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Training  
Training objective from GT  

Rather than directly predicting protein center locations, MemBrain-pick is trained to 
estimate a continuous distance field relative to the nearest GT protein position. For each mesh 
vertex, we compute the Euclidean distance to its closest annotated protein center, generating 
a smooth distance map that serves as the training target. The network is optimized using a 
Mean Squared Error (MSE) loss, minimizing the discrepancy between predicted and GT 
distance values.  

Data Augmentations  
To enhance generalization and prevent overfitting, we developed a suite of point cloud 

augmentations to be applied during training. These augmentations introduce controlled 
variations in spatial and feature domains, mimicking fluctuations in tomographic appearance: 

 
● Spatial Gaussian Smoothing: Smooths point cloud features by computing a weighted 

average of neighboring points, with Gaussian weights based on spatial distance and a 
randomly drawn sigma.  

● Feature Gaussian Smoothing: Applies a Gaussian filter along the normal vector 
direction to reduce noise in per-vertex features.  

● Feature Dropout: Randomly sets a fraction of features to zero.  
● Feature Noise: Adds Gaussian noise to each feature to simulate signal variability in 

tomographic data.  
● Feature Shift: Offsets feature values by adding a random constant, introducing 

brightness shifts.  
● Feature Scale: Scales feature intensities by a random factor to account for contrast 

variations.  
● Random Erasing: Selects small patches in the sample and zeroes out all features 

within them. 
● Random Brightness Gradient: Scales feature intensities proportionally to the dis tance 

from a randomly chosen point within or near the sample.  
● Random Brightness Gamma: Applies a gamma correction, where the gamma value is 

determined based on distance from a randomly sampled point.  
 
Effects of combinations of these augmentations during training are visualized in Supp. Fig. 
S16.  

Network Architecture  
We use DiffusionNet67, a deep learning framework designed for learning on mesh surfaces. 

DiffusionNet propagates per-vertex features using a learned diffusion process, incorporating 
both geometric and contextual information. We apply it to membrane meshes, where input 
features are derived from tomographic intensity projections, and training targets are distance 
maps representing protein localization. To enhance performance, we integrate a learnable 1D 
convolutional layer that processes features along the membrane normal before diffusion. This 
is inspired by the concept of separable convolution108. Additionally, we stack multiple 
DiffusionNet blocks to capture both local curvature and broader membrane context.  

Inference  
Merging Overlapping Partitions  

Each partition is processed independently, producing per-vertex protein distance maps. To 
ensure seamless predictions, we assign each vertex a Gaussian-decaying weight from the 
partition seed and merge overlapping predictions using a weighted average, similar to a sliding 
window approach. This reduces edge artifacts and ensures continuity across partitions.  
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Membrane Normal Distance Shifts 
To compensate for segmentation inaccuracies, we perform inference multiple times with 

shifted feature extraction windows. Instead of using a single fixed range along the membrane 
normal, we iteratively shift the sampled density range in small steps. The final prediction is 
obtained by averaging across shifts, improving robustness to variations in membrane 
thickness and segmentation offsets.  

 
Mean Shift Clustering  

After generating protein center distance maps with DiffusionNet, we apply Mean Shift 
clustering104,109 to extract protein center locations. First, we threshold predicted distances to 
remove clear background regions. For the remaining vertices, we refine cluster centers using 
a score-guided adaptation of Mean Shift, similar to [63], where each vertex p updates its 
position based on a weighted average of its neighbors:  

𝑚(𝑝) 	= 	
∑0	∈	3! 𝑘(𝑞 − 𝑝) 	∗ 	(1 −	𝑠0) 	∗ 	𝑞

∑0	∈	3! 𝑘(𝑞 − 𝑝) 	∗ 	(1 −	𝑠0)
Here, Np includes all points within a radius b around p, excluding p itself, and sq represents 

the normalized predicted distance score. The bandwidth b, defining the neighborhood size, is 
set to match the maximum allowed distance score in our training data. We use Euclidean 
distance as the kernel function k, and the additional weighting by predicted scores to improve 
convergence towards high-confidence protein centers.  

To accelerate clustering, we use a PyTorch-based GPU implementation104, significantly 
reducing inference time. Once mean shift has converged, we apply density-based spatial 
clustering (DBSCAN110) to merge redundant cluster centers and eliminate outliers, refining the 
final protein localizations.  

MemBrain-stats  
Particle Concentration  

Particle concentration is computed as the number of detected particles divided by the total 
surface area of the membrane mesh. For analyses focused on a single membrane side, we 
provide two approaches to ensure accurate estimation: either by dividing the total area by two, 
assuming particles appear only on one side and both sides are of roughly equal size (i.e. not 
much membrane curvature), or by isolating a single membrane side surface through edge 
exclusion (see Section “Edge Exclusion for Robust Analysis”), followed by connected 
component filtering.  

Geodesic Distance Calculation  
Geodesic nearest neighbors are computed using either an exact shortest-path algorithm 

for triangular meshes111 or an approximate method based on the heat diffusion equation112. 
The latter provides a computationally efficient alternative by leveraging the heat method to 
estimate geodesic distances. In practice, both approaches yield nearly identical results, with 
the heat method offering a significant speed advantage.  

Geodesic Nearest Neighbors  
To compute geodesic nearest neighbor distances, each detected protein center is first 

projected onto its nearest mesh vertex. Accurate distance estimation requires a sufficiently 
fine-grained mesh to minimize quantization errors. Once projected, the N nearest geodesic 
neighbors are determined for each protein center using one of the above methods.  
 
Ripley’s statistics  

To compute Ripley’s statistics, we follow the framework described in PyOrg63, adapting the 
formulation to 2D geodesic distances on membrane surfaces, which are modeled as 2D 
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manifolds in 3D space. For a set of membrane particle locations S and a set of triangles T 
forming the membrane mesh, we define:  

 

																																		𝐾(𝑟) 	= 	𝜋𝑟% 	 ∗ 	
∑*	∈	4 |𝑆	 ∩ 	𝐵((𝑝)|
∑*	∈	4 𝐴	(𝑇	 ∩	𝐵((𝑝))

 

𝐿(𝑟) 	= 	S
𝐾(𝑟)
𝜋

	− 	𝑟 

																										𝑂(𝑟) 	= 	
∑*	∈	4 |𝑆	 ∩ 	𝐵(,6((𝑝)|
∑*	∈	4 𝐴(𝑇	 ∩	𝐵(,6((𝑝))

 

 
where |.| denotes the number of particle in a given region, A(.) computes the area of 

triangles in a set, Br(p) is the geodesic ball of radius r around particle p, and B%&'%!"#$ %&$ '()$
*)+,)&%-$.%/*$0.+1/,$"2$)3')/,%/*$4.+5$.0,%1&$.$'+$.$6$7.8$ 

 
𝐵((𝑝) 	= 	 {𝑞	|	𝑑(𝑞, 𝑝) 	≤ 	𝑟} 

																			𝐵(,6((𝑝) 	= 	 {𝑞	|	𝑟	 ≤ 	𝑑(𝑞, 𝑝) 	≤ 	𝑟	 + 	𝛥𝑟}	 
 
where d(.,.) represents the geodesic distance between two points on the membrane 

surface.  
By restricting area computations to the triangular mesh T, we automatically normalize 

protein concentration based on the connected membrane surface rather than the entire 
tomographic volume. As in PyOrg, the functions K, L, and O are closely related: L stabilizes 
the variance of K, and O can be understood as the derivative of K, providing information on 
local protein clustering patterns.  

Edge Exclusion for Robust Analysis  
Particle localization can become unreliable near the boundaries of membrane 

segmentations due to the lack of in-plane context. Additionally, segmented membranes are 
often truncated at arbitrary heights, meaning that segmentation edges do not necessarily 
correspond to actual membrane boundaries. This can distort spatial metrics such as nearest 
neighbor distances. To mitigate these issues, we aim to automatically exclude edge regions 
from certain analyses.  

The marching cubes algorithm gives us triangular meshes depicting the segmentations’ 
hulls. Since membranes are thin sheets, their edges are represented by regions with high 
curvature. We detect these areas by computing the discrete mean curvature at each vertex, 
defined as the average angle between all neighboring triangles within a geodesic sphere of 
radius R. Membrane edge regions are then approximated by selecting the top 5% of vertices 
with the highest curvature values. Finally, all points within a distance d from these edge 
vertices are excluded from the analysis to prevent artifacts in localization and spatial 
measurements. An example of the edge exclusion is visualized in Supp. Fig. S14I.  

In-plane Orientation Comparison  
To analyze the relative in-plane orientations of nearest-neighbor particles, we first compute 

geodesic nearest-neighbor pairs as described above. We assume that particle orientations are 
known, for instance, from subtomogram averaging, where each particle is aligned such that its 
z-axis is parallel to the local membrane normal.  

To express the particle’s orientation in the membrane plane, we construct a rotation matrix 
that aligns the standard unit vector (0, 0, 1)T with the membrane normal at the particle’s 
location. This rotation matrix transforms the basis vectors, mapping (0, 1, 0)T into the 
membrane plane, providing a reference direction for in-plane orientation.  
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For a pair of particles, we compare their in-plane orientations by computing the angle θ 
between their respective in-plane vectors:  

𝜃	 = 	𝑐𝑜𝑠7$ Z
𝑣$ 	 ∙ 	𝑣%

]|𝑣$|] 	∗ 	 ]|𝑣%|]
^

where v1 and v2 are the in-plane orientation vectors of the two particles, ∙ represents the dot 
product, and ]|. |] is the vector’s L2-norm. This provides a quantitative measure of orientation 
similarity within the membrane plane.  

Napari tools  
Compatibility with Surforama  

MemBrain-pick is fully compatible with Surforama, a Napari-based64 tool for annotating 
membrane proteins in cryo-ET. Similar to MemBrain-pick’s network input, Surforama projects 
tomographic densities onto the membrane mesh, allowing users to navigate along the 
membrane normal vector to visually inspect the in-plane densities of embedded particles. 
Surforama exports annotations in STAR format107, which also serves as the preferred input 
format for training MemBrain-pick. To ensure seamless integration, MemBrain-pick outputs 
are made compatible with Surforama by generating both STAR files and .h5 containers, which 
can be directly visualized in Surforama with a single MemBrain-pick command.  

Lasso functionality (Lasso, masking, connected components)  
We developed a MemBrain-pick Napari64 plugin to facilitate the transition from MemBrain-

seg outputs (full tomogram segmentations) to MemBrain-pick inputs (segmented single-
membrane instances). The plugin includes a lasso functionality, allowing users to interactively 
select and extract 3D regions of interest. Following selection, a connected component analysis 
is performed to isolate individual membrane segments, which can then be saved for further 
processing. Additionally, users can refine segmentations using standard Napari annotation 
tools, enabling cleaner and more precise membrane instance selection. For example use 
cases, see Supp. Fig. S1B-E.  

Applications  
MemBrain-seg experiments  

All membrane segmentations shown in Fig. 2, Supp. Fig. S2 were generated using 
MemBrain-seg’s membrain segment command using the MemBrain_seg_v10_alpha 
model. Visualizations were generated using ChimeraX113.  

MemBrain-seg Ablation Studies  
To assess the impact of different dataset components, we conducted a five-fold cross 

validation experiment (see Supp. Table 1). Each fold consists of patches from distinct 
tomograms, ensuring no tomogram appears in both the training and test sets at the same time. 
Given the limited size of our dataset, this cross-validation strategy provides a more robust 
evaluation of model performance.  

For each iteration, the model was trained using four folds and evaluated on the remaining 
one, cycling through all folds so that each served as the test set once. Performance was 
measured using the Surface-Dice and standard Dice score, offering a comprehensive 
assessment of segmentation quality. In the plots (Supp. Fig. S5), we report the mean and 
standard deviation across all folds, along with individual run results.  

Incremental Training  
To evaluate how increasing dataset diversity enhances MemBrain-seg’s performance and 

generalization, we incrementally trained models by sequentially incorporating the five rounds 
of annotations as detailed in Section “Iterative Dataset Generation”. Each step followed the 
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same cross-validation setup described above. The results of this incremental training 
approach are presented in Supp. Fig. S5A.  

Data Augmentations  
To analyze the effect of Fourier-based data augmentations, we trained models using the 

dataset from incremental training round 4, i.e., excluding the DeePiCt data. By training on this 
subset, we specifically examined the impact of augmentations on generalization to the 
DeePiCt test set, serving as an external generalization dataset. The results, are shown in 
Supp. Fig. S5B, highlighting the improved performance with augmentations.  

Fine-tuning with Surface-Dice  
To evaluate the performance of fine-tuning, we initialized models using those trained in 

incremental training round 4 and fine-tuned them with round 5 data (DeePiCt) while ensuring 
fold separation remained consistent. We tested two fine-tuning strategies: one using Dice and 
BCE loss for optimization and validation tracking, and another incorporating Surface-Dice into 
the loss function. The impact of these strategies is shown in Supp. Fig. S9B,C.  

TARDIS Comparison  
To compare MemBrain-seg with TARDIS, we downloaded the latest available TARDIS 

model for 3D membrane segmentation (download date: 6th February 2024). We applied the 
model to all our patches using the tardis_mem command to obtain binary segmentations for 
each patch. For the evaluation presented in Supp. Fig. S5A, we computed Dice and Surface-
Dice scores relative to our GT, excluding regions labeled as ”ignore”.  

It is important to note that our GT dataset was generated iteratively, incorporating 
incremental versions of MemBrain-seg. Although we manually corrected segmentation errors, 
the dataset still exhibits some bias toward MemBrain-seg predictions. As such, direct 
comparisons with other programs should be interpreted with caution.  

MemBrain-pick quantitative evaluation  
Evaluation Metric  

To make results comparable with metrics reported in MemBrain v161, we also adopted the 
same calculation of F19:-+.)&$'+$;10/'%4<$'()$=)5>.0%/?"%-@$").4+.50/-)8$A%B)/$0$.0,%1&$.2$
4+.$0$".),%-'),$"+&%'%+/2$C)$,)4%/)$ %'$0$ '.1)$"+&%'%B)$ !DEP ) if it is within distance r of a GT 
position, and a false positive (FPP ) otherwise. Similarly, for a GT position, a (TPR) is within 
distance r or a predicted position, and a (FNR) is not. With this, we can define recall, precision, 
and the F1-Score (harmonic mean of precision and recall):  

		𝑅	 = 	
𝑇𝑃8

𝑇𝑃8 	+ 	𝐹𝑁8
 

		𝑃	 = 	
𝑇𝑃9

𝑇𝑃9 	+ 	𝐹𝑃9
 

𝐹$ 	= 	
2	 ∗ 	𝑅	 ∗ 	𝑃
𝑅	 + 	𝑃

 
In our experiments, we chose the same radius also used in [63], which is 4.5 bin-4 voxels, 

corresponding to 4.5 * 14.08Å = 63.36Å.  

Spinach data  
The Spinach dataset used to evaluate MemBrain-pick’s performance is described in more 

detail in a separate publication19. To train the MemBrain-pick model used in Fig. 3C, we used 
the same dataset as in MemBrain v161, consisting of 45 membrane segmentations from nine 
tomograms of Spinacia oleracea thylakoid membranes. Previously existing GT annotations 
used in MemBrain v1 were manually refined to improve accuracy and to classify particles into 
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three categories: Photosystem II (PSII), Cytochrome b6f (b6f), and unidentifiable densities 
(UK).  

Following the protocol in MemBrain v1, we designated all ten membranes from two 
tomograms as the test dataset. For the incremental training performance plot in Fig. 3D, five 
membranes from the remaining 35 (fixed across runs) were assigned to the validation set. 
Training sets were constructed by randomly sampling N membranes from the remaining 30, 
where for each value of N, five independent subsets were drawn, and a separate model was 
trained for each subset. The same dataset splits were used for training both MemBrain-pick 
and MemBrain v1 models.  

Chlamy Generalization  
To evaluate the generalization performance of MemBrain-pick, we applied a model trained 

exclusively on Spinacia oleracea data to two independent Chlamydomonas reinhardtii 
datasets, acquired under different imaging conditions but both depicting thylakoid membranes 
with embedded PSII and b6f complexes (Fig. 3E, F). Details on the acquisition and setup of 
the Chlamyold

17
 and Chlamynew

73
 datasets can be found in their respective publications.  

For Chlamyold, we used 28 segmented membranes extracted from four tomograms, along 
with GT annotations from the original publication17, enabling the computation of F1-Scores (Fig. 
3E inset). The Spinach-trained MemBrain-pick model was applied directly to these membranes 
to predict particle positions.  

For Chlamynew, we first segmented all membranes in four tomograms by applying 
MemBrain-seg to Cryo-CARE-denoised36 tomograms. Using the MemBrain Napari plugin, we 
extracted 23 thylakoid membranes from these full-tomogram segmentations. To further 
enhance image interpretability, we applied IsoNet40 before predicting particle positions with the 
Spinach-trained MemBrain-pick model (Fig. 3F).  

Phycobilisomes  
For the analysis presented in Fig. 4, we used data from red algae71, which depicts 

phycobilisome-photosystem II supercomplexes (EMD-31244). Membrane segmentations 
were generated using MemBrain-seg (MemBrain_seg_v10_alpha model), followed by 
connected component splitting via the MemBrain Napari plugin, yielding 29 individual 
membrane segmentations. To provide GT annotations, we manually labeled phycobilisome 
positions on five membranes using Surforama and trained MemBrain-pick with its default 
parameters. The trained model was then applied to the remaining 24 membranes in the 
tomogram, enabling us to compute Ripley’s statistics on this dataset. For computing Ripley’s O 
statistic, we divided all distances into bins of size 5 nm. 

Ribosome Analysis in EMPIAR-11830  
MemBrain-pick prediction  

For the ribosome analysis shown in Fig. 5, we extracted particle positions from the 
Chlamydomonas reinhardtii dataset (EMPIAR-1183073), focusing on the outer membrane of 
the nuclear envelope and the endoplasmic reticulum. To scale up the analysis, MemBrain-seg 
was applied to 140 tomograms (MemBrain_seg_v10_alpha model), extracting the largest 
connected component from each segmentation. After removing segmentations containing 
membrane structures of other classes or excessive noise, 97 tomograms remained for further 
processing. Ribosome GT annotations were manually assigned to 13 membranes using 
Surforama, and MemBrain-pick was trained with its default parameters. The trained model was 
then used to predict ribosome positions across the remaining membranes, yielding 4515 
predicted positions. Both MemBrain-seg and MemBrain-pick were applied to Cryo-CARE-
denoised36 tomograms to enhance contrast and improve localization accuracy.  

Subtomogram Averaging  
The endoplasmic reticulum- and nuclear envelope-bound ribosomes from the MemBrain-

pick predictions were further processed in subtomogram averaging. Averaging was performed 
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in STOPGAP51. Bin4 3D CTF-corrected tomograms were generated as implemented in 
IMOD114, from which subtomograms for all ribosome positions were extracted with a box size 
of 80 pixels. Since all particles were already pre-aligned normal to the membrane from 
MemBrain-pick, initial alignment was performed using a so-called “cone-search” which 
corresponds to a global search around one axis (perpendicular to the membrane) while 
restricting the search for the other 2 angles. After initial alignment, all angular searches were 
iteratively reduced as resolution increased, reaching 22.7 Å resolution after 14 iterations. The 
Fourier Shell Correlation plot using a soft spherical mask is visualized in Supp. Fig. S17. 

Ribosome Chains  
For the analysis shown in Fig. 5E, we first computed the three nearest neighbors for each 

ribosome and determined the in-plane angles between them using MemBrain-stats, based on 
orientation estimates from subtomogram averaging. We plotted the smallest of these three 
angles for each ribosome position and compared it to a theoretical distribution. The theoretical 
distribution was generated by randomly sampling 100,000 triplets of uniformly distributed 
angles between 0 and 180 degrees and plotting their distribution. Next, we extracted ribosome 
chains by iteratively adding chain units based on three spatial constraints: (1) a center-to-
center distance below 40 nm, (2) an in-plane angle below 60 degrees, and (3) an angle 
between the current chain end-connection and a potential new end-connection below 80 
degrees. Using these criteria, we identified and reconstructed the ribosome chains shown in 
Fig. 5E. An example jupyter notebook with showing the extraction of these ribosome chains 
can be accessed on the MemBrain-stats Github repository. 

Note: we used three nearest neighbors instead of only the first nearest neighbor, as the 
closest ribosomes often did not appear to be part of the same chain (see Fig. 5E, right). This 
approach allowed for a more reliable identification of polysome-like arrangements.  

Ribosomes in EMD-10409  
To generate the visualization of ER-bound ribosomes in Supp. Fig. S11B, we processed 

the tomogram from EMD-104094 using MemBrain-seg and MemBrain-pick. All membranes in 
the tomogram were first segmented using MemBrain-seg (MemBrain_seg_v10_alpha 
model). The segmented membrane was then divided into six non-overlapping regions using 
the MemBrain Napari tool. Ribosome GT annotations were manually assigned to three of these 
regions in Surforama, which were subsequently used for training MemBrain-pick. The trained 
model was then applied to the remaining three regions to predict ribosome positions, as shown 
in Supp. Fig. S11B. For MemBrain-seg, the raw tomogram was used directly, whereas for 
MemBrain-pick, we applied IsoNet40 to enhance contrast and improve protein localization.  

Respirasomes  
To evaluate MemBrain-pick’s performance on mitochondrial membrane-associated 

complexes, we analyzed respirasomes in Chlamydomonas reinhardtii mitochondria in 
tomograms from EMPIAR-1183073. Membrane segmentations were generated from four 
tomograms using MemBrain-seg (MemBrain_seg_v10_alpha model), and 45 individual 
cristae segmentations were extracted using the MemBrain Napari plugin. To provide GT 
particle positions, we used previously generated template-matching-based coordinates20, 
projected them onto the membrane surfaces, and used these as training data for MemBrain-
pick. The model was trained on 35 membranes from three tomograms and then applied to the 
remaining ten membranes from the fourth tomogram (shown in Supp. Fig. S11A). All 
tomograms were denoised using Cryo-CARE36 prior to membrane segmentation and particle 
localization.  

MemBrain-pick comparisons to other methods  
In Fig. 3 and Supp. Fig. S13, we compare the performance of MemBrain-pick with other 

particle picking methods commonly used in cryo-ET. Below, we provide details on the 
applications of these methods using our Spinach dataset (see Section “Spinach data”).  
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Template Matching (PyTOM)  
Template matching (TM) was performed using pytom-match-pick 50 on the two test set 

Spinach tomograms. The single-particle cryo-EM map of spinach PSII (EMDB-6617) 115 was 
chosen as a template. The template was resampled to a pixel size of 14.08 Å to match the 
tomogram’s, and cropped to a box size of 32 pixels. Finally, the contrast was inverted to match 
that of the tomograms (protein density being black). A slab mask for the tomogram was created 
using Slabify116. The program pytom_match_template.py was run using a fan (per-tilt) 
wedge model, a particle diameter of 310 Å (corresponding to the longest axis of PSII), a high-
pass filter of 400 Å, C2 symmetry and random phase correction. The angular sampling was 
calculated automatically from the particle diameter and pixel size, corresponding to 4.89 
degrees along Z1 and X and 5.14 degrees along Z2 (Euler angles in PyTOM conventions). 

For extraction, the score maps were masked with individual single membrane masks of the 
test membranes. Automated extraction using pytom_extract_candidates.py with the -
-number-of-false-positives option failed to provide meaningful results, so a custom 
procedure was adopted. For each membrane, the threshold was calculated by finding the 99th 
percentile of the scores within the mask. This roughly corresponds to the noise threshold when 
sorting all the scores within the mask (see Supp. Fig. S13D). A script for this calculation 
(tm_find_thresh) is provided at https://github.com/CellArchLab/cryoet-scripts. Then 
pytom_extract_candidates.py was used to extract up to 100 candidates above this 
threshold per membrane, with an exclusion radius of 6 pixels (84.48 Å) around each peak, 
corresponding to the shortest axis of PSII. 

DeepFinder  
To train DeepFinder54, we performed a training-validation split at the tomogram level to 

prevent overlapping patches within a single tomogram. From the total nine tomograms, five 
tomograms were used for training, two for validation, and the remaining two were reserved for 
testing (same as in the split described in 6.5.4), resulting in a training set of 25 membranes 
and a validation set of eleven membranes.  

GT segmentation masks were generated using the spheres approach, where spheres of 
radius 4 voxels were placed at the 3D GT positions. DeepFinder was trained using a patch 
size of 40 voxels for 100 epochs with 20 steps per epoch and a step size of 9 voxels for random 
shifts. After training, segmentation masks were predicted for the test tomograms, and protein 
positions were extracted using DeepFinder’s clustering module with a bandwidth parameter of 
3 voxels.  

All mentioned hyperparameters were optimized through grid search using the validation 
tomograms. To associate predicted protein positions with membranes, we considered only 
positions within a maximum distance of 4 voxels from the membrane surface.  

 
CrYOLO  

For CrYOLO52, we used the same data split as for DeepFinder, ensuring non-overlapping 
training and validation patches per tomogram. GT positions were converted into CrYOLO-
compatible format by generating .cbox files containing bounding box coordinates. A box size 
of 10 voxels was chosen, with bounding boxes propagated across three slices above and 
below each GT position.  

Hyperparameter tuning was performed on the validation dataset to determine the optimal 
settings, resulting in the following parameters: threshold = 0.05, 
tracing_min_length = 3, distance = 6, min_num_boxes = 5, and 
positive_weight = 50.  

Membrane-position associations were performed following the same approach as for 
DeepFinder, considering only predicted positions within 4 voxels of the membrane surface.  
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MPicker / EPicker  
For the comparison with MPicker58 and EPicker117, we first flattened our membranes using 

the MPicker GUI. This involved manually selecting several points per membrane on the luminal 
side of the segmentation to define a reference surface on the correct membrane side. 
MPicker’s built-in functionality was then used to flatten the membrane, generating a 2D image 
stack representation. Next, we utilized MPicker’s ”Load raw coordinates” function to import a 
text file containing our GT positions for PSII and UK particles. MPicker transformed these 3D 
coordinates to their corresponding positions on the flattened membrane stack (see Supp. Fig. 
S13). Finally, for each membrane, we saved the flattened membrane stack as an .mrc file and 
the transformed GT positions as a .txt file.  

To train EPicker, we needed pairs of 2D images (.mrc files) and their corresponding 2D 
coordinates (.thi files). These were prepared by extracting the 2D slice from the flattened 
membrane array that contained the most protein center positions. Additionally, we included 
the coordinates from the adjacent slices in both directions along the z-axis, as the center slice 
still retained enough protein density to confirm the presence of these proteins.  

EPicker training was conducted using a learning rate of 0.0001, a batch size of 4, and 140 
epochs, executed via the script epicker_train.sh. We trained separate models for each 
of our four training folds, matching the same folds used in the MemBrain-pick and MemBrain 
v1 analyses. After training, we predicted positions on the validation membranes and optimized 
the parameters --thres (score thresholding) and --dist (minimum distance between 
detected particles) using the Mpicker epicker_batch.py script. These parameters were 
fine-tuned separately for each data fold.  

Once the optimal parameters were determined, we applied EPicker to our test set. MPicker 
then converted the predicted 2D coordinates back into 3D tomogram coordinates, enabling 
direct comparison with the GT positions. This allowed us to compute performance metrics and 
assess the accuracy of the MPicker-EPicker pipeline relative to our GT annotations.  
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Fold \ Dataset Spinach Chlamy Community Synthetic DeePiCt 
Fold 1 10 7 5 8 4 
Fold 2 12 6 6 8 4 
Fold 3 17 7 5 8 4 
Fold 4 19 7 5 8 0 
Fold 5 11 6 6 8 3 
Total 69 33 27 40 15 

 
Supplementary Table 1. Overview of data folds in ablation studies. Columns represent different datasets 
(Spinach, Chlamy, Community, Synthetic, DeePiCt), and rows indicate the number of tomogram patches 
allocated to each cross-validation fold. The “Total” row shows the cumulative number of patches per dataset.  
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Supplementary Figure S1. Napari plugins. A: MemBrain-seg can be used with a single command line 
membrain segment and outputs binary segmentations from a tomogram. B-D: MemBrain lasso plugin. B: 
Click and drag to draw a 3D lasso to select an area of interest. C: Either isolate or remove the selected area 
from the segmentation. D: Extract connected components of the remaining segmentation to find the 
membrane instances of interest, and save them out as .mrc files. E: Extracted membranes can be visualized 
in Surforama.   
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Supplementary Figure S2. More examples of MemBrain-seg segmentations from different datasets 
and data sources. For each EMPIAR or EMDB dataset shown, top row: slice through tomogram, bottom 
row: corresponding MemBrain-seg prediction (light blue).   
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Supplementary Figure S3. MemBrain-seg iterative annotation process. A: Correction of a single patch. An 
initial prediction of MemBrain-seg (left) is padded with ignore labels towards its edges to account for lack of 
context towards the edges. The correction (middle) includes added segmentations (blue), removal of false 
positive segments (red), and ignore labels in uncertain regions (green), where it’s not possible to perfectly 
delineate the membrane. The merged segmentation is visualized on the right. B: Example corrected patches 
from the datasets added in each iterative training round.   
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Supplementary Figure S4. MemBrain-seg segmentations on the CZII CryoET Data Portal. All tomograms 
on the portal include MemBrain-seg segmentations, which can be viewed directly in the browser via 
Neuroglancer118. Shown are example segmentations from datasets DS-10442, DS-10444, DS-10223, and DS-
10443.  
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Supplementary Figure S5. MemBrain-seg Evaluations. A: Evaluation of incremental training performance 
on different datasets with Dice and Surface-Dice scores, and comparison with TARDIS. MemBrain-seg models 
were trained with increasingly bigger training sets from rounds 1 to 5. B: Evaluation of the effect of our Fourier-
based augmentations on generalization performance. Both models for Fourier Amplitude and Missing Wedge 
augmentations were trained with data from incremental training round 4, and compared to plain incremental 
training with rounds 4 and 5. All means, standard deviations and single points correspond to runs of the 5- fold 
cross-validation per experiment. TARDIS was evaluated only once on the entire dataset. 
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Supplementary Figure S6. Surface-Dice. A: 2D slices of a corrected training patch. Comparison of full GT 
and prediction segmentation leads to false positive (FP) and false negative (FN) pixel for non-perfect 
agreement of segmentations, particularly visible at the segmentation edges. Bottom row: Comparing 
prediction skeletons with full GT segmentation (and vice versa) leads to bigger focus on membrane topology 
and gives false positives / negatives only in wrongly captured membranes. B: Same components as in A, but 
in 3D. C: Computation of Dice and Surface-Dice on a synthetic membrane patch: Both Dice score and 
Surface-Dice scores are computed by comparing a fixed predicted membrane segmentation with GT 
segmentations that is grown up to three times, leading to decreasing Dice scores, but consistent Surface-
Dice scores.   
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Supplementary Figure S7. Differences in annotation thicknesses. Example segmentations provided in 
the DeePiCt dataset. Even though membrane topology is correctly captured, segmentation thickness varies 
among the different membrane instances.   
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Supplementary Figure S8. MemBrain-seg augmentations. A: Combinations of classical geometric and 
intensity transforms used in MemBrain-seg. B: Fourier Amplitude Augmentation: A patch and its Fourier 
transform is shown for the original patch (row ”original”) and the same patch after drawing two random 1D plots 
(column ”Scaling Factors”) and applying the corresponding rotational kernel. C: Missing Wedge Augmentation: 
A patch and its Fourier transform is shown for the original patch (rows 1 and 2), and for the same patch after 
applying an artificial missing wedge with different strengths (rows 3&4 and 5&6).  
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Supplementary Figure S9. MemBrain-seg finetuning. A: Schematic of finetuning learning curves: Green 
training curve decreases while blue validation curve first decreases and then increases, indicating overfitting. 
We implement early stopping when validation performance deviates too far from original performance. B: 
Dice scores of incremental training rounds 4 and 5, compared to finetuning of a model trained using data from 
round 4 using only DeePiCt data. Finetuning models were trained with only Dice and BCE as loss function, 
as well as with added Surface-Dice. C: Surface-Dice of models described in B. D: Prediction on DeePiCt’s 
tomogram TS_0002 before finetuning (i.e. Round 4). E: Prediction on tomogram from D after finetuning with 
Surface-Dice.  
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Supplementary Figure S10. MemBrain-pick processing steps. A: Triangular mesh representation of a 
segmented membrane. B: Tomographic densities projected onto the mesh with GT particle positions 
(magenta). C: Training target: Geodesic distance map to the nearest particle center. D: MemBrain-pick 
architecture: Tomographic densities are projected onto the mesh from multiple distances from the membrane 
surface, creating N feature channels per vertex. The mesh is partitioned into overlapping, evenly sized regions 
to ensure shape consistency and prevent overfitting to global structures. Each partition is first processed by a 
1D convolution along the channel dimension, followed by four DiffusionNet blocks. Finally, an MLP predicts the 
geodesic distance map to the nearest particle center. E: Score-guided mean shift clustering refines particle 
localization. F: Example iterations of a clustering seed (black) converging toward a predicted particle center.  
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Supplementary Figure S11. MemBrain-pick additional applications. A: MemBrain-pick predictions of 
respirasome particles on  mitochondrial crista membranes in EMPIAR-1183020,73. B: MemBrain-pick 
predictions of ribosome positions on ER membranes in EMD-10409.   
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Supplementary Figure S12. Volumetric approaches vs. specialized approaches. Upper panel: 
Volumetric approaches give good prediction results when trained with fully annotated tomogram regions. 
Middle panel: Volumetric approaches struggle to give good predictions when trained with sparsely labeled 
regions due to high amounts of false negative GT positions. Bottom panel: MemBrain pick and other 
membrane-specialized approaches require annotations only on a membrane-level instead of full-region 
annotations.   
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Supplementary Figure S13. MemBrain-pick Compared Methods. A: Left: GUI window of MPicker 
visualizing a flattened training membrane from the Spinach dataset, together with our GT PSII positions 
mapped to the flattened 2D image. Right: Magnified view of GT positions on a Spinach test membrane, as 
well as positions predicted with EPicker. B: CrYOLO-predicted PSII positions on a spinach test tomogram, 
visualized in CrYOLO’s Napari plugin. C: DeepFinder predicted PSII segmentations on a Spinach test 
tomogram. D: PyTOM template matching (TM) results. Left: Example test membrane with detected positions 
(blue) mapped in. Right: sorted TM scores for this membrane with threshold used for extraction. 
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Supplementary Fig. S14. MemBrain-stats visualizations. A: Particle (magenta) concentrations for different 
membranes. Membrane surfaces are colored according to their concentrations. B: Particle concentrations with 
respect to distance to the membrane borders (cyan). Distances are divided in equally-spaced bins, and each 
bin is colored according to its concentration. Bin concentrations are computed from all membranes in one 
tomogram. C: Geodesic nearest neighbor distances: Membranes are colored according to their average nearest 
neighbor distances. Single particles are colored according to their respective nearest neighbor distances. White 
lines represent nearest neighbor connections. D: Membrane is divided into bins and colored according to 
average bin nearest neighbor distances, similar to B. E: Ripley’s K plot is visualized for a single starting protein. 
Membranes are colored according to their Ripley’s K value for the vertices’ geodesic distances to the starting 
proteins. F: Same as E for Ripley’s L. G: Same as E for Ripley’s O. H: Particle concentrations / Geodesic 
nearest neighbor distances per binned distances to the membrane edge, corresponding to the membranes 
shown in B and D. I: Segmentation edge exclusion: Particle positions close to the segmentation edge (cyan) 
can be excluded from some analyses.  
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Supplementary Figure S15. MemBrain-seg skeletonization. Top row: Example raw binary segmentation 
outputs from MemBrain-seg. Bottom row: The same segmentations skeletonized with the membrain 
skeletonize command.   

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2025. ; https://doi.org/10.1101/2024.01.05.574336doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574336
http://creativecommons.org/licenses/by/4.0/


 
 
Supplementary Figure S16. MemBrain-pick Augmentations. The top row shows a MemBrain-pick partition 
with one channel of original tomographic densities projected onto the surface. The rows below show examples 
of the same densities after random combinations of augmentations applied during training.  
  

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 22, 2025. ; https://doi.org/10.1101/2024.01.05.574336doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574336
http://creativecommons.org/licenses/by/4.0/


 
Supplementary Figure S17. Fourier Shell Correlation (FSC) for the nuclear envelope-bound ribosome 
average shown in Figure 5. The final resolution is 22.7 Å based on the 0.143 cutoff criterion after correcting 
for artificial correlations induced by the mask119. Shown are unmasked (green), soft-edged spherical mask 
(blue), corrected (black) and phase-randomized (red) FSC curves. The spike close to Nyquist frequency in the 
unmasked (green) curve is due to membrane signal extending all the way to the edge of the boxes since the 
half-map reconstructions not masked in STOPGAP. 
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