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ABSTRACT  

Education is often used as a surrogate measure of so called cognitive reserve (CR) benefiting 

cognitive functioning in later years. In line with Robertson’s theory we tested here a 

hypothesis that education acting on the noradrenergic system strengthen the right fronto-

parietal networks to facilitate CR and maintain cognition throughout the lifetime. We used 

machine learning and mediation analysis to model interactions between neurobiological 

features (genetic variants in noradrenergic signalling, structural and functional fronto-parietal 

connectivity) and education (proxy of CR) on cognitive outcomes (general cognitive ability 

score) in the UK Biobank cohort. We show that: (1) interactions between education and 

neurobiological variables better explain cognitive outcomes than either factor alone; (2) 

among the neurobiological features selected using variable importance testing, measures of 

right fronto-parietal connectivity are the strongest mediators of the effect of education on 

cognitive outcomes. Our findings offer novel insights into neurobiological basis of CR by 

pointing to between-networks connectivity, representing connections linking the default 

mode network with the right fronto-parietal network as the key facilitator of CR.  
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reserve, machine learning 

 

  

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2025. ; https://doi.org/10.1101/2023.08.31.555645doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

INTRODUCTION 

The global demographic shift over the last few decades leading to increased 

proportion of older adults resulted in steadfastly raising numbers of people at risk of cognitive 

decline and dementia. This has long-lasting impact not only on the individual quality of life 

but also major economic impact on the societies worldwide (Livingston et al., 2020). While 

the ageing process is inevitable and comes with expectation of worsening in cognitive 

functioning, the literature examining cognitive ageing points to a striking heterogeneity in the 

rate of age-related deterioration in cognitive decline. It means that some older adults retain 

high levels of mental capacity, some undergo a gradual drop in cognitive functioning, and 

finally some experience a sharp cognitive decline (dementia) hindering their ability to 

undertake basic daily activities and affecting quality of life (Rapp and Amaral 1992, Hayden et 

al., 2011, Norton et al., 2014; Cabeza et al., 2018; Stern et al., 2020). To keep up with the 

ageing population and to enable advances in medical/social care a better understanding of 

factors affecting these different cognitive outcomes is urgently needed (Prince et al., 2015; 

Livingstone et al., 2020). 

Cognitive ageing is a highly complex process caused by a convergence of multiple 

neurobiological and neurophysiological changes influenced by environmental and genetic 

factors as well as gene-environment interactions (e.g., Harris and Deary, 2011; Davies et al., 

2015; Lu et al., 2016; Tucker-Drob et al., 2014, Papenberg et al., 2016). Among environmental 

influences, sociodemographic and lifestyle factors seem to play a critical role (Stern et al., 

2020; Cabeza et al., 2018). It is well evidenced that the cognitive ageing is a result of structural 

and functional brain changes causing deterioration of cognitive performance. However, the 

interpretation of multifactorial influences on age-related changes in neural networks 

underlying the differential trajectories of cognitive ageing presents an ongoing challenge. 
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There is a growing evidence that older adults, who have engaged across lifespan in cognitively 

and/or socially enriched environments exhibit greater resilience to cognitive decline and 

maintain better brain health and cognitive function in later year. The concept of cognitive 

reserve (CR) has been proposed to account for at least some the observed heterogeneity in 

healthy (non-dementia) cognitive ageing as well as susceptibility to dementia, pathological 

decline (Stern et al., 2020; Cabeza et al., 2018). Within this framework, CR is measured by 

proxies of life experiences, in particular education but also occupation and leisure activities 

(Cabeza et al., 2018; Valenzuela and Sachdev, 2006a,b; Opdebeeck et al., 2015; Nucci et al., 

2012).  

While the concept of CR offers appealing framework for understanding cumulative 

neural changes due to lifelong environmental influences, including specifically socio-

behavioural factors, and their interplay with genetic variability, yet to date few theoretical 

and experimental attempts have been made in understanding the neurobiological origins of 

cognitive reserve in healthy ageing (Cabeza et al., 2018; Robertson et al., 2014, Brosnan et al., 

2018, Brosnan et al., 2022; Shalev at al., 2020; Plini et al., 2021). Here, we used one such 

theoretical framework (Robertson’s theory; Robertson et al., 2014) of CR to test the potential 

of machine learning methods to tease apart combinatorial effects of education (as CR proxy) 

and genetic influences on brain networks and cognitive outcomes (heterogeneity in cognitive 

function) in a large cross-sectional ageing cohort, the UK Biobank study. As UK Biobank has 

been created as a large-scale epidemiological resource with extensive sociodemographic 

questionnaires, physical measures, medical records, neuroimaging, and genetic data from 

middle and old age participants (Sudlow et al., 2015), it enables to tease apart multifactorial 

influences on cognitive ageing, using data science approaches on a scale not feasible before. 
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Robertson’s theory of CR proposes that life experiences acting on the noradrenergic 

system strengthen the right fronto-parietal networks to facilitate cognitive reserve and 

maintain cognition throughout lifetime (Robertson et al., 2013; Robertson et al., 2014). This 

theory combines Stern’s observations on the effects of education in Alzheimer’s patients with 

animal research. Animal studies provide evidence that across the life-span neural networks 

are heavily subjected to regulatory influences of neuromodulators (dopamine, noradrenaline, 

serotonin, and acetylcholine). These neuromodulators are thought to maintain functional 

dynamics among large-scale brain networks and to optimize cognitive performance by 

signalling environmental inputs (for review see Avery and Krichmar, 2017). In line with animal 

research Robertson’s theory stipulates that life experiences trigger continues engagement of 

several core cognitive process, all of which functionally rely on locus coeruleus—

noradrenergic system and right fronto-parietal networks (Robertson et al., 2013; Robertson 

et al., 2014). A recent study linking cognitive performance and brain health in both non-

demented older adults and Alzheimer’s patients to the volumetric estimates of locus 

coeruleus has provided compelling evidence that indeed the noradrenergic system might 

underpin the CR (Plini et al., 2021). There is also evidence in support of right lateralised 

cognitive reserve network (van Loenhoud et al., 2017; Shalev et., 2020, Brosnan et la., 2018; 

Brosnan et al., 2022). For example, our group has previously shown that life experiences 

mitigate age-related cognitive deficits by (i) preserving grey matter withing the right fronto-

parietal regions (Shalev et al., 2020) and (ii) offsetting age-related axonal dispersion within 

the right fronto-parietal white matter (Brosnan et al., 2022). Interestingly, we previously 

demonstrated that both the composite cognitive reserved index measure (based on 

education, occupation and cognitively stimulating leisure activities) and the education alone 

have an offsetting effect on age-related changes in attention function by preserving grey 
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matter within the right fronto-parietal networks (Shalev et al., 2020). It should be noted that 

none of the previous studies examining neurobiological basis of Robertson’s theory of CR 

simultaneously tapped into the noradrenergic system and the right fronto-parietal networks, 

which current study addresses. 

Growing evidence suggests that genetic variations, leading to either elevated or 

decreased levels of neuromodulators have impact on the functional dynamics of the neural 

networks, and underlie inter-individual variability in cognitive abilities across human lifetime 

(Lindenberger et al., 2008; Papenberg et al., 2015). Thus, along these lines Robertson’s theory 

of CR presents an interesting framework for understanding mechanism of cumulative 

socioeconomic and genetic influences on functional neural networks and whether such 

interplay contributes to CR. It enables to stipulate that genetic variability, enhancing 

neuromodulation across lifespan, and strengthening the right fronto-parietal networks in 

response to life experiences (e.g., education) could be advantageous in offsetting age-related 

cognitive decline. To test such proposal, we used here machine learning approaches, 

previously successfully applied by our group in large epidemiological studies (Bravo-Merodio 

et al., 2019; COVIDSurg Collaborative et al., 2021) to model interactions between education 

and neurobiological features (measures of structural and functional frontoparietal 

connectivity and genetic variants in noradrenergic signalling) on cognitive outcomes in the 

ageing UK Biobank cohort.  

 

METHODS 

Participants. We used data from the UK Biobank, a prospective epidemiological cohort study 

with over 500,000 participants 40–69 years of age at recruitment (total of 502,505 

participants), who underwent wide-ranging phenotypic and genotypic characterisation 
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(Sudlow et al., 2015). For the purpose of the current study, we employed (1) genomic, (2) 

demographic data from the initial baseline visit at recruitment between 2006 and 2010 (i.e., 

initial assessment visit), and (3) cognitive and (4) multimodal neuroimaging data acquired 

between 2014 and 2020 (i.e., imaging visit; the UK Biobank Brain Imaging Cohort; Miller et 

al., 2016; Alfaro-Almagro et al., 2018). At the time of the study, multimodal neuroimaging 

data release included 48,561 participants, and so modelling was performed with these 

datasets only. All the analyses were conducted under the UK Biobank application numbers 

29447 and 31224. All UK Biobank participants provided written informal consent in 

accordance with approved ethics protocols (REC reference number 11/NW/0382).   

Demographic information and cognitive data. Basic demographic information including 

month and year of birth, sex and education was recorded as part of information acquired at 

recruitment or as part of touchscreen questionnaire completed during the baseline 

assessment visit. The full details of the touchscreen questionnaire and all procedures are 

provided on the UK Biobank website (https://biobank.ndph.ox.ac.uk/ukb). The month and 

year of birth alongside the date of attending imaging visit (MRI scanning session) were used 

to calculate participants age. For the purpose of the current study, we used sex as recorded 

at recruitment (information derived from central registry i.e., as recorded by NHS or if not 

available, self-reported information was used). Education variable was determined based on 

self-reported age of completing full time education. This variable does not capture whether 

someone completed undergraduate or graduate degree. The variable captures instances 

where there was a break in education with intention to return but does not capture return to 

full time studies later in life. Most UK Biobank participants provided this information during 

baseline visit by answering a question “At what age did you complete your continuous full 

time education?”, with those reporting they “Never went to school” having a 0 assigned. 
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However, if this information was not captured during the baseline assessment (instances of a 

missing answer as opposed to participant answering “Prefer not to answer” (2760) or “Do not 

know” (3454), it was gathered during the subsequent visits. Notwithstanding, we identified a 

large portion of participants 46% (or 22,334 out of 48,705 participants) with this information 

still missing (Supplementary Table 1). After ascertaining that this information was Missing At 

Random (MAR) (Supplementary Table 1, Supplementary Figure 1) and given its use as proxy 

of cognitive reserve, participants with missing education information were deleted from our 

main analyses. Subsequently as explained below, the same analyses were performed using 

imputed data. 

Cognitive assessment was completed on the same day as attending imaging visit and entailed 

completing several simple cognitive tests administered via touchscreen. The UK Biobank 

cognitive test battery consists of 13 different tests as detailed in the UK Biobank showcase 

(https://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100026). However, some of these 

tests were only used during piloting stage of the UK Biobank study and some tests added or 

modified for the subsequent recruitment phases and/or subsequent visits. Additional 

information about UK Biobank cognitive tests, alongside their validity and reliability 

assessment can be found in the previously published papers (Sudlow et al., 2015; Fawns-

Ritchie and Deary, 2020). For the purpose of the current study we used a subset of measures 

of cognitive performance on 10 different tests measuring memory, reasoning, executive 

function and processing speed: (1) two symbol matching card game measuring reaction time 

calculated as the mean response time to correctly identify matching pairs of cards, (2) digit 

span test with a maximum recall set to twelve digits measuring a short term numeric memory 

calculated as the maximum number of correctly recalled digits, (3) fluid intelligence test with 

thirteen questions measuring reasoning and problem solving based on a total number of 
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correct answers (i.e., fluid intelligence score), (4) version A of Trial Making test assessing 

visuospatial attention based on a time required to complete numeric path by correctly 

connecting 25 consecutive numbers; (5) version B of Trial Making test assessing visuospatial 

attention and task switching based on time required to complete alphanumeric path by 

connecting alternating numbers (1-13) and letters (A-L), (6) matrix patterns test assessing 

abstract reasoning based on number of correctly (out of fifteen) solved puzzles, (7) tower 

rearranging test measuring executive function based on the number of correctly solved 

puzzles (i.e., correctly guest number of moves required to re-arrange hoops to match a target 

“tower” image) , (8) symbol digit substitution test measuring multiple processing abilities 

(attention, associative learning, visual processing) based on number of correctly identified 

symbol-digit matches, (9) paired associate learning test measuring number of correctly 

matched (out of twelve) word pairs, and (10) pairs-matching test measuring visual memory 

(number of errors = incorrect matches) tested based on assessing memorized positions of six 

pairs of cards.  

MRI data. The neuroimaging datasets available for the UK Biobank Brain Imaging Cohort (i.e., 

participants who completed imaging visit) include a set of imaging derived phenotypes (IDPs) 

i.e., various measures derived from different magnetic resonance imaging (MRI) modality-

specific analyses (Alfaro-Almagro et al., 2018). The full information about the MRI data 

acquisition and data processing pipelines applied to the data provided by the UK Biobank is 

available online (https://biobank.ndph.ox.ac.uk/ukb/ukb/docs/brain_mri.pdf) and in 

previously published primary UK Biobank methods papers (Miller et al., 2016; Alfaro-Almagro 

et al., 2018). For the purpose of the current study we selected a set of IDPs representing 

structural and functional fronto-parietal connectivity measures derived from diffusion MRI 

(dMRI) and resting state functional MRI (rs-fMRI) respectively. Specifically, we used dMRI IDPs 
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reflecting microstructural properties of white matter pathways, which were derived from 

neurite orientation and dispersion imaging (NODDI) model and representing intra-cellular 

volume fraction (ICVF) as a measure of neurite packing density, and the orientation dispersion 

index (ODI) as a measure of dispersion of neurites (an estimate of fiber coherence) for three 

fronto-parietal white matter pathways, superior longitudinal fasciculus (SLF), inferior-fronto-

occipital fasciculus (IFOF) and the forceps minor of the corpus callosum. In addition, we used 

rs-fMRI IDPs reflecting brain functional connectivity, which were generated by (1) carrying 

out group independent component analysis (ICA) parcellations with dimensionality (the 

number of distinct ICA components identified based on temporal patterns of spontaneous 

fluctuations in brain activity) set at 25, (2) removal of noise components resulting in 21 

components representing separate resting state networks (functional nodes), and (3) 

estimating 21x21 partial correlation matrices, which represent direct connections (edges) 

between pairs of ICA components (nodes), see FSLNets user guide 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets). For the purpose of the current study, we have 

selected 6 networks of interests (left and right fronto-parietal network, executive control 

network and 3 subsystems of the default mode network: core (cDMN), dorsomedial 

prefrontal (dmDMN) and medial temporal (mtDMN); 6 networks representing frontoparietal 

connectivity and functionally related to core cognitive processes as per Robertson’s theory; 

identified based on previously published papers (Smith et al., 2009; Laird et al., 2009; Shirer 

et al., 2012, Dixon et al., 2017); see Supplementary Figure 2) and connection (edges) between 

them were entered into the analysis (total of 15 different edges). The 25 components group-

ICA spatial maps and connection edges are available online 

(http://www.fmrib.ox.ac.uk/ukbiobank).  
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Missing value imputation. Given education was used here as proxy of cognitive reserve, we 

first deleted all participants with missing information (22,334 participants) (Supplementary 

Table 1 and Supplementary Figure 1). From this dataset (26,227 participants and 39 variables 

spanning demographic data, cognitive tests and multimodal neuroimaging data), two 

different approaches were taken in order to deal with missing data information. First, we 

performed a complete case analyses, deleting all patients with missing value information, 

after having seen no visible pattern in previous analysis and determining missing values were 

missing at random (MAR) (Supplementary Figure 3). The final dataset consisted of 12,076 

participants. The second approach consisted in imputing  missing value data (20.2%) 

(Supplementary Figure 2A), using K-nearest neighbour imputation with three neighbours. 

Data imputation was applied to 39 variable including demographic data (age and sex), 

cognitive tests used to calculate general cognitive ability score (GCAS) and imaging derived 

phenotypes representing structure and functional front-parietal connectivity (FPC IDPs). 

Subsequently, the same analyses as with complete cases, were performed using imputed 

data, and are reported in Supplementary Materials. Further information, all codes and figures 

are available from https://github.com/InFlamUOB/CognitiveReserve.  

General cognitive ability score (GCAS). To capture heterogeneity in cognitive functioning in 

the UK Biobank ageing cohort, we calculated and employed a general cognitive ability score 

(GCAS), an approach previously suggested for studies considering shared genetic, 

environmental and sociodemographic influences (Fawns-Ritchie and Deary, 2020; Lyall et al., 

2016). These was done using principal component analysis (PCA), saving scores based on the 

first principal component, which accounted for 30.9% of the variance, similarly to previous 

reports (Fawns-Ritchie and Deary, 2020; Lyall et al., 2016). Eigenvalues and scree plots can be 

found in Supplementary Figure 4 and Supplementary Table 2. The calculated GCAS represents 
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composite cognitive ability and as such was subsequently used as a measure of cognitive 

outcomes. 

GWAS derived SNPs. The genetic analyses were carried out based on genotype data derived 

from blood samples collected during baseline visit, in total UK Biobank includes genetic data 

for 488,377 participants. In accordance with UK Biobank protocols, following DNA extraction, 

the genotyping was performed using two different arrays, the UK BiLEVE Axiom array and the 

UK Biobank Axiom array. The full details of the genotyping, quality control and imputation 

have been previously published (Bycroft et al., 2018) and are available from the UK Biobank 

showcase (https://biobank.ndph.ox.ac.uk/ukb). In order to extract genetic features, we 

selected specific genetic variants which have been implicated in noradrenergic and 

dopaminergic neurotransmission. The final gene set, total of 154 genes (464,939 SNPs) was 

selected based on search performed using the Molecular Signature Database (MSigDB; 

https://www.gsea-msigdb.org/gsea/msigdb/), and published literature (Bralten et al., 2013; 

van Donkelaar et al., 2020) and can be found in in 

https://github.com/InFlamUOB/CognitiveReserve. In the analysis, we have included genes 

associated with both noradrenergic and dopaminergic genetic pathways as the two 

neurotransmitters share both signalling and metabolic pathways due to overlapping 

biosynthesis and the known biochemical similarity of some of the transporters and receptors 

(Carboni et al., 1990; Cornil and Ball, 2008; Wedemeyer et al., 2007). Thus, separating the two 

genetic pathways is highly problematic, if not impossible. SNPs within all identified genes and 

their flanking regions (to include regulatory sequences) were selected for GWAS. These SNPs 

were then tested for associations with the previously mentioned metrics: cognitively enriched 

environments (education), cognitive outcomes (measures of performance on 10 cognitive 

tests) and fronto-parietal connectivity (structural and functional connectivity IDPs), using 
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genome-wide association analysis (GWAS). More specifically the tools PLINK (Purcell et al., 

2007) for pre-processing and quality control and REGENIE (Mbatchou et al., 2021) for GWAS 

were used. REGENIE is a computationally efficient machine learning method that reduces the 

genotype space into local blocks (of 1000 variants) before performing association testing. 

After GWAS, chosen SNPs were filtered (LOG10P > 4.5), yielding 53 SNPs. Summary statistics 

of selected SNPs can be seen in  https://github.com/InFlamUOB/CognitiveReserve. In 

addition, to control for potential confounding effects in our analysis, we included SNPs e3e3, 

e3e4 and e4e4 from apolipoprotein-E (APOE), which is known to be a risk factor for dementia 

(Heffernan et al., 2016). The distribution of all final variables introduced in the model 

encompassing (1) GWAS derived SNPs (2) demographics (age and sex) (3) general cognitive 

ability score (GCAS) from cognitive tests (4) imaging derived phenotypes representing 

structure and functional front-parietal connectivity (FPC IDPs) and (5) cognitive reserve 

information using education as proxy can be seen in Supplementary Figure 5. 

Statistical analysis. All analyses were performed in R version 4.2.0 

Modelling 

As our objective is to model interactions between neurobiological features (both genetic and 

connectivity measures) and education (proxy of CR) on cognitive outcomes, we built 

regression models using general cognitive ability score (GCAS) as outcome. Using 

workflowsets and tidymodels, 5 different algorithms (generalized linear model (glm package), 

LASSO (Tibshirani, 1996) (glmnet package), a single-hidden-layer neural network (nnet 

package), random forest (ranger package) and xgboost (xgboost package), were fitted to 14 

different combinations of the features above extracted. More precisely, 5 different 

algorithms were run on data comprising: SNPs, FPC IDPs, AgeSex, SNPs x FPC IDPs, SNPs x CR 

(education), SNPs x AgeSex, FPC IDPs x CR (education), AgeSex x CR (education), SNPs x FPC 
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IDPs x CR (education), SNPs x FPC IDPs x AgeSex, SNPs x AgeSex x CR (education), FPC IDPs x 

AgeSex x CR (education as proxy), SNPs x FPC IDPs x AgeSex x CR (education) information. In 

each algorithm and feature combination dataset (69 in total) (Figure 1), hyperparameters 

were tuned through grid.search and 100 cross-validation resamples fitted per model. To cut 

down on time, tune_race_anova (Kuhn, 2014) was used which eliminates tuning parameter 

combinations that are unlikely to be the best results. To do so, tune_race_anova uses a 

repeated measure ANOVA model just after an initial number of resamples have been 

evaluated. Performance was evaluated through Mean Absolute Error (MAE), where the sum 

of absolute errors between predicted GCAS and true GCAS is divided by the sample size.  

 

Figure 1. Study Design. We explored the interplay neurobiological features (genetic variants in noradrenergic 
signalling, structural and functional fronto-parietal connectivity) and education (proxy of CR) by testing 
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regression models predicting general cognitive ability score (GCAS) as outcome. By splitting features into 4 
datasets: GWAS derived SNPs, AgeXSex, CR with Education as proxy and imaging derived phenotypes 
representing structure and functional front-parietal connectivity (FPC IDPs), we generated 14 different dataset 
combinations. These 14 different feature combinations were then modelled with 5 different algorithms (Least 
Absolute Shrinkage and Selection Operator (LASSO), Generalized Linear Models, XGBoost, Random Forest and 
Neural Nets), generating 69 different models. Behaviour of these models was then evaluated through 
performance, using mean absolute error and feature importance. Given the disparity in modelling algorithms, 
different feature importance algorithms were also used (DALEX, model dependent variable importance 
assessment, permutation and SHAPLEY), and results were summarised as ranking scores. Top 10 features (sex 
and 9 neurobiological variables) selected as most important (top 2) per variable importance method, algorithm 
and dataset were then studied as mediators (9 neurobiological variables only) between education (CR) and GCAS 
and including age as covariate. 
 
Variable importance 

To better understand the behaviour of the models, variable importance of each of the 69 

different algorithm and variable combinations was assessed using 4 different feature 

importance methods (Elhabr, 2020). These include model-agnostic algorithms such as the 

explainable AI package DALEX (Biecek, 2018), shapley values (Sundararajan and Najmi, 2020) 

and permutation related variable importance or model-specific algorithms such as model 

related variable importance. The loss function in variable importance computations for the 

model-agnostic methods was minimization of the root mean-squared error (RMSE). The top 

9 ranking variables for each of the variable importance assessments in each algorithm and 

dataset was then visualized in a heatmap, and next the 10 variables ranked the highest (most 

amount of times appearing in top 2) were selected. These included Sex and 9 neurobiological 

variables. The 9 variables theoretically relevant to the tested Robertson’s theory (SNPs 

representing genetic variants in noradrenergic signalling, measures of structural and 

functional frontoparietal connectivity) were followed through for mediation analysis.  
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Figure 2. Results from All Regression Models. Mean Absolute Error (MAE) of model combinations of AgeXSex, 
front-parietal connectivity imaging derived phenotypes (FPC IDPs) and SNPs data for each of the different 
algorithms (A. Neural Nets, B. LASSO, C. Random Forest, D. GLM and E. XGBoost), using the model with all 
datasets included as reference value (red line). Error bars correspond to the 100 fold cross-validated 
performance results. In total, 69 models were analysed ( with unique feature and algorithm combination). As a 
general trend, SNPs possess the least prediction ability, with the highest mean average error across all 
algorithms (higher loss of MAE with respect to baseline 0 (which is all datasets together). In contrast, including 
AgeXSex x CR (education) guarantees a better performance across all datasets, with IDPs x AgeSex x CR 
(education) generally yielding the best performance. All hyperparamters were tuned using tune race_anova with 
best performing hyperparameter combinations used and test set performance reported here. 
 

Mediation  

Finally, to assess a possible relationship between education (used here as proxy of CR) on 

cognitive outcomes, we tested those features that came up as highly important in our models 
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through mediation analysis (VanderWeele, 2016). Mediation analysis was used to assess the 

magnitude of the data-driven pathways and mechanisms selected as relevant in a data-driven 

way and how they may affect general cognitive ability score and education relationship. 

Mediation was performed using libraries psych and mediation where all 9 selected, 

consistently important variables for GCAS prediction (as described above, most frequent top 

2 important variables in each of the variable assessment models across all datasets and 

algorithms) were studied. Given age appeared as the most important variable across all 

models where it was included, we included age as a covariate in our mediation analysis 

(partialling out its contribution) in our mediation analysis. The mediation diagrams for all 

variables can be seen in https://github.com/InFlamUOB/CognitiveReserve with the mediation 

effect bootstrapped 10,000 times.  

 

RESULTS 

Pre-processing 

From an initial cohort of 502,505 participants, 48,561 with imaging data were identified for 

the purpose of the current study. From these, 26,227 had complete education information. 

Missing values assessment can be seen in (Supplementary Figure 1 and 2), with remaining 

missing values (20.2%) both imputed using k-nearest neighbours (Supplementary Figure 3) 

and deleted (complete-case analysis) as reported below. Taking advantage of genotypic data, 

SNPs related to noradrenergic and dopaminergic neurotransmission were extracted as well 

as APOE alleles e3e3, e3e4 and e4e4 given their close relationship to cognitive decline and 

dementia (Heffernan et al., 2016; Veldsman et al., 2020). In total 12,076 participants with 25 

features associated to brain imaging data, 56 genetic data, 2 demographics and education 

were selected with their distribution available in Supplementary Figure 4. 
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Modelling 

To understand what data better captured general cognitive ability, different models were 

built predicting GCAS using both different feature combinations and modelling strategies 

(Figure 1). More specifically, generating all different feature combinations between brain 

imaging, genetic, demographics and education yielded 14 different datasets as seen in 

Methods. All these datasets were then trained using 4 distinct machine learning algorithms 

combining both non-linear and linear methods (Random Forest, Neural Nets, LASSO and 

GLM), creating 69 different models. After splitting our dataset into training (5/6) and testing 

(1/6) data, models were trained, with hyperparameter tuning and resampling (100 fold-cross 

validation).  

Final performance was assessed in the test set (Figure 2) and feature importance through 4 

metrics (vip, permutation, shapley and DALEX) for all models is reported (Figure 2).  

A combination of imaging, demographic and education data was seen to be the best 

performing model in all algorithms, with these feature combinations yielding better 

performance than combining all features together (reference line in Figure 2). To better 

understand feature importance per model and algorithm, heatmaps were used to visualize 

results, with information on the models generated form imaging, demographic and education 

data seen in Figure 3 as an example. In this heatmap, the ranking of the top 9 features per 

feature importance methods applied to each model is reported, with Age and Education 

scoring first and second in all algorithms and methods but less consensus seen in the ranking 

of imaging data, with varying agreement between algorithms and feature importance 

methods. Results from the other models can be found in: 

https://github.com/InFlamUOB/CognitiveReserve 
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Figure 3. Feature Importance Testing. Heatmap of feature importance for the 4 out of the 5 different algorithms 
(LASSO and GLM as both linear models, are here only represented as LASSO results)  and data comprising 
features from AgeXSex, CR with education as proxy and front-parietal connectivity imaging derived phenotypes 
(FPC IDPs). Most important features are ranked using 4 different feature importance algorithms (DALEX, model 
specific variable importance (VIP) , permutation and Shapley values), with most important being 1 (yellow) and 
least 9 (purple).  Only the 9 most important features for each models are here reported. All model-agnostic 
methods (permutation, DALEX and Shapley) had variable importance assessed though root mean-squared error 
(RMSE) and the absolute values of importance were assessed as ranking. In brackets, the normalized absolute 
importance value is reported as percentage. 
 

Mediation  

Finally, wanting to better understand the relationship between education and cognitive 

outcome, we proceeded to explore the most frequent important features extracted from 

each variable importance method for each algorithm and dataset in a mediation model. Age 

was found as the most important variable across models and datasets when included (Figure 

3). Thus, taking into account relevance of age to studied hypothesis and employed study 
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sample (ageing UK Biobank cohort including middle age and older adults), we include age in 

our mediation analysis as an extra covariate and evaluate the top 9 frequent neurobiological 

features as mediators. More specifically, the direct effects of education (CR proxy) on general 

cognitive ability score partialling out the effect of each of these features univariately was 

evaluated with the main effects reported in Table 1. Following that seen as best model (FPC 

IDPs, education and Age features), the variable seen to have a significant mediation effect 

was rFPN-dmDMN connectivity (Figure 4, Table 1). The results based on the imputed data are 

reported in the Supplementary Figure 6. rFPN-dmDMN connectivity was found as a significant 

mediator in both analyses i.e., using only complete cases and imputed data, thus ascertaining 

the robustness of findings.  

 

 

Figure 4. Mediation Analysis Results. rFPN-dmDMN connectivity was found to be a significant mediator with 
education (proxy of CR) as predictor of General Cognitive Ability Score (GCAS) when controlling for Age (95% CI 
not crossing 0). Mediation diagram as extracted from mediate.diagram function from the psych package. 
Significant mediator (95% CI not crossing 0) when controlling for Age . 
 

Code Availability  

All code and figures can be found in: https://github.com/InFlamUOB/CognitiveReserve 
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Table 1. Mediation results using psych package. Top 9 most frequent important variables (top 
2 in ranking) were included in a model as mediators with education (CR) as predictor, General 
Cognitive Ability Score (GCAS) as outcome and Age as covariate. Bootstrapped confidence 
intervals for the indirect effect reported as lower CI (2.5%) and upper (97.5%). Significant 
mediators (95% CI not crossing 0). 

Mediator Effect of CR on 
mediator (a) 

Effect of 
mediator (b) 

Indirect effect 
(ab) 

95% CI 

Lower Upper 

SLF_L (ICVF) 0.0039 (0.006) 0.0436 (0.0057) 2e-04 (3e-04) -3e-04 7e-04 

rs10224002(PRKAG2) -0.0014 (0.0016) 0.0193 (0.021) 0 (1e-04) -2e-04 1e-04 

rs2888788(PRKAG2) -0.0058 (0.0031) -0.0385 (0.011) 2e-04 (1e-04) 0 5e-04 

rs10254101(PRKAG2) 0.0025 (0.003) 0.0251 (0.0115) 1e-04 (1e-04) -1e-04 3e-04 

IFOF_L (ICVF) 0.0058 (0.006) 0.0281 (0.0057) 2e-04 (2e-04) -2e-04 5e-04 

rFPN-dmDMN -0.018 (0.0062) -0.0202 (0.0055) 4e-04 (2e-04) 1e-04 7e-04 

rs1872691(BRD7-ADCY7) 0.003 (0.0027) 3e-04 (0.0124) 0 (1e-04) -1e-04 1e-04 

IFOF_R (ICVF) -0.0031 (0.0059) 0.0286 (0.0057) -1e-04 (2e-04) -5e-04 3e-04 

rs3813755(ADCY7) 0.0029 (0.0027) 0.0046 (0.0125) 0 (1e-04) -1e-04 1e-04 

 
 

DISCUSSION 

Using robust machine learning methods and mediation analysis applied to data from the UK 

Biobank Brain Imaging study (Miller et al., 2016), we tested here combinatorial effects of 

neurobiological features (genetic variants in noradrenergic signalling, measures of structural 

and functional frontoparietal connectivity) and education (used here as proxy of CR) on 

cognitive outcomes in the UK Biobank ageing cohort. Initially, several different models were 

built with a large number of features. We then selected a small number of features, related 

to genetic variance, fronto-parietal connectivity alongside sex and age, for subsequent 

analysis using mediation testing. A variety of machine learning algorithms and feature 

importance methods were used given that there is no algorithm able to fit all data perfectly 

(“No Free Lunch Theorem”(Belkin et al., 2019)). Therefore, testing more than one algorithm 

and more than one approach to interpret feature importance provides us with the possibility 

of acknowledging many more possible underlying relationships. Also feature importance was 
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especially relevant for black box algorithms such as neural nets and random forest where 

behaviour of the model is more difficult to grasp. Based on these analyses we show that (1) 

interactions between education and neurobiological variables more fully explain general 

cognitive performance on multiple tests (general cognitive ability score) than either factor 

alone, and (2) among the examined neurobiological features measures of functional fronto-

parietal connectivity are the strongest mediators of the effect of education on cognitive 

outcomes.  

Our main findings point to fronto-parietal resting state functional connectivity 

measures (rFPN-dmDMN, Figure 4) representing connections between the default mode 

network and the right fronto-parietal network as significant mediator between education and 

cognitive outcomes in UK Biobank ageing population sample. This suggests that functional 

connectivity between several neural networks, including right fronto-parietal network, might 

be sensitive to the effects of education (proxy of CR) on cognition in middle and old age. Thus, 

alongside our previous studies (Shalev et al., 2020; Brosnan et al., 2022), we provide here 

evidence in support of Robertson’s theory of CR (Robertson 2013, 2014). Robertson’s theory 

stipulates that at the neural level the lifelong exposure to cognitive stimulation strengthens 

the right hemisphere fronto-parietal networks, which in turn offsets the symptoms of 

cognitive ageing. Our previous work (Brosnan et al., 2022; Shalev et al., 2020) and that of 

others (van Loenhoud et al. 2017), indeed point to the right hemispheric fronto-parietal 

networks as neural substrates of CR. By contrast here we linked the phenomenon of CR to 

not only the right fronto-parietal network but also the default mode network encompassing 

additional bilateral fronto-parietal regions, as well as the connectivity between these two 

networks. The Robertson’s theory proposes that exposure to enriched environments acts via 

core cognitive processes, including alertness, sustained attention, and awareness which 
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indeed are known to be subserved by the right fronto-parietal networks (e.g., Beck et al., 

2001; Naghavi and Nyberg, 2005; Hester et al., 2005; Singh-Curry and Husain, 2009; Stuss, 

2011). However, the default mode networks implicated by our current study is also 

functionally linked to the cognitive processes described by Robertson’s theory. Furthermore, 

similarly to fronto-parietal network, the default mode network is known to be modulated by 

the locus coeruleus-noradrenergic (LC-NE) system (Bär et al., 2016; Minzenberg et al., 2018; 

Robbins & Arnsten, 2009; Suttkus et al., 2021), which is pivotal to Robertson’s theory.  

It should be also noted that while the mentioned above studies, supporting 

Robertson’s theory, only examined the beneficial effects of CR on structural measures within 

fronto-parietal networks (van Loenhoud et al. 2017; Shalev et al., 2020; Brosnan et al., 2022;), 

the current study links the phenomenon of CR (measured here by proxy of education) to 

measures of functional connectivity. Several previous studies in non-demented older adults 

linked measures of functional connectivity to offsetting effects of cognitive reserve either on 

global cognition or memory performance (e.g., Varela-Lopez et al., 2022; Boyle et al., 2023; 

Franzmeier et al., 2018; Fleck et al., 2019). However, most of these studies either explored 

connectivity measures derived from a task-based fMRI and/or the analysis were primarily 

restricted to measures of within-network connectivity, and additionally the previous findings 

were limited by relatively small sample sizes (less than 100 participants). By contrast we 

explored here between networks connectivity in a large cross-sectional UK Biobank cohort. 

But what is the most striking about our findings is that they point to the default mode network 

as the key player in between networks interactions underlying cognitive reserve. As noted 

above this expands the Robertson’s proposal (Robertson, 2014), which specifically stipulates 

that the hypothetical CR network consists of interconnected right lateral prefrontal lobe and 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2025. ; https://doi.org/10.1101/2023.08.31.555645doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

right inferior parietal lobe regions. Our findings expand the CR network, to include bilaterally 

dorsal medial prefrontal cortex and posterior cingulate cortex.  

In the context of ageing, the default mode network is perhaps the most studied of the 

resting state networks (Jiang et al., 2020; Staffaroni et al., 2018) with functional changes 

linked to cognitive decline and dementia (Vidal-Peneiro et al., 2014; Andrews-Hanna et al., 

2007; Damoiseaux et al., 2008; Bluhm et al., 2008; Mevel et al., 2011; Hafkemeijer et al., 2012; 

Grieder et al., 2018). In addition, when examining a small sample of Alzheimer’s patients, 

Bozzali and colleagues (2015) previously found evidence that cognitive reserve modulate 

connectivity within the default mode network. Finally, our results expand on newly published 

findings linking changes in connectivity between the default mode network and frontoparietal 

networks to cognitive decline in elderly (Koshino et al., 2023) as well as to the effects of beta-

amyloid on cognitive status in Alzheimer’s patients (Zhukovsky et al., 2023) in line with 

classical account of cognitive reserve (Stern et al., 1992; Stern, 2012) i.e., mitigating 

accumulated neuropathology.  

To our knowledge, only one previous study examined underpinnings of the effects of 

CR on cognitive outcomes in the UK Biobank cohort (Jin et al., 2023). However, the scope, 

research objectives and methods employed by Jin et al (2023) and here are very different. Jin 

and colleagues specifically conducted a series of studies systematically exploring the effects 

of different CR proxies (education, leisure activities, fluid intelligence, social interactions, and 

physical activity) on the relationship between structural brain measures (global volume, 

regional volumetric measures and cortical thickness within brain areas know to deteriorate 

in dementia patients) and cognitive outcomes indexed by performance on tests within 4 

separate cognitive domains. The main aim of their research was to explore the reported 

inconsistencies in the literature concerning the moderating effects of various CR proxies on 
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the links between brain structure and cognitive abilities in an ageing population. This was 

motivated by the premise that CR explains the discrepancy between accumulated brain 

damage and observed cognitive performance in accordance with classical theory of cognitive 

reserve as proposed by Stern and based on his early work in Alzheimer’s patients (Stern et al., 

1992; Stern, 2012). By contrast our analyses were motivated by the Robertson’s proposal 

(2013, 2014) that CR, here represented by education strengthen the right fronto-parietal 

networks to offset age-related cognitive decline. Thus, the only link between Jin et al (2023) 

and our study, conducted using data from UK Biobank cohort, is that both provide support 

for the notion of beneficial effects of CR on cognitive ageing.  

One of the objectives of the current study was to explore a premise that an interplay 

between accumulative effects of CR (represented by education) and genetic variance in 

noradrenergic signalling on frontoparietal neural networks might offset age-related cognitive 

decline. While previous studies indeed linked genetic variations in neurotransmitter signalling 

to heterogeneity in cognitive ageing (Lindenberger et al., 2008; Nyberg et al., 2014; 

Papenberg et al., 2015a,b), we have not found any evidence of the mediating effects of 

genetic variability in noradrenergic signalling on interplay between education and cognitive 

outcomes. It should be noted that the previous evidence comes from hypothesis driven 

genetic association studies using single-nucleotide polymorphisms (SNPs). By contrast we 

employed here GWAS based approach to find genetic variants associated with education, 

cognitive outcomes and fronto-parietal connectivity (structural and functional). While the 

GWAS analyses were notably restricted to the preselected gene set, 154 genes totalling 

464,939 SNPs, the negative findings might not be that surprising considering a relatively small 

sample comparing to other GWAS studies examining genetic underpinnings of education and 

cognition (e.g., Okbay et al., 2016; Davies et al., 2016). Thus, the size of study sample 
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constitutes a limitation when exploring genetic influences. The negative findings might also 

potentially reflect shortcomings of the taken here approach to testing Robertson’s theory. 

We employed here genetic variance in noradrenergic signalling as variable depicting 

noradrenergic modulation in Robertson’s theory but it is plausible that the noradrenergic 

genetic variance does not sufficiently capture cumulative influences of cognitively enriched 

environments as per Robertson’s theory of cognitive reserve. We have not directly examined 

here the locus coeruleus function directly indicative of noradrenergic activity. However, it 

should be noted that the beneficial effects of noradrenergic signalling and the LC function in 

the context of both cognitive decline and progression of Alzheimer’s disease have been 

recently questioned by many (for comprehensive review see Mather, 2021). Furthermore, it 

is plausible that education used as sole proxy of CR does not reflects the complexity of lifelong 

cognitively stimulating experiences and further work should consider a broader approach to 

factors contributing to CR. Although, it could be argued that education lessens the decline in 

cognitive functioning as we age, not only via enhancing neural resources early in life 

(childhood till early adulthood) with effects lasting later in life, but also at least partially 

influences professional and lifestyle choices throughout life i.e., other proxy measures of CR. 

On contrary, some argue that education reflects only individual differences in cognitive 

abilities that persist from childhood to old age (for review see Cabeza et al., 2018, Lövdén et 

al., 2020). The assumption is that education attenuates the decline in cognitive functioning as 

we age, likely via enhancing neural resources early in life (childhood till early adulthood) with 

effects lasting later in life,  

Finally, the scope and size of UK Biobank data resources are unprecedented, however 

similarly to other large scale epidemiological datasets, UK Biobank database includes large 

proportion of incomplete cases. Here, out of an initial sample of 48,561 participants, only 
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12,076 complete cases were found (i.e., including all brain imaging data, cognitive, genetic, 

demographic and education variables). The missing cases cause potential limitations due to 

loss of statistical power (e.g. in GWAS as discussed above) and by contributing to risk of bias 

affecting findings. To address that we repeated all analyses using imputed data. Importantly, 

we again found the measures of fronto-parietal connectivity to be the strongest mediators of 

the effect of education on cognitive outcomes.  

In summary, the data presented here not only add to our understanding of the 

neurobiological underpinnings of CR but also the role of between network connectivity and 

the default mode network in cognitive ageing. By employing comprehensive machine learning 

methods, we have demonstrated that between networks functional fronto-parietal 

connectivity is a strong mediator of the effect of education used her as proxy of cognitive 

reserve on cognitive outcomes in ageing population. Our findings provide additional support 

for Robertson’s theory of CR (Robertson, 2013, 2014) as well as the recent finding in 

Alzheimer’s patients linking between networks frontoparietal connectivity to offsetting 

effects against amyloid burden (Zhukovsky et al., 2023). While on one hand the limitation of 

the current study is that we only examined between network connections, on the other hand 

several theories of cognitive ageing explicitly address changes in functional correlations 

between functional networks associated with either preservation or decline in cognitive 

performance in ageing. Specifically, it has been suggested that processes such as 

compensation and dedifferentiation both might be accompanied by stronger correlations 

among functionally unrelated networks or weaker anti-correlations among competing 

networks (Malagurski et al., 2020a,b; Deery et al., 2023). In this context the default mode 

network is of particular interest as the existing evidence points to anti-correlations between 

the default mode network and various other networks including right fronto-parietal 
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networks at rest and during task performance in young healthy participants (Greicius et al., 

2003; Fox et al., 2005). Strikingly, it has also been demonstrated that in elderly participants 

the default mode network is significantly less deactivated during task performance and that 

this diminished suppression might underly poorer cognitive performance (Damoiseaux et al., 

2008; Persson et al., 2007; Ferreira and Busatto, 2013). Thus, future research should address 

both cross-sectionally and longitudinally whether the offsetting effects of exposure to 

enriched environments on cognitive functioning in older adults translate into changes in co-

activations and anti-correlations between the default mode networks and task-related 

fronto-parietal networks while participants are performing cognitive tasks using functional 

MRI.  
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SUPPLEMENTARY MATERIALS 

Supplementary Table 1.  

Features included in the analysis before preprocessing as separated into the datasets 
summarized in Figure 1 (Demographics with AgeXSex, imaging derived penotypes 
representing structure and functional front-parietal connectivity (FPC IDPs), cognitive tests 
and education information)  
 

    Missing education information 
Variables Total N 

(complete 
cases %) 

Levels Total No Yes 

Total N (%)   48561 26227 (54.0) 22334 (46.0) 
Demographics 
Sex 48561 (100.0) Female 25078 (51.6) 13969 (53.3) 11109 (49.7) 
  Male 23483 (48.4) 12258 (46.7) 11225 (50.3) 
Age 48561 (100.0) Mean (SD) 64.7 (7.7) 65.1 (7.7) 64.2 (7.7) 
      
Cognitive Tests 
ReactionTime 45217 (93.1) Mean (SD) 597.1 (110.7) 605.1 (113.4) 587.8 (106.8) 
NumericMemory 33890 (69.8) Mean (SD) 6.7 (1.5) 6.4 (1.6) 6.9 (1.4) 
FluidIntelligence 44657 (92.0) Mean (SD) 6.6 (2.1) 6.0 (1.9) 7.2 (2.0) 
TrailA 33021 (68.0) Mean (SD) 226.3 (90.5) 231.8 (98.2) 220.4 (80.9) 
TrailB 33021 (68.0) Mean (SD) 558.9 (284.0) 591.2 (313.8) 524.2 (243.3) 
MatrixPatterns 32646 (67.2) Mean (SD) 7.9 (2.1) 7.4 (2.1) 8.5 (2.0) 
TowerRearr 32363 (66.6) Mean (SD) 9.8 (3.2) 9.5 (3.3) 10.2 (3.1) 
SymbolSubs 32668 (67.3) Mean (SD) 18.7 (5.3) 18.0 (5.4) 19.5 (5.2) 
PairedAssoc 33021 (68.0) Mean (SD) 6.8 (2.6) 6.4 (2.7) 7.4 (2.5) 
PairMatch 45523 (93.7) Mean (SD) 3.7 (3.0) 3.7 (3.0) 3.6 (3.0) 
FPC IDPs  
ForcepsMinor (ICVF) 37336 (76.9) Mean (SD) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 
IFOF_L (ICVF) 37336 (76.9) Mean (SD) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 
IFOF_R (ICVF) 37336 (76.9) Mean (SD) 0.5 (0.0) 0.5 (0.0) 0.5 (0.0) 
SLF_L (ICVF) 37336 (76.9) Mean (SD) 0.6 (0.0) 0.6 (0.0) 0.6 (0.0) 
SLF_R (ICVF) 37336 (76.9) Mean (SD) 0.6 (0.0) 0.6 (0.0) 0.6 (0.0) 
ForcepsMinor (ODI) 37336 (76.9) Mean (SD) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 
IFOF_L (ODI) 37336 (76.9) Mean (SD) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 
IFOF_R (ODI) 37336 (76.9) Mean (SD) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 
SLF_L (ODI) 37336 (76.9) Mean (SD) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 
SLF_R (ODI) 37336 (76.9) Mean (SD) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 
cDMN-rFPN 40012 (82.4) Mean (SD) -0.8 (1.0) -0.7 (1.0) -0.8 (1.0) 
dDMN-lFPN 40012 (82.4) Mean (SD) -0.5 (0.9) -0.5 (0.9) -0.5 (0.9) 
cFPN-lFPN 40012 (82.4) Mean (SD) 1.3 (1.0) 1.3 (1.0) 1.2 (1.0) 
cDMN-mtDMN 40012 (82.4) Mean (SD) 1.6 (0.9) 1.6 (0.9) 1.5 (0.9) 
rFPN-mtDMN 40012 (82.4) Mean (SD) 0.3 (0.9) 0.3 (0.9) 0.3 (0.9) 
lFPN-mtDMV 40012 (82.4) Mean (SD) -0.1 (0.9) -0.2 (0.9) -0.1 (0.9) 
cDMN-dmDMN 40012 (82.4) Mean (SD) 2.5 (0.9) 2.5 (0.9) 2.5 (0.9) 
rFPN-dmDMN 40012 (82.4) Mean (SD) 0.3 (1.0) 0.4 (1.0) 0.3 (1.0) 
lFPN-dmDMN 40012 (82.4) Mean (SD) 1.1 (0.9) 1.1 (0.9) 1.1 (0.9) 
mtDMN-dmDMN 40012 (82.4) Mean (SD) -0.8 (0.9) -0.8 (0.9) -0.8 (0.9) 
cDMN-ECN 40012 (82.4) Mean (SD) -1.4 (1.0) -1.4 (1.0) -1.5 (1.0) 
rFPN-ECN 40012 (82.4) Mean (SD) 0.2 (0.9) 0.2 (0.9) 0.2 (1.0) 
lFPN-ECN 40012 (82.4) Mean (SD) -1.2 (1.0) -1.2 (1.0) -1.2 (1.0) 
mtDMN-ECN 40012 (82.4) Mean (SD) -0.0 (1.0) -0.0 (0.9) -0.0 (1.0) 
dmDMN-ECN 40012 (82.4) Mean (SD) 1.4 (0.9) 1.4 (0.9) 1.3 (0.9) 
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Supplementary Figure 1A: Missing values and missing at random analysis. 
Missing values pattern exploration using R package UpSetR showing the combinations of 
missingness across cases 
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Supplementary Figure 1B: Missing values and missing at random analysis  
Missing values pattern exploration using R package mice and finalfit. Missing values in red and complete in blue, with total numbers of 
participants found to the left and total missing features (red squares) to the right. Total missing values per feature found at the bottom. 
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Supplementary Figure 2. The six ICA components (nodes) representing restig state networks 
chosen for the purpose of the current study.A. right fronto-parietal network, B. left 
frontoparietal network, C. executive control network and 3 subsytems of the default mode 
network: D. core (cDMN), E. dorsomedial prefrontal (dmDMN) and F. medial temporal 
(mtDMN); 
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Supplementary Figure 3: Missing values and missing at random analysis. 
Missing values pattern exploration using R package UpSetR and naniar, showing the 
combinations of missingness across cases. Maximimum of missing cases per column is the 
cognitive test of tower rearrangement with (36.47%) missing data 
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Supplementary Figure 4. PCA scree plots. See Methods section for further information. 
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 7 

Supplementary Table 2 PCA coordinate s( loading* standard deviation ) using factoextra  
 
  

PC 1 PC 2 PC 3 
ReactionTime -0.384 0.496 -0.473 
NumericMemory 0.512 0.429 0.084 
FluidIntelligence 0.636 0.412 0.018 
TrailA -0.544 0.379 -0.069 
TrailB -0.587 0.17 -0.076 
MatrixPatterns 0.646 0.185 0.01 
TowerRearr 0.626 0.002 -0.077 
SymbolSubs 0.652 -0.231 0.056 
PairedAssoc 0.495 0.33 0.006 
PairMatch -0.395 0.3 0.798 
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Supplementary Figure 5: Continous and categorical distribution of selected features with 
information on cognitive tests, demographics, education, genes and multimodal 
neuroimaging data.  

SLF_L (ICVF) SLF_L (ODI) SLF_R (ICVF) SLF_R (ODI)

mtDMN dmDMN rFPN cDMN rFPN dmDMN rFPN mtDMN

lFPN dmDMN lFPN ECN lFPN mtDMN lFPN rFPN

lFPN cDMN lFPN cDMN0 lFPN cDMN2 lFPN cDMN4

IFOF_L (ICVF) IFOF_L (ODI) IFOF_R (ICVF) IFOF_R (ODI)

CR (Education) ForcepsMinor (ICVF) ForcepsMinor (ODI) GCAS

−4 −2 0 2 −4 −2 0 2
−2

.5 0.0 2.5 −2
.5 0.0 2.5

−2
.5 0.0 2.5 5.0 −6 −4 −2 0 2

−2
.5 0.0 2.5 −2 0 2 4 6

−4 −2 0 2 −4 −2 0 2 4
−2

.5 0.0 2.5 5.0 −2 0 2 4

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.0

0
0.2

5
0.5

0
0.7

5
1.0

0 0.0 0.1 0.2 0.3

0 10 20 30 0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.4 −1

0 −5 0 5

50 60 70 80 −2 0 2 4 6 −6 −4 −2 0 2 −2 0 2 4 6
0

1000
2000
3000

0
1000
2000
3000
4000

0
3000
6000
9000

0
1000
2000
3000
4000

0
1000
2000
3000

0
1000
2000
3000

0
5000

10000
15000

0
1000
2000
3000

0
5000

10000

0
2500
5000
7500

10000

0
1000
2000
3000

0
1000
2000
3000
4000

0
1000
2000
3000

0
3000
6000
9000

0
1000
2000
3000

0
3000
6000
9000

0
3000
6000
9000

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

0
5000

10000

Age cDMN dmDMN cDMN ECN cDMN mtDMN

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.4 0.5 0.0

0
0.2

5
0.5

0
0.7

5
1.0

0 0.0 0.1 0.2 0.3 0.4 0.5

0
500

1000
1500

0
2500
5000
7500

0
2500
5000
7500

10000

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

0
3000
6000
9000

Value

co
u

n
t

rs798507(GNA12) rs80024105(SYT1) rs80136977(ADCY10) rs80299807 rs8056290(PRKCB) Sex

rs78005227(SYT1) rs78268266(SYT1) rs79104808(SYT1) rs79334605(SYT1) rs79469272(SYT1) rs796354214

rs75411783(SYT1) rs75618936(SYT1) rs76863165(NA) rs77312623(SYT1) rs77433227(GNAQ) rs7786782(PRKAG2)

rs73355514(SYT1) rs73355516(SYT1) rs73355518(SYT1) rs73355541(SYT1) rs73355544(SYT1) rs74560629(SYT1)

rs73158188(PRKAG2) rs73353563(SYT1) rs73353583(SYT1) rs73353584(SYT1) rs73355503(SYT1) rs73355511(SYT1)

rs61418932(SYT1) rs62465540(NA) rs62468660(NA) rs67300523(SYT1) rs68161661(SYT1) rs6947064(PRKAG2)

rs369471693 rs3785383(PRKCB) rs3813755(ADCY7) rs4623969(SYT1) rs551714767 rs59601041(SYT1)

rs17046362(SYT1) rs17046363(SYT1) rs17046367(SYT1) rs1872691(BRD7 ADCY7) rs2049599(SYT1) rs2888788(PRKAG2)

rs10480299(PRKAG2) rs11515757(GNAQ) rs118186402(GNA14) rs141892450(GNA12) rs17005224(SYT1) rs17046359(SYT1)

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

e2e3(APOE) e3e3(APOE) e3e4(APOE) e4e4(APOE) rs10224002(PRKAG2) rs10254101(PRKAG2)

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

Freq

V
al

u
e

Cognitive Tests CR (Education) Demographics FPC IDPs Demographics SNPs

SLF_L (ICVF) SLF_L (ODI) SLF_R (ICVF) SLF_R (ODI)

mtDMN dmDMN rFPN cDMN rFPN dmDMN rFPN mtDMN

lFPN dmDMN lFPN ECN lFPN mtDMN lFPN rFPN

lFPN cDMN lFPN cDMN0 lFPN cDMN2 lFPN cDMN4

IFOF_L (ICVF) IFOF_L (ODI) IFOF_R (ICVF) IFOF_R (ODI)

CR (Education) ForcepsMinor (ICVF) ForcepsMinor (ODI) GCAS

−4 −2 0 2 −4 −2 0 2
−2

.5 0.0 2.5 −2
.5 0.0 2.5

−2
.5 0.0 2.5 5.0 −6 −4 −2 0 2

−2
.5 0.0 2.5 −2 0 2 4 6

−4 −2 0 2 −4 −2 0 2 4
−2

.5 0.0 2.5 5.0 −2 0 2 4

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.0

0
0.2

5
0.5

0
0.7

5
1.0

0 0.0 0.1 0.2 0.3

0 10 20 30 0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.4 −1

0 −5 0 5

50 60 70 80 −2 0 2 4 6 −6 −4 −2 0 2 −2 0 2 4 6
0

1000
2000
3000

0
1000
2000
3000
4000

0
3000
6000
9000

0
1000
2000
3000
4000

0
1000
2000
3000

0
1000
2000
3000

0
5000

10000
15000

0
1000
2000
3000

0
5000

10000

0
2500
5000
7500

10000

0
1000
2000
3000

0
1000
2000
3000
4000

0
1000
2000
3000

0
3000
6000
9000

0
1000
2000
3000

0
3000
6000
9000

0
3000
6000
9000

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

0
5000

10000

Age cDMN dmDMN cDMN ECN cDMN mtDMN

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.4 0.5 0.0

0
0.2

5
0.5

0
0.7

5
1.0

0 0.0 0.1 0.2 0.3 0.4 0.5

0
500

1000
1500

0
2500
5000
7500

0
2500
5000
7500

10000

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

0
3000
6000
9000

Value

co
u

n
t

rs798507(GNA12) rs80024105(SYT1) rs80136977(ADCY10) rs80299807 rs8056290(PRKCB) Sex

rs78005227(SYT1) rs78268266(SYT1) rs79104808(SYT1) rs79334605(SYT1) rs79469272(SYT1) rs796354214

rs75411783(SYT1) rs75618936(SYT1) rs76863165(NA) rs77312623(SYT1) rs77433227(GNAQ) rs7786782(PRKAG2)

rs73355514(SYT1) rs73355516(SYT1) rs73355518(SYT1) rs73355541(SYT1) rs73355544(SYT1) rs74560629(SYT1)

rs73158188(PRKAG2) rs73353563(SYT1) rs73353583(SYT1) rs73353584(SYT1) rs73355503(SYT1) rs73355511(SYT1)

rs61418932(SYT1) rs62465540(NA) rs62468660(NA) rs67300523(SYT1) rs68161661(SYT1) rs6947064(PRKAG2)

rs369471693 rs3785383(PRKCB) rs3813755(ADCY7) rs4623969(SYT1) rs551714767 rs59601041(SYT1)

rs17046362(SYT1) rs17046363(SYT1) rs17046367(SYT1) rs1872691(BRD7 ADCY7) rs2049599(SYT1) rs2888788(PRKAG2)

rs10480299(PRKAG2) rs11515757(GNAQ) rs118186402(GNA14) rs141892450(GNA12) rs17005224(SYT1) rs17046359(SYT1)

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

e2e3(APOE) e3e3(APOE) e3e4(APOE) e4e4(APOE) rs10224002(PRKAG2) rs10254101(PRKAG2)

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

Freq

V
al

u
e

Cognitive Tests CR (Education) Demographics FPC IDPs Demographics SNPs

SLF_L (ICVF) SLF_L (ODI) SLF_R (ICVF) SLF_R (ODI)

mtDMN dmDMN rFPN cDMN rFPN dmDMN rFPN mtDMN

lFPN dmDMN lFPN ECN lFPN mtDMN lFPN rFPN

lFPN cDMN lFPN cDMN0 lFPN cDMN2 lFPN cDMN4

IFOF_L (ICVF) IFOF_L (ODI) IFOF_R (ICVF) IFOF_R (ODI)

CR (Education) ForcepsMinor (ICVF) ForcepsMinor (ODI) GCAS

−4 −2 0 2 −4 −2 0 2
−2

.5 0.0 2.5 −2
.5 0.0 2.5

−2
.5 0.0 2.5 5.0 −6 −4 −2 0 2

−2
.5 0.0 2.5 −2 0 2 4 6

−4 −2 0 2 −4 −2 0 2 4
−2

.5 0.0 2.5 5.0 −2 0 2 4

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.0

0
0.2

5
0.5

0
0.7

5
1.0

0 0.0 0.1 0.2 0.3

0 10 20 30 0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.4 −1

0 −5 0 5

50 60 70 80 −2 0 2 4 6 −6 −4 −2 0 2 −2 0 2 4 6
0

1000
2000
3000

0
1000
2000
3000
4000

0
3000
6000
9000

0
1000
2000
3000
4000

0
1000
2000
3000

0
1000
2000
3000

0
5000

10000
15000

0
1000
2000
3000

0
5000

10000

0
2500
5000
7500

10000

0
1000
2000
3000

0
1000
2000
3000
4000

0
1000
2000
3000

0
3000
6000
9000

0
1000
2000
3000

0
3000
6000
9000

0
3000
6000
9000

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

0
5000

10000

Age cDMN dmDMN cDMN ECN cDMN mtDMN

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0 0.0 0.1 0.2 0.3 0.4 0.5 0.0

0
0.2

5
0.5

0
0.7

5
1.0

0 0.0 0.1 0.2 0.3 0.4 0.5

0
500

1000
1500

0
2500
5000
7500

0
2500
5000
7500

10000

0
1000
2000
3000

0
1000
2000
3000

0
1000
2000
3000

0
3000
6000
9000

Value

co
u

n
t

rs798507(GNA12) rs80024105(SYT1) rs80136977(ADCY10) rs80299807 rs8056290(PRKCB) Sex

rs78005227(SYT1) rs78268266(SYT1) rs79104808(SYT1) rs79334605(SYT1) rs79469272(SYT1) rs796354214

rs75411783(SYT1) rs75618936(SYT1) rs76863165(NA) rs77312623(SYT1) rs77433227(GNAQ) rs7786782(PRKAG2)

rs73355514(SYT1) rs73355516(SYT1) rs73355518(SYT1) rs73355541(SYT1) rs73355544(SYT1) rs74560629(SYT1)

rs73158188(PRKAG2) rs73353563(SYT1) rs73353583(SYT1) rs73353584(SYT1) rs73355503(SYT1) rs73355511(SYT1)

rs61418932(SYT1) rs62465540(NA) rs62468660(NA) rs67300523(SYT1) rs68161661(SYT1) rs6947064(PRKAG2)

rs369471693 rs3785383(PRKCB) rs3813755(ADCY7) rs4623969(SYT1) rs551714767 rs59601041(SYT1)

rs17046362(SYT1) rs17046363(SYT1) rs17046367(SYT1) rs1872691(BRD7 ADCY7) rs2049599(SYT1) rs2888788(PRKAG2)

rs10480299(PRKAG2) rs11515757(GNAQ) rs118186402(GNA14) rs141892450(GNA12) rs17005224(SYT1) rs17046359(SYT1)

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

e2e3(APOE) e3e3(APOE) e3e4(APOE) e4e4(APOE) rs10224002(PRKAG2) rs10254101(PRKAG2)

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0
1

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

0
1
2

Freq

V
al

u
e

Cognitive Tests CR (Education) Demographics FPC IDPs Demographics SNPs

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 3, 2025. ; https://doi.org/10.1101/2023.08.31.555645doi: bioRxiv preprint 

https://doi.org/10.1101/2023.08.31.555645
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

 
 
Supplementary Figure 6. Imputed Dataset (K-nearest neighbours using 3 neighbours in 
tidymodels) given that only 20.2% of our dataset is missing but 54% (14,151/26,227) of 
participants are deleted from our analysis in complete case analysis, we performed a 
sensistivity analysis with imputed data to understand how and if results differed substantially 
with more data. A) Subsequently using imputation data, same analaysis was performed and 
the combination of IDPs, AgeSex and CR came as best performing too in most algorithms as 
is the case for the complete case analysis (as in Figure 2). Subsequently, feature importance 
was assessed in the same way as in complete case analysis for top performing features. Please 
note, 17 features differed (8 SNPs only selected in imputed data analysis and 9 IDPs and SNPs 
only found in complet-case analysis, with 14 chosen in common). B) Mediation results using 
for top 9 most frequent important variables. C) In mediation analysis, rFPN-dmDMN 
connectivity was found as a significant in both complete case analysis and imputed data 
analysis ascertaining the robustness of findings.  
  

A

B                                                    C
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Appendix 

UK Biobank ID Fields used 
Demographic information and cognitive data 
f.34.0.0:Clinical_Birth_Year 
f.52.0.0:Clinical_Birth_Month 
f.53.2.0:Clinical_Date_Assessment 
f.31.0.0:Clinical_Sex 
f.845.0.0:Education_0 
f.845.1.0:Education_1 
f.845.2.0:Education_2 
f.20023.2.0:Cog_ReactionTime 
f.4282.2.0:Cog_NumericMemory 
f.20016.2.0:Cog_FluidIntelligence 
f.6348.2.0:Cog_TrailA 
f.6350.2.0:Cog_TrailB 
f.6373.2.0:Cog_MatrixPatterns 
f.21004.2.0:Cog_TowerRearr 
f.23324.2.0:Cog_SymbolSubs 
f.20197.2.0:Cog_PairedAssoc 
f.399.2.2:Cog_PairMatch 
MRI data 
f.25661.2.0:WM_ICVF_ForcepsMinor 
f.25662.2.0:WM_ICVF_IFOF_Left 
f.25663.2.0:WM_ICVF_IFOF_Right 
f.25671.2.0:WM_ICVF_SLF_Left 
f.25672.2.0:WM_ICVF_SLF_Right 
f.25688.2.0:WM_OD_ForcepsMinor 
f.25689.2.0:WM_OD_IFOF_Left 
f.25690.2.0:WM_OD_IFOF_Right 
f.25698.2.0:WM_OD_SLF_Left 
f.25699.2.0:WM_OD_SLF_Right 
The 25 components group-ICA spatial maps and connection edges are available online 
(http://www.fmrib.ox.ac.uk/ukbiobank).  
c7, c11, c15, c16, c20, c21, c29, c33, c34, c35, c106, c110, c111, c112,c114 
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