

1 **Locus coeruleus modulation of single-cell representation and population dynamics in the**
2 **mouse prefrontal cortex during attentional switching**

3
4 Marco Nigro¹, Lucas Silva Tortorelli¹, Machhindra Garad¹, Natalie E. Zlebnik^{2,3}, and Hongdian Yang
5^{1,3}

6
7 ¹ Department of Molecular, Cell and Systems Biology, ² Division of Biomedical Sciences, School of
8 Medicine, ³ Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
9

10 Correspondence: hongdian@ucr.edu

11 **Abstract**

12 Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental
13 contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of
14 pharmacology and lesion studies, the precise neurophysiological mechanisms that underlie
15 behavioral flexibility are still under active investigations. This work is aimed to determine the role of a
16 brainstem-to-prefrontal cortex circuit in flexible rule switching. We trained mice to perform a set-
17 shifting task, in which they learned to switch attention to distinguish complex sensory cues. Using
18 chemogenetic inhibition, we selectively targeted genetically-defined locus coeruleus (LC) neurons or
19 their input to the medial prefrontal cortex (mPFC). We revealed that suppressing either the LC or its
20 mPFC projections severely impaired switching behavior, establishing the critical role of the LC-mPFC
21 circuit in supporting attentional switching. To uncover the neurophysiological substrates of the
22 behavioral deficits, we paired endoscopic calcium imaging of the mPFC with chemogenetic inhibition
23 of the LC in task-performing mice. We found that mPFC prominently responded to attentional
24 switching and that LC inhibition not only enhanced the engagement of mPFC neurons but also
25 broadened single-neuron tuning in the task. At the population level, LC inhibition disrupted mPFC
26 dynamic changes and impaired the encoding capacity for switching. Our results highlight the profound
27 impact of the ascending LC input on modulating prefrontal dynamics and provide new insights into
28 the cellular and circuit-level mechanisms that support behavioral flexibility.
29

30
31 **Introduction**

32 The ability to adjust behavioral strategies in response to changing external contexts and internal
33 needs, termed behavioral/cognitive flexibility, requires adaptive processing of environmental cues and
34 internal states to guide goal-oriented behavior, and is vital to the survival of organisms. Inappropriate
35 behavioral adjustments, such as deficits in modifying responses to a rule change, are hallmarks of
36 impaired executive functions and are observed in a broad spectrum of psychiatric disorders^{1,2}.
37

38 Decades of research have strived to uncover the neural substrates of behavioral flexibility (e.g., see
39 reviews¹⁻⁶). Set shifting, a type of rule switching that requires attending to or ignoring a stimulus
40 feature in a context-dependent way, is commonly used to assess flexibility. The Wisconsin Card
41 Sorting Test, the Intra-Extra Dimensional Set Shift Task and their analogs have been widely used to
42 test the ability of attentional switching in human and animal subjects⁷⁻¹⁴. Importantly, prior research
43 using lesion and pharmacology approaches has provided compelling evidence that the medial PFC
44 (mPFC) plays an important role in set shifting (e.g.,^{5,15-19}). The mPFC interacts with various brain
45 regions to support cognitive functions^{2,20-23}, and lesion and pharmacology work has pointed to the
46 importance of the locus coeruleus-norepinephrine (LC-NE) input²⁴⁻²⁷. However, the precise cellular
47 and circuit mechanisms underlying LC-NE modulation of the mPFC in the context of set shifting are
48 not well understood.
49

50 We trained mice to perform a set-shifting task, where they learned to switch attention to discriminate
51 complex sensory cues. Inhibiting genetically-defined LC-NE neurons or their projections to the mPFC
52 severely impaired switching behavior, highlighting the importance of the LC-mPFC circuit. Next, to
53 reveal the neurophysiological substrates, we combined chemogenetic inhibition of the LC with calcium
54 imaging of the mPFC in task-performing mice. We discovered that mPFC prominently responded to
55 attentional switching from single cell to population levels, and that LC inhibition dramatically affected

56 mPFC processing across several domains: 1) a greater proportion of mPFC neurons became
57 responsive to switching-related variables; 2) the tuning of individual neurons was broadened; 3)
58 population dynamics associated with attentional switching was disrupted; and 4) population encoding
59 of switching was impaired. Together, our data provide new cellular and circuit-level insights into LC-
60 NE modulation of mPFC activity that support attentional switching.
61

62 Results

63 We trained mice to perform the freely-moving attentional set-shifting task ^{17,28-30} based on procedures
64 described in previous studies ^{31,32} (Methods). In brief, mice learned to discriminate complex sensory
65 cues by associating a relevant stimulus feature to reward (Fig. 1a-c). In most stages of the task (simple
66 discrimination, compound discrimination, intra-dimensional reversal, intra-dimensional shift), the rules
67 were different but the relevant stimulus remained in the perceptual dimension of digging medium. In
68 the stage of extra-dimensional shift, the relevant stimulus shifted to the dimension of odor. Mice
69 learned each rule change in a single session, but typically took more trials to complete extra-
70 dimensional shift (e.g., trials to reach criterion: intra-dimensional reversal (IDS) vs. extra-dimensional
71 shift (EDS), 10 ± 1 trials vs. 17 ± 1 trials, $P < 1e-3$, Fig. 1c) ^{28,32-34}. According to learning theories, the
72 improved performance in intra-dimensional reversal (fewer trials to reach performance criterion when
73 all cues are novel but the relevant stimulus feature remains in the same perceptual dimension as
74 previous rules) strongly suggests that mice attend to the perceptual dimension of digging medium
75 while ignoring the perceptual dimension of odor, and that solving extra-dimensional shift involves a
76 switch in the attended perceptual dimension (attentional switching), rather than purely responding to
77 specific exemplar cues ^{9,35}. Our current work is focused on revealing the neural substrates underlying
78 such attentional switching across perceptual dimensions.
79

80 **Inhibiting LC-NE neurons or their input to the mPFC impairs switching behavior.** First, we
81 wanted to determine whether the LC-mPFC circuit was required for attentional switching. Previous
82 studies suggested the importance of this circuit by lesioning ascending NE fibers or local
83 pharmacology in the mPFC ^{24,25,27,34,36}, which broadly targeted NE signaling. To selectively target and
84 perturb genetically-defined LC-NE neurons, we employed a transgenic approach to conditionally
85 express the Cre-dependent inhibitory DREADD receptor hM4Di in the LC of DBH-Cre mice (Test
86 group, Fig. 1d). Dopamine Beta Hydroxylase (DBH) is a key enzyme for NE synthesis and
87 downstream of dopamine. Thus, DBH serves as a specific marker for NE-synthesizing neurons.
88 Control group mice were DBH- littermates and received Clozapine N-oxide (CNO) administrations the
89 same way as test group (immediately after IDS and 60 minutes prior to EDS). DREADD inhibition of
90 LC-NE neurons impaired switching behavior in EDS as test group mice took more trials to reach
91 performance criterion (Fig. 1e, trials to reach performance criterion: control vs. test, 15 ± 1 trials vs.
92 25 ± 2 trials, $P = 0.020$). Similar behavioral effects were observed when a second control group mice
93 were DBH-Cre expressing hM4Di but received saline injections (Supp. Fig. 1a). Together, these data
94 strongly implicate that the behavioral impairment is specific to LC inhibition, instead of nonspecific
95 effects of genetic background, viral expression, or DREADD agonist.
96

97 LC-NE neurons innervate the mPFC, but the specific role of their direct input has not been fully
98 explored. To address this question, we expressed hM4Di in the LC (as in Fig. 1d) and locally infused
99 CNO in the mPFC via bilateral cannula implants to perturb the terminals of LC neurons (Fig. 1f, g, as
100 in ^{37,38}). This approach allows for targeted and specific perturbation of LC-NE input to the mPFC.
101 Control group mice (DBH-) also had cannula implants and received CNO injections in the same
102 manner. Suppressing LC-NE terminals in the mPFC also induced pronounced behavioral deficits, with
103 test group mice requiring more trials to switch to the new perceptual dimension (Fig. 1h, trials to reach
104 the criterion, control vs. test: 19 ± 1 trials vs. 26 ± 2 trials, $P = 0.024$). Importantly, task performance
105 across different control groups was not different (control group in Fig. 1c vs. Fig. 1e, $P = 0.48$; control
106 group in Fig. 1c vs. Fig. 1h, $P = 0.46$). The behavioral impairment of DREADD inhibition was also
107 robust against this insignificant variability across control groups (e.g., LC inhibition group in Fig. 1e
108 vs. control group in Fig. 1c, $P < 1e-3$; terminal inhibition group in Fig. 1h vs. control group in Fig. 1c,
109 $P < 1e-3$). Our results add further to recent gain-of-function work ³⁹, providing compelling evidence
110 for the critical involvement of the LC-mPFC circuit in attentional switching.

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

LC inhibition enhances mPFC engagement and broadens single-neuron tuning. To assess the neurophysiological effects of LC-NE signaling on mPFC activity, we simultaneously induced the expression of Gi-DREADD in the LC and GCaMP6f in the mPFC (Fig. 2a-c). We monitored mPFC activity while inhibiting LC-NE neurons in task-performing mice (432 neurons from 4 test mice, $89.6 \pm 4.0\%$ TH+ neurons in the LC expressing hM4Di). Control mice (DBH-) expressed GCaMP6f in the mPFC and received agonist injections in the same manner (593 neurons from 4 control mice). DREADD agonist CNO was systemically administered to both control and test group mice immediately after IDS and 60 minutes prior to EDS, and test mice exhibited similar behavioral impairment (Supp. Fig. 1b). We evaluated the overall effect of LC inhibition on calcium activity of mPFC neurons. The frequency and amplitude of calcium transients did not differ between test and control groups, but the test group exhibited a small (~5%) reduction in transient duration (Supp. Fig. 2). Importantly, control mice (pooled from Fig. 1e, 1h, Supp. Fig. 1a, 1b) took more trials to complete EDS than IDS (Trials to criterion: IDS vs. EDS, 10 ± 1 trials vs. 16 ± 1 trials, $P < 1e-3$, Supp. Fig. 1c), further supporting the validity of attentional switching (as in Fig. 1c).

Next, we examined how single-neuron response during attentional switching was affected by LC inhibition. Following recent work^{40,41}, we used the time of choice (digging) to infer decision formation and classified the representation of individual mPFC neurons based on their pre-choice activity. We first presented the results from the control group. We identified subgroups of mPFC neurons whose activity was tuned to different task-related variables, such as choice, trial history and the putative switch of attention (Fig. 2d, Methods), consistent with a series of previous work (e.g.,⁴²⁻⁴⁸). Since the rule change was not cued, at the beginning of extra-dimensional shift, animals followed the previous rule and attended to the perceptual dimension of digging medium and ignored odor cues²⁸. Through trial-and-error learning animals eventually switched their attention to the perceptual dimension of odor^{42,44}. Following prior studies^{49,50}, we inferred the early mixed correct and incorrect trials and the late set of consecutive correct trials as different states of switching behavior (Early: trial-and-error learning; Late: rule following, Fig. 2e). Notably, more neurons responded to switch than to choice or trial history (fraction of neurons, switch vs. choice: 17% (102/593) vs. 10% (59/593), $P < 1e-3$; switch vs. history: 17% (102/593) vs. 6% (34/593), $P < 1e-3$, chi-squared test, Fig. 2f), suggesting the importance of representing this task-related variable in the mPFC. We further noted that a considerable fraction of mPFC neurons responded to more than one task-related variable (mixing tuning^{42,45,51-53}, Supp. Fig. 3). Data from individual mice were in Supp. Table 1). To better determine choice-related behavior, a second side-view camera was set up, and the temporal difference between digging onset estimated from the two cameras was minimal (Supp. Fig. 4), confirming the fidelity of the timestamps used for data analysis.

During LC inhibition, we also observed more mPFC neurons tuned to switch (fraction of neurons in the test group, switch vs. choice: 25% (106/432) vs. 17% (72/432), $P = 4.2e-3$; switch vs history: 25% (106/432) vs. 13% (55/432), $P < 1e-3$, chi-squared test). More importantly, in comparison to the control group, LC inhibition engaged a greater fraction of mPFC neurons responding to task-related events (Fig. 2f, control vs. test, choice responsive: 10% (59/593) vs. 17% (72/432), $P = 1.5e-3$; history responsive: 6% (34/593) vs. 13% (55/432), $P < 1e-3$; switch responsive: 17% (102/593) vs. 25% (106/432), $P = 3.9e-3$; overall fraction of responsive neurons: 27% (159/593) vs. 40% (172/432), $P < 1e-3$, chi-squared test). The fraction of mixed-tuning neurons was also enhanced with LC inhibition (20% (31/159) vs. 32% (55/172), $P = 9.7e-3$). Our results show that LC inhibition increases mPFC engagement in the task and broadens the tuning of individual neurons.

LC inhibition impedes dynamic changes in population activity during switching. Our single-neuron analysis suggests the importance of encoding the switch of attention in the mPFC as more neurons were tuned to this parameter in both control and test groups (Fig. 2f, Supp. Table 1). Neuronal ensembles have been proposed to be the functional unit of the nervous system⁵⁴⁻⁵⁷. They can better represent information than single neurons^{46,58,59}, especially in higher-order association areas where single neurons exhibit mixed tuning^{51,60,61}. Thus, we sought to determine whether and how attentional switching was represented at the population level. We first employed a dimensionality-reduction

166 approach to assess mPFC population dynamics (Methods). Specifically, we examined whether mPFC
167 dynamic processes represent the putative switch of attention. Principle component analysis (PCA)
168 was applied to population activity of mPFC neurons around the time of choice in the early and late
169 switching states (Fig. 2e), and the degree of separation between the resulting low-dimensional state
170 vectors was quantified. In the control group mice, we identified an overall prominent separation
171 between the two population vectors representing early and late states (Fig. 3a, b, gray vs. black
172 traces), strongly suggesting that a shift in population dynamics is associated with attentional shifting
173 across perceptual dimensions. The vector separation also exhibited transient fluctuations prior to
174 choice, first increasing and then decreasing (Fig. 3c, black), suggesting a dynamic decision-related
175 population encoding process underlying the behavioral transitions. Overall, our results suggest that
176 mPFC dynamics reflect the changes in switching behavior and learning of the new rule.
177

178 How would LC-NE input affect mPFC dynamics during switching? In test group mice, the same
179 dimensionality-reduction analysis revealed that the low-dimensional population state vectors (early
180 and late) were less separable (Fig. 3a, b, light and dark red traces), and the distance between the two
181 state vectors was greatly reduced compared to the control group (Fig. 3c, control vs. test, 12.8 ± 0.05
182 vs. 8.9 ± 0.03 , $P < 1e-3$). In addition, LC inhibition prominently dampened the pre-choice dynamic
183 fluctuations (Fig. 3c, d. Peak, control vs. test: 4.1 ± 0.14 vs. 2.0 ± 0.07 , $P < 1e-3$). LC inhibition also
184 rendered the population state vectors more similar to one another (Fig. 3e, Supp. Fig. 5. Correlation
185 coefficient between early and late state vectors, control vs. test: 0.15 ± 0.03 vs. 0.95 ± 0.01 , $P < 1e-3$).
186 Together, our results show that LC inhibition dampens and impedes mPFC dynamics during
187 switching.
188

189 **LC inhibition impairs population encoding of switching.** To gain further insights into mPFC
190 representation of attentional switching and the effects of LC inhibition, we turned to the hidden Markov
191 model (HMM), which has been successfully implemented to link neuronal activity patterns to animal
192 behavior (e.g., ^{48,62-64}). In brief, we assume that population activity vectors, represented as calcium
193 signals from simultaneously recorded neurons, are adjacent to one another in the neuronal state
194 space when the same behavior is executed. We clustered mPFC population vectors (5-s prior to
195 choice) into a set of discrete states (hidden states), and assessed the relationship between these
196 neuronal states and the observed behavioral patterns/states of the mice. Specifically, the behavioral
197 states are the early rule learning state and the late rule-following state (as depicted in Fig. 2e). We
198 identified low-dimensional factors from the high-dimensional population vectors, and fitted HMM to
199 these factors to infer the hidden state of each trial (Methods). We quantified model performance by
200 comparing each trial's neuronal state to the behavioral state with two measures: 1) the overall
201 accuracy of predicting the state of individual trials (early or late) in each session; and 2) the accuracy
202 of predicting where state transition occurred (the onset of late state: switch point, Fig. 2e). Both
203 measures showed that model prediction was less accurate when LC was inhibited (Fig. 4a, b, state
204 prediction accuracy, control vs. test: $89 \pm 2\%$ vs. $74 \pm 3\%$, $P < 1e-3$; Δ switch point, control vs. test: -
205 4 ± 1 trials vs. -8 ± 1 trials, $P < 1e-3$).
206

207 We further assessed whether mPFC activity can track animals' choices on each trial (correct vs.
208 incorrect). We applied a generalized liner model (GLM) to predict the upcoming choice on individual
209 trials. Specifically, we included the first 3 principle components of pre-choice population activity as
210 regressors (Methods). We discovered that LC inhibition reduced the accuracy of trial-by-trial choice
211 predictions (Fig. 4c, d, control vs. test: $75 \pm 1\%$ vs. $68 \pm 1\%$, $P < 1e-3$). Video analysis found no
212 significant difference in overall locomotion or reaction time between test and control group mice (Supp.
213 Fig. 6), strongly implicating that the observed behavioral and neurophysiological effects were not due
214 to apparent changes in motivation or motor functions. Together, our data show that LC inhibition
215 produces a marked deficiency in mPFC population encoding of attentional switching processes,
216 suggesting that impaired mPFC dynamics and encoding capacity underlie the behavioral deficits.
217

218 **Discussion**

219 Our current work is aimed to uncover the neurophysiological substrates underlying attentional
220 switching (set shifting) processes. We trained mice to switch attention to discriminate complex

221 stimulus features comprising perceptual dimensions of digging medium and odor. Inhibiting
222 genetically-defined LC-NE neurons or their projections to the mPFC similarly impaired switching
223 behavior, highlighting the importance of the LC-mPFC circuit. To reveal the neurophysiological
224 substrates, we combined chemogenetic inhibition of the LC with calcium imaging of the mPFC in task-
225 performing mice. We discovered that the putative switch of attention was prominently represented in
226 the mPFC, and LC inhibition dramatically altered mPFC activity from single cell to population levels.
227 A greater proportion of mPFC neurons became responsive to task-related variables, and the tuning
228 of these neurons was broadened. Furthermore, LC inhibition disrupted mPFC population dynamics
229 and impaired the encoding capacity of switching. Together, our data provide new cellular and circuit-
230 level insights into LC-NE modulation of mPFC activity during attentional switching.
231

232 Our analysis revealed that LC inhibition enhanced the engagement of mPFC neurons in the task. This
233 observation may appear counterintuitive at first glance, but amplification of neuronal responses in a
234 brain region could induce the transmission of noisy information to downstream circuits⁶⁵⁻⁶⁸, impairing
235 brain functions. Furthermore, the link between broadened tuning and impaired switching behavior is
236 reminiscent of the relationship between the changes in tuning properties of sensory neurons and
237 perceptual behavior (e.g.,⁶⁹⁻⁷²). It is plausible that similar to sensory areas, an appropriate level of
238 mixed tuning in association areas is optimal for population coding of cognitive processes⁶¹, and that
239 too broad tuning would deteriorate population representations of task- and decision-related features.
240 This prediction needs to be tested in future computational work.
241

242 Given that inhibiting LC-NE terminals impaired switching behavior in a similar manner as inhibiting
243 LC-NE neurons (Fig. 1e, h), we interpret the observed neurophysiological effects in the mPFC during
244 LC inhibition (Fig. 2-4) as at least partially mediated by the direct LC-NE input. NE exerts both
245 excitatory and inhibitory influences through distinct types of adrenergic receptors expressed in
246 different cell types⁷³. By preferentially binding to specific types of adrenergic receptors in a
247 concentration-dependent way, NE is proposed to mediate downstream neuronal activity and behavior
248 in a non-linear manner²¹. Interestingly, a recent study in the orbital prefrontal cortex showed that the
249 reduction of NE and downregulation of alpha-1 receptors led to decreased activity in GABAergic
250 interneurons⁷⁴. In addition, prominent gamma synchrony between bilateral mPFC was important to
251 support set shifting and population dynamics^{40,41}. It is thus plausible that the lack of LC-NE input
252 diminishes the engagement of GABAergic interneurons in the mPFC, leading to elevated noisy
253 neuronal activity, broadened tuning, and reduced population representations. Importantly, LC-NE
254 neurons can co-release other neurotransmitters, such as dopamine and neuropeptides^{73,75,76}. Future
255 studies are needed to better delineate the involvement of specific neurotransmitters, cell types and
256 receptors in flexible decision making.
257

258 Our analysis suggests that attentional switching was prominently represented at both single-cell and
259 population levels in the mPFC, and that LC inhibition led to pronounced changes in neuronal coding
260 and population dynamics. Abrupt network transitions have been observed in the mPFC of rats
261 performing set-shifting or probabilistic alternative choice task^{48,77}. Disrupted mPFC encoding or
262 population activity patterns were reported when perturbing thalamic drive or callosal PV projections
263 in mice^{48,77}. Together, these findings underscore a key insight: while many brain circuits can influence
264 mPFC function, their effects may converge onto a small set of general operational principles, such as
265 modulating the tuning properties of individual neurons and/or orchestrating ensemble dynamic
266 transitions during complex cognitive processes. Identifying these principles is vital for advancing our
267 understanding of how prefrontal cortex contributes to higher-order cognition and how its functions can
268 be affected in various contexts.
269

270 In both intra-dimensional shift and extra-dimensional shift, all cues are novel but the rules differ.
271 Learning theories posit that improved performance in intra-dimensional shift (fewer trials to reach
272 performance criterion when all cues are novel but the relevant stimulus feature remains in the same
273 perceptual dimension, e.g., digging medium in our task) is due to subject's ability to readily attend to
274 the superordinate features of sensory cues (perceptual dimensions - digging medium vs. odor), and
275 that solving the extra-dimensional shift rule requires a switch in the attended perceptual dimension,

276 rather than merely responding to individual novel cues^{9,35}. Thus, the behavioral changes observed in
277 extra-dimensional shift (more trials to reach performance criterion) reflect the adaptive processes
278 underlying the reallocation of attention, instead of novelty response. Based on this understanding, our
279 current work builds on a longstanding tradition in the field that uses a single extra-dimensional shift
280 to test attentional switching (e.g.,^{15,17,24,27,28}). In this context, animals are naïve to the rule change and
281 would solve the problem 'on the fly', without relying on prior learning or knowledge. Our findings shed
282 new light on how the LC-mPFC circuit supports such *de novo* attentional switching processes.
283 Furthermore, limited evidence suggests that solving the switching problem 'on the fly' (initial encounter)
284 or based on experience/internal models (repeated testing) involves different mechanisms¹⁹. A
285 comprehensive comparison between these settings could provide valuable insights and further
286 advance our understanding of cognitive flexibility.
287

288 Our work contributes to the growing interest in revealing neural mechanisms underlying more natural,
289 ethologically relevant behavior^{78,79}. Admittedly, such behavioral paradigms may not afford the level
290 of task control more commonly seen in restrained, operant paradigms. Nevertheless, the challenge
291 of dissociating movement-related signal from sensory- or decision-related signal is present not only
292 in freely-moving, but also restrained settings⁸⁰⁻⁸³. Comprehensive behavioral tracking and motif
293 analysis (e.g.,^{84,85}) will help to identify whether specific behavioral patterns are associated with
294 attentional switching behavior. Ultimately, cognitive processes are not independent from sensory or
295 motor processes. Cognition, perception and action may be implemented in a distributed rather than
296 isolated manner^{79,80,86}.
297

298 **Methods**

299

300 *Surgery*

301

302 All experimental procedures were approved by the UC Riverside Animal Care and Use Committee
303 (AUP20220030). Mice of mixed sex, aged 8-16 weeks were included in the study. Mice were
304 C57BL/6J and DBH-Cre (B6.FVB(Cg)-Tg(Dbh-cre)KH212Gsat/MmuCD, 036778-UCD, MMRRC),
305 singly housed in a vivarium with a reversed light-dark cycle (9a-9p). All surgical procedures were
306 conducted under aseptic conditions, maintaining body temperature with a heating pad. Anesthesia
307 was induced using a mixture of isoflurane (2-3%), and mice were positioned within a precise digital
308 small-animal stereotaxic apparatus (Kopf Instruments and RWD). Before surgery, hair was gently
309 removed from the dorsal head area, ophthalmic ointment was applied to protect the eyes, and the
310 incision site was sanitized with betadine. All measurements were referenced to bregma for
311 virus/implant surgeries. Viral injections were accomplished using a microinjection needle coupled with
312 a 10 µl microsyringe (WPI). The virus was delivered at a controlled rate of 0.03 µl/min via a
313 microsyringe pump (WPI). Following the completion of the injection, a 10-minute interval was allowed
314 before slowly withdrawing the needle. Subsequent to viral infusions, nylon sutures were used to close
315 the incision. Animals received 0.10 mg/kg buprenorphine and 0.22% enofloxacin and were placed in
316 their respective home cages over a heating pad at 37°C. After full recovery from anesthesia, the
317 subjects were returned to vivarium.
318

319 For LC inhibition, dopamine-β-hydroxylase (DBH)-Cre mice received bilateral injections of AAV
320 carrying Gi-DREADD receptors (AAV5-EF1a-DIO-hM4D(Gi)-mCherry) into the LC (AP: -5.1, ML: 0.95,
321 DV: -3.5 and -3.7 mm, 0.3 µl each depth). For calcium imaging, AAV containing GCaMP6f (AAV1-
322 Syn-GCaMP6f-WPRE-SV40) was injected into the medial prefrontal cortex (Prelimbic; AP: 1.8, ML:
323 0.3, DV: -2.0 and -2.4 mm, 0.3 µl). Following injections, a 30-gauge needle was inserted to create
324 space and reduce tissue resistance to facilitate lens insertion; however, no tissue was aspirated. A
325 gradient refractive index lens (GRIN lens, Inscopix) with a diameter of 0.5 mm and approximately 6
326 mm in length was gradually lowered through the craniotomy, allowing tissue decompression. This
327 lens was positioned to target AP: -1.8, ML: 0.3, DV: 2.2 mm. The same coordinates were applied for
328 the cannula implantation used in LC terminal inhibition. Lens implants were securely attached to the
329 skull using a layer of adhesive cement (C&B Metabond, Parkell), followed by dental cement (Ortho-
330 Jet, Lang Dental). To protect the lens, a layer of silicone rubber was applied as a protective cover.

331

332 Following virus incubation, mice were once again anesthetized under isoflurane and securely
333 positioned in the stereotaxic setup. Baseplates were affixed around the GRIN lens to provide
334 structural support for the attachment of the miniaturized microscope. The top surface of the exposed
335 GRIN lens was meticulously cleaned using a cotton-tipped applicator dipped in a solution of 15%
336 isopropyl alcohol diluted with ddH₂O. A miniaturized microscope, equipped with a single-channel
337 epifluorescence and a 475-nm blue LED (Inscopix), was then carefully positioned over the implanted
338 GRIN lens. Adjustments were made along the dorsal-ventral axis to achieve the optimal focal plane
339 for imaging. Subsequently, the microscope/baseplate assembly was secured in place using adhesive
340 cement. The microscope was detached from the baseplates, and a final layer of dental cement was
341 applied to prevent light leakage. A protective plate was placed over the implant until imaging sessions.
342 Mice were singly housed after lens implant.

343

344 *Behavior and data acquisition*

345

346 To assess flexible decision-making in freely moving mice, we adopted the 5-stage testing paradigm
347 of the attentional set-shifting task (AST)^{31,32}. Two weeks before training, mice were food restricted
348 (85% of initial weight) and handled by the experimenter for 5-7 days. Next, mice were acclimated to
349 the behavioral box (25 x 40 cm) and experimental setup for 3-4 days, followed by a brief training
350 session to stimulate the innate burrowing/digging behavior to retrieve food reward from the ramekins.
351 Two ramekins were placed at two corners of the behavioral box, both containing 25 mg of cheerios.
352 Throughout the training session the reward was gradually buried in clean home cage bedding. In each
353 trial mice were allowed 3-4 minutes to explore. Mice were considered well trained once they could
354 consistently dig and retrieve the reward from both locations for 15-20 trials.

355

356 The AST consisted of the following stages: 1) simple discrimination (SD), in which animals choose
357 between two digging mediums associated with distinct textures (first dimension), only one of the two
358 stimuli predicts food reward; 2) compound discrimination (CD), in which a second stimulus dimension
359 (two odor cues) is explicitly introduced. Each odor cue is randomly paired with a digging medium in
360 every trial, but the reward is still predicted as in SD; 3) intra-dimensional reversal (REV), which
361 preserves the task-relevant dimension (digging medium) but swaps cue contingencies; 4) intra-
362 dimensional shift (IDS), which preserves the task-relevant dimension (digging medium), but replaces
363 all four cues with novel ones (a new digging medium predicts reward); 5) extra-dimensional shift
364 (EDS), which swaps the previous task-relevant and task-irrelevant dimensions with all cues replaced
365 (a new odor cue predicts reward). All stages were performed within a single day, lasting 3-4 hours. In
366 each trial, the ramekin associated with the relevant stimulus contained a retrievable reward. To avoid
367 the possibility that mice used food odor cues to solve the task, the other ramekin contained a non-
368 retrievable reward (trapped under a mesh wire at the bottom). The two ramekins were placed
369 randomly in the two locations every trial. Mice were allowed to complete a trial (dig one ramekin)
370 within 3 minutes. Once mice started digging, the other ramekin was immediately removed from the
371 behavioral box. To reach the criterion the animal has to dig in the correct ramekin six times
372 consecutively and correctly rejecting the incorrect ramekin on at least two occasions.

373

374 An overhead CCD camera (Basler acA1300-200um) was set to capture behavior at 20 Hz, controlled
375 by Pylon Viewer Software. Video and calcium recordings were synchronized via a common TTL pulse
376 train (Arduino). Behavioral annotations were done manually post hoc. On the recording day, mice
377 were attached to the miniaturized microscope. Grayscale images were collected at 20 frames per
378 second using 0.01 mW/mm² of excitation light. Snout, head, tail, and ear tracking were measured
379 using DeepLabCut⁸⁷. The network was initially trained with 100 uniformly distributed frames from 5
380 videos, followed by an additional iteration to rectify outlier detections. The measurements for distance
381 and speed were computed using the head, where the likelihood of accuracy exceeded 95 percent.
382 After the test, animals were allowed to access food and water *ad libitum* for 3 days before to be
383 transcardially perfused. Following dissection, brains were post-fixed for 24 h at 4°C in 4% PFA, and
384 sectioned for immunohistochemistry to label TH+ neurons. Specifically, brain sections containing the
385 LC were incubated with a rabbit anti-Tyrosine Hydroxylase (TH) primary antibody (Thermo Fisher,

386 Cat# OPA1-04050; 1:1000), followed by incubation with a goat anti-rabbit IgG secondary antibody
387 conjugated to Alexa Fluor 488 or 594 (Thermo Fisher, Cat# A32731 or A32740; 1:1000). Sections
388 were mounted using DAPI-containing mounting medium (Vector Laboratories).

389
390 *Locus coeruleus inactivation*
391

392 On the test day, Clozapine-N-oxide (CNO) was freshly prepared for systemic or local infusions. For
393 systemic injection we used a concentration of 0.03 mg/kg to minimize potential confound^{88–90}. CNO
394 was injected immediately after IDS and 60 min before EDS test in both test (Gi-DREADD) and control
395 (DBH-) group mice. Maximal effects of systemic CNO activation were reported to occur after 30
396 minutes and last for at least 4–6 hours^{91–93}. A second control group mice (DBH-Cre expressing Gi-
397 DREADD) received saline injections in the same manner. For LC terminal inhibition we used a CNO
398 concentration of 0.5 mM⁹⁴ diluted in cortex buffer. Mice were bilaterally implanted with stainless steel
399 cannula guide (26 gauge; RWD) targeting the mPFC. Dummy cannulas were used to fill the guide
400 and removed only during the injection period. CNO was infused at a rate of 0.03 μ l/min. After infusion,
401 injecting cannulas were left in place for 5 min to allow drug diffusion.

402
403 *Image processing*
404

405 Image processing was executed using Inscopix data processing software (version 1.6), which
406 includes modules for motion correction and signal extraction. Prior to data analysis, raw imaging
407 videos underwent preprocessing, including a $\times 4$ spatial down sampling to reduce file size and
408 processing time. No temporal down sampling was performed. The images were then cropped to
409 eliminate post-registration borders and areas where cells were not visible. Prior to the calculation of
410 the dF/F₀ traces, lateral movement was corrected. For ROI identification, we used a constrained non-
411 negative matrix factorization algorithm optimized for endoscopic data (CNMF-E) to extract
412 fluorescence traces from ROIs. The detected ROIs were then manually evaluated based on neuronal
413 morphology, ensuring adequate separation from neighboring cells. We identified 128 ± 31 neurons
414 after manual selection, depending on recording quality and field of view (number of identified neurons,
415 control: 153, 260, 156, 24; test: 74, 240, 48, 70).

416
417 *Single cell analysis*
418

419 Calcium signals for each ROI were z-scored and aligned to behavioral events (i.e., trial start, digging)
420 using MATLAB (MathWorks). In order to classify neuronal representations of different task-related
421 variables, we performed Receiver-Operating-Characteristic (ROC) analysis⁹⁵ on the activity of each
422 neuron prior to choice. Calcium traces were z-scored on a per-neuron basis across the entire session.
423 For each neuron, switch representation was defined as significant calcium responses between early
424 (trial-and-error rule learning) and late (rule-following) trials during a pre-choice time window (-5 to 0
425 s). Similar analysis was performed to classify trial history encoding, comparing calcium activity during
426 the same time window (-5 to 0 s from choice) after correct trials against after incorrect trials; and
427 choice encoding, comparing calcium activity (-5 to 0 s from choice) when the upcoming choice on the
428 current trial is correct or incorrect. A neuron was classified as responsive if its activity showed a
429 significant difference ($p < 0.05$) between two conditions within the defined time window in the ROC
430 analysis.

431
432 *Dimensionality reduction*
433

434 We concatenated neuronal activity across recordings, and constructed population vector in the early
435 and late states by averaging calcium signals from all recorded neurons in all trials of a given state (in
436 50-ms bins, without overlap) over a period of ten seconds centered at the choice point (digging).
437 These calcium values were extracted from 80% of recorded neurons randomly selected. This process
438 was reiterated 20 times to account for the inherent variability in the dynamics of the population vector.
439 The resultant high-dimensional trajectories were smoothed and embedded into a lower-dimensional
440 space through principal component analysis (PCA). The explained variance was calculated for the

441 first six principal components, which collectively accounted for over 80% of the total variance.
442 Projections into a low-dimensional space ($n = 3$) were generated for visualization purposes.
443 Additionally, to evaluate the degree of similarity between state vectors, Pearson's correlation was
444 computed for the time series of individual principal components. Subsequently, these correlation
445 coefficients were averaged to derive an overall measure of vector similarity.
446

447 *Hidden Markov model*

448

449 Following prior work (e.g., ^{62–64}), we assume population neuronal activity can be clustered into two
450 distinct (hidden) states, corresponding to the early learning state and the late learned state as
451 observed in mouse behavior (Fig. 2e). For each trial, calcium activity from simultaneously recorded
452 neurons was segmented into non-overlapping 50-ms windows and averaged over the 5-s period
453 preceding the animal's choice (digging). Principal component analysis (PCA) was applied to identify
454 low-dimensional representation of population activity of each trial. Based on these PCs, K-means was
455 applied to group trials into clusters, initializing the parameters for HMM. The core assumption was
456 that activity vectors corresponding to the same behavioral state would cluster together in the neuronal
457 state space. An HMM was then fitted to estimate emission and transition probabilities between
458 states. To ensure robustness, the clustering and modeling process was repeated 1000 times, with
459 each iteration consisting of a randomly selected 40% of neurons. Model parameters were optimized
460 using the Baum-Welch algorithm on 90% of the data, and performance was tested on the remaining
461 10% using the Viterbi algorithm ⁹⁶ to infer the most likely sequence of hidden states. To account for
462 the potential confound that different number of trials affect model performance (LC inhibition typically
463 required more trials than the control condition), we used a bootstrapping method to balance trial
464 numbers. Specifically, we matched the total number of trials in each session to the highest possible
465 number (31 trials).
466

467 *Generalized linear model*

468

469 We conducted a logistic regression analysis on the population vectors to predict current trial outcomes
470 (correct or incorrect) based on population activity patterns. To construct the population vector for each
471 session, we initially computed the average activity of all recorded neurons in the 5-s window prior to
472 choice. We then randomly selected 40% of neurons and applied principal component analysis. The
473 first three principal components were retained as predictors for the regression model. We also
474 matched trial numbers, following the methodology described earlier for HMM. To address variability
475 and ensure robustness, we conducted 1000 bootstrap procedures. Subsequently, we partitioned 90%
476 of the dataset for model training and tested the model on the remaining 10% of unseen data. A
477 threshold of 0.5 was used to binarize the model probability. Values above 0.5 were assigned a label
478 of 1 (correct choice), while values below 0.5 were assigned a label of 0 (incorrect choice). Model
479 accuracy was assessed by comparing the actual behavioral sequence with model predicted
480 sequence.
481

482 We note that incorrect choices likely reflect the early rule learning state, and correct choices likely
483 reflect the late rule acquisition state. Thus, the two measurements of behavior, namely state change
484 and trial-by-trial choice, are not completely orthogonal to each other.
485

486 *Statistical analysis*

487

488 Data were reported as mean \pm SEM unless otherwise noted. We did not use statistical methods to
489 predetermine sample sizes. Sample sizes were similar to those reported in the field. We assigned
490 mice to experimental groups arbitrarily, without randomization or blinding. Unless otherwise noted,
491 statistical tests were two-tailed Wilcoxon rank-sum when sample sizes were >7 . When sample sizes
492 were ≤ 7 , two-tailed t tests were used.
493

494 **Author contributions**

495 M.N., L.S.T. and H.Y. planned the project and built the apparatus. M.N. performed experiments. L.S.T.
496 assisted with LC inhibition experiments, M.G. assisted with histology, and N.E.Z. assisted with data
497 analysis. M.N., M.G. and H.Y. analyzed data. M.N. and H.Y. wrote the manuscript with input from all
498 authors.

499

500 **Conflict of interest**

501 The authors have declared that no competing interests exist.

502

503 **Acknowledgements**

504 We thank Shaorong Ma for helping with the behavioral paradigm, and Edward Zagha, Martin
505 Riccomagno, Sachiko Haga-Yamanaka for commenting on the manuscript. N.E.Z. was supported by
506 NIH grant R00DA047419. H.Y. was supported by Klingenstein-Simons Fellowship Awards in
507 Neuroscience, and NIH grants R01NS107355 and R01NS112200.

References:

1. Miller, E. K. & Cohen, J. D. An Integrative Theory of Prefrontal Cortex Function. *Annu. Rev. Neurosci.* **24**, 167–202 (2001).
2. Uddin, L. Q. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. *Nat. Rev. Neurosci.* (2021) doi:10.1038/s41583-021-00428-w.
3. Mesulam, M. M. From sensation to cognition. *Brain* **121**, 1013–1052 (1998).
4. Miller, E. K. The prefrontal cortex: Complex neural properties for complex behavior. *Neuron* **22**, 15–17 (1999).
5. Ragazzino, M. E. The contribution of the medial prefrontal cortex, orbitofrontal cortex, and dorsomedial striatum to behavioral flexibility. *Ann. N. Y. Acad. Sci.* **1121**, 355–375 (2007).
6. Le Merre, P., Ährlund-Richter, S. & Carlén, M. The mouse prefrontal cortex: Unity in diversity. *Neuron* **1–20** (2021) doi:10.1016/j.neuron.2021.03.035.
7. Berg, E. A. A simple objective technique for measuring flexibility in thinking. *J. Gen. Psychol.* **39**, 15–22 (1948).
8. Milner, B. Effects of Different Brain Lesions on Card Sorting. *Arch. Neurol.* **9**, 90 (1963).
9. Roberts, A. C., Robbins, T. W. & Everitt, B. J. The Effects of Intradimensional and Extradimensional Shifts on Visual Discrimination Learning in Humans and Non-human Primates. *Q. J. Exp. Psychol. Sect. B* **40**, 321–341 (1988).
10. Dias, R., Robbins, T. W. & Roberts, A. C. Primate analogue of the Wisconsin card sorting test: Effects of excitotoxic lesions of the prefrontal cortex in the marmoset. *Behav. Neurosci.* **110**, 872–886 (1996).
11. Monchi, O., Petrides, M., Petre, V., Worsley, K. & Dagher, A. Wisconsin card sorting revisited: Distinct neural circuits participating in different stages of the task identified by event-related functional magnetic resonance imaging. *J. Neurosci.* **21**, 7733–7741 (2001).
12. Barnett, J. H. *et al.* Assessing cognitive function in clinical trials of schizophrenia. *Neurosci. Biobehav. Rev.* **34**, 1161–1177 (2010).
13. Brown, V. J. & Tait, D. S. Attentional Set-Shifting Across Species. in 363–395 (2015). doi:10.1007/7854_2015_5002.
14. Young, J. W., Powell, S. B., Geyer, M. A., Jeste, D. V. & Risbrough, V. B. The mouse attentional-set-shifting task: A method for assaying successful cognitive aging? *Cogn. Affect. Behav. Neurosci.* **10**, 243–251 (2010).
15. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociation in prefrontal cortex of affective and attentional shifts. *Nature* **380**, 69–72 (1996).
16. Ridderinkhof, K. R. The Role of the Medial Frontal Cortex in Cognitive Control. *Science (80-.)* **306**, 443–447 (2004).
17. Bissonette, G. B. *et al.* Double dissociation of the effects of medial and orbital prefrontal cortical lesions on attentional and affective shifts in mice. *J. Neurosci.* **28**, 11124–11130 (2008).
18. Owen, A. M., Roberts, A. C., Polkey, C. E., Sahakian, B. J. & Robbins, T. W. Extra-dimensional versus intra-dimensional set shifting performance following frontal lobe excisions, temporal lobe excisions or amygdalo-hippocampectomy in man. *Neuropsychologia* **29**, 993–1006 (1991).
19. Dias, R., Robbins, T. W. & Roberts, A. C. Dissociable Forms of Inhibitory Control within Prefrontal Cortex with an Analog of the Wisconsin Card Sort Test: Restriction to Novel Situations and Independence from “On-Line” Processing. *J. Neurosci.* **17**, 9285–9297 (1997).
20. Wimmer, R. D. *et al.* Thalamic control of sensory selection in divided attention. *Nature* **526**, 705–709 (2015).
21. Aston-Jones, G. & Cohen, J. D. AN INTEGRATIVE THEORY OF LOCUS COERULEUS-NOREPINEPHRINE FUNCTION: Adaptive Gain and Optimal Performance. *Annu. Rev. Neurosci.* **28**, 403–450 (2005).
22. Sadacca, B. F., Wikenheiser, A. M. & Schoenbaum, G. Toward a theoretical role for tonic norepinephrine in the orbitofrontal cortex in facilitating flexible learning. *Neuroscience* **345**, 124–129 (2017).
23. Cerpa, J. C., Coutureau, E. & Parkes, S. L. Dopamine and noradrenaline modulation of goal-directed behavior in orbital and medial prefrontal cortex: Toward a division of labor? *Behav.*

Neurosci. **135**, 138–153 (2021).

- 24. Lapiz, M. D. S. & Morilak, D. A. Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. *Neuroscience* **137**, 1039–1049 (2006).
- 25. Tait, D. S. *et al.* Lesions of the dorsal noradrenergic bundle impair attentional set-shifting in the rat. *Eur. J. Neurosci.* **25**, 3719–3724 (2007).
- 26. Newman, L. A., Darling, J. & McGaughy, J. Atomoxetine reverses attentional deficits produced by noradrenergic deafferentation of medial prefrontal cortex. *Psychopharmacology (Berl.)* **200**, 39–50 (2008).
- 27. McGaughy, J., Ross, R. S. & Eichenbaum, H. Noradrenergic, but not cholinergic, deafferentation of prefrontal cortex impairs attentional set-shifting. *Neuroscience* **153**, 63–71 (2008).
- 28. Birrell, J. M. & Brown, V. J. Medial frontal cortex mediates perceptual attentional set shifting in the rat. *J. Neurosci.* **20**, 4320–4324 (2000).
- 29. Garner, J. P., Thogerson, C. M., Würbel, H., Murray, J. D. & Mench, J. A. Animal neuropsychology: Validation of the Intra-Dimensional Extra-Dimensional set shifting task for mice. *Behav. Brain Res.* **173**, 53–61 (2006).
- 30. Colacicco, G., Welzl, H., Lipp, H. P. & Würbel, H. Attentional set-shifting in mice: Modification of a rat paradigm, and evidence for strain-dependent variation. *Behav. Brain Res.* **132**, 95–102 (2002).
- 31. Liston, C. *et al.* Stress-Induced Alterations in Prefrontal Cortical Dendritic Morphology Predict Selective Impairments in Perceptual Attentional Set-Shifting. *J. Neurosci.* **26**, 7870–7874 (2006).
- 32. Snyder, K., Wang, W. W., Han, R., McFadden, K. & Valentino, R. J. Corticotropin-releasing factor in the norepinephrine nucleus, locus coeruleus, facilitates behavioral flexibility. *Neuropsychopharmacology* **37**, 520–530 (2012).
- 33. Bissonette, G. B., Powell, E. M. & Roesch, M. R. Neural structures underlying set-shifting: Roles of medial prefrontal cortex and anterior cingulate cortex. *Behav. Brain Res.* **250**, 91–101 (2013).
- 34. Lapiz, M. D. S., Bondi, C. O. & Morilak, D. A. Chronic treatment with desipramine improves cognitive performance of rats in an attentional set-shifting test. *Neuropsychopharmacology* **32**, 1000–1010 (2007).
- 35. Mackintosh, N. J. A theory of attention: Variations in the associability of stimuli with reinforcement. *Psychol. Rev.* **82**, 276–298 (1975).
- 36. Arnsten, A. F. T., Wang, M. J. & Paspalas, C. D. Neuromodulation of Thought: Flexibilities and Vulnerabilities in Prefrontal Cortical Network Synapses. *Neuron* **76**, 223–239 (2012).
- 37. Liu, Y., Xin, Y. & Xu, N. A cortical circuit mechanism for structural knowledge-based flexible sensorimotor decision-making. *Neuron* 1–16 (2021) doi:10.1016/j.neuron.2021.04.014.
- 38. Mahler, S. V. *et al.* Designer receptors show role for ventral pallidum input to ventral tegmental area in cocaine seeking. *Nat. Neurosci.* **17**, 577–585 (2014).
- 39. Cope, Z. A., Vazey, E. M., Floresco, S. B. & Aston Jones, G. S. DREADD-mediated modulation of locus coeruleus inputs to mPFC improves strategy set-shifting. *Neurobiol. Learn. Mem.* **161**, 1–11 (2019).
- 40. Cho, K. K. A. *et al.* Cross-hemispheric gamma synchrony between prefrontal parvalbumin interneurons supports behavioral adaptation during rule shift learning. *Nat. Neurosci.* **23**, 892–902 (2020).
- 41. Cho, K. K. A., Shi, J., Phensy, A. J., Turner, M. L. & Sohal, V. S. Long-range inhibition synchronizes and updates prefrontal task activity. *Nature* **617**, 548–554 (2023).
- 42. Mansouri, F. A., Matsumoto, K. & Tanaka, K. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin card sorting test analog. *J. Neurosci.* **26**, 2745–2756 (2006).
- 43. Norman, K. J. *et al.* Post-error recruitment of frontal sensory cortical projections promotes attention in mice. *Neuron* **109**, 1202–1213.e5 (2021).
- 44. Spellman, T., Svei, M., Kaminsky, J., Manzano-Nieves, G. & Liston, C. Prefrontal deep projection neurons enable cognitive flexibility via persistent feedback monitoring. *Cell* **184**,

2750-2766.e17 (2021).

45. Lui, J. H. *et al.* Differential encoding in prefrontal cortex projection neuron classes across cognitive tasks. *Cell* **184**, 489-506.e26 (2021).
46. Jercog, D. *et al.* Dynamical prefrontal population coding during defensive behaviours. *Nature* (2021) doi:10.1038/s41586-021-03726-6.
47. Del Arco, A., Park, J., Wood, J., Kim, Y. & Moghaddam, B. Adaptive encoding of outcome prediction by prefrontal cortex ensembles supports behavioral flexibility. *J. Neurosci.* **37**, 8363–8373 (2017).
48. Durstewitz, D., Vittoz, N. M., Floresco, S. B. & Seamans, J. K. Abrupt Transitions between Prefrontal Neural Ensemble States Accompany Behavioral Transitions during Rule Learning. *Neuron* **66**, 438–448 (2010).
49. Sleezer, B. J., LoConte, G. A., Castagno, M. D. & Hayden, B. Y. Neuronal responses support a role for orbitofrontal cortex in cognitive set reconfiguration. *Eur. J. Neurosci.* **45**, 940–951 (2017).
50. Sleezer, B. J., Castagno, M. D. & Hayden, B. Y. Rule encoding in orbitofrontal cortex and striatum guides selection. *J. Neurosci.* **36**, 11223–11237 (2016).
51. Rigotti, M. *et al.* The importance of mixed selectivity in complex cognitive tasks. *Nature* **497**, 585–590 (2013).
52. Kim, H., Ährlund-Richter, S., Wang, X., Deisseroth, K. & Carlén, M. Prefrontal Parvalbumin Neurons in Control of Attention. *Cell* **164**, 208–218 (2016).
53. Pinto, L. & Dan, Y. Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. *Neuron* **87**, 437–450 (2015).
54. Yuste, R. From the neuron doctrine to neural networks. *Nat. Rev. Neurosci.* **16**, 487–497 (2015).
55. Pouget, a, Dayan, P. & Zemel, R. Information processing with population codes. *Nat. Rev. Neurosci.* **1**, 125–32 (2000).
56. Ebitz, R. B. & Hayden, B. Y. The population doctrine in cognitive neuroscience. *Neuron* 1–14 (2021) doi:10.1016/j.neuron.2021.07.011.
57. Saxena, S. & Cunningham, J. P. Towards the neural population doctrine. *Curr. Opin. Neurobiol.* **55**, 103–111 (2019).
58. Meyers, E. M., Freedman, D. J., Kreiman, G., Miller, E. K. & Poggio, T. Dynamic population coding of category information in inferior temporal and prefrontal cortex. *J. Neurophysiol.* **100**, 1407–1419 (2008).
59. Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N. & Harvey, C. D. Dynamic Reorganization of Neuronal Activity Patterns in Parietal Cortex. *Cell* **170**, 986-999.e16 (2017).
60. Fusi, S., Miller, E. K. & Rigotti, M. Why neurons mix: High dimensionality for higher cognition. *Curr. Opin. Neurobiol.* **37**, 66–74 (2016).
61. Tye, K. M., Miller, E. K., Taschbach, F. H., Benna, M. K. & Rigotti, M. Mixed selectivity : Cellular computations for complexity. *Neuron* 1–15 (2024) doi:10.1016/j.neuron.2024.04.017.
62. Bagi, B., Brecht, M. & Sanguinetti-Scheck, J. I. Unsupervised discovery of behaviorally relevant brain states in rats playing hide-and-seek. *Curr. Biol.* **32**, 2640-2653.e4 (2022).
63. Recanatesi, S., Pereira-Obilinovic, U., Murakami, M., Mainen, Z. & Mazzucato, L. Metastable attractors explain the variable timing of stable behavioral action sequences. *Neuron* **110**, 139–153.e9 (2022).
64. Mazzucato, L., Fontanini, A. & La Camera, G. Dynamics of multistable states during ongoing and evoked cortical activity. *J. Neurosci.* **35**, 8214–8231 (2015).
65. Lam, N. H. *et al.* Effects of Altered Excitation-Inhibition Balance on Decision Making in a Cortical Circuit Model. *J. Neurosci.* **42**, 1035–1053 (2022).
66. Selimbeyoglu, A. *et al.* Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. *Sci. Transl. Med.* **9**, (2017).
67. Wang, Y. *et al.* Noradrenergic lesion of the locus coeruleus increases the firing activity of the medial prefrontal cortex pyramidal neurons and the role of α2-adrenoceptors in normal and medial forebrain bundle lesioned rats. *Brain Res.* **1324**, 64–74 (2010).
68. Aston-Jones, G. & Cohen, J. D. Adaptive gain and the role of the locus coeruleus-

norepinephrine system in optimal performance. *J. Comp. Neurol.* **493**, 99–110 (2005).

69. Poort, J. *et al.* Learning and attention increase visual response selectivity through distinct mechanisms. *Neuron* **2021.01.31.429053** (2021) doi:10.1016/j.neuron.2021.11.016.

70. Poort, J. *et al.* Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex. *Neuron* **86**, 1478–1490 (2015).

71. He, C. X. *et al.* Tactile defensiveness and impaired adaptation of neuronal activity in the Fmr1 knock-out mouse model of autism. *J. Neurosci.* **37**, 6475–6487 (2017).

72. Goel, A. *et al.* Impaired perceptual learning in a mouse model of Fragile X syndrome is mediated by parvalbumin neuron dysfunction and is reversible. *Nat. Neurosci.* **21**, 1404–1411 (2018).

73. Berridge, C. W. & Waterhouse, B. D. The locus coeruleus-noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes. *Brain Res. Rev.* **42**, 33–84 (2003).

74. Li, C. *et al.* A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice. *Neuron* **1–15** (2023) doi:10.1016/j.neuron.2023.05.023.

75. Takeuchi, T. *et al.* Locus coeruleus and dopaminergic consolidation of everyday memory. *Nature* **537**, 357–362 (2016).

76. Kempadoo, K. A., Mosharov, E. V., Choi, S. J., Sulzer, D. & Kandel, E. R. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. *Proc. Natl. Acad. Sci.* **113**, 14835–14840 (2016).

77. Karlsson, M. P., Tervo, D. G. R. R. & Karpova, A. Y. Network Resets in Medial Prefrontal Cortex Mark the Onset of Behavioral Uncertainty. *Science (80-.)* **338**, 135–139 (2012).

78. Dennis, E. J. *et al.* Systems Neuroscience of Natural Behaviors in Rodents. *J. Neurosci.* **41**, 911–919 (2021).

79. Parker, P. R. L., Brown, M. A., Smear, M. C. & Niell, C. M. Movement-Related Signals in Sensory Areas: Roles in Natural Behavior. *Trends Neurosci.* **43**, 581–595 (2020).

80. Zagha, E. *et al.* The Importance of Accounting for Movement When Relating Neuronal Activity to Sensory and Cognitive Processes. *J. Neurosci.* **42**, 1375–1382 (2022).

81. Musall, S., Kaufman, M. T., Juavinett, A. L., Gluf, S. & Churchland, A. K. Single-trial neural dynamics are dominated by richly varied movements. *Nat. Neurosci.* **22**, 1677–1686 (2019).

82. Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action, and engagement across the mouse brain. *Nature in press*, (2019).

83. Stringer, C. *et al.* Spontaneous behaviors drive multidimensional, brainwide activity. *Science (80-.)* **364**, (2019).

84. Wiltschko, A. B. *et al.* Mapping Sub-Second Structure in Mouse Behavior. *Neuron* **88**, 1121–1135 (2015).

85. Markowitz, J. E. *et al.* Spontaneous behaviour is structured by reinforcement without explicit reward. *Nature* (2023) doi:10.1038/s41586-022-05611-2.

86. Cisek, P. & Kalaska, J. F. Neural mechanisms for interacting with a world full of action choices. *Annu. Rev. Neurosci.* **33**, 269–298 (2010).

87. Mathis, A. *et al.* DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. *Nat. Neurosci.* **21**, 1281–1289 (2018).

88. Boekhoudt, L. *et al.* Chemogenetic Activation of Midbrain Dopamine Neurons Affects Attention, but not Impulsivity, in the Five-Choice Serial Reaction Time Task in Rats. *Neuropsychopharmacology* **42**, 1315–1325 (2017).

89. Gomez, J. L. *et al.* Chemogenetics revealed: DREADD occupancy and activation via converted clozapine. *Science (80-.)* **357**, 503–507 (2017).

90. Souza, G. M. P. R. *et al.* Chemogenetic activation of noradrenergic A5 neurons increases blood pressure and visceral sympathetic activity in adult rats. *Am. J. Physiol. - Regul. Integr. Comp. Physiol.* **323**, R512–R531 (2022).

91. Urban, D. J. & Roth, B. L. DREADDs (designer receptors exclusively activated by designer drugs): Chemogenetic tools with therapeutic utility. *Annu. Rev. Pharmacol. Toxicol.* **55**, 399–417 (2015).

92. Alexander, G. M. *et al.* Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. *Neuron* **63**, 27–39 (2009).

93. Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released agRP neuron mediators GABA, NPY, and AgRP. *Cell Metab.* **18**, 588–595 (2013).
94. Liang, H. Y. *et al.* nNOS-expressing neurons in the vmPFC transform pPVT-derived chronic pain signals into anxiety behaviors. *Nat. Commun.* **11**, 1–18 (2020).
95. Green, D. M. & Swets, J. A. *Signal detection theory and psychophysics*. (John Wiley and Sons Inc, 1966).
96. Christopher M. Bishop. Pattern Recognition and Machine Learning. **16**, 049901 (2007).

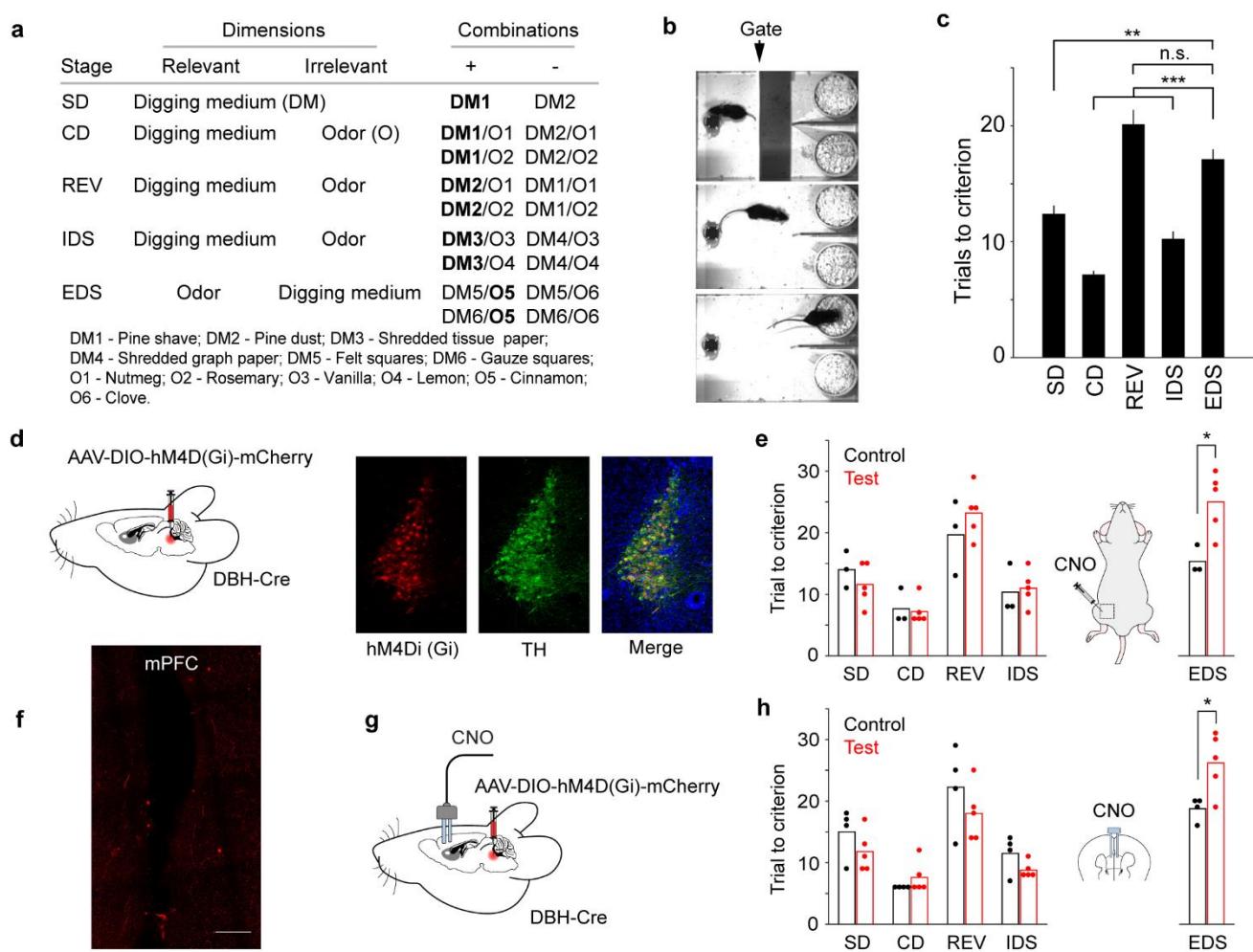


Figure 1 Inhibiting LC-NE neurons or their terminals in the mPFC impair switching behavior.

(a) Task overview. (b) Example frames (top to bottom) showing when the mouse was in the waiting area, approaching the bowls, and digging. (c) Task performance (total number of trials to criterion) varied across stages ($n = 24$): SD – simple discrimination, 12 ± 1 trials; CD – compound discrimination, 7 ± 1 trials; REV – intra-dimensional reversal, 20 ± 1 trials; IDS – intra-dimensional shift, 10 ± 1 trials; EDS – extra-dimensional shift, 17 ± 1 trials. Repeated-measure ANOVA, $F(4, 92) = 47.8$, $P = 1.1e-21$, $n = 24$. Post hoc Tukey-Kramer tests: EDS vs. SD, $P = 3.3e-3$; EDS vs. CD, $P = 1.0e-8$; EDS vs. REV, $P = 0.20$; EDS vs. IDS, $P = 4.9e-8$; SD vs. CD, $P = 3.1e-6$; SD vs. REV, $P = 2.5e-4$; SD vs. IDS, $P = 0.18$; CD vs. REV, $P = 1.1e-8$; CD vs. IDS, $P = 2.7e-4$; REV vs. IDS, $P = 6.7e-7$. Note that in (c) statistical significance was only indicated when comparing EDS to other stages. (d) Schematic of DREADD inhibition in the LC and histological images showing DREADD(Gi) and TH (Tyrosine Hydroxylase) expression in the LC of a DBH-Cre mouse. (e) Task performance in the control ($n = 3$, WT) and test ($n = 5$) groups. Following systemic CNO injections, test group mice took more trials to complete extra-dimensional shift (EDS). Trials to reach the criterion: control vs. test, 15 ± 1 trials vs. 25 ± 2 trials, $P = 0.020$, $t = -3.1$. (f) Histology showing terminal expression of mCherry in the mPFC. Scalebars: 100 μ m. (g) Schematic of inhibiting LC terminals in mPFC and histology displaying cannula placement in the mPFC. (h) Task performance in the control ($n = 4$, WT) and test ($n = 5$) groups. Following localized CNO injection, test group mice took more trials to complete EDS (Trials to reach the criterion, control vs test: 19 ± 1 trials vs. 26 ± 2 trials, $P = 0.024$, $t = -2.9$).

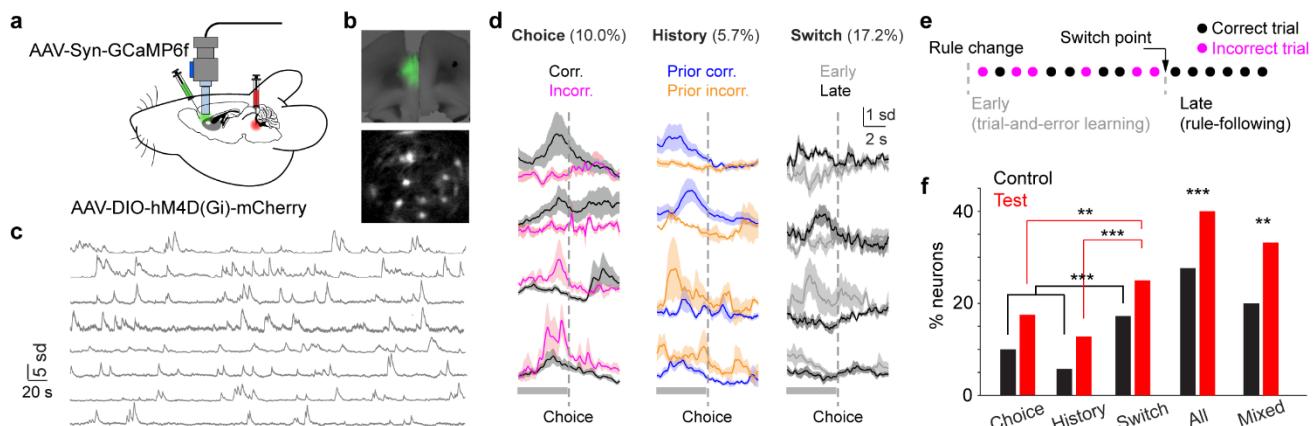


Figure 2. LC inhibition enhances mPFC engagement and broadens tuning.

(a) Illustration of miniscope recording in the mPFC with DREADD inhibition in the LC. (b) Top: Histology showing lens implant and GCaMP6f expression in the mPFC (prelimbic). Bottom: Snapshot of miniscope recording during behavior. (c) Example time series of fluorescence signals. Over 50 ROIs were acquired from this session. (d) Left to right: Example traces of individual mPFC neurons responding to choice (left), trial history (middle) and switch (right) based on activity prior to choice (gray bars). (e) Example behavioral progression. Each dot represents a trial. We define the initial mixed correct and incorrect trials (rule-learning) and the last set of consecutive correct trials (rule-following) as two different states in switching behavior. (f) Bar plots showing the percentage of mPFC neurons responding to task-related variables in the control (black) and test (red) groups. Control vs. test, choice responsive: 10% (59/593) vs. 17% (72/432), $P = 1.5e-3$; history responsive: 6% (34/593) vs. 13% (55/432), $P = 8.5e-5$; switch responsive: 17% (102/593) vs. 25% (106/432), $P = 3.9e-3$; overall fraction of responsive neurons: 27% (159/593) vs. 40% (172/432), $P = 1.1e-5$; the fraction of mixed tuning neurons among all responsive neurons: 20% (31/159) vs. 32% (55/172), $P = 9.7e-3$, Chi-squared test.

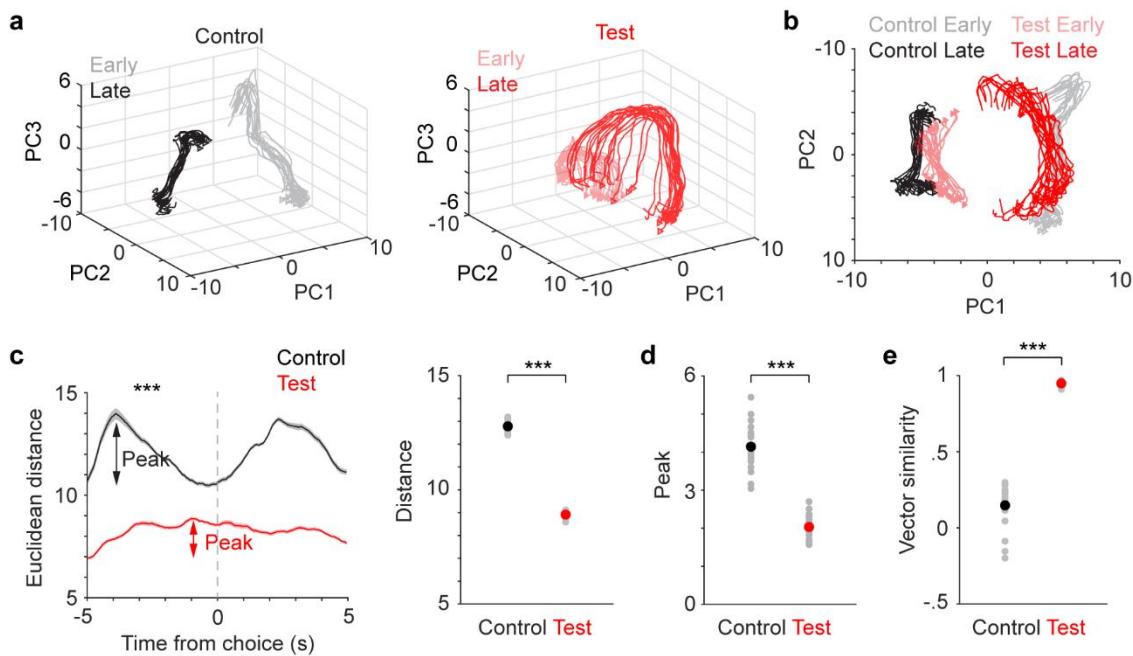


Figure 3. LC inhibition dampens mPFC population dynamics during switching.

(a) Population vectors of mPFC activity representing early (light color) and late (dark color) states in control (black, left) and test (red, right) groups. Each line represents a population vector from a subset of neurons. (b) Projection of population vectors in (a) onto the first two PCs. (c) Left: Euclidean distance (mean \pm SEM) between state vectors aligned to choice for control (black) and test (red) groups. Arrows indicate maximal fluctuations prior to choice (peak). Right: Comparison of Euclidean distance quantified prior to choice for control (black) and test (red) groups. Control vs. test, 12.8 ± 0.05 vs. 8.9 ± 0.03 , $P = 6.8e-8$, rank sum = 610, $n = 20$. Sample size represents number of bootstraps. (d) Comparison of peak Euclidean distance quantified prior to choice for control (black) and test (red) groups. Control vs. test: 4.1 ± 0.14 vs. 2.0 ± 0.07 , $P = 6.8e-8$, rank sum = 610, $n = 20$. (e) Comparison of vector similarities between the early and late states for control and test groups. Correlation coefficient, control vs. test: 0.15 ± 0.03 vs. 0.95 ± 0.01 , $P = 6.8e-8$, rank sum = 210, $n = 20$. Black and red dots indicate group mean in (c-e).

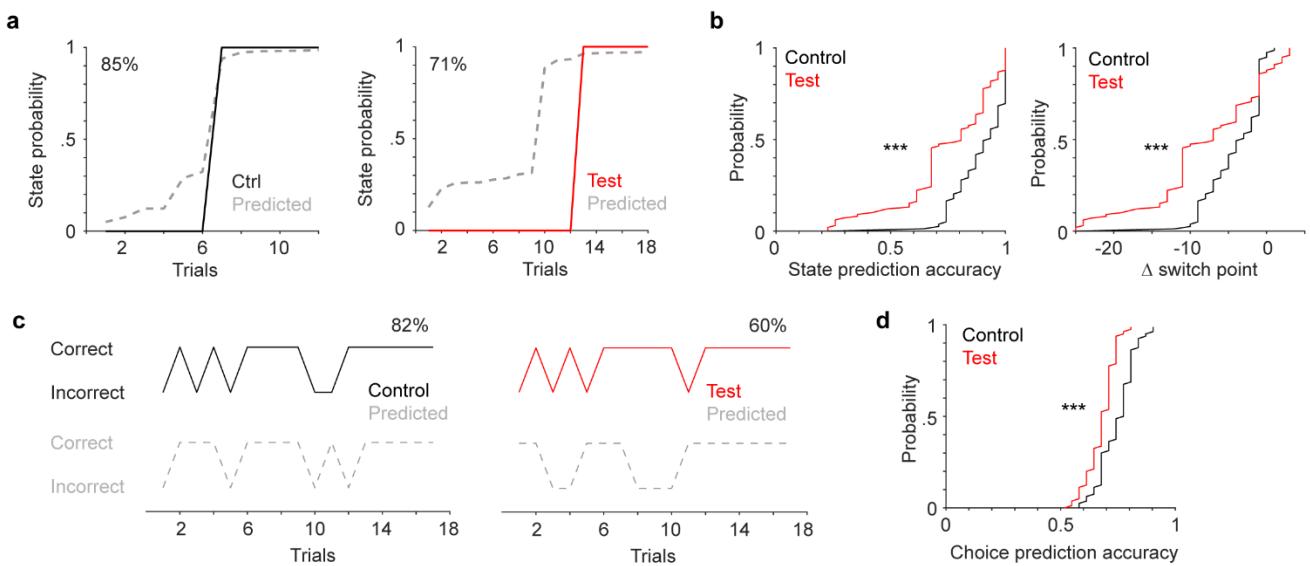
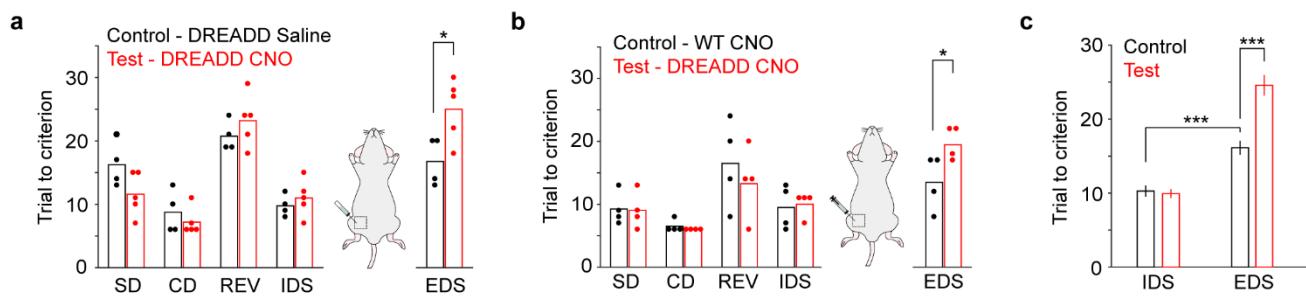


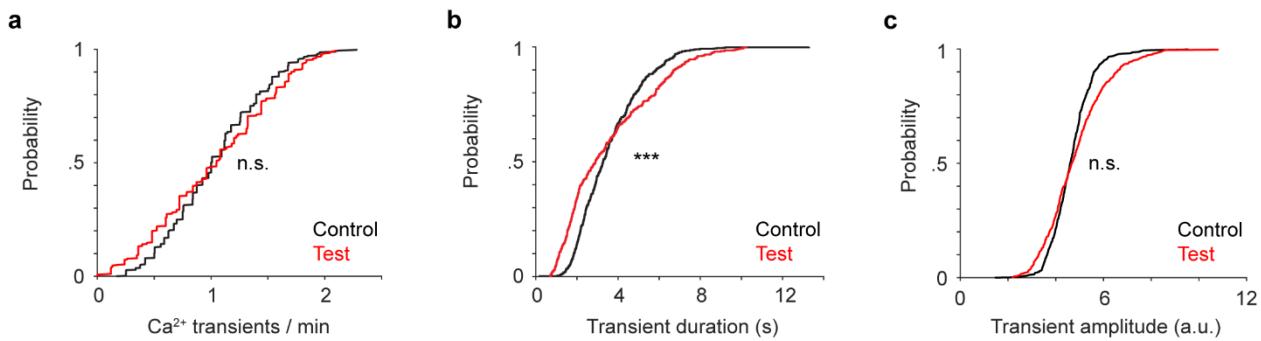
Figure 4. LC inhibition impairs mPFC encoding capacity of switching.

(a) Example behavioral state progression (solid curve: 0-early, 1-late) and hidden Markov model (HMM) predicted state progression (dashed curve) in a control session (black, left) and a test session (red, right). State prediction accuracy is 85% (control) and 71% (test). (b) Left: Cumulative distribution of the accuracy of predicting behavioral states in control (black) and test (red) groups. Sample size represents the total number of iterations that the model was tested (20 times per recording, 4 control mice and 5 test mice). Control vs. test: 0.89 ± 0.01 vs. 0.74 ± 0.02 , $P = 5.8e-7$, rank sum = $9.0e3$. Right: Cumulative distribution of the accuracy of predicting switch point in control (black) and test (pink) groups. Control vs. test: -4 ± 1 trials vs. -8 ± 1 trials, $P = 4.2e-4$, rank sum = $8.5e3$. (c) Example sequences of animals' choices (solid, top) and generalized liner model (GLM) predicted choices (dashed, bottom) in a control session (black, left) and a test session (red, right). Prediction accuracy is 82% (control) and 60% (test). (d) Cumulative distribution of the accuracy of predicting trial-by-trial choices in control (black) and test (red) groups. Control vs. test: 0.75 ± 0.01 vs. 0.68 ± 0.01 , $P = 6.0e-8$, rank sum = $8.0e3$.



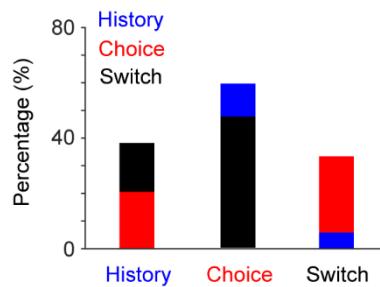
Supp. Figure 1

(a) Task performance in the control ($n = 4$) and test ($n = 5$) group of DBH-Cre mice expressing Gi-DREADD. Control group received saline injections and test group received CNO injections. Test group mice took more trials to complete EDS (Trials to criterion: control vs. test, 17 ± 2 trials vs. 25 ± 2 trials, $P = 0.028$, $t = -2.8$). Test group is the same as in Fig. 1b. **(b)** Task performance in the control ($n = 4$, WT) and test ($n = 4$, DBH-Cre mice expressing Gi DREADD) groups that received CNO injections and were subjected to mPFC miniscope imaging (same mice included in Fig. 2-4). Test group mice took more trials to complete EDS (Trials to criterion: control vs. test, 14 ± 2 trials vs. 20 ± 1 trials, $P = 0.049$, $t = -2.5$). **(c)** Pooled behavior data (Fig. 1e, 1h and Supp. Fig. 1a, 1b) to demonstrate the validity of set shifting from IDS to EDS. Control group mice took more trials to complete EDS (Trials to criterion: IDS vs. EDS, 10 ± 1 trials vs. 16 ± 1 trials, $P = 1.3e-4$, $t = -5.2$, $n = 15$). Test group mice ($n = 14$) took more trials to complete EDS than the control group (Trials to criterion: control vs. test, 16 ± 1 trials vs. 24 ± 1 trials, $P = 3.9e-5$, $t = -4.9$).



Supp. Figure 2

(a) Cumulative distribution of the frequency of calcium transients between control (black, $n = 593$ neurons) and test groups (red, $n = 446$ neurons). Control vs. test: $1.04 \pm 0.02/\text{min}$ vs. $1.03 \pm 0.03/\text{min}$, $P = 0.83$, rank sum = 3e5. (b) Cumulative distribution of transient duration between control (black) and test (red) groups. mPFC neurons in the test group mice exhibited slightly shorter transients. Control vs. test: $3.4 \pm 0.1 \text{ s}$ vs. $3.2 \pm 0.1 \text{ s}$, $P = 7.1\text{e-}6$, rank sum = 3.2e5. (c) Cumulative distribution of transient amplitude between control (black) and test (red) groups. Control vs. test: 4.7 ± 0.04 vs. 4.8 ± 0.06 , $P = 0.21$, rank sum = 3e



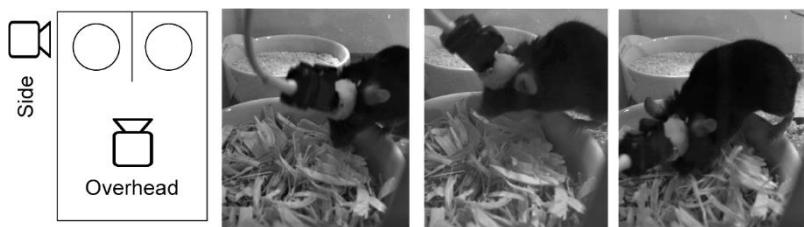
Supp. Figure 3

Bar plots showing the percentage of neurons responding to multiple task-related events. For example, the first bar represents that 18% of trial-history responsive neurons also encode switch of attention (black bar), and that 21% of history responsive neurons also encode choice (red bar).

	Control				Test			
	C1	C2	C3	C4	T1	T2	T3	T4
Choice	19/153	0/260	35/156	5/24	18/74	25/240	10/48	19/70
History	11/153	0/260	23/156	0/24	15/74	25/240	5/48	10/70
Switch	29/153	31/260	32/156	10/24	23/74	48/240	15/48	20/70
All	50/153	31/260	68/156	10/24	40/74	78/240	19/48	35/70
Mixed	9/50	0/31	18/68	4/10	15/40	19/78	9/19	12/35

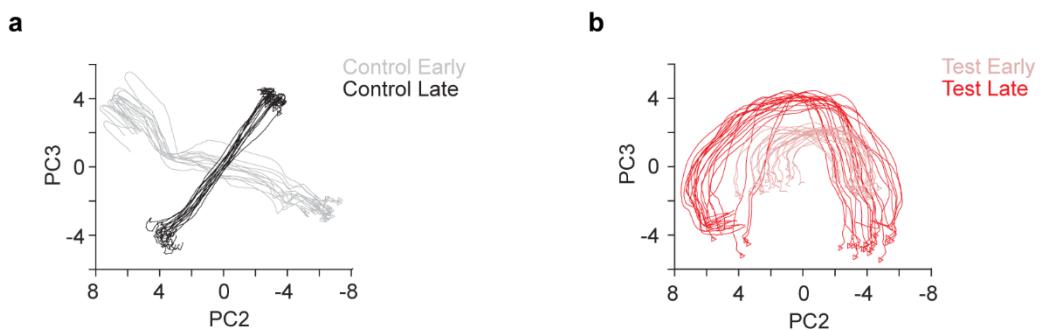
Supp. Table 1

The fraction of specific groups of task-encoding neurons in individual mice from the control (n = 4) and test (n = 4) groups.



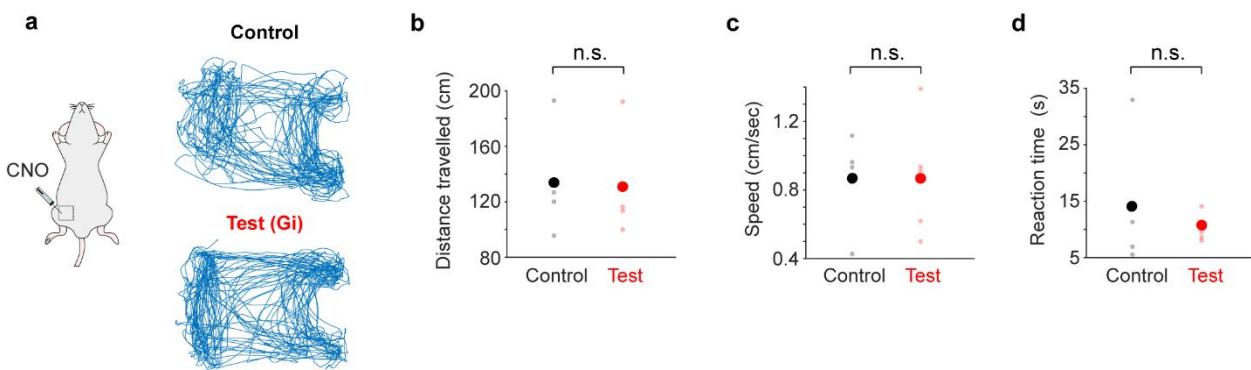
Supp. Figure 4

Schematic of the dual-camera setup (1 overhead camera and 1 side-view camera) and 3 example frames captured during a digging event from the side-view camera. Independent behavioral analyses showed that the difference between digging onset estimated from the overhead camera and the side-view camera is 1.8 ± 1.0 frames (signed value) or 5.2 ± 0.6 frames (absolute value. 42 trials from 2 mice). Given the 20 Hz video rate, the time difference is less than 100 ms.



Supp. Figure 5

(a) 2D projection of mPFC population vectors in the control group during early (gray) and late (black) states. (b) 2D projection of mPFC population vectors in the test group during early (light red) and late (dark red) states.



Supp. Figure 6

(a) Example movement trajectories during behavior for a control and a test mouse, respectively. (b-d) Distance traveled per trial, speed and response latency did not differ between test ($n = 4$) and control ($n = 4$) group mice. Distance traveled, control vs test: 133.8 ± 20.8 cm vs. 130.9 ± 16.2 cm, $P = 0.91$, $t = 0.11$; Locomotion speed, control vs test: 0.87 ± 0.15 cm/s vs. 0.87 ± 0.15 cm/s, $P = 0.99$, $t = -0.009$; Reaction time (latency from trial start to digging), control vs test: 14.1 ± 6.4 s vs. 10.6 ± 1 s, $P = 0.56$, $t = 0.61$.