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Abstract 12 
Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental 13 
contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of 14 
pharmacology and lesion studies, the precise neurophysiological mechanisms that underlie 15 
behavioral flexibility are still under active investigations. This work is aimed to determine the role of a 16 
brainstem-to-prefrontal cortex circuit in flexible rule switching. We trained mice to perform a set-17 
shifting task, in which they learned to switch attention to distinguish complex sensory cues. Using 18 
chemogenetic inhibition, we selectively targeted genetically-defined locus coeruleus (LC) neurons or 19 
their input to the medial prefrontal cortex (mPFC). We revealed that suppressing either the LC or its 20 
mPFC projections severely impaired switching behavior, establishing the critical role of the LC-mPFC 21 
circuit in supporting attentional switching. To uncover the neurophysiological substrates of the 22 
behavioral deficits, we paired endoscopic calcium imaging of the mPFC with chemogenetic inhibition 23 
of the LC in task-performing mice. We found that mPFC prominently responded to attentional 24 
switching and that LC inhibition not only enhanced the engagement of mPFC neurons but also 25 
broadened single-neuron tuning in the task. At the population level, LC inhibition disrupted mPFC 26 
dynamic changes and impaired the encoding capacity for switching. Our results highlight the profound 27 
impact of the ascending LC input on modulating prefrontal dynamics and provide new insights into 28 
the cellular and circuit-level mechanisms that support behavioral flexibility. 29 
 30 
Introduction 31 
The ability to adjust behavioral strategies in response to changing external contexts and internal 32 
needs, termed behavioral/cognitive flexibility, requires adaptive processing of environmental cues and 33 
internal states to guide goal-oriented behavior, and is vital to the survival of organisms. Inappropriate 34 
behavioral adjustments, such as deficits in modifying responses to a rule change, are hallmarks of 35 
impaired executive functions and are observed in a broad spectrum of psychiatric disorders 1,2. 36 
 37 
Decades of research have strived to uncover the neural substrates of behavioral flexibility (e.g., see 38 
reviews 1–6). Set shifting, a type of rule switching that requires attending to or ignoring a stimulus 39 
feature in a context-dependent way, is commonly used to assess flexibility. The Wisconsin Card 40 
Sorting Test, the Intra-Extra Dimensional Set Shift Task and their analogs have been widely used to 41 
test the ability of attentional switching in human and animal subjects 7–14. Importantly, prior research 42 
using lesion and pharmacology approaches has provided compelling evidence that the medial PFC 43 
(mPFC) plays an important role in set shifting (e.g., 5,15–19). The mPFC interacts with various brain 44 
regions to support cognitive functions 2,20–23, and lesion and pharmacology work has pointed to the 45 
importance of the locus coeruleus-norepinephrine (LC-NE) input 24–27. However, the precise cellular 46 
and circuit mechanisms underlying LC-NE modulation of the mPFC in the context of set shifting are 47 
not well understood.  48 
 49 
We trained mice to perform a set-shifting task, where they learned to switch attention to discriminate 50 
complex sensory cues. Inhibiting genetically-defined LC-NE neurons or their projections to the mPFC 51 
severely impaired switching behavior, highlighting the importance of the LC-mPFC circuit. Next, to 52 
reveal the neurophysiological substrates, we combined chemogenetic inhibition of the LC with calcium 53 
imaging of the mPFC in task-performing mice. We discovered that mPFC prominently responded to 54 
attentional switching from single cell to population levels, and that LC inhibition dramatically affected 55 
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mPFC processing across several domains: 1) a greater proportion of mPFC neurons became 56 
responsive to switching-related variables; 2) the tuning of individual neurons was broadened; 3) 57 
population dynamics associated with attentional switching was disrupted; and 4) population encoding 58 
of switching was impaired. Together, our data provide new cellular and circuit-level insights into LC-59 
NE modulation of mPFC activity that support attentional switching. 60 
 61 
Results 62 
We trained mice to perform the freely-moving attentional set-shifting task 17,28–30 based on procedures 63 
described in previous studies 31,32 (Methods). In brief, mice learned to discriminate complex sensory 64 
cues by associating a relevant stimulus feature to reward (Fig. 1a-c). In most stages of the task (simple 65 
discrimination, compound discrimination, intra-dimensional reversal, intra-dimensional shift), the rules 66 
were different but the relevant stimulus remained in the perceptual dimension of digging medium. In 67 
the stage of extra-dimensional shift, the relevant stimulus shifted to the dimension of odor. Mice 68 
learned each rule change in a single session, but typically took more trials to complete extra-69 
dimensional shift (e.g., trials to reach criterion: intra-dimensional reversal (IDS) vs. extra-dimensional 70 
shift (EDS), 10 ± 1 trials vs. 17 ± 1 trials, P < 1e-3, Fig. 1c) 28,32–34. According to learning theories, the 71 
improved performance in intra-dimensional reversal (fewer trials to reach performance criterion when 72 
all cues are novel but the relevant stimulus feature remains in the same perceptual dimension as 73 
previous rules) strongly suggests that mice attend to the perceptual dimension of digging medium 74 
while ignoring the perceptual dimension of odor, and that solving extra-dimensional shift involves a 75 
switch in the attended perceptual dimension (attentional switching), rather than purely responding to 76 
specific exemplar cues 9,35. Our current work is focused on revealing the neural substrates underlying 77 
such attentional switching across perceptual dimensions. 78 
 79 
Inhibiting LC-NE neurons or their input to the mPFC impairs switching behavior. First, we 80 
wanted to determine whether the LC-mPFC circuit was required for attentional switching. Previous 81 
studies suggested the importance of this circuit by lesioning ascending NE fibers or local 82 
pharmacology in the mPFC 24,25,27,34,36, which broadly targeted NE signaling. To selectively target and 83 
perturb genetically-defined LC-NE neurons, we employed a transgenic approach to conditionally 84 
express the Cre-dependent inhibitory DREADD receptor hM4Di in the LC of DBH-Cre mice (Test 85 
group, Fig. 1d). Dopamine Beta Hydroxylase (DBH) is a key enzyme for NE synthesis and 86 
downstream of dopamine. Thus, DBH serves as a specific marker for NE-synthesizing neurons. 87 
Control group mice were DBH- littermates and received Clozapine N-oxide (CNO) administrations the 88 
same way as test group (immediately after IDS and 60 minutes prior to EDS). DREADD inhibition of 89 
LC-NE neurons impaired switching behavior in EDS as test group mice took more trials to reach 90 
performance criterion (Fig. 1e, trials to reach performance criterion: control vs. test, 15 ± 1 trials vs. 91 
25 ± 2 trials, P = 0.020). Similar behavioral effects were observed when a second control group mice 92 
were DBH-Cre expressing hM4Di but received saline injections (Supp. Fig. 1a). Together, these data 93 
strongly implicate that the behavioral impairment is specific to LC inhibition, instead of nonspecific 94 
effects of genetic background, viral expression, or DREADD agonist. 95 
 96 
LC-NE neurons innervate the mPFC, but the specific role of their direct input has not been fully 97 
explored. To address this question, we expressed hM4Di in the LC (as in Fig. 1d) and locally infused 98 
CNO in the mPFC via bilateral cannula implants to perturb the terminals of LC neurons (Fig. 1f, g, as 99 
in 37,38). This approach allows for targeted and specific perturbation of LC-NE input to the mPFC. 100 
Control group mice (DBH-) also had cannula implants and received CNO injections in the same 101 
manner. Suppressing LC-NE terminals in the mPFC also induced pronounced behavioral deficits, with 102 
test group mice requiring more trials to switch to the new perceptual dimension (Fig. 1h, trials to reach 103 
the criterion, control vs. test: 19 ± 1 trials vs. 26 ± 2 trials, P = 0.024). Importantly, task performance 104 
across different control groups was not different (control group in Fig. 1c vs. Fig. 1e, P = 0.48; control 105 
group in Fig. 1c vs. Fig. 1h, P = 0.46). The behavioral impairment of DREADD inhibition was also 106 
robust against this insignificant variability across control groups (e.g., LC inhibition group in Fig. 1e 107 
vs. control group in Fig. 1c, P < 1e-3; terminal inhibition group in Fig. 1h vs. control group in Fig. 1c, 108 
P < 1e-3). Our results add further to recent gain-of-function work 39, providing compelling evidence 109 
for the critical involvement of the LC-mPFC circuit in attentional switching. 110 
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 111 
LC inhibition enhances mPFC engagement and broadens single-neuron tuning. To assess the 112 
neurophysiological effects of LC-NE signaling on mPFC activity, we simultaneously induced the 113 
expression of Gi-DREADD in the LC and GCaMP6f in the mPFC (Fig. 2a-c). We monitored mPFC 114 
activity while inhibiting LC-NE neurons in task-performing mice (432 neurons from 4 test mice, 89.6 ± 115 
4.0% TH+ neurons in the LC expressing hM4Di). Control mice (DBH-) expressed GCaMP6f in the 116 
mPFC and received agonist injections in the same manner (593 neurons from 4 control mice). 117 
DREADD agonist CNO was systemically administered to both control and test group mice 118 
immediately after IDS and 60 minutes prior to EDS, and test mice exhibited similar behavioral 119 
impairment (Supp. Fig. 1b). We evaluated the overall effect of LC inhibition on calcium activity of 120 
mPFC neurons. The frequency and amplitude of calcium transients did not differ between test and 121 
control groups, but the test group exhibited a small (~5%) reduction in transient duration (Supp. Fig. 122 
2). Importantly, control mice (pooled from Fig. 1e, 1h, Supp. Fig. 1a, 1b) took more trials to complete 123 
EDS than IDS (Trials to criterion: IDS vs. EDS, 10 ± 1 trials vs. 16 ± 1 trials, P < 1e-3, Supp. Fig. 1c), 124 
further supporting the validity of attentional switching (as in Fig. 1c). 125 
 126 
Next, we examined how single-neuron response during attentional switching was affected by LC 127 
inhibition. Following recent work 40,41, we used the time of choice (digging) to infer decision formation 128 
and classified the representation of individual mPFC neurons based on their pre-choice activity. We 129 
first presented the results from the control group. We identified subgroups of mPFC neurons whose 130 
activity was tuned to different task-related variables, such as choice, trial history and the putative 131 
switch of attention (Fig. 2d, Methods), consistent with a series of previous work (e.g., 42–48). Since the 132 
rule change was not cued, at the beginning of extra-dimensional shift, animals followed the previous 133 
rule and attended to the perceptual dimension of digging medium and ignored odor cues 28. Through 134 
trial-and-error learning animals eventually switched their attention to the perceptual dimension of odor 135 
42,44. Following prior studies 49,50, we inferred the early mixed correct and incorrect trials and the late 136 
set of consecutive correct trials as different states of switching behavior (Early: trial-and-error learning; 137 
Late: rule following. Fig. 2e). Notably, more neurons responded to switch than to choice or trial history 138 
(fraction of neurons, switch vs. choice: 17% (102/593) vs. 10% (59/593), P < 1e-3; switch vs. history: 139 
17% (102/593) vs. 6% (34/593), P < 1e-3, chi-squared test. Fig. 2f), suggesting the importance of 140 
representing this task-related variable in the mPFC. We further noted that a considerable fraction of 141 
mPFC neurons responded to more than one task-related variable (mixing tuning 42,45,51–53, Supp. Fig. 142 
3. Data from individual mice were in Supp. Table 1). To better determine choice-related behavior, a 143 
second side-view camera was set up, and the temporal difference between digging onset estimated 144 
from the two cameras was minimal (Supp. Fig. 4), confirming the fidelity of the timestamps used for 145 
data analysis. 146 
 147 
During LC inhibition, we also observed more mPFC neurons tuned to switch (fraction of neurons in 148 
the test group, switch vs. choice: 25% (106/432) vs. 17% (72/432), P = 4.2e-3; switch vs history: 25% 149 
(106/432) vs. 13% (55/432), P < 1e-3, chi-squared test). More importantly, in comparison to the control 150 
group, LC inhibition engaged a greater fraction of mPFC neurons responding to task-related events 151 
(Fig. 2f, control vs. test, choice responsive: 10% (59/593) vs. 17% (72/432), P = 1.5e-3; history 152 
responsive: 6% (34/593) vs. 13% (55/432), P < 1e-3; switch responsive: 17% (102/593) vs. 25% 153 
(106/432), P = 3.9e-3; overall fraction of responsive neurons: 27% (159/593) vs. 40% (172/432), P < 154 
1e-3, chi-squared test). The fraction of mixed-tuning neurons was also enhanced with LC inhibition 155 
(20% (31/159) vs. 32% (55/172), P = 9.7e-3). Our results show that LC inhibition increases mPFC 156 
engagement in the task and broadens the tuning of individual neurons. 157 
 158 
LC inhibition impedes dynamic changes in population activity during switching. Our single-159 
neuron analysis suggests the importance of encoding the switch of attention in the mPFC as more 160 
neurons were tuned to this parameter in both control and test groups (Fig. 2f, Supp. Table 1). Neuronal 161 
ensembles have been proposed to be the functional unit of the nervous system 54–57. They can better 162 
represent information than single neurons 46,58,59, especially in higher-order association areas where 163 
single neurons exhibit mixed tuning 51,60,61. Thus, we sought to determine whether and how attentional 164 
switching was represented at the population level. We first employed a dimensionality-reduction 165 
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approach to assess mPFC population dynamics (Methods). Specifically, we examined whether mPFC 166 
dynamic processes represent the putative switch of attention. Principle component analysis (PCA) 167 
was applied to population activity of mPFC neurons around the time of choice in the early and late 168 
switching states (Fig. 2e), and the degree of separation between the resulting low-dimensional state 169 
vectors was quantified. In the control group mice, we identified an overall prominent separation 170 
between the two population vectors representing early and late states (Fig. 3a, b, gray vs. black 171 
traces), strongly suggesting that a shift in population dynamics is associated with attentional shifting 172 
across perceptual dimensions. The vector separation also exhibited transient fluctuations prior to 173 
choice, first increasing and then decreasing (Fig. 3c, black), suggesting a dynamic decision-related 174 
population encoding process underlying the behavioral transitions. Overall, our results suggest that 175 
mPFC dynamics reflect the changes in switching behavior and learning of the new rule. 176 
 177 
How would LC-NE input affect mPFC dynamics during switching? In test group mice, the same 178 
dimensionality-reduction analysis revealed that the low-dimensional population state vectors (early 179 
and late) were less separable (Fig. 3a, b, light and dark red traces), and the distance between the two 180 
state vectors was greatly reduced compared to the control group (Fig. 3c, control vs. test, 12.8 ± 0.05 181 
vs. 8.9 ± 0.03, P < 1e-3). In addition, LC inhibition prominently dampened the pre-choice dynamic 182 
fluctuations (Fig. 3c, d. Peak, control vs. test: 4.1 ± 0.14 vs. 2.0 ± 0.07, P < 1e-3). LC inhibition also 183 
rendered the population state vectors more similar to one another (Fig. 3e, Supp. Fig. 5. Correlation 184 
coefficient between early and late state vectors, control vs. test: 0.15 ± 0.03 vs. 0.95 ± 0.01, P < 1e-185 
3). Together, our results show that LC inhibition dampens and impedes mPFC dynamics during 186 
switching.  187 
 188 
LC inhibition impairs population encoding of switching. To gain further insights into mPFC 189 
representation of attentional switching and the effects of LC inhibition, we turned to the hidden Markov 190 
model (HMM), which has been successfully implemented to link neuronal activity patterns to animal 191 
behavior (e.g., 48,62–64). In brief, we assume that population activity vectors, represented as calcium 192 
signals from simultaneously recorded neurons, are adjacent to one another in the neuronal state 193 
space when the same behavior is executed. We clustered mPFC population vectors (5-s prior to 194 
choice) into a set of discrete states (hidden states), and assessed the relationship between these 195 
neuronal states and the observed behavioral patterns/states of the mice. Specifically, the behavioral 196 
states are the early rule learning state and the late rule-following state (as depicted in Fig. 2e). We 197 
identified low-dimensional factors from the high-dimensional population vectors, and fitted HMM to 198 
these factors to infer the hidden state of each trial (Methods). We quantified model performance by 199 
comparing each trial’s neuronal state to the behavioral state with two measures: 1) the overall 200 
accuracy of predicting the state of individual trials (early or late) in each session; and 2) the accuracy 201 
of predicting where state transition occurred (the onset of late state: switch point, Fig. 2e). Both 202 
measures showed that model prediction was less accurate when LC was inhibited (Fig. 4a, b, state 203 
prediction accuracy, control vs. test: 89 ± 2% vs. 74 ± 3%, P < 1e-3; Δ switch point, control vs. test: -204 
4 ± 1 trials vs. -8 ± 1 trials, P < 1e-3).  205 
 206 
We further assessed whether mPFC activity can track animals’ choices on each trial (correct vs. 207 
incorrect). We applied a generalized liner model (GLM) to predict the upcoming choice on individual 208 
trials. Specifically, we included the first 3 principle components of pre-choice population activity as 209 
regressors (Methods). We discovered that LC inhibition reduced the accuracy of trial-by-trial choice 210 
predictions (Fig. 4c, d, control vs. test: 75 ± 1% vs. 68 ± 1%, P < 1e-3). Video analysis found no 211 
significant difference in overall locomotion or reaction time between test and control group mice (Supp. 212 
Fig. 6), strongly implicating that the observed behavioral and neurophysiological effects were not due 213 
to apparent changes in motivation or motor functions. Together, our data show that LC inhibition 214 
produces a marked deficiency in mPFC population encoding of attentional switching processes, 215 
suggesting that impaired mPFC dynamics and encoding capacity underlie the behavioral deficits.  216 
 217 
Discussion 218 
Our current work is aimed to uncover the neurophysiological substrates underlying attentional 219 
switching (set shifting) processes. We trained mice to switch attention to discriminate complex 220 
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stimulus features comprising perceptual dimensions of digging medium and odor. Inhibiting 221 
genetically-defined LC-NE neurons or their projections to the mPFC similarly impaired switching 222 
behavior, highlighting the importance of the LC-mPFC circuit. To reveal the neurophysiological 223 
substrates, we combined chemogenetic inhibition of the LC with calcium imaging of the mPFC in task-224 
performing mice. We discovered that the putative switch of attention was prominently represented in 225 
the mPFC, and LC inhibition dramatically altered mPFC activity from single cell to population levels. 226 
A greater proportion of mPFC neurons became responsive to task-related variables, and the tuning 227 
of these neurons was broadened. Furthermore, LC inhibition disrupted mPFC population dynamics 228 
and impaired the encoding capacity of switching. Together, our data provide new cellular and circuit-229 
level insights into LC-NE modulation of mPFC activity during attentional switching. 230 
 231 
Our analysis revealed that LC inhibition enhanced the engagement of mPFC neurons in the task. This 232 
observation may appear counterintuitive at first glance, but amplification of neuronal responses in a 233 
brain region could induce the transmission of noisy information to downstream circuits 65–68, impairing 234 
brain functions. Furthermore, the link between broadened tuning and impaired switching behavior is 235 
reminiscent of the relationship between the changes in tuning properties of sensory neurons and 236 
perceptual behavior (e.g., 69–72). It is plausible that similar to sensory areas, an appropriate level of 237 
mixed tuning in association areas is optimal for population coding of cognitive processes 61, and that 238 
too broad tuning would deteriorate population representations of task- and decision-related features. 239 
This prediction needs to be tested in future computational work. 240 
 241 
Given that inhibiting LC-NE terminals impaired switching behavior in a similar manner as inhibiting 242 
LC-NE neurons (Fig. 1e, h), we interpret the observed neurophysiological effects in the mPFC during 243 
LC inhibition (Fig. 2-4) as at least partially mediated by the direct LC-NE input. NE exerts both 244 
excitatory and inhibitory influences through distinct types of adrenergic receptors expressed in 245 
different cell types 73. By preferentially binding to specific types of adrenergic receptors in a 246 
concentration-dependent way, NE is proposed to mediate downstream neuronal activity and behavior 247 
in a non-linear manner 21. Interestingly, a recent study in the orbital prefrontal cortex showed that the 248 
reduction of NE and downregulation of alpha-1 receptors led to decreased activity in GABAergic 249 
interneurons 74. In addition, prominent gamma synchrony between bilateral mPFC was important to 250 
support set shifting and population dynamics 40,41. It is thus plausible that the lack of LC-NE input 251 
diminishes the engagement of GABAergic interneurons in the mPFC, leading to elevated noisy 252 
neuronal activity, broadened tuning, and reduced population representations. Importantly, LC-NE 253 
neurons can co-release other neurotransmitters, such as dopamine and neuropeptides73,75,76. Future 254 
studies are needed to better delineate the involvement of specific neurotransmitters, cell types and 255 
receptors in flexible decision making. 256 
 257 
Our analysis suggests that attentional switching was prominently represented at both single-cell and 258 
population levels in the mPFC, and that LC inhibition led to pronounced changes in neuronal coding 259 
and population dynamics. Abrupt network transitions have been observed in the mPFC of rats 260 
performing set-shifting or probabilistic alternative choice task 48,77. Disrupted mPFC encoding or 261 
population activity patterns were reported when perturbing thalamic drive or callosal PV projections 262 
in mice 48,77. Together, these findings underscore a key insight: while many brain circuits can influence 263 
mPFC function, their effects may converge onto a small set of general operational principles, such as 264 
modulating the tuning properties of individual neurons and/or orchestrating ensemble dynamic 265 
transitions during complex cognitive processes. Identifying these principles is vital for advancing our 266 
understanding of how prefrontal cortex contributes to higher-order cognition and how its functions can 267 
be affected in various contexts. 268 
 269 
In both intra-dimensional shift and extra-dimensional shift, all cues are novel but the rules differ. 270 
Learning theories posit that improved performance in intra-dimensional shift (fewer trials to reach 271 
performance criterion when all cues are novel but the relevant stimulus feature remains in the same 272 
perceptual dimension, e.g., digging medium in our task) is due to subject’s ability to readily attend to 273 
the superordinate features of sensory cues (perceptual dimensions - digging medium vs. odor), and 274 
that solving the extra-dimensional shift rule requires a switch in the attended perceptual dimension, 275 
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rather than merely responding to individual novel cues 9,35. Thus, the behavioral changes observed in 276 
extra-dimensional shift (more trials to reach performance criterion) reflect the adaptive processes 277 
underlying the reallocation of attention, instead of novelty response. Based on this understanding, our 278 
current work builds on a longstanding tradition in the field that uses a single extra-dimensional shift 279 
to test attentional switching (e.g., 15,17,24,27,28). In this context, animals are naïve to the rule change and 280 
would solve the problem ‘on the fly’, without relying on prior learning or knowledge. Our findings shed 281 
new light on how the LC-mPFC circuit supports such de novo attentional switching processes. 282 
Furthermore, limited evidence suggests that solving the switching problem ‘on the fly’ (initial encounter) 283 
or based on experience/internal models (repeated testing) involves different mechanisms 19. A 284 
comprehensive comparison between these settings could provide valuable insights and further 285 
advance our understanding of cognitive flexibility. 286 
 287 
Our work contributes to the growing interest in revealing neural mechanisms underlying more natural, 288 
ethologically relevant behavior 78,79. Admittedly, such behavioral paradigms may not afford the level 289 
of task control more commonly seen in restrained, operant paradigms. Nevertheless, the challenge 290 
of dissociating movement-related signal from sensory- or decision-related signal is present not only 291 
in freely-moving, but also restrained settings 80–83. Comprehensive behavioral tracking and motif 292 
analysis (e.g., 84,85) will help to identify whether specific behavioral patterns are associated with 293 
attentional switching behavior. Ultimately, cognitive processes are not independent from sensory or 294 
motor processes. Cognition, perception and action may be implemented in a distributed rather than 295 
isolated manner 79,80,86.  296 
 297 
Methods 298 
 299 
Surgery  300 
 301 
All experimental procedures were approved by the UC Riverside Animal Care and Use Committee 302 
(AUP20220030). Mice of mixed sex, aged 8-16 weeks were included in the study. Mice were 303 
C57BL/6J and DBH-Cre (B6.FVB(Cg)-Tg(Dbh-cre)KH212Gsat/Mmucd, 036778-UCD, MMRRC), 304 
singly housed in a vivarium with a reversed light-dark cycle (9a-9p). All surgical procedures were 305 
conducted under aseptic conditions, maintaining body temperature with a heating pad. Anesthesia 306 
was induced using a mixture of isoflurane (2–3%), and mice were positioned within a precise digital 307 
small-animal stereotaxic apparatus (Kopf Instruments and RWD). Before surgery, hair was gently 308 
removed from the dorsal head area, ophthalmic ointment was applied to protect the eyes, and the 309 
incision site was sanitized with betadine. All measurements were referenced to bregma for 310 
virus/implant surgeries. Viral injections were accomplished using a microinjection needle coupled with 311 
a 10 µl microsyringe (WPI). The virus was delivered at a controlled rate of 0.03 µl/min via a 312 
microsyringe pump (WPI). Following the completion of the injection, a 10-minute interval was allowed 313 
before slowly withdrawing the needle. Subsequent to viral infusions, nylon sutures were used to close 314 
the incision. Animals received 0.10 mg/kg buprenorphine and 0.22% enofloxacin and were placed in 315 
their respective home cages over a heating pad at 37°C. After full recovery from anesthesia, the 316 
subjects were returned to vivarium.  317 
 318 
For LC inhibition, dopamine-β-hydroxylase (DBH)-Cre mice received bilateral injections of AAV 319 
carrying Gi-DREADD receptors (AAV5-EF1a-DIO-hM4D(Gi)-mCherry) into the LC (AP: -5.1, ML: 0.95, 320 
DV: -3.5 and -3.7 mm, 0.3 µl each depth). For calcium imaging, AAV containing GCaMP6f (AAV1-321 
Syn-GCaMP6f-WPRE-SV40) was injected into the medial prefrontal cortex (Prelimbic; AP: 1.8, ML: 322 
0.3, DV: -2.0 and -2.4 mm, 0.3 µl). Following injections, a 30-gauge needle was inserted to create 323 
space and reduce tissue resistance to facilitate lens insertion; however, no tissue was aspirated. A 324 
gradient refractive index lens (GRIN lens, Inscopix) with a diameter of 0.5 mm and approximately 6 325 
mm in length was gradually lowered through the craniotomy, allowing tissue decompression. This 326 
lens was positioned to target AP: -1.8, ML: 0.3, DV: 2.2 mm. The same coordinates were applied for 327 
the cannula implantation used in LC terminal inhibition. Lens implants were securely attached to the 328 
skull using a layer of adhesive cement (C&B Metabond, Parkell), followed by dental cement (Ortho-329 
Jet, Lang Dental). To protect the lens, a layer of silicone rubber was applied as a protective cover. 330 
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 331 
Following virus incubation, mice were once again anesthetized under isoflurane and securely 332 
positioned in the stereotaxic setup. Baseplates were affixed around the GRIN lens to provide 333 
structural support for the attachment of the miniaturized microscope. The top surface of the exposed 334 
GRIN lens was meticulously cleaned using a cotton-tipped applicator dipped in a solution of 15% 335 
isopropyl alcohol diluted with ddH2O. A miniaturized microscope, equipped with a single-channel 336 
epifluorescence and a 475-nm blue LED (Inscopix), was then carefully positioned over the implanted 337 
GRIN lens. Adjustments were made along the dorsal-ventral axis to achieve the optimal focal plane 338 
for imaging. Subsequently, the microscope/baseplate assembly was secured in place using adhesive 339 
cement. The microscope was detached from the baseplates, and a final layer of dental cement was 340 
applied to prevent light leakage. A protective plate was placed over the implant until imaging sessions. 341 
Mice were singly housed after lens implant. 342 
 343 
Behavior and data acquisition 344 
  345 
To assess flexible decision-making in freely moving mice, we adopted the 5-stage testing paradigm 346 
of the attentional set-shifting task (AST) 31,32. Two weeks before training, mice were food restricted 347 
(85% of initial weight) and handled by the experimenter for 5-7 days. Next, mice were acclimated to 348 
the behavioral box (25 x 40 cm) and experimental setup for 3-4 days, followed by a brief training 349 
session to stimulate the innate burrowing/digging behavior to retrieve food reward from the ramekins. 350 
Two ramekins were placed at two corners of the behavioral box, both containing 25 mg of cheerios. 351 
Throughout the training session the reward was gradually buried in clean home cage bedding. In each 352 
trial mice were allowed 3-4 minutes to explore. Mice were considered well trained once they could 353 
consistently dig and retrieve the reward from both locations for 15-20 trials. 354 
 355 
The AST consisted of the following stages: 1) simple discrimination (SD), in which animals choose 356 
between two digging mediums associated with distinct textures (first dimension), only one of the two 357 
stimuli predicts food reward; 2) compound discrimination (CD), in which a second stimulus dimension 358 
(two odor cues) is explicitly introduced. Each odor cue is randomly paired with a digging medium in 359 
every trial, but the reward is still predicted as in SD; 3) intra-dimensional reversal (REV), which 360 
preserves the task-relevant dimension (digging medium) but swaps cue contingencies; 4) intra-361 
dimensional shift (IDS), which preserves the task-relevant dimension (digging medium), but replaces 362 
all four cues with novel ones (a new digging medium predicts reward); 5) extra-dimensional shift 363 
(EDS), which swaps the previous task-relevant and task-irrelevant dimensions with all cues replaced 364 
(a new odor cue predicts reward). All stages were performed within a single day, lasting 3-4 hours. In 365 
each trial, the ramekin associated with the relevant stimulus contained a retrievable reward. To avoid 366 
the possibility that mice used food odor cues to solve the task, the other ramekin contained a non-367 
retrievable reward (trapped under a mesh wire at the bottom). The two ramekins were placed 368 
randomly in the two locations every trial. Mice were allowed to complete a trial (dig one ramekin) 369 
within 3 minutes. Once mice started digging, the other ramekin was immediately removed from the 370 
behavioral box. To reach the criterion the animal has to dig in the correct ramekin six times 371 
consecutively and correctly rejecting the incorrect ramekin on at least two occasions.  372 
 373 
An overhead CCD camera (Basler acA1300-200um) was set to capture behavior at 20 Hz, controlled 374 
by Pylon Viewer Software. Video and calcium recordings were synchronized via a common TTL pulse 375 
train (Arduino). Behavioral annotations were done manually post hoc. On the recording day, mice 376 
were attached to the miniaturized microscope. Grayscale images were collected at 20 frames per 377 
second using 0.01 mW/mm2 of excitation light. Snout, head, tail, and ear tracking were measured 378 
using DeepLabCut 87. The network was initially trained with 100 uniformly distributed frames from 5 379 
videos, followed by an additional iteration to rectify outlier detections. The measurements for distance 380 
and speed were computed using the head, where the likelihood of accuracy exceeded 95 percent. 381 
After the test, animals were allowed to access food and water ad libitum for 3 days before to be 382 
transcardially perfused. Following dissection, brains were post-fixed for 24 h at 4°C in 4% PFA, and 383 
sectioned for immunohistochemistry to label TH+ neurons. Specifically, brain sections containing the 384 
LC were incubated with a rabbit anti-Tyrosine Hydroxylase (TH) primary antibody (Thermo Fisher, 385 
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Cat# OPA1-04050; 1:1000), followed by incubation with a goat anti-rabbit IgG secondary antibody 386 
conjugated to Alexa Fluor 488 or 594 (Thermo Fisher, Cat# A32731 or A32740; 1:1000). Sections 387 
were mounted using DAPI-containing mounting medium (Vector Laboratories). 388 
 389 
Locus coeruleus inactivation 390 
 391 
On the test day, Clozapine-N-oxide (CNO) was freshly prepared for systemic or local infusions. For 392 
systemic injection we used a concentration of 0.03 mg/kg to minimize potential confound88–90. CNO 393 
was injected immediately after IDS and 60 min before EDS test in both test (Gi-DREADD) and control 394 
(DBH-) group mice. Maximal effects of systemic CNO activation were reported to occur after 30 395 
minutes and last for at least 4-6 hours91–93. A second control group mice (DBH-Cre expressing Gi-396 
DREADD) received saline injections in the same manner. For LC terminal inhibition we used a CNO 397 
concentration of 0.5 mM94 diluted in cortex buffer. Mice were bilaterally implanted with stainless steel 398 
cannula guide (26 gauge; RWD) targeting the mPFC. Dummy cannulas were used to fill the guide 399 
and removed only during the injection period. CNO was infused at a rate of 0.03 μl/min. After infusion, 400 
injecting cannulas were left in place for 5 min to allow drug diffusion.   401 
 402 
Image processing 403 
 404 
Image processing was executed using Inscopix data processing software (version 1.6), which 405 
includes modules for motion correction and signal extraction. Prior to data analysis, raw imaging 406 
videos underwent preprocessing, including a x4 spatial down sampling to reduce file size and 407 
processing time. No temporal down sampling was performed. The images were then cropped to 408 
eliminate post-registration borders and areas where cells were not visible. Prior to the calculation of 409 
the dF/F0 traces, lateral movement was corrected. For ROI identification, we used a constrained non-410 
negative matrix factorization algorithm optimized for endoscopic data (CNMF-E) to extract 411 
fluorescence traces from ROIs. The detected ROIs were then manually evaluated based on neuronal 412 
morphology, ensuring adequate separation from neighboring cells. We identified 128 ± 31 neurons 413 
after manual selection, depending on recording quality and field of view (number of identified neurons, 414 
control: 153, 260, 156, 24; test: 74, 240, 48, 70). 415 
 416 
Single cell analysis 417 
 418 
Calcium signals for each ROI were z-scored and aligned to behavioral events (i.e., trial start, digging) 419 
using MATLAB (MathWorks). In order to classify neuronal representations of different task-related 420 
variables, we performed Receiver-Operating-Characteristic (ROC) analysis 95 on the activity of each 421 
neuron prior to choice. Calcium traces were z-scored on a per-neuron basis across the entire session. 422 
For each neuron, switch representation was defined as significant calcium responses between early 423 
(trial-and-error rule learning) and late (rule-following) trials during a pre-choice time window (-5 to 0 424 
s). Similar analysis was performed to classify trial history encoding, comparing calcium activity during 425 
the same time window (-5 to 0 s to from choice) after correct trials against after incorrect trials; and 426 
choice encoding, comparing calcium activity (-5 to 0 s from choice) when the upcoming choice on the 427 
current trial is correct or incorrect. A neuron was classified as responsive if its activity showed a 428 
significant difference (p < 0.05) between two conditions within the defined time window in the ROC 429 
analysis. 430 
 431 
Dimensionality reduction 432 
 433 
We concatenated neuronal activity across recordings, and constructed population vector in the early 434 
and late states by averaging calcium signals from all recorded neurons in all trials of a given state (in 435 
50-ms bins, without overlap) over a period of ten seconds centered at the choice point (digging). 436 
These calcium values were extracted from 80% of recorded neurons randomly selected. This process 437 
was reiterated 20 times to account for the inherent variability in the dynamics of the population vector. 438 
The resultant high-dimensional trajectories were smoothed and embedded into a lower-dimensional 439 
space through principal component analysis (PCA). The explained variance was calculated for the 440 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2025. ; https://doi.org/10.1101/2023.12.13.571356doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571356
http://creativecommons.org/licenses/by-nc-nd/4.0/


first six principal components, which collectively accounted for over 80% of the total variance. 441 
Projections into a low-dimensional space (n = 3) were generated for visualization purposes. 442 
Additionally, to evaluate the degree of similarity between state vectors, Pearson's correlation was 443 
computed for the time series of individual principal components. Subsequently, these correlation 444 
coefficients were averaged to derive an overall measure of vector similarity.  445 
 446 
Hidden Markov model 447 
 448 
Following prior work (e.g., 62–64), we assume population neuronal activity can be clustered into two 449 
distinct (hidden) states, corresponding to the early learning state and the late learned state as 450 
observed in mouse behavior (Fig. 2e). For each trial, calcium activity from simultaneously recorded 451 
neurons was segmented into non-overlapping 50-ms windows and averaged over the 5-s period 452 
preceding the animal's choice (digging). Principal component analysis (PCA) was applied to identify 453 
low-dimensional representation of population activity of each trial. Based on these PCs, K-means was 454 
applied to group trials into clusters, initializing the parameters for HMM. The core assumption was 455 
that activity vectors corresponding to the same behavioral state would cluster together in the neuronal 456 
state space. An HMM was then fitted to estimate emission and transition probabilities between 457 
states. To ensure robustness, the clustering and modeling process was repeated 1000 times, with 458 
each iteration consisting of a randomly selected 40% of neurons.  Model parameters were optimized 459 
using the Baum-Welch algorithm on 90% of the data, and performance was tested on the remaining 460 
10% using the Viterbi algorithm 96 to infer the most likely sequence of hidden states. To account for 461 
the potential confound that different number of trials affect model performance (LC inhibition typically 462 
required more trials than the control condition), we used a bootstrapping method to balance trial 463 
numbers. Specifically, we matched the total number of trials in each session to the highest possible 464 
number (31 trials).  465 
 466 
Generalized linear model  467 
 468 
We conducted a logistic regression analysis on the population vectors to predict current trial outcomes 469 
(correct or incorrect) based on population activity patterns. To construct the population vector for each 470 
session, we initially computed the average activity of all recorded neurons in the 5-s window prior to 471 
choice. We then randomly selected 40% of neurons and applied principal component analysis. The 472 
first three principal components were retained as predictors for the regression model. We also 473 
matched trial numbers, following the methodology described earlier for HMM. To address variability 474 
and ensure robustness, we conducted 1000 bootstrap procedures. Subsequently, we partitioned 90% 475 
of the dataset for model training and tested the model on the remaining 10% of unseen data. A 476 
threshold of 0.5 was used to binarize the model probability. Values above 0.5 were assigned a label 477 
of 1 (correct choice), while values below 0.5 were assigned a label of 0 (incorrect choice). Model 478 
accuracy was assessed by comparing the actual behavioral sequence with model predicted 479 
sequence.  480 
 481 
We note that incorrect choices likely reflect the early rule learning state, and correct choices likely 482 
reflect the late rule acquisition state. Thus, the two measurements of behavior, namely state change 483 
and trial-by-trial choice, are not completely orthogonal to each other. 484 
 485 
Statistical analysis  486 
 487 
Data were reported as mean ± SEM unless otherwise noted. We did not use statistical methods to 488 
predetermine sample sizes. Sample sizes were similar to those reported in the field. We assigned 489 
mice to experimental groups arbitrarily, without randomization or blinding. Unless otherwise noted, 490 
statistical tests were two-tailed Wilcoxon rank-sum when sample sizes were >7. When sample sizes 491 
were ≤ 7, two-tailed t tests were used. 492 
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Figure 1 Inhibiting LC-NE neurons or their terminals in the mPFC impair switching behavior. 
(a) Task overview. (b) Example frames (top to bottom) showing when the mouse was in the waiting 
area, approaching the bowls, and digging. (c) Task performance (total number of trials to criterion) 
varied across stages (n = 24): SD – simple discrimination, 12 ± 1 trials; CD – compound discrimination, 
7 ± 1 trials; REV – intra-dimensional reversal, 20 ± 1 trials; IDS – intra-dimensional shift, 10 ± 1 trials; 
EDS – extra-dimensional shift, 17 ± 1 trials. Repeated-measure ANOVA, F(4, 92) = 47.8, P = 1.1e-
21, n = 24. Post hoc Tukey-Kramer tests: EDS vs. SD, P = 3.3e-3; EDS vs. CD, P = 1.0e-8; EDS vs. 
REV, P = 0.20; EDS vs. IDS, P = 4.9e-8; SD vs. CD, P = 3.1e-6; SD vs. REV, P = 2.5e-4; SD vs. IDS, 
P = 0.18; CD vs. REV, P = 1.1e-8; CD vs. IDS, P = 2.7e-4; REV vs. IDS, P = 6.7e-7. Note that in (c) 
statistical significance was only indicated when comparing EDS to other stages. (d) Schematic of 
DREADD inhibition in the LC and histological images showing DREADD(Gi) and TH (Tyrosine 
Hydroxylase) expression in the LC of a DBH-Cre mouse. (e) Task performance in the control (n = 3, 
WT) and test (n = 5) groups. Following systemic CNO injections, test group mice took more trials to 
complete extra-dimensional shift (EDS. Trials to reach the criterion: control vs. test, 15 ± 1 trials vs. 
25 ± 2 trials, P = 0.020, t = -3.1). (f) Histology showing terminal expression of mCherry in the mPFC. 
Scalebars: 100 µm. (g) Schematic of inhibiting LC terminals in mPFC and histology displaying cannula 
placement in the mPFC. (h) Task performance in the control (n = 4, WT) and test (n = 5) groups. 
Following localized CNO injection, test group mice took more trials to complete EDS (Trials to reach 
the criterion, control vs test: 19 ± 1 trials vs. 26 ± 2 trials, P = 0.024, t = -2.9). 
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Figure 2. LC inhibition enhances mPFC engagement and broadens tuning. 
(a) Illustration of miniscope recording in the mPFC with DREADD inhibition in the LC. (b) Top: 
Histology showing lens implant and GCaMP6f expression in the mPFC (prelimbic). Bottom: Snapshot 
of miniscope recording during behavior. (c) Example time series of fluorescence signals. Over 50 
ROIs were acquired from this session. (d) Left to right: Example traces of individual mPFC neurons 
responding to choice (left), trial history (middle) and switch (right) based on activity prior to choice 
(gray bars). (e) Example behavioral progression. Each dot represents a trial. We define the initial 
mixed correct and incorrect trials (rule-learning) and the last set of consecutive correct trials (rule-
following) as two different states in switching behavior. (f) Bar plots showing the percentage of mPFC 
neurons responding to task-related variables in the control (black) and test (red) groups. Control vs. 
test, choice responsive: 10% (59/593) vs. 17% (72/432), P = 1.5e-3; history responsive: 6% (34/593) 
vs. 13% (55/432), P = 8.5e-5; switch responsive: 17% (102/593) vs. 25% (106/432), P = 3.9e-3; 
overall fraction of responsive neurons: 27% (159/593) vs. 40% (172/432), P = 1.1e-5; the fraction of 
mixed tuning neurons among all responsive neurons: 20% (31/159) vs. 32% (55/172), P = 9.7e-3, 
Chi-squared test.  
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Figure 3. LC inhibition dampens mPFC population dynamics during switching. 
(a) Population vectors of mPFC activity representing early (light color) and late (dark color) states in 
control (black, left) and test (red, right) groups. Each line represents a population vector from a subset 
of neurons. (b) Projection of population vectors in (a) onto the first two PCs. (c) Left: Euclidean 
distance (mean ± SEM) between state vectors aligned to choice for control (black) and test (red) 
groups. Arrows indicate maximal fluctuations prior to choice (peak). Right: Comparison of Euclidean 
distance quantified prior to choice for control (black) and test (red) groups. Control vs. test, 12.8 ± 
0.05 vs. 8.9 ± 0.03, P = 6.8e-8, rank sum = 610, n = 20. Sample size represents number of bootstraps. 
(d) Comparison of peak Euclidean distance quantified prior to choice for control (black) and test (red) 
groups. Control vs. test: 4.1 ± 0.14 vs. 2.0 ± 0.07, P = 6.8e-8, rank sum = 610, n = 20. (e) Comparison 
of vector similarities between the early and late states for control and test groups. Correlation 
coefficient, control vs. test: 0.15 ± 0.03 vs. 0.95 ± 0.01, P = 6.8e-8, rank sum = 210, n = 20). Black 
and red dots indicate group mean in (c-e). 
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Figure 4. LC inhibition impairs mPFC encoding capacity of switching. 
(a) Example behavioral state progression (solid curve: 0-early, 1-late) and hidden Markov model 
(HMM) predicted state progression (dashed curve) in a control session (black, left) and a test session 
(red, right). State prediction accuracy is 85% (control) and 71% (test). (b) Left: Cumulative distribution 
of the accuracy of predicting behavioral states in control (black) and test (red) groups. Sample size 
represents the total number of iterations that the model was tested (20 times per recording, 4 control 
mice and 5 test mice). Control vs. test: 0.89 ± 0.01 vs. 0.74 ± 0.02, P = 5.8e-7, rank sum = 9.0e3. 
Right: Cumulative distribution of the accuracy of predicting switch point in control (black) and test 
(pink) groups. Control vs. test: -4 ± 1 trials vs. -8 ± 1 trials, P = 4.2e-4, rank sum = 8.5e3. (c) Example 
sequences of animals’ choices (solid, top) and generalized liner model (GLM) predicted choices 
(dashed, bottom) in a control session (black, left) and a test session (red, right). Prediction accuracy 
is 82% (control) and 60% (test). (d) Cumulative distribution of the accuracy of predicting trial-by-trial 
choices in control (black) and test (red) groups. Control vs. test: 0.75 ± 0.01 vs. 0.68 ± 0.01, P = 6.0e-
8, rank sum = 8.0e3. 
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Supp. Figure 1 
(a) Task performance in the control (n = 4) and test (n = 5) group of DBH-Cre mice expressing Gi-
DREADD. Control group received saline injections and test group received CNO injections. Test 
group mice took more trials to complete EDS (Trials to criterion: control vs. test, 17 ± 2 trials vs. 25 ± 
2 trials, P = 0.028, t = -2.8). Test group is the same as in Fig. 1b. (b) Task performance in the control 
(n = 4, WT) and test (n = 4, DBH-Cre mice expressing Gi DREADD) groups that received CNO 
injections and were subjected to mPFC miniscope imaging (same mice included in Fig. 2-4). Test 
group mice took more trials to complete EDS (Trials to criterion: control vs. test, 14 ± 2 trials vs. 20 ± 
1 trials, P = 0.049, t = -2.5). (c) Pooled behavior data (Fig. 1e, 1h and Supp. Fig. 1a, 1b) to 
demonstrate the validity of set shifting from IDS to EDS. Control group mice took more trials to 
complete EDS (Trials to criterion: IDS vs. EDS, 10 ± 1 trials vs. 16 ± 1 trials, P = 1.3e-4, t = -5.2, n = 
15). Test group mice (n = 14) took more trials to complete EDS than the control group (Trials to 
criterion: control vs. test, 16 ± 1 trials vs. 24 ± 1 trials, P = 3.9e-5, t = -4.9).  
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Supp. Figure 2 
(a) Cumulative distribution of the frequency of calcium transients between control (black, n = 593 
neurons) and test groups (red, n = 446 neurons). Control vs. test: 1.04 ± 0.02/min vs. 1.03 ± 0.03/min, 
P = 0.83, rank sum = 3e5). (b) Cumulative distribution of transient duration between control (black) 
and test (red) groups. mPFC neurons in the test group mice exhibited slightly shorter transients. 
Control vs. test: 3.4 ± 0.1 s vs. 3.2 ± 0.1 s, P = 7.1e-6, rank sum = 3.2e5. (c) Cumulative distribution 
of transient amplitude between control (black) and test (red) groups. Control vs. test: 4.7 ± 0.04 vs. 
4.8 ± 0.06, P = 0.21, rank sum = 3e 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 24, 2025. ; https://doi.org/10.1101/2023.12.13.571356doi: bioRxiv preprint 

https://doi.org/10.1101/2023.12.13.571356
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Supp. Figure 3  
Bar plots showing the percentage of neurons responding to multiple task-related events. For example, 
the first bar represents that 18% of trial-history responsive neurons also encode switch of attention 
(black bar), and that 21% of history responsive neurons also encode choice (red bar).  
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Supp. Table 1 
The fraction of specific groups of task-encoding neurons in individual mice from the control (n = 4) 
and test (n = 4) groups.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Control Test 

 C1 C2 C3 C4 T1 T2 T3 T4 

Choice 19/153 0/260 35/156 5/24 18/74 25/240 10/48 19/70 

History 11/153 0/260 23/156 0/24 15/74 25/240 5/48 10/70 

Switch 29/153 31/260 32/156 10/24 23/74 48/240 15/48 20/70 

All 50/153 31/260 68/156 10/24 40/74 78/240 19/48 35/70 

Mixed 9/50 0/31 18/68 4/10 15/40 19/78 9/19 12/35 
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Supp. Figure 4 
Schematic of the dual-camera setup (1 overhead camera and 1 side-view camera) and 3 example 
frames captured during a digging event from the side-view camera. Independent behavioral analyses 
showed that the difference between digging onset estimated from the overhead camera and the side-
view camera is 1.8 ± 1.0 frames (signed value) or 5.2 ± 0.6 frames (absolute value. 42 trials from 2 
mice). Given the 20 Hz video rate, the time difference is less than 100 ms.  
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Supp. Figure 5  
(a) 2D projection of mPFC population vectors in the control group during early (gray) and late (black) 
states. (b) 2D projection of mPFC population vectors in the test group during early (light red) and late 
(dark red) states.  
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Supp. Figure 6 
(a) Example movement trajectories during behavior for a control and a test mouse, respectively. (b-
d) Distance traveled per trial, speed and response latency did not differ between test (n = 4) and 
control (n = 4) group mice. Distance traveled, control vs test: 133.8 ± 20.8 cm vs. 130.9 ± 16.2 cm, P 
= 0.91, t = 0.11; Locomotion speed, control vs test: 0.87 ± 0.15 cm/s vs. 0.87 ± 0.15 cm/s, P = 0.99, t 
= -0.009; Reaction time (latency from trial start to digging), control vs test: 14.1 ± 6.4 s vs. 10.6 ± 1 s, 
P = 0.56, t = 0.61.  
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