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Abstract

Functional MRI measures brain activity by monitoring changes in blood oxygen levels, known
as the blood-oxygen-level-dependent (BOLD) signal, rather than measuring neuronal activity
directly. This approach crucially relies on neurovascular coupling, the mechanism that links
neuronal activity to changes in cerebral blood flow (CBF). However, it remains unclear whether
this relationship is consistent for both positive and negative BOLD responses across the human
cortex. Here we found that about 40% of voxels with significant BOLD signal changes during
various tasks showed reversed oxygen metabolism, particularly in the default mode network.
These “discordant” voxels differed in baseline oxygen extraction fraction (OEF) and regulated
oxygen demand via OEF changes, while “concordant” voxels depended mainly on CBF changes.
Our findings challenge the canonical interpretation of the BOLD signal, indicating that
guantitative fMRI provides a more reliable assessment of both absolute and relative changes
in neuronal activity.
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INTRODUCTION

Neuronal activity is the primary energy consumer in the brain, driven by oxygen metabolism
and quantified as the cerebral metabolic rate of oxygen (CMRO;)!. Functional magnetic
resonance imaging (fMRI) maps this activity indirectly by detecting regional changes in blood
oxygenation 2. The resulting blood-oxygenation-level-dependent (BOLD) signal originates from
fluctuations in deoxygenated hemoglobin, rather than from neuronal activity itself.

Interpreting BOLD signal changes (ABOLD) as changes in neuronal activity depends on
neurovascular coupling, the process that links neuronal activity to local changes in cerebral
blood flow (CBF) 3. Classical work in human sensory cortices using positron emission
tomography (PET) showed that sensory stimulation evokes modest increases in CMRO; but a
disproportionately larger increase in CBF, resulting in a positive coupling ratio of ACBF/ACMRO;
(n-ratio ~ 2 - 4) & This surplus in CBF forms the basis of the canonical hemodynamic response
(n-ratio > 1), which generally allows the interpretation of a positive BOLD response as
increased neuronal activity, and vice versa %0, Mesoscopic studies have supported this
principle by linking heightened neural or synaptic activity to increased CBF and positive BOLD
responses 11713, Likewise, others have shown that inhibitory processes and decreased activity
are linked to negative BOLD changes 1478, However, it remains unclear whether the canonical
hemodynamic response applies uniformly beyond sensory cortices, particularly throughout
the entire human cortex.

Several studies have shown that BOLD signal changes do not always accurately reflect neuronal
activity. Animal studies identified task-induced changes in CBF and metabolic activity,
accompanied by minimal or opposite BOLD signal responses 1929, indicating conditions where
hemodynamics and neuronal activity are decoupled #?!. Reports of unchanged or even
increased metabolism despite significant negative ABOLD or ACBF further challenge the
assumption of uniform neurovascular coupling 222>, The BOLD signal itself reflects a complex
interplay among changes in CBF, cerebral blood volume (CBV), and the oxygen extraction
fraction (OEF) during capillary passage, making its interpretation region-dependent 102¢,
Consequently, various studies have reported inconsistencies between BOLD signal responses
and cognitive or neuronal activity in humans 2>273%, Moreover, variations in vasculature 3! and
hemodynamic responsiveness %3734 can produce similar macroscopic BOLD patterns through
distinct underlying mechanisms. These differences particularly affect the interpretation of
BOLD signal patterns in patients with altered hemodynamics %30, Together, these studies
challenge the reliability of the BOLD signal response as an indicator of neuronal activity across
the cortex, motivating a more quantitative examination of neurovascular coupling.

We addressed this question by measuring absolute oxygen metabolism and individual vascular
components underlying positive and negative BOLD signal changes. The gold standard for CBF
and CMRO; measurements is >0 PET; yet, this technique requires an on-site cyclotron, a
sophisticated imaging setup, and significant experience in handling three different radiotracers
(e.g., CBF: 150-water, CBV: 150-CO, OEF: 150-gas) of short half-lives 3>, Furthermore, this
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invasive method poses significant demands on participants owing to the exposure to
radioactivity and arterial sampling. As an alternative, various MRI approaches have been
developed over the past three decades to quantify voxel-wise oxygen extraction and
metabolism in the human cortex 36738, The quantitative BOLD (qBOLD) approach is based on
an analytical model 3° that relates R2’ to OEF #9*2, A multiparametric variant of the qBOLD
technique (mgBOLD) combines separate measurements of the intrinsic and effective
relaxation times, T2 and T2* for R2’, with an independent quantification of CBV for OEF
measurement. mgBOLD imaging has been widely applied to study patient groups with vascular
pathologies and brain tumors 4747, summarized recently by Alzaidi et al. 3®.

In this study, we used both quantitative and conventional BOLD imaging to test the hypothesis
that ABOLD would not reliably reflect changes in oxygen metabolism throughout the entire
cortex. We found that, in a substantial fraction of voxels with significant BOLD responses,
oxygen metabolism changes in the opposite direction to both positive and negative BOLD
signals. Notably, these discordant voxels regulated oxygen demand primarily via changes in
OEF, rather than CBF. These findings challenge the canonical hemodynamic response model,
demonstrating that BOLD signal changes alone can lead to misleading interpretations of
underlying neuronal activity.
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RESULTS

Brain imaging data were collected using BOLD and quantitative fMRI while participants
completed four experimental conditions within a single session (Figure 1A, 1B). These
conditions allowed identification of (1) ‘task-positive’ regions with increased BOLD signal and
(2) ‘task-negative’ regions with negative BOLD response during calculation (CALC). We also
examined (3) positive BOLD responses in the ‘task-negative’ regions during an
autobiographical memory task (MEM). BOLD-contrast images for CALC and MEM were
calculated relative to a control task (CTRL) or resting state (REST).

Quantitative fMRI, combining mgBOLD and pCASL MRI, estimates CMRO, as a metabolic
marker of neuronal activity. CMRO, was calculated using Fick’s principle, integrating parameter
maps of several aspects of the hemodynamic response into a measure of oxygen metabolism
(Figure 1C, Methods). Table 1 lists parameter and CMRO, values averaged across all subjects
and conditions.

[Table 1 about here]

The canonical hemodynamic response model (Figure 1D) assumes an identical hemodynamic
response across voxels, with ACBF exceeding ACMRO, (n-ratio >1). In this study, we used
qguantitative fMRI to measure hemodynamic parameters per condition and compared them to
task-induced BOLD changes relative to an experimental baseline (ABOLD [%)]).
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Average negative BOLD signal response does not indicate reduced oxygen metabolism

We performed separate partial least squares (PLS) analyses on BOLD and mgBOLD parameter
maps to compare BOLD and quantitative fMRI results. Bootstrap ratios were used for statistical
mapping (Fig. 2A shows CALC vs. CTRL; additional contrasts in Fig. S2). We found widespread
significant positive and negative ABOLD for CALC vs. CTRL. Group histograms (Fig. 2B) show
task-related changes for each parameter within significant ABOLD regions (CALC-positive,
CALC-negative). In CALC-positive masks, ACBF and ACMRO;, showed canonical amplitudes:
ABOLD[%] = 0.37%, ACBF[%] = 6.5%, ACMRO: [%] = 3.1%, n-ratio (ACBF[%] / ACMRO; [%]) =
2.1 (Fig. 2B). CALC-negative masks showed near-zero ACBF and ACMRO,, despite negative
ABOLD reaching 70% of the positive amplitude (-0.26%). To address normalization distortions,
we also analyzed native-space data using individual BOLD masks, confirming robust positive
ACBF and ACMRO; in CALC-positive masks, with no significant response in CALC-negative
masks across subjects (Fig. 2C). A second-level GLM model (Fig. S1A and S1B), instead of the
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PLS approach confirmed near zero changes of median ACBF and ACMRO; in CALC-negative
masks. Overall, positive ABOLD values matched the canonical hemodynamic response, with
ACBF (in %) being at least ten times higher than ABOLD and twice the amplitude of ACMRO,
(n-ratio >2). However, no significant negative ACBF, ACBV, AT2*, or ACMRO, were found in
negative ABOLD masks across subjects.

We then analyzed metabolic parameters regionally, avoiding brain-wide averaging effects.
Eight clusters showed positive, nine clusters negative ABOLD (Fig. 2D, left). Median ACMRO,
was significantly positive in half of the positive ABOLD clusters, but negative in none of the
negative clusters (Fig. 2D, bar plots). Notably, two auditory network clusters (SMN 1, SMN 2)
with negative ABOLD had significant positive ACMRO,.
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Control analyses

We also examined ABOLD and ACMRO; for the other contrasts, CALC vs. REST (Fig. S2A-C) and
MEM vs. CTRL (Fig. S2D-G). CALC-positive and CALC-negative masks showed higher overall
ABOLD, AT2*, ACBF, and ACMRO, compared to CTRL, but changes within CALC-negative masks
remained nonsignificant (Fig. S2C). For the MEM task, results mirrored the CALC patterns, with
similar BOLD signal amplitudes, and stronger positive than negative ABOLD. However, ACBF
and ACMRO; were only significant in the MEM-positive mask. Thus, positive ABOLD reliably
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indicated significant positive ACMRO; across conditions, but the metabolic interpretation of
negative ABOLD remained unclear. Table S1 summarizes average parameter changes for all
conditions.

Several factors could explain the absence of hemodynamic and metabolic changes, especially
related to negative ABOLD: (i) voxel-specific signal confounds, (ii) limited sensitivity for
detecting negative ACBF or ACMRO,, or (iii) distinct hemodynamic mechanisms in certain
regions. We address each explanation below.

Most MEM-positive voxels overlapped with the default mode network (DMN), which showed
negative ABOLD during CALC (Fig. S2F). To test for voxel-specific confounds, we analyzed CBF
and CMRO: in voxels occurring in both MEM-positive and CALC-negative masks. Fig. S2H shows
the histograms of ABOLD, ACBF, and ACMRO; for all voxels of a conjunction mask (MEM-
positive A CALC-negative). For positive ABOLD (0.32%), we observed a canonical increase in
ACBF (5.94%) and ACMRO, (3.54%). However, in the same voxels, a negative ABOLD (-0.29%)
was associated with a much weaker ACBF (-0.47%), resulting in a positive ACMRO; (1.68%).
Thus, a lower ACBF than expected from the canonical framework results in elevated ACMRO,
for negative ABOLD. Crucially, the absence of canonical negative BOLD responses in
"conjunction voxels" cannot be explained by voxel-specific confounds, as those same voxels do
display a canonical response for positive ABOLD.

According to the hemodynamic response model (Fig. 1D), neurovascular coupling is primarily
driven by changes in CBF. To validate the sensitivity of pCASL imaging for detecting ACBF, we
performed several control analyses (Fig. S3). We found ACBF magnitudes ranging from -12%
to +29%, with regions of positive ACBF showing higher n-ratios than those with negative ACBF
(Fig. S3A). Moreover, the spatial pattern of negative ACBF during CALC matched that observed
with PET from a different study (Fig. S3B). Notably, CBF decreases identified by PET and MRI
were more localized than BOLD decreases and centered on peak regions. Additionally, we also
validated the homogeneity of our MR-derived OEF with independent PET data (Fig. S3C).

We also assessed signal stability of BOLD and CBF measurements during continuous task
performance. In the main study (Fig. 1), block durations vary for BOLD (30 sec) and quantitative
(approx. 6 min) fMRI to achieve the best signal-to-noise ratio (SNR) for each modality. In a
control study (N=18), participants performed 3-minute CALC and MEM blocks while BOLD data
were collected. BOLD signals remained stable without habituation or drift (Fig. S3D), with
amplitude changes comparable to the main study (CALC-positive/negative/MEM-positive:
0.6%/-0.46%/0.34% vs. 0.70%/-0.34%/0.51%). Time-resolved pCASL analysis from the main
study also showed constant CBF data throughout measurement blocks (Fig. S3E).

High prevalence of discordant voxels among positive and negative BOLD responses

We next assessed the ABOLD—-ACMRO; relationships on the voxel level and compared our data
to an established model of hemodynamic responses. The Davis model predicts ABOLD
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responses based on realistic cortical ranges for ACMRO[%] and ACBF[%] (Davis et al., 1998).
Fig. 3A displays the model’s prediction of ABOLD (contours, -3% to +3%) for a set of typical
hemodynamic response parameters. A canonical BOLD response occurs when ACBF exceeds
ACMRO; (n-ratio >1). However, the model also predicts discordant responses — where ABOLD
disagrees with metabolic change —when ACBF is lower than ACMRO; (n-ratio <1) or their signs
differ (Fig. 3A, violet shadings). For example, a negative ABOLD of -1.3% would arise if CBF
increases by only about 5% during a ACMRO: of +23%. In other words, the same metabolic
change can result in opposite signs of the BOLD signal, depending on the magnitude of related
ACBF. Since we measured all relevant parameters and calculated ACMRO, using Fick’s principle,
we next compared our empirical data to the model predictions.

Fig. 3B presents subject-averaged voxel data for CALC vs. CTRL, colored by positive/negative
ABOLD (Fig. S4A for CALC vs. REST, and Fig. S4B for MEM vs. CTRL). To mitigate low SNR at the
voxel level, ACMRO, was calculated using more stable AR2’ data from BOLD-fMRI (see Methods
and Fig. S5 for sensitivity analysis). Our empirical data support several predictions of the Davis
model: positive ABOLD voxels cluster above the line with a slope of 1, indicating an n-ratio >1.
We also identify a significant number of discordant voxels — those with opposite ABOLD and
ACMRO,. Those can be summarized as red voxels on the left and blue voxels on the right side
of zero A CMRO; (Fig. 3B, red dashed line). Interpreting the activity in discordant voxels using
only BOLD data and assuming a uniform canonical response would lead to substantial
misinterpretation.

To highlight the amount of discordant responses, we plotted CALC-positive (Fig. 3C top) and
CALC-negative (Fig. 3C bottom) voxels separately, highlighting discordant voxels (violet
shading). Discordant voxels account for 31% and 66% of positive and negative ABOLD,
respectively (Fig. 3C, pie charts); with a similar ratio of discordant negative ABOLD within the
DMN (pie chart “DMN only”), the network with the most consistently reported negative BOLD
signal responses. Moreover, discordant voxels are spatially distributed across the cortex (Fig.
3C, brain slices) and occur equally among voxels from the lowest to highest quartile of BOLD
signal amplitudes (Fig. 3C, bar plots). We repeated these analyses for CALC vs. REST (Fig. S4A)
and MEM vs. CTRL (Fig. S4B). Again, discordant voxels appeared with a uniform cortical
distribution and across the full range of ABOLD, amounting to 36% / 52% of significant positive
/ negative ABOLD voxels in CALC vs. REST and 12% / 54% in MEM vs. CTRL.

Fig. 3D summarizes voxel-median parameter values separately for concordant and discordant
voxels. Concordant voxels with either positive or negative ABOLD demonstrate a canonical
hemodynamic response (n-ratio 2.0 for positive, 1.6 for negative ABOLD; Fig. 3D, yellow and
turquoise bars). Discordant voxels, however, show ABOLD opposite to their metabolic
response and lower than expected ACBF (Fig. 3D, violet bars). Notably, discordant ABOLD
occurred in about one-third of positive and two-thirds of negative ABOLD voxels across
different tasks and all magnitude ranges, distributed evenly throughout the cortex.
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Potentially, discordance between ABOLD and ACMRO; could result from partial volume effects
when integrating voxel data from imaging sequences with heterogeneous voxel sizes, as
occurred in our main study.. To address this, we conducted a replication study (N = 10) using
harmonized acquisition matrices for BOLD and mqBOLD data. Results mirrored the main study
(Fig. S6): 40% of all voxels with either significant positive or negative ABOLD were classified as
discordant, and discordant voxels again showed smaller CBF responses than expected from
canonical neurovascular coupling.

Finally, we directly estimated the parameters of the Davis model using our own data. With
measurements of ABOLD, CBV, OEF, and CBF, we calculated a and each subject’s calibration
factor M empirically. The average values were o = 0.38 and M = 11.2 + 1% (N = 40). Fig. S7
replicates Fig. 3 using the Davis model parameters instead of Fick’s formula to quantify CMRO.,.
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‘Mixed’ voxels switch between concordant and discordant BOLD responses across tasks

Next, we examined whether voxels with both positive and negative BOLD responses during
CALC or MEM (using the conjunction mask of the control analysis in Fig. S2H) exhibit consistent
hemodynamic response patterns for both signs of ABOLD. Voxels were classified as
‘concordant only’, ‘discordant only’, or ‘mixed’ based on whether BOLD and metabolic
responses matched in both tasks, differed in both tasks, or showed a mixed pattern (Fig. 4A).
The pie chart illustrates that most voxels (48%) were ‘mixed’, while 35% and 18% were
consistently concordant or discordant, respectively. Fig. 4B displays the spatial and amplitude
distributions for ACBF and ACMRO, across the three categories. ‘Concordant only’ voxels
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showed canonical hemodynamic responses (n-ratio ~2) regardless of BOLD sign or task
(yellow/turquoise bars), while ‘discordant only’ voxels lacked canonical responses for either
direction (violet/lilac bars). ‘Mixed’ voxels exhibited canonical coupling for positive BOLD, but
not for negative BOLD (red/orange bars). Because changes in CMRO,, which are not modulated
by CBF, must be matched by OEF changes, we tested whether baseline OEF varies by voxel
type. We hypothesized that ‘discordant only’ voxels, with the lowest ACBF during a task, would
have the lowest baseline OEF (indicating the highest oxygen buffer). In line with this
hypothesis, baseline OEF was lowest in ‘discordant only’ voxels, intermediate in ‘mixed’, and
highest in ‘concordant only’ voxels (Fig. 4C), suggesting that discordant voxels compensate
higher oxygen demand mainly via OEF changes. Importantly, OEF data were independently
acquired from CBF data.

A| Consistency of hemodynamic response type across different tasks, within the same voxels C| Baseline OEF
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CALC-pos «» MEM-neg 1.0
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Baseline OEF predicts different hemodynamic response types

We next examined baseline hemodynamics across the cortex by pooling all voxels with
significant ABOLD during either task (CALC, MEM) — comprising 53% of all GM voxels — and
categorizing them as concordant, discordant, or not task-involved (Fig. 5A, pie chart).
Regression plots show that baseline CMRO, correlates linearly with CBF, OEF, and CBV across
all voxel groups, consistent with Fick’s principle. Multiple linear regression analyses using all
three parameters showed that baseline OEF accounted for >68% of CMRO; variance, followed
by CBF (>28%) and CBV (>1%), with similar model parameters for concordant and discordant
voxels (concordant model: F(3,21809) = 72070, p <.001, CMRO,=139.9 + 321.1*OEF + 3.3*CBF
+ 0.4*CBV + e, R?=0.91; discordant model: F(3,14544) = 48390, p < .001, CMRO,= 128.1 +
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309.2*0OEF + 3.2*CBF + 1.3*CBV + e; R?=0.91; all predictors mean-centered, p<.001 for all beta
values). According to the CMRO; model parameter, discordant voxels have a lower baseline
metabolism, while concordant voxels have significantly higher baseline CBF and OEF but lower
CBV (Fig. 5B).

To validate lower OEF and higher CBV in discordant voxels, we analyzed two external QSM
datasets (Fig. 5C). Projecting our voxel masks onto these data, we observed that discordant
voxels had slightly but significantly lower susceptibility (indicating lower dHB) and significantly
higher venous density, supporting our findings.

Finally, we investigated whether AOEF might serve as an alternative mechanism to ACBF in
accommodating oxygen demand during task processing. Regression plots show the linear
correlation between ACMRO, and ACBF, AOEF, and ACBV, separately for concordant and
discordant voxels, illustrating the significant contribution of each hemodynamic parameter to
oxygen metabolism (Fig. 5D). However, we also identified two distinct patterns of
hemodynamic responses. Multiple linear regression analyses revealed that in concordant
voxels, ACMRO, was mainly driven by ACBF (concordant model: F(2,21971) = 67980, p < .001,
with ACBF explaining 87% and AOEF 16% of a total explained variance of R2=0.86 of the model:
ACMRO[%] = 2.6 + 0.83*AOEF[%] + 0.86*ACBF[%] + e; all predictors mean-centered, p<.001
for all beta values). In discordant voxels AOEF was the primary regulator, with ACBF secondary
(discordant model: F(2,14694) = 39320, p < .001, with AOEF explaining 58% and ACBF 42% of
a total explained variance of R?=0.84 of the model: ACMRO2[%] = 1.2 + 1.1*AOEF[%] +
0.88*ACBF[%] + e; all predictors mean-centered, p<.001 for all beta values). The negative
ACMRO:; - AOEF correlation for concordant voxels reflects compensatory oxygenation during
ACBF surplus (Fig. 5D, middle plot). CBV was not included in these regressions, as ACBV was
only acquired for the CALC-CTRL contrast. In summary, concordant voxels regulate CMRO,
mostly via ACBF (87%), whereas discordant voxels rely more on AOEF (58%) compared to ACBF
(42%).
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DISCUSSION

In this study, we evaluated the consistency between changes in the BOLD signal and oxygen
metabolism in gray-matter voxels across the human cortex. This finding would support the
common interpretation of positive and negative ABOLD as indicators of increased or decreased
neuronal activity. Contrary to the canonical BOLD response model, approximately 40% of brain
voxels with significant BOLD changes exhibited opposing changes in oxygen metabolism.
Specifically, voxels with positive ABOLD showed decreased ACMRO;, while those with negative
ABOLD exhibited increased ACMRO,. By measuring the BOLD signal, CBF, OEF, and CMRO; in
the same session, we uncovered distinct neurovascular mechanisms in regions with
concordant versus discordant responses. Discordant voxels primarily regulate oxygen demand
via AOEF, whereas only concordant voxels display an increase in ACBF, aligning with canonical
predictions. Moreover, discordant voxels demonstrated lower baseline CMRO; and OEF,
indicating that their baseline oxygen supply is sufficient to meet metabolic demands. In
conclusion, we identified two distinct hemodynamic responses to neuronal activity changes,
influenced by baseline OEF and metabolism.

Canonical hemodynamic response for average positive ABOLD

We combined BOLD with quantitative fMRI to investigate hemodynamic and metabolic
changes in relation to BOLD signal changes. Participants performed cognitive tasks eliciting
both positive and negative BOLD signal responses across the cortex. Specifically, we aimed to
elicit both response types in identical voxels, facilitating a direct comparison of their
hemodynamic responses. We employed a cognitively demanding calculation task that induced
positive ABOLD in various attention-related regions *°°° while concurrently inducing negative
ABOLD in DMN regions °9°1, Additionally, participants undertook an autobiographical memory
task known to induce positive ABOLD in DMN regions, partially overlapping with those of
negative ABOLD during CALC 23, This allowed us to examine opposing ABOLD within the same
voxels.

Our study also addressed the implications of differing baseline states. While BOLD signal
responses to cognitive tasks are usually compared against low-level control tasks >3=>°, negative
ABOLD was often reported in comparison to an uncontrolled resting state 51:°¢, Consequently,
we included both baseline types into the study design, and all experimental conditions
successfully elicited anticipated BOLD signal responses. On average, negative BOLD signal
responses constituted approximately 50-70% of the amplitude of positive ABOLD (Fig. 2).
Additionally, ABOLD was larger when compared to REST than to CTRL baseline (Table 2, Fig.
S2A-C).

Compared to BOLD fMRI, which requires subtraction analyses between conditions, the
mqgBOLD approach provides quantitative measures for each condition. During CTRL baseline,
we observed average GM values of CMRO, and hemodynamic parameters (see Table 1)
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consistent with existing literature on the healthy human brain 3>38425157-59 | jkewise, task-
related changes (see Table S1) aligned with prior findings >86961 where ACMRO, and ACBF
exceeded positive ABOLD by factors of 10-20, yielding an n-ratio of approximately 2 (Fig. 2)
and thereby conforming to the canonical hemodynamic response 1962,

Discordant hemodynamics for negative ABOLD and in regions with positive ABOLD

Despite a canonical hemodynamic response for mean positive ABOLD, we did not find
significant hemodynamic or metabolic changes for negative ABOLD (see CALC vs CTRL, Fig. 2C)
for either task condition (see MEM vs CTRL, Fig. S2G) or when comparing against REST baseline
(see Fig. S2C). In a region-specific analysis, we also observed significant deviations from the
canonical response in four out of eight clusters with positive ABOLD (Fig. 2D). One could argue
that voxels with discordant ABOLD might suffer from voxel-specific artifacts such as partial
volume effects or differences in vasculature, leading to insignificant ACBF. To address this issue,
we designed our study to achieve significant ABOLD during both CALC and MEM tasks in
identical voxels, facilitating within-voxel comparisons of ABOLD and quantitative measures.
Among these voxels (Fig. S2H, ‘conjunction voxels’), we observed only weak ACBF (-0.5%) for
negative ABOLD, but strong positive ACBF (5.9%) for positive ABOLD, despite similar ABOLD
amplitudes (-0.29% and 0.32%). For this voxel subset, discordant negative ABOLD is unlikely
due to artifacts, as a canonical hemodynamic response was confirmed for positive BOLD signal
changes.

In summary, we identified a canonical hemodynamic response for mean positive ABOLD, but
inconsistencies in certain regions. For negative ABOLD, we did not find any significant negative
ACBF or ACMRO:>. Our findings align with previous animal studies indicating inconsistent
hemodynamic responses in cortical and subcortical regions 313463,

Validation of discordant hemodynamics using the Davis model and replication data

On the voxel level, we evaluated our findings in comparison to a well-established model of
cerebral hemodynamic responses (Fig. 3). The Davis model predicts BOLD signal amplitudes
for realistic ranges of ACMRO; and ACBF in the human brain %%, Despite being published over
20 years ago, no study has examined the model's accuracy across the human cortex.
Intriguingly, the Davis model predicts a range of discordant positive and negative ABOLD for
biologically plausible ACBF in relation to ACMRO, (Fig. 3, violet shadings and voxels). Our
empirical findings (Fig. 3B) align closely with these predictions using established model
parameters from the literature. For all voxels with concordant positive and negative ABOLD,
we observed a canonical hemodynamic response with average n-ratios of 2.0 and 1.6,
respectively (Fig. 3D). Our data also confirm the presence of a substantial amount of discordant
voxels, comprising 31% of voxels with positive and 66% of voxels with negative ABOLD for CALC

vs. CTRL (Fig. 3C), and similarly for the REST (Fig. S4A) and the MEM condition (Fig. S4B).
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Additionally, we re-calculated ACMRO; via the Davis model using parameters (a, M) derived
from our own data, yielding a similar percentage and regional distribution of discordant voxels,
along with comparable CMRO; responses (Fig. S7). In conclusion, these results strengthen the
reliability of the mqBOLD approach, successfully validating the decades-old model parameters
of the Davis model.

One could argue that discordant ABOLD arises from misalignment and partial volume effects
when integrating voxel data across modalities. Thus, we performed a replication study with
matched voxel sizes and matrices in BOLD- and mgBOLD sequences, albeit sacrificing whole-
brain coverage for higher voxel resolution in pCASL imaging. Utilizing the same study design
and analysis pipeline of the main study, we again found an n-ratio > 1 for concordant voxels
(BOLDpos/neg: 1.7/1.2) and, critically, a considerable proportion of discordant voxels
(BOLDpos/neg: 40%/40%) (Fig. S6). One may also discuss sensitivity issues of mgBOLD across
cortical voxels. For instance, low pCASL sensitivity or high vascular effects (high R2’ or CBV)
might lead to low ACBF and thus artificially induce discordant ABOLD. Consequently, we
validated our results using control masks focusing on voxels with significant ACBF or A CMRO.,
while excluding those with high vascular contributions (Fig. $8). All control analyses confirmed
the presence of discordant voxels, with both positive (11-29%) and negative (68-78%) ABOLD
values. As a final control against voxel-specific artifacts, we investigated hemodynamic and
metabolic responses for both signs of ABOLD within identical voxels (Fig. 4A, conjunction
mask). We assessed response patterns in approximately 4.000 voxels and classified them by
response type. The ‘concordant only’ voxels displayed a canonical hemodynamic response for
both positive and negative ABOLD, demonstrating that the mqBOLD method reliably detects
canonical responses across the ABOLD spectrum. The largest group, labeled ‘mixed’ voxels,
showed a canonical hemodynamic response for positive ABOLD (Fig. 4B, red) but lacked a
significant CBF response for negative ABOLD (Fig. 4B, orange). Paradoxically, interpretation
based solely on BOLD fMRI data would suggest increased activity in one condition and
decreased in another, despite both tasks indicating a significant increase in A CMRO; of similar
magnitude in those voxels (Fig. 4B red/orange bar plots).

Discordant voxels occurred for both positive and negative ABOLD, as well as for ACMRO;
derived from Fick’s formula and the Davis model. The presence of both concordant and
discordant responses within identical voxels implies different hemodynamic mechanisms
serving varying oxygen demands. Shaw et al. identified microvascular variations between
cortical and subcortical regions 3! and simultaneous recordings of neuronal activity and CBF
suggest that interneuron activity may influence blood flow more than other neuronal activity
6466 |n humans, Devi et al. ®” and Mullinger et al. ¢ both found discrepancies in the coupling
of CBF and BOLD signal changes in sensory cortices, which they interpreted as distinct
neurovascular coupling mechanisms, particularly for negative ABOLD. In conclusion, mqBOLD
effectively identifies canonical hemodynamic responses but also a considerable number of
voxels exhibiting discordant ABOLD across various tasks and in relation to varying baseline
conditions.
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Baseline OEF predicts baseline metabolism and alternate hemodynamic coupling

According to Fick’s principle, a change in CMRO; without CBF alteration arises from AOEF. We
hypothesized that baseline OEF varies across voxels with different hemodynamic response
types, suggesting the presence of different oxygen buffers. Our findings confirmed significantly
different baseline OEFs across three response types among ‘conjunction voxels’ (Fig. 4C).
Baseline OEF was lowest in ‘discordant only’ voxels and highest in ‘concordant only’ voxels,
with ‘mixed’ voxels in between. We also observed a significant positive linear relationship
between baseline CMRO,, CBF, and OEF across voxels of all tasks, covering over 50% of all GM
voxels (Fig. 5A, scatter plots). Multiple linear regression showed that OEF accounts for the
majority of baseline CMRO; variability (>68%), followed by CBF (>28%) and CBV (>1%), which
also aligned with quantitative susceptibility mapping data %8%° (Fig. 5C). Collectively, our results
suggest that OEF is a key modulator of baseline metabolism across the human cortex,
potentially predicting regional hemodynamic responses during tasks (Fig. 5D). In line with
baseline results, multiple linear regression revealed that AOEF significantly contributes (58%
of the total explained variance) to task-related oxygen demand in discordant voxels.
Conversely, concordant voxels primarily accommodate ACMRO; through ACBF (87%),
supporting the canonical hemodynamic response. In summary, OEF is a strong predictor of
baseline metabolism across the cortex and AOEF regulates oxygen demand in spatially
distributed voxels. Our findings align with rodent studies demonstrating varying neurovascular

coupling based on variations in vascular composition 142831,

Limitations of mqBOLD and control analyses

The mgBOLD method, while less invasive than PET, has notable limitations. Still, systematic
biases in CBF, OEF, and CMRO; quantification affect only across-subject comparisons and do
not account for task effects, which are derived from AOEF or ACMRO; within identical voxels.

Absolute quantification of CBV through DSC MRI is challenging, reflecting total rather than
venous CBV. Yet, this limitation applies to nearly all available CBV measurements, including PET
0 To enhance intersubject comparability of CBV values, we implemented a global
normalization procedure **. Despite these limitations, our CBV data are valuable as they
represent a rare attempt to quantify baseline CBV and ACBV during task processing in healthy
individuals.

We further evaluated the sensitivity of our mqgBOLD method to accurately detect both positive
and negative ACBF. Our analysis replicated the amplitude and extent of reduced CBF observed
in a prior PET study (Fig. S3B) using a similar analysis approach 7. Additionally, our findings
reveal ACBF in regions exhibiting significant positive ABOLD, aligning with earlier MR-based
CBF measurements °%72,

17


https://doi.org/10.1101/2023.12.08.570806
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.12.08.570806; this version posted October 21, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Furthermore, CMRO; values in white matter (WM) are not interpretable since T2 and T2*
guantification are influenced by orientation effects of myelinated nerve fibers and differences
in lipid concentration between GM and WM. In prior work, our group addressed these
systematic errors of background magnetic fields %4, T2-related bias #°, and orientation-related
effects in WM structures 3. Additionally, we used masking to reduce partial volume effects of
adjacent WM structures, confirmed our main result in a replication study, and demonstrated
that mqBOLD-based OEF agreed well with PET-based OEF “®.

We also performed several control analyses to confirm the study design. A separate control
study validated the stability of the BOLD (Fig. S3D) and CBF (Fig. S3E) signals during extended
measurements. Crucially, neither signal exhibited habituation or drift effects during prolonged
acquisition.

Future directions for BOLD fMRI

Our study reveals spatial variability in hemodynamic changes across the human cortex,
suggesting diverse underlying mechanisms. Firstly, voxels primarily governed by AOEF exhibit
a greater oxygen buffer, maintaining adequate oxygen pressure during tasks ”*°. Secondly, OEF
regulation may indicate different signaling mechanisms ©, including astrocytic activity 74, shifts
in excitatory/inhibitory signaling 7>’%, or neuromodulatory regulation 77. Thirdly, our findings
underscore the importance of quantitative mgBOLD fMRI for future research, particularly
when examining groups with altered hemodynamics, such as in aging 3° or neurodegenerative
conditions 78,
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Tables
Table 1

Whole-brain (GM) parameter values, mean * SD across 40 subjects and all conditions per subject.

R2‘ CBvV OEF CBF CMRO;
[1/s] [%vol] [ratio] [ml/100g/min] [umol/100g/min]
53104 4.8+0.2 0.39+£0.04 445+7.2 127.8+18.4

Figure legends/captions

Figure 1. Study design, quantitative fMRI, and the hemodynamic response model of BOLD fMRI. A|
We performed BOLD- and quantitative fMRI on healthy subjects performing four different conditions
within the same imaging session: calculation task (CALC), autobiographical memory task (MEM), active
control baseline (CTRL), and uncontrolled resting-state baseline (REST). B| During each imaging session,
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we acquired BOLD fMRI data with a 30-sec block design, together with multiparametric, quantitative
fMRI data while conditions were presented in pseudo-randomized order: T2* mapping to measure both
reversible and irreversible dephasing; pseudo-continuous arterial spin labeling (pCASL) to measure CBF
during each condition; T2 mapping to once measure irreversible dephasing due to tissue properties;
dynamic susceptibility contrast (DSC) MRI using a contrast agent to measure CBV during CTRL, at the
end of the session. C| Quantitative fMRI delivers voxelwise CMRO; by integrating T2, T2*, CBV, and CBF
parameters via Fick’s principle (see Methods section for detailed equations). Brain slices of subject-
average parameter maps and boxplots illustrating average GM values across all 40 subjects and all
conditions of the main study (line, median; box limits, upper and lower quartiles; whiskers, minimum
and maximum data points except for outliers: values outside of 1.5*% IQR; individual dots, subject
average per condition). The reversible transverse relaxation rate (R2’) reflects a voxel's overall
deoxyhemoglobin (dHb) content. The OEF is proportional to R2’/CBV. Voxel-wise CMRO, is then
calculated as the product of OEF, CBF, and the arterial oxygen content of the blood (Ca02) as derived
from individual measures of oxygen saturation and hematocrit. D| The canonical hemodynamic
response model of the BOLD signal: Increased neuronal activity leads to higher oxygen metabolism
(CMRO,), which results in decreased oxygen levels and an increased concentration of dHb in venous
blood. Neurovascular coupling mechanisms initiate an increase in CBV and CBF. This hemodynamic
response counteracts the effects of oxygen metabolism, ultimately leading to a decrease in dHb
content. In BOLD-fMRI, the net fluctuation of dHb levels is dynamically measured with T2*-weighted
(T2*w) echo planar imaging (EPI). ABOLD during any task condition is calculated by subtracting task (T)
from baseline (B) T2*w data. Based on the canonical hemodynamic response function, positive BOLD
signal changes are commonly interpreted as increased neuronal activity.

Figure 2. Negative BOLD signal changes do not indicate reduced oxygen metabolism. All analyses
across N=40 subjects of the main study, CBV results across N=10. A| Statistical results of the PLS group
analysis in standard MNI space, comparing CALC and CTRL, for both BOLD and quantitative fMRI
parameter maps. Maps projected on the brain surface show non-thresholded bootstrap ratios (BSR,
akin to z-values) of the first latent variable, which was significant in each analysis, i.e., for BOLD, CBF,
CBV (N=10), T2* and CMRO; respectively (permutation tests, p < .001). Red voxels indicate higher
values during CALC compared to CTRL, while blue voxels represent the opposite contrast. Axial slices
display significant brain clusters, thresholded at BSR 2 (akin to p < .05, cluster size > 30 voxels) for each
parameter. B| Histograms depict group-average median voxel distributions of all parameters (CALC
minus CTRL) within the binarized CALC-positive and CALC-negative group masks (shown as surface
plot). C| Subject distribution of all parameters in native space. Dots represent individual subject values,
calculated as the median across voxels within individual BOLD masks of significant positive (orange)
and negative (blue) ABOLD. Boxplots: line, median; box limits, upper and lower quartiles; whiskers,
minimum and maximum data points except for outliers: values outside of 1.5* IQR; individual dots, one
dot per subject, median voxel values. Paired samples, two-sided t-tests, ** p <.001. Gray lines connect
values obtained from individual subjects, while red lines indicate subjects where the direction of ACBF
or ACMRO, deviates from what the BOLD-signal suggests. D| Regional clusters (designated by numbers)
of positive and negative ABOLD (PLS group results, thresholded at BSR > +3) and associated bar plots
showing ABOLD and ACMRO:.. Please note the different axes for ABOLD and ACMRO.. Bars indicate
ABOLD[%] and ACMRO;[%] median across voxels, error bars 95% Cl, 2000 bootstraps, and dots
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represent subject values. Any signal increase or decrease for which error bars cross the zero line is
considered non-significant; an asterisk denotes p < .05, not corrected for multiple comparisons.
Clusters are located in different functional networks, as depicted on the brain surface and in axial slices
7% visual (VIS); dorsal attention (DAN); frontoparietal (FPN); ventral attention (VAN); somatomotor
(SMN); default mode (DMN) network.

Figure 3. Dependence of BOLD signal responses on changes in CBF and CMRO,. A| Visualization of the
Davis model. Predicted BOLD responses (ABOLD[%]) are depicted as colored contour lines across
ACBF[%] and ACMRO;[%]. The model illustrates that for a given ACMRO;[%], the direction and
magnitude of the BOLD response depend on the amplitudes of ACBF[%)]. The canonical hemodynamic
response assumes that an increase in ACBF will exceed the increase in ACMRO,, resulting in a positive
ABOLD, and vice versa for negative BOLD signal changes. However, the Davis model also predicts a
range of BOLD responses with discordant signs compared to the changes in underlying metabolic
activity (violet shading). B|] Empirical data from BOLD- and quantitative fMRI for all cortical voxels,
median across N=40 subjects of the main study. ACMRO, was calculated from BOLD-derived AR2’ (see
Methods), median across all subjects per voxel, with colors indicating ABOLD[%]. Our experimental
data replicate the slope and range of values predicted by the Davis model, particularly demonstrating
a substantial number of voxels with ABOLD opposing ACMRO,. C| Voxels, representing the median
across N=40 subjects from the main study, display significantly positive (top) and negative (bottom)
BOLD responses from (B). Voxels with ABOLD concordant to ACMRO; are highlighted on a light
yellow/turquoise background, while voxels with discordant ABOLD values are shown on a violet
background. The pie charts illustrate the ratio of discordant to concordant voxels. In the lower panel,
the pie chart with black contours specifically summarizes the ratio of discordant voxels within the DMN.
Axial slices illustrate the spatial distribution of significantly concordant and discordant BOLD voxels,
with black contours indicating the DMN. The stacked bars in the right center illustrate the amplitude
distribution of discordant and concordant voxels across BOLD amplitude quartiles. It is noteworthy that
discordant voxels show neither spatial nor amplitude preference. D| The boxplots summarize
ACMRO;[%] and ACBF[%] across all voxels, median across N=40 subjects of the main study, with either
concordant or discordant ABOLD[%]; (line, median; box limits, upper and lower quartiles; whiskers,
minimum and maximum data points except for outliers: values outside of 1.5* IQR; based on median
voxel values across subjects). Please note that discordant and concordant voxels exhibit similar ABOLD
amplitude distributions, even though they signal opposite metabolic responses.

Figure 4. Concordant or discordant BOLD signal responses depend on baseline OEF. Median voxel
values across N=30 subjects of the main study. A| Conjunction voxels (green outlines) display both
positive and negative changes in BOLD signal during the CALC and MEM conditions. These voxels were
categorized based on their response types. The pie chart summarizes the consistency of these response
types across voxels: 35% of all conjunction voxels showed concordant responses, meaning they had the
same sign of ABOLD and ACMRO; during both MEM and CALC conditions (‘concordant only’). 18% of
all conjunction voxels showed discordant responses in both conditions (‘discordant only’). 48% of the
conjunction voxels (‘mixed’ voxels) showed concordant responses in one condition and discordant
responses in the other. B| The spatial distribution of voxel categories is illustrated on brain slices with
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consistent color overlays: ‘Concordant only’ and ‘mixed’ voxels primarily cluster in regions of the DMN,
while ‘discordant only’ voxels occur in the medial part of the VAN. The boxplots display subject-median
parameter values separately for ‘concordant only,” ‘mixed,” and ‘discordant only’ voxels (line, median;
whiskers, minimum and maximum data points except for outliers: values outside of 1.5* IQR; based on
median voxel values across subjects). While the range of ABOLD is similar across the three categories,
ACBF and ACMRO; vary strongly as expressed by their n-ratios. Asterisks indicate significant differences
from zero, tested via independent t-tests, two-sided, corrected for multiple comparisons. C| The three
voxel categories exhibit significantly different OEF during CTRL baseline, with ‘concordant only’ voxels
having significantly higher OEF and ‘discordant only’ voxels having significantly lower OEF than ‘mixed’
voxels. ** p < 0.001, independent sample permutation test on the median values, two-sided,
conducted for ‘mixed’ versus the two other voxel types, 2000 permutations.

Figure 5. Two types of hemodynamic responses via changes in CBF or OEF. A| Across all task
conditions, 21% of all GM voxels showed discordant, 32% showed concordant responses, and 46% were
not significantly involved in any task. Regression plots: During baseline, CMRO2 and CBF show a
moderate correlation (Pearson’s r > 0.32, p < .001), CMRO; and OEF are highly correlated (r > 0.7, p <
.001), and CMRO; and CBV show a weak negative correlation (r < -0.1, p < 0.001) across all groups of
voxels, voxel medians across 40 subjects. B| Across all 40 subjects, discordant (disc.) voxels, on average,
show significantly lower CBF (-3.4%), OEF (-5.7%), and higher CBV (2.1%) than concordant (conc.) voxels
(paired-samples, two-sided t-test, p < .001). Boxplots: line, median; box limits, upper and lower
quartiles; whiskers, minimum and maximum data points except for outliers: values outside of 1.5* IQR;
individual dots, median subject values across voxels; gray line, median of remaining GM voxels. C|
Marginally, but significantly lower baseline susceptibility (QSM) and higher venous density in
discordant vs. concordant voxels, revealed by two external datasets ®8%°. Boxplots: line, median; box
limits, upper and lower quartiles; whiskers, minimum and maximum data points except for outliers:
values outside of 1.5* IQR; based on voxel values; gray line, median of remaining GM voxels. ** p <
.001, independent samples permutation test on the median values, two-sided, conducted for
discordant versus concordant voxels, 2000 permutations. D| Correlation of ACMRO,[%] with either
ACBF[%], AOEF[%], or ACBV[%] across all task contrasts (CALC vs. CTRL: voxel median across 40
subjects, MEM vs. CTRL: voxel median across 30 subjects), separately for concordant (pale) and
discordant (dark violet) voxels. ACMRO, and ACBF showed a strong positive correlation across
concordant voxels (r = .87, p < 0.001) and a moderate correlation across discordant voxels (r = .48, p <
.001). In contrast, ACMRO; and AOEF showed a moderate, positive correlation across discordant voxels
(r=.60, p <.001) and a weak, negative correlation across concordant voxels (r = -.41, p < .001). ACBV
could only be evaluated for a subset of 10 subjects and only across the CALC vs. CTRL contrast, see
Methods. ACMRO, and ACBV showed a weak correlation around zero across concordant voxels (r = -
.07) and a moderate, negative correlation across discordant voxels (r = -.46, p < 0.001).
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METHODS
Participants

Main study: Forty-seven healthy adults were enrolled; seven were excluded due to task
difficulties (n=1), contrast-agent issues (n=2), or poor data quality (n=4; e.g., motion or
susceptibility artifacts, unilateral CBF), leaving 40 right-handed participants (22 women, 18
men; mean age 32.1 + 9.2 years) for analysis. Of these, 30 completed all four conditions (CALC,
MEM, CTRL, REST), while 10 performed only CALC and CTRL but underwent two DSC scans,
enabling within-subject ACBV estimation; analyses of MEM or REST thus include 30
participants.

Control study: To assess BOLD fMRI stability during prolonged tasks, a separate cohort of 18
right-handed healthy adults (11 women, 7 men; mean age 28.1 + 4.8 years) underwent BOLD
fMRI.

Replication study: For a replication with harmonized voxel matrices and resolution across
BOLD and mgBOLD sequences, 10 healthy adults (5 women, 5 men; mean age 31.8 + 6.8 years)
performed CALC and CTRL.

All participants gave written informed consent. Procedures were approved by the Ethics
Review Board of the Klinikum Rechts der Isar, Technical University of Munich, and participants
were compensated.

Task design

Participants were scanned supine, viewing instructions on a screen via a mirror mounted on
the head coil. Right-hand responses were recorded with a button box (Cambridge Research
Systems). Tasks were explained and briefly practiced before scanning, emphasizing accuracy
over speed. All tasks were designed to maintain continuous engagement during BOLD and
gunatitative fMRI.

CALC (calculation task): This task aimed to elicit negative BOLD responses in the default mode
network (DMN) and positive BOLD responses in task-positive networks. Participants solved
arithmetic problems at their own pace, with a maximum response time of 10 seconds per task,
following a design similar to that of Lin and colleagues ®. Each trial presented a row of three
numbers plus a question mark (n1, n2, n3, ?) with instructions to solve the arithmetic and fill
in the missing number. The solution followed the rule: n2 - n1 = DIFF, n2 = n1 + (1 * DIFF), n3
=n2+ (2 * DIFF), and ? = n3 + (3 * DIFF). For example, for the row 33 38 48 ?, DIFF = 5, making
the correct answer 63. Participants selected from three response options, including the correct
answer, each corresponding to a button on the response box.

MEM (autobiographical memory task): The MEM condition was based on the design of Spreng
and colleagues °3°°, using cue words instead of pictures for consistency across tasks.
Participants recalled a specific autobiographical event with as many details as possible, with
the cue word displayed for up to 15 seconds. They pressed the first button twice upon recalling
an event. If they couldn't recall any details, they pressed the second and third buttons in
succession for a new cue word, ensuring uniformity in button presses across tasks.

CTRL (low-level baseline): The CTRL condition involved a simple task with minimal cognitive
demands. A row of random letters was displayed for 5.9 to 8.9 seconds, and participants
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pressed a button to indicate if the first letter was a vowel. This active baseline ensured visual
input and button presses were consistent with the CALC and MEM tasks.

REST (resting state baseline): While studies on DMN activations typically use matched control
tasks for contrasts >>7>°, such as our CTRL condition, DMN deactivation studies often compare
to an uncontrolled resting state baseline >1°%89, To replicate these DMN contrasts, we also
collected REST data, featuring a white fixation cross on a black screen.

MRI acquisition parameters

Main study: MRI was conducted on a 3T Philips Ingenia MR scanner with an Elition upgrade
and a 32-channel head coil. The quantitative fMRI protocol included multi-parametric,
quantitative BOLD (mgBOLD) and ASL imaging:

A) Multi-echo spin-echo T2 mapping: 3D gradient spin echo (GRASE) readout as developed
by our group (Kaczmarz et al. 2020) with 8 echoes of even-spaced echo times (TE): TE1 = ATE
= 16ms; TR=251; readout duration = 128ms; a=90°; voxel size 2x2x3.3mm?3; 35 slices (30 slices
in 4 subjects); total acquisition time = 2:28min (for 35 slices).

B) Multi-echo gradient-echo T2* mapping, as developed by our group 44#%: 12 echoes, TE1
= ATE = 5ms; TR=2229ms; readout duration = 60ms; a=30°; voxel size 2x2x3mm?3; gap 0.3mm;
35 slices (30 slices in 4 subjects). Correction for magnetic background gradients with a standard
sinc-Gauss excitation pulse 882; acquisition of half- and quarter-resolution data in k-space
center for motion correction 83; total acquisition time = 6:08min (for 35 slices).

C) Dynamic susceptibility imaging (DSC), as described previously by our group #: Single-
shot GRE-EPI; EPI factor 49; 80 dynamics; TR = 2.0s; a=60°; acquisition voxel size 2x2x3.5mm?3;
35 slices (30 slices in 4 subjects). Injection of gadolinium-based contrast agent as a bolus after
5 dynamics, 0.1ml/kg, minimum 6ml, maximum 8ml per injection, flow rate: 4ml/s,
additionally flushing with 25ml NaCl; total acquisition time = 2:49min (for 35 slices).

D) Pseudo-continuous arterial spin labeling (pCASL): following Alsop et al. (2015) and as
implemented by our group %%, Post-labeling delay 1800ms, label duration 1800ms; 4
background suppression pulses; 2D EPI readout; TE=11ms; TR=4500ms; a=90°; 20 slices (16
slices in one subject); EPI factor 29; acquisition voxel size 3.28x3.5x6.0mm?; gap 0.6mm; 39
dynamics plus one proton density-weighted MO scan; total acquisition time = 6:00min.

In addition to quantitative fMRI, we acquired

F) BOLD-fMRI using single-shot EPI, EPI factor 43; voxel size = 3.0x3.0x3.0mm?3; FOV
192x192x127.8mm?3; TE=30ms; TR=1.2s; a=70°; 40 slices; SENSE-factor = 2; MB-SENSE-factor
= 2. 400 dynamics (8:05 min) for four conditions, 200 dynamics (4:05 min) for two conditions,
1650 dynamics (33:05 min) for the long-block control study acquisition. For susceptibility
correction, a BO field map was acquired with two echoes; TR/TE1/TE2=525ms/6.0ms/9.8ms;
40 slices; parallel acquisition; a=60°; voxel size = 3.0x3.0.3.0mm?3; FOV 192x192x127.8mm3;
total acquisition time: 0:35s.

G) T1-weighted 3D MPRAGE pre- and post-gadolinium (TI/TR/TE/a = 100ms/9ms/4ms/8°;
CS-SENSE-factor=7.5; 170 slices; FOV=240x252x170 mm?3; voxel size 1.0x1.0x1.0mm?3;
acquisition time=2:05min) and T2-weighted 3D FLAIR (fluid-attenuated inversion recovery;
TR/TE/a = 4800/293/40°; CS-SENSE-factor=10; 140 slices; FOV=240x248.9x168mm?3;
acquisition voxel size 1.2x1.2x1.2mm3; turbo spin-echo factor 170; inversion delay 1650ms;
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acquisition time=2:09min) images were acquired for anatomical reference and to exclude brain
lesions.

Control study: MRI was performed on a 3T Philips Ingenia scanner with a 32-channel head coil
and included only T1-weighted 3D MPRAGE and BOLD-fMRI, with all acquisition parameters
being identical to those described above.

Replication study: MRI was performed identical to the Main study, but with matching voxel
matrices: T1l-weighted 3D MPRAGE, multi-echo spin-echo T2 mapping and multi-echo
gradient-echo T2* mapping as described above, with T2/T2* voxel size = 2x2x3.3mm3. BOLD-
fMRI as described above, yet with a voxel acquisition size = 4x4x3mm3, gap 0.3mm, 40 slices.
PCASL as described above, with BOLD fMRI voxel size (4x4x3mm?3, gap 0.3mm; 26 slices). As a
result, subject data were acquired with harmonized voxel dimensions, i.e. matching BOLD and
pCASL voxel sizes and four T2/T2* voxels per BOLD/pCASL voxels in the x/y-plane. Whole-brain
coverage was not possible with this higher-resolution pCASL sequence; thus, we positioned
the volume at the same angle as before to cover all key regions of interest from our main study
(see 'brain coverage,' Fig. S6).

Data acquisition

After obtaining informed written consent, a physician placed a venous catheter for blood
sampling (hemoglobin, hematocrit (Hct), creatinine). DSC contrast was administered only if
creatinine was normal, ensuring renal health. Arterial oxygen saturation was tracked via pulse
oximetry (Nonin Medical B.V., The Netherlands).

Main study: Figure 1B illustrates the imaging session from the main study.

BOLD fMRI: The four task conditions were presented using a 30-second block design, each
repeated four times in random order. BOLD alternated with mgBOLD fMRI runs to reduce
habituation or fatigue effects. During mqBOLD imaging, conditions were presented pseudo-
randomly for pCASL and T2* mapping. DSC (CTRL) and Tlw post-gadolinium scans were
performed at the end of the session to avoid signal artifacts. The contrast agent was
administered via a pump (Medtron AG, Saarbriicken, Germany) under a medical doctor's
supervision.

After the imaging session, participants completed a memory questionnaire about the MEM
condition, rating the ease of recalling specific events on a difficulty scale (1 = 'very easy' to 4 =
'very difficult') and the detail of their memories on a concreteness scale (1 = 'very detailed' to
4 = 'very vague'). On average, participants scored 1.8 + 0.7 on difficulty and 2.0 £ 0.6 on
concreteness, indicating that recalling events was relatively easy and memories were
reasonably detailed. Participants took an average of only 2.5 £ 1 seconds to recall an event.

A subsample of N=10 subjects from the main study performed only the CALC and CTRL
conditions but instead received two DSC scans (totaling a full clinical dose of 16ml). This
enabled calculation of within-subject ACBV for task effects.

Control study: fMRI BOLD data were obtained for CALC and MEM tasks with a 30s block design
(4 repetitions each, interleaved with 30s CTRL blocks), alongside extended 3-minute blocks (4
repetitions each, interleaved with 1min CTRL blocks), totaling 41 minutes of scan time.
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Replication study: Study design and data acquisition were identical to the main study, utilizing
the group median CBV data from the main study for analyses.

Image processing
Processing of BOLD fMRI data

BOLD fMRI data were pre-processed using fMRIPrep 20.2.4 8 within a docker container based
on Nipype 1.6.1 88, Preprocessing involved: segmentation, estimation of motion parameters
and other confounds, correction for susceptibility distortions, co-registration in native Tlw
space, and normalization to MNI152-ICBM-2mm space with a non-linear 6™ generation
registration model developed by (Montreal Neurological Institute, McGill University).
fMRIPrep relies on FSL 5.0.9 for registering EPI time-series data to T1lw data with boundary-
based registration (BBR), FSL FAST for brain tissue segmentation, and ANTs 2.3.3 & for spatial
normalization to MINI space in a multiscale, mutual-information based, nonlinear registration
scheme, where all transforms are first concatenated and registration steps applied at once. As
part of the fMRIPrep pipeline %9, correction for head motion and susceptibility distortions
was performed in subject’s native space, applying a single composite transform to the BOLD-
fMRI time series. The same data were also resampled into standard space, generating a
preprocessed BOLD run in MNI152NLin6Asym space. Preprocessed BOLD fMRI data, without
global signal regression, were then used as input to the PLS model. All datasets from the main,
control, and replication studies underwent identical processing.

Calculation of quantitative parameter maps from mqBOLD data

We calculated quantitative parameter maps using in-house scripts (in Matlab) and SPM12
(Wellcome Trust Centre for Neuroimaging, UCL, London, UK). Fig.1 illustrates the procedure
and shows representative subject-averaged parameter maps.

T2/T2*-mapping: Quantitative T2 and T2* parameter maps are obtained by applying mono-
exponential fits to multi-echo spin and gradient echo data, as described by our group 444592,
Corrections for macroscopic magnetic background fields were implemented 8 and motion
artifacts were addressed through redundant acquisitions of k-space centers .

R2’ maps are calculated via

1 1

R =— -—
T2x T2

[1]

yielding the transverse, reversible relaxation rate that depends on the vascular dHb content
within a voxel °3°*, Caution is required when interpreting these values at air-tissue boundaries
(magnetic field inhomogeneities), in deep GM (iron deposition) or in WM structures
(orientation effects in myelin), as previously discussed 4>2,

CBV maps are derived from DSC MRI after contrast agent application via integration of leakage-
corrected AR2*-curves % and subsequent normalization to a white matter value of 2.5% °°.
The DSC procedure has been described by our group 8497,

OEF maps are calculated from R2’ and CBV parameter maps via the mgBOLD approach 3943
and, as implemented by our group #* via
R2’

OFF = c-CBV

[2]
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withc=y- g -TU- Ayo - het - Bo (gyromagnetic ratio y = 2.675 - 108 s1 T1; susceptibility difference
between fully deoxygenated and oxygenated hemoglobin Ayo = 0.264 - 10°°; magnetic field
strength Bo = 3T; small-vessel hematocrit hct, calculated as 85% of the (large-vessel) hematocrit
values measured in each subject 44°8). OEF (ratio) represents the amount of oxygen extracted
from capillaries among passage.

CBF maps were calculated from pCASL data as described in &°. Specifically, CBF is calculated as
the pairwise difference of the averaged and motion-corrected label and control images, and
then scaled by a proton-density-weighted image.

CMRO2 maps: For each condition separately, we calculated the voxel-wise CMRO2 by
combining all parameter maps via Fick’s principle:

CMRO2 = OEF - CBF - C,02 [3]

where C,0; reflects the arterial oxygen content (in umol) for each subject and was calculated
as C40,=0.334 - Hct - 55.6 - Oysat, with Ozsat being the oxygen saturation measured by a pulse
oximeter %4,

All parameter maps were calculated in subject space and co-registered to the first echo of the
T2 data. Any normalization into MNI space was performed afterwards. Specifically, parameter
maps were first co-registered to native T1w space before applying the normalization matrix to
MNI space, as derived from fMRIPrep. CBF values were upscaled by 25% to account for the
systematic underestimation of CBF due to the four background suppression pulses, as
motivated here 919, The data of the replication study were processed identically to those of
the main study.

Artifact correction and GM masking

For our analyses in standard space, we excluded voxels that fell within the lowest 15th
percentile of the temporal signal-to-noise ratio (tSNR) for over 66% of participants, based on
the BOLD fMRI data from each subject and voxel. The excluded voxels were primarily found in
regions with significant susceptibility artifacts, such as the fronto- and temporo-basal brain
areas. Additionally, we masked out the cerebellum and any voxels with a GM probability of
less than 0.5. The resulting group mask was then applied to both the output of the GLM group
analysis and the input matrices for the partial least squares analyses. For the analyses in native
space, we additionally masked CSF-prone areas (T2 > 90ms), high-susceptibility areas (R2’ > 9
s1), voxels with a high percentage of blood volume (CBV >10%, probably driven by larger
veins/arteries) and voxels with biologically implausible values, such as T2’ > 90ms, OEF > 0.9,
and CBF > 90ml/100g/min.

Estimation of a realistic surrogate for CBV during CALC

After a sensitivity analysis at our institution, we found that half the clinical dosage of contrast
agent was sufficient to reliably assess CBV in healthy subjects. Therefore, the final subset of 10
participants received two half dosages during the CALC and CTRL conditions, allowing us to
guantify CBV in both conditions. We calculated the voxel ACBV for CALC compared to CTRL in
subject space and averaged the results across Glasser’s 360 functional ROIs 1, This subject-
averaged ACBV map was then used to estimate a CBV surrogate map for the remaining 30
subjects, who only had one baseline CBV measurement. To our knowledge, this is the most
empirically supported data for ACBV in quantitative fMRI studies, but it was only possible for
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the CALC condition. Hence, we continued using the CBV CTRL map to calculate CMRO2 during
the MEM condition.

Semi-quantitative, BOLD-informed, CMRO2 estimation

The estimation of quantitative CMRO2 maps relies on the combination of R2’, CBV, and CBF
values, according to Eqg. [3]. To control for potential error propagation during voxel-wise
analyses, especially from R2’ measurements (see appendix in ”3, we calculated R2’ parameter
maps during MEM and CALC from baseline R2’- and BOLD fMRI data as suggested by Fujita et
al. 192 Instead of calculating AR2’ from quantitative R2’ (multi-echo GE-based T2*) during task
conditions, AR2’ is approximated as

AS 1

AR2’' = -
So TE-R2'g

[4]

with TE = 30ms, R2’p being the baseline R2’, and ? the BOLD signal change, derived from task
0

data. R2’ in CALC and MEM was calculated via R2’ = R2’g + (AR2’ - R2’o) and fed into OEF and
CMRO2 calculations according to Egs. [2] and [3]. These semi-quantitative CMRO2 parameter
maps differ from the regional CMRO2 maps only in their underlying R2’ values. In Fig. S5, we
compared the PLS results of the BOLD-informed approach with those of the fully quantitative
approach and found very similar signal ranges and voxel distributions.

Davis model

The Davis model was originally designed for calibrated fMRI and simulates ABOLD (= AS/So) by
using carbon dioxide breathing as a physiological method to manipulate CBF independently of
CMRO2. The model relies on parameters M, a, and B #:

AS _ M [1 _ (CBF)O‘_B (CMROZ )B] (5]

So CBF, CMRO2,

where a is a power-law exponent relating ACBV to ACBF, B reflects the microvascular anatomy
9 and M is commonly referred to the maximum ABOLD that occurs when all dHb is removed
from the vessels and depends on baseline OEF 3. Previously, a = 0.38 was used 13, but more
recent studies have identified lower values. In Fig. 3A, we plotted the range of predicted ABOLD
using empirical values for all parameters, derived from recent calibration studies with a =0.23,
B =1.3%, and M=5.5 78, Assuming a and B, the fractional change in CMRO2 can be calculated
from combined BOLD signal and CBF measurements during tasks 7893104,

Statistics
Partial least squares analysis of BOLD and mqBOLD data

Partial least squares (PLS) analyses were performed using the pyls library in Python language
(Python Software Foundation, version 3.8). Mean-centered PLS is a data-reduction method
that computes latent variables (LVs) and corresponding brain patterns, optimizing the
relationship between brain signals and experimental design 19, In this study, we used PLS
analyses to perform group-level statistics to identify brain regions that distinguish between
task conditions (CALC or MEM) and a baseline condition (CTRL or REST). This analysis was
applied to both BOLD fMRI and mgBOLD data, allowing for comparison of statistical maps. For
mgBOLD data, we used quantitative values OEF, CBF, or CMRO2 values per voxel and subject.
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For BOLD fMRI data, we used median percent signal change (from either CTRL or REST) across
24s (20 TRs) per task condition, excluding the first 6s of each task block to account for the
hemodynamic response lag.

The significance of the LVs (multivariate patterns) was tested using permutation tests (3000
permutations), while the reliability of brain saliences (voxel contributions) was assessed
through bootstrap resampling (3000 samples). Significant brain regions were identified using
the bootstrap ratio (BSR), where a BSR > +2 suggests a 95% confidence interval if the bootstrap
distribution is normal 196197, To interpret BSR maps, they must be compared to design scores
of each condition within each LV for task differences. In this manuscript, orange-red indicates
a positive task effect (higher values during the task versus baseline), while blue indicates the
opposite. We visualized the whole-brain, non-thresholded PLS results by transforming
statistical maps from native to surface space with the “vol_to_surf” function from nilearn’s
surface toolbox, and plotted them on the “fsaverage pial left and right mesh” using
“plot_surf_stat_mat.”

BOLD clusters

The BOLD clusters in Fig. 2D are based on a PLS analysis of BOLD data, with statistical maps
thresholded at a BSR score of >+/-3. We extracted regions with a size of >1,000 connected
voxels using Nilearn’s region package in Python and fused fragmented clusters that belonged
to the same Yeo's network upon visual inspection 7°.

General linear modeling of BOLD data

To validate the PLS analyses, we used a General Linear Model (GLM) approach as
recommended by 1%, The GLM included confound variables such as CSF and WM signals, dvars,
framewise displacement, and translations/rotations across x-, y-, and z-axes. We applied a
high-pass filter (100s) and a 6 mm smoothing kernel. For native space analyses, we used
individual first-level z-maps (z > 2.5). The contrasts calculated were: CALC-positive (CALC >
CTRL or REST), CALC-negative (CALC < CTRL or REST), MEM-positive (MEM > CTRL), and MEM-
negative (MEM < CTRL). To cross-validate the PLS results, we used FWE-corrected z-maps from
the second-level analysis.

Other statistical analyses

For the native space analyses, we calculated median values within each native-space ROI from
the first-level GLM output (z > 2.5) for each subject. We assessed significant task-related
differences compared to baseline using paired-samples two-sided t-tests across subjects. For
other analyses, we obtained median voxel values in standard space across subjects (see Figs.
2B, 3B, and 4A&D). Bar plots (Fig. 2D) were created using Python’s seaborn library 1°° with
error bars indicating a 95% confidence interval (Cl) based on 2000 bootstraps. A Cl that
included zero indicated a statistically non-significant median delta value. To analyze
hemodynamic differences between discordant and concordant voxels, we conducted paired t-
tests on median subject values, while baseline differences were assessed using independent-
sample permutation tests. High-resolution external maps were downsampled to 2mm MNI
standard space prior to analysis.

DATA AVAILABILITY
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All raw and processed data are publicly available on OpenNEURO 11°
https://openneuro.org/datasets/ds004873.

CODE AVAILABILITY

The scripts and Python Jupyter notebooks for quantitative parameter map analyses, and the
configuration files for replication of all analyses and figures are available on GitHub:
https://github.com/NeuroenergeticsLab/two modes of hemodynamics.

The scripts for generating the parameter maps are available on GitHub:
https://gitlab.lrz.de/nmrm lab/public projects/ma-bold.
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