
Nucleic Acid Research, 2024, pp. 1–14

doi:

Paper

PAPER

Conservation assessment of human splice site
annotation based on a 470-genome alignment

Ilia Minkin 1,2,∗ and Steven L. Salzberg 1,2,3,4

1Department of Biomedical Engineering, Johns Hopkins University, 3400 N. Charles Street, Baltimore, 21218, MD, USA, 2Center for

Computational Biology, Johns Hopkins University, 3100 Wyman Park Drive, Baltimore, 21211, MD, USA, 3Department of Computer

Science, Johns Hopkins University, 3400 N. Charles Street, Baltimore, 21218, MD, USA and 4Department of Biostatistics, Johns Hopkins

University, 615 N. Wolfe Street, Baltimore, 21205, MD, USA
∗Corresponding author. ivminkin@gmail.com

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Despite many improvements over the years, the annotation of the human genome remains imperfect. The use of
evolutionarily conserved sequences provides a strategy for selecting a high-confidence subset of the annotation. Using the
latest whole genome alignment, we found that splice sites from protein-coding genes in the high-quality MANE annotation
are consistently conserved across more than 350 species. We also studied splice sites from the RefSeq, GENCODE, and
CHESS databases not present in MANE. In addition, we analyzed the completeness of the alignment with respect to the
human genome annotations and described a method that would allow us to fix up to 50% of the missing alignments of
the protein-coding exons. We trained a logistic regression classifier to distinguish between the conservation exhibited by
sites from MANE versus sites chosen randomly from neutrally evolving sequences. We found that splice sites classified
by our model as well-supported have lower SNP rates and better transcriptomic evidence. We then computed a subset
of transcripts using only “well-supported” splice sites or ones from MANE. This subset is enriched in high-confidence
transcripts of the major gene catalogs that appear to be under purifying selection and are more likely to be correct and
functionally relevant.
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2 Conservation assessment of human splice site annotation

Introduction

The annotation of the human genome is a fundamental

resource for a broad range of biomedical research and clinical

applications. However, more than two decades after the initial

publication of the genome itself, the scientific community have

not reached a point where a consensus genome annotation is

available [1]. For example, one consequence is that the leading

gene annotation databases for the human reference genome

often disagree even on basic statistics such as the number of

protein-coding genes [39]. This is due to a variety of reasons,

including the imperfect technologies used to assemble RNA

transcripts and the noise inherent in the transcription process

itself [44, 56, 7].

One of the challenging aspects of constructing a genome

annotation is correctly determining the positions of introns

inside the genes. The existence of introns and the mechanism of

alternative splicing, first proposed by Gilbert [18], are critical

for the functioning of cells. At the same time, the evolutionary

origin of introns has been the subject of a scientific debate for

decades [12, 32, 47, 25].

A recent effort to address the challenge of the discrepancy

between different human annotations resulted in the creation

of a limited, high-quality gene annotation database called

MANE [36]. This annotation was intended to include a single

representative transcript for each protein-coding gene that

has identical exon and intron structures in both RefSeq and

GENCODE, two of the leading human annotation databases.

The transcripts in MANE are chosen based on criteria that

include expression levels and evolutionary conservation, which

is a strong predictor of biological function. A similar project

called APPRIIS [46] provides a single transcript for every

protein-coding gene based on human genetics data, protein

evidence, and cross-species conservation; APPRIS contains

annotations for the human as well as a few other reference

species. These approaches yielded a subset of the human

transcriptome under strong purifying selection. These and other

studies of the evolutionary consistency of the human genome

annotation [14] were mostly focused on the sequences of the

protein-coding exons rather than splice site motifs.

In this study, we address the question of the conservation of

splice sites in major gene catalogs, both across multiple species

and population levels. First, we analyzed the completeness

of the alignment containing 470 mammalian species recently

published by the UCSC Genome Browser team [45] with respect

to the annotation of the human exons; we restricted this

alignment to 405 species due to sequence availability reasons.

As we observed alignments of many exons to be missing,

we came up with a method to fix the missing alignment,

recovering up to 50% of the missing exon/genomes pairs.

Second, we observed that the canonical dinucleotides GT/AG

that flank introns are very highly conserved in protein-coding

genes in MANE, genomes with most of them being intact in

more than 350 species. We then investigated the patterns of

conservation among splice sites that are not in MANE but

that are present in one or more of the leading gene catalogs

RefSeq, GENCODE, and CHESS. We found that while many

of those splice sites closely follow the pattern of conservation

found in MANE, others resemble randomly generated sites from

neutrally evolving sequences.

To compare the properties of these two groups of splice

sites, we developed a logistic regression model that classifies

splice sites as either well-supported or less-supported. The

model relies on a comparison of conservation patterns of splice

sites from MANE to neutrally evolving sequences. As we detail

below, we found that sites predicted as well-supported by our

classifier have lower rates of single nucleotide polymorphisms

(SNPs) in the human population, are enriched in clinically

relevant polymorphisms, and have better transcriptomic

support. We then obtained a subset of transcripts from each

major gene catalog for which all splice sites were either classified

as well-supported by our model or included in a transcript from

MANE. These transcripts appear to be under strong purifying

selection and are more likely to be functional and clinically

relevant.

Methods

Realignment of missing exon/genome pairs
Before investigating the conservation of the splice sites, we

performed a procedure to fix the gaps in the alignment that

might affect the results. First, we found human exons and

particular genomes such that the exon is not aligned anywhere

in that target genome. We then tried to realign these exons

using the synteny information. The intuition is that if a human

exon is not aligned to another genome, but down- and up-

stream exons are mapped to the same sequence in that target

genome, then we can try to place the missing exon in between

two of its neighbors in the target genome. Below we give a more

detailed description of the method.

We are given a collection of genomes G = {g1, . . . , gm},
where each genome is a string gi = bi,1 . . . bi,|gi| over the

nucleotides of the DNA alphabet {A,C,G, T}, where |gi| is

the length of the i-th genome. The genome g1 is called the

reference, and any non-reference genome gt, t > 1 is called

a target genome. For the reference genome, we are given

an exon annotation represented as a set of segments E =

{(x1, y1), . . . , (xt, yt)}, 1 ≤ xi < yi ≤ |g1|.
To find the corresponding sequence of each exon of the

reference in another species, we use a whole-genome alignment

of m species. Formally, we define an alignment function

w(k, gt) that maps each position k of the reference genome to

its homologous position in target genome gt included in the

alignment if such position exists, otherwise, w(k, gt) = −1.

We say that an exon e = (x, y) ∈ E is unaligned in target

genome gt if w(k, gt) = −1 for all x ≤ k ≤ y; otherwise we call

the exon aligned. We define the set of all aligned positions of

exon e as A(e) = {w(k, gt)|x ≤ k ≤ y, w(k, gt) ̸= −1}. We call

an exon ei syntenic in genome gt if there are two other exons

ea = (xa, ya), eb = (xb, yb), ya < x < y < xb that are aligned

in gt.

We use the fact that unaligned, but syntenic exons have

other neighboring exons mapped to the target genome to get

a hint of where the alignment of the said exons could be. Let

e be such an unaligned exon. Then the target segment u is

defined as u = (max(A(ea)) + 1,min(A(eb))− 1). We use edlib

library [55] to find the best alignment of e to the range u in

the target genome gt to get the alignment function we(k, gt)

by aligning the specific exon e. After trying to realign all such

exons e, we merge the resulting alignments we(k, gt) with the

original alignment w(k, gt); we define the resulting function as

w′(k, gt). Figure 1a illustrates the above definitions.

We apply several filtering steps along the process. To reduce

the computation load, we only consider target segments u

with a length less than a predefined threshold, which we set

to 100,000 in our experiments. We also used the following

criteria to filter out potentially spurious alignments. Let Et ⊆
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Fig. 1. An example demonstrating the definitions from the Methods section. Panel (a) shows an alignment of exons from the reference genome g1

(Human) to a target genome g2 (Mouse) using a whole-genome alignment. Blue boxes represent positions of exons ea, e, and eb from the annotation of

the Human genome, and the arrowed lines are introns; splice sites are not shown for visual clarity. In this example, exons ea and eb are aligned, with

vertical dashes indicating the alignment between nucleotides of the different genomes. The first positions of the corresponding exons xa and xb are aligned

to their counterparts in the target genomes, w(xa, g2) and w(xb, g2). The exon e is unaligned since all its positions are missing in the alignment, as

indicated by question marks, w(x, g2) = w(x+1, g2) = w(x+2, g2) = −1. At the same time, the exon e is syntenic, since its neighboring exons are aligned,

and we can reasonably hypothesize that e can be aligned to the segment between the alignments of ea and eb, or w(xa, g2) < we(x, g2) < w(xb, g2).

Panel (b) shows an example of splice sites annotation: d1 denote the position o(d1) of the first of the canonical dinucleotides of the donor splice site,

and a1 denote the position of the first of the canonical dinucleotides o(a1) of the acceptor site. The donor site d1 of the human reference genome g1

has both its canonical dinucleotides intact in the target mouse genome, g2. However, this is not true for the acceptor site a1 mutated in mouse. In this

example, the values of the conservation function for these two splice sites are C(d1, 0, 2) = C(d1, 1, 2) = 1, C(a1, 0, 2) = 0, and C(a1, 1, 2) = 1.

E be a subset of exons aligned in the genome gt. For an

exon e = (x, y) ∈ Et we define its alignment score r(e) =
|{k|x≤p≤y,w(k,gt )̸=−1}|

y−x , or as a fraction of the position of the

exon e that are aligned in gt. Let Rt = {r(e)|e ∈ Et}
be the set of the scores of all aligned exons with respect to

the genome gt in the original alignment. We only accept a

realignment we(k, gt) of exon e = (x, y) if the alignment score

r′(e) = |{k|x≤k≤y,we(k,gt )̸=−1}|
y−x > µ(Rt)− σ(Rt), where µ and

σ are arithmetic mean and standard deviation correspondingly.

Splice site classification
Our method for classifying splice sites is based on a logistic

regression model designed to predict the probability of a

splice site having a MANE-like conservation pattern (well-

supported), or a conservation pattern similar to a neutrally

evolving sequence (less-supported). One of the primary features

used by the regression model is the number of species in which

the canonical dinucleotides are conserved, computed from a

large multiple genome alignment. In addition, it takes into

account an array of positions surrounding a splice site, as they

appear to have similar conservation properties. Having such a

classification method in addition to the number of species in

which the canonical dinucleotides are conserved is necessary

because the number itself is not informative without a baseline

representing neutrally evolving sequences to compare against.

The training data includes randomly chosen sites from intronic

sequences as negative examples and the whole MANE dataset

as positive examples. Below, we give the necessary initial

definitions and describe the model.

We are given a splice site annotation for the reference

genome, represented as two sets, donor sites D =

{d1, . . . , d|D|}, and acceptor sites A = {a1, . . . , a|A|}. The

origin of the site is the position of the nucleotide of the first of

the canonical dinucleotides, which we designate as o(s) where

s is either a donor or splice site. Thus for most donor sites

g1,o(dq) = G and g1,o(dq)+1 = T and for most acceptor sites

g1,o(ar) = A and g1,o(ar)+1 = G.

To find the corresponding sequence of each splice site of the

reference in another species, we use a whole-genome alignment

of m species represented as the alignment function w′(p, gt)

that maps a position p of the reference genome to a target

genome gt. We also define the conservation function C(s, ℓ, t)

as follows: it takes the value of 1 if the nucleotide with the

shift ℓ of splice site s matches its homologous nucleotide in

the genome t and 0 otherwise: C(s, ℓ, t) = I[b1,o(s)+ℓ =

bt,w(o(s)+ℓ,t)]. Figure 1b shows an example of mapping splice

site sequence using whole-genome alignment and computation

of the alignment and conservation function.

Our model consists of two types of variables to classify

a splice site as well-supported or less-supported: (1) number

of species in which the canonical dinucleotides are conserved

jointly (2) number of species in which each nucleotide 30

position down- and up-stream of the canonical dinucleotide is

conserved in, one variable per each position. This way, the log-

odds of an acceptor site ar being well-supported are defined

as:

log(
p(ar)

1 − p(ar)
) = α0+

+ α1

∑
1<t≤m

I[C(ar, 0, t) = 1 ∧ C(ar, 1, t) = 1]+

+
∑

−30≤ℓ≤31, ℓ̸=0,1

αℓ

∑
1<t≤m

C(ai, ℓ, t)

Where α0 is the interceptor term, α1 corresponds to the

conservation of canonical dinucleotides, and αℓ is the coefficient

corresponding to the conservation of the position with the shift

ℓ of the splice site. The log-odds of a donor splice being well-

supported are defined analogously. In addition, we evaluated

a model taking into account the conservation of the canonical

dinucleotides only to evaluate the contribution of the rest of the

positions in the splicing motif. This way, we define the log-odds

with the respect to the probability p0 of an acceptor splice site

ar being well-supported as:

log(
p0(ar)

1 − p0(ar)
) = α0+

+ α1

∑
1<t≤m

I[C(ar, 0, t) = 1 ∧ C(ar, 1, t) = 1]

Data and software acquisition
We analyzed the following gene catalogs: GENCODE [15]

version 45, RefSeq [37] release 110, CHESS 3 [59] v.3.1.0, and
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4 Conservation assessment of human splice site annotation

MANE [36] Select v1.3. We note that GENCODE, RefSeq, and

CHESS 3 all contain every gene and transcript in MANE, which

was created by GENCODE and RefSeq scientists with the goal

of providing a single high-confidence transcript for every human

protein-coding gene. To take into account this confounding

factor and observe the differences between annotations more

clearly, we removed the MANE splice sites from each of the

other catalogs and created reduced versions that we designate

as GENCODE∗, RefSeq∗, and CHESS 3∗ respectively. This

procedure only affected protein-coding genes, because MANE

does not currently contain non-coding genes or other types of

annotation.

We only included protein-coding and lncRNA genes in

our analyses; however, the way these catalogs define gene

types slightly differs. GENCODE and MANE, we used the

attribute “transcript type” of a transcript to infer its type; for

CHESS 3, we used the attribute “gene type” of a transcript

for this purpose. For RefSeq, we consider a transcript to

be protein-coding if its corresponding gene was assigned

“protein coding” to its “gene biotype” attribute, and the

transcript was assigned “mRNA” to its “transcript biotype”

attribute. For lncRNAs from RefSeq, we consider a transcript

to be lncRNA if its corresponding gene was assigned “lncRNA”

to its “gene biotype” attribute, and the transcript was assigned

“lnc RNA” to its “transcript biotype” attribute. We note that

for protein-coding genes we considered all introns from the

mentioned annotations, which includes the ones located in

untranslated regions (UTRs).

In addition, we created a false gene annotation, intended to

capture a baseline of neutrally evolving sequences; we refer to

this dataset as “Random.” This annotation consists of 180,000

randomly generated transcripts located within introns of genes

of MANE outside of splicing motifs. Each transcript consists

of two short exons separated by an intron, yielding 180,000

distinct donor and acceptor sites.

We used a 470-species alignment available at the UCSC

Genome Browser website [26] generated using MultiZ whole-

genome aligner [5]. However, we had to restrict this alignment

to 405 species: in order to implement our exon realignment

procedure, we also had to download the sequences of the

genomes themselves, and 65 of these genomes were unavailable

for download; the full list of 405 genomes is available in online

documentation. In addition, we excluded any genes located

on the “patches” sequences of GRCh38 [50] if such sequences

were not included in the original alignment produced by UCSC;

we also excluded single exon transcripts. We also excluded

chromosome Y from our analysis due to the reasons listed in

the Results section.

For fitting coefficients of the regression equations above,

we used the logistic regression module from SciKit [38]. To

implement the alignment function w(k, gt), we utilized the

AlignIO library from BioPython module [9] version 1.79.

Results

Assessing completeness of the alignment
Any conclusions about the conservation of splice sites drawn

from the alignment analysis depend on its completeness. To

assess it, we calculated the following statistics that reflect how

many exons from human gene catalogs are mapped to the other

genomes. Let E be the set of protein-coding and lncRNA exons

from the three gene catalogs under consideration and G be the

genomes used in the whole-genome alignment.

We define a variable W (e, g), e ∈ E, g ∈ G that indicates

whether exon e is aligned with the genome g as follows. We

assign W (e, g) = 1 if at least one position of e is aligned

somewhere in the genome g, and W (e, g) = 0 otherwise. To

present the summary of the alignment of the exons, we calculate

the sums sm =
∑

(1 − W (e, g)) and sa =
∑

W (e, g), showing

how many exon/genome pairs are missing and present in the

alignment correspondingly.

Table 1, columns 2-5 represent these statistics sa and sm

broken down by chromosome and gene type. For autosomal

chromosomes, we observe that up to 13% exon/genome pairs

are missing for protein-coding genes, and up to 50% of such

pairs are missing for lncRNAs. Sex chromosome Y is an obvious

outlier since more than 35% of protein-coding and 72% of

lncRNA exon/genome pairs are missing in the alignment.

Since we observed a significant amount of exon/genome

pairs not being aligned, we developed a strategy to recover

them using the synteny information. The description of this

step can be found in the subsection “Realignment of missing

exon/genome pairs” of the “Methods.” We define this quantity

as sr =
∑

Wr(e, g), for e ∈ E, g ∈ G such that W (e, g) = 0,

where Wr(e, g) = 1 if at least on position of the exon e is

aligned somewhere in the genome g by the extended alignment

function described in the subsection “Realignment of missing

exon/genome pairs” of the “Methods.” Table 1, columns 6-

7 show the number of exon/genome pairs recovered by our

method: for autosomal chromosomes, we recovered up to 60% of

exon/genome pairs for both protein-coding genes and lncRNAs.

In contrast, we recovered 33-29% of such pairs for chromosome

X and only 9-13% of the exon/genome pairs for chromosome

Y. This can be explained by the fact that many genomes

are missing the assembled Y chromosome and its challenging

structure, which is comprised of rich families of repeated

sequences. Hence, we decided to exclude chromosome Y from

our analysis. In addition to realigning the exons from the real

datasets, we realigned the exons from the “Random” dataset to

have a realistic baseline. Supplementary Table S1 shows these

numbers that are similar to the real gene annotations: we were

able to recover 58-66% percent of exon/genome pairs.

Exploratory data analysis of splice site conservation
First, we evaluated the evolutionary conservation of splice

sites from four different human genome annotation databases:

GENCODE(*), RefSeq(*), CHESS 3(*), and MANE Select.

Table 2 shows the numbers of donor and acceptor sites in each

dataset, as well as the total number of transcripts. For every

donor and acceptor splice site in the databases, we computed

how many species preserve the consensus dinucleotides (GT and

AG) that appear at the beginning and end of most introns.

Figure 2 shows the pattern of conservation across species for

each of these sets of donor and acceptor sites. First, we note

that splice sites from protein-coding genes in MANE yield

a plot that is clearly distinct from the other gene catalogs:

most of the sites from MANE are conserved in > 350 species.

Second, protein-coding splice sites from the other datasets

(after removing the MANE splice sites) seem to fall into

two distinct categories: (1) MANE-like, and (2) neutral-like

conservation. We also noted a small peak for splice sites from

protein-coding genes of RefSeq∗ at around 330 species: most of

these splice sites come from “patches” sequences to the hg38

reference genome that are absent in the other annotations.

In contrast, lncRNAs from all datasets have very similar

distributions that closely follow the conservation pattern of
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Aligned exons/genomes Missing exons/genomes Recovered exons/genomes

Gene type Coding lncRNA Coding lncRNA Coding lncRNA

C
h
ro

m
o
so

m
e

1 13,524,670 4,943,971 1,173,995 1,848,284 558,122 1,016,754

2 10,200,614 5,196,973 764,761 1,798,592 426,570 1,057,443

3 8,517,408 3,747,144 569,172 1,263,921 331,051 743,381

4 5,524,742 2,887,223 504,088 1,325,587 274,431 754,267

5 6,143,565 3,287,189 404,475 1,260,556 230,366 684,250

6 6,669,798 3,437,254 544,467 1,290,311 295,057 756,804

7 6,478,768 2,808,452 589,292 1,288,933 312,680 666,229

8 4,886,473 2,744,951 478,967 1,302,619 259,518 684,356

9 5,271,324 2,320,005 404,346 993,705 215,712 435,116

10 5,399,044 2,491,811 456,446 989,569 257,332 561,440

11 8,459,650 2,620,330 653,255 844,445 336,269 501,208

12 8,110,205 2,751,895 583,525 1,148,660 332,270 663,752

13 2,334,841 1,663,448 217,469 794,497 131,064 418,293

14 4,676,912 2,022,926 304,993 688,144 187,024 392,903

15 4,948,431 2,327,369 341,679 834,871 185,590 425,251

16 6,284,584 2,227,608 602,846 824,067 320,788 454,321

17 8,710,715 2,248,362 685,690 868,518 341,519 441,792

18 2,366,477 1,501,463 191,098 606,967 112,751 366,562

19 8,336,039 1,275,528 1,333,336 1,222,917 620,313 483,427

20 3,371,434 1,546,869 259,391 636,486 150,521 351,570

21 1,299,495 1,000,286 165,795 561,799 93,259 256,060

22 2,908,246 1,043,948 309,884 516,517 160,708 228,741

X 4,774,991 1,068,688 597,739 648,917 200,967 191,003

Y 236,212 130,554 147,728 350,991 20,636 32,383
Table 1. The number of aligned protein-coding and lncRNA exons/genomes in the original alignment of 470 mammals restricted to 405

species (columns 2-3, defined as sa in the main text), missing in the alignment (columns 4-5, defined as sm in the main text), and recovered

using our synteny-based realignment procedure (columns 6-7, defined sr in the main text). We computed these numbers for the union of the

set of exons of all gene annotations under consideration: GENCODE, RefSeq, CHESS 3, and MANE.

All splice sites “Well-supported” splice sites All transcripts “Well-supported” transcripts

Dataset Donor Acceptor Donor Acceptor

Protein-Coding

MANE 182,596 182,557 - - 18,204 -

GENCODE* 33,991 26,863 10,616 10,013 69,233 34,923

RefSeq* 62,860 54,160 27,537 25,986 116,762 46,006

CHESS 3* 50,474 45,459 23,849 22,905 85,364 41,196

lncRNA

MANE - - - - - -

GENCODE 55,807 57,356 7,940 9,740 53,353 1,240

RefSeq 48,508 48,616 4,148 5,729 30,503 304

CHESS 3 47,991 48,402 4,221 5,685 35,575 418

Synthetic data

Random 180,000 180,000 - - 180,000 -
Table 2. Summary statistics of splice site conservation analysis. The second and the third columns represent the total number of donor

and acceptor sites in each dataset and the third and fourth columns show the number of donor and acceptor splice sites classified as “well-

supported” by our model. The last two columns indicate the total number of transcripts in each dataset and the number of transcripts that

have all splice sites either from MANE dataset or classified as “well-supported.” We only considered transcripts with at least one intron

present. Dashes indicate that transcripts and splice sites of a certain type were not available in a dataset.

random sites. Both donor and acceptor splice show similar

patterns of conservation. We note that randomly generated sites

along with lncRNAs and some sites from coding genes exhibit

several peaks in conservation in fewer than 50 species.

We also calculated the most common species in which

these splice sites are conserved, represented in Supplementary

Table S2. These species mostly constitute primates, which

suggests that their conservation is merely a result of having

a relatively recent common ancestor with humans. These splice

sites may be clade-specific, or they might represent erroneous

annotations. We also calculated the same statistic for splice

sites that have non-canonical dinucleotides on the introns’

flanks. Most of these splice sites constitute either U2-type sites

flanked by GC-AG [57] or U12-type minor form introns [21, 22]

flanked by the dinucleotides AT-AC. Supplementary Figure S1

shows these numbers; they follow the same pattern as splice

sites with the canonical dinucleotides.

Given the striking pattern of conservation of the canonical

dinucleotides of splice sites from MANE, we investigated

the conservation of different positions around splice sites.

Supplementary Figure S2 shows the pattern of conservation

of bases as a function of their distance from the GT/AG

splice site. As expected, the canonical dinucleotides (GT for

donor sites and AG for acceptor sites) are the most conserved.
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Fig. 2. Distribution of the number of human splice sites with canonical dinucleotides (GT for donor and AG for acceptor sites) conserved in 405

mammals, computed for donor (a) and acceptor (b) sites of protein-coding genes, and donor (c) and acceptor (d) sites of lncRNAs. Each point shows a

number of splice sites conserved (y-axis) in a given number of genomes (x-axis). Numbers are normalized by the total number of sites in the corresponding

dataset in each category. The figure shows this statistic for annotations from GENCODE, RefSeq, CHESS 3, and MANE, as well as artificial splice

sites (“Random”) generated from internal sequences of introns which are assumed to evolve neutrally. For protein-coding genes, we created subsets

GENCODE, RefSeq, and CHESS 3, from which we removed MANE annotations because each of these datasets is a superset of MANE; the resulting

datasets are designated as GENCODE∗, RefSeq∗, and CHESS 3∗ correspondingly.

On the other hand, upstream positions for donor sites and

downstream positions for acceptor sites show similar patterns

of conservation. However, downstream positions for donor sites

and upstream ones for acceptor sites are much less conserved,

which is expected because these positions are intronic.

We further explored the question of how well splice sites

are conserved at the human population level. Specifically,

we calculated the fraction of splice sites having an SNP at

a certain position, similar to the cross-species conservation

of different positions shown in Supplementary Figure S2. To

determine the presence of SNPs in the human population,

we used the gnomAD database version 4.0.0 [8], focusing

on loci that have at least one homozygous sample since a

homozygous SNP at a splice site is very likely to cause incorrect

splicing. Figure 3 shows these fractions, which we call “SNP

rates,” calculated for each of the different gene catalogs. As

expected, for protein-coding genes and their donor and acceptor

splice sites, MANE has a much lower fraction of SNP sites

at the canonical dinucleotides compared to random GT/AG

positions, 0.2% versus 1.2%. On the other hand, splice sites in

GENCODE∗ have only slightly lower SNP rates than randomly

evolving sequences; RefSeq∗’s and CHESS 3∗’s rates are closer

to MANE, but still somewhat higher. For lncRNAs from all

of the catalogs, we observed that the SNP rates are relatively

close to those of neutrally evolving sequences.

Our analysis suggests that some protein-coding splice sites

and many more lncRNA splice sites include a subset of sites

that are not under strong purifying selection. Otherwise,

their average SNP rates should have been more similar to

what we observed in splice sites from MANE. These sites

might potentially represent non-functional and/or erroneous

annotations.

Classifying splice sites based on their conservation
Above we showed that splice sites from the major gene catalogs

exhibit two clearly distinct patterns of conservation: MANE-

like and random-like. For brevity, we refer to the former as

“well-supported” and the latter as “less-supported.” We next

decided to classify splice sites based on their conservation across

species, and to compare their properties to see whether less-

supported sites might be misannotated. To do so, we trained
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Fig. 3. Rate of SNPs at positions near splice sites. Each point represents a proportion of splice sites from a certain dataset that have an SNP from the

gnomAD dataset at a position either down- or upstream of the “canonical” dinucleotides. For example, for donor splice sites 0 is usually “G”, +1 is “T”

(shown under the corresponding ticks on the horizontal axis), and -1 is the first nucleotide upstream of the splice site. We only considered SNPs that

have one homozygous sample. Panels (a)-(b) show donor and acceptor sites of protein-coding genes, while (c)-(d) show values for donor and acceptor

sites of lncRNAs. For lncRNAs, we included MANE sites from protein-coding genes as a baseline for splice sites under strong selection as MANE does

not contain lncRNAs yet.

a binary classifier based on logistic regression that uses the

number of species in which a certain position around a splice

site is conserved; we trained models for donor and acceptor sites

separately. We used the randomly generated sites as negative

examples and the whole MANE database as positive ones, with

20% of the data set aside for testing; the Methods section

contains a detailed description of the model.

Supplementary Figure S3 shows the receiver operating

characteristic (ROC) curve illustrating the tradeoff between

true positive and false positive rates for these models on the

test data. We evaluated two types of models: one using only the

conservation of the canonical dinucleotides GT/AG themselves,

and the other one using the conservation of the other positions

in the splicing motif (see the Methods section for more details).

Both models show high accuracy on the test data with an

area under the ROC curve (AUROC) measuring 0.974-0.979 for

donor and acceptor sites. However, the full model has a slightly

lower false positive rate for a given classification threshold,

hence we chose it for further analyses. For classification, we

used a threshold of 0.5 for the probability predicted by the

regression model to classify sites as well-supported and less-

supported. Given this threshold, the full models for donor and

acceptor sites have F-scores of 0.933 and 0.949 correspondingly,

see Supplementary Table S3.

In addition, we compared the probability output by the

regression model to PhastCons [54] scores indicating whether

a particular position in the genome is under negative selection.

To do so, we used the PhastCons scores track available

at the UCSC Genome Browser that were computed using

the same 470-species alignment. For each site, we took a

minimum of two PhastCons scores of the positions of their

canonical dinucleotides (usually GT/AG) and computed the

Pearson correlation between this quantity and the probability

predicted by the regression model; this resulted in the Pearson

correlation value of 0.8 across all sites from the datasets under

consideration for which PhastCons scores were available.

We then applied the model to each dataset under

consideration to label sites as well-supported or less-supported.

Table 2 (columns 4 and 5) contains the number of donor

and acceptor splice sites in each of the annotation databases

classified by the model as well-supported. For protein-coding
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Fig. 4. Rate of homozygous SNPs at positions near splice sites. Each point represents a proportion of splice sites from a certain dataset that have an

SNP at a position either down- or upstream of the “canonical” dinucleotides. For example, for donor splice sites 0 is usually “G”, +1 is “T” (shown

under the corresponding ticks on the horizontal axis), and -1 is the first nucleotide upstream of the splice site. We only considered SNPs from the

gnomAD database that have at least one homozygous sample. Panels (a)-(b) show donor and acceptor sites of protein-coding genes, while (c)-(d) show

values for donor and acceptor sites of lncRNAs. Solid lines represent subsets classified as “well-supported” by our model, while dashed ones correspond

to “less-supported” splice sites. The dotted purple line on panels (c)-(d) represents the rate of SNPs for splice sites from protein-coding genes of MANE

for comparison.

genes, we observed that in GENCODE∗ only 30% of donor and

40% of acceptor splices sites were well-supported according to

the model, while for RefSeq∗ and CHESS 3∗, the proportion

was higher, at 44% for donor sites and 46-49% for acceptor

sites, suggesting the RefSeq and CHESS 3 has somewhat

more reliable annotations of protein-coding transcripts. For

lncRNAs, no more than 17% splice sites were classified as

well-supported across all datasets. We observed similar results

for non-canonical splice sites, these numbers are presented

in Supplementary Table S4. Supplementary Figure S4 shows

the relationship between the probability of a donor (acceptor)

splice sites being classified as “well-supported” and the number

of genomes in which the canonical dinucleotides of the

particular splice-site are conserved in; most sites that have their

dinucleotides conserved in less that 200 species are classified as

“less-supported.”

Columns 6 and 7 of Table 2 also show the total number

of transcripts in each annotation and the number of “well-

supported transcripts” where each splice site is either shared

with a transcript from MANE, or classified as “well-supported”

by our model; we only considered transcripts with at least

one intron present. We observed that for protein-coding genes,

GENCODE∗, RefSeq∗ and CHESS 3∗ 49%, 40% and 48% of

transcripts have fully well-supported splice sites The number

of well-supported lncRNAs is much lower in each dataset:

1-1.1% for RefSeq and CHESS 3 and 2% for GENCODE.

Supplementary Figure S5 shows the number of well-supported

transcripts in each gene type and dataset split by the number

of introns in a transcript. We also broke down the number

of well-supported and less-supported splice sites of protein-

coding genes by whether they are located inside a MANE

exon. As Supplementary Figure S2 shows, positions within the

exon are conserved similarly to the canonical dinucleotides,

and alternative splice sites located within exons could be

mistakenly labeled as well-supported, resulting in more such

sites. Supplementary Table S5 shows these numbers: there

are nearly 10 times more splice sites outside of MANE exons

overall, and the ones located inside exons are slightly more

likely to be classified as “well-supported.” For all three datasets,

around half of the splice sites inside MANE exons are well-

supported. On the other hand, this statistic varies between

different datasets for the sites outside of such exons. For

example, CHESS 3∗ has 47-48% of such sites well-supported,

RefSeq∗ has 42-46%, and GENCODE∗ has 25-27%.
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“Well-supported” sites “Less-supported” sites

Dataset Donor Acceptor Donor Acceptor

Protein-Coding

GENCODE* 87 (0.82%) 80 (0.80%) 53 (0.23%) 36 (0.21%)

RefSeq* 70 (0.25%) 62 (0.24%) 41 (0.12%) 35 (0.12%)

CHESS 3* 71 (0.30%) 64 (0.28%) 42 (0.16%) 33 (0.15%)

lncRNA

GENCODE 16 (0.20%) 10 (0.10%) 7 (0.01%) 3 (0.01%)

RefSeq 9 (0.22%) 6 (0.10%) 4 (0.01%) 4 (0.01%)

CHESS 3 12 (0.28%) 10 (0.18%) 4 (0.01%) 4 (0.01%)
Table 3. Number of splice sites in each conservation category having an SNP classified as “pathogenic” and “likely pathogenic” from

ClinVar database overlapping its canonical dinucleotides. Sites are classified as “well-supported” or “less-supported” by our model as per

subsection 4.3. Numbers in parentheses show the percentage of the sites relative to the total number of sites in that category.

We further compared SNP rates in the human population

for well-supported and less-supported splice sites, again using

the gnomAD human variation database and focusing on sites

where at least one individual had a homozygous SNP. Figure 4

shows these rates for different datasets. For protein-coding

genes (Figure 4, panels (a)-(b)), we observed that SNP rates

for the canonical dinucleotides (positions 0 and +1) were 2–6

times lower for the well-supported subset (as predicted by our

classifier) compared to its less-supported counterpart. We also

note that the curves corresponding to less-supported sites are

closer to the Random (neutrally evolving) sites, while well-

supported sites in all three databases have SNP rates similar

to MANE. However, for lncRNAs (Figure 4, panels (c)-(d))

the separation is a little less clear: although the less-supported

sites have SNP rate pattern close to the Random ones, the well-

supported sites have only 1.5-2 times smaller SNP rates at the

canonical dinucleotides, and these rates are also much higher

than the rates of protein-coding sites from MANE.

Apart from calculating the SNP rates, we compared the

frequencies of homozygous SNPs overlapping the canonical

dinucleotides of the splice sites classified by the model as either

well-supported or less-supported. Supplementary Figure S6

shows these frequencies for different datasets. For donor

and acceptor sites from protein-coding genes, the median

frequencies of homozygous SNPs in well-supported sites are 2-3

times smaller than for less-supported ones. In addition, their

interquartile range is 3-6 times smaller. This is also true for

donor sites of lncRNAs from GENCODE, CHESS 3, as well

as for acceptor sites of lncRNAs from GENCODE and RefSeq.

Frequency distributions of well-supported and less-supported

donor sites of lncRNAs from RefSeq and acceptor sites of

lncRNAs from CHESS 3 are somewhat closer.

We also examined how many splice sites have SNPs

overlapping their canonical dinucleotides associated with

diseases. Table 3 shows the number and the fraction of splice

sites relative to their total number in the respective dataset that

have at least one SNP from the ClinVar database [31] classified

as “pathogenic” or “likely pathogenic.” Well-supported splice

sites of protein-coding genes have a two to three times

higher ratio of potentially pathogenic SNPs than less-supported

ones across all datasets. Well-supported sites of lncRNAs

have a consistently low number of pathogenic SNPs, while

less-supported ones from lncRNAs possess even fewer such

variants. However, we note that non-coding regions are

under-ascertained in clinical variant databases, as reported

previously [13].

We also examined the connection between multiple species

conservation and gene expression using RNA-seq data. Our

model classifies each acceptor and donor splice sites as
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Fig. 5. Box plots showing the maximum number of reads supporting

exon junctions of certain types across all tissues from GTEx data. Panel

(a) shows data for protein-coding genes (GENCODE∗, RefSeq∗, and

CHESS 3∗ datasets), while panel (b) represents lncRNAs (GENCODE,

RefSeq, CHESS 3). Each box plot shows the median (dashed red line),

the interquartile range (solid top and bottom borders of the box), and

minimum and maximum values within ±1.5 of the interquartile range

(whiskers), outliers are not shown.

either well-supported or less-supported. This way, each intron

consisting of a pair of a donor and an acceptor splice site

belongs to either one of 4 categories: (1) neither site is well-

supported (2) only the donor site is well-supported (3) only
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the acceptor site is well-supported (4) both sites are well-

supported. We employed data from the GTEx project [10] that

was assembled using StringTie2 [28] and was postprocessed by

TieBrush [58] to obtain the junction coverage. This data was

used to generate the CHESS 3 gene catalog, further technical

details on the pipeline can be found in [59]. For each intron

we calculated the number of reads supporting the particular

donor-acceptor junction reflecting expression of isoforms using

this intron. To integrate the data, we calculated the maximum

coverage for each intron across all tissues; the breakdown for

each individual tissue is available in Appendix, Supplementary

Figures S7 and S8. Figure 5 shows distributions of read

coverage between introns of different conservation categories,

for both protein-coding in lncRNA genes. As the figure shows,

introns with both sides that are well-supported have median

max coverage that is 2-3 times higher than the introns that have

at least one less-supported site, which can be observed for both

protein-coding and lncRNA genes. Supplementary Figures S7

and S8 show coverage distribution across individual tissues

that show the same pattern.

In addition, we explored how many isoforms of the same

gene use well-supported and less-supported splice sites. In other

words, for each splice site we computed the number of isoforms

that use that particular site. Supplementary Figure S9 shows

the distribution of these values in each gene catalog, for both

donor and acceptor sites in protein-coding genes and lncRNAs.

For protein-coding genes, well-supported splice sites are more

likely to be shared between multiple isoforms. However, we did

not observe a similar pattern in lncRNAs, except for donor sites

from the GENCODE annotation that also showed a notable

difference between well-supported and less-supported sites. We

note that lncRNA genes have fewer isoforms overall, which

might explain some of the disparity between protein-coding

genes and lncRNAs.

Case study: spotting potentially suspicious isoforms
To demonstrate the utility of our model, we manually inspected

several isoforms that contain less-supported splice sites to see

if they appear to be non-functional. In the following, we

provide two examples, one for protein-coding genes and one

for lncRNAs.

In particular, we looked at the heat shock protein family B

(small) member 1, or the HSPB1 gene. Its MANE transcript

with GENCODE ID ENST00000248553.7 contains 2 exons and

produces a protein that is 205 amino acids long. One of the

alternative transcripts with the ID ENST00000674547.1 from

the GENCODE database differs from the MANE isoform by one

donor site, which was marked as “less-supported” by our model.

This alternative site results in a premature stop codon in the

protein sequence, which yields a protein that is only 143 amino

acids long, which is nearly 30% times shorter than its MANE

isoform; Supplementary Figure S10a shows these two isoforms.

In addition, the transcriptomic support for the splice junction

containing the alternative site is also poor: tens of reads as

opposed to millions or hundreds of thousands for the MANE

isoform, depending on the tissue see Supplementary Table S6,

columns 2 and 3, for the exact numbers. Given these data,

we hypothesize that ENST00000674547.1 is either a technical

artifact or a result of spurious transcription.

We also looked at CHASERR, a highly-conserved lncRNA

located near the Chromodomain helicase DNA binding protein

2, a protein associated with a neurological disease [30].

Recently, CHASERR itself was shown to be critical for

viability [48], and its deletion was associated with a neurological

disorder [17]. One of its isoforms in GENCODE, with ID

ENST00000557682.6, contains four introns, and all splice sites

of those introns are “well-supported” according to our model.

Transcripts with the same intron structure are also present

in the RefSeq annotation. However, a GENCODE isoform

with ID ENST00000653163.1 differs from the above-mentioned

transcript by the location of the first donor site, which is located

much further upstream: at position 92,819,999 of chromosome

15, as opposed to 92,883,187. The alternative donor site is

“less-supported” according to our model and has only 2 reads

covering that junction in the GTEx dataset. On the other hand,

the intron junction of ENST00000557682.6 sharing the same

acceptor site that has a well-supported donor site, is covered by

thousands of reads across multiple tissues, see Supplementary

Table S6, columns 4 and 5. Given that the isoform with a “less-

supported” donor site occupies a locus 4.7 times longer and the

longer intron has poor transcriptomic support, we believe that

the longer transcript could be non-functional. Supplementary

Figure S10b illustrates the structure of these two isoforms.

Discussion

In this study, we found that the canonical dinucleotides from

both donor and acceptor splice sites of the consensus MANE

dataset exhibit a striking pattern of conservation: nearly all

of them are conserved in more than 350 mammalian species.

In contrast, splice sites from the leading gene catalogs –

GENCODE, RefSeq, and CHESS 3 – that are not shared

with MANE exhibit two different patterns of conservation.

The first pattern resembles MANE, where the splice sites are

conserved in more than 350 species, while the second one

resembles neutrally evolving sequences, at both the micro- and

macroevolutionary levels. To compare the properties of these

two groups of splice sites, we trained a logistic regression model

using the MANE dataset as the source of positive examples and

using randomly chosen dinucleotide sites from within introns to

represent (albeit imperfectly) neutrally evolving sequences. We

then applied this model to the rest of the GENCODE, RefSeq,

and CHESS gene catalogs excluding MANE to classify splice

sites as either well-supported or less-supported.

We found that 30-50% of splice sites from coding genes and

less than 17% of splice sites from lncRNA can be classified

as well-supported. Splice sites classified as less-supported had

SNP rates in the human population that were consistent with

neutrally evolving sequences, while well-supported ones had

patterns of SNP rates and frequencies similar to MANE. In

addition, we observed that introns where both splice sites are

well-supported have better transcriptomic support. We also

found that less-supported splice sites are less likely to be shared

by different isoforms of the same gene. We calculated the

number of transcripts whose splice sites were either classified

as well-supported by our model or shared with a transcript

from MANE. For protein-coding genes, 41%-56% belong to this

category, and only 0.5-2% have all their sites well-supported.

These transcripts can be used as a high-confidence subset of

the gene catalogs we studied.

Our findings are consistent with the previous studies of

splice site evolution. For example, it was observed before

that genes that are highly conserved have higher expression

levels [20, 6] and conserved exons are more likely to be included

in multiple transcripts [35]. Other studies [29, 53] found that

splice sites that are not conserved in other species are more
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likely to carry disruptive SNPs in their motifs, and transcripts

enriched in such variants have lower expression levels [11]; it

was also observed that splice sites of lncRNAs are less conserved

than ones of mRNAs [60].

Some previous studies also found a lack of conservation of

some splice sites using whole genome alignments [51, 52], but

they assumed that these patterns arose due to alignment errors.

Using the large gnomAD collection of human variation, we were

able to examine SNP rates in the human population and show

that splice sites that are less-supported also have higher SNP

rates and frequencies. This finding suggests that the majority

of splice sites lacking conservation across species are simply not

under selection in the human population as opposed to being

poorly aligned.

This study has several limitations. First, unlike some

previous studies of the evolutionary dynamics of alternative

splicing [3, 33, 16], we rely purely on the conservation of DNA

sequences without taking into account whether a conserved

splice site in a non-human genome is actually functional

(information that is usually not known). Unfortunately, the

incomplete status of many other genome annotations prevented

us from incorporating them into our analysis. Second, we realize

that the training data we used for our model could introduce

biases. For example, the MANE dataset was constructed by

choosing one “best” isoform per protein-coding gene, and

conservation was one of the criteria. This could potentially

contribute to the stronger conservation signal we observed in

that data. In addition, randomly chosen dinucleotide sequences

from the interior of introns might not be the ideal choice for

neutrally evolving sequences. We also note that MANE might

not be an appropriate baseline for comparison for non-coding

genes. However, the subset of experimentally verified lncRNAs

is small, which makes it challenging to create a training set

based on these genes. At the same time, in our study at least a

subset of lncRNAs showed levels of conservation (at their splice

sites) comparable to protein-coding genes. We believe that our

model can be still useful for such genes; e.g., if most splice sites

of a lncRNA transcript are well-supported, then less-supported

ones should be dealt with caution.

We hope this study will help improve human genome

annotation by demonstrating the utility of using large-scale

evolutionary conservation for functional annotation of splicing.

According to our analysis, highly-conserved splice sites from

MANE alone constitute at least 75% of all the splice sites in

protein-coding isoforms in all genome annotations, and together

with their well-supported counterparts from the complementary

subsets account for 80-90% of all splice sites (Table 2). This

finding is in concordance with previous studies showing that

MANE and APPRIS transcripts represent the most biologically

and clinically relevant isoforms [42, 43].

Hence, we believe that splice site conservation should be

an important factor in constructing a genome annotation.

However, only a few methods currently use this information

directly, either for annotation or splice site prediction [49].

A common data structure used in RNA assembly called

splice graph was generalized to integrate sequence homology

information between species [61], but it was used for finding

clusters of orthologous exons and yet to be employed for

RNA-seq assembly. As higher-quality genomes along with their

alignments become available, conservation-based methods have

the potential to be a powerful aid in constructing functional

annotations. However, despite the recent advances in the field

of alignment [34, 2, 27], our analysis shows that even the

most complete whole-genome alignments to date miss many

alignments of human exons, and further progress in this area is

needed to improve the completeness of the alignments.

We also highlighted a subset of splice sites and

corresponding isoforms in the leading human annotation

catalogs that appear to be under strong selection. This

subset can be used as a high-confidence representation of the

annotation. At the same time, less-supported splice sites might

require further scrutiny since splicing could be inherently error-

prone [24, 23, 40, 19, 4]. This hypothesis is backed up by the

fact that well-supported splice sites have higher SNP rates and

frequencies in the human population consistent with randomly

selected sites, which suggests that they are not under as

strong negative selection. In addition, a recent study using

proteomics analysis found that only 1 in 6 alternative isoforms

were predicted to be functional [41]. However, pinpointing

exactly which splice sites are errors would require further study

incorporating extra data. Here we have focused on the human

genome because it has the highest-quality annotation, but in

the future, we hope to extend our analysis to the annotations

of other species.
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conservation. This repository, including all the code and the

resulting data, was archived at Zenodo and is available with
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