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ABSTRACT

Fluorescent microscopy imaging is vital to capturing single-cell

spatial data, characterizing tissue organization and facilitating com-

prehensive analysis of cellular state. Advancements in �uorescent

microscopy imaging technologies have enabled precise downstream

cellular analysis, particularly in cell segmentation. Accurate seg-

mentation of individual cells allows better pro�ling and under-

standing of cell properties and behaviors. The majority of existing

segmentation methods predominantly concentrate on enhancing

segmentation algorithms, and their e�ectiveness strongly relies

on the input stained image quality. Factors such as high cellular

density, indistinct cell boundaries, and staining artifacts can result

in uneven and low-quality staining, particularly causing missing or

unclear membrane staining. These artifacts adversely impact the

e�cacy of the subsequent cell segmentation methods. To tackle

this insu�cient membrane staining, we propose a novel approach,

Mem-GAN, to generate high-quality membranes for cells with miss-

ing or weak membranes. Inspired by advanced style transfer tech-

niques in computer vision,Mem-GAN styles the content of the cells

with missing or weak membranes into cells with integrated mem-

brane staining. Considering the di�erences in membrane morphol-

ogy between epithelial/tumor cells and immune cells,Mem-GAN

deals with tumor and immune cells separately, not only enhanc-

ing membrane staining for cells with partially weak membrane

signals but also generating membranes for cells with only nuclear

channels. The proposed Mem-GAN is evaluated using the publicly

available CosMx dataset. Experimental results demonstrate sig-

ni�cant improvements in image staining quality, more accurate

representation of membrane morphology characteristics, and bet-

ter performance in downstream segmentation tasks. Mem-GAN

is �exibly adapted and applied to other spatially resolved tran-

scriptomics datasets, such as MERFISH and FISHseq. Our work

∗indicates equal contribution to this research.
†Corresponding author.

provides a new perspective on tackling the challenges in cell seg-

mentation from �uorescent microscopy image restoration. The

implementation of Mem-GAN is open-source and available at the

github repository https://github.com/OmicsML/Mem-GAN. The in-

teractive webserver-based demo of Mem-GAN can be accessed at

http://omicsml.ai/memgan.

1 INTRODUCTION

Fluorescent microscopy imaging is essential technique to capturing

single-cell spatial information, assisting in further analyses and

understanding of cellular states and tissue structures. Immunohis-

tochemistry (IHC) [3] has been a widely used multiplexed imaging

method since its debut in 1942. IHC uses appropriately labeled an-

tibodies to speci�cally bind to their target antigens in situ, which

can be captured more e�ectively by current light or �uorescence

microscopy. With advances in multiplexed imaging technologies,

various techniques [4, 6, 7, 16, 21, 22] have been developed to en-

hance individual cell resolution. These images are usually acquired

using sequential antibody staining and dye as protein markers for

cellular identi�cation. These markers e�ectively label speci�c cell

structures and shapes within a sample and have been continuously

improved to enhance sensitivity and speci�city for single-cell anal-

ysis.

The advances in �uorescent microscopy imaging technologies

allow for precise downstream analysis on the cellular level to un-

derstand underlying biological processes, such as cell segmentation,

cell type recognition, and cell tracking. Single-cell segmentation

identi�es and separates individual cells within an image by creating

pixel-level labels or annotations for each cell. This segmentation

enables the study of single cells within a population and allows

the pro�ling and understanding of the properties and behaviors of

individual cells in an image-based manner. Single-cell segmenta-

tion from �uorescent microscopy imaging, often using ideas from

traditional computer vision techniques, has received increased at-

tention. Early works, such as Yan et al.[36] and MxIF [5], utilized
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Figure 1: Cells with distinct membrane staining qualities and

corresponding cell segmentation results from Cellpose [34]

on CosMx dataset (“Lung5 Rep1” sample). Cells with good

membrane staining yield highly accurate cell segmentation

outcomes, while cells without membrane staining or with

weak membrane staining result in comparatively poorer re-

sults.

pre-selected markers for segmentation, while Schü�er et al. [31]

developed an automatic marker selection method to capture mul-

tiplexed imaging information. Methods, like SVSS [29] and Ma-

tisse [18], incorporated prior knowledge of cell shape and multiple

marker information to enhance segmentation performance. These

methods leveraged various tools, such as the watershed algorithm,

level set methods, and open-source technologies like Ilastik [32] and

CellPro�ler [15]. Recently, deep learning (DL) has greatly advanced

computer vision and image segmentation, where numerous robust

algorithms have been proposed to greatly improve cell segmen-

tation performance[9, 17, 23, 26, 33, 34]. The U-Net architecture

[27] is a popular Convolutional Neural Network (CNN) used for

medical image segmentation tasks, but it is prone to fail in over-

lapping cells. One solution involves using a regression model that

predicts continuous variables for each pixel instead of categorizing

them as foreground or background. This approach has been suc-

cessfully implemented in frameworks such as Cellpose [33, 34] and

DeepDistance [17]. In addition, TissueNet [9] is a large dataset that

constructs a more speci�ed and robust structure for cell segmenta-

tion, and MIRIAM [23] is a pipeline that handles highly multiplexed

imaging platforms.

Single-cell segmentation highly depends on the simultaneous

staining of cell nuclei and cell membranes. The high staining quality

bene�t cell segmentation performed by software tools [13]. Typi-

cally, cell nuclei are stained using DAPI, a �uorescent dye that binds

to DNA, while various membrane protein antibodies like CD45,

CD3, and PanCK are employed to label the cell membranes. Despite

the advancements in imaging techniques, which involve carefully

selecting antibodies and incorporating of additional antibodies for

enhanced multiplexing capabilities, introducing noises into multi-

plexed immuno�uorescence images is inevitable. These noises can

manifest as cells without membrane staining or cells with weak

membrane staining, leading to low-quality and uneven staining, as

depicted in Figure. 1 (Original images). These issues can arise from

both optical artifacts, such as out-of-focus or blurry images, and

chemical artifacts, including variations in antibody concentration

and epitope availability in the samples. Furthermore, when employ-

ing multi-modality assays that measure both RNA and protein in

the same section rather than assays speci�cally targeting proteins,

compromised staining quality with weaker membrane signals can

occur.

Moreover, during the pre-processing process of the raw images

stained with di�erent membrane biomarkers, carefully choosing

di�erent antibodies and well-designed aggregation strategies for

these images ensures the maximum detection of the target and

the appropriate de�nition of the cell boundaries [1]. Inappropriate

choices exacerbate the di�culty of obtaining high-quality images

with high cell border contrast. Therefore, even the most sophis-

ticated segmentation methods heavily rely on the quality of the

provided stained images and are prone to failure when faced with

instinct cell boundaries resulting from weak or missing membrane

staining. As depicted in Figure. 1, the widely used segmentation tool

Cellpose [34] accurately delineates the boundaries of individual

cells. However, it struggles when cells exhibit weak or no mem-

brane staining, which highlights the challenge of incomplete or

faint membrane signals.
Most existingworks on single-cell segmentation focus on improv-

ing the algorithms, but overlook the vital role of the �uorescence

quality plays. To handle cells with weak cell membrane staining,

most methods directly segment the cell nuclei, while others enlarge

the region from the nuclei. Schmitt et al. [30] performs a morpho-

logical reconstruction through dilation and erosion operations and

Lin et al. [22] utilizes Voronoi tessellation. To handle more irregular

and elongated cell shapes, McKinley et al. [24] �nds the endpoints

of internal membranes and extends them until they intersect with

other cells. However, these methods are to re�ne the segmentation

results, which could fail to characterize the real morphologies of

di�erent cell membranes.

Rather than merely extending segmentation boundaries, we take

a novel perspective that generates superior cell membranes for cells

with missing or weak membranes. Drawing inspiration from the

advanced style transfer technique in the computer vision domain,

Cycle-consistent Generative Adversarial Network (CycleGAN) [39],

we develop a membrane generator calledMem-GAN. This generator

styles the content of cells with missing or weak membranes into

cells with well-de�ned membrane staining. Mem-GAN e�ectively

generates improved cell membranes, enhancing image staining

quality and capturing more accurate membrane morphology char-

acteristics while preserving the cellular structure.

Membrane generation models should also consider the exhibited

membrane di�erences between di�erent cell types. As shown in

Figure. 2, tumor cells often display irregular and heterogeneous

shapes, resulting in a more jagged or uneven membrane appearance.

In contrast, immune cells, such as lymphocytes, typically have a

ii
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Figure 2: A comparison between immune cells and tumor

cells highlights distinctions in their membrane shapes and

�uorescent staining signals.

more rounded and uniform shape, characterized by a smooth and

continuous membrane. Therefore, Mem-GAN is also trained to

deal with tumor and immune cells separately. Since, in the most

cases, cells are often losing part of the staining signals, Mem-GAN

either generates membranes for cells with only nuclei channels

or enhances membranes for cells with partially weak membrane

signals. The results can be qualitatively and quantitatively analyzed

in the context of generated membrane accuracy and downstream

segmentation evaluation. The experiments are conducted on the

publicly released dataset, CosMx [10], and Mem-GAN can be easily

adapted to other spatially resolved transcriptomics datasets, such

as MERFISH and FISHseq.

2 MATERIALS AND METHODS

In this section, we will introduce the key steps involved in address-

ing the data quality problem through a generative approach.Wewill

discuss the dataset preparation process, including the construction

of source and target sets based on membrane quality and cell types,

as well as the integration of manual annotation for improved cate-

gorization. Furthermore, we will detail the training of CycleGAN

models with generators and discriminators to learn the mapping

between the source and target sets, ensuring the generation of real-

istic and enhanced membranes. Based on our goals, we design three

di�erent experimental settings to build three generation models,

where two of the generators aim to separately impute tumor cell

membranes and immune cell membranes given only nuclei signals

and the third model will generate the whole tumor membranes for

cells with weak and partial membranes. Finally, we will explain

how these trained models can be applied during testing to generate

complete membranes for immune cells or tumor cells with weak

or no membrane staining, ultimately improving the accuracy and

reliability of cell segmentation.

2.1 Data acquisition and image processing

In our study, we utilize the publicly available CosMx dataset [10]

as our primary dataset. This dataset encompasses a comprehensive

collection of multiplexed immuno�uorescence images and it is

chosen due to its wide variety of cell types and staining conditions,

allowing us to evaluate the performance of our generative approach

across diverse scenarios.

There are totally eight formalin-�xed, para�n-embedded (FFPE)

non-small cell lung cancer (NSCLC) tissue samples, 120 images

or �elds of view (FOV) consisting of around 390,000 cells, which

are obtained using the spatial molecular imaging technique from

CosMx platform [10]. Four samples “Lung5_Rep1", “Lung5_Rep2",

“Lung5_Rep3", and “Lung6" are utilized for training and evaluating

our methods. These samples were speci�cally selected for their

suitability in containing a substantial number of cells with rela-

tively well-integrated membrane signals. This selection ensures

that the membranes generated by our approach meet a high stan-

dard of quality. These samples are obtained from the same patient,

while “Lung6” is obtained from a separate patient. Speci�cally,

“Lung5_Rep1", “Lung5_Rep2", “Lung5_Rep3", and “Lung6", contain

32, 30, 32, and 30 FOVs, each with 98,002, 105,800, 97,809, and 89,975

cells, respectively. Each sample comprises 18 distinct cell types, in-

cluding one identi�ed as cancerous. The sample images are stained
with both nuclear and membrane markers (DAPI, CD298, PanCK

and CD3).

Di�erent membrane channels are �rst combined and then nor-

malized to the range of the nuclear channel. Next, the nuclear

channel is subtracted from the combined membrane channel to en-

hance the signal contrast. These processed channels are then used

to create images, which can be further used to segment nuclear and

membrane and ensure an appropriate cell boundary de�nition by

combining both. These images are high-resolution, and each image

(FOV) with a size of 5,472 pixels × 3,648 pixels, 0.18 `< per pixel

contains around 3,000 densely gathered cells, making it challeng-

ing to train generation models to focus on speci�c cell types and

membrane quality. Therefore, each image were �rstly cropped into

a set of patches with size 456 × 456, and the background patches

were then manually �ltered to ensure each patch contains 10 ∼ 50

cells.

To achieve our objective, we construct speci�c source-domain

patch sets and target-domain patch sets for training each model

and enabling the transfer from the source style to the target style,

as illustrated in Fig. 3. The source-domain patches consist of two

distinct sets: immune/tumor cells without membranes and tumor

cells with weak membrane staining. On the other hand, the target-

domain patches comprise sets of immune cells with well-de�ned

membranes and tumor cells with well-de�ned membranes. These

di�erent source and target sets form various pairs of training sets

tailored for each of the three models in our framework. This ap-

proach facilitates the training process and enables the models to

learn the transformation from the source-style, with low-quality

or absent membranes, to the target-style, featuring high-quality

membranes, separately for immune and tumor cells.

iii
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Figure 3: The schematic overview of the MemGAN framework. Multiple source-domain and target-domain sets are manually

constructed, forming the basis for generation models in three di�erent combinations: nuclei to immune cells, nuclei to tumor

cells, and weak membrane of tumor cells to good membrane. All three models adhere to the same training pattern, employing

Cyclegan as illustrated in the right part of the diagram.

Since the cells are randomly distributed, each patch may contain

both tumor and immune cells. Therefore, all the patches were �rst

manually divided into two sets: one with the most tumor cells in

each patch and the other with the most immune cells. To ensure

that the model can synthesize the target membranes without noisy

information, �ve well-trained annotators manually mask the tu-

mor cells and immune cells with both nuclei and membrane areas

separately based on the �uorescent staining so that the two sets

separately contain only tumor cells and only immune cells. To

generate high-quality membranes, cells with incomplete or noisy

staining were also �ltered out from the two sets. These two �l-

tered sets, denoted as . CD
=

{

~CD8

}"

8=1
and . 8<

=

{

~8<8

}#

8=1
, can be

utilized as the target datasets for membrane generation of tumor

cells and immune cells, where they follow the data distribution

~CD ∼ ?data (~
CD ) and ~8< ∼ ?data (~

8<). As the aim of the �rst two

models is to impute membranes for cells with only nuclei signals,

we built the corresponding source datasets, - CD
=

{

GCD8

}"

8=1
and

- 8<
=

{

G8<8

}#

8=1
, using the nuclei channels of . CD and . 8< , where

GCD ∼ ?data (G
CD ) and G8< ∼ ?data (G

8<). For the third model, the

source dataset -F4
=

{

GF4
8

}&

8=1
was constructed from a manual se-

lection of patches with partial and weak membranes, so this model

could be trained to impute the missing membrane signals for the

incomplete cells in -F4 .

2.2 Membrane generation with Mem-GAN

Generative Adversarial Network (GAN) is a widely used deep neural

network for generation tasks, such as image synthesis [2, 25, 35,

37], text-to-speech [14, 20, 28, 38], and video prediction [8, 11, 19].

The training process is a “min-max” game between a generator

and a discriminator, where the generator try to produce realistic

samples and the discriminator aims to distinguish between the

generated samples and the real training data. Based on GAN, there

are advances on image-to-image translation tasks, which transfers

the style of one image domain to another domain. Unlike Pix2pix

[12] which is limited to paired training dataset, CycleGAN [39] has

been a powerful tool to map images from a source domain and a

target domain with unpaired data. Since the task of cell membrane

generation is much more challenging, where the source data -

and target . are mostly unpaired, we adopted the CycleGAN as

the architecture of each generator to map the image distribution

between the source - and target . .

As shown in the right part of Figure. 3, thewhole process includes

two mapping functions � : - → . and � : . → - . For the �rst

translation model of generating membranes from nuclei for tumor

cells, the two generators � : - CD → . CD and � : . CD → - CD are

used for translating from nuclei to membrane and from membrane

to nuclei, respectively. At the same time, we have two discriminators

�- Īī and �. Īī , which are trained to distinguish between cells
{

� (GCD )
}

,
{

� (~CD )
}

generated by � , � and the real cells
{

~CD
}

,
{

GCD
}

from - CD and . CD . These process can be optimized via the

iv
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following adversarial loss formulation:

LGAN
(

�, �. Īī , - CD , . CD )
= E~Īī∼?data (~Īī )

[

log�. Īī (~CD )
]

+ EGĪī∼?data (GĪī )

[

log
(

1 − �. Īī (� (GCD ))
]

.

(1)

The loss function LGAN
(

�, �- Īī , . CD , - CD
)

for the mapping � is

similar.

To map each individual cell to its corresponding membrane

rather than a random mapping to the target domain . CD , just to �t

the distribution ?data (~
CD ), a cycle consistency loss is introduced

to reconstruct� (GCD ) back to GCD using mean squared error (MSE),

and bring � (~CD ) back to ~CD as well:

Lcyc (�, � ) = EGĪī∼?data (GĪī )

[

∥� (� (GCD )) − GCD ∥22
]

+ E~Īī∼?data (~Īī )

[

∥� (� (~CD )) − ~CD ∥22
]

.
(2)

The overall loss function is de�ned as:

L (�, �, �- Īī , �. Īī ) = LGAN
(

�,�. Īī , - CD , . CD )

+ LGAN
(

�, �- Īī , . CD , - CD )

+ _Lcyc (�, � ),

(3)

where _ is set as 10 to weight the losses. Therefore, the ultimate

goal of the overall training procedure is the following optimization:

argmin
�,�

max
�
ĔĪī ,�ĕĪī

L (�, �, �- Īī , �. Īī ) . (4)

This translation process is particularly trained for tumor cells,

which enhances the similarity between the distribution of tumor

cells with synthetic membranes and real cells.

Similarly, the second model includes mappings � : - 8< → . 8<

and � : . 8< → - 8< , and the third model tries to map � : -F4 →

. CD and � : . CD → -F4 , with their corresponding discriminators.

They have the similar optimization process.

Once the generative models have been trained, they can indi-

vidually produce missing membranes by taking nuclei channels

as the input or images with nuclei and weak membranes. In the

post-processing step, we employ a reconstruction process to merge

the original nuclei channels with the newly generated membrane

channels, thereby preserving the genuine nuclei signals without

any loss.

2.3 Cell segmentation from generated cells

Given the generated �uorescent microscopy, segmentation can be

performed to identify and isolate individual cells or other structures

within the image. In our segmentation process, we adopt Cellpose

[33, 34] as a strong segmentation tool to conduct cell segmenta-

tion. This U-Net-based model has been trained on large manually

annotated images and can perform the segmentation of cells with

variable shapes, sizes, and multiple channels in �uorescence mi-

croscopy images. Therefore, with our enhanced membranes, Cell-

pose is expected to generate more accurate boundaries for further

single-cell analysis. Moreover, since the accuracy on single-cell

segmentation is largely based on the integrity and quality of the

membrane signals, cell segmentation can also serve as an e�ective

way to evaluate the quality of the generated cells.

3 RESULTS

In this section, we assess the performance of our three generation

models using the CosMx dataset [10]. We visualize the generated

cells and indirectly evaluate the quality of the generatedmembranes

by comparing the segmentation results both qualitatively and quan-

titatively. Given the lack of “ground truth” with respect to cells with

weak membranes, we incorporate human evaluation to appraise

the generation performance and highlight the improvements in cell

segmentation.

3.1 Experimental settings

All the experiments were implemented in Pytorch and trained on

Nvidia RTXA6000GPU. TheAdam optimizer was employedwith an

initial learning rate of 0.0002 for the initial 100 epochs. Additionally,

a batchsize was set as 1 during training and testing phase. To ensure

gradual convergence, we linearly decayed the learning rate to zero

every 50 epochs over the remaining 100 epochs of training. We

randomly split the cropped patches into training and testing sets

by a ratio of 4:1. The whole model was trained in an end-to-end

manner.

3.2 Evaluation of generated tumor cell
membrane

To assess the e�ectiveness of the proposed membrane generation

model on tumor cells based solely on nuclei, we perform a compar-

ative analysis between the original images containing both nuclei

and membrane signals and the post-processed images generated

by our models.

The visual comparison of the two cases is depicted in Figure.

4. The �rst column of each case represents the original image,

displaying clearly visible and integrated tumor cell membranes.

Mem-GAN, with only the nuclei channels as input, generates similar

membrane signals compared to the ground-truth images while

maintaining the original integrated nuclei. Notably, the generated

tumor cells exhibit distinct membrane boundaries that are well-

de�ned.

The ultimate objective of Mem-GAN is to produce complete and

integrated membrane markers for single cells, which can result

in more precise and accurate identi�cation and segmentation of

individual cells in �uorescent microscopy images. In Figure. 4, the

second column of each case illustrates the segmentation results of

Cellpose based on original images generated images from Mem-

GAN. When given only the nuclei channels, Cellpose recognizes

only the boundaries of the nuclei, and some cells are missed. By

employing our generated membranes, Cellpose can detect most

of the missing cells, and the “fake” membranes can be e�ectively

utilized to determine the approximately real boundaries. Table 1

presents the quantitative evaluation of cell segmentation by com-

puting the intersection-over-union (IoU) score between the best-

matched masks and the corresponding ground truth masks. These

masks are generated from continuous pixel values, where each pixel

is assigned to either a speci�c cell or the background. The mask IoU

results are shown for patches from three di�erent samples, with the

segmentation boundaries of the original image with membranes

used as the ground truth. The results indicate thatMem-GAN sig-

ni�cantly improves the IoU score by up to 0.068 for sample “Lung6”,

with an average improvement of 10% compared to the original

v
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Figure 4: Visual comparison of original tumor cells and tumor cells generated by our method. The �rst and second columns of

Case (a) and Case (b) display the images and the corresponding cell boundaries predicted by Cellpose [34], respectively.

images without membranes. Therefore, with the improved captur-

ing of single-cell structures, it can further enhance downstream

analysis and enables the investigation of cell heterogeneity, the

identi�cation of rare cell types, and the study of dynamic cellular

processes.

Hence, in situations where the membrane markers are missed,

our Mem-GAN can e�ectively generate genuine membranes for

each cell. The authenticity of our generated membranes is not only

veri�ed through the visual comparison with the original ground

truth images, but also by the downstream single-cell segmentation

based on the nuclei and membrane signals.

Table 1: Quantitative results of cell segmentation usingMem-

GAN for membrane generation.

Original image w/o membrane Mem-GAN

Lung5_Rep1 0.2855 0.2943

Lung5_Rep2 0.2956 0.3133

Lung5_Rep3 0.2501 0.2743

Lung6 0.2839 0.3516

Average 0.2788 0.3084

3.3 Evaluation of generated immune cell
membrane

Similar to evaluating the tumor membrane generation, we assess

the second generation model of generating membranes for immune

cells. Compared with tumor cells which exhibit heterogeneous ex-

pression of markers, immune cells generally have a round shape

with a large nucleus and a more uniform appearance. In our images,

immune cells exhibit weaker membrane signals due to the potential

interference from tumor cell markers during the image acquisition

process. This may lead to signal quenching, causing the immune

cells to have faint or incomplete membrane signals. These weak

signals can be considered as inevitable noise in the models. De-

spite this, as demonstrated in Figure. 5, the �rst column of the two

cases shows that our model can still generate marker signals when

provided only with nuclei channels as input. Interestingly, when

compared to the original images, the model even aids in amplifying

the signals of certain cells.

Meanwhile, immune cells may be more sparsely distributed, es-

pecially when in�ltrating the tumor tissue, making them easier

to segment compared with tumor cells. As shown in the second

column, the pseudo membranes in our generated images can be ad-

vantageous for segmentation, enabling more accurate identi�cation

of individual cells.
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Figure 5: Visual comparison of original immune cells and immune cells generated by our method. The �rst and second columns

of Case (a) and Case (b) display the images and the corresponding cell boundaries predicted by Cellpose [34], respectively.

3.4 Performance on weak membrane generation

The �rst two models primarily serve to con�rm the accuracy of the

generated results when utilizing solely nuclei channels, given that

we have access to the original images as a point of reference. Based

on high similarities between the generated and actual membranes,

our third model addresses a more complicated, yet commonplace,

situation where the membranes are partially absent or weak.

Figure. 6 depicts four cases that demonstrate the signi�cant

enhancement of tumor cell membrane achieved by Mem-GAN. Ad-

ditionally, it displays the corresponding segmentation boundaries

generated by Cellpose and the spatial gradient map derived from

the simulated di�usion process within Cellpose. These four cases

demonstrate several distinct scenarios involving weak membrane

signals. For instance, Case (a) depicts numerous cells with partial

or indistinct membrane signals, which are e�ectively repaired by

Mem-GAN based on the existing signals. Case (b) represents a more

challenging scenario than Case (a), as it involves cells without any

detectable membrane signals. Despite this di�culty, Mem-GAN

can generate relatively authentic membranes for these cells while

retaining the essential initial signals. In these two cases, Cellpose

struggles to identify the cells with incomplete or missing mem-

branes. However, the predicted outlines suggest that the generated

membranes signi�cantly aid the segmentation model in capturing
the cell boundaries. Case (c) and Case (d) illustrate the scenario

where some existing membrane markers are unreliable and inac-

curate, such as membranes without nuclei or membranes that are

free-�oating. These challenges signi�cantly increase the di�culty

of the membrane generation task. It is worth noting thatMem-GAN

may be misled by these “fake” membranes, as the model aims to

generate more signals based on the available ones. Despite this limi-

tation, it is evident in the segmentation results that our model is still

able to generate membranes that are bene�cial for the segmentation

process, as depicted in the second row of Figure. 6.

3.5 Human evaluation on weak membrane
generation

Due to the absence of ground truth for cells with originally weak

membranes, objectively assessing the authenticity of the generated

membranes becomes challenging. Therefore, we adopt a manual

evaluation process to assess the quality of the generatedmembranes

and their impact on cell segmentation. This evaluation involves

�ve experienced PhD students with domain expertise who manu-

ally inspect and judge the generated membranes and the resulting

segmentation outcomes. Notably, these evaluators are unaware

of whether the images they evaluate are original or generated by

Mem-GAN, ensuring an unbiased assessment process. While sub-

jective, this evaluation provides valuable insights into the quality
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Figure 6: Qualitative results for weak membrane generation. The original images in the dataset exhibit low staining quality,

speci�cally weak membrane signals. Our generated images enhance and complement the lost signals, resulting in improved

cell segmentation, as demonstrated in the second and third columns for each case.

Table 2: Human evaluation in terms of Membrane Complete-

ness, Membrane Quality and Cell Segmentation. Each eval-

uation metric will be categorized into �ve levels with cor-

responding scores ranging from 1 to 5. The higher values

indicate better performance. Each score rating for each met-

ric is accompanied by its speci�c de�nition, which can be

found in the detailed explanation provided in the text.

Image Membrane Membrane Cell

Completeness Quality Seg

Original 2.25 2.35 2.4
Lung5_Rep1

Mem-GAN 3.4 3.15 3.4

Original 1.7 2.2 2.3
Lung5_Rep2

Mem-GAN 3.45 3.1 3.35

Original 1.975 2.275 2.35
Average

Mem-GAN 3.425 3.125 3.375

and e�ectiveness of the generated membranes in improving cell

segmentation. Each student is tasked with evaluating a total of 40

image pairs, consisting of 20 pairs from “Lung5_Rep1” and 20 pairs

from “Lung5_Rep2”. In each image pair, one image undergoes cell
segmentation using the original membrane staining, while the other

image undergoes cell segmentation using our generated membrane

staining throughMem-GAN. The evaluation metrics employed in

our study include “Membrane Completeness”, “Membrane Quality”,

and “Cell Segmentation”. Each metric is categorized into �ve levels,

with corresponding scores ranging from 1 to 5. The scoring scale

is de�ned as follows: Score 1 represents “Very poor”, Score 2 rep-

resents “Poor”, Score 3 represents “Acceptable”, Score 4 represents

“Good”, and Score 5 represents “Very Good”. For the assessment

of Membrane Completeness, the students are instructed to assign

scores based on the percentage of cells exhibiting membrane stain-

ing. A score of 5 is assigned if over 90% of cells show membrane

staining. Scores of 4, 3, 2, and 1 are assigned for percentages of 80%-

90%, 60%-80%, 40%-60%, and less than 40%, respectively. Similarly,

for the evaluation of Membrane Quality, the students consider the

ratio of cells with well-de�ned, separable, and clear membranes.

The corresponding score is assigned based on the de�ned ranges

above. In the case of Cell Segmentation, the students assess the

ratio of cells correctly identi�ed and segmented. The score for this

metric is determined based on the observed ratio of cells to the

speci�ed ranges above.
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As observed in Table 2, it is evident that both in “Lung5_Rep1”

and “Lung5_Rep2”, the original images exhibit incomplete mem-

brane stainingwith relatively lowmembrane quality, scoring around

2. Additionally, the cell segmentation score of 2 indicates that only

approximately half of the cells are successfully identi�ed. However,

by employing Mem-GAN, the generated pseudo membrane signi�-

cantly aids inmembrane generation for cells lacking proper staining.

As a result, there is a notable improvement across all three met-

rics. Moreover, our algorithm’s pseudo membrane staining greatly

enhances the performance of cell segmentation.

4 DISCUSSION

The reliability of membrane markers for cell segmentation can

be compromised by several data quality factors, such as staining

artifacts, imaging noise, and limited microscope resolution. These

factors result in missing or unclear membrane staining, leading to

uneven and low-quality staining. Traditional and advanced deep

learning-based cell segmentation methods rely signi�cantly on the

staining quality of input images, and as a result, they may encounter

limitations when dealing with complex data featuring diverse cell

shapes, high cellular density, and unclear cell boundaries.

Instead of improving the segmentation algorithms, in this work,

we propose a new perspective that addresses the inadequate stain-

ing problem at its essence. Our approach involves generating miss-

ing or unclear membrane markers using generative models, which

aims to improve the quality of the stained images and enable more

precise identi�cation and segmentation of individual cells. This

method provides an e�ective solution to the challenge of inade-

quate staining and it has the potential to signi�cantly assist single

cell analysis in various downstream applications .

Despite its e�ectiveness in generating authentic pseudo mem-

branes for tumor and immune cells, our current model encounters

limitations when confronted with out-of-distribution tissues and

cells displaying complex morphologies. In such cases, additional

training data from diverse datasets may be required to adapt to

new membrane staining patterns. Nevertheless, it’s important to

note that Mem-GAN serves as a promising proof-of-concept for

improving staining quality through the application of generative

models and deep neural networks.

A prospective avenue for future research involves the develop-

ment of a single cell-based image classi�er capable of distinguishing

di�erent cell types, such as immune cells or tumor cells, prior to

applyingMem-GAN. By doing so, the corresponding models can be

employed to generate appropriate pseudo membranes tailored to

each cell type. However, even in scenarios where cell type di�eren-

tiation proves challenging, there is still potential value in utilizing

the generated tumor cell membranes for immune cells to aid in

cell boundary identi�cation. In the context of segmentation, the

ultimate goal remains the delineation of complete cell boundaries.

Therefore, generating pseudo membranes for immune cells using

the tumor cell generator can still contribute to improved segmenta-

tion results. These generated membranes o�er valuable additional

information that assists Cellpose or any other segmentation tools

in recognizing and segmenting cells, ultimately enhancing seg-

mentation outcomes. As part of future work, the exploration of
more advanced generative models, such as di�usion models, holds

promise in further enhancing the capabilities of Mem-GAN.
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