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ABSTRACT

Fluorescent microscopy imaging is vital to capturing single-cell
spatial data, characterizing tissue organization and facilitating com-
prehensive analysis of cellular state. Advancements in fluorescent
microscopy imaging technologies have enabled precise downstream
cellular analysis, particularly in cell segmentation. Accurate seg-
mentation of individual cells allows better profiling and under-
standing of cell properties and behaviors. The majority of existing
segmentation methods predominantly concentrate on enhancing
segmentation algorithms, and their effectiveness strongly relies
on the input stained image quality. Factors such as high cellular
density, indistinct cell boundaries, and staining artifacts can result
in uneven and low-quality staining, particularly causing missing or
unclear membrane staining. These artifacts adversely impact the
efficacy of the subsequent cell segmentation methods. To tackle
this insufficient membrane staining, we propose a novel approach,
MEM-GAN, to generate high-quality membranes for cells with miss-
ing or weak membranes. Inspired by advanced style transfer tech-
niques in computer vision, MEM-GAN styles the content of the cells
with missing or weak membranes into cells with integrated mem-
brane staining. Considering the differences in membrane morphol-
ogy between epithelial/tumor cells and immune cells, MEM-GAN
deals with tumor and immune cells separately, not only enhanc-
ing membrane staining for cells with partially weak membrane
signals but also generating membranes for cells with only nuclear
channels. The proposed MEM-GAN is evaluated using the publicly
available CosMx dataset. Experimental results demonstrate sig-
nificant improvements in image staining quality, more accurate
representation of membrane morphology characteristics, and bet-
ter performance in downstream segmentation tasks. MEM-GAN
is flexibly adapted and applied to other spatially resolved tran-
scriptomics datasets, such as MERFISH and FISHseq. Our work

*indicates equal contribution to this research.
t Corresponding author.

provides a new perspective on tackling the challenges in cell seg-
mentation from fluorescent microscopy image restoration. The
implementation of MEM-GAN is open-source and available at the
github repository https://github.com/OmicsML/Mem-GAN. The in-
teractive webserver-based demo of MEM-GAN can be accessed at
http://omicsml.ai/memgan.

1 INTRODUCTION

Fluorescent microscopy imaging is essential technique to capturing
single-cell spatial information, assisting in further analyses and
understanding of cellular states and tissue structures. Immunohis-
tochemistry (IHC) [3] has been a widely used multiplexed imaging
method since its debut in 1942. IHC uses appropriately labeled an-
tibodies to specifically bind to their target antigens in situ, which
can be captured more effectively by current light or fluorescence
microscopy. With advances in multiplexed imaging technologies,
various techniques [4, 6, 7, 16, 21, 22] have been developed to en-
hance individual cell resolution. These images are usually acquired
using sequential antibody staining and dye as protein markers for
cellular identification. These markers effectively label specific cell
structures and shapes within a sample and have been continuously
improved to enhance sensitivity and specificity for single-cell anal-
ysis.

The advances in fluorescent microscopy imaging technologies
allow for precise downstream analysis on the cellular level to un-
derstand underlying biological processes, such as cell segmentation,
cell type recognition, and cell tracking. Single-cell segmentation
identifies and separates individual cells within an image by creating
pixel-level labels or annotations for each cell. This segmentation
enables the study of single cells within a population and allows
the profiling and understanding of the properties and behaviors of
individual cells in an image-based manner. Single-cell segmenta-
tion from fluorescent microscopy imaging, often using ideas from
traditional computer vision techniques, has received increased at-
tention. Early works, such as Yan et al.[36] and MxIF [5], utilized
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Figure 1: Cells with distinct membrane staining qualities and
corresponding cell segmentation results from Cellpose [34]
on CosMx dataset (“Lung5 Rep1” sample). Cells with good
membrane staining yield highly accurate cell segmentation
outcomes, while cells without membrane staining or with
weak membrane staining result in comparatively poorer re-
sults.

pre-selected markers for segmentation, while Schiffler et al. [31]
developed an automatic marker selection method to capture mul-
tiplexed imaging information. Methods, like SVSS [29] and Ma-
tisse [18], incorporated prior knowledge of cell shape and multiple
marker information to enhance segmentation performance. These
methods leveraged various tools, such as the watershed algorithm,
level set methods, and open-source technologies like Ilastik [32] and
CellProfiler [15]. Recently, deep learning (DL) has greatly advanced
computer vision and image segmentation, where numerous robust
algorithms have been proposed to greatly improve cell segmen-
tation performance[9, 17, 23, 26, 33, 34]. The U-Net architecture
[27] is a popular Convolutional Neural Network (CNN) used for
medical image segmentation tasks, but it is prone to fail in over-
lapping cells. One solution involves using a regression model that
predicts continuous variables for each pixel instead of categorizing
them as foreground or background. This approach has been suc-
cessfully implemented in frameworks such as Cellpose [33, 34] and
DeepDistance [17]. In addition, TissueNet [9] is a large dataset that
constructs a more specified and robust structure for cell segmenta-
tion, and MIRIAM [23] is a pipeline that handles highly multiplexed
imaging platforms.

Single-cell segmentation highly depends on the simultaneous
staining of cell nuclei and cell membranes. The high staining quality
benefit cell segmentation performed by software tools [13]. Typi-
cally, cell nuclei are stained using DAPI, a fluorescent dye that binds
to DNA, while various membrane protein antibodies like CD45,
CD3, and PanCK are employed to label the cell membranes. Despite

the advancements in imaging techniques, which involve carefully
selecting antibodies and incorporating of additional antibodies for
enhanced multiplexing capabilities, introducing noises into multi-
plexed immunofluorescence images is inevitable. These noises can
manifest as cells without membrane staining or cells with weak
membrane staining, leading to low-quality and uneven staining, as
depicted in Figure. 1 (Original images). These issues can arise from
both optical artifacts, such as out-of-focus or blurry images, and
chemical artifacts, including variations in antibody concentration
and epitope availability in the samples. Furthermore, when employ-
ing multi-modality assays that measure both RNA and protein in
the same section rather than assays specifically targeting proteins,
compromised staining quality with weaker membrane signals can
occur.

Moreover, during the pre-processing process of the raw images
stained with different membrane biomarkers, carefully choosing
different antibodies and well-designed aggregation strategies for
these images ensures the maximum detection of the target and
the appropriate definition of the cell boundaries [1]. Inappropriate
choices exacerbate the difficulty of obtaining high-quality images
with high cell border contrast. Therefore, even the most sophis-
ticated segmentation methods heavily rely on the quality of the
provided stained images and are prone to failure when faced with
instinct cell boundaries resulting from weak or missing membrane
staining. As depicted in Figure. 1, the widely used segmentation tool
Cellpose [34] accurately delineates the boundaries of individual
cells. However, it struggles when cells exhibit weak or no mem-
brane staining, which highlights the challenge of incomplete or

faint membrane signals.
Most existing works on single-cell segmentation focus on improv-

ing the algorithms, but overlook the vital role of the fluorescence
quality plays. To handle cells with weak cell membrane staining,
most methods directly segment the cell nuclei, while others enlarge
the region from the nuclei. Schmitt et al. [30] performs a morpho-
logical reconstruction through dilation and erosion operations and
Lin et al. [22] utilizes Voronoi tessellation. To handle more irregular
and elongated cell shapes, McKinley et al. [24] finds the endpoints
of internal membranes and extends them until they intersect with
other cells. However, these methods are to refine the segmentation
results, which could fail to characterize the real morphologies of
different cell membranes.

Rather than merely extending segmentation boundaries, we take
anovel perspective that generates superior cell membranes for cells
with missing or weak membranes. Drawing inspiration from the
advanced style transfer technique in the computer vision domain,
Cycle-consistent Generative Adversarial Network (CycleGAN) [39],
we develop a membrane generator called MEM-GAN. This generator
styles the content of cells with missing or weak membranes into
cells with well-defined membrane staining. MEM-GAN effectively
generates improved cell membranes, enhancing image staining
quality and capturing more accurate membrane morphology char-
acteristics while preserving the cellular structure.

Membrane generation models should also consider the exhibited
membrane differences between different cell types. As shown in
Figure. 2, tumor cells often display irregular and heterogeneous
shapes, resulting in a more jagged or uneven membrane appearance.
In contrast, immune cells, such as lymphocytes, typically have a
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Immune cells

Figure 2: A comparison between immune cells and tumor
cells highlights distinctions in their membrane shapes and
fluorescent staining signals.

more rounded and uniform shape, characterized by a smooth and
continuous membrane. Therefore, MEM-GAN is also trained to
deal with tumor and immune cells separately. Since, in the most
cases, cells are often losing part of the staining signals, MEM-GAN
either generates membranes for cells with only nuclei channels
or enhances membranes for cells with partially weak membrane
signals. The results can be qualitatively and quantitatively analyzed
in the context of generated membrane accuracy and downstream
segmentation evaluation. The experiments are conducted on the
publicly released dataset, CosMx [10], and MEM-GAN can be easily
adapted to other spatially resolved transcriptomics datasets, such
as MERFISH and FISHseq.

2 MATERIALS AND METHODS

In this section, we will introduce the key steps involved in address-
ing the data quality problem through a generative approach. We will
discuss the dataset preparation process, including the construction
of source and target sets based on membrane quality and cell types,
as well as the integration of manual annotation for improved cate-
gorization. Furthermore, we will detail the training of CycleGAN
models with generators and discriminators to learn the mapping
between the source and target sets, ensuring the generation of real-
istic and enhanced membranes. Based on our goals, we design three
different experimental settings to build three generation models,
where two of the generators aim to separately impute tumor cell
membranes and immune cell membranes given only nuclei signals
and the third model will generate the whole tumor membranes for
cells with weak and partial membranes. Finally, we will explain
how these trained models can be applied during testing to generate

ii

complete membranes for immune cells or tumor cells with weak
or no membrane staining, ultimately improving the accuracy and
reliability of cell segmentation.

2.1 Data acquisition and image processing

In our study, we utilize the publicly available CosMx dataset [10]
as our primary dataset. This dataset encompasses a comprehensive
collection of multiplexed immunofluorescence images and it is
chosen due to its wide variety of cell types and staining conditions,
allowing us to evaluate the performance of our generative approach
across diverse scenarios.

There are totally eight formalin-fixed, paraffin-embedded (FFPE)
non-small cell lung cancer (NSCLC) tissue samples, 120 images
or fields of view (FOV) consisting of around 390,000 cells, which
are obtained using the spatial molecular imaging technique from
CosMx platform [10]. Four samples “Lung5_Rep1", “Lung5_Rep2",
“Lung5_Rep3", and “Lung6" are utilized for training and evaluating
our methods. These samples were specifically selected for their
suitability in containing a substantial number of cells with rela-
tively well-integrated membrane signals. This selection ensures
that the membranes generated by our approach meet a high stan-
dard of quality. These samples are obtained from the same patient,
while “Lung6” is obtained from a separate patient. Specifically,
“Lung5_Rep1", “Lung5_Rep2", “Lung5_Rep3", and “Lung6", contain
32, 30, 32, and 30 FOVs, each with 98,002, 105,800, 97,809, and 89,975
cells, respectively. Each sample comprises 18 distinct cell types, in-

cluding one identified as cancerous. The sample images are stained
with both nuclear and membrane markers (DAPI, CD298, PanCK

and CD3).

Different membrane channels are first combined and then nor-
malized to the range of the nuclear channel. Next, the nuclear
channel is subtracted from the combined membrane channel to en-
hance the signal contrast. These processed channels are then used
to create images, which can be further used to segment nuclear and
membrane and ensure an appropriate cell boundary definition by
combining both. These images are high-resolution, and each image
(FOV) with a size of 5,472 pixels X 3,648 pixels, 0.18 um per pixel
contains around 3,000 densely gathered cells, making it challeng-
ing to train generation models to focus on specific cell types and
membrane quality. Therefore, each image were firstly cropped into
a set of patches with size 456 X 456, and the background patches
were then manually filtered to ensure each patch contains 10 ~ 50
cells.

To achieve our objective, we construct specific source-domain
patch sets and target-domain patch sets for training each model
and enabling the transfer from the source style to the target style,
as illustrated in Fig. 3. The source-domain patches consist of two
distinct sets: immune/tumor cells without membranes and tumor
cells with weak membrane staining. On the other hand, the target-
domain patches comprise sets of immune cells with well-defined
membranes and tumor cells with well-defined membranes. These
different source and target sets form various pairs of training sets
tailored for each of the three models in our framework. This ap-
proach facilitates the training process and enables the models to
learn the transformation from the source-style, with low-quality
or absent membranes, to the target-style, featuring high-quality
membranes, separately for immune and tumor cells.
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Figure 3: The schematic overview of the MemGAN framework. Multiple source-domain and target-domain sets are manually
constructed, forming the basis for generation models in three different combinations: nuclei to immune cells, nuclei to tumor
cells, and weak membrane of tumor cells to good membrane. All three models adhere to the same training pattern, employing

Cyclegan as illustrated in the right part of the diagram.

Since the cells are randomly distributed, each patch may contain
both tumor and immune cells. Therefore, all the patches were first
manually divided into two sets: one with the most tumor cells in
each patch and the other with the most immune cells. To ensure
that the model can synthesize the target membranes without noisy
information, five well-trained annotators manually mask the tu-
mor cells and immune cells with both nuclei and membrane areas
separately based on the fluorescent staining so that the two sets
separately contain only tumor cells and only immune cells. To
generate high-quality membranes, cells with incomplete or noisy
staining were also filtered out from the two sets. These two fil-
tered sets, denoted as Y = {yf”}?il and Y™ = {ygm}fil, can be
utilized as the target datasets for membrane generation of tumor
cells and immune cells, where they follow the data distribution
Y ~ paata(y™) and 4™ ~ pgata(y™). As the aim of the first two
models is to impute membranes for cells with only nuclei signals,

we built the corresponding source datasets, X% = {xl.“‘}?il and
xim — {xl?m}l{il, using the nuclei channels of Y and Y™, where
¥ ~ paata(x™) and x'™ ~ pyata(x™™). For the third model, the

source dataset XW¢ = {xiw‘e}lg1 was constructed from a manual se-

lection of patches with partial and weak membranes, so this model
could be trained to impute the missing membrane signals for the
incomplete cells in X™€.

2.2 Membrane generation with MEM-GAN

Generative Adversarial Network (GAN) is a widely used deep neural
network for generation tasks, such as image synthesis [2, 25, 35,
37], text-to-speech [14, 20, 28, 38], and video prediction [8, 11, 19].
The training process is a “min-max” game between a generator
and a discriminator, where the generator try to produce realistic
samples and the discriminator aims to distinguish between the
generated samples and the real training data. Based on GAN, there
are advances on image-to-image translation tasks, which transfers
the style of one image domain to another domain. Unlike Pix2pix
[12] which is limited to paired training dataset, CycleGAN [39] has
been a powerful tool to map images from a source domain and a
target domain with unpaired data. Since the task of cell membrane
generation is much more challenging, where the source data X
and target Y are mostly unpaired, we adopted the CycleGAN as
the architecture of each generator to map the image distribution
between the source X and target Y.

As shown in the right part of Figure. 3, the whole process includes
two mapping functions G : X — Y and F : Y — X. For the first
translation model of generating membranes from nuclei for tumor
cells, the two generators G : X' — Y and F : Y!* — X' are
used for translating from nuclei to membrane and from membrane
to nuclei, respectively. At the same time, we have two discriminators
Dxtu and Dyru, which are trained to distinguish between cells
{G(x'”)}, {F(yt“)} generated by G, F and the real cells {yt”},
{x"“} from X"* and Y"“. These process can be optimized via the
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following adversarial loss formulation:

L6aN (G, Dyru, X", Y) = Byt~ pgaia (y1) [log Dyru (y™™)]

+ Extuspy (xt) [log (1 — Dytu (G(xtu))] .

)
The loss function Lgan (F, Dxtu, Y, X™) for the mapping F is
similar.

To map each individual cell to its corresponding membrane
rather than a random mapping to the target domain Y*¥, just to fit
the distribution pgaia (y**), a cycle consistency loss is introduced
to reconstruct G(x**) back to x'* using mean squared error (MSE),
and bring F(y*) back to y** as well:

Leye(GF) = Byru_py,, (xtv) [IIF(G(™)) = x"|I3]
+ Byt py, (g [IGEG™) - y™ 3]
The overall loss function is defined as:
L (G, F, Dxtu, Dytu) = LGaN (G, Dyru, X", Y'¥)
+ LGN (F, Dxeu, Y, X) (3)
+ ALy (G, F),

where 1 is set as 10 to weight the losses. Therefore, the ultimate
goal of the overall training procedure is the following optimization:

argmin max L (G,F, Dxtu, Dytu) . 4
g nin, mex ( xtu, Dytu) (4)

@

This translation process is particularly trained for tumor cells,
which enhances the similarity between the distribution of tumor
cells with synthetic membranes and real cells.

Similarly, the second model includes mappings G : X'™ — Y™
and F : Y™ — X'™ and the third model tries to map G : X*"¢ —
Y and F : Y'* — X", with their corresponding discriminators.
They have the similar optimization process.

Once the generative models have been trained, they can indi-
vidually produce missing membranes by taking nuclei channels
as the input or images with nuclei and weak membranes. In the
post-processing step, we employ a reconstruction process to merge
the original nuclei channels with the newly generated membrane
channels, thereby preserving the genuine nuclei signals without
any loss.

2.3 Cell segmentation from generated cells

Given the generated fluorescent microscopy, segmentation can be
performed to identify and isolate individual cells or other structures
within the image. In our segmentation process, we adopt Cellpose
[33, 34] as a strong segmentation tool to conduct cell segmenta-
tion. This U-Net-based model has been trained on large manually
annotated images and can perform the segmentation of cells with
variable shapes, sizes, and multiple channels in fluorescence mi-
croscopy images. Therefore, with our enhanced membranes, Cell-
pose is expected to generate more accurate boundaries for further
single-cell analysis. Moreover, since the accuracy on single-cell
segmentation is largely based on the integrity and quality of the
membrane signals, cell segmentation can also serve as an effective
way to evaluate the quality of the generated cells.

3 RESULTS

In this section, we assess the performance of our three generation
models using the CosMx dataset [10]. We visualize the generated

cells and indirectly evaluate the quality of the generated membranes
by comparing the segmentation results both qualitatively and quan-
titatively. Given the lack of “ground truth” with respect to cells with
weak membranes, we incorporate human evaluation to appraise
the generation performance and highlight the improvements in cell
segmentation.

3.1 Experimental settings

All the experiments were implemented in Pytorch and trained on
Nvidia RTX A6000 GPU. The Adam optimizer was employed with an
initial learning rate of 0.0002 for the initial 100 epochs. Additionally,
a batchsize was set as 1 during training and testing phase. To ensure
gradual convergence, we linearly decayed the learning rate to zero
every 50 epochs over the remaining 100 epochs of training. We
randomly split the cropped patches into training and testing sets
by a ratio of 4:1. The whole model was trained in an end-to-end
manner.

3.2 Evaluation of generated tumor cell
membrane

To assess the effectiveness of the proposed membrane generation
model on tumor cells based solely on nuclei, we perform a compar-
ative analysis between the original images containing both nuclei
and membrane signals and the post-processed images generated
by our models.

The visual comparison of the two cases is depicted in Figure.
4. The first column of each case represents the original image,
displaying clearly visible and integrated tumor cell membranes.
MEM-GAN, with only the nuclei channels as input, generates similar
membrane signals compared to the ground-truth images while
maintaining the original integrated nuclei. Notably, the generated
tumor cells exhibit distinct membrane boundaries that are well-
defined.

The ultimate objective of MEM-GAN is to produce complete and
integrated membrane markers for single cells, which can result
in more precise and accurate identification and segmentation of
individual cells in fluorescent microscopy images. In Figure. 4, the
second column of each case illustrates the segmentation results of
Cellpose based on original images generated images from MEwm-
GAN. When given only the nuclei channels, Cellpose recognizes
only the boundaries of the nuclei, and some cells are missed. By
employing our generated membranes, Cellpose can detect most
of the missing cells, and the “fake” membranes can be effectively
utilized to determine the approximately real boundaries. Table 1
presents the quantitative evaluation of cell segmentation by com-
puting the intersection-over-union (IoU) score between the best-
matched masks and the corresponding ground truth masks. These
masks are generated from continuous pixel values, where each pixel
is assigned to either a specific cell or the background. The mask IoU
results are shown for patches from three different samples, with the
segmentation boundaries of the original image with membranes
used as the ground truth. The results indicate that MEM-GAN sig-
nificantly improves the IoU score by up to 0.068 for sample “Lung6”,
with an average improvement of 10% compared to the original
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Figure 4: Visual comparison of original tumor cells and tumor cells generated by our method. The first and second columns of
Case (a) and Case (b) display the images and the corresponding cell boundaries predicted by Cellpose [34], respectively.

images without membranes. Therefore, with the improved captur-
ing of single-cell structures, it can further enhance downstream
analysis and enables the investigation of cell heterogeneity, the
identification of rare cell types, and the study of dynamic cellular
processes.

Hence, in situations where the membrane markers are missed,
our MEM-GAN can effectively generate genuine membranes for
each cell. The authenticity of our generated membranes is not only
verified through the visual comparison with the original ground
truth images, but also by the downstream single-cell segmentation
based on the nuclei and membrane signals.

Table 1: Quantitative results of cell segmentation using MEM-
GAN for membrane generation.

Original image w/o membrane MEeM-GAN
Lung5_Repl 0.2855 0.2943
Lung5_Rep2 0.2956 0.3133
Lung5_Rep3 0.2501 0.2743
Lung6 0.2839 0.3516
Average 0.2788 0.3084

vi

3.3 Evaluation of generated immune cell
membrane

Similar to evaluating the tumor membrane generation, we assess
the second generation model of generating membranes for immune
cells. Compared with tumor cells which exhibit heterogeneous ex-
pression of markers, immune cells generally have a round shape
with a large nucleus and a more uniform appearance. In our images,
immune cells exhibit weaker membrane signals due to the potential
interference from tumor cell markers during the image acquisition
process. This may lead to signal quenching, causing the immune
cells to have faint or incomplete membrane signals. These weak
signals can be considered as inevitable noise in the models. De-
spite this, as demonstrated in Figure. 5, the first column of the two
cases shows that our model can still generate marker signals when
provided only with nuclei channels as input. Interestingly, when
compared to the original images, the model even aids in amplifying
the signals of certain cells.

Meanwhile, immune cells may be more sparsely distributed, es-
pecially when infiltrating the tumor tissue, making them easier
to segment compared with tumor cells. As shown in the second
column, the pseudo membranes in our generated images can be ad-
vantageous for segmentation, enabling more accurate identification
of individual cells.
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Figure 5: Visual comparison of original immune cells and immune cells generated by our method. The first and second columns
of Case (a) and Case (b) display the images and the corresponding cell boundaries predicted by Cellpose [34], respectively.

3.4 Performance on weak membrane generation

The first two models primarily serve to confirm the accuracy of the
generated results when utilizing solely nuclei channels, given that
we have access to the original images as a point of reference. Based
on high similarities between the generated and actual membranes,
our third model addresses a more complicated, yet commonplace,
situation where the membranes are partially absent or weak.
Figure. 6 depicts four cases that demonstrate the significant
enhancement of tumor cell membrane achieved by MEM-GAN. Ad-
ditionally, it displays the corresponding segmentation boundaries
generated by Cellpose and the spatial gradient map derived from
the simulated diffusion process within Cellpose. These four cases
demonstrate several distinct scenarios involving weak membrane
signals. For instance, Case (a) depicts numerous cells with partial
or indistinct membrane signals, which are effectively repaired by
MEM-GAN based on the existing signals. Case (b) represents a more
challenging scenario than Case (a), as it involves cells without any
detectable membrane signals. Despite this difficulty, MEM-GAN
can generate relatively authentic membranes for these cells while
retaining the essential initial signals. In these two cases, Cellpose
struggles to identify the cells with incomplete or missing mem-
branes. However, the predicted outlines suggest that the generated

membranes significantly aid the segmentation model in capturing
the cell boundaries. Case (c) and Case (d) illustrate the scenario

vii

where some existing membrane markers are unreliable and inac-
curate, such as membranes without nuclei or membranes that are
free-floating. These challenges significantly increase the difficulty
of the membrane generation task. It is worth noting that MEM-GAN
may be misled by these “fake” membranes, as the model aims to
generate more signals based on the available ones. Despite this limi-
tation, it is evident in the segmentation results that our model is still
able to generate membranes that are beneficial for the segmentation
process, as depicted in the second row of Figure. 6.

3.5 Human evaluation on weak membrane
generation

Due to the absence of ground truth for cells with originally weak
membranes, objectively assessing the authenticity of the generated
membranes becomes challenging. Therefore, we adopt a manual
evaluation process to assess the quality of the generated membranes
and their impact on cell segmentation. This evaluation involves
five experienced PhD students with domain expertise who manu-
ally inspect and judge the generated membranes and the resulting
segmentation outcomes. Notably, these evaluators are unaware
of whether the images they evaluate are original or generated by
MEM-GAN, ensuring an unbiased assessment process. While sub-
jective, this evaluation provides valuable insights into the quality


https://doi.org/10.1101/2023.11.08.566343
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.08.566343; this version posted July 23, 2025. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Case (a) Predicted outlines

Original image

Mem-GAN:
generated image

Predicted outlines

Case (c)

Original image

Mem-GAN:
generated image

Predicted cell pose

Predicted cell pose

Case (d) Predicted outlines

Figure 6: Qualitative results for weak membrane generation. The original images in the dataset exhibit low staining quality,
specifically weak membrane signals. Our generated images enhance and complement the lost signals, resulting in improved
cell segmentation, as demonstrated in the second and third columns for each case.

Table 2: Human evaluation in terms of Membrane Complete-
ness, Membrane Quality and Cell Segmentation. Each eval-
uation metric will be categorized into five levels with cor-
responding scores ranging from 1 to 5. The higher values
indicate better performance. Each score rating for each met-
ric is accompanied by its specific definition, which can be
found in the detailed explanation provided in the text.

Image Membrane  Membrane Cell

Completeness Quality Seg

Original 2.25 2.35 2.4

Lungs Repl 1o GAN 34 3.15 3.4
Original 1.7 2.2 2.3

Lung>_Rep2 o\ GAN 3.45 3.1 3.35
Average Original 1.975 2.275 2.35
8¢ Mem-GAN 3.425 3125 3.375

and effectiveness of the generated membranes in improving cell
segmentation. Each student is tasked with evaluating a total of 40
image pairs, consisting of 20 pairs from “Lung5_Rep1” and 20 pairs

viii

from “Lung5_Rep2”. In each image pair, one image undergoes cell
segmentation using the original membrane staining, while the other

image undergoes cell segmentation using our generated membrane
staining through MEM-GAN. The evaluation metrics employed in
our study include “Membrane Completeness”, “Membrane Quality”,
and “Cell Segmentation”. Each metric is categorized into five levels,
with corresponding scores ranging from 1 to 5. The scoring scale
is defined as follows: Score 1 represents “Very poor”, Score 2 rep-
resents “Poor”, Score 3 represents “Acceptable”, Score 4 represents
“Good”, and Score 5 represents “Very Good”. For the assessment
of Membrane Completeness, the students are instructed to assign
scores based on the percentage of cells exhibiting membrane stain-
ing. A score of 5 is assigned if over 90% of cells show membrane
staining. Scores of 4, 3, 2, and 1 are assigned for percentages of 80%-
90%, 60%-80%, 40%-60%, and less than 40%, respectively. Similarly,
for the evaluation of Membrane Quality, the students consider the
ratio of cells with well-defined, separable, and clear membranes.
The corresponding score is assigned based on the defined ranges
above. In the case of Cell Segmentation, the students assess the
ratio of cells correctly identified and segmented. The score for this
metric is determined based on the observed ratio of cells to the
specified ranges above.
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As observed in Table 2, it is evident that both in “Lung5_Rep1”
and “Lung5_Rep2”, the original images exhibit incomplete mem-
brane staining with relatively low membrane quality, scoring around
2. Additionally, the cell segmentation score of 2 indicates that only
approximately half of the cells are successfully identified. However,
by employing MEM-GAN, the generated pseudo membrane signifi-
cantly aids in membrane generation for cells lacking proper staining.
As a result, there is a notable improvement across all three met-
rics. Moreover, our algorithm’s pseudo membrane staining greatly
enhances the performance of cell segmentation.

4 DISCUSSION

The reliability of membrane markers for cell segmentation can
be compromised by several data quality factors, such as staining
artifacts, imaging noise, and limited microscope resolution. These
factors result in missing or unclear membrane staining, leading to
uneven and low-quality staining. Traditional and advanced deep
learning-based cell segmentation methods rely significantly on the
staining quality of input images, and as a result, they may encounter
limitations when dealing with complex data featuring diverse cell
shapes, high cellular density, and unclear cell boundaries.

Instead of improving the segmentation algorithms, in this work,
we propose a new perspective that addresses the inadequate stain-
ing problem at its essence. Our approach involves generating miss-
ing or unclear membrane markers using generative models, which
aims to improve the quality of the stained images and enable more
precise identification and segmentation of individual cells. This

method provides an effective solution to the challenge of inade-
quate staining and it has the potential to significantly assist single
cell analysis in various downstream applications .

Despite its effectiveness in generating authentic pseudo mem-
branes for tumor and immune cells, our current model encounters
limitations when confronted with out-of-distribution tissues and
cells displaying complex morphologies. In such cases, additional
training data from diverse datasets may be required to adapt to
new membrane staining patterns. Nevertheless, it’s important to
note that MEM-GAN serves as a promising proof-of-concept for
improving staining quality through the application of generative
models and deep neural networks.

A prospective avenue for future research involves the develop-
ment of a single cell-based image classifier capable of distinguishing
different cell types, such as immune cells or tumor cells, prior to
applying MEM-GAN. By doing so, the corresponding models can be
employed to generate appropriate pseudo membranes tailored to
each cell type. However, even in scenarios where cell type differen-
tiation proves challenging, there is still potential value in utilizing
the generated tumor cell membranes for immune cells to aid in
cell boundary identification. In the context of segmentation, the
ultimate goal remains the delineation of complete cell boundaries.
Therefore, generating pseudo membranes for immune cells using
the tumor cell generator can still contribute to improved segmenta-
tion results. These generated membranes offer valuable additional
information that assists Cellpose or any other segmentation tools
in recognizing and segmenting cells, ultimately enhancing seg-

mentation outcomes. As part of future work, the exploration of
more advanced generative models, such as diffusion models, holds

promise in further enhancing the capabilities of MEM-GAN.
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