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Abstract 16 

All life forms operate metabolism in constant flux. Metabolic fluxes offer a direct readout of cellular 17 

state, detailing the rates and driving forces of metabolic pathways. However, indirect, iterative solvers 18 

for mapping isotope patterns from tracing experiments onto metabolic fluxes leave much of cellular 19 

state uncharted. Here, we streamline metabolic flux quantitation by innovating a machine learning 20 

framework, ML-Flux, that deciphers complex isotope labeling patterns. We train neural networks using 21 

isotope pattern-flux pairs across central carbon metabolism from 26 key 13C-glucose, 2H-glucose, and 22 
13C-glutamine tracers. ML-Flux takes variable-size isotope labeling patterns as input, imputes missing 23 

isotope patterns, and outputs mass-balanced metabolic fluxes. Computation of fluxes using ML-Flux is 24 

more accurate and faster than that of leading metabolic flux analysis software employing a least-25 

squares method. Our biochemical networks and machine learning models constitute a curated and 26 

growing online knowledgebase of metabolic flux and free energy to democratize quantitative metabolic 27 

profiling. 28 

29 
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Organisms employ dynamic networks of biochemical reactions to support proliferation, differentiation, 30 

homeostasis, cellular housekeeping, and bioproduct synthesis. Metabolism is one such network of 31 

pathways that provides cellular energy currency and biochemical building blocks. Metabolic fluxes 32 

represent the rates at which an organism operates these pathways. The culmination of biochemical 33 

knowledgebase1–4, analytical chemistry5,6, and mathematical modeling7–11 has established metabolic 34 

fluxes as a fundamental descriptor of cellular state in health and biotechnology12–14. 35 

While metabolic fluxes indicate the dynamic state of an organism, they defy direct measurement 36 

because rates are intangible quantities. This challenge has become increasingly surmountable thanks 37 

to the development of stable isotope tracing and metabolic flux analysis (MFA) techniques15–18. As 38 

carbon forms the backbone of metabolites and biomass, tracing the fate of 13C from a 13C-labeled 39 

substrate to downstream metabolites reveals metabolic pathway utilization19,20. The accuracy of MFA 40 

relies on the use of cleverly chosen tracers that create differential isotope enrichment unique to each 41 

pathway and the measurement of isotope labeling patterns of metabolites located at the convergence 42 

of different pathways21,22. Using nuclear magnetic resonance spectroscopy (NMR)23 or mass 43 

spectrometry (MS)24,25 measurement of metabolite isotope labeling patterns and mathematical 44 

optimization, MFA searches for fluxes that simulate isotope patterns most consistent with experimental 45 

measurements. Isotope tracing and MFA tools are becoming increasingly integral to quantitative 46 

metabolic profiling26–30.  47 

Despite its utility, MFA remains an expert method due to the need for judicious isotope tracer selection, 48 

custom metabolic model building, atom mapping across metabolic networks, and mathematical 49 

optimization. Furthermore, present MFA software using least-squares methods becomes 50 

computationally expensive with an increasing scope of metabolic networks and an increasing number 51 

of measured metabolites, restricting it to using only a handful of metabolites for simulation and data 52 

fitting out of hundreds of measurable metabolites31. To overcome these shortfalls, researchers require a 53 

simple mathematical function that accepts isotope labeling patterns as input and computes metabolic 54 

fluxes as output. For this function to be widely applicable, it needs to take in a variable-size input of 55 

isotope labeling patterns measured by different researchers studying divergent biological systems using 56 

different analytical instruments. 57 

Here, we developed ML-Flux, a machine learning-based flux quantitation framework that maps isotope 58 

labeling patterns onto metabolic fluxes accurately and efficiently from nearly all conceivable isotope 59 

tracing experiments. We trained artificial neural networks (ANN) with neurons whose input signals of 60 

isotope labeling patterns were transformed into output signals of metabolic fluxes via synapse-like 61 

connections32–34. We further trained partial convolutional neural networks (PCNN) using convolution 62 

filters and binary masks to learn and impute missing isotope patterns from experimental measurements 63 
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(cf. inpainting of images/matrices with missing pixels/elements)35. Integrating the two pre-trained neural 64 

network models, ML-Flux curtailed the time-consuming processes of constructing metabolic models 65 

and iterative flux estimations, thus streamlining the determination of metabolic fluxes and driving forces. 66 

In computing metabolic fluxes, ML-Flux was consistently faster and >90% of the time more accurate 67 

than leading MFA software. Multiple isotope tracing in central carbon metabolism also revealed the 68 

unique advantages of ML-Flux: i) imputation of the isotope patterns of unmeasured metabolites (e.g., 69 

due to low abundance or instability); ii) inference of isotope labeling patterns in alternative tracer 70 

experiments; and iii) determination of metabolic flux and Gibbs free energy of reaction (ΔG)36,37. We 71 

released ML-Flux as an online resource to democratize flux quantitation (metabolicflux.org). The 72 

increased accessibility and knowledge of metabolic flux and free energy will accelerate sustainable 73 

biotechnology and therapeutic development by elucidating the dynamic state of biological systems. 74 

Results 75 

Fluxes create characteristic isotope labeling patterns 76 

Our ability to quantify metabolic fluxes by isotope tracing relies on deciphering the relationship between 77 

metabolic fluxes and corresponding isotope labeling patterns. Tracing atoms from an isotope tracer 78 

(e.g., [1,2-13C2]-glucose) through metabolic pathways (e.g., glycolysis) leads to unique isotope labeling 79 

patterns of downstream metabolites (Fig. 1a). Given relative fluxes between two convergent pathways 80 

(e.g., upper glycolysis and pentose phosphate pathway, PPP), one can compute the isotope pattern of 81 

a metabolite at the merge point (e.g., glyceraldehyde-3-phosphate, GAP) by linear combination (Fig. 82 

1a). Therefore, simulating isotope labeling patterns from known metabolic fluxes uses straightforward 83 

linear algebra (Fig. 1b). 84 

The inverse process of mapping isotope labeling patterns to fluxes is nonlinear, convoluted, and often 85 

unknown (Fig. 1b). As a result, fluxes are conventionally determined by recursive simulation. Only in 86 

the simplest of cases can fluxes be calculated directly using an analytical relationship between isotope 87 

labeling patterns and fluxes. We demonstrated this in a simple toy metabolic model mimicking upper 88 

glycolysis and the PPP15 that contains two free net fluxes (v1 and v3) and one exchange flux (v2,r) (Fig. 89 

1c). We obtained an analytical solution to the fluxes by tracing molecule ‘A’ harboring a heavy isotope 90 

in its first position (i.e., [1-13C1]) and imposing steady-state mass balance on the ensuing isotopologues: 91 

!!,#
!$

= 1 − %%&$
%%&$ − &%&$

 92 

!'
!$
= 1 − &%&$
2%%&$ − &%&$

 93 
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BM+1 and DM+1 are the fractions of the singly labeled B and D (i.e., M+1 isotopomers). These solutions 94 

showed that fluxes are (non-linear) functions of isotope labeling patterns and that isotope patterns are 95 

characteristic of underlying fluxes (Fig. 1d). 96 

Neural networks predict fluxes from teachable isotope patterns 97 

To test if flux-dependent isotope patterns can be taught, we trained an ANN with isotope labeling 98 

patterns simulated using the simple toy metabolic model and the [1-13C1]-A tracer. Principal component 99 

analysis of isotope patterns revealed unique features that we hypothesized deep learning could use to 100 

formulate accurate isotope pattern-to-flux relationships (Extended Data Fig. 1a,b). ANNs were trained 101 

using fluxes sampled from multiple distributions to determine the optimal dataset for learning 102 

(Extended Data Fig. 1c,d). Log-uniform flux sampling resulted in the best ANN model. It predicted the 103 

free fluxes accurately throughout all ranges of mass isotopomer distribution (MID) input (Fig. 1e). The 104 

remaining fluxes were obtained by multiplying the free fluxes by the basis of the null space of the 105 

metabolic model (Fig. 1f). The resulting ANN model orthogonally mapped isotope patterns to fluxes 106 

nearly identically to the analytical solution (Fig. 1g). 107 

Solving isotope pattern-to-flux functions becomes increasingly challenging as the size of the metabolic 108 

network (i.e., number of reactions and atoms) and number of isotope tracers used grows. We set out to 109 

test if isotope pattern-to-flux relationships could still be taught for more complex metabolic networks 110 

without an apparent analytical solution for linking isotope labeling patterns to fluxes. We developed 111 

models of upper and full glycolysis, glycolysis and the PPP (GlyPPP), and central carbon metabolism 112 

(CCM) (Fig. 2a). To obtain training data, we simulated isotope patterns using 24 combinations of 113 

commercially available 13C-glucose, [5-2H1]-glucose, and 13C-glutamine (Supplementary Table 1) 114 

across a physiological flux space (Supplementary Tables 2-5). For the simple toy model, we simulated 115 

isotope patterns from all six nontrivial isotope tracers (i.e., all but the uniformly labeled and the 116 

uniformly unlabeled ones). For each of the five metabolic models, we trained an ANN to compute 117 

metabolic fluxes from the MIDs of all constituent metabolites. 118 

We assessed the performance of the trained ANN models using reserved testing data (Fig. 2b). A 119 

higher flux prediction accuracy generally corresponded to a greater agreement between test isotope 120 

patterns and simulated isotope patterns from the predicted fluxes (Extended Data Fig. 2). In the simple 121 

toy model, both net and exchange fluxes were predicted within 5% error across all testing data (Fig. 122 

2c). In the glycolysis models, which were trained with [1,2-13C2]-glucose and [5-2H1]-glucose tracers, 123 

flux predictions were within 10% of test data for the exchange fluxes in upper glycolytic reactions (Fig. 124 

2d). Exchange fluxes in lower glycolytic reactions displayed prediction errors with a ±~10% interquartile 125 

range (Fig. 2e). A high reversibility of the triose phosphate isomerase (TPI) reaction (i.e., a high 126 
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exchange flux) lowered the sensitivity of exchange fluxes in lower glycolysis to deuterium labeling 127 

fractions from [5-2H1]-glucose (Extended Data Fig. 3a). With a lower TPI reversibility (i.e., exchange 128 

flux≤2), the predictions of lower glycolytic exchange fluxes became more accurate with an interquartile 129 

range of ±~5% (Extended Data Fig. 3b). For the GlyPPP model, all flux prediction errors fell within 130 

±0.03 flux units (fluxes normalized to glucose uptake) (Fig. 2f). For the CCM model, 85% of CCM flux 131 

predictions were accurate within ±0.05 flux units (Fig. 2g). Flux predictions were robust to small 132 

variances in isotope labeling measurement that may arise from instrument measurement error 133 

(Extended Data Fig. 3c-f). Regression analysis showed that the coefficient of determination (R2) for 134 

flux predictions ranged from 0.9 to 1 with the slopes between prediction and truth having a strong 135 

central tendency around 1 (Extended Data Fig. 4a). Reduced chi-squared (χ2) test showed that 95% of 136 

flux predictions were statistically acceptable with a relative standard deviation of 0.10 for net fluxes and 137 

0.68 for exchange fluxes (Extended Data Fig. 4b). Based on the distributions of prediction errors in the 138 

test data, we derived the standard errors for individual flux predictions (Supplementary Table 6). The 139 

goodness-of-fit analyses validated the ability of our ANNs to accurately compute nearly all net fluxes 140 

and many exchange fluxes. 141 

Inpainting permits variable-size input of isotope patterns for flux determination 142 

An obstacle to the widespread adoption of ANN models for flux analysis was their uniform input 143 

requirement. The ANN architecture requires a rigid input structure consistent with its training data (i.e., 144 

the isotope labeling patterns of the full set of metabolites). However, metabolite measurements are 145 

seldom complete due to varying analyte abundance, stability, environment, and instrumentation. 146 

Furthermore, experimentalists may employ various tracers that harbor isotopes at different positions38–147 
41. We sought to bridge the gap between experimental measurement and ANN input by imputation. To 148 

bring partial isotope pattern measurements to complete input data suitable for ANN, we took two 149 

approaches: K-nearest neighbors (KNN) regression42 and inpainting based on partial convolutional 150 

neural networks (PCNN)35. 151 

In KNN regression, the unknown (unmeasured) isotope labeling patterns were assigned the Euclidean 152 

distance-weighted mean of corresponding values from its three nearest neighbors (K=3) in the training 153 

data (Fig. 3a). To test the KNN approach, we generated partially masked isotope patterns from testing 154 

data to mimic typical experiments with incomplete metabolite measurements resulting from one to a few 155 

randomly selected isotope tracers at a time. The mean absolute errors of predicted isotope labeling 156 

fractions were less than 0.01 for glycolysis models for computing driving forces and less than 0.0005 for 157 

the models of central carbon metabolism (Fig. 3b). 158 
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In PCNN-based inpainting, the isotope pattern matrix was treated as a grayscale image with pixels 159 

corresponding to fractions of mass isotopomers between 0 and 1 (Fig. 3c). The PCNN inpainting model 160 

was trained to verisimilarly fill in the irregular missing regions of the isotope pattern matrices covered by 161 

random binary masks. The binary masks exposed the isotope patterns for a random subset of 162 

metabolites resulting from one to a few randomly selected isotope tracers at a time. To test the 163 

plausibility of inpainted isotope pattern matrices, we developed a simple metric ΔN, the difference 164 

between the grand sum of the inpainted MID matrix and the total number of measured metabolite 165 

instances, since the sum of the labeling fractions for each metabolite should be 1. As ΔN approaches 0, 166 

plausibility increases. The trained PCNN inpainting model resulted in predictions of missing data that 167 

were highly plausible and accurate with mean absolute errors less than 0.02 (Fig. 3d). In addition to 168 

accuracy, a major benefit of the PCNN model was its fast computation time that was invariant with 169 

respect to the complexity of the underlying metabolic networks (Fig. 3e). 170 

Two-stage machine learning streamlines metabolic flux determination 171 

We integrated the PCNN and ANN models to map variable-size input of isotope pattern measurements 172 

onto metabolic fluxes (Fig. 4a). We quantified the accuracy of flux predictions by the two-stage ML 173 

using partially known isotope patterns resulting from a small subset of available isotope tracers. In the 174 

simple toy model and two glycolysis models, 40-95% of isotope patterns were masked. The median 175 

error of the PGI exchange flux rose from 1% to 10% in the glycolysis model, whereas the TPI exchange 176 

reaction was less affected by the inpainted isotope patterns, increasing from 3% to 8% (Fig. 4b). The 177 

flux prediction accuracy depended on whether isotope labeling data from key metabolites were input 178 

(Extended Data Fig. 5). In the GlyPPP and CCM models, two-stage ML predictions starting from 179 

>97%-masked isotope patterns data reduced the number of fluxes predicted with <10% error, and the 180 

errors for some exchange fluxes increased by up to 20% (Fig. 4c, Extended Data Fig. 6, and 181 

Supplementary Table 7). These observations suggested the tradeoff between the flexible isotope 182 

pattern input and the flux prediction accuracy. 183 

Select tracers are commonly used for their ability to accurately capture fluxes43,44. To identify which 184 

isotope tracers best potentiate ML-Flux to accurately predict fluxes, we subjected the two-stage ML 185 

model for central carbon metabolism to single tracing, dual tracing (i.e., one 13C-glucose and one 13C-186 

glutamine tracers in a single experiment), and parallel tracing (i.e., two 13C glucose tracers in duplicate 187 

experiments). Dual tracing of [4-13C1]-glucose and [U-13C5]-glutamine displayed the highest net flux 188 

prediction accuracy throughout central carbon metabolism (Extended Data Fig. 7a and 189 

Supplementary Table 8), outperforming pervasive parallel tracing experiments using [1,2-13C2]-190 

glucose and [U-13C5]-glutamine (Extended Data Fig. 7b). Therefore, with judicious tracer selection, 191 
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two-stage ML models with minimal, variable-size isotope pattern input accurately predicted fluxes in 192 

accordance with goodness-of-fit analysis. 193 

Neural networks predict metabolic driving forces from isotope patterns 194 

Accurate prediction of both net and exchange fluxes yielded additional insights into thermodynamic 195 

driving force, enzyme efficiency, and pathway flux control. According to a fundamental thermodynamic 196 

principle, Gibbs free energy of reaction (∆G) is log-proportional to reaction reversibility (defined as the 197 

ratio of reverse to forward fluxes, !#()(#*( !+,#-.#/⁄ )4,36,37: 198 

∆* = +, ln / !#()(#*(!+,#-.#/
0 199 

R is the universal gas constant, and T is temperature in Kelvin. Strongly forward-driven reactions with 200 

∆G<<0 kJ/mol often correspond to rate-controlling pathway steps45, whereas near-equilibrium reactions 201 

with –2<∆G<0 kJ/mol imply highly adaptivity and spare enzyme capacity4. Select isotope tracers reveal 202 

the extent of reaction reversibility and thus ∆G (e.g., [1,2-13C2]-glucose and [5-2H1]-glucose for glycolytic 203 

reactions) because the reverse reaction dilutes isotope enrichment in metabolites (Fig. 5a)46. 204 

We tested the ability of ML-Flux to accurately predict ∆G across our five metabolic models. In the simple 205 

toy model, which has only one reversible reaction, the majority of ∆G prediction was within 0.1 kJ/mol of 206 

the true value (Fig.5b). We predicted ∆G across glycolytic reactions from 2H and 13C labeling patterns, 207 

where most errors fell within 1 kJ/mol (Fig. 5c). The CCM model accurately predicted ∆G for 21 reactions 208 

(Fig. 5d). The thermodynamic driving forces in nearly all central carbon metabolism reactions were 209 

predicted within 1 kJ/mol of their true value. The reaction catalyzed by α-ketoglutarate dehydrogenase 210 

(AKGDH) displayed larger errors in ∆G predictions but still within an interquartile range of –1 to 2 kJ/mol, 211 

a small relative error considering AKGDH is strongly forward-driven with ∆G<<0 kJ/mol. Overall, ML-Flux 212 

predicted ∆G accurately despite the incomplete isotope pattern input reflective of real-world experiments 213 

and the large cumulative ∆G across metabolic pathways (|∆G|=~30-100 kJ/mol)46,47. Since reaction 214 

thermodynamics provides a guiding principle for systems-level control of metabolism4,37, ML-Flux showed 215 

the potential to translate flux quantitation to actionable information for engineering metabolism. 216 

ML-Flux outperforms iterative solver-based MFA 217 

We benchmarked ML-Flux against a leading MFA software package in terms of accuracy and speed of 218 

flux prediction (Extended Data Fig. 8a). Present MFA software searches the flux space for fluxes that 219 

simulate isotope labeling patterns with the least-squares discrepancy between simulated and measured 220 

isotope patterns. Over 90% of the time, ML-Flux computed flux more accurately than a leading MFA 221 

software (Fig. 6a,b and Extended Data. Fig. 8b). More accurate flux prediction by ML-Flux led to lower 222 
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sum of squared residuals (SSR) of isotope labeling patterns compared with MFA software (Extended 223 

Data Fig. 8c-e). ML-Flux performance was consistent regardless of the availability of transport flux 224 

measurements (e.g., lactate secretion rates) that present MFA software relies on for accurate flux 225 

predictions (Extended Data Fig. 8b,c). In addition to higher accuracy, ML-Flux computed fluxes faster 226 

than MFA software did across all tested models (Fig. 6c) and combinations of isotope tracer 227 

experiments (Fig. 6d). With increasing iterations of least-squares optimization, present MFA software 228 

may equal or surpass the accuracy of ML-Flux but at the cost of time and computing power. 229 

Nevertheless, ML-Flux demonstrated its utility with orders of magnitude superior accuracy and speed. 230 

ML-Flux turns real-world metabolomics data into accurate fluxes 231 

We evaluated the performance of ML-Flux using real-world metabolomics data from mammalian cells 232 

cultured on [U-13C6]-glucose, [1,2-13C2]-glucose, or [U-13C5]-glutamine46. There is no ground truth of 233 

measured central carbon metabolic fluxes to confirm a flux prediction from real data. Instead, we 234 

compared ML-Flux predictions to those of MFA to see how the two approaches, each having their own 235 

accuracies, differ. We prepared seven subsets of isotope pattern data (from combinations of one, two, 236 

or three tracers) as input for ML-Flux and obtained fluxes through central carbon metabolism. In the 237 

PPP, ML-Flux predictions intervals from tracing [1,2-13C2]-glucose were within 0.01 flux units of MFA 238 

flux predictions using isotope labeling data from all three tracers (Fig. 6e). In the tricarboxylic acid 239 

(TCA) cycle, isotope labeling data from all three tracers produced fluxes within the confidence intervals 240 

within 0.05 flux units of most MFA fluxes (Fig. 6f). We determined similarity scores for the tracer 241 

combinations based on the closeness of individual net and exchange flux predictions between ML-Flux 242 

and MFA (Fig. 6g and Extended Data Fig. 9a,b). Benchmarking ML-Flux against MFA demonstrated 243 

how optimization for accurate flux predictions (as in ML-Flux) versus minimized residuals of isotope 244 

labeling pattern data (as in MFA) yields slightly different fluxes using real-world isotope labeling pattern 245 

data. Nonetheless, ML-Flux demonstrated its real-world applicability in flux determination. 246 

Compared to MFA software using iterative solvers, ML-Flux requires little computational resources. 247 

Instead of iterative simulation of metabolite isotope labeling patterns and gradient descent algorithms, 248 

ML-Flux uses pre-trained models with most of the computational demand frontloaded in the form of 249 

neural network training. Low computational demand enabled the online deployment of ML-Flux, 250 

engendering the first open-source, open-access web tool for metabolic flux and free energy 251 

quantitation: metabolicflux.org. The ML-Flux web tool offers fast and accurate computation of fluxes 252 

and free energies with standard errors for individual isotope tracing experiments as well as standard 253 

deviations of multiple predictions from replicate experiments. The ML-Flux software package and web 254 

tool are regularly updated to incorporate new metabolic models and increase the speed and accuracy 255 

of flux quantitation. Our metabolic models and machine learning models, along with documentation, 256 
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example data, and public repositories, constitute a growing knowledgebase of metabolic fluxes and free 257 

energies (Fig. 6h). 258 

Discussion 259 

The advancement of analytical and computational tools has increased the sensitivity and coverage of 260 

nucleic acid, protein, and metabolite measurement, propelling genomics, transcriptomics, proteomics, 261 

and metabolomics7,48,49. However, fluxomics has lagged behind. The rates of metabolic reactions are 262 

determined by the interaction of enzymes and metabolites, which serve as substrates, products, and 263 

effectors. Thus, fluxomics plays an indispensable role in understanding biological systems in action and 264 

provides the missing link in integrative omics50. In this work, we advanced fluxomics and contributed to 265 

integrative omics by innovating two-stage machine learning. 266 

Metabolic flux quantitation hinges on the relationship between isotope labeling patterns imprinted on 267 

metabolites and the underlying metabolic fluxes. In simple metabolic networks, the relationship appears 268 

algebraically straightforward19. Increasing complexity of metabolic networks renders these relationships 269 

nearly incomprehensible to human cognition51,52. By training machine learning models with copious 270 

isotope pattern-flux pairs sampled from a physiologically relevant flux space, ML-Flux captured 271 

inconspicuous isotope pattern-to-flux relationships. Accurate exchange flux quantitation by ML-Flux 272 

additionally led to resolving ∆G across central carbon metabolism. Connecting isotope patterns to not 273 

only net fluxes but also free energies expands our ability to target flux controlling steps in pathways4,37.  274 

A challenge in training ML models for flux prediction was the limited availability of flux data in the 275 

literature, which predominantly originate from iterative solver-based MFA. Limited availability of ground 276 

truth flux data hinders training ML models53. To overcome this challenge, we generated expansive 277 

isotope tracing simulations across central carbon metabolism. Our simulations employed 278 

computationally efficient elementary metabolite units (EMU)15 to pair metabolic fluxes to corresponding 279 

isotope labeling patterns. Therefore, ML-Flux effectively frontloaded computational tasks and obviates 280 

extensive runtime computation unlike MFA, which performs computationally intensive least-squares 281 

algorithms at runtime. As a result, ML-Flux framework gave rise to near instantaneous flux quantitation 282 

online on demand for the first time. 283 

Another benefit of ML-Flux was its flexibility in accommodating various choices of isotope tracers and 284 

metabolite input unlike conventional ANN models, which require fixed input sizes54,55. We accomplished 285 

this feat by training our ANN models using a comprehensive set of commercially available isotope 286 

tracers and incorporating PCNN for imputation of metabolite labeling patterns that are often not or 287 

cannot be measured. Although the imputation step adds the possibility for potential erroneous 288 

predictions, thorough training of the two-stage PCNN-ANN framework remained robust for nearly all 289 
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conceivable isotope tracing in central carbon metabolism. Learning from multiple isotope tracers also 290 

led to the discovery of informative tracing experiments. While parallel tracing experiments with [1,2-291 
13C2]-glucose and [U-13C5]-glutamine have been a long-established method for quantifying central 292 

carbon metabolism43,44, ML-Flux revealed that dual [4-13C1]-glucose and [U-13C5]-glutamine tracing can 293 

resolve fluxes equally well or better. Thus, machine learning helps researchers design tracing 294 

strategies for optimal flux determination. 295 

ML-Flux and iterative solver-based MFA are different in two ways. The former focuses on accurate 296 

prediction of fluxes, whereas the latter focuses on accurate simulation of isotope patterns, causing it to 297 

be susceptible to multiple flux solutions (i.e., local optima) that yield similar isotope patterns within 298 

tolerance. The two approaches to flux quantitation also differ in how they propagate knowledge. ML-299 

Flux preserves label-to-flux relationships that are learned permanently, whereas MFA does not store 300 

knowledge for long-term learning. Thus, the value of ML-Flux is that the capital effort of metabolic 301 

model construction and simulation is not expended in a single prediction. Future development of more 302 

sophisticated ML architecture will broaden and reinforce the utility of ML-Flux. 303 

ML-Flux serves both experts and newcomers to flux analysis by playing dual roles of streamlining 304 

accurate flux quantitation and producing a sound starting point for a potential refinement by iterative 305 

solvers. The implementation of ML-Flux as a web tool with curated metabolic models and deep learning 306 

models establishes a resourceful and accessible knowledgebase for studying the metabolism of various 307 

organisms from microbes to humans. Thus, the upshot of ML-Flux is the democratization of metabolic 308 

fluxes for the acceleration of biotechnology and medicine. 309 

310 
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Methods 311 

Generation of metabolic models 312 

Five metabolic models were designed for the simulation of isotope labeling patterns and training for ML-313 

Flux: 1) a simplified upper glycolysis and the pentose phosphate pathway, 2) upper glycolysis 3) full 314 

glycolysis for the determination of reaction free energies, 4) glycolysis and the pentose phosphate 315 

pathway specialized, and 5) central carbon metabolism (with cytosolic oxaloacetate transport into the 316 

mitochondria as malate lumped with ATP citrate lyase). The first four models contained one metabolite 317 

input (A’ for model 1 or glucose for models 2-4). The central carbon metabolism model contained 318 

glucose and glutamine as input metabolites. All intracellular reactions in each metabolic model 319 

contained net and exchange fluxes to reflect that enzyme-catalyzed reactions are reversible with 320 

forward and reverse components. Physiologically relevant direction and reversibility were defined as 321 

linear equality and inequality constraints. Metabolic models were constructed and coded in an 322 

Extensible Markup Language (XML) format for simple and standardized archiving and sharing. 323 

Reactions considered in each model are detailed in Supplementary Tables 2-5. 324 

Analytical solutions to the simple toy metabolic model 325 

Analytical solutions to fluxes as a function of isotope patterns were determined in the simple toy 326 

metabolic model by applying metabolic steady-state mass balance to all metabolite levels as well as 327 

isotopic steady-state mass balance to all isotopologues. Metabolic steady state is defined as: 328 

S2 = 3 329 

S is the stoichiometric matrix with rows and columns representing metabolites and reactions. v is the 330 

vector of fluxes. These balances determine linearly dependent relationships between fluxes: 331 

4%
45 = 0 = !$ − !!+ + !!# − !' − !0 332 

48
45 = 0 = !' − !0 333 

4&
45 = 0 = !!+ − !!# + !0 − !1 334 

Isotopologue mass balance further relates MID measurements to fluxes. Using a [1-13C1]-A tracer, 335 

balances on BM+1 and DM+1 were used to obtain fluxes for v3 and v2r. 336 

4%%&$
45 = 0 = !$ − 9!!+ + !' + !0:%%&$ + !!#&%&$ 337 

4&%&$
45 = 0 = !!+%%&$ − (!!# + !1)	&%&$ 338 
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These equations were rearranged in terms of v1,v3, and v2r. Normalizing all fluxes to that of a reference 339 

reaction (i.e., v1=1 in this example), yields the solutions to v3 and v2r. The solved fluxes can be 340 

reinputted into metabolite balances of the entire model to obtain all fluxes in the system (Fig. 1f). 341 

Sampling of metabolic fluxes for training ANN models 342 

Fluxes for simulation of metabolite isotope labeling patterns were sampled within a physiologically 343 

relevant flux space (Supplementary Tables 2-5). At a metabolic steady state, the net fluxes of the 344 

system reside in the null space of S. Free net fluxes were found from its reduced row echelon form 345 

using the rank-nullity theorem, and the multiplication of the basis of the null space by free net fluxes 346 

returned the full set of net fluxes. All exchange fluxes were free variables. Free net fluxes were sampled 347 

using a linearly uniform random distribution. Exchange fluxes were generated using either a linearly 348 

uniform, logarithmically uniform, or logarithmically normal random distribution. To generate a training 349 

set containing fluxes that simulate a near uniform distribution of isotope patterns in the simple toy 350 

model, distance-weighted sampling was employed (Extended Data Fig. 1c,d). Each newly sampled 351 

fluxes simulated isotope patterns, which were accepted into the final dataset based on a probability 352 

proportional to the average Euclidean distance (D) of the 10 nearest isotope patterns already in the 353 

dataset. The probability was assigned as D/Dmax where Dmax is the maximum distance between any two 354 

points in the dataset. The final training datasets used for the simple toy, upper glycolysis, glycolysis, 355 

and GlyPPP models were sampled from a log-uniform distribution. For the simple toy, upper glycolysis, 356 

and full glycolysis models, 100,000 flux distributions were generated to train ML models. 357 

For the GlyPPP and CCM model, we employed an artificial centering hit-and-run algorithm modified 358 

from the COBRA Toolbox to generate a sample of 1,000,000 flux sets for both models that uniformly 359 

cover the feasible flux space9,56. However, since the resultant sample set does not necessarily generate 360 

uniform distributions for individual fluxes, potential biases in the training data may persist. To reduce 361 

this bias in the CCM model, we conducted rejection sampling for six fluxes through LDH, PDH, PPCK, 362 

ME, MDH, AKGDH to mitigate overrepresentation of any flux state. The final CCM dataset was reduced 363 

from 1,000,000 to 117,077 flux distributions (Extended Data Fig. 10), a smaller but higher quality 364 

dataset to train from. 365 

Simulation of isotope labeling patterns 366 

For each flux set, metabolite isotope labeling patterns were simulated starting from various isotope 367 

tracers (Supplementary Table 1). For the simple toy model, all possible tracer forms of metabolite ‘A’ 368 

were used for simulation except for the trivial set (i.e., fully labeled or fully unlabeled). For upper and full 369 

glycolysis models, [1,2-13C2]-glucose and [5-2H1]-glucose tracers were used. In the GlyPPP model, 24 370 

commercially available 13C-glucose tracers were used. Isotope labeling patterns were simulated 371 
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following the EMU approach15. In the CCM model, the top 10 most used 13C-glucose tracers according 372 

to Google Scholar were simulated with a combination of either unlabeled or [U-13C5]-glutamine for a 373 

total of 20 unique tracer combinations. Models in an XML format29 with atom mapping information were 374 

processed through MATLAB scripts to reconstruct them as a stoichiometric model and EMU networks. 375 

For isotope pattern simulation in the CCM model, we took into account symmetry of succinate and 376 

fumarate15,57. Using the sampled free net and exchange fluxes, the EMU framework was employed to 377 

find simplified isotopologue conversion networks and simulate mass isotopomer distributions based on 378 

atom mapping across reactions. The resulting pairs of reaction fluxes and metabolite isotope labeling 379 

patterns were stored in .dat files. Files were formatted such that each row contained isotope patterns 380 

from a single flux set, ordered by metabolite, the isotope tracer used, and then mass isotopomer 381 

fractions. 382 

Principal component analysis of the simple toy metabolic model 383 

Simulated isotope patterns from the simple toy metabolic model were subjected to principal component 384 

analysis (PCA). To generate principal components directly related to metabolite isotope labeling 385 

patterns, and since fractions of mass isotopomers always fall in the range of [0,1], PCA input features 386 

were uncentered and unscaled. Since the sum of all mass isotopomer fractions for a metabolite is 387 

always one, uniformly unlabeled isotopomer fraction was excluded from PCA, and only the fractions of 388 

independent mass isotopomers harboring heavy isotopes were used in PCA. 389 

Flux prediction by artificial neural networks 390 

Simulated flux-to-label simulations were used to train five unique fully connected feedforward ANNs. 391 

The input layer for each of these ANNs was the complete isotope labeling information of every 392 

metabolite within the metabolic model for every isotope tracer used. The output layer was the free 393 

fluxes of the metabolic model. Training under the set of free fluxes ensured that the minimal linearly 394 

independent output nodes were used, and the resulting full flux set was always mass balanced. 395 

Isotope pattern-flux data pairs were split into training, validation, and testing at a ratio of 0.8:0.1:0.1. 396 

ANN training scripts were written in Python using the Keras library. Input to ANNs were metabolite 397 

isotope labeling patterns, and the output was transformed free fluxes, which were later reverted to the 398 

actual values by inverse functions. Each neural network contained one input layer for MIDs, five hidden 399 

layers, and one output layer for free fluxes (Supplementary Table 9). The number of nodes within 400 

each hidden layer was chosen empirically in each ANN depending on the complexity of the metabolic 401 

models. For the first four metabolic models, fluxes were transformed under a piecewise logistic or 402 

logarithmic function to minimize the effect of very large fluxes. The corresponding ANNs were optimized 403 

using a mean absolute error loss function. For the CCM model, a custom loss function that calculated 404 
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the weighted mean squared errors across all fluxes in the metabolic model was used. Weights were 405 

assigned as the reciprocal of the upper limits of individual flux constraints. For example, a flux that was 406 

constrained from 0-0.2 during flux sampling would have a weight of 5. The ANN model for CCM model 407 

was optimized under this loss function twice: first with all ANN parameters trainable, followed by tuning 408 

parameters other than those related to transaldolase flux (the free flux determinant of PPP fluxes) were 409 

frozen. Training was conducted on the Purdue Anvil cluster, the UCLA Hoffman2 cluster, and on local 410 

workstations. The standard errors of fluxes were derived from half the range of the center 68% of the 411 

distributions of prediction errors from testing data (Supplementary Tables 6 and 7). 412 

Imputation of isotope patterns by partial convolutional neural networks 413 

Simulated isotope labeling patterns were masked to emulate the proportion of incomplete information 414 

due to detecting a subset of metabolites or performing a subset of isotope tracer experiments 415 

(Supplementary Table 10). Masks randomly removed isotope labeling patterns of various fractions of 416 

metabolites from all but one to a few isotope tracers. The masked isotope patterns were used for 417 

training PCNN inpainting models using the Keras library (Supplementary Tables 11-15). The isotope 418 

labeling pattern data were reshaped into a rectangular matrix and overlaid on the center of a square 419 

matrix. Extra space was padded with ones and not masked. The sizes of the square matrix ranged from 420 

16x16 to 80x80 depending on metabolic networks. The incomplete-complete matrix pairs were split into 421 

training, validation, and testing at a ratio of 0.8:0.1:0.1. Mean absolute error or mean squared error was 422 

used for the loss function. PCNN-based inpainting training was conducted using Nvidia A100 GPU 423 

nodes on the Anvil cluster. 424 

The plausibility of inpainted MID matrices was quantified by the following equation (near-zero ∆N 425 

values indicate high plausibility of inpainted isotope labeling patterns): 426 

∆> =?? ?@2,3,4
5

467

%

36$

8

26$
−A ∙ C 427 

i represents an isotope tracer experiment simulated in the model, m represents a metabolite in the 428 

pathway model, n represents a mass isotopomer M+n, and fi,m,n represents the fraction of M+n 429 

isotopomer of metabolite m given an isotope tracer i. M is the total number of metabolites in the 430 

metabolic model, I is the total number of isotope tracers used for training ML models, and N is the 431 

maximum number of atoms considered in atom mapping in a metabolite. 432 

Calculation of ∆G in upper glycolysis and glycolysis 433 

Gibbs free energy of reaction was calculated using net and exchange fluxes: 434 
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∆* = +, ln / !#()(#*(!+,#-.#/
0 = +, ln /!(9:;.4<( −min(0, !4(=)!(9:;.4<( +max(0, !4(=)

0 435 

R is the universal gas constant, and T is temperature in Kelvin. To compare between the ∆G values 436 

from testing data and ML-Flux predictions, test data for each flux was evenly sampled from three bins 437 

that represent physiological ranges: near equilibrium, –0.5 kJ/mol ≤ ∆G ≤ 0 kJ/mol; highly reversible, –1 438 

kJ/mol ≤ ∆G < 0.5 kJ/mol; and reversible, ∆G < –1 kJ/mol. The errors of ∆G prediction for each 439 

reversible reaction was determined as half the range of the center 68% of the distributions of prediction 440 

errors from the sampled testing data. 441 

Goodness-of-fit determined by reduced χ2 of fluxes 442 

Since the goal of flux analysis is to accurately predict fluxes from given isotope tracing experiments, we 443 

performed a statistical test to quantify the accuracy of flux prediction. To this end, a reduced χ2 test was 444 

employed using the variance-weighted summed squared residuals (VSSR) of fluxes. 445 

IJJ++>?9(* =? K!@#(/2:=(/ − !=#?( 	L)
M
!

)
 446 

v represents the predicted flux and the true flux, and sv represents the standard deviation of the 447 

corresponding flux. We determined a critical VSSR based on a χ2 distribution with degrees of freedom 448 

equal to the number of free (independent) fluxes and significance level α=0.05. Predicted fluxes with a 449 

VSSR less than the critical value were deemed statistically acceptable. 450 

On the other hand, iterative solver-based MFA searches for fluxes whose simulated isotope patterns 451 

best match that of the experimentally measured values by minimizing VSSRMIDs. 452 

IJJ+%8A* =? KNLO(9@(#23(4= − NLO*23?>.=2,4	L2*,
M
!

2*,
 453 

iso is the MID (i.e., isotope labeling patterns) from experiment or simulation, and siso is the standard 454 

deviation of the measured MID. A flux set is deemed statistically acceptable if its VSSR of MIDs is 455 

lower than a critical VSSR determined by a χ2 distribution58. 456 

The trained ML models were subjected to statistical analyses using a reserved testing dataset with 457 

known true fluxes. VSSRfluxes values computed across a range of relative standard deviations of fluxes 458 

revealed the proportion of test predictions that pass the reduced χ2 test as a function of tolerance for 459 

errors (Extended Data Fig. 4b). The tolerances for accepting 95% of net and exchange fluxes were 460 

~0.1 and ~0.68, respectively, which were comparable to or better than the errors given in confidence-461 

interval analysis from iterative solver-based MFA59.  462 
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Comparison of flux prediction performance with iterative solver-based MFA 463 

Using the same testing data and the same metabolic model of central carbon metabolism, ML-Flux was 464 

compared with a leading iterative solver-based MFA. Two scenarios with complete and incomplete 465 

isotope pattern data were considered. For the former, the input encompassed the isotope labeling 466 

patterns of all metabolites from all 20 isotope tracer combinations. For the latter, a subset of isotope 467 

patterns chosen from 10-30 randomly selected metabolites from one or two isotope tracer experiments. 468 

Comparison of flux prediction accuracy were carried out with or without the inclusion of transport fluxes 469 

in the input to iterative solver-base MFA. ML-Flux and iterative solver-base MFA were compared in flux 470 

prediction accuracy and resolution (VSSRfluxes and VSSRMIDs) as well as their speed. 471 

Similarity score between ML-Flux and iterative solver-based MFA 472 

Fluxes in mammalian central carbon metabolism were determined using ML-Flux and experimental 473 

measurement of isotope labeling patterns from [U-13C6]-glucose, [1,2-13C2]-glucose, or [U-13C5]-474 

glutamine tracing. Seven combinations of one, two, or three of the isotope tracers resulted in seven flux 475 

predictions, which were compared to the results from iterative solver-based MFA. A similarity score for 476 

each tracer combination was defined to rank how ML-Flux results resembled that of MFA. 477 

JNPNQRSN5T	LUOSV =? +2
2

 478 

Ri represents the rank (out of the seven tracers) of a tracer combination in its ability to predict to flux i. 479 

An Ri of seven was assigned to the tracer combination resulting in fluxes that were closest to those of 480 

MFA, while an Ri of one was assigned to the tracer combination resulting in fluxes that were farthest 481 

from those of MFA. Thus, a higher similarity score corresponded to a tracer combination that resulted in 482 

overall flux distributions that were more consistent with the MFA results. 483 

Online deployment of ML-Flux 484 

All machine learning model architectures were stored in .json files with accompanying weights and 485 

biases in .h5 files. Reading these files for model prediction required minimal software, enabling light 486 

deployment onto a website using a Python backend and the Bootstrap CSS framework. With detailed 487 

documentation, examples, and template input files, ML-Flux was deployed at metabolicflux.org for 488 

accurate and rapid flux determination online. 489 

490 
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 633 

Figure 1. Isotope tracers imprint metabolic fluxes on metabolites in the form of isotope patterns 634 

a, Tracing [1,2-13C2]-glucose discerns relative usage of glycolysis and the pentose phosphate pathway 635 
(PPP). The mass isotopomer distribution (MID) of glyceraldehyde-3-phosphate (GAP) is a linear 636 
combination of pathway-specific isotopologues weighted by fluxes. b, Simulating metabolite MIDs from 637 
an isotope tracer given metabolic fluxes is a straightforward process, but the inverse process of 638 
quantifying fluxes given MIDs is convoluted and indirect. c, A simplified model of glycolysis and PPP 639 
illustrates how atomic transitions impact isotope labeling patterns. Feeding [1-13C1]-A into the system 640 
results in unique isotope patterns as a function of v3 and reverse flux v2,r. d, Analytical solutions for v3 641 
and v2,r were solved as functions of B and D isotope labeling. Each axis represents the fraction of the 642 
singly labeled (M+1) isotopomer, while the color scale represents the flux value. e, An artificial neural 643 
network (ANN) was trained to take isotope labeling patterns as input and predict free fluxes. f, The 644 
remaining dependent fluxes were calculated as a linear combination of the free fluxes. g, The trained 645 
ANN model reproduced the isotope pattern-to-flux relationship identified in the analytical solutions from 646 
panel d. 647 
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 649 

Figure 2. Artificial neural networks decipher the relationship between metabolite isotope 650 
labeling patterns and reaction fluxes 651 

a, ANNs were trained to predict fluxes in four metabolic networks. Each metabolic model was used to 652 
simulate isotope labeling patterns from randomly sampled fluxes using multiple isotope tracers. b, 653 
Isotope labeling data from test fluxes were inputted into ANNs to predict fluxes. Predicted fluxes were 654 
then used to simulate isotope labeling patterns. Comparing test and predicted fluxes described ANN 655 
flux prediction accuracy. The accuracy of labeling was also evaluated by comparing isotope labeling 656 
patterns simulated from test and predicted fluxes. c-e, Free net (dark blue) and exchange (green) 657 
fluxes were predicted from testing data for each metabolic model. Dependent net fluxes (light blue) 658 
were computed from free net fluxes. The distribution of errors associated with flux predictions were 659 
plotted for (c) the simple toy, (d) upper glycolysis, and (e) glycolysis models. Each box shows the three 660 
quartiles, and whiskers extend to the minimum and maximum values within 1.5-fold of the interquartile 661 
range (n=10,000). f-g, The mean error of each reaction flux across all testing data was computed for 662 
the reactions in (f) GlyPPP and (g) CCM models (n=100,000 and 11,708, respectively). 663 
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 665 

Figure 3. Imputation and inpainting algorithms complete variably missing isotope labeling 666 
pattern information 667 

a, The known parts of an incomplete isotope labeling pattern set were compared with the corresponding 668 
parts of complete isotope labeling pattern sets to identify the three nearest neighbors by Euclidean 669 
distance. The missing parts of the incomplete isotope patterns were imputed as the weighted means of 670 
the corresponding known isotope patterns of three nearest neighbors. b, For each metabolic network, 671 
100 randomly generated masks partially covered each of 100 complete isotope patterns to show only a 672 
subset of metabolites for 1-3 tracer experiments. These masked datasets were imputed with KNN 673 
regression. The mean absolute errors of predicted isotope patterns were shown along with the average 674 
Euclidean distances to three nearest neighbors. c, MIDs represented as a matrix resembled pixels in a 675 
black-and-white image. Missing elements in an MID matrix were predicted akin to how missing pixels in 676 
an image are restored by inpainting by a partial convolutional neural network (PCNN). d, For each 677 
metabolic network’s PCNN, the mean absolute errors of predicted isotope labeling patterns were shown 678 
along with the plausibility score (ΔN), the difference between the grand sum of the inpainted MID matrix 679 
and the total number of measured metabolite instances. e, The KNN regression and PCNN inpainting 680 
were benchmarked by their total execution time to impute missing information in one set of incomplete 681 
isotope labeling patterns. 682 
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 684 

Figure 4. Integrated ML models produce accurate fluxes from variable-size input isotope 685 
patterns 686 

a, PCNN inpainting and ANN flux prediction were integrated to convert variable-size metabolite isotope 687 
labeling patterns into free fluxes, which were expanded to a comprehensive flux map using linear 688 
algebra. b, Fluxes were predicted either from complete isotope pattern information or masked versions 689 
of the same datasets after the PCNN inpainting. The distribution of their absolute percent errors was 690 
plotted for the simple toy, upper glycolysis, and glycolysis models. Each box shows the three quartiles, 691 
and whiskers extend to the minimum and maximum values within 1.5-fold of the interquartile range 692 
(n=100 for complete isotope labeling patterns, n=10,000 for simple toy and glycolysis masked isotope 693 
labeling patterns, and n=3,100 for upper glycolysis masked isotope labeling patterns). c, The 694 
distributions of mean absolute errors of fluxes in the GlyPPP and CCM models were plotted for 695 
complete and inpainted isotope labeling patterns (n=100 for complete isotope labeling patterns, 696 
n=10,000 for masked isotope labeling patterns). 697 
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 699 

Figure 5. Deep learning of isotope labeling patterns reveals reaction free energy 700 

a, Isotope labeling patterns reveal reaction reversibility and Gibbs free energy of reaction (ΔG). The 701 
blue circles represent hydrogen (empty) and deuterium (filled). Once deuterium is lost in the forward 702 
reaction, the reverse reaction picks up hydrogen. b-d, ML-Flux was used to assess the accuracy of ∆G 703 
prediction in (b) the simple toy model, (c) glycolysis, and (d) central carbon metabolism. The 704 
distribution of ∆G prediction errors was determined by sampling ranges of ∆G that were near 705 
equilibrium, highly reversible, or reversible (see Methods). Each box shows the three quartiles and 706 
whiskers extend to the minimum and maximum values within 1.5-fold of the interquartile range (n=300 707 
for each flux for all models). 708 
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  710 

Figure 6. ML-Flux’s improved accuracy and speed leads to real-world applicability 711 

a and b, Fluxes were predicted with either ML-Flux or a leading iterative solver-based MFA software 712 
using an input of either complete (a) or partial (b) isotope labeling patterns from the testing dataset. The 713 
sum of squared residuals (SSR) between the predicted and true fluxes were compared between the two 714 
methods. Reported statistics are from a logarithmically spaced two-tailed t-test. c, Total execution times 715 
for model construction and flux prediction were measured for ML-Flux versus least-squares MFA. d, For 716 
the CCM model, the time to compute fluxes was measured as a function of the number of parallel isotope 717 
tracer experiments. e, Net fluxes in the pentose phosphate pathway (PPP) were determined using ML-718 
Flux with isotope pattern measurements from [U-13C6]-glucose, [1,2-13C2]-glucose, and/or [U-13C5]-719 
glutamine tracing. ML-Flux results were compared to iterative solver-based MFA results from all three 720 
tracers. f, Net fluxes in the TCA cycle were predicted using the same tracer configurations and compared 721 
to results from MFA. Error bars in e and f reflect the error propagated from the standard error of individual 722 
flux predictions and of replicate predictions (n=3). For MFA, error bars represent the lower and upper 723 
bound of the flux value based on a 95% confidence interval analysis. g, Similarity scores were computed 724 
by ranking ML-Flux results from different tracer combinations by their proximity to the MFA-predicted 725 
values for the PPP, the TCA cycle, and the CCM networks. h, ML-Flux was deployed online for accurate 726 
and rapid determination of metabolic flux and free energy. 727 
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 729 

Extended Data Figure 1. Different flux sampling methods to generate training datasets alter the 730 
outcome of ANN model training 731 

a, Isotope labeling patterns from the simple toy metabolic model were used for principal component 732 
analysis, where each metabolite isotopomer from a given isotope tracer experiment was considered as 733 
a feature. The resulting dimension reduction revealed that 99% of the variance in the data could be 734 
captured in the first two principal components. b, Isotope labeling patterns were transformed onto the 735 
first and the second principal components with colors representing the magnitude of corresponding flux 736 
values for v3 (left) and v2,r (right). c and d, Five different sampling approaches for generating flux-to-label 737 
simulations for training were tested and compared to the analytical solution (top left) for (c) v3 and (d) v2,r 738 
(see Methods). Each panel shows the solution space for v3 or v2,r using one of the sampling approaches.  739 
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 741 

Extended Data Figure 2. Accuracy of flux prediction and resolution of isotope labeling patterns 742 
characterize the quality of ANN flux predictions 743 

a, For the simple toy and glycolysis metabolic models, ANN predictive capabilities were quantified by 744 
comparing fluxes and isotope patterns. The mean absolute percent error of predicted fluxes was 745 
calculated for each flux distribution in the testing data. Each predicted flux set was used to simulate 746 
isotope labeling data and calculate the sum of squared residuals between the isotope labeling patterns 747 
simulated from either the test or predicted fluxes. These two metrics were plotted (n=10,000 test flux-748 
label sets). b, A similar analysis was conducted for the GlyPPP and CCM models with mean absolute 749 
percent errors calculated for net fluxes (top) or exchange fluxes (bottom) (n=100,000 and 11,708 test 750 
flux-label sets). 751 
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 753 

Extended Data Figure 3. Fluxes and isotope patterns are sensitive to each other 754 

a, The relationship between 2PG deuterium labeling and ENO exchange flux was determined by 755 
simulating isotope labeling data at logarithmically spaced intervals of ENO exchange fluxes with low 756 
(upper left) to high (lower right) TPI reversibility and all other reactions being either irreversible or highly 757 
reversible. With increasing magnitudes of TPI reversibility, the sensitivity of 2PG labeling to ENO 758 
exchange flux decreased. b, Test flux predictions in the full glycolysis model were separated by test 759 
fluxes with either low (≤2) or high (>2) TPI exchange flux. The resulting distribution of errors in flux 760 
predictions for these test sets were plotted, where each box shows the three quartiles, and whiskers 761 
extend to the minimum and maximum values within 1.5-fold of the interquartile range (n=430 for low 762 
TPI reversibility and n=9,570 for high TPI reversibility). c, Input MIDs for the CCM ANN model were 763 
varied by amounts consistent with typical instrumental error and inputted for ML-Flux prediction. The 764 
resulting change in error of flux prediction between the varied and non-varied inputs was calculated. d, 765 
The mean errors of fluxes in the CCM model were also calculated when using varied instead of exact 766 
isotope labeling data. e and f, The increase in error of individual net (e) and exchange (f) fluxes was 767 
measured between varied and exact isotope labeling inputs. 768 
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 770 

Extended Data Figure 4. ML-Flux makes accurate and statistically acceptable flux predictions 771 

a, Test flux predictions were compared to their true values by linear regression to determine the 1:1 772 
relationship between predicted and true flux values (left). All test predictions are both mapped to a near 773 
1:1 relationship (middle) and have a high correlation (right). b, Statistical validity of the trained ML 774 
models was confirmed using a reduced χ2 analysis. A reduced χ2 metric based on the summed 775 
residuals of flux predictions across a range of relative standard deviation was calculated. The frequency 776 
of the model giving statistically acceptable predictions was determined by proportion of predictions with 777 
a calculated χ2 was below the critical value determined by the number of free fluxes in the model (see 778 
Methods). 779 
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 782 

Extended Data Figure 5. Accuracy of flux predictions depend on the measurement of key 783 
metabolite isotope labeling patterns 784 

a, From PCA of the isotope labeling patterns in the simple toy model, the weighted sum of each linearly 785 
independent isotopomer’s loading for all principal components was calculated and sorted from high to 786 
low. Each bar across the x-axis describes a linearly independent isotopomer based on the metabolite, 787 
isotopologue of tracer A used, and isotopomer of the measured metabolite. For example, the first entry 788 
is the M+2 fraction of metabolite D from [011]-A tracing. b, Ranking of metabolite feature importance from 789 
PCA was used to sort test data from the simple toy metabolic model into four subgroups of fully informed 790 
(no isotope labeling data masked), well informed (both D and B isotope labeling unmasked), partially 791 
informed (either D or B unmasked) or poorly informed (neither D nor B isotope labeling unmasked). The 792 
resulting distribution of absolute percent errors in flux predictions were plotted. Each box shows the three 793 
quartiles, and whiskers extend to the minimum and maximum values within 1.5-fold of the interquartile 794 
range (n=100, 3,200, 5,800, and 1,000, respectively). 795 
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 797 

Extended Data Figure 6. Integrated ML-Flux models predict net and exchange fluxes for larger 798 
metabolic models 799 

a-b, Fluxes were predicted either from complete isotope labeling datasets or masked versions of the 800 
same datasets that undergo PCNN imputation. The distribution of their absolute errors was measured 801 
for the (a) GlyPPP and (b) CCM models. Fluxes with average values greater than 0.05 were assessed 802 
using absolute percent errors. Small deviations in fluxes with low true values have large relative errors 803 
but small impact on correctly capturing flux distributions. Thus, fluxes with average values less than 804 
0.05 were assessed using absolute error. Each box shows the three quartiles, and whiskers extend to 805 
the minimum and maximum values within 1.5-fold of the interquartile range (n=100 for complete isotope 806 
labeling data, n=10,000 for masked isotope labeling data). 807 
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 809 

Extended Data Figure 7. Select isotope tracers provide the most informative isotope labeling 810 
patterns for flux prediction 811 

a, Metabolite isotope labeling patterns from single and dual isotope tracing experiments corresponding 812 
to 10 13C-glucose tracers and 10 13C-glucose-13C-glutamine tracer combinations were provided as input 813 
to ML-Flux for flux prediction (grey), which was compared to parallel tracing of all 20 tracer 814 
combinations (black). The frequency of passing the reduced χ2 statistical test of fit was plotted as a 815 
function of relative standard deviation (see Methods). The best (blue) and worst (red) performing tracer 816 
was then determined based on the relative standard deviation needed to achieve an 80% frequency of 817 
statistical acceptance. b, A similar analysis to a was conducted but for every combination of two parallel 818 
isotope tracing experiments (190 total), with the parallel tracing experiment of [1,2-13C2]-glucose and [U-819 
13C5]-glutamine tracing highlighted in green. 820 
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 822 

Extended Data Figure 8. ML-Flux predicts metabolic fluxes at high accuracy 823 

a, The quality of flux predictions was assessed using the summed squared residuals of fluxes or isotope 824 
patterns. The predicted fluxes were compared to the true flux values. The predicted fluxes were used to 825 
simulate isotope labeling patterns, which were compared to the input isotope labeling patterns. b, 826 
Comparison of the sum squared residuals of flux predictions was made between ML-Flux and MFA. In 827 
MFA, predictions were made without (left) or with (right) input of measured transport fluxes, while ML-828 
Flux had no transport fluxes input in either case. c, A similar comparison was made using the sum 829 
squared residuals of MIDs simulated from the predicted flux values. d-e, The distributions of SSRs of 830 
MIDs for the test predictions were plotted for cases in which (e) the full isotope patterns or (e) variable-831 
size isotope patterns were input into flux determination. Reported statistics are from a logarithmically 832 
spaced two-tailed t-test. 833 
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 835 

Extended Data Figure 9. ML-Flux predicts exchange fluxes that are comparable to MFA results 836 

a, Exchange fluxes were predicted using ML-Flux and various combinations of [U-13C6]-glucose, [1,2-837 
13C2]-glucose, and [U-13C5]-glutamine tracers. Predicted fluxes were compared to those of MFA fitting all 838 
three tracing datasets simultaneously. Error bars reflect the error propagated from the standard error of 839 
individual flux predictions and of replicate predictions (n=3). For MFA, error bars represent the lower and 840 
upper bound of the flux value based on a 95% confidence interval analysis.  b, The similarity scores were 841 
computed by ranking flux predictions from different tracer combinations by their proximity to the MFA 842 
predicted values for the exchange fluxes. 843 
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 845 

Extended Data Figure 10. Curated sampling algorithms generate more uniform distributions of 846 
key fluxes 847 

a, Key metabolic fluxes determined to have a large impact ANN model accuracy were chosen for rejection 848 
sampling after an initial artificial centering hit-and-run sampling of the constrained CCM model (see 849 
Methods). The resulting flux distributions were less skewed relative to the flux solution space. b, A 850 
representative change in the distribution of lactate export (a free flux determinant of many TCA cycle 851 
fluxes) before (left) and after (right) the rejection sampling procedure is plotted. The lack of a peak in the 852 
rejection sampled distribution represented a reduced sample bias in the training data. 853 

a b

LDH
PDH

PPCK ME
MDH

AKGDH
Minimum

value

Maximum
value

0 21.61.20.80.4
0

2

4

6

8

10

12

P
er

ce
nt

ag
e 

of
 d

at
as

et

Lactate export (norm. glucose uptake)

0

2

4

6

8

10

12

1.61.20.80.40 2

P
er

ce
nt

ag
e 

of
 d

at
as

et

Lactate export (norm. glucose uptake)

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 15, 2025. ; https://doi.org/10.1101/2023.11.06.565907doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565907
http://creativecommons.org/licenses/by-nc-nd/4.0/

