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Abbreviations:  

AKI   Acute kidney injury 

APL  Allopurinol 

ATF  Activating transcription factor 

AvAbsEGS  Average absolute eigengene score 

BUN  Blood urea nitrogen 

corEG   Correlation eigengene score  

CRE  Creatinine 

CSP  Cisplatin 

DIKI  Drug-induced kidney injury 

DM  DrugMatrix 

EGS  Eigengene score 

ER  Endoplasmic reticulum 

FC  Fold change 

GO  Gene ontology 

IRI  Ischemia reperfusion injury 

KIM-1  Kidney injury molecule-1 

log2FC  log2 fold change 

NRF2  Nuclear Factor Erythroid 2-Related Factor 2 

ORA  Over Representation Analysis 

PAN  Puromycin aminonucleoside 

PTC  Proximal tubular cells 

RMA  Robust Multi-array Average 

TG   TG-GATEs 

TF   Transcription factor 

TXG   Toxicogenomics 

WGCNA  Weighted gene co-expression network analysis  
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Summary 
 

Toxicogenomic data represent a valuable source of biological information at molecular and cellular 
level to understand unanticipated organ toxicities. Weighted gene co-expression networks analysis can 
reduce the complexity of gene-level transcriptomic data to a set of biological response-networks useful 
for providing insights into mechanisms of drug-induced adverse outcomes. In this study, we have built 
co-regulated gene networks (modules) from the TG-GATEs and DrugMatrix rat kidney datasets 
consisting of time- and dose-response data for 180 compounds, including nephrotoxicants. Data from 
the 347 modules were incorporated into the rat kidney TXG-MAPr web tool, a user-friendly interface 
that enables visualization and analysis of module perturbations, quantified by a module eigengene 
score (EGS) for each treatment condition. Several modules annotated for cellular stress, renal injury 
and inflammation were statistically associated with concurrent renal pathologies, including modules 
that contain both well-known and novel renal biomarker genes. In addition, many rat kidney modules 
contain well annotated, robust gene networks that are preserved across  transcriptome datasets, 
suggesting that these biological networks translate to other (drug-induced) kidney injury cases. 
Moreover, preservation analysis of human kidney transcriptomic data provided a quantitative metric 
to assess the likelihood that rat kidney modules, and the associated biological interpretation, translate 
from non-clinical species to human. In conclusion, the rat kidney TXG-MAPr enables uploading and 
analysis of kidney gene expression data in the context of rat kidney co-expression networks, which 
could identify possible safety liabilities and/or mechanisms that can lead to adversity for chemical or 
drug candidates.  

 

Keywords: nephrotoxicity, DIKI, WGCNA, gene co-expression, toxicogenomics, biomarker, translation 

 

 

Translational Statement: 

Gene co-expression networks (modules) were generated using rat kidney toxicogenomics data, which 
reduced data complexity and retained quantitative mechanisms to enhance safety assessment. Several 
stress, injury and inflammation modules were statistically associated with renal pathologies, useful for 
biomarker identification. Moreover, many rat kidney modules contained well-annotated, robust gene-
networks that were preserved in human patients transcriptome data after renal transplantation, 
suggesting that these biological networks translate to human relevant kidney-injury. So, the rat kidney 
TXG-MAPr tool enables transcriptome analysis in the context of kidney co-expression networks, which 
could identify chemical-induced safety liabilities and/or mechanisms leading to adversity, relevant for 
human risk-assessment.  
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Introduction 
 

Kidneys play a pivotal role in drug disposition and excretion, making them an important target organ 
for adverse reactions. Chemical- or drug-induced kidney injury (DIKI) is often observed in (proximal) 
tubular epithelial cells, but other nephron segments like the glomerulus may also be targeted 1. Initial 
injury can lead to subsequent cell death followed by repair and regeneration or, if injury is severe, to 
loss of nephrons and progression to renal failure 2. The severity of the initial insult, the degree of 
cellular injury, and the potential for repair in these regions are determined by local extracellular drug 
concentration (blood and glomerular filtrate) and intracellular accumulation of drug driven by cellular 
transport/uptake. The balance between uptake and efflux transport, as well as drug metabolism 
dictate the effective exposure at cellular targets that yield on- or off‐target pharmacology and toxicity3. 
Activation of cellular stress response pathways, including oxidative stress, DNA-damage and unfolded 
protein response (UPR), are early responses to injury and are critical in the adaptation versus 
progression of kidney injury, although the mechanistic understanding is still incomplete 4,5. 

Nonclinical safety studies are designed to characterize target organ toxicity that can be monitored 
during clinical testing of drug candidates. Histopathology data is the gold standard for pre-clinical drug 
safety assessment, but only informs the occurrence of injury and not the mechanism 6. Association of 
drug-induced transcriptomic changes with histopathology findings may provide key mechanistic 
insights into biological responses leading to adversities. However, despite two decades of application, 
transcriptomic analysis has not achieved wide-spread application in drug safety assessment, perhaps 
in part due to difficulties in achieving meaningful qualitative and quantitative interpretation and useful 
safety predictions from high content transcriptomic data 7,8. Among the reasons for slow uptake is the 
difficulty in translating gene-level data into interpretable biological responses and the penalties 
incurred due to false discovery rates 8,9. However, recent publications demonstrate that co-regulated 
gene network approaches can organize high dimensional toxicogenomic data into a smaller set of 
biological response networks, which has been applied to uncover novel mechanisms underlying drug-
induced liver toxicities 10–13. 

In this study, we aimed to develop co-regulated gene networks to study the mechanism of kidney injury 
using toxicogenomic data. We applied weighted gene co-expression network analysis (WGCNA) to 
identify rat kidney specific co-regulated gene networks (modules) using the publicly available TG-
GATEs (TG) and DrugMatrix (DM) toxicogenomic dataset from rat kidney 14–17. As done previously for 
primary human hepatocytes and rat liver 10,11, we have developed an R-shiny based interactive 
webtool, the rat kidney TXG-MAPr (https://txg-mapr.eu/login/). WGCNA gene modules could be 
quantitatively visualized by module eigengene scores (EGS) and reduced to meaningful biological 
responses relevant to understanding mechanisms of toxicity. Specific module responses were 
statistically associated with pathology phenotypes (clinical chemistry and histopathology), thereby 
linking cellular mechanisms to renal injury. Several of these modules linked to kidney injury are 
preserved across datasets and species, including kidney transcriptomic data from human patients 18. 
Our results suggest that gene co-regulated modules in the rat kidney TXG-MAPr can be applied to other 
toxicogenomic datasets for chemical and drug safety assessment and to identify modules and 
associated biological responses that are relevant in the context of human translational safety 
assessments.  
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Methods 
 

Sample collection and gene expression analysis 
Toxicogenomic data from the TG-GATEs (TG) rat kidney repository (Affymetrix Rat Genome 230 2.0 
array) were downloaded 16 and jointly normalized using the Robust Multi-array Average (RMA) method 
within the affy package using R 19,20. The BrainArray chip description file (CDF) version 19 ( 
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF_download.asp, 
Rat230_2 array version 19) was used to map Affymetrix probesets to NCBI gene Entrez_IDs 21, which 
resulted in 13877 unique probe sets, each mapped to a single gene. The TG kidney repository contains 
975 rat treatments, where each treatment is defined as a combination of compound, time and 
concentration. Vehicle treated control samples are available for each individual time point (time-
matched controls). The limma R package was used to calculate log2 fold-change (log2 FC) values, by 
building a linear model fit and computing differential expression by empirical Bayes moderation for 
each treatment condition 22. Toxicogenomic data from the DrugMatrix (DM) rat kidney repository and 
a renal ischemia reperfusion injury (IRI) study were downloaded from Gene Expression Omnibus (GEO; 
https://www.ncbi.nlm.nih.gov/geo/; GSE57811 and GSE58438) and analysed following the same 
procedure as the TG data 17,23. For the DM data the time-matched vehicle control samples were 
indicated per treatment condition. The IRI study had one group of naïve treated rat controls (n=5), 
which was used for differential gene expression at the different timepoints after ischemia reperfusion. 
Human Affymetrix transcriptomics data (Human Genome U133 Plus 2.0 Array) from human patients 
after kidney transplantation were collected from GEO (GSE36059) 18,24, annotated using BrainArray CDF 
version 25 (HGU133Plus2) and normalized using RMA in the affy R package. One CEL file sample was 
removed because it was deprecated. Differential gene expression of each patient kidney transplant 
sample was contrasted with the eight nephrectomy controls samples using limma package.  

For isolation of primary rat proximal tubular cells (PTC) 3 male Sprague Dawley rats (10 weeks old) 
were sacrificed and kidneys were harvested and decapsulated. The rats were supplied by Charles River, 
UK, and were housed at Newcastle University before being euthanized by cervical dislocation. Ethical 
approval for the isolation and culture of primary proximal tubules cells from rats was obtained from 
the Animal Welfare and Ethical Review Body at Newcastle University and all procedures were carried 
out in accordance with Animals (Scientific Procedures) Act 1986.  Newcastle University holds OLAW 
Animal Welfare Assurance certification for animal welfare. At least 1 mg of whole kidney biopsy sample 
was soaked in 1 mL of RNAlater. Cortical slices were taken through the kidney samples from each 
animal and rat PTCs were isolated from the minced cortical slices as previously described 25,26. 
Approximately 1 million freshly isolated rat PTCs were soaked in 1 mL of RNAlater serving as the day 0 
sample. The remaining PTCs were seeded onto 12-well Transwell inserts at density of 200,000 cells per 
insert. Medium was changed on day 1, 3 and 5 after seeding. PTCs were harvested day 1, 2, 5 and 7 
post-seeding. On the day of RNA sampling, media was gently removed from the wells, membranes 
were cut out and put into 10 mL of RNAlater (Thermo Fisher) per timepoint. Samples were stored at 
4°C overnight, then at -20°C. RNA was isolated from rat kidney samples and PTC cultures using Trizol + 
Direct-zol columns according to the referenced protocol (Zymo Research). For PTC cultures, RNA was 
isolated from Transwell filters (multiple filters were pooled per timepoint) and concentrated over RNA 
Clean & Concentrate (RCC) columns (Zymo Research). RNA quality was assessed by Agilent Bioanalyzer 
and all samples had a RIN > 6.3. For microarray analysis, 1 μg of total RNA was used for preparation of 
biotin-labeled cRNA. Samples were hybridized to Affymetrix Clariom-D rat arrays for transcriptome 
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analysis and scanned on an Affymetrix GeneChip Scanner. Raw CEL files were annotated using 
BrainArray CDF version 25 (ClariomDRat) and normalized using RMA in the affy R package. Differential 
gene expression for the PTC cultures was contrasted with the whole kidney samples using the limma 
package to investigate the transcriptional response of cells taken into culture. Raw and processed data 
of the PTC cultures is deposited in EBML-EBI ArrayExpress database (E-MTAB-13633). 

 

Rat kidney gene co-expression network analysis 
Kidney specific co-regulated gene networks (modules) were obtained from the TG and DM rat kidney 
log2 FC data matrix 16,17, using the WGCNA package in R 15. The rat kidney TG data contains 
transcriptomic data of single (3, 6, 9 and 24 hours) and daily repeated (4, 8, 15 and 29 days) exposures 
for 41 (drug) compounds at various dose levels (i.e., 975 compound, dose and time combinations 
(conditions) in total). The rat kidney DM data contains transcriptomics data from daily repeated 
exposures with 139 (drug) compounds at 1 or 2 dose levels and for up to 14 days (i.e., 360 treatment 
conditions). We applied unsigned WGCNA to the log2FC matrix of all TG and DM data to group co-
induced and co-repressed genes together. The optimal soft power threshold of 8 was selected based 
on the standard power-law plotting within the WGCNA package and by maximizing the difference in 
basal gene expression of genes showing co-expression (module genes) versus genes not showing co-
expression (excluded genes) based on a t-test with the assumption that low expressed genes are not 
correlating. From the 13877 unique genes on the Rat230_2 array, we obtained 399 co-expression 
modules containing 11,244 genes, while 2633 excluded genes did not meet the co-expression criteria. 
Modules were merged when having a pair-wise Pearson correlation ≥ 0.8 of the module eigengene 
scores (EGS) based on all treatments, which resulted in a final list of 347 merged modules (Table S1). 
Merged modules contain the suffix ‘m’, i.e., module rat KIDNEY:2m (i.e., rKID:2m) was merged from 
child modules 2 and 11. For each treatment condition a module EGS was computed as the first principal 
component of variation for all genes after Z-scoring the log2 FC matrix (Table S2), as described 
previously 10,12. This module EGS represents a quantitative measure of activation or repression of all 
genes (based on log2 FC) in the module. An EGS > 2 or < -2 was considered as a large perturbation in 
expression of the underlying genes 13. The correlation between the log2 FC of each gene with the 
module EGS was also calculated (called the corEG = correlation eigengene) to estimate the 
intramodular connectivity of the genes and their network (note that genes can also have opposite 
(negative) weighting because of the unsigned co-expression). The gene with the highest absolute 
corEG within a module is the hub gene and is the most representative gene of the module. The circular 
rat kidney TXG-MAPr dendrogram was constructed using the ape package based on Ward’s hierarchical 
clustering of pair-wise Pearson correlation for every module across all treatment conditions (Figure 
S1). Each main branch is indicated by letters A-I, followed by subbranches (i.e., A1aIαi) as indicated in 
Figure S1 and Table S1. To improve visualization of the dendrogram, some module edges and nodes 
were manually adjusted to separate module clusters. The module EGS are displayed on the TXG-MAPr 
dendrogram as circles, with the size and colour proportional to the amount of induction or repression 
for a given treatment condition (Figure 1A, red to blue colour scale, respectively). Compound or 
treatment correlation was calculated for all treatment conditions using pair-wise Pearson or Spearman 
correlation of the module EGS. Similarly, module correlation was calculated across all modules (347 x 
347 matrix). Preservation of the TG and DM rat kidney WGCNA module structure with other datasets 
(TG rat kidney only, DM rat kidney only, TG rat liver and GEO human kidney) was performed using the 
modulePreservation function within the WGCNA package in R 27. Modules with a Z-summary > 2 were 
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considered moderately preserved and Z-summary > 10 were highly preserved. The R-script for WGCNA 
module generation and preservation analysis can be found in an online GitHub repository linked to 
persistent identifier in Zenodo: https://doi.org/10.5281/zenodo.14926143. 

 

Functional enrichment analyses and annotation of modules 
Modules were annotated by functional enrichment (GO-terms, pathways and transcription factors) 
using hypergeometric tests (Tables S3-S5) as described previously 10. Briefly, GO-term enrichment was 
performed with the topGO package in R using the algorithm = "classic" and statistic = "fisher" 28. Over 
Representation Analysis (ORA) was performed on the gene members of each module using Consensus 
Pathway DB (cpdb version 34), including the following databases: BioCarta, EHMN, HumanCyc, INOH, 
KEGG, NetPath, Reactome, PharmGKB, PID, Signalink, SMPDB, Wikipathways, UniProt, InterPro 29. For 
both resources, we included enriched terms with a hypergeometric test p-value < 0.01 (Table S3). To 
identify regulatory transcription factors (TFs) of each module, a hypergeometric test was performed 
on module gene members using the function phyper within the stats package in R (Table S4). The gene 
set of TFs and their regulated genes (regulons) are derived from DoRothEA 30 with two sets of 
confidence levels: the “high confidence” level comprises categories A, B and C, while the “high 
coverage” level comprises categories A, B, C and D. The enriched TFs with p-value less than 0.01 were 
included in the study. In parallel, TFs’ activities were estimated as normalized enrichment scores using 
the viper function from the viper package 31 with two confidence sets of TF-regulon from DoRothEA as 
described. All parameter settings were assigned as in the original DoRothEA study 30. The most 
significant module enrichment terms (gene overrepresentation analysis) were reviewed for a common 
theme, which were summarized in a Key_annotation and annotation levels 1 through 3 (Table S5). 
Only modules with an enrichment p-value < 10-4 (0.0001) were reviewed to find a common annotation. 
Annotation level 1 describes the general cellular process or function (e.g., metabolism, immune 
response, RNA/protein processing, stress response), level 2 describes the sub-process or function, and 
level 3 provides the most specific process or transcription factor involved. These 3 levels of annotation 
were summarized in the Key_annotation, which describes the function of the genes in the modules 
based on the most significant enrichment terms (Table S5).  

 

Module association with pathology 
The TG database also provides clinical chemistry (biomarker data) and histopathology data for all 
treatment conditions. Histopathology data was reviewed by pathologists for 4 nephrotoxic compounds 
(cisplatin, carboplatin, cyclosporine A and allopurinol) and most calls were in agreement with the 
pathology score provided by TG. Only the most occurring pathologies were included for the statistical 
association, including necrosis, degeneration, regeneration, basophilic change (cellular staining 
indication a regenerative process), cellular infiltration (indicating an inflammatory/ immune response), 
fibrosis, vacuolization, dilatation (widening of the renal tubules), cysts and hyaline casts (protein 
aggregates in the tubular lumen). Overlapping pathology terms were combined (e.g., different types 
of cellular infiltration or different regions of tubular injury), resulting in a final list of 19 unique 
histopathology’s (Tables S6-S7). Necrosis and degeneration were also considered as a combined term 
because these pathologies have overlapping biological meaning, as well as regeneration and basophilic 
change. For these overlapping pathologies, the maximum grade was used for each treatment 
condition. Histopathology severity was converted in a numerical scale (normal = 0, minimal = 1, slight 
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= 2, moderate = 3, severe = 4) and the average score was calculated per treatment group of maximum 
3 animals that were also used for the microarray analysis. Histopathology presence in a treatment 
group was indicated by a severity score >= 0.67 for all pathologies, but a higher threshold (>=1.33) was 
also applied for a few pathologies (Table S7). Clinical chemistry measurements were calculated as 
average percent change from the time-matched control group. The KW-BW ratio (kidney weight - body 
weight ratio) was calculated by dividing the total kidney weight by the body weight. The threshold for 
a significant increase in clinical measurements is defined in Table S7. The kidney toxicity phenotypes 
(histopathology or clinical chemistry) were used to evaluate statistical association between module 
EGS and the occurrence of kidney pathology, as described previously 13. Both concurrent and predictive 
module associations with pathology (i.e., early module changes that are preceding the toxicity at a 
later timepoint) were calculated. Effect sizes (Cohen’s D) of each module were calculated by comparing 
mean module EGS in the presence (positives) or absence (negatives) of renal injury, with thresholds 
specified in Table S7, for each of the 29 toxicity phenotypes (Table S8).  

Cohen’s D = (mean module EGS positives – mean module EGS negatives) / pooled SD module EGS  

To control for overall gene expression, we applied logistic regression to account for differences in both 
module EGS and average absolute EGS (AvAbsEGS) as covariates in the analysis, as described previously 
13. Briefly, the glm() function of the stats package was applied with single linear models: 

Module_single = glm(phenotype ~ module EGS, family = “binomial”)  

AvAbsEGS_single = glm(phenotype ~ AvAbsEGS, family = “binomial”) 

The Module_single model predicted the outcome of using only module EGS as variable and provided 
p_single (Table S8). In addition, the full linear model was calculated: 

Module_Av_full = glm(phenotype ~ AvAbsEGS + module EGS, family = “binomial”) 

This determined the coefficients, which is the natural log odds ratio for observing a phenotype for a 
single-unit increase in module EGS. Finally, the significance of module EGS as an additional variable 
was tested, which provided the p-adj (Table S8): 

add1(AvAbsEGS_single, scope = ~ AvAbsEGS + module EGS, test = “Chisq”) 

The p-adj value was converted to a signed log10 p-adj, by using the sign of the effect sizes. This signed 
log10 p-adj and the Cohen’s D effect size were used as measure/rank for module associations with 
toxicity phenotypes in several plots and tables.  

 

Rat kidney TXG-MAPr webtool 
An interactive visualization of rat kidney WGCNA module and gene expression data has been 
implemented in the rat kidney TXG-MAPr (Toxicogenomics-MAPr) webtool using the shiny package in 
R to create a user-interface 32, as described previously 10. The rat kidney TXG-MAPr tool is available at 
https://txg-mapr.eu/login/. The tool allows evaluation of dose- and time-response data, compound 
correlation plots and module association with pathology, which is also available in tabulated format. 
New or external gene expression data (log2 FC) can be uploaded in the TXG-MAPr tool, as described 
previously 10. This enables calculation of new EGS for each module from external dataset based on the 
gene log2 FC and weighted by the gene corEG. The new module EGS will be overlaid onto the rat kidney 
TXG-MAPr dendrogram and will be fully integrated into the web application for that session. Uploaded 
data will be removed when the session is closed. 
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Quantification and statistical analysis 
All figures were plotted in R version 4.0.0 19or higher using mainly ggplot2, pheatmap, shiny, igraph 
and ape packages. Statistical analyses were carried out using functions from R packages for differential 
gene expression analysis (affy, limma), correlation analysis and logistic regression (stats), enrichment 
analysis (topGO, stats), gene co-expression and preservation analysis (WGCNA). 

 

Key resources table 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited data 

Transcriptomics data of rat primary proximal tubule 
cultures (PTC) during in vitro dedifferentiation 

This paper ArrayExpress: E-MTAB-13633 

TG-GATEs rat in vivo kidney transcriptomics data  Igarashi et al. 16 TG-GATEs: 
https://dbarchive.biosciencedbc.jp/
data/open-
tggates/LATEST/Rat/in_vivo/Kidney/ 

DrugMatrix rat in vivo kidney transcriptomics data Svoboda et al. 17 GEO: GSE57811 

Rat renal ischemia reperfusion injury (IRI) 
transcriptomics data 

Speir et al. 23 GEO: GSE58438 

Transcriptomics data from human kidney transplant 
biopsies 

Reeve et al. 18,24 GEO: GSE36059 

Experimental models: Cell lines   

Rat primary proximal tubule cultures (PTC) NewCells Biotech N/A 

Software and algorithms 

TXG-MAPr tool (shiny app) This paper, 
Callegaro et al. 10 

https://txg-mapr.eu/login/ 

WGCNA and preservation analysis script This paper https://doi.org/10.5281/zenodo.149
26143  

R version > 4.0.0 R Core Team 19 https://cran.rstudio.com/  

stats package R Core Team 19 https://cran.rstudio.com/ 

WGCNA package Langfelder et al. 15 https://cran.rstudio.com/ 

affy package Gautier et al. 20 https://cran.rstudio.com/ 

limma package Ritchie et al. 22 https://cran.rstudio.com/ 

shiny package Chang et al. 32 https://cran.rstudio.com/ 

ggplot2 package Wickham 33 https://cran.rstudio.com/ 

pheatmap package Kolde 34 https://cran.rstudio.com/ 
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Results 
 

Rat kidney TXG-MAPr tool to identify biological mechanisms of kidney injury 
Gene co-expression networks (347 modules) were built from the TG and DM rat kidney datasets using 
WGCNA (Table S1). Gene expression changes were scored at the module level for each treatment 
condition by the eigengene score (EGS), see Table S2 for all treatment conditions. The EGS indicates 
the induction or repression of the entire module based on the weighted log2 FC expression of its 
component genes. Modules are arranged in a TXG-MAPr dendrogram, based on the hierarchical 
clustering across all treatments (Figure S1), and the size and colour of each circle is proportional to the 
amount of induction or repression for a given treatment condition (Figure 1A, red to blue colour scale, 
respectively). The rat kidney module and gene expression data were incorporated into a R-shiny 
framework (TXG-MAPr: https://txg-mapr.eu/login/) for interactive visualization and analysis, as 
previously described 10. Functional annotation of the modules was assessed using overrepresentation 
analysis (GO-term, pathway and transcription factor) to provide cellular and mechanistic context of 
gene members in each module (Tables S3-S5). Not all modules showed strong enrichment for GO and 
pathway terms, but others were highly enriched for terms relevant to kidney injury and regeneration, 
including rKID:3m (metabolism, e-45), rKID:5m (cell cycle, e-67), rKID:6m (ribosome biogenesis, e-42), 
rKID:7m (immune system, e-47) and rKID:10m (extracellular matrix, e-34). From this functional 
enrichment analysis, a specific key annotation term was derived for 170 modules (Table S5), i.e., when 
annotation terms were highly significant (p < 0.0001) and show a similar theme or could be linked to 
the enriched transcription factor, which was included in further analyses (see below). 

To illustrate the utility of the rat kidney TXG-MAPr tool as an approach to extract mechanistic 
information from gene expression data, we selected compounds in the TG dataset for which various 
pathologies were noted in the single and repeated dose studies (Table S6). Repeated daily dosing for 
up to 29 days with the genotoxic chemotherapeutic drug cisplatin (CSP) caused progressive 
perturbation of gene expression in rat kidneys, represented by the module induction or repression 
visualized on the TXG-MAPr dendrograms (Figures 1A and S2). Histology findings were also progressive 
over time, including tubular necrosis, dilatation and regeneration, and were accompanied by increases 
in blood urea nitrogen (BUN) and serum creatinine (CRE) (Table S6). We looked for activation of 
modules associated with the DNA-damage response, a primary mechanism of cisplatin inducing kidney 
injury 35. Rat kidney module 160 (i.e., rKID:160) was among the top induced modules after cisplatin 
treatment at various timepoints and dose levels (Table S2) and contained many well-known p53-target 
genes (Mdm2, Cdkn1a, Phlda3, Ccng1, Plk2, Aen, Zmat3, Fas, Pias3, Gas6) involved in the DNA-damage 
response (Figure 1B, top), and had the highest transcription factor (TF) enrichment score for Tp53 (p-
value of 2e-10) among all modules (Figure 1C, Table S4). Induction of module rKID:160 and its 
component genes was already evident early and increased over time (Figure 1B, top). Another module, 
rKID:298, also enriched for terms consistent with p53 signalling (Table S3) and contained genes 
involved in apoptosis (Bax, Ei24, Thyn1) and DNA repair (Mgmt), showed a similar pattern of induction 
compared to rKID:160 (Figure 1B, middle). Although both rKID:160 and rKID:298 are enriched for p53 
signalling terms, only rKID:160 had strong TF enrichment for Tp53 (Figure 1C, Table S4). Nonetheless, 
module rKID:160 showed high correlation (Pearson R) with rKID:298 across all TG treatments (Figure 
1D, left), indicating that both modules are strongly induced by the same treatment conditions (e.g., 
especially genotoxic compounds cisplatin and doxorubicin), as expected given their proximity in the 
dendrogram and involvement in similar processes.  
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To determine if the modular gene expression responses also reflected the progressive injury noted 
with cisplatin treatment, we also investigated module membership for injury processes and kidney 
specific biomarkers. Module rKID:2m, contained well-known kidney biomarker genes, including kidney 
injury molecule-1 (Kim-1/Havcr1), and was strongly associated with toxicity (discussed in the next 
sections). After only modest early induction, the rKID:2m EGS, and log2FC for component genes, 
increased markedly after day 4 (Figure 1B, bottom). Other modules that annotated for biological 
processes important for kidney injury and regeneration also showed dose and time dependent 
induction with cisplatin and other nephrotoxicants allopurinol (APL) and puromycin aminonucleoside 
(PAN) (Figure S3). Several modules involved in extracellular matrix (rKID:10m, 31m), immune response 
(rKID:56 and 63m), cytoskeleton (rKID:42m, 142m), cell cycle (rKID:5m) and transcription (rKID:29) 
were induced after 29 days cisplatin exposure and were also observed with other nephrotoxic 
compounds, including APL and PAN (Figure S3), both of which caused substantial kidney injury and 
regeneration (Table S6). Notably, the high module EGS correlation (Pearson R), between 15-days 
repeated treatment with 1 mg/kg/day cisplatin and 12 mg/kg/day puromycin aminonucleoside 
suggested that these responses reflect general kidney responses to injury, while also reflecting distinct 
mechanisms (Figure 1D, right). For example, the inflammatory (rKID:56, 63m and 327), cytoskeleton/ 
injury (rKID:2m and 142m) and cell cycle (rKID:5m) responses are comparable between CSP and PAN 
at day 15, but the p53 responses (rKID:160 and 298) are more pronounced with cisplatin, because of 
the genotoxic mechanism of action.  

Taken together, the TXG-MAPr tool demonstrated that the co-expression modules capture meaningful 
biological responses after nephrotoxic insults, where early events, such as activation of p53 by 
cisplatin, are followed by later events associated with cellular and tissue injury, including modules 
containing inducible biomarker genes.  

 

Modules associate biological response networks with kidney pathology 
Having demonstrated that modular gene expression captures valuable information on mechanism 
associated with kidney injury, we wanted to investigate the statistical association of module changes, 
and the associated biological responses, with kidney injury (histopathology or clinical chemistry, see 
Table S6 and S7 for frequency and occurrence for each treatment). Therefore, for each relevant kidney 
toxicity phenotype (Table S7), we measured effect sizes (Cohen’s D) of module EGS for treatments 
resulting in the presence (positives) or absence (negatives) of renal injury (Table S8). To control for the 
association of injury with overall gene expression, we also applied logistic regression to account for 
differences in module EGS while controlling for average absolute EGS (AvAbsEGS) as covariates in the 
analysis, as described previously 13. Estimation of the odds of toxicity was quantified by the (adjusted) 
p-value from the logistic regression, which was signed (signed log10 p-adjust) for positive (induction) 
or negative (repression) module responses associated with toxicity. Both concurrent and predictive 
(i.e., early module changes that precede emergence of toxicity at a later timepoint) module 
associations with pathology were calculated, although concurrent associations showed higher 
statistical significance as expected (Table S8). 

The effect sizes of many modules associated with concurrent toxicity phenotypes showed strong 
Pearson correlation, suggesting that several biological response-networks are associated with multiple 
toxicity phenotypes (Figure 2A). This is likely an effect of either the high transcriptional activity, 
measured as AvAbsEGS, concurrent with multiple pathologies, and/or activation of generalized tissue 
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responses to injury. When we repeated the clustering using the signed p-adjust values, which accounts 
for the AvAbsEGS as a covariate in the logistic regression, there was somewhat better separation of 
the toxicity phenotypes into two distinct clusters (Figure 2B). Cluster 1 modules were more associated 
with tubular injury phenotypes (increases in tubular necrosis, degeneration, BUN and CRE), and cluster 
2 with regeneration and inflammation phenotypes (increases in tubular regeneration, dilatation, 
cellular infiltration and fibrosis). The overlap and differences in module association could be 
appreciated when comparing the TXG-MAP dendrogram plots overlaid with the signed log10 p-value 
per module for the most prevalent renal injuries (Figures 2C and S4). Modules in branch (see branches 
in Figure S1) F1 and F2 (stress responses and cell cycle) were strongly associated with tubular injury 
phenotypes (red colours). In contrast, modules in branch A2 and B2 (immune response and 
extracellular matrix / adhesion) were strongly associated with regeneration and inflammation. Cellular 
stress, transcription and cytokine related modules in branch H1 showed strong association with all 
pathologies (red colours), as well as modules in branch D2a (RNA splicing). Modules in branch I 
(mitochondrion/respiration) showed negative association with all toxicity phenotypes, as well as some 
metabolism modules in branch H1 (blue colours). Other (non-tubular) injuries did not show strong 
association with transcriptional module changes, likely due to the low number of positive treatments 
in the TG data that cause these injuries or the limited transcriptional perturbation (Figure S4). 

Hierarchical clustering of the modules for concurrent association with toxicity phenotypes revealed a 
subset of 44 strong positively (cluster 2) and 81 strong negatively (cluster 1) associated modules with 
injury and repair phenotypes (Figures 2D, S5A, Table S9), including serum biomarkers increases (BUN 
or serum creatinine), several types of tubular injury, regeneration, inflammation or fibrosis (pathology 
cluster II in Figure 2D and S5A, Table S7). Notably, module rKID:2m, which contained genes for known 
and inducible biomarkers of renal injury, is in cluster 2 (Figure 2D) and ranked highest, on average, for 
concurrent association with the most prevalent toxicities on both effect size and adjusted p-value 
(Table S9). Other positively associated and high ranked modules (cluster 2, Figure 2D and S5A, Table 
S9) were annotated for immune response (rKID:56, 63m, 71, 212m and 327), cytoskeleton (rKID:42m, 
112, 142m), extracellular matrix organization (rKID:10m, 31m), proteasome (rKID:35m), cell cycle 
(rKID:5m) and transcription (rKID64m), all of which are processes associated with progressive renal 
injury and/or repair 36,37, and were induced by compounds like cisplatin, allopurinol and puromycin 
aminonucleoside which caused progressive renal injury (Figure S3). Negatively associated and high 
ranked modules (cluster 1, Figure 2D and S5A, Table S9) were annotated for metabolism (rKID:3m, 
9m, 14m, 25m, 292), transport (rKID:19, 171, 329), AMPK signalling (rKID:383), mitochondrion 
(rKID:26m, 28m, 96m, 264) and renal or glomerular development (rKID:196) amongst others. 
Interestingly, the latter module rKID:196 showed various genes involved in glomerular development 
or podocyte function, including Nphs1, Podxl, Ptpro and Wt138,39. 

Transcriptional changes at day 4 showed on average the highest statistical power (effect size and log10 
adjusted p-value) to predict renal injury on a later timepoint, followed by day 1 (Figure S6). Modules 
for predictive association with toxicity phenotypes at day 4 revealed a subset of 30 positive (cluster 7) 
and 46 negative (cluster 2) associations (Figures 2E and S5B, Table S9). Predictive association at day 1 
revealed a subset of 44 positive (cluster 3) and 17 negative (cluster 1) associations (Figure S5B, Table 
S9). Several modules that showed strong positive predictive association with pathology were also 
strongly associated with concurrent pathology, including cytoskeleton (rKID:2m, 112, 142m) and 
immune response (rKID:7m, 56, 63m, 113, 212m, 327), while mitochondrial (rKID:26m, 28m and 96m) 
and metabolism (rKID:3m) showed negative association. Besides the overlap between modules that 
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showed both concurrent and predictive association with pathology, there were also some unique 
modules in the predictive association selection. These include modules involved in ribosome 
biogenesis (rKID:6m, 8m, 40m, 130m), RNA processing (rKID:34m, 278, 387), protein processing 
(rKID:173, 208), immune response (rKID:16m, 138, 351), transcription (rKID:29), p53 pathway 
(rKID:160, 298), Nrf2 pathway (rKID:53), Atf4 pathway (rKID:74) and Atf6 pathway (rKID:81), which are 
early responses after cellular stress or injury.  

Overall, this led to a subset of 169 modules (75 positive and 94 negative) that showed strongly 
perturbed transcriptional activity and could be correlated with induction of renal injury (Table S9, 
column “selected strong association”). Thus, module changes reflect biological responses that may be 
associated with higher likelihood of concurrent or future development of kidney adverse outcomes 
(i.e., pathologies), while these modules may also contain potential biomarkers. 

 

Pathology associated modules facilitate biomarker discovery 
In the previous section, we have described several modules that were most strongly associated with 
pathogenesis (Table S9), including rKID:2m, which contained well-known kidney injury biomarkers, 
including kidney injury molecule-1 (Kim-1/Havcr1), lipocalin 2, (Lcn2/Ngal); osteopontin (Spp1), 
clusterin (Clu) and tissue inhibitor of metalloproteinases (Timp1), all of which had high corEG (i.e., 
hubness) (Table 1). Interestingly, the primary enrichment terms for rKID:2m included cell adhesion and 
actin cytoskeletal organization, suggesting a more complex set of biological responses is associated 
with activation and interpretation of the inducible biomarker genes in rKID:2m. Other known kidney 
injury biomarkers were in metabolism (rKID:3m), immune response (rKID:7m, 15, 56, 63m and 281) 
and extracellular matrix (rKID:10m) modules, and most were strongly associated with renal 
pathogenesis (Tables 1, S9).  

To discover novel inducible kidney injury biomarker genes, we investigated the modules with strong 
pathology association and clear biological annotation. The top 10 modules showing the strongest 
positive association with each of the eight most severe kidney pathologies were selected, which 
resulted in a set of 29 unique modules (Tables 2, S9). The selected modules showed very good overlap 
with modules in cluster 2 of Figure 2D and S5A (concurrent), as well as with cluster 6 and 7 in Figure 
2E and S5B (4-day predictive). In addition to the known biomarker genes found in these modules (Table 
1), many modules with strong pathology association contain hub(-like) genes of which literature 
evidence indicates that their respective proteins could be potential kidney injury or disease biomarkers 
(Table 2). Modules with potential biomarkers are rKID:7m (Cst3 = Cystatin C, B2m = β2-microglobulin, 
Cd68), rKID:10 (Cdh11, Smoc2), rKID:31m (Il24), rKID:38m (Tcp1), rKID:56 (Icam1, Tnfrsf1a), rKID:63m 
(C1qb, Il18, Tnfrsf1b), rKID:71 (Mmp7), rKID:138 (Cd3g), rKID:142m (14-3-3 proteins, i.e., Ywhah, 
Ywhag), rKID:212m (Cp = ceruloplasmin, C1s, C1r, Dcn) and rKID:327 (fibrinogen, i.e., Fga, Fgb, Fgg). 
Many genes in these modules are strongly induced by nephrotoxic treatments, including the potential 
biomarker genes (Figure 3A). Gene expression responses of these modules mimicked the time-
dependence of kidney pathology (Figure 3B), suggesting that these modules could be relevant for 
characterization of previously identified biomarkers and identification of novel biomarkers of kidney 
injury. In contrast, traditional serum biomarkers (BUN and CRE) increased much later (Figure 3C), when 
there is loss of renal function and hence these do not recapitulate the renal injury already present at 
earlier timepoints. These results suggest that induction of putative biomarker genes and their modules 
is strongly associated with renal pathology and capture the progression of kidney injury much better 
than serum biomarkers BUN or CRE.  
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Table 1. Kidney injury biomarkers in co-expression modules. Well-known and established kidney 
injury biomarkers are in cytoskeleton / injury (rKID:2m), metabolism (rKID:3m), immune response 
(rKID:7m, 15, 56, 63m and 281) and extracellular matrix (rKID:10m) modules. 
 

Gene Biomarker name Injury marker Module corEG References 

Havcr1 KIM-1 Proximal Tubular rKID:2m 0.8156 40–46 

Lcn2 Lipocalin2, NGAL Proximal / Distal Tubular rKID:2m 0.7698 42–46 

Clu Clusterin Proximal / Distal Tubular rKID:2m 0.8282 41,45,46 

Spp1 Osteopontin, OPN Inflammation / Distal Tubular rKID:2m 0.7815 42,46 

Timp1 Timp-1 Proximal Tubular rKID:2m 0.8948 47,48 

Umod Uromodulin Loop of Henle rKID:3m 0.7673 42,44 

Tff3 Trefoil Factor 3 Proximal Tubular rKID:3m 0.5565 41 

Cst3 Cystatin C Glomerular / Proximal Tubular rKID:7m 0.3903 41,43–46 

B2m β2-microglobulin Glomerular / Proximal Tubular rKID:7m 0.6849 41,45 

Timp2 Timp-2 Proximal Tubular rKID:10m 0.7746 42,44 

Igfbp7 IGFBP-7, IBP-7 Proximal Tubular rKID:10m 0.5295 42,44 

Ambp α1-microglobulin Glomerular / Proximal Tubular rKID:15 0.7985 46 

Alb Albumin Glomerular / Proximal Tubular rKID:15 0.7157 41,43,45,46 

Fabp1 L-FABP Glomerular / Proximal Tubular rKID:15 0.8531 42,44,45 

Tnfrsf1a TNFR1 Inflammation rKID:56 0.9015 49 

Tnfrsf1b TNFR2 Inflammation rKID:63m 0.6241 49 

Il18 Interleukin-18 Inflammation rKID:63m 0.7694 42–46 

Ccl2 MCP-1 Inflammation rKID:281 0.7258 42,44 

 
 

Table 2. Most strongly associated modules with renal pathology containing novel biomarkers. Top 
10 ranked modules for positive association with concurrent kidney pathologies were selected for each 
phenotype. For each module, the hub gene and other highly connected genes are shown with a focus 
on identification of the corresponding proteins as putative biomarkers of renal injury (see references). 
The module annotations provide additional mechanistic context for these candidate biomarkers. The 
strongest pathology association, the rank and the signed log10 p-adjust value is provided for each 
module. Some of the modules are in the top 10 rank for more than one toxicity phenotype (column: 
“# Toxicity phenotypes”), including rKID:2m, 31m, 71 and 327.  
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Module Module annotation Hub gene Other hub genes Branch Strongest pathology association 
# Toxicity 
phenotypes 

Rank 
Max signed 
log10 p-adjust 

References (DOI) 

rKID:31m Extracellular matrix (ECM) Il24  A2aIIβ Regeneration / Basophilic change, Tubule >= 0.67 3 1 27.68 10.1007/s00795-019-00239-0  

rKID:212m 
Immune response; 
complement 

Cp 
Ceruloplasmin (Cp), 
C1s, C1r, Dcn 

B2aII Regeneration / Basophilic change, Tubule >= 0.67 1 2 23.94 10.1007/s10157-019-01734-5  
10.1681/ASN.2008111145  

rKID:358  Fkbp10  B2aII Regeneration / Basophilic change, Tubule >= 0.67 2 3 22.49  
rKID:148  Sept10  D2a Regeneration / Basophilic change, Tubule >= 0.67 1 5 19.54  
rKID:10m Extracellular matrix (ECM) Fbn1 Cdh11, Smoc2 B2aII Regeneration / Basophilic change, Tubule >= 0.67 1 8 18.68 10.1016/j.kint.2021.04.037  
rKID:184 Other Rexo2  F2b Necrosis / Degeneration, Tubule >= 0.67 1 2 18.83  

rKID:142m Cytoskeleton Ywhah 
14-3-3 protein 
(Ywhah, Ywhag) 

H1bI Necrosis / Degeneration, Tubule >= 0.67 2 5 17.09 10.1111/jcmm.13691 

rKID:38m Protein processing; folding Cct5 Tcp1 F1aI Necrosis / Degeneration, Tubule >= 0.67 2 7 15.80 10.1093/toxsci/kfz242  
rKID:35m Proteasome Eef1d  F2b Necrosis / Degeneration, Tubule >= 0.67 1 10 15.51  
rKID:112 Cytoskeleton Arpc3  F2aI Hyaline cast, Tubule >= 0.67 1 6 11.71  
rKID:5m Cell cycle; S/M phase Mad2l1 Aurkb F2b Hyaline cast, Tubule >= 0.67 1 7 11.70 10.2147/IJGM.S336799 
rKID:220 Signalling Htra3  A2aIIβ Fibrosis, Interstitium >= 0.67 1 5 9.33  
rKID:272  Cdk4  F2b Fibrosis, Interstitium >= 0.67 1 10 8.75  

rKID:2m 
Cytoskeleton; cell adhesion / 
injury biomarkers 

Tes 
Havcr1, Clu, Spp1, 
Lcn2, Timp1, Plaur 

H1aIIαii Dilatation, Tubule >= 0.67 4 2 25.13 10.1097/MNH.0000000000000275  

rKID:51m  Trpv6  A2aIIα Dilatation, Tubule >= 0.67 3 3 25.06  

rKID:327 
Immune response; 
complement and coagulation 

Fgb 
Fibrinogen (Fga, 
Fgb, Fgg) 

H1aIIαii Dilatation, Tubule >= 0.67 4 4 24.50 10.1016/j.ajpath.2012.06.004  

rKID:235  Tspan8  H2aI Dilatation, Tubule >= 0.67 1 5 24.49  
rKID:144  Pla1a  H1aIIαii Dilatation, Tubule >= 0.67 2 6 24.25  
rKID:332 Signaling; calcium Map3k1  H2aII Dilatation, Tubule >= 0.67 1 7 24.05  

rKID:56 
Immune response; TNF/NFkB 
signaling 

Icam1 Tnfrsf1a H1bII Dilatation, Tubule >= 0.67 2 9 22.68 10.1159/000068920  
10.1097/MNH.0000000000000275  

rKID:71 Immune response Mmp7  A2aIIβ Dilatation, Tubule >= 0.67 4 10 22.36 10.1681/ASN.2016030354  
rKID:63m Immune response C1qb Il18, Tnfrsf1b A2b Cellular infiltration >= 0.67 2 1 27.36 10.1111/petr.13885  

rKID:7m 
Immune response; leukocyte 
activation 

Ptprc 
B2m, Cd68, Coro1a, 
Cst3 

A2b Cellular infiltration >= 0.67 1 4 21.23 10.1111/his.13768  

rKID:138 
Immune response; T-cell 
receptor 

Cd3g 
Cd3 (Cd3d, Cd3e, 
Cd3g) 

A2b Cellular infiltration >= 0.67 1 5 21.23 10.1111/cei.12461  

rKID:233  Tmsb4x  B2aII Cellular infiltration >= 0.67 2 8 17.86  

rKID:305 
Immune response; T-cell 
receptor 

Zap70 Cd247, Klrk1 A2b Cellular infiltration >= 0.67 1 9 17.81  

rKID:59m  Akip1  B2aII Cellular infiltration >= 0.67 1 10 17.76 10.1097/MD.0000000000020742 
rKID:29 Transcription Btg2 Atf3 H1bI BUN change > 100% 1 9 15.51 10.21037/atm-21-5231 
rKID:64m Transcription Klf6  H1bI BUN change > 100% 1 10 15.24 10.1080/0886022X.2020.1793353  
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Module correlation analysis reveals both mechanistic and generalized tissue responses to 
kidney injury  
Results already discussed allude to the fact that kidney injury and progression occur in distinct phases. 
Early molecular initiating events may be mechanistically distinct for different nephrotoxicants, but lead 
to a common event, such as death of proximal tubule epithelial cells, which results in a regeneration 
response. Therefore, we further explored how treatment correlation analysis, using module EGS, might 
reflect on early and later events in the progression of kidney injury. Besides cisplatin, other potentially 
nephrotoxic compounds show strong perturbations of gene expression and pathology at the highest 
tested dose levels and later timepoints (Figures 3, S3, S7 and S8). As exemplified earlier, there was a 
good correlation (R > 0.7) among module EGS after 15-days cisplatin and puromycin aminonucleoside 
treatment (Figure 1D, right), as well as after 8- and 29-days treatment (Figure S9A). Both drug 
treatments also induced comparable pathologies at these later timepoints, including tubular necrosis, 
dilatation and regeneration (Figures 3B and S8B, Table S6). At the 3-hour timepoint there was also a 
modest correlation (R = 0.55) between CSP and PAN, mainly driven by transcriptional stress (rKID:29 
and 64m) responses (Figure S9A). However, from 6 hours through 4 days post treatment there was 
poor correlation of module EGS between CSP and PAN and little indication of pathology (Figures S8B, 
S9A). Induction of the p53 response by CSP is apparent at day 1 and later (rKID:160 and 298), while 
PAN induced modules associated with an early inflammatory response (rKID:15, 16m, 63m, 113, 351), 
the anticipated mechanisms to induce glomerular nephropathy 50.  

Correlation analysis based on module EGS was further leveraged to investigate similarities between 
nephrotoxic treatment conditions given their overlap in activated and deactivated modules (Figures 4, 
S8A and S9). Treatment with nephrotoxic compounds at high dose levels and late time points showed 
strong correlation and clustering, when there was clearly pathology present in the kidneys (Figure 4A 
cluster II, S9B). This suggests that gene expression patterns are similar when there are co-occurring 
pathologies, likely an effect of upregulation of injury induced repair mechanisms of the tissue (e.g., 
regeneration, dedifferentiation and inflammation responses), and downregulation of metabolism and 
mitochondrial function, that may be common after acute drug induced kidney injury 51. However, 
mechanistic information of compound exposures can still be extracted by focusing on outlier modules 
(rKID:160 and 298 in Figure 1D) or earlier timepoints when module activities are more diverse, see 
distinct compound specific clusters (Figure 4A, cluster I = APL, III = CSP, IV = PAN). The DM data also 
showed clustering of stress, immune, injury and regeneration responses with high module EGS during 
nephrotoxic exposures that clearly showed strong pathology association (Figure S10, cluster 6 and 7, 
see row annotation). Mitochondrial and metabolism modules that were negatively associated with 
pathology were indeed downregulated during these exposures with nephrotoxicants in the DM data 
(Figure S10, cluster 1, 2 and 5). Two estrogen receptor agonists primarily induced steroid hormone 
metabolism modules amongst others, showing their primary mechanism of action (Figure S10, cluster 
9), while exposure with diethylstilbestrol showed clear activation of stress and injury response 
modules (cluster 6 and 7), which leaded to mild renal pathology on day 5 (Figure S10B, see column 
annotation).  

To see if observations with nephrotoxicants can be extended to other form of renal injury, we analysed 
transcriptomic data from a previous rat renal ischemia reperfusion injury (IRI) study, a drug-
independent model of acute kidney injury (AKI) 23. Gene expression data were uploaded into the TXG-
MAPr environment and module EGS calculated (Tables S11, S12). The IRI study showed high similarity 
with early allopurinol treatment, mainly triggered by an early inflammatory response by both 
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treatments (Figures 4A cluster I, 4B panel 1,  and S11A). In contrast, the ischemic injury response at 
day 1 and 5 correlated well with late nephrotoxic TG treatments with co-occurring pathologies, 
suggesting that this is a general tissue response to injury, since there is no drug involved in vehicle 
(NaCl) treated ischemic kidneys (Figures 4A cluster II, 4B panel 2, 3 and S11A). Valproic acid (VPA) pre-
exposure was able to accelerate the regeneration response at 1 day post ischemic injury compared to 
NaCl, an effect associated with a stronger activation of cell cycle module rKID:5m (Figure S11B). 

Regenerating or injured proximal tubule epithelial cells (PTC) in vivo and in primary culture undergo 
dedifferentiation and regenerative responses, including a partial epithelial-to-mesenchymal transition, 
based on investigation of specific signalling pathways and expression of the mesenchymal 
intermediate filament, vimentin52,53. To determine if the global transcriptional response to 
dedifferentiation of cultured PTC bore any relationship to the dedifferentiation response associated 
with injury and regeneration in vivo, we compared rat PTC at various time in culture (i.e., 1-7 days after 
plating on Transwell filters) with TG treatments (Tables S11 and S12). Notably, there was high similarity 
between the modular gene expression responses of cultured PTC and late nephrotoxic compound 
treatments (Figures 4A cluster II, S11C and S12), as well as to ischemic injury response at day 1 and 5, 
a time at which regeneration of proximal tubule epithelium is expected (Figure 4A, 4B panel 4,5,6). 
Thus, the dedifferentiation response of primary PTC appears similar, at the transcriptional level, to that 
of the regenerative PTC phenotype associated with the generalized tissue injury/regeneration 
response in vivo. Notably, activation of modules involved in cell cycle (rKID:5m), cytoskeleton / cell 
adhesion (rKID:2m, 42m), transcription (rKID:29, 64m), RNA and protein processing peaked in the first 
two days of culture compared to freshly isolated PTC (Figure S12). In addition, there was clear 
downregulation of metabolism, mitochondrial function and transport in cultured primary PTC (Figure 
S12), which was also seen after kidney injury in vivo.  

In conclusion, high similarities between cellular and tissue responses during nephrotoxic treatments, 
ischemic injury and cultured primary PTC suggest that these are generalizable compound agnostic 
tissue responses to injury, dedifferentiation and repair. Responses to nephrotoxic compounds at early 
timepoints are more distinct and likely indicate the unique compound specific mode of action that 
could lead to cellular stress and later renal injury. 

 

Preservation analysis of rat kidney modules reveal common biological processes, stress 
responses and kidney specific networks 
One of the most important safety decisions when compounds transition from nonclinical to clinical 
testing is whether hazards identified in nonclinical studies will translate to human safety concerns. 
Ideally, quantitative metrics could be used to determine the likelihood that biological events (e.g., 
molecular initiating events (MIE) or key events (KE) in an adverse outcome pathway (AOP) framework) 
will translate across species. A unique aspect of network models, like WGCNA, is that preservation 
statistics can be applied to determine if (node-edge relationships in) biological networks are preserved 
across datasets or systems 27. We first tested robustness of network preservation statistics by 
comparing rat kidney modules based on all data versus the individual TG or DM rat kidney 
transcriptomic data separately using the Z-summary module preservation statistic 27. Notably, all 
modules are moderately preserved (274 modules = 79% with Z-summary > 2) or highly preserved (73 
modules = 21% with Z-summary > 10) in the DM data (Figure 5A, Table S10). Self-preservation (testing 
for preservation in the dataset from which modules were derived) in DM is only slightly lower 
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compared to the self-preservation of the larger TG dataset. In addition, there is good correlation 
between Z-summary scores for preserved modules in DM or TG self-preservation, including a subset 
of 67 modules that are highly preserved using both comparisons (Figure 5B, green line = Z-summary > 
10). This preservation analysis suggests that both TG and DM rat kidney datasets capture similar gene 
co-expression patterns and biological responses. 

To determine if highly preserved modules reflect common biological processes, we investigated their 
biological annotations. Highly preserved module annotate for processes important for maintaining 
cellular homeostasis as well as adaptive responses to chemical injury, including: cell cycle (rKID:5m), 
metabolism (rKID:3m, 9m, 14m, 21, 22, 25m, 116), mitochondrial function (rKID:26m, 28m, 37m, 43m, 
96m), immune responses (rKID:7m, 15, 16m, 56, 63m, 113, 138, 212m), injury biomarker (rKID:2m), 
cytoskeleton (rKID:42m, 112, 142m), extracellular matrix (ECM) remodelling (rKID:10m, 31m), 
transport (rKID:13, 19, 78, 171), development (rKID:12m, 23m, 45m, 57m, 65, 70), ribosomal 
biogenesis / RNA processing (rKID:6m, 8m, 34m, 37m, 40m), proteasome (rKID:35m), circadian 
regulation (rKID:33) and responses to oxidative (rKID:53 = Nrf2) or endoplasmic reticulum (ER) stress 
(rKID:81 = Atf6; rKID:74 = Atf4). Interestingly, there was a large group of 255 kidney modules also 
preserved in rat liver TG-GATEs dataset (Figure 5A and 5C, Table S10), including the aforementioned 
modules involved in regulation of cellular stress or homeostasis. In contrast, some kidney specific 
modules were not preserved in liver, including modules involved in (renal) development (rKID:23m, 
45m, 57m, 70, 186, 196, 290), steroid hormone metabolism (rKID:18m, 95) and transmembrane 
transport (rKID:171, 211, 329) amongst others (Figure 5C). Thus, preservation analysis illustrates that 
modules are highly preserved and robust reflections of cellular responses to drug- or chemical-induced 
renal injury, suggesting that the rat kidney TXG-MAPr analysis framework can be applied to other 
kidney toxicogenomic data to investigate DIKI mechanisms. 

 

Preserved injury and repair related networks in human patients 
Having established that preservation of rat kidney modules is robust when comparing different large 
transcriptomics datasets of the same organ and species, we tested preservation between rat and 
human using available human kidney transcriptomic data. We evaluated preservation of rat kidney 
modules in a large human dataset (GEO: GSE36059) consisting of over 400 renal transplant samples 
from human patients at various times after transplantation with or without evidence of graft rejection 
as well as ‘control’ nephrectomy biopsies 18. Although the human dataset is limited to renal transplant 
samples, among the 347 rat kidney modules, 5 modules had strong preservation and 125 had 
moderate preservation in human kidneys (Figure 5A, Table S10). Modules involved in immune 
response (rKID:7m, rKID:16m), cell cycle (rKID:5m) and metabolism (rKID:3m) were strongly preserved 
(Figure 5D), while several other modules representing other immune responses, metabolism, 
mitochondrial function, RNA processing, cell cycle and ECM remodelling/fibrosis were moderately 
preserved (Table S10). These observations are in line with the fact that a subset of the human samples 
were patients experiencing immune response-mediated graft rejection 18,24. Strikingly, the 
cytoskeleton or injury biomarker module rKID:2m was also strongly preserved in human, showing the 
relevance of the biological context of the renal biomarkers that cluster in similar co-expressed modules 
(Figure 5D, Table S10). Other potential biomarker modules with strong pathology association were 
also preserved in human (Tables 1, 2 and S10). By contrast, some of the modules were not (or hardly) 
preserved (Zsum ≤ 2) in the available human dataset, including modules reflecting cellular stress 
responses, like ATF4 (rKID:74), oxidative stress (rKID:53, 105, 106), as well as modules annotated for 
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ribosomal biogenesis (rKID:6m, 8m), renal development (rKID:23m, 45m), circadian regulation 
(rKID:33), immune response (rKID:15, 56), steroid hormone metabolism (rKID:18m, 95), and several 
other metabolic processes (Table S10).  

Next, the human dataset was uploaded into the rat kidney TXG-MAPr tool (after gene ortholog 
conversion) to see how the human responses were captured using only the preserved modules 
(Figures 6 and S13, Table S13). As expected, immune responses (rKID:7m, 16m, 63m, 113, 138, 212m 
305), extracellular matrix (rKID:10m, 31m 104) and cell migration (rKID:127) modules were most 
strongly induced in human transplant samples and clustered together in the heatmap (Figure S13, 
cluster 3). More inter-individual variation was seen in modules involved in mitochondrial function, 
metabolism and transport, which grouped together in cluster 2 (Figure S13). Immune response and 
injury biomarker modules showed on average stronger activation in patients with immune-mediated 
renal rejection despite some inter-individual variation, while metabolism was stronger downregulated 
in these patients (Figure 6A, S14). Similar patterns could be seen for the log2FC of hub genes and most 
significant genes of each of these inflammation modules (Figure 6A, S14). In addition, inflammation 
modules rKID:7m and rKID:63m showed a very strong correlation (Pearson R = 0.97) across all patient 
samples (Figure 6B, left), which was similar for most of the inflammation and cell migration modules 
(Figure 6C, cluster 3). Also, the biomarker module rKID:2m showed strong correlation (Pearson R = 
0.72) with inflammation module rKID:7m (Figure 6B, centre). In contrast, metabolism module rKID:3m 
showed inverse correlation (Pearson R = -0.62) with inflammation module rKID:7m (Figure 6B, right) 
and rKID:2m, similar to responses in rat kidney. This bi-directional response was also seen for other 
metabolism, mitochondrial and transport modules compared to inflammation (Figure 6C, cluster 1 vs 
3). This indicates that metabolism, mitochondrial function and transport are down regulated in 
patients’ kidneys undergoing renal inflammation, which was also noted in rats. A large group of 
modules with various annotations for RNA and protein processing showed very high correlation (Figure 
6, cluster 4), which was mainly due to downregulation of these modules in a group of patients with 
highest AvAbsEGS. With the presented gene co-expression approach in pre-clinical models, we could 
identify several modules that were preserved in human, indicating the relevance for human 
translation. Moreover, we showed differential gene network dynamics in human patients with rejected 
renal grafts that could be linked to immune responses, injury and biomarker expression, indicating that 
human and rat have similar generalized tissue responses to kidney injury and regeneration.   
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Discussion 
 

In pre-clinical research a wealth of toxicogenomic data has been generated in the past decades, with 
the aim to investigate biological responses to drugs and to understand the mechanisms of toxicity 7. 
Unfortunately, while standardized reporting approaches for bioinformatics have been proposed 54–56, 
a comprehensive qualitative and quantitative mechanistic interpretation framework for 
toxicogenomics underpinning a mechanism-based safety assessment approach is needed 7,8. A major 
hurdle has been the data complexity and the inability to generalize conclusions from transcriptomics 
responses across different cell types, tissues and species. Methods that reduce complex transcriptomic 
data to networks of co-expressed genes that retain biological meaning are an attractive approach to 
reducing the dimensionality of transcriptomic data and facilitating interpretation 15,57, as demonstrated 
previously for rat liver toxicity 10–13. Besides liver injury, kidney toxicity is also a common adverse 
response in both drug and chemical toxicity 1. Therefore, methods that facilitate the extraction of 
mechanistic information from kidney transcriptional responses would be useful in hazard identification 
and risk assessment.  

Herein, we used WGCNA to construct a set of 347 co-regulated gene networks (modules) from the two 
largest, publicly available in vivo rat kidney toxicogenomics datasets (TG-GATEs and DrugMatrix) and 
provide biological annotations for the modules allowing direct translation of gene expression data into 
meaningful biological conclusions. The modules are embedded in an interactive R-shiny application, 
called the rat kidney TXG-MAPr, that allows dose- and time-response analyses, treatment correlation 
and functional annotation (GO-terms, pathways and transcription factor enrichment). We 
demonstrated that this gene co-expression approach and analysis framework has the advantage that 
modules and their quantitative EGS can assist in: (1) data complexity reduction, (2) biological 
annotation for mechanistic interpretation, (3) pathology association, (4) biomarker discovery, and (5) 
translation to human relevant responses. 

First, we have demonstrated that the co-expression modules could identify meaningful biological 
responses relevant to mechanistic investigation using cisplatin exposure as the example. Early 
activation of DNA-damage and p53 signalling (rKID:160) was followed by later occurrence of cellular 
injury and biomarker expression (rKID:2M), regeneration (rKID:5m) and inflammation (rKID:56, 63m, 
212m and 327). These later responses, including activation of biomarker-containing, regeneration and 
inflammatory modules, were mirrored with other nephrotoxicants that had concurrent renal 
histopathology and clinical chemistry changes. This suggests that similarity in gene expression patterns 
reflects common injury-induced repair mechanisms (e.g., regeneration, dedifferentiation and 
inflammation responses). The common injury and regeneration processes across different 
nephrotoxicants, as well as during ischemic injury, are compound agnostic and general tissue 
responses to injury and repair, where a complex interplay between renal inflammation and cellular 
dedifferentiation or partial EMT are contributing to renal repair 58. However, at early stages after 
nephrotoxic compounds exposure there was a distinct activation of biological response networks 
relevant to the expected different mechanisms of injury. For example, the induction of rKID:160 and 
rKID:298 (the modules annotating for p53 responses) is much stronger and unique for cisplatin, 
carboplatin and doxorubicin, due to their genotoxic mechanism of action, compared to other 
nephrotoxicants, like puromycin aminonucleoside. In contrast, the primary key event of puromycin is 
an early inflammatory response, which the anticipated mechanisms of action that can induce 
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glomerular nephropathy 50. In addition, estrogen receptor agonists are the main inducers of steroid 
hormone metabolism modules, which is expected based on their primary mechanism of action. Thus, 
the rat kidney TXG-MAPr tool also allows evaluation of molecular mechanisms and early mode-of-
action of drugs and chemicals with respect to onset of nephrotoxicity. The module annotations that 
we provide in this study enhance a qualitative and quantitative mechanistic interpretation of renal 
toxicogenomics data and capture most of the well-known biological processes.  

Various studies have applied gene co-expression network analysis on rat and human kidney injury 
samples 59–64. A previous study applied gene co-expression analysis on the rat kidney DM data and also 
identified modules that correlated with acute kidney injury, which contained Havcr1 and Clu genes 59, 
which are in module rKID:2m with the strongest pathology association in our study as well. Most other 
studies identified a small number of modules due to the limited number of samples used to build the 
gene co-expression networks, but the captured modules include stress and immune responses, which 
were also the most relevant modules for pathology in our study. However, these previous studies did 
not integrate their kidney gene co-expression networks into a publicly accessible online tool, like the 
rat kidney TXG-MAPr, underpinning its value. Though there are co-expression tools built from data of 
various species and tissues that are publicly available 65–69. These tools mainly show gene interactions, 
pathway analysis, or conservation across species. In contrast, the rat kidney TXG-MAPr tool allows the 
users to interactively visualize quantitative changes in gene networks by chemical or biological 
perturbations. In addition, users can upload log2FC gene expression data for comparison to the 
reference toxicogenomics dataset in the TXG-MAPr tool, which is highly valuable to identify common 
mechanisms of action for chemical hazard identification. 

Inflammation accompanied by metabolic re-wiring are hallmarks of acute tubular injury and the 
balance between injury and repair 51. Thus, the juxtaposition of inflammation module induction and 
repression of metabolism and mitochondrial modules is worth noting. Repression of module rKID:3m 
(highly annotated for small molecular metabolism and mitochondrion (Table S3)) ranked among the 
top ten modules (based on effect size and p-adjust) for multiple pathologies (Tables S8 and S9). 
Conversely, modules rKID:7m, 63m and 327 are annotated for immune response and were among the 
top five ranked inducible modules associated with the presence of cellular infiltrates, i.e., inflammation 
(Tables 2 and S8). Thus, strong activation in regeneration and inflammation responses impacted on 
cellular energy production (metabolism and mitochondrial function) in the kidney, which was also 
concluded previously for liver diseases 70. The bi-directional response of these processes was also 
demonstrated in human patients with renal transplants (Figure 6C), suggesting that these injury and 
repair responses are also conserved between species. 

In this study we have identified modules with strong statistical association with histopathology findings 
and biomarkers of tissue injuries. Module rKID:2m was most strongly associated with concurrent and 
predictive renal pathology and contained many well-known kidney injury biomarkers, including Havcr1 
(Kim-1), Lcn2 (Lipocalin 2) Spp1 (Osteopontin) and Clu (Clusterin). In addition, several immune 
response modules ranked highly for association with concurrent and predictive kidney injury (Tables 
2 and S9), including modules rKID:327, rKID:56 and rKID:212m, containing hub genes that are 
candidate novel biomarkers such as fibrinogen (Fga, Fgb, Fgg), Icam1 and ceruloplasmin (CP), 
respectively 71–74. This suggests that novel injury biomarkers could be discovered using gene co-
expression networks that are strongly associated with pathology, as was recently reported for liver 
and kidney 11,75. This approach was validated in a recently published study where early activation of 
injury modules after cisplatin exposure will lead to renal pathology in rats by 28 days, including 
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necrosis, inflammation and fibrosis 76. It was shown that urinary clusterin correlated well with Clu gene 
expression, which is an important biomarker in rKID:2m that showed the strongest pathology 
association. The subset of both concurrent and predictive kidney injury-associated modules is 
important for chemical or drug development since aberrant transcriptional activity could indicate 
higher risk of developing adversity. Moreover, association of (early) WGCNA module changes that are 
predictive of late-stage kidney pathology is expected to impact drug candidate optimization and enable 
prioritization of safer compounds.  

Preservation analysis is a unique feature of network-based models allowing not only the robustness 
and reproducibility of modules to be tested using datasets from the same experimental species, but 
also the likelihood of translation across species, which is an important consideration in drug or 
chemical hazard assessment. All rat kidney modules had at least moderate self-preservation in the TG 
and DM rat kidney transcriptomic data, indicating that the modules were robust and reproducible 
representations of biological response networks in rat kidneys. However, only 130 (37%) of the 347 rat 
modules were preserved (translational modules) when compared to a human renal transplantation 
transcriptomic dataset. Among the translational modules were those that reflect immune response, 
cell cycle, metabolism, mitochondrial function, RNA processing, and ECM remodelling / fibrosis 
modules. These biological programs are deterministic of end-stage renal disease, involving 
inflammatory and regenerative programs that are part of renal transplant rejection 51. By contrast, 
various modules that reflect early cellular stress response programs, including ER stress activation of 
Atf4, Nrf2-mediated oxidative stress, as well as modules annotated for ribosomal biogenesis, renal 
development, circadian regulation, steroid hormone metabolism were not preserved in human. These 
differences are likely due to the nature of the human dataset, which only contained human transplant 
samples, where early injury or disease responses, including adaptive cellular stress responses, are not 
captured in these late-stage human transplant disease settings 18. Nonetheless, the fact that important 
toxicity-related rat kidney modules are preserved in human kidney samples suggests that the 
preservation approach is an attractive and valid strategy to determine the likelihood that mechanisms 
of renal injury observed in rat kidney will translate to human. Future studies should focus on collection 
of more extensive and diverse human renal pathology transcriptomics datasets representing a broader 
spectrum of early and late-stage disease phenotypes, which may improve the preservation statistics 
and confidence which rat modules will translate to human, which is significant knowledge for chemical 
safety assessment.  

In conclusion, the rat kidney TXG-MAPr tool provides a user-friendly interface that enables 
visualization of gene expression data in the context of co-expressed modules that can be mined for the 
association of important biological processes in acute and chronic renal injury. The tool can be utilized 
for identifying possible safety liabilities and/or mechanisms that can lead to adversity, useful for 
chemical safety assessment. Association of early WGCNA module changes that are predictive of later 
kidney pathology is expected to impact lead optimization and enable prioritization of better 
compounds which are less likely to induce pathology. We foresee that quantitative gene co-expression 
modules, which are strongly associated to kidney pathology, and which translate from rat to human, 
could potentially be implemented in translational quantitative systems toxicology models for 
mechanistic evaluation and prediction of kidney injury of new chemical or drug candidates 77.  
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Figure legends 
 
Figure 1. Overview of the rat kidney TXG-MAPr tool. (A) TXG-MAPr dendrograms showing WGCNA 
module eigengene scores (EGS) of daily repeated 1 mg/kg/day cisplatin time course exposure from 4 - 
29 days. The size of the circles is proportional to the module EGS, and the red/orange colours indicate 
induction of the module, while blue/green indicates repression of the module. (B) Modules rKID:160, 
rKID:298 and rKID:2m (left) are strongly induced by high dose cisplatin exposure at 29 days, which is 
further displayed in cisplatin time response plots of the module EGS (middle) and the log2FC (right) of 
the most significant genes, including the most hub-like gene (black). (C) KEGG pathway and 
transcription factor (TF) enrichment (p-value) for p53 signalling or TP53 projected on the TXG-MAP 
dendrogram, with rKID:160 and rKID:298 highlighted. (D) Module EGS correlation plot of rKID:298 and 
rKID:160 for all treatment conditions (left) and correlation between 12 mg/kg/day puromycin 
aminonucleoside and 1 mg/kg/day cisplatin at 15 days for all modules (right).  
 
Figure 2. Module association with pathology. Strong Pearson correlation between different 
pathologies based on Cohen’s D effect size (A) and signed log10 adjusted p-value (B). This indicates 
that the same modules are associated with multiple pathologies, which could be the results of co-
occurring pathologies (cluster 1 Figure A). Cluster 1 from figure A could be separated in 2 clusters (B), 
when controlling for module EGS using signed log10 adjusted p-values. Only the most occurring 
pathologies were taken along, with a pathology score ≥ 0.67 (and ≥ 1.33 for some pathologies). (C) 
TXG-MAPr dendrograms showing module association with different toxicity phenotypes based on the 
signed log10 adjusted p-value. Red colour indicates that the module EGS positively correlates with the 
selected pathology (module induced with pathology present), while blue means a negative correlation 
(module repressed with pathology present). The size of the circles is proportional to the -log10 
adjusted p-value. For the branches with the strongest pathology associations, the general enrichment 
score is provided based on ORA of all genes in the branch. (D-E) Heatmap of signed log10 p-adjust of 
concurrent (D) and 4-day predictive (E) module associations with pathology. Red colour indicates that 
the module EGS positively correlates with the selected pathology, while blue means a negative 
correlation (i.e., module is repressed when the pathology is present). Hierarchical clustering was 
applied on rows and columns to cluster both modules (rows) and toxicity phenotypes (columns) with 
similar association scores together. For concurrent associations, modules from clusters 1 and 2 were 
selected for strongest negative and positive correlation with toxicity, respectively. Module shows 
highest statistical association with concurrent toxicity phenotypes (see bottom pathology cluster II), 
which were selected to look at the mean effect sizes and p-values (see also Table S9). For predictive 
associations, the 4 days show the highest statistical significance, where modules from clusters 2 and 7 
were selected for strongest negative and positive correlation with toxicity, respectively. Heatmaps are 
clustered by Euclidean distance, using the complete method from pheatmap package. 
 
Figure 3. Gene expression responses during nephrotoxic treatments. (A) Expression of genes of 
selected modules with high pathology association is induced during nephrotoxic treatment conditions. 
(B) The most prevalent renal pathologies induced by nephrotoxic treatments. (C) Serum biomarker 
increases during nephrotoxic treatments versus controls (percentage increase, red line indicates 100% 
or 2-fold increase). APL = allopurinol, CSA = cyclosporine A, CSP = cisplatin, GMC = gentamicin, LS = 
lomustine, NPAA = phenylanthranilic acid, PAN = puromycin aminonucleoside, TRI = triamterene.  
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Figure 4. Correlation of ischemic injury and PTC dedifferentiation with nephrotoxic treatment 
conditions. (A) Cluster correlation plot for transcriptomic responses to nephrotoxic compounds, 
ischemic injury and primary PTC cultures, which shows strong Pearson R correlation between module 
EGS at time points when there is concurrent pathology (cluster II in black box), while early allopurinol 
(cluster I), cisplatin (cluster III) and puromycin aminonucleoside (cluster IV) responses are more 
distinct. Left heatmap displays the percent increase of serum injury biomarkers (BUN and CRE) 
compared to control (purple) and histopathology grades of tubule necrosis and regeneration (blue). 
Heatmap is clustered by Euclidean distance, using the complete method from pheatmap package. (B) 
Examples of correlation plots of responses during renal injury, showing high correlation between 
nephrotoxic treatments (APL = allopurinol), ischemic injury and PTC dedifferentiation. 
 
Figure 5. Module preservation. (A) Number of preserved rat kidney modules across datasets (TG-
GATEs (TG) rat kidney, DrugMatrix (DM) rat kidney, TG rat liver and human kidney). TG and DM kidney 
datasets were used as a control to check if all modules are preserved. Z-summary > 2 indicate moderate 
module preservation and Z-summary > 10 indicate high module preservation. (B) Strong correlation 
between TG and DM preserved modules indicated by Z-summary scores for both comparisons, 
displayed on the axis as a log scale. Specific modules are highlighted that are strongly preserved in 
both datasets. (C) Comparison of rat kidney and liver Z-summary scores displayed on the axis as a log 
scale. Several modules are strongly preserved in both kidney and liver datasets, indicating that these 
processed have similar co-expression networks between the organs. Various kidney specific processes 
are only preserved in the kidney, but not in the liver (left of the red dashed line), including modules 
rKID:23m (kidney development), steroid metabolism (rKID:18m and 95) and Golgi function (rKID:109). 
(D) Comparison of rat kidney and human kidney Z-summary scores displayed on the axis as a log scale. 
Correlation plot of rat kidney modules preserved in DM kidney versus human kidney data, indicating 
that several modules are also preserved in human (rKID:2m, 3m, 5m, 7m, 10m, 16m and 42m amongst 
others), but others lack preservation in human (rKID:15 amongst others). Dashed red line indicates 
low/moderate module preservation threshold (Zsum > 2) and dashed green line indicates strong 
module preservation threshold (Zsum > 10). See also Table S10 for more details. 
 
Figure 6. Human preservation and network dynamics. (A) Box plot for the different human transplant 
groups showing the module EGS (left) and the log2 fold change of the hub gene (second column) and 
most significant genes of inflammation module rKID:7m. The groups are indicated by rejection type: 
non-rejecting, ABMR = antibody mediated rejection, TCMR = T-cell mediated rejection, MIXED = both 
antibody and T-cell mediated rejection. Significant differences between groups were calculated using 
a Wilcoxon test. Significant gene log2 fold changes of individual patients were indicated in blue (p < 
0.05). (B) Module EGS correlation plot of inflammation modules rKID:7m vs rKID:63m (left), 
inflammation module rKID:7m vs injury biomarker module rKID:2m (centre) and inflammation rKID:7m 
vs metabolism rKID:3m modules. Strong correlation is shown between the two inflammation and injury 
biomarker modules, while there is inverse correlation between the inflammation module rKID:7m and 
the metabolism module rKID:3m. (C) Cluster correlation heatmap (based on Pearson correlation of 
module EGS) of the preserved modules in human with a EGS > 2. There is strong clustering of the 
inflammation, ECM and cell migration modules (cluster 3) and cellular stress or injury related modules 
(cluster 4). The mitochondrial function, metabolism and transport modules cluster together as well 
(cluster 1) but show anti correlation with the inflammation and stress / injury modules. Heatmap is 
clustered by Euclidean distance, using the complete method from pheatmap package. 
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