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Abbreviations:

AKI Acute kidney injury

APL Allopurinol

ATF Activating transcription factor
AvAbSEGS Average absolute eigengene score
BUN Blood urea nitrogen

COrEG Correlation eigengene score

CRE Creatinine

Csp Cisplatin

DIKI Drug-induced kidney injury

DM DrugMatrix

EGS Eigengene score

ER Endoplasmic reticulum

FC Fold change

GO Gene ontology

IRI Ischemia reperfusion injury

KIM-1 Kidney injury molecule-1

log2FC log2 fold change

NRF2 Nuclear Factor Erythroid 2-Related Factor 2
ORA Over Representation Analysis

PAN Puromycin aminonucleoside

PTC Proximal tubular cells

RMA Robust Multi-array Average

TG TG-GATEs

TF Transcription factor

TXG Toxicogenomics

WGCNA Weighted gene co-expression network analysis


https://doi.org/10.1101/2023.11.03.565444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.03.565444; this version posted February 28, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Summary

Toxicogenomic data represent a valuable source of biological information at molecular and cellular
level to understand unanticipated organ toxicities. Weighted gene co-expression networks analysis can
reduce the complexity of gene-level transcriptomic data to a set of biological response-networks useful
for providing insights into mechanisms of drug-induced adverse outcomes. In this study, we have built
co-regulated gene networks (modules) from the TG-GATEs and DrugMatrix rat kidney datasets
consisting of time- and dose-response data for 180 compounds, including nephrotoxicants. Data from
the 347 modules were incorporated into the rat kidney TXG-MAPr web tool, a user-friendly interface
that enables visualization and analysis of module perturbations, quantified by a module eigengene
score (EGS) for each treatment condition. Several modules annotated for cellular stress, renal injury
and inflammation were statistically associated with concurrent renal pathologies, including modules
that contain both well-known and novel renal biomarker genes. In addition, many rat kidney modules
contain well annotated, robust gene networks that are preserved across transcriptome datasets,
suggesting that these biological networks translate to other (drug-induced) kidney injury cases.
Moreover, preservation analysis of human kidney transcriptomic data provided a quantitative metric
to assess the likelihood that rat kidney modules, and the associated biological interpretation, translate
from non-clinical species to human. In conclusion, the rat kidney TXG-MAPr enables uploading and
analysis of kidney gene expression data in the context of rat kidney co-expression networks, which
could identify possible safety liabilities and/or mechanisms that can lead to adversity for chemical or
drug candidates.

Keywords: nephrotoxicity, DIKI, WGCNA, gene co-expression, toxicogenomics, biomarker, translation

Translational Statement:

Gene co-expression networks (modules) were generated using rat kidney toxicogenomics data, which
reduced data complexity and retained quantitative mechanisms to enhance safety assessment. Several
stress, injury and inflammation modules were statistically associated with renal pathologies, useful for
biomarker identification. Moreover, many rat kidney modules contained well-annotated, robust gene-
networks that were preserved in human patients transcriptome data after renal transplantation,
suggesting that these biological networks translate to human relevant kidney-injury. So, the rat kidney
TXG-MAPr tool enables transcriptome analysis in the context of kidney co-expression networks, which
could identify chemical-induced safety liabilities and/or mechanisms leading to adversity, relevant for
human risk-assessment.
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Introduction

Kidneys play a pivotal role in drug disposition and excretion, making them an important target organ
for adverse reactions. Chemical- or drug-induced kidney injury (DIKI) is often observed in (proximal)
tubular epithelial cells, but other nephron segments like the glomerulus may also be targeted *. Initial
injury can lead to subsequent cell death followed by repair and regeneration or, if injury is severe, to
loss of nephrons and progression to renal failure 2. The severity of the initial insult, the degree of
cellular injury, and the potential for repair in these regions are determined by local extracellular drug
concentration (blood and glomerular filtrate) and intracellular accumulation of drug driven by cellular
transport/uptake. The balance between uptake and efflux transport, as well as drug metabolism
dictate the effective exposure at cellular targets that yield on- or off-target pharmacology and toxicity3.
Activation of cellular stress response pathways, including oxidative stress, DNA-damage and unfolded
protein response (UPR), are early responses to injury and are critical in the adaptation versus
progression of kidney injury, although the mechanistic understanding is still incomplete *°.

Nonclinical safety studies are designed to characterize target organ toxicity that can be monitored
during clinical testing of drug candidates. Histopathology data is the gold standard for pre-clinical drug
safety assessment, but only informs the occurrence of injury and not the mechanism . Association of
drug-induced transcriptomic changes with histopathology findings may provide key mechanistic
insights into biological responses leading to adversities. However, despite two decades of application,
transcriptomic analysis has not achieved wide-spread application in drug safety assessment, perhaps
in part due to difficulties in achieving meaningful qualitative and quantitative interpretation and useful
safety predictions from high content transcriptomic data 7. Among the reasons for slow uptake is the
difficulty in translating gene-level data into interpretable biological responses and the penalties
incurred due to false discovery rates °. However, recent publications demonstrate that co-regulated
gene network approaches can organize high dimensional toxicogenomic data into a smaller set of
biological response networks, which has been applied to uncover novel mechanisms underlying drug-
induced liver toxicities 13

In this study, we aimed to develop co-regulated gene networks to study the mechanism of kidney injury
using toxicogenomic data. We applied weighted gene co-expression network analysis (WGCNA) to

identify rat kidney specific co-regulated gene networks (modules) using the publicly available TG-

14~

GATEs (TG) and DrugMatrix (DM) toxicogenomic dataset from rat kidney *'7. As done previously for

primary human hepatocytes and rat liver %!, we have developed an R-shiny based interactive
webtool, the rat kidney TXG-MAPr (https://txg-mapr.eu/login/). WGCNA gene modules could be

guantitatively visualized by module eigengene scores (EGS) and reduced to meaningful biological

responses relevant to understanding mechanisms of toxicity. Specific module responses were
statistically associated with pathology phenotypes (clinical chemistry and histopathology), thereby
linking cellular mechanisms to renal injury. Several of these modules linked to kidney injury are
preserved across datasets and species, including kidney transcriptomic data from human patients 8,
Our results suggest that gene co-regulated modules in the rat kidney TXG-MAPr can be applied to other
toxicogenomic datasets for chemical and drug safety assessment and to identify modules and
associated biological responses that are relevant in the context of human translational safety
assessments.
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Methods

Sample collection and gene expression analysis

Toxicogenomic data from the TG-GATEs (TG) rat kidney repository (Affymetrix Rat Genome 230 2.0
array) were downloaded ! and jointly normalized using the Robust Multi-array Average (RMA) method
within the affy package using R 2, The BrainArray chip description file (CDF) version 19 (
http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/CDF download.asp,

Rat230 2 array version 19) was used to map Affymetrix probesets to NCBI gene Entrez_IDs 2!, which
resulted in 13877 unique probe sets, each mapped to a single gene. The TG kidney repository contains
975 rat treatments, where each treatment is defined as a combination of compound, time and
concentration. Vehicle treated control samples are available for each individual time point (time-
matched controls). The limma R package was used to calculate log2 fold-change (log2 FC) values, by
building a linear model fit and computing differential expression by empirical Bayes moderation for
each treatment condition 2. Toxicogenomic data from the DrugMatrix (DM) rat kidney repository and
a renal ischemia reperfusion injury (IRI) study were downloaded from Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/; GSE57811 and GSE58438) and analysed following the same
procedure as the TG data 2. For the DM data the time-matched vehicle control samples were

indicated per treatment condition. The IRl study had one group of naive treated rat controls (n=5),
which was used for differential gene expression at the different timepoints after ischemia reperfusion.
Human Affymetrix transcriptomics data (Human Genome U133 Plus 2.0 Array) from human patients

) 1824 annotated using BrainArray CDF

after kidney transplantation were collected from GEO (GSE36059
version 25 (HGU133Plus2) and normalized using RMA in the affy R package. One CEL file sample was
removed because it was deprecated. Differential gene expression of each patient kidney transplant

sample was contrasted with the eight nephrectomy controls samples using limma package.

For isolation of primary rat proximal tubular cells (PTC) 3 male Sprague Dawley rats (10 weeks old)
were sacrificed and kidneys were harvested and decapsulated. The rats were supplied by Charles River,
UK, and were housed at Newcastle University before being euthanized by cervical dislocation. Ethical
approval for the isolation and culture of primary proximal tubules cells from rats was obtained from
the Animal Welfare and Ethical Review Body at Newcastle University and all procedures were carried
out in accordance with Animals (Scientific Procedures) Act 1986. Newcastle University holds OLAW
Animal Welfare Assurance certification for animal welfare. At least 1 mg of whole kidney biopsy sample
was soaked in 1 mL of RNAlater. Cortical slices were taken through the kidney samples from each
animal and rat PTCs were isolated from the minced cortical slices as previously described 22°,
Approximately 1 million freshly isolated rat PTCs were soaked in 1 mL of RNAlater serving as the day 0
sample. The remaining PTCs were seeded onto 12-well Transwell inserts at density of 200,000 cells per
insert. Medium was changed on day 1, 3 and 5 after seeding. PTCs were harvested day 1, 2, 5 and 7
post-seeding. On the day of RNA sampling, media was gently removed from the wells, membranes
were cut out and put into 10 mL of RNAlater (Thermo Fisher) per timepoint. Samples were stored at
4°C overnight, then at -20°C. RNA was isolated from rat kidney samples and PTC cultures using Trizol +
Direct-zol columns according to the referenced protocol (Zymo Research). For PTC cultures, RNA was
isolated from Transwell filters (multiple filters were pooled per timepoint) and concentrated over RNA
Clean & Concentrate (RCC) columns (Zymo Research). RNA quality was assessed by Agilent Bioanalyzer
and all samples had a RIN > 6.3. For microarray analysis, 1 pug of total RNA was used for preparation of
biotin-labeled cRNA. Samples were hybridized to Affymetrix Clariom-D rat arrays for transcriptome
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analysis and scanned on an Affymetrix GeneChip Scanner. Raw CEL files were annotated using
BrainArray CDF version 25 (ClariomDRat) and normalized using RMA in the affy R package. Differential
gene expression for the PTC cultures was contrasted with the whole kidney samples using the limma
package to investigate the transcriptional response of cells taken into culture. Raw and processed data
of the PTC cultures is deposited in EBML-EBI ArrayExpress database (E-MTAB-13633).

Rat kidney gene co-expression network analysis

Kidney specific co-regulated gene networks (modules) were obtained from the TG and DM rat kidney
log2 FC data matrix ', using the WGCNA package in R . The rat kidney TG data contains
transcriptomic data of single (3, 6, 9 and 24 hours) and daily repeated (4, 8, 15 and 29 days) exposures
for 41 (drug) compounds at various dose levels (i.e., 975 compound, dose and time combinations
(conditions) in total). The rat kidney DM data contains transcriptomics data from daily repeated
exposures with 139 (drug) compounds at 1 or 2 dose levels and for up to 14 days (i.e., 360 treatment
conditions). We applied unsigned WGCNA to the log2FC matrix of all TG and DM data to group co-
induced and co-repressed genes together. The optimal soft power threshold of 8 was selected based
on the standard power-law plotting within the WGCNA package and by maximizing the difference in
basal gene expression of genes showing co-expression (module genes) versus genes not showing co-
expression (excluded genes) based on a t-test with the assumption that low expressed genes are not
correlating. From the 13877 unique genes on the Rat230_2 array, we obtained 399 co-expression
modules containing 11,244 genes, while 2633 excluded genes did not meet the co-expression criteria.
Modules were merged when having a pair-wise Pearson correlation 2 0.8 of the module eigengene
scores (EGS) based on all treatments, which resulted in a final list of 347 merged modules (Table S1).
Merged modules contain the suffix ‘m’, i.e., module rat KIDNEY:2m (i.e., rKID:2m) was merged from
child modules 2 and 11. For each treatment condition a module EGS was computed as the first principal
component of variation for all genes after Z-scoring the log2 FC matrix (Table S2), as described
previously %2, This module EGS represents a quantitative measure of activation or repression of all
genes (based on log2 FC) in the module. An EGS > 2 or < -2 was considered as a large perturbation in
expression of the underlying genes 3. The correlation between the log2 FC of each gene with the
module EGS was also calculated (called the corEG = correlation eigengene) to estimate the
intramodular connectivity of the genes and their network (note that genes can also have opposite
(negative) weighting because of the unsigned co-expression). The gene with the highest absolute
corEG within a module is the hub gene and is the most representative gene of the module. The circular
rat kidney TXG-MAPr dendrogram was constructed using the ape package based on Ward’s hierarchical
clustering of pair-wise Pearson correlation for every module across all treatment conditions (Figure
S1). Each main branch is indicated by letters A-l, followed by subbranches (i.e., Alalai) as indicated in
Figure S1 and Table S1. To improve visualization of the dendrogram, some module edges and nodes
were manually adjusted to separate module clusters. The module EGS are displayed on the TXG-MAPr
dendrogram as circles, with the size and colour proportional to the amount of induction or repression
for a given treatment condition (Figure 1A, red to blue colour scale, respectively). Compound or
treatment correlation was calculated for all treatment conditions using pair-wise Pearson or Spearman
correlation of the module EGS. Similarly, module correlation was calculated across all modules (347 x
347 matrix). Preservation of the TG and DM rat kidney WGCNA module structure with other datasets
(TG rat kidney only, DM rat kidney only, TG rat liver and GEO human kidney) was performed using the
modulePreservation function within the WGCNA package in R #. Modules with a Z-summary > 2 were
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considered moderately preserved and Z-summary > 10 were highly preserved. The R-script for WGCNA
module generation and preservation analysis can be found in an online GitHub repository linked to
persistent identifier in Zenodo: https://doi.org/10.5281/zenodo.14926143.

Functional enrichment analyses and annotation of modules

Modules were annotated by functional enrichment (GO-terms, pathways and transcription factors)
using hypergeometric tests (Tables $S3-S5) as described previously °. Briefly, GO-term enrichment was
performed with the topGO package in R using the algorithm = "classic" and statistic = "fisher" 2. Over
Representation Analysis (ORA) was performed on the gene members of each module using Consensus
Pathway DB (cpdb version 34), including the following databases: BioCarta, EHMN, HumanCyc, INOH,
KEGG, NetPath, Reactome, PharmGKB, PID, Signalink, SMPDB, Wikipathways, UniProt, InterPro %. For
both resources, we included enriched terms with a hypergeometric test p-value < 0.01 (Table S3). To
identify regulatory transcription factors (TFs) of each module, a hypergeometric test was performed
on module gene members using the function phyper within the stats package in R (Table $4). The gene
set of TFs and their regulated genes (regulons) are derived from DoRothEA * with two sets of
confidence levels: the “high confidence” level comprises categories A, B and C, while the “high
coverage” level comprises categories A, B, C and D. The enriched TFs with p-value less than 0.01 were
included in the study. In parallel, TFs’ activities were estimated as normalized enrichment scores using
the viper function from the viper package 3! with two confidence sets of TF-regulon from DoRothEA as
described. All parameter settings were assigned as in the original DoRothEA study 3°. The most
significant module enrichment terms (gene overrepresentation analysis) were reviewed for a common
theme, which were summarized in a Key_annotation and annotation levels 1 through 3 (Table S5).
Only modules with an enrichment p-value < 10 (0.0001) were reviewed to find a common annotation.
Annotation level 1 describes the general cellular process or function (e.g., metabolism, immune
response, RNA/protein processing, stress response), level 2 describes the sub-process or function, and
level 3 provides the most specific process or transcription factor involved. These 3 levels of annotation
were summarized in the Key_annotation, which describes the function of the genes in the modules
based on the most significant enrichment terms (Table S5).

Module association with pathology

The TG database also provides clinical chemistry (biomarker data) and histopathology data for all
treatment conditions. Histopathology data was reviewed by pathologists for 4 nephrotoxic compounds
(cisplatin, carboplatin, cyclosporine A and allopurinol) and most calls were in agreement with the
pathology score provided by TG. Only the most occurring pathologies were included for the statistical
association, including necrosis, degeneration, regeneration, basophilic change (cellular staining
indication a regenerative process), cellular infiltration (indicating an inflammatory/ immune response),
fibrosis, vacuolization, dilatation (widening of the renal tubules), cysts and hyaline casts (protein
aggregates in the tubular lumen). Overlapping pathology terms were combined (e.g., different types
of cellular infiltration or different regions of tubular injury), resulting in a final list of 19 unique
histopathology’s (Tables S6-S7). Necrosis and degeneration were also considered as a combined term
because these pathologies have overlapping biological meaning, as well as regeneration and basophilic
change. For these overlapping pathologies, the maximum grade was used for each treatment
condition. Histopathology severity was converted in a numerical scale (normal = 0, minimal = 1, slight
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=2, moderate = 3, severe = 4) and the average score was calculated per treatment group of maximum
3 animals that were also used for the microarray analysis. Histopathology presence in a treatment
group was indicated by a severity score >= 0.67 for all pathologies, but a higher threshold (>=1.33) was
also applied for a few pathologies (Table S7). Clinical chemistry measurements were calculated as
average percent change from the time-matched control group. The KW-BW ratio (kidney weight - body
weight ratio) was calculated by dividing the total kidney weight by the body weight. The threshold for
a significant increase in clinical measurements is defined in Table S7. The kidney toxicity phenotypes
(histopathology or clinical chemistry) were used to evaluate statistical association between module
EGS and the occurrence of kidney pathology, as described previously 3. Both concurrent and predictive
module associations with pathology (i.e., early module changes that are preceding the toxicity at a
later timepoint) were calculated. Effect sizes (Cohen’s D) of each module were calculated by comparing
mean module EGS in the presence (positives) or absence (negatives) of renal injury, with thresholds
specified in Table S7, for each of the 29 toxicity phenotypes (Table S8).

Cohen’s D = (mean module EGS positives — mean module EGS negatives) / pooled SD module EGS

To control for overall gene expression, we applied logistic regression to account for differences in both
module EGS and average absolute EGS (AvAbsEGS) as covariates in the analysis, as described previously
13, Briefly, the g/m() function of the stats package was applied with single linear models:

Module_single = gim(phenotype ~ module EGS, family = “binomial”)
AvAbsEGS_single = glm(phenotype ~ AvAbsEGS, family = “binomial”)

The Module_single model predicted the outcome of using only module EGS as variable and provided
p_single (Table S8). In addition, the full linear model was calculated:

Module_Av_full = glm(phenotype ~ AvAbsEGS + module EGS, family = “binomial”)

This determined the coefficients, which is the natural log odds ratio for observing a phenotype for a
single-unit increase in module EGS. Finally, the significance of module EGS as an additional variable
was tested, which provided the p-adj (Table S8):

add1(AvAbsEGS_single, scope = ~ AvAbsEGS + module EGS, test = “Chisq”)

The p-adj value was converted to a signed log10 p-adj, by using the sign of the effect sizes. This signed
log10 p-adj and the Cohen’s D effect size were used as measure/rank for module associations with
toxicity phenotypes in several plots and tables.

Rat kidney TXG-MAPr webtool

An interactive visualization of rat kidney WGCNA module and gene expression data has been
implemented in the rat kidney TXG-MAPr (Toxicogenomics-MAPr) webtool using the shiny package in
R to create a user-interface %, as described previously °. The rat kidney TXG-MAPr tool is available at
https://txg-mapr.eu/login/. The tool allows evaluation of dose- and time-response data, compound

correlation plots and module association with pathology, which is also available in tabulated format.
New or external gene expression data (log2 FC) can be uploaded in the TXG-MAPTr tool, as described
previously 1°. This enables calculation of new EGS for each module from external dataset based on the
gene log2 FC and weighted by the gene corEG. The new module EGS will be overlaid onto the rat kidney
TXG-MAPr dendrogram and will be fully integrated into the web application for that session. Uploaded
data will be removed when the session is closed.
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Quantification and statistical analysis

All figures were plotted in R version 4.0.0 *or higher using mainly ggplot2, pheatmap, shiny, igraph

and ape packages. Statistical analyses were carried out using functions from R packages for differential

gene expression analysis (affy, limma), correlation analysis and logistic regression (stats), enrichment

analysis (topGO, stats), gene co-expression and preservation analysis (WGCNA).

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Transcriptomics data of rat primary proximal tubule | This paper ArrayExpress: E-MTAB-13633

cultures (PTC) during in vitro dedifferentiation

TG-GATEs rat in vivo kidney transcriptomics data

Igarashi et al. 16

TG-GATEs:
https://dbarchive.biosciencedbc.jp/
data/open-
tggates/LATEST/Rat/in vivo/Kidney/

DrugMatrix rat in vivo kidney transcriptomics data

Svoboda et al. V7

GEO: GSE57811

Rat renal ischemia reperfusion injury (IRI)

transcriptomics data

Speir et al. 2

GEO: GSE58438

Transcriptomics data from human kidney transplant
biopsies

Reeve et al. 1824

GEO: GSE36059

Experimental models: Cell lines

Rat primary proximal tubule cultures (PTC)

NewCells Biotech

N/A

Software and algorithms

TXG-MAPr tool (shiny app)

This paper,
Callegaro et al. 1©

https://txg-mapr.eu/login/

WGCNA and preservation analysis script

This paper

https://doi.org/10.5281/zenodo.149
26143

R version >4.0.0

R Core Team *°

https://cran.rstudio.com/

stats package

R Core Team *°

https://cran.rstudio.com/

WGCNA package

Langfelder et al. 1°

https://cran.rstudio.com/

affy package

Gautier etal. 2°

https://cran.rstudio.com/

limma package

Ritchie et al. 22

https://cran.rstudio.com/

shiny package

Chang et al. 32

https://cran.rstudio.com/

ggplot2 package

Wickham 33

https://cran.rstudio.com/

pheatmap package

Kolde 3+

https://cran.rstudio.com/
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Results

Rat kidney TXG-MAPr tool to identify biological mechanisms of kidney injury

Gene co-expression networks (347 modules) were built from the TG and DM rat kidney datasets using
WGCNA (Table S1). Gene expression changes were scored at the module level for each treatment
condition by the eigengene score (EGS), see Table S2 for all treatment conditions. The EGS indicates
the induction or repression of the entire module based on the weighted log2 FC expression of its
component genes. Modules are arranged in a TXG-MAPr dendrogram, based on the hierarchical
clustering across all treatments (Figure S1), and the size and colour of each circle is proportional to the
amount of induction or repression for a given treatment condition (Figure 1A, red to blue colour scale,
respectively). The rat kidney module and gene expression data were incorporated into a R-shiny
framework (TXG-MAPr: https://txg-mapr.eu/login/) for interactive visualization and analysis, as

previously described %°. Functional annotation of the modules was assessed using overrepresentation
analysis (GO-term, pathway and transcription factor) to provide cellular and mechanistic context of
gene members in each module (Tables $3-S5). Not all modules showed strong enrichment for GO and
pathway terms, but others were highly enriched for terms relevant to kidney injury and regeneration,
including rKID:3m (metabolism, e-45), rKID:5m (cell cycle, e-67), rKID:6m (ribosome biogenesis, e-42),
rKID:7m (immune system, e-47) and rKID:10m (extracellular matrix, e-34). From this functional
enrichment analysis, a specific key annotation term was derived for 170 modules (Table S5), i.e., when
annotation terms were highly significant (p < 0.0001) and show a similar theme or could be linked to
the enriched transcription factor, which was included in further analyses (see below).

To illustrate the utility of the rat kidney TXG-MAPr tool as an approach to extract mechanistic
information from gene expression data, we selected compounds in the TG dataset for which various
pathologies were noted in the single and repeated dose studies (Table S6). Repeated daily dosing for
up to 29 days with the genotoxic chemotherapeutic drug cisplatin (CSP) caused progressive
perturbation of gene expression in rat kidneys, represented by the module induction or repression
visualized on the TXG-MAPr dendrograms (Figures 1A and S2). Histology findings were also progressive
over time, including tubular necrosis, dilatation and regeneration, and were accompanied by increases
in blood urea nitrogen (BUN) and serum creatinine (CRE) (Table S6). We looked for activation of
modules associated with the DNA-damage response, a primary mechanism of cisplatin inducing kidney
injury %. Rat kidney module 160 (i.e., rKID:160) was among the top induced modules after cisplatin
treatment at various timepoints and dose levels (Table $2) and contained many well-known p53-target
genes (Mdm2, Cdknla, Phlda3, Ccngl, Plk2, Aen, Zmat3, Fas, Pias3, Gas6) involved in the DNA-damage
response (Figure 1B, top), and had the highest transcription factor (TF) enrichment score for Tp53 (p-
value of 2e-10) among all modules (Figure 1C, Table S4). Induction of module rKID:160 and its
component genes was already evident early and increased over time (Figure 1B, top). Another module,
rKID:298, also enriched for terms consistent with p53 signalling (Table S3) and contained genes
involved in apoptosis (Bax, Ei24, Thyn1) and DNA repair (Mgmt), showed a similar pattern of induction
compared to rKID:160 (Figure 1B, middle). Although both rKID:160 and rKID:298 are enriched for p53
signalling terms, only rKID:160 had strong TF enrichment for Tp53 (Figure 1C, Table S4). Nonetheless,
module rKID:160 showed high correlation (Pearson R) with rKID:298 across all TG treatments (Figure
1D, left), indicating that both modules are strongly induced by the same treatment conditions (e.g.,
especially genotoxic compounds cisplatin and doxorubicin), as expected given their proximity in the
dendrogram and involvement in similar processes.
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To determine if the modular gene expression responses also reflected the progressive injury noted
with cisplatin treatment, we also investigated module membership for injury processes and kidney
specific biomarkers. Module rKID:2m, contained well-known kidney biomarker genes, including kidney
injury molecule-1 (Kim-1/Havcr1), and was strongly associated with toxicity (discussed in the next
sections). After only modest early induction, the rKID:2m EGS, and log2FC for component genes,
increased markedly after day 4 (Figure 1B, bottom). Other modules that annotated for biological
processes important for kidney injury and regeneration also showed dose and time dependent
induction with cisplatin and other nephrotoxicants allopurinol (APL) and puromycin aminonucleoside
(PAN) (Figure S3). Several modules involved in extracellular matrix (rKID:10m, 31m), immune response
(rKID:56 and 63m), cytoskeleton (rKiD:42m, 142m), cell cycle (rKID:5m) and transcription (rKID:29)
were induced after 29 days cisplatin exposure and were also observed with other nephrotoxic
compounds, including APL and PAN (Figure S3), both of which caused substantial kidney injury and
regeneration (Table S6). Notably, the high module EGS correlation (Pearson R), between 15-days
repeated treatment with 1 mg/kg/day cisplatin and 12 mg/kg/day puromycin aminonucleoside
suggested that these responses reflect general kidney responses to injury, while also reflecting distinct
mechanisms (Figure 1D, right). For example, the inflammatory (rKID:56, 63m and 327), cytoskeleton/
injury (rKiD:2m and 142m) and cell cycle (rKID:5m) responses are comparable between CSP and PAN
at day 15, but the p53 responses (rKID:160 and 298) are more pronounced with cisplatin, because of
the genotoxic mechanism of action.

Taken together, the TXG-MAPr tool demonstrated that the co-expression modules capture meaningful
biological responses after nephrotoxic insults, where early events, such as activation of p53 by
cisplatin, are followed by later events associated with cellular and tissue injury, including modules
containing inducible biomarker genes.

Modules associate biological response networks with kidney pathology

Having demonstrated that modular gene expression captures valuable information on mechanism
associated with kidney injury, we wanted to investigate the statistical association of module changes,
and the associated biological responses, with kidney injury (histopathology or clinical chemistry, see
Table S6 and S7 for frequency and occurrence for each treatment). Therefore, for each relevant kidney
toxicity phenotype (Table S7), we measured effect sizes (Cohen’s D) of module EGS for treatments
resulting in the presence (positives) or absence (negatives) of renal injury (Table $8). To control for the
association of injury with overall gene expression, we also applied logistic regression to account for
differences in module EGS while controlling for average absolute EGS (AvAbsEGS) as covariates in the
analysis, as described previously 3. Estimation of the odds of toxicity was quantified by the (adjusted)
p-value from the logistic regression, which was signed (signed log10 p-adjust) for positive (induction)
or negative (repression) module responses associated with toxicity. Both concurrent and predictive
(i.e., early module changes that precede emergence of toxicity at a later timepoint) module
associations with pathology were calculated, although concurrent associations showed higher
statistical significance as expected (Table S8).

The effect sizes of many modules associated with concurrent toxicity phenotypes showed strong
Pearson correlation, suggesting that several biological response-networks are associated with multiple
toxicity phenotypes (Figure 2A). This is likely an effect of either the high transcriptional activity,
measured as AvAbsEGS, concurrent with multiple pathologies, and/or activation of generalized tissue
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responses to injury. When we repeated the clustering using the signed p-adjust values, which accounts
for the AvAbsEGS as a covariate in the logistic regression, there was somewhat better separation of
the toxicity phenotypes into two distinct clusters (Figure 2B). Cluster 1 modules were more associated
with tubular injury phenotypes (increases in tubular necrosis, degeneration, BUN and CRE), and cluster
2 with regeneration and inflammation phenotypes (increases in tubular regeneration, dilatation,
cellular infiltration and fibrosis). The overlap and differences in module association could be
appreciated when comparing the TXG-MAP dendrogram plots overlaid with the signed log10 p-value
per module for the most prevalent renal injuries (Figures 2C and S4). Modules in branch (see branches
in Figure S1) F1 and F2 (stress responses and cell cycle) were strongly associated with tubular injury
phenotypes (red colours). In contrast, modules in branch A2 and B2 (immune response and
extracellular matrix / adhesion) were strongly associated with regeneration and inflammation. Cellular
stress, transcription and cytokine related modules in branch H1 showed strong association with all
pathologies (red colours), as well as modules in branch D2a (RNA splicing). Modules in branch |
(mitochondrion/respiration) showed negative association with all toxicity phenotypes, as well as some
metabolism modules in branch H1 (blue colours). Other (non-tubular) injuries did not show strong
association with transcriptional module changes, likely due to the low number of positive treatments
in the TG data that cause these injuries or the limited transcriptional perturbation (Figure S4).

Hierarchical clustering of the modules for concurrent association with toxicity phenotypes revealed a
subset of 44 strong positively (cluster 2) and 81 strong negatively (cluster 1) associated modules with
injury and repair phenotypes (Figures 2D, S5A, Table S9), including serum biomarkers increases (BUN
or serum creatinine), several types of tubular injury, regeneration, inflammation or fibrosis (pathology
cluster Il in Figure 2D and S5A, Table S7). Notably, module rKID:2m, which contained genes for known
and inducible biomarkers of renal injury, is in cluster 2 (Figure 2D) and ranked highest, on average, for
concurrent association with the most prevalent toxicities on both effect size and adjusted p-value
(Table S9). Other positively associated and high ranked modules (cluster 2, Figure 2D and S5A, Table
S9) were annotated for immune response (rKID:56, 63m, 71, 212m and 327), cytoskeleton (rKID:42m,
112, 142m), extracellular matrix organization (rKID:10m, 31m), proteasome (rKID:35m), cell cycle
(rKID:5m) and transcription (rKID64m), all of which are processes associated with progressive renal
injury and/or repair 3%, and were induced by compounds like cisplatin, allopurinol and puromycin
aminonucleoside which caused progressive renal injury (Figure S3). Negatively associated and high
ranked modules (cluster 1, Figure 2D and S5A, Table S9) were annotated for metabolism (rKID:3m,
9m, 14m, 25m, 292), transport (rKID:19, 171, 329), AMPK signalling (rKID:383), mitochondrion
(rKID:26m, 28m, 96m, 264) and renal or glomerular development (rKID:196) amongst others.
Interestingly, the latter module rKID:196 showed various genes involved in glomerular development

or podocyte function, including Nphs1, Podxl, Ptpro and Wt13%3,

Transcriptional changes at day 4 showed on average the highest statistical power (effect size and log10
adjusted p-value) to predict renal injury on a later timepoint, followed by day 1 (Figure S6). Modules
for predictive association with toxicity phenotypes at day 4 revealed a subset of 30 positive (cluster 7)
and 46 negative (cluster 2) associations (Figures 2E and S5B, Table S9). Predictive association at day 1
revealed a subset of 44 positive (cluster 3) and 17 negative (cluster 1) associations (Figure S5B, Table
S9). Several modules that showed strong positive predictive association with pathology were also
strongly associated with concurrent pathology, including cytoskeleton (rKID:2m, 112, 142m) and
immune response (rKID:7m, 56, 63m, 113, 212m, 327), while mitochondrial (rKID:26m, 28m and 96m)
and metabolism (rKID:3m) showed negative association. Besides the overlap between modules that
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showed both concurrent and predictive association with pathology, there were also some unique
modules in the predictive association selection. These include modules involved in ribosome
biogenesis (rKID:6m, 8m, 40m, 130m), RNA processing (rKID:34m, 278, 387), protein processing
(rkID:173, 208), immune response (rKID:16m, 138, 351), transcription (rKID:29), p53 pathway
(rKID:160, 298), Nrf2 pathway (rKID:53), Atf4 pathway (rKID:74) and Atf6 pathway (rKID:81), which are
early responses after cellular stress or injury.

Overall, this led to a subset of 169 modules (75 positive and 94 negative) that showed strongly
perturbed transcriptional activity and could be correlated with induction of renal injury (Table S9,
column “selected strong association”). Thus, module changes reflect biological responses that may be
associated with higher likelihood of concurrent or future development of kidney adverse outcomes
(i.e., pathologies), while these modules may also contain potential biomarkers.

Pathology associated modules facilitate biomarker discovery

In the previous section, we have described several modules that were most strongly associated with
pathogenesis (Table S9), including rKID:2m, which contained well-known kidney injury biomarkers,
including kidney injury molecule-1 (Kim-1/Havcrl), lipocalin 2, (Lcn2/Ngal); osteopontin (Spp1),
clusterin (Clu) and tissue inhibitor of metalloproteinases (Timp1), all of which had high corEG (i.e.,
hubness) (Table 1). Interestingly, the primary enrichment terms for rKID:2m included cell adhesion and
actin cytoskeletal organization, suggesting a more complex set of biological responses is associated
with activation and interpretation of the inducible biomarker genes in rKID:2m. Other known kidney
injury biomarkers were in metabolism (rKID:3m), immune response (rKID:7m, 15, 56, 63m and 281)
and extracellular matrix (rKID:10m) modules, and most were strongly associated with renal
pathogenesis (Tables 1, S9).

To discover novel inducible kidney injury biomarker genes, we investigated the modules with strong
pathology association and clear biological annotation. The top 10 modules showing the strongest
positive association with each of the eight most severe kidney pathologies were selected, which
resulted in a set of 29 unique modules (Tables 2, S9). The selected modules showed very good overlap
with modules in cluster 2 of Figure 2D and S5A (concurrent), as well as with cluster 6 and 7 in Figure
2E and S5B (4-day predictive). In addition to the known biomarker genes found in these modules (Table
1), many modules with strong pathology association contain hub(-like) genes of which literature
evidence indicates that their respective proteins could be potential kidney injury or disease biomarkers
(Table 2). Modules with potential biomarkers are rKID:7m (Cst3 = Cystatin C, B2m = f2-microglobulin,
Cd68), rKID:10 (Cdh11, Smoc2), rKID:31m (l124), rKID:38m (Tcp1), rKID:56 (Icam1, Tnfrsfla), rKID:63m
(Cigb, 1118, Tnfrsfib), rKID:71 (Mmp7), rKID:138 (Cd3g), rKID:142m (14-3-3 proteins, i.e., Ywhah,
Ywhag), rKID:212m (Cp = ceruloplasmin, C1s, C1r, Dcn) and rKID:327 (fibrinogen, i.e., Fga, Fgb, Fgg).
Many genes in these modules are strongly induced by nephrotoxic treatments, including the potential
biomarker genes (Figure 3A). Gene expression responses of these modules mimicked the time-
dependence of kidney pathology (Figure 3B), suggesting that these modules could be relevant for
characterization of previously identified biomarkers and identification of novel biomarkers of kidney
injury. In contrast, traditional serum biomarkers (BUN and CRE) increased much later (Figure 3C), when
there is loss of renal function and hence these do not recapitulate the renal injury already present at
earlier timepoints. These results suggest that induction of putative biomarker genes and their modules
is strongly associated with renal pathology and capture the progression of kidney injury much better
than serum biomarkers BUN or CRE.
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Table 1. Kidney injury biomarkers in co-expression modules. Well-known and established kidney

injury biomarkers are in cytoskeleton / injury (rKID:2m), metabolism (rKID:3m), immune response

(rKID:7m, 15, 56, 63m and 281) and extracellular matrix (rKID:10m) modules.

Gene Biomarker name Injury marker Module corEG References
Havcrl KIM-1 Proximal Tubular rkiD:2m 0.8156 Lle~cls
Lcn2 Lipocalin2, NGAL Proximal / Distal Tubular rkKID:2m 0.7698 42-46
Clu Clusterin Proximal / Distal Tubular rkID:2m 0.8282 A
Sppl Osteopontin, OPN  Inflammation / Distal Tubular ~ rKID:2m 0.7815 42,46
Timp1l Timp-1 Proximal Tubular rkiD:2m 0.8948 RLeS
Umod Uromodulin Loop of Henle rkiD:3m 0.7673 42,44
Tff3 Trefoil Factor 3 Proximal Tubular rkiD:3m 0.5565 4

Cst3 Cystatin C Glomerular / Proximal Tubular rKID:7m 0.3903 41,43-46
B2m B2-microglobulin Glomerular / Proximal Tubular rKID:7m 0.6849 L
Timp2 Timp-2 Proximal Tubular rkiD:10m 0.7746 42,44
Igfbp7 IGFBP-7, IBP-7 Proximal Tubular rKiD:10m 0.5295 R
Ambp al-microglobulin Glomerular / Proximal Tubular rKID:15 0.7985 46

Alb Albumin Glomerular / Proximal Tubular rKID:15 0.7157 CRAEAD
Fabp1 L-FABP Glomerular / Proximal Tubular rKID:15 0.8531 42,44,45
Tnfrsfla TNFR1 Inflammation rKID:56 0.9015 49
Tnfrsflb TNFR2 Inflammation rKID:63m 0.6241 4

1118 Interleukin-18 Inflammation rkID:63m 0.7694 42-46
Ccl2 MCP-1 Inflammation rkiD:281 0.7258 42,44

Table 2. Most strongly associated modules with renal pathology containing novel biomarkers. Top

10 ranked modules for positive association with concurrent kidney pathologies were selected for each

phenotype. For each module, the hub gene and other highly connected genes are shown with a focus

on identification of the corresponding proteins as putative biomarkers of renal injury (see references).

The module annotations provide additional mechanistic context for these candidate biomarkers. The

strongest pathology association, the rank and the signed log10 p-adjust value is provided for each

module. Some of the modules are in the top 10 rank for more than one toxicity phenotype (column:

“# Toxicity phenotypes”), including rKID:2m, 31m, 71 and 327.
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# Toxicit Max signed
Module Module annotation Hub gene Other hub genes Branch  Strongest pathology association v Rank & . References (DOI)
phenotypes log10 p-adjust
rKID:31m  Extracellular matrix (ECM) 1124 A2allB Regeneration / Basophilic change, Tubule >=0.67 3 1 27.68 10.1007/s00795-019-00239-0
Immune response; Ceruloplasmin (Cp), . -019- -
rKiD:212m P Cp P (Cp) B2all Regeneration / Basophilic change, Tubule >=0.67 1 2 23.94 10.1007/s10157-019-01734-5
complement Cls, Clr, Dcn 10.1681/ASN.2008111145
rKID:358 Fkbp10 B2all Regeneration / Basophilic change, Tubule >= 0.67 2 3 22.49
rKiD:148 Septl10 D2a Regeneration / Basophilic change, Tubule >=0.67 1 5 19.54
rKID:10m  Extracellular matrix (ECM) Fbnl Cdh11, Smoc2 B2all Regeneration / Basophilic change, Tubule >=0.67 1 8 18.68 10.1016/j.kint.2021.04.037
rKiD:184 Other Rexo2 F2b Necrosis / Degeneration, Tubule >=0.67 1 2 18.83
14-3-3 protein . . f
rKID:142m Cytoskeleton Ywhah H1bl Necrosis / Degeneration, Tubule >=0.67 2 5 17.09 10.1111/jcmm.13691
(Ywhah, Ywhag)
rKID:38m  Protein processing; folding Cct5 Tcpl Flal Necrosis / Degeneration, Tubule >=0.67 2 7 15.80 10.1093/toxsci/kfz242
rKID:35m  Proteasome Eefld F2b Necrosis / Degeneration, Tubule >=0.67 1 10 15.51
rKiD:112 Cytoskeleton Arpc3 F2al Hyaline cast, Tubule >= 0.67 1 6 11.71
rKID:5m Cell cycle; S/M phase Mad2I1 Aurkb F2b Hyaline cast, Tubule >= 0.67 1 7 11.70 10.2147/1JGM.S336799
rKiD:220 Signalling Htra3 A2allp Fibrosis, Interstitium >=0.67 1 5 9.33
rKID:272 Cdk4 F2b Fibrosis, Interstitium >=0.67 1 10 8.75
Cytoskeleton; cell adhesion / Havcrl, Clu, Spp1, . X X
rKID:2m L ) Tes ) Hlallaii  Dilatation, Tubule >= 0.67 4 2 25.13 10.1097/MNH.0000000000000275
injury biomarkers Lcn2, Timpl, Plaur
rKID:51m Trpv6 A2alla Dilatation, Tubule >= 0.67 3 3 25.06
Immune response; Fibrinogen (Fga, . . X .
rKID:327 . Fgb Hlallaii  Dilatation, Tubule >= 0.67 4 4 24.50 10.1016/j.ajpath.2012.06.004
complement and coagulation Fgb, Fgg)
rKID:235 Tspan8 H2al Dilatation, Tubule >= 0.67 5 24.49
rKiD:144 Plala Hlallaii  Dilatation, Tubule >= 0.67 6 24.25
rKID:332 Signaling; calcium Map3k1 H2all Dilatation, Tubule >= 0.67 7 24.05
| ; TNF/NFkB ) ) . /
rKiD:se  Mmmune response; TNF/ lcaml  Tnfrsfla Hibll  Dilatation, Tubule >= 0.67 2 9 22.68 -0 1155 /00068520
signaling 10.1097/MNH.0000000000000275
rKID:71 Immune response Mmp7 A2allp Dilatation, Tubule >= 0.67 4 10 22.36 10.1681/ASN.2016030354
rKID:63m  Immune response Clgb 1118, Tnfrsflb A2b Cellular infiltration >= 0.67 2 1 27.36 10.1111/petr.13885
Immune response; leukocyte B2m, Cd68, Corola, e . )
rKID:7m L Ptprc A2b Cellular infiltration >= 0.67 1 4 21.23 10.1111/his.13768
activation Cst3
Immune response; T-cell Cd3 (Cd3d, Cd3e, o . .
rKiD:138 Cd3g A2b Cellular infiltration >= 0.67 1 5 21.23 10.1111/cei.12461
receptor Cd3g)
rKiD:233 Tmsb4x B2all Cellular infiltration >= 0.67 2 8 17.86
Immune response; T-cell o .
rKID:305 Zap70 Cd247, Kirk1 A2b Cellular infiltration >= 0.67 1 9 17.81
receptor
rKID:59m Akipl B2all Cellular infiltration >= 0.67 1 10 17.76 10.1097/MD.0000000000020742
rKiD:29 Transcription Btg2 Atf3 H1bl BUN change > 100% 1 9 15.51 10.21037/atm-21-5231
rKID:64m  Transcription KIfe H1bl BUN change > 100% 1 10 15.24 10.1080/0886022X.2020.1793353
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Module correlation analysis reveals both mechanistic and generalized tissue responses to
kidney injury

Results already discussed allude to the fact that kidney injury and progression occur in distinct phases.
Early molecular initiating events may be mechanistically distinct for different nephrotoxicants, but lead
to a common event, such as death of proximal tubule epithelial cells, which results in a regeneration
response. Therefore, we further explored how treatment correlation analysis, using module EGS, might
reflect on early and later events in the progression of kidney injury. Besides cisplatin, other potentially
nephrotoxic compounds show strong perturbations of gene expression and pathology at the highest
tested dose levels and later timepoints (Figures 3, S3, S7 and S8). As exemplified earlier, there was a
good correlation (R > 0.7) among module EGS after 15-days cisplatin and puromycin aminonucleoside
treatment (Figure 1D, right), as well as after 8- and 29-days treatment (Figure S9A). Both drug
treatments also induced comparable pathologies at these later timepoints, including tubular necrosis,
dilatation and regeneration (Figures 3B and S8B, Table S6). At the 3-hour timepoint there was also a
modest correlation (R = 0.55) between CSP and PAN, mainly driven by transcriptional stress (rKID:29
and 64m) responses (Figure S9A). However, from 6 hours through 4 days post treatment there was
poor correlation of module EGS between CSP and PAN and little indication of pathology (Figures S8B,
S9A). Induction of the p53 response by CSP is apparent at day 1 and later (rKID:160 and 298), while
PAN induced modules associated with an early inflammatory response (rkKID:15, 16m, 63m, 113, 351),
the anticipated mechanisms to induce glomerular nephropathy *°.

Correlation analysis based on module EGS was further leveraged to investigate similarities between
nephrotoxic treatment conditions given their overlap in activated and deactivated modules (Figures 4,
S8A and S9). Treatment with nephrotoxic compounds at high dose levels and late time points showed
strong correlation and clustering, when there was clearly pathology present in the kidneys (Figure 4A
cluster Il, S9B). This suggests that gene expression patterns are similar when there are co-occurring
pathologies, likely an effect of upregulation of injury induced repair mechanisms of the tissue (e.g.,
regeneration, dedifferentiation and inflammation responses), and downregulation of metabolism and
mitochondrial function, that may be common after acute drug induced kidney injury °!. However,
mechanistic information of compound exposures can still be extracted by focusing on outlier modules
(rKID:160 and 298 in Figure 1D) or earlier timepoints when module activities are more diverse, see
distinct compound specific clusters (Figure 4A, cluster | = APL, Ill = CSP, IV = PAN). The DM data also
showed clustering of stress, immune, injury and regeneration responses with high module EGS during
nephrotoxic exposures that clearly showed strong pathology association (Figure S10, cluster 6 and 7,
see row annotation). Mitochondrial and metabolism modules that were negatively associated with
pathology were indeed downregulated during these exposures with nephrotoxicants in the DM data
(Figure S10, cluster 1, 2 and 5). Two estrogen receptor agonists primarily induced steroid hormone
metabolism modules amongst others, showing their primary mechanism of action (Figure S10, cluster
9), while exposure with diethylstilbestrol showed clear activation of stress and injury response
modules (cluster 6 and 7), which leaded to mild renal pathology on day 5 (Figure S10B, see column
annotation).

To see if observations with nephrotoxicants can be extended to other form of renal injury, we analysed
transcriptomic data from a previous rat renal ischemia reperfusion injury (IRI) study, a drug-
independent model of acute kidney injury (AKI) 2. Gene expression data were uploaded into the TXG-
MAPr environment and module EGS calculated (Tables S11, S12). The IRI study showed high similarity
with early allopurinol treatment, mainly triggered by an early inflammatory response by both
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treatments (Figures 4A cluster I, 4B panel 1, and S11A). In contrast, the ischemic injury response at
day 1 and 5 correlated well with late nephrotoxic TG treatments with co-occurring pathologies,
suggesting that this is a general tissue response to injury, since there is no drug involved in vehicle
(NaCl) treated ischemic kidneys (Figures 4A cluster Il, 4B panel 2, 3 and S11A). Valproic acid (VPA) pre-
exposure was able to accelerate the regeneration response at 1 day post ischemic injury compared to
NaCl, an effect associated with a stronger activation of cell cycle module rKID:5m (Figure S11B).

Regenerating or injured proximal tubule epithelial cells (PTC) in vivo and in primary culture undergo
dedifferentiation and regenerative responses, including a partial epithelial-to-mesenchymal transition,
based on investigation of specific signalling pathways and expression of the mesenchymal
intermediate filament, vimentin®*®*3, To determine if the global transcriptional response to
dedifferentiation of cultured PTC bore any relationship to the dedifferentiation response associated
with injury and regeneration in vivo, we compared rat PTC at various time in culture (i.e., 1-7 days after
plating on Transwell filters) with TG treatments (Tables $11 and S12). Notably, there was high similarity
between the modular gene expression responses of cultured PTC and late nephrotoxic compound
treatments (Figures 4A cluster Il, S11C and S12), as well as to ischemic injury response at day 1 and 5,
a time at which regeneration of proximal tubule epithelium is expected (Figure 4A, 4B panel 4,5,6).
Thus, the dedifferentiation response of primary PTC appears similar, at the transcriptional level, to that
of the regenerative PTC phenotype associated with the generalized tissue injury/regeneration
response in vivo. Notably, activation of modules involved in cell cycle (rKID:5m), cytoskeleton / cell
adhesion (rKID:2m, 42m), transcription (rKID:29, 64m), RNA and protein processing peaked in the first
two days of culture compared to freshly isolated PTC (Figure S12). In addition, there was clear
downregulation of metabolism, mitochondrial function and transport in cultured primary PTC (Figure
$12), which was also seen after kidney injury in vivo.

In conclusion, high similarities between cellular and tissue responses during nephrotoxic treatments,
ischemic injury and cultured primary PTC suggest that these are generalizable compound agnostic
tissue responses to injury, dedifferentiation and repair. Responses to nephrotoxic compounds at early
timepoints are more distinct and likely indicate the unique compound specific mode of action that
could lead to cellular stress and later renal injury.

Preservation analysis of rat kidney modules reveal common biological processes, stress
responses and kidney specific networks

One of the most important safety decisions when compounds transition from nonclinical to clinical
testing is whether hazards identified in nonclinical studies will translate to human safety concerns.
Ideally, quantitative metrics could be used to determine the likelihood that biological events (e.g.,
molecular initiating events (MIE) or key events (KE) in an adverse outcome pathway (AOP) framework)
will translate across species. A unique aspect of network models, like WGCNA, is that preservation
statistics can be applied to determine if (node-edge relationships in) biological networks are preserved
across datasets or systems . We first tested robustness of network preservation statistics by
comparing rat kidney modules based on all data versus the individual TG or DM rat kidney
transcriptomic data separately using the Z-summary module preservation statistic 2. Notably, all
modules are moderately preserved (274 modules = 79% with Z-summary > 2) or highly preserved (73
modules = 21% with Z-summary > 10) in the DM data (Figure 5A, Table $10). Self-preservation (testing
for preservation in the dataset from which modules were derived) in DM is only slightly lower
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compared to the self-preservation of the larger TG dataset. In addition, there is good correlation
between Z-summary scores for preserved modules in DM or TG self-preservation, including a subset
of 67 modules that are highly preserved using both comparisons (Figure 5B, green line = Z-summary >
10). This preservation analysis suggests that both TG and DM rat kidney datasets capture similar gene
co-expression patterns and biological responses.

To determine if highly preserved modules reflect common biological processes, we investigated their
biological annotations. Highly preserved module annotate for processes important for maintaining
cellular homeostasis as well as adaptive responses to chemical injury, including: cell cycle (rKID:5m),
metabolism (rKID:3m, 9m, 14m, 21, 22, 25m, 116), mitochondrial function (rKID:26m, 28m, 37m, 43m,
96m), immune responses (rKID:7m, 15, 16m, 56, 63m, 113, 138, 212m), injury biomarker (rKID:2m),
cytoskeleton (rKID:42m, 112, 142m), extracellular matrix (ECM) remodelling (rKID:10m, 31m),
transport (rKID:13, 19, 78, 171), development (rKID:12m, 23m, 45m, 57m, 65, 70), ribosomal
biogenesis / RNA processing (rKID:6m, 8m, 34m, 37m, 40m), proteasome (rKID:35m), circadian
regulation (rKID:33) and responses to oxidative (rKID:53 = Nrf2) or endoplasmic reticulum (ER) stress
(rKID:81 = Atf6; rKID:74 = Atf4). Interestingly, there was a large group of 255 kidney modules also
preserved in rat liver TG-GATEs dataset (Figure 5A and 5C, Table S10), including the aforementioned
modules involved in regulation of cellular stress or homeostasis. In contrast, some kidney specific
modules were not preserved in liver, including modules involved in (renal) development (rKID:23m,
45m, 57m, 70, 186, 196, 290), steroid hormone metabolism (rKID:18m, 95) and transmembrane
transport (rKID:171, 211, 329) amongst others (Figure 5C). Thus, preservation analysis illustrates that
modules are highly preserved and robust reflections of cellular responses to drug- or chemical-induced
renal injury, suggesting that the rat kidney TXG-MAPr analysis framework can be applied to other
kidney toxicogenomic data to investigate DIKI mechanisms.

Preserved injury and repair related networks in human patients

Having established that preservation of rat kidney modules is robust when comparing different large
transcriptomics datasets of the same organ and species, we tested preservation between rat and
human using available human kidney transcriptomic data. We evaluated preservation of rat kidney
modules in a large human dataset (GEO: GSE36059) consisting of over 400 renal transplant samples
from human patients at various times after transplantation with or without evidence of graft rejection
as well as ‘control’ nephrectomy biopsies 8. Although the human dataset is limited to renal transplant
samples, among the 347 rat kidney modules, 5 modules had strong preservation and 125 had
moderate preservation in human kidneys (Figure 5A, Table S10). Modules involved in immune
response (rKID:7m, rKID:16m), cell cycle (rKID:5m) and metabolism (rKID:3m) were strongly preserved
(Figure 5D), while several other modules representing other immune responses, metabolism,
mitochondrial function, RNA processing, cell cycle and ECM remodelling/fibrosis were moderately
preserved (Table $10). These observations are in line with the fact that a subset of the human samples
were patients experiencing immune response-mediated graft rejection %24 Strikingly, the
cytoskeleton or injury biomarker module rKID:2m was also strongly preserved in human, showing the
relevance of the biological context of the renal biomarkers that cluster in similar co-expressed modules
(Figure 5D, Table S10). Other potential biomarker modules with strong pathology association were
also preserved in human (Tables 1, 2 and $10). By contrast, some of the modules were not (or hardly)
preserved (Zsum < 2) in the available human dataset, including modules reflecting cellular stress
responses, like ATF4 (rKID:74), oxidative stress (rKID:53, 105, 106), as well as modules annotated for

18


https://doi.org/10.1101/2023.11.03.565444
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.03.565444; this version posted February 28, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ribosomal biogenesis (rKID:6m, 8m), renal development (rKiD:23m, 45m), circadian regulation
(rKID:33), immune response (rKID:15, 56), steroid hormone metabolism (rKID:18m, 95), and several
other metabolic processes (Table S10).

Next, the human dataset was uploaded into the rat kidney TXG-MAPr tool (after gene ortholog
conversion) to see how the human responses were captured using only the preserved modules
(Figures 6 and S13, Table S13). As expected, immune responses (rKID:7m, 16m, 63m, 113, 138, 212m
305), extracellular matrix (rKID:10m, 31m 104) and cell migration (rKID:127) modules were most
strongly induced in human transplant samples and clustered together in the heatmap (Figure S13,
cluster 3). More inter-individual variation was seen in modules involved in mitochondrial function,
metabolism and transport, which grouped together in cluster 2 (Figure S13). Immune response and
injury biomarker modules showed on average stronger activation in patients with immune-mediated
renal rejection despite some inter-individual variation, while metabolism was stronger downregulated
in these patients (Figure 6A, S14). Similar patterns could be seen for the log2FC of hub genes and most
significant genes of each of these inflammation modules (Figure 6A, S14). In addition, inflammation
modules rKID:7m and rKID:63m showed a very strong correlation (Pearson R = 0.97) across all patient
samples (Figure 6B, left), which was similar for most of the inflammation and cell migration modules
(Figure 6C, cluster 3). Also, the biomarker module rKID:2m showed strong correlation (Pearson R =
0.72) with inflammation module rKID:7m (Figure 6B, centre). In contrast, metabolism module rKID:3m
showed inverse correlation (Pearson R = -0.62) with inflammation module rKID:7m (Figure 6B, right)
and rKID:2m, similar to responses in rat kidney. This bi-directional response was also seen for other
metabolism, mitochondrial and transport modules compared to inflammation (Figure 6C, cluster 1 vs
3). This indicates that metabolism, mitochondrial function and transport are down regulated in
patients’ kidneys undergoing renal inflammation, which was also noted in rats. A large group of
modules with various annotations for RNA and protein processing showed very high correlation (Figure
6, cluster 4), which was mainly due to downregulation of these modules in a group of patients with
highest AvAbsEGS. With the presented gene co-expression approach in pre-clinical models, we could
identify several modules that were preserved in human, indicating the relevance for human
translation. Moreover, we showed differential gene network dynamics in human patients with rejected
renal grafts that could be linked to immune responses, injury and biomarker expression, indicating that
human and rat have similar generalized tissue responses to kidney injury and regeneration.
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Discussion

In pre-clinical research a wealth of toxicogenomic data has been generated in the past decades, with
the aim to investigate biological responses to drugs and to understand the mechanisms of toxicity 7.
Unfortunately, while standardized reporting approaches for bioinformatics have been proposed ¢,
a comprehensive qualitative and quantitative mechanistic interpretation framework for
toxicogenomics underpinning a mechanism-based safety assessment approach is needed 78. A major
hurdle has been the data complexity and the inability to generalize conclusions from transcriptomics
responses across different cell types, tissues and species. Methods that reduce complex transcriptomic
data to networks of co-expressed genes that retain biological meaning are an attractive approach to

15,57

reducing the dimensionality of transcriptomic data and facilitating interpretation >/, as demonstrated

10-13 Besides liver injury, kidney toxicity is also a common adverse

previously for rat liver toxicity
response in both drug and chemical toxicity . Therefore, methods that facilitate the extraction of
mechanistic information from kidney transcriptional responses would be useful in hazard identification

and risk assessment.

Herein, we used WGCNA to construct a set of 347 co-regulated gene networks (modules) from the two
largest, publicly available in vivo rat kidney toxicogenomics datasets (TG-GATEs and DrugMatrix) and
provide biological annotations for the modules allowing direct translation of gene expression data into
meaningful biological conclusions. The modules are embedded in an interactive R-shiny application,
called the rat kidney TXG-MAPTr, that allows dose- and time-response analyses, treatment correlation
and functional annotation (GO-terms, pathways and transcription factor enrichment). We
demonstrated that this gene co-expression approach and analysis framework has the advantage that
modules and their quantitative EGS can assist in: (1) data complexity reduction, (2) biological
annotation for mechanistic interpretation, (3) pathology association, (4) biomarker discovery, and (5)
translation to human relevant responses.

First, we have demonstrated that the co-expression modules could identify meaningful biological
responses relevant to mechanistic investigation using cisplatin exposure as the example. Early
activation of DNA-damage and p53 signalling (rKID:160) was followed by later occurrence of cellular
injury and biomarker expression (rkID:2M), regeneration (rKID:5m) and inflammation (rKID:56, 63m,
212m and 327). These later responses, including activation of biomarker-containing, regeneration and
inflammatory modules, were mirrored with other nephrotoxicants that had concurrent renal
histopathology and clinical chemistry changes. This suggests that similarity in gene expression patterns
reflects common injury-induced repair mechanisms (e.g., regeneration, dedifferentiation and
inflammation responses). The common injury and regeneration processes across different
nephrotoxicants, as well as during ischemic injury, are compound agnostic and general tissue
responses to injury and repair, where a complex interplay between renal inflammation and cellular
dedifferentiation or partial EMT are contributing to renal repair *. However, at early stages after
nephrotoxic compounds exposure there was a distinct activation of biological response networks
relevant to the expected different mechanisms of injury. For example, the induction of rKID:160 and
rkID:298 (the modules annotating for p53 responses) is much stronger and unique for cisplatin,
carboplatin and doxorubicin, due to their genotoxic mechanism of action, compared to other
nephrotoxicants, like puromycin aminonucleoside. In contrast, the primary key event of puromycin is
an early inflammatory response, which the anticipated mechanisms of action that can induce
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glomerular nephropathy *°. In addition, estrogen receptor agonists are the main inducers of steroid
hormone metabolism modules, which is expected based on their primary mechanism of action. Thus,
the rat kidney TXG-MAPr tool also allows evaluation of molecular mechanisms and early mode-of-
action of drugs and chemicals with respect to onset of nephrotoxicity. The module annotations that
we provide in this study enhance a qualitative and quantitative mechanistic interpretation of renal
toxicogenomics data and capture most of the well-known biological processes.

Various studies have applied gene co-expression network analysis on rat and human kidney injury
samples >4, A previous study applied gene co-expression analysis on the rat kidney DM data and also
identified modules that correlated with acute kidney injury, which contained Havcr1 and Clu genes *°,
which are in module rKID:2m with the strongest pathology association in our study as well. Most other
studies identified a small number of modules due to the limited number of samples used to build the
gene co-expression networks, but the captured modules include stress and immune responses, which
were also the most relevant modules for pathology in our study. However, these previous studies did
not integrate their kidney gene co-expression networks into a publicly accessible online tool, like the
rat kidney TXG-MAPr, underpinning its value. Though there are co-expression tools built from data of
various species and tissues that are publicly available %57%°, These tools mainly show gene interactions,
pathway analysis, or conservation across species. In contrast, the rat kidney TXG-MAPr tool allows the
users to interactively visualize quantitative changes in gene networks by chemical or biological
perturbations. In addition, users can upload log2FC gene expression data for comparison to the
reference toxicogenomics dataset in the TXG-MAPr tool, which is highly valuable to identify common
mechanisms of action for chemical hazard identification.

Inflammation accompanied by metabolic re-wiring are hallmarks of acute tubular injury and the
balance between injury and repair 1. Thus, the juxtaposition of inflammation module induction and
repression of metabolism and mitochondrial modules is worth noting. Repression of module rKID:3m
(highly annotated for small molecular metabolism and mitochondrion (Table $3)) ranked among the
top ten modules (based on effect size and p-adjust) for multiple pathologies (Tables S8 and S9).
Conversely, modules rKID:7m, 63m and 327 are annotated for immune response and were among the
top five ranked inducible modules associated with the presence of cellular infiltrates, i.e., inflammation
(Tables 2 and S8). Thus, strong activation in regeneration and inflammation responses impacted on
cellular energy production (metabolism and mitochondrial function) in the kidney, which was also
concluded previously for liver diseases 7°. The bi-directional response of these processes was also
demonstrated in human patients with renal transplants (Figure 6C), suggesting that these injury and
repair responses are also conserved between species.

In this study we have identified modules with strong statistical association with histopathology findings
and biomarkers of tissue injuries. Module rKID:2m was most strongly associated with concurrent and
predictive renal pathology and contained many well-known kidney injury biomarkers, including Havcr1
(Kim-1), Lcn2 (Lipocalin 2) Sppl (Osteopontin) and Clu (Clusterin). In addition, several immune
response modules ranked highly for association with concurrent and predictive kidney injury (Tables
2 and S9), including modules rKID:327, rKID:56 and rKID:212m, containing hub genes that are
candidate novel biomarkers such as fibrinogen (Fga, Fgb, Fgg), Icam1 and ceruloplasmin (CP),
respectively ¥4, This suggests that novel injury biomarkers could be discovered using gene co-
expression networks that are strongly associated with pathology, as was recently reported for liver
and kidney *7°, This approach was validated in a recently published study where early activation of
injury modules after cisplatin exposure will lead to renal pathology in rats by 28 days, including
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necrosis, inflammation and fibrosis 7. It was shown that urinary clusterin correlated well with Clu gene
expression, which is an important biomarker in rKID:2m that showed the strongest pathology
association. The subset of both concurrent and predictive kidney injury-associated modules is
important for chemical or drug development since aberrant transcriptional activity could indicate
higher risk of developing adversity. Moreover, association of (early) WGCNA module changes that are
predictive of late-stage kidney pathology is expected to impact drug candidate optimization and enable
prioritization of safer compounds.

Preservation analysis is a unique feature of network-based models allowing not only the robustness
and reproducibility of modules to be tested using datasets from the same experimental species, but
also the likelihood of translation across species, which is an important consideration in drug or
chemical hazard assessment. All rat kidney modules had at least moderate self-preservation in the TG
and DM rat kidney transcriptomic data, indicating that the modules were robust and reproducible
representations of biological response networks in rat kidneys. However, only 130 (37%) of the 347 rat
modules were preserved (translational modules) when compared to a human renal transplantation
transcriptomic dataset. Among the translational modules were those that reflect immune response,
cell cycle, metabolism, mitochondrial function, RNA processing, and ECM remodelling / fibrosis
modules. These biological programs are deterministic of end-stage renal disease, involving
inflammatory and regenerative programs that are part of renal transplant rejection 1. By contrast,
various modules that reflect early cellular stress response programs, including ER stress activation of
Atfd, Nrf2-mediated oxidative stress, as well as modules annotated for ribosomal biogenesis, renal
development, circadian regulation, steroid hormone metabolism were not preserved in human. These
differences are likely due to the nature of the human dataset, which only contained human transplant
samples, where early injury or disease responses, including adaptive cellular stress responses, are not
captured in these late-stage human transplant disease settings 2. Nonetheless, the fact that important
toxicity-related rat kidney modules are preserved in human kidney samples suggests that the
preservation approach is an attractive and valid strategy to determine the likelihood that mechanisms
of renal injury observed in rat kidney will translate to human. Future studies should focus on collection
of more extensive and diverse human renal pathology transcriptomics datasets representing a broader
spectrum of early and late-stage disease phenotypes, which may improve the preservation statistics
and confidence which rat modules will translate to human, which is significant knowledge for chemical
safety assessment.

In conclusion, the rat kidney TXG-MAPr tool provides a user-friendly interface that enables
visualization of gene expression data in the context of co-expressed modules that can be mined for the
association of important biological processes in acute and chronic renal injury. The tool can be utilized
for identifying possible safety liabilities and/or mechanisms that can lead to adversity, useful for
chemical safety assessment. Association of early WGCNA module changes that are predictive of later
kidney pathology is expected to impact lead optimization and enable prioritization of better
compounds which are less likely to induce pathology. We foresee that quantitative gene co-expression
modules, which are strongly associated to kidney pathology, and which translate from rat to human,
could potentially be implemented in translational quantitative systems toxicology models for
mechanistic evaluation and prediction of kidney injury of new chemical or drug candidates ”’.
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Figure legends

Figure 1. Overview of the rat kidney TXG-MAPr tool. (A) TXG-MAPr dendrograms showing WGCNA
module eigengene scores (EGS) of daily repeated 1 mg/kg/day cisplatin time course exposure from 4 -
29 days. The size of the circles is proportional to the module EGS, and the red/orange colours indicate
induction of the module, while blue/green indicates repression of the module. (B) Modules rKID:160,
rKID:298 and rKID:2m (left) are strongly induced by high dose cisplatin exposure at 29 days, which is
further displayed in cisplatin time response plots of the module EGS (middle) and the log2FC (right) of
the most significant genes, including the most hub-like gene (black). (C) KEGG pathway and
transcription factor (TF) enrichment (p-value) for p53 signalling or TP53 projected on the TXG-MAP
dendrogram, with rKID:160 and rKID:298 highlighted. (D) Module EGS correlation plot of rKID:298 and
rKID:160 for all treatment conditions (left) and correlation between 12 mg/kg/day puromycin
aminonucleoside and 1 mg/kg/day cisplatin at 15 days for all modules (right).

Figure 2. Module association with pathology. Strong Pearson correlation between different
pathologies based on Cohen’s D effect size (A) and signed log10 adjusted p-value (B). This indicates
that the same modules are associated with multiple pathologies, which could be the results of co-
occurring pathologies (cluster 1 Figure A). Cluster 1 from figure A could be separated in 2 clusters (B),
when controlling for module EGS using signed logl0 adjusted p-values. Only the most occurring
pathologies were taken along, with a pathology score > 0.67 (and = 1.33 for some pathologies). (C)
TXG-MAPr dendrograms showing module association with different toxicity phenotypes based on the
signed log10 adjusted p-value. Red colour indicates that the module EGS positively correlates with the
selected pathology (module induced with pathology present), while blue means a negative correlation
(module repressed with pathology present). The size of the circles is proportional to the -logl0
adjusted p-value. For the branches with the strongest pathology associations, the general enrichment
score is provided based on ORA of all genes in the branch. (D-E) Heatmap of signed logl0 p-adjust of
concurrent (D) and 4-day predictive (E) module associations with pathology. Red colour indicates that
the module EGS positively correlates with the selected pathology, while blue means a negative
correlation (i.e., module is repressed when the pathology is present). Hierarchical clustering was
applied on rows and columns to cluster both modules (rows) and toxicity phenotypes (columns) with
similar association scores together. For concurrent associations, modules from clusters 1 and 2 were
selected for strongest negative and positive correlation with toxicity, respectively. Module shows
highest statistical association with concurrent toxicity phenotypes (see bottom pathology cluster 1),
which were selected to look at the mean effect sizes and p-values (see also Table S9). For predictive
associations, the 4 days show the highest statistical significance, where modules from clusters 2 and 7
were selected for strongest negative and positive correlation with toxicity, respectively. Heatmaps are
clustered by Euclidean distance, using the complete method from pheatmap package.

Figure 3. Gene expression responses during nephrotoxic treatments. (A) Expression of genes of
selected modules with high pathology association is induced during nephrotoxic treatment conditions.
(B) The most prevalent renal pathologies induced by nephrotoxic treatments. (C) Serum biomarker
increases during nephrotoxic treatments versus controls (percentage increase, red line indicates 100%
or 2-fold increase). APL = allopurinol, CSA = cyclosporine A, CSP = cisplatin, GMC = gentamicin, LS =
lomustine, NPAA = phenylanthranilic acid, PAN = puromycin aminonucleoside, TRI = triamterene.
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Figure 4. Correlation of ischemic injury and PTC dedifferentiation with nephrotoxic treatment
conditions. (A) Cluster correlation plot for transcriptomic responses to nephrotoxic compounds,
ischemic injury and primary PTC cultures, which shows strong Pearson R correlation between module
EGS at time points when there is concurrent pathology (cluster Il in black box), while early allopurinol
(cluster 1), cisplatin (cluster 1ll) and puromycin aminonucleoside (cluster IV) responses are more
distinct. Left heatmap displays the percent increase of serum injury biomarkers (BUN and CRE)
compared to control (purple) and histopathology grades of tubule necrosis and regeneration (blue).
Heatmap is clustered by Euclidean distance, using the complete method from pheatmap package. (B)
Examples of correlation plots of responses during renal injury, showing high correlation between
nephrotoxic treatments (APL = allopurinol), ischemic injury and PTC dedifferentiation.

Figure 5. Module preservation. (A) Number of preserved rat kidney modules across datasets (TG-
GATEs (TG) rat kidney, DrugMatrix (DM) rat kidney, TG rat liver and human kidney). TG and DM kidney
datasets were used as a control to check if all modules are preserved. Z-summary > 2 indicate moderate
module preservation and Z-summary > 10 indicate high module preservation. (B) Strong correlation
between TG and DM preserved modules indicated by Z-summary scores for both comparisons,
displayed on the axis as a log scale. Specific modules are highlighted that are strongly preserved in
both datasets. (C) Comparison of rat kidney and liver Z-summary scores displayed on the axis as a log
scale. Several modules are strongly preserved in both kidney and liver datasets, indicating that these
processed have similar co-expression networks between the organs. Various kidney specific processes
are only preserved in the kidney, but not in the liver (left of the red dashed line), including modules
rKID:23m (kidney development), steroid metabolism (rKID:18m and 95) and Golgi function (rKID:109).
(D) Comparison of rat kidney and human kidney Z-summary scores displayed on the axis as a log scale.
Correlation plot of rat kidney modules preserved in DM kidney versus human kidney data, indicating
that several modules are also preserved in human (rKID:2m, 3m, 5m, 7m, 10m, 16m and 42m amongst
others), but others lack preservation in human (rKID:15 amongst others). Dashed red line indicates
low/moderate module preservation threshold (Zsum > 2) and dashed green line indicates strong
module preservation threshold (Zsum > 10). See also Table $S10 for more details.

Figure 6. Human preservation and network dynamics. (A) Box plot for the different human transplant
groups showing the module EGS (left) and the log2 fold change of the hub gene (second column) and
most significant genes of inflammation module rKID:7m. The groups are indicated by rejection type:
non-rejecting, ABMR = antibody mediated rejection, TCMR = T-cell mediated rejection, MIXED = both
antibody and T-cell mediated rejection. Significant differences between groups were calculated using
a Wilcoxon test. Significant gene log2 fold changes of individual patients were indicated in blue (p <
0.05). (B) Module EGS correlation plot of inflammation modules rKID:7m vs rKID:63m (left),
inflammation module rKID:7m vs injury biomarker module rKID:2m (centre) and inflammation rKID:7m
vs metabolism rKID:3m modules. Strong correlation is shown between the two inflammation and injury
biomarker modules, while there is inverse correlation between the inflammation module rKID:7m and
the metabolism module rKID:3m. (C) Cluster correlation heatmap (based on Pearson correlation of
module EGS) of the preserved modules in human with a EGS > 2. There is strong clustering of the
inflammation, ECM and cell migration modules (cluster 3) and cellular stress or injury related modules
(cluster 4). The mitochondrial function, metabolism and transport modules cluster together as well
(cluster 1) but show anti correlation with the inflammation and stress / injury modules. Heatmap is
clustered by Euclidean distance, using the complete method from pheatmap package.
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