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Summary 

 

The olfactory epithelium is one of the few regions of the nervous system that sustains 

neurogenesis throughout life. Its experimental accessibility makes it especially tractable for 

studying molecular mechanisms that drive neural regeneration in response to injury. In this 

study, we used single-cell sequencing to identify the transcriptional cascades and epigenetic 

processes involved in determining olfactory epithelial stem cell fate during injury-induced 

regeneration. By combining gene expression and accessible chromatin profiles of individual 

lineage-traced olfactory stem cells, we identified transcriptional heterogeneity among  

activated stem cells at a stage when cell fates are being specified. We further identified a 

subset of resting cells that appears poised for activation, characterized by accessible 

chromatin around wound response and lineage-specific genes prior to their later expression 

in response to injury. Together these results provide evidence for a latent activated stem cell 

state, in which a subset of quiescent olfactory epithelial stem cells are epigenetically primed 

to support injury-induced regeneration. 

 

Introduction 

 

The generation of cellular diversity in the nervous system requires specification of discrete cell 

lineages from multipotent neural progenitor cells. Neural tissues that are uniquely capable of 

regenerating multiple lineages throughout adulthood can undergo frequent cellular turnover 

under both homeostatic conditions and in response to injury. Regenerative capacity in the 

nervous system therefore requires neural progenitor cell maintenance, the ability to specify 

and generate multiple cell lineages, and the ability to respond to acute injury. 

 

The olfactory epithelium (OE) is one of the few sites in the nervous system that supports active 

neurogenesis throughout life (reviewed in (Denans, Baek, and Piotrowski 2019)). The OE 

divides these capacities between two different progenitor cell populations. Under normal 

homeostatic conditions, the differentiation of globose basal cells (GBCs), the actively 

proliferating neural progenitor cells in the OE stem cell niche, sustains lifelong olfactory 

neurogenesis (Caggiano, Kauer, and Hunter 1994; Graziadei and Graziadei 1979; J. E. 

Schwob et al. 1994). Upon injury, horizontal basal cells (HBCs), the normally quiescent stem 

cells of the OE, self-renew and differentiate to replace lost neurons, neural progenitors, and 

other damaged cells, a process requiring the production of multiple cell types in concert in 

order to repair the damaged system (James E. Schwob, Youngentob, and Mezza 1995; 

Leung, Coulombe, and Reed 2007; Iwai et al. 2008). 

 

We previously investigated the cellular mechanisms underlying lineage specification during 

OE homeostasis (Fletcher et al. 2017) and renewal after injury (Gadye et al. 2017) using 

single-cell RNA sequencing with in vivo lineage tracing of HBCs and their descendants.The 

molecular pathways that regulate the rapid transition of HBCs from a resting to an activated 

state have yet to be fully characterized, however. Advances in single-cell profiling have shed 

light on the role of chromatin accessibility in cell plasticity, cell fate potential, and functional 

heterogeneity within progenitor cell populations and have improved the ability to predict gene 

regulatory networks (Trevino et al. 2021; Ma et al. 2020) (reviewed in (Shema, Bernstein, and 

Buenrostro 2019)). Here, we applied single-cell sequencing to assess the epigenetic and 

transcriptomic states of individual lineage-traced cells arising from HBCs during recovery from 
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acute injury. The depth and scope of this dataset enabled us to identify transcription factor 

cascades that are associated with OE regeneration and uncover a subset of HBCs that are 

poised to respond to injury, as indicated by accessible chromatin around genes that are 

transcriptionally silent in a subset of quiescent cells but are rapidly expressed shortly after 

injury. These findings identify a latent activated stem cell state poised to repair the olfactory 

epithelium in response to injury and contribute to our understanding of the general principles 

governing neural stem cell maintenance and injury-induced repair of the nervous system.  
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Results 

 

Reconstructed lineages from single cells reveal dynamic transcriptional response to 

injury 

 

To investigate the transcriptional response to injury at the single-cell level, we analyzed single-

cell RNA sequencing data from an injury recovery time course published previously, in which 

the olfactory epithelium of Krt5-CreER(T2); Rosa26eYFP/eYFP adult (age 3–7 weeks) mice (23 

total; 15 F and 8 M) was injured using methimazole administration, and cells were sampled at 

24h, 48h, 96h, 7 days, and 14 days after injury (Gadye et al. 2017; Brann et al. 2020). 20,426 

cells were analyzed after filtering (Brann et al. 2020). Uniform Manifold Approximation and 

Projection (UMAP) dimensionality reduction (McInnes, Healy, and Melville 2018) revealed 

structure that was correlated with the chronological time of the sampled cells (Supplementary 

Figure 1a), indicating that the injury triggered a dynamic transcriptional response underlying 

differentiation. Cell types identified by manual annotation of clusters using expression of 

known marker genes included activated horizontal basal cells (HBCs*), regenerated HBCs 

(rHBCs), sustentacular cells (Sus), globose basal cells (GBCs), immature olfactory sensory 

neurons (iOSNs), and mature olfactory sensory neurons (mOSNs) (Figure 1a,b). 

 

To infer the developmental trajectory of HBC progeny, we used slingshot (Street et al. 2018) 

on UMAP reduced-dimensional space. This analysis revealed a trajectory consisting of three 

lineages starting from HBCs*: rHBCs, Sus cells, and mOSNs via GBCs and iOSNs (Figure 

1a, black line). To find genes associated with the development of each cell type, we looked 

for genes that increased in expression as a function of pseudotime using tradeSeq trajectory-

based differential expression analysis (Van den Berge et al. 2020). This revealed the top 

genes significantly upregulated in each of the lineages: two of the top four genes in the 

neuronal lineage are implicated in neuron development and amyotrophic lateral sclerosis 

(Prudencio et al. 2020; Marques et al. 2020), while three of the top four genes in the Sus 

lineage are involved in oxidation-reduction, and two of the top four rHBC lineage genes are 

immediate early genes (Figure 1c-e, Supplementary Figure 1b-d). While all three lineages 

showed upregulation of the same 1,200 genes following injury, out of a total of 14,618 genes, 

a particularly large set of genes (5,325) was uniquely involved in the neuronal lineage 

(Supplementary Figure 1e), possibly reflecting the complex transcriptional programs 

associated with neurogenesis. 
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Figure 1: Trajectory inference and differential expression analysis of lineage-traced scRNA-seq data. 

(A) Inferred trajectory in 3D UMAP space, with cells colored according to cell type. Starting from the 

HBC* population, the trajectory consists of three lineages developing into rHBC, Sus, and mOSN cells. 

(B) Cells in 2D UMAP space, colored according to cell type (top left panel) or the expression of known 

markers (all other panels), grey denoting no/low expression and blue denoting high expression. (C-E) 

Markers for each lineage identified by differential expression for the neuronal (C), sustentacular (D), 

and rHBC lineage (E). 

 

Employing smooth gene expression profiles to reveal transcription factor expression 

cascades 

 

The large number of genes activated upon injury suggests that coordinated gene regulatory 

mechanisms may underlie the transcriptional changes associated with lineage determination. 

Our previous studies showed gene expression changes specific to Sus and mOSN 

differentiation to be wave-like or modular, respectively (Fletcher et al. 2017). To further our 

understanding of the gene regulatory mechanisms underlying differentiation of the three HBC-

derived lineages, we sought to identify changes in transcription factor expression along each 

lineage, focusing on a set of 1,532 mouse transcription factors (TFs) (see Methods). The goal 

of our approach was to infer which TFs significantly increase in expression along each lineage 

over the injury recovery time course. Using the fitted gene expression functions along 

pseudotime from tradeSeq (Van den Berge et al. 2020), we tested whether the first derivative 

of the fitted expression function for a given TF was significantly greater than an arbitrary 
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threshold. This allowed us to 1) assess which TFs were significantly peaking at some point 

along a lineage and 2) derive at which point along differentiation each TF was most active, 

which here we assume to correspond to the most statistically significant increase in 

expression. 

 

This analysis uncovered clear TF expression cascades with distinct sequential but gradual 

activation patterns for each of the lineages (Figure 2a). The number of TFs contributing to 

each cascade was 524, 231, and 284 for the mOSN, Sus, and rHBC lineages, respectively. 

We also found 352, 31, and 61 TFs to have a significant peak only in the mOSN (e.g., 

Neurog1), Sus (e.g., Sec14l2), or rHBC (e.g., Trp63) lineages, respectively (Supplementary 

Figure 2b-d; Supplementary File 1; see Methods). The difference in the number of TFs with 

a significant peak between the mOSN lineage and the other two lineages may reflect the 

complexity of the transcriptional programs involved in, and the longer developmental path 

traversed by, the neuronal lineage. To characterize transcriptional programs along the mOSN 

lineage, we grouped the 524 TFs in the mOSN cascade according to the moment within the 

lineage in which they were most active and inferred which cellular processes were activated 

over time using gene set enrichment analysis. We observed an initial stress response at the 

early HBC* stage, which was followed by cell cycle regulation and neuron differentiation during 

the GBC and iOSN stages. A large group of TFs at the iOSN and mOSN stages were involved 

in processes such as dendrite development, cell projection, and calcium mediated signaling 

(Supplementary Figure 2e; top gene ontology terms for each gene set provided in 

Supplementary File 1). 

 

Previous studies demonstrated that the decision of an HBC to differentiate or self-renew 

manifests at the stage of HBC activation (Gadye et al. 2017). We therefore hypothesized that 

differential expression of specific TFs between individual HBCs* could be used to distinguish 

subpopulations of HBCs* that are committed to different cell fates. To test this hypothesis, we 

clustered HBCs* sampled at 24 hours post injury (HPI) on the expression of 19 TFs whose 

expression peaked at the same point in pseudotime during the HBC* stage, prior to the split 

in lineages (Supplementary Figure 2a; Supplementary File 1). This analysis identified eight 

discrete clusters (Figure 2b): two clusters were distinguished by specific expression of a 

single TF (Zfp560 in cluster 2 and Pdlim4 in cluster 7) and two clusters by specific co-

expression of two TFs (Creb3l2 and Tet2 in cluster 5 and Uncx and Ebf2 in cluster 6). These 

TFs may reflect or even underlie events driving HBCs* toward different cell fates. To test this 

possibility, we chose three genes whose expression defines two potentially lineage-specific 

clusters  -- cluster 6 (high expression of Ebf2 and Uncx) and cluster 7 (high expression of 

Pdlim4) -- to visualize by tradeSeq and fluorescent in situ hybridization (FISH). We found that 

Ebf2 and Uncx expression is highest in iOSNs and maintained in mOSNS, and Pdlim4 

expression, while high in GBCs,  is maintained only in Sus cells  (Figure 2c). FISH confirmed 

that in the uninjured OE, Ebf2 and Uncx were co-expressed in OSNs and excluded from Sus 

cells, whereas Pdlim4 was restricted to Sus cells, consistent with the tradeSeq analysis; all 

three were excluded from resting HBCs (Figure 2e). Consistent with the cascade findings, 

expression of all three genes was evident in putatively activated HBCs by FISH 1-2 days 

following injury: a subset of HBCs co-expressed Ebf2 and Uncx, whereas a mutually exclusive 

subset of HBCs expressed Pdlim4 (Figure 2e arrows versus arrowheads). These findings 

demonstrate that activated HBCs are transcriptionally heterogeneous as early as 24 HPI and 

suggest that this heterogeneity could reflect the early adoption of lineage-specific cell fates. 
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Figure 2: Activated HBCs transiently express lineage-enriched transcription factors. (A) Inferred 

transcription factor (TF) expression cascade for each of the three lineages in the trajectory. Heatmaps 

of fitted expression measures from tradeSeq, where the x-axis for each panel represents 100 equally 

wide pseudotime bins for a given lineage, and the most abundant cell type in each bin is indicated using 

the colorbar at the top of the heatmap (colors correspond to the key in C; If there are too few cells in a 

bin, no color is provided). Each row in each heatmap represents the expression of a TF normalized to 

zero mean and unit variance within a lineage. The TFs are ordered according to the pseudotime of their 

most significant peak, uncovering a TF activity cascade within each lineage. (B) Heatmap of the 

expression of “shared” TFs in activated HBCs clustered on the expression of these 19 TFs. Each row 

represents the scaled expression of a TF, and the colorbar at the top of the heatmap indicates the 

cluster label. (C) Expression of Ebf2, Uncx, and Pdlim4 (left to right) in each lineage over pseudotime 

as visualized using tradeSeq. (D) Activated HBCs represented in the heatmap in B plotted in 2D UMAP 

space and colored according to cluster (left) or the expression level of the TF indicated. (E) Fluorescent 

in-situ hybridization (FISH) of Ebf2, Uncx, and Pdlim4 in sections of uninjured, 24 HPI, and 48 HPI OE. 
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Ebf2 is shown in magenta, Uncx in cyan, and Pdlim4 in yellow. Immunohistochemistry using an antibody 

to KRT5 to mark HBCs is shown in grey. 

 

Estimation of transcription factor activity in activated HBCs through deconvolution of 

mRNA expression 

 

To further distinguish which TFs might be involved in activating gene expression during 

olfactory neurogenesis, we started by identifying the genes that are expressed along the 

mOSN lineage. We then inferred which of the 524 TFs in the mOSN cascade (shown in Figure 

2a) were likely to drive their expression (see Methods). Briefly, we resolved the collective 

change in gene expression over pseudotime along the lineage into co-regulated gene groups. 

Next, for each cell in the lineage and each of the 524 mOSN cascade TFs, we probabilistically 

assigned mRNAs to the TFs that most likely drove their expression. Finally, we estimated TF 

activity based on the number of mRNAs likely driven by each TF within bins of pseudotime. 

This revealed 3 clusters of TFs that were most active either at the HBC* (early), GBC (mid), 

or iOSN-mOSN (late) stage (Figure 3a). A closer look at the 20 most variable TFs in terms of 

their activity measure (Figure 3b) revealed that several known differentiation genes, including 

Sox11 and Rfx3, were most active late in the lineage, while Hes6, Ezh2, and E2f1 were most 

active at the GBC stage. Additionally, the immediate early genes Egr1, Fos, Junb, and Jund 

and the pioneer TF Foxa1 were most active early in the lineage (Figure 3c). Using multiplex 

FISH, we confirmed increased expression of E2f1, Ezh2, Sox11, and Rfx3 in the regenerating 

OE at 96 HPI, just after the split in the OSN and Sus lineages (Figure 3d). In addition, we 

confirmed increased Egr1 and Fos, which were estimated to be active at the HBC* stage, in 

activated HBCs, identified by high Lgals1 or high Krt5 expression, at 48 HPI (Figure 3e). 

Finally, we confirmed increased expression of Foxa1, and lack of expression of the 

homologous Foxa2 and Foxa3, at 48 HPI (Figure 3e).  
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Figure 3: Deconvolution of gene expression reveals dynamic TF activity along the mOSN lineage. (A) 

Clustered heatmap of scaled activity for TFs (rows) that are differentially active along the mOSN 

lineage. The x-axis represents pseudotime and the dominant cell type in each pseudotime bin is 

indicated at the top of the heatmap. Hierarchical clustering revealed three groups of TFs: early 

(mauve), mid (amber), and late (green). (B) Clustered heatmap of scaled TF activity for the 20 most 

variable TFs. (C) Change in TF activity over pseudotime for representative TFs from each cluster. (D) 

Fluorescent in situ hybridization (FISH) of Sox11 (cyan), and Rfx3 (yellow) or E2f1 (cyan) and Ezh2 

(yellow) showing increased expression in regenerating OE at 96 HPI. HBCs were identified with an 

antibody to KRT5 (magenta) and nuclei with DAPI (grey). (E) FISH of two TFs active at the HBC* 

stage, Egr1 and Fos (cyan), showing increased expression in activated HBCs (high Krt5 or Lgals1, 

magenta) at 48 HPI compared with before injury, and FISH of Foxa1 (cyan), Foxa2 (magenta), and 

Foxa3 (yellow) showing increased expression of Foxa1 in basal cells at 48 HPI (magenta, yellow 

signal is non-specific). Nuclei labeled with DAPI (grey). Scale bar in E for D,E = 50 microns 

 

Epigenetic priming of mRNA transcription in the HBC injury response 

 

The rapid and coordinated up-regulation of gene expression in HBCs in response to injury 

led us to hypothesize that HBCs are epigenetically primed to initiate rapid injury-induced 

changes in mRNA transcription, as observed in other stem cell niches, such as muscle stem 

cells (Rodgers et al. 2014), resting CD4+ T cells (Z. Wang et al. 2009; Rogers et al. 2021), 

hepatocytes (Reizel et al. 2021), and Müller glia (Norrie et al. 2024). To test this hypothesis, 
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and to identify gene regulatory networks that are initiated upon injury, we performed an 

assay for transposase accessible chromatin with sequencing (ATAC-seq) (Buenrostro et al. 

2013; Corces et al. 2017) on ICAM1+ HBCs isolated either from uninjured olfactory 

epithelium (hereafter referred to as “uninjured HBCs”) or from olfactory epithelium 24 hours 

after injury with methimazole (hereafter referred to as “injured HBCs”). We also generated 

bulk RNA sequencing libraries from uninjured and injured HBCs isolated from additional 

samples to serve as a gene expression reference. 

 

As a control, we first asked whether gene expression was correlated with chromatin 

accessibility in uninjured HBCs. To this end, we established two gene sets: 1) genes that are 

highly expressed in HBCs and 2) olfactory receptor genes, which are not expressed (“silent”) 

in uninjured HBCs. We then assessed chromatin accessibility in the regions surrounding 

these genes’ transcriptional start sites (TSS) in uninjured HBCs (Figure 4a). As expected, 

regions surrounding the TSS of highly expressed genes were found in accessible chromatin, 

whereas those of silent olfactory receptor genes did not appear in accessible chromatin, 

demonstrating that the TSS of these silent genes generally occupies inaccessible chromatin.  

 

We then identified epigenetic changes associated with injury. Bulk RNA-seq data were used 

to define 506 “early response” genes that were upregulated in injured HBCs and had no or 

very low expression in uninjured HBCs. We then quantified changes in chromatin 

accessibility around each early response gene’s TSS between uninjured and injured HBCs. 

Interestingly, we found that these early response genes tended to have comparable 

accessibility around the TSS both before and after injury despite significant increases in 

gene expression, suggesting that some of these genes may be primed for rapid activation 

upon injury (Figure 4b). We next looked at chromatin changes after injury over the gene 

bodies of individual marker genes for HBCs (Icam1 and Krt5) and wound response genes 

identified and defined in (Gadye et al. 2017; Brann et al. 2020)) (Krt6a, Ecm1, Sprr1a, and 

Emp1). We found that Icam1 lost and Krt5 gained chromatin accessibility consistent with 

changes in gene expression upon injury. Similarly, the chromatin around the wound 

response gene Krt6a became accessible exclusively when Krt6a transcription was activated. 

However, other wound response genes already exhibited partially (e.g., Ecm1) or fully (e.g., 

Sprr1a and Emp1) accessible chromatin prior to injury, suggesting that they may be primed 

for activation upon injury (Figure 4c,d).  
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Figure 4. Early response genes are primed for activation at the chromatin level. (A) Heatmaps of 

ATAC-seq read counts from uninjured (UI) HBCs around the TSS of highly expressed genes (top) or 

silent olfactory receptor genes (bottom). (B) Heatmap of normalized bulk gene expression values 

(average RPKM of two biological replicates) in uninjured HBCs versus injured HBCs (HBC*) for the 

top 506 genes that are upregulated in HBCs after injury, with genes ordered from left to right 

according to descending expression in injured HBCs (top). Bar graph showing the log2(fold-change) 

in chromatin accessibility after injury relative to before injury (bottom), where dotted lines indicate 

log2(fold-change) of 0.5 and -0.5. (C,D) ATAC-seq (top) and bulk RNA-seq (bottom) read counts 

before (green) and after (blue) injury around genes that are known to decrease (Icam1) or increase 

(Krt5) in expression in injured HBCs (C) and wound response genes (Krt6a, Ecm1, Sprr1a, and 

Emp1) (D). 

 

Single-cell analysis of chromatin accessibility reveals multiple HBC states 

 

We next asked whether wound response genes are epigenetically primed in all or a subset of 

uninjured HBCs by performing single-cell ATAC-seq on lineage-traced FACS purified HBCs 

(Krt5-CreER(T2); Rosa26eYFP/eYFP) before and 24 hours after injury with methimazole. 

Chromatin accessibility profiles of 5,743 cells were obtained. Gene activity scores were 

estimated using the ArchR framework for scATAC-seq (Granja et al. 2021). After quality 

control and doublet removal, 4,732 cells remained. Batch-corrected Harmony embeddings 

(Korsunsky et al. 2019) were used as input to UMAP dimensionality reduction for visualization. 

Clustering on the Harmony embeddings identified the major cell types that were present in the 

scRNA-seq data. HBCs made up the largest cluster; neuronal and sustentacular cells were 

identified by the open chromatin state of their respective marker genes (Supplementary 

Figure 3a,b) and removed from subsequent analysis. Interestingly, the remaining subset of 

4,076 HBCs consisted of three distinct clusters, possibly corresponding to different HBC states 

(Figure 5a): two clusters consisted almost exclusively of either injured or uninjured cells, which 
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corresponded to activated and resting (or quiescent) states, respectively, as defined 

previously by scRNA-seq (Gadye et al. 2017; Fletcher et al. 2017). However, a third cluster 

contained nearly equal numbers of injured and uninjured cells (Figure 5b,c), which may reflect 

a distinct epigenetic state shared by a subset of both resting and activated HBCs. Given the 

mixture of injured and uninjured cells, we labeled this third cluster “hybrid.” To distinguish 

between the experimental origin of HBCs and the predicted HBC state going forward, we use 

the terms “injured” and “uninjured” when referring to experimental origin, and “resting,” 

“activated,” and “hybrid” when referring to inferred cell state. 

 

To assess in which state(s) wound response genes are accessible, we visualized the 

normalized accessibility of two HBC marker genes (Icam1 and Krt5) and the four wound 

response genes assessed above (Krt6a, Ecm1, Sprr1a, and Emp1) in the three scATAC-seq 

clusters by UMAP and density plot (Supplementary Figure 4).  Icam1 was most accessible 

in the resting HBC state and least accessible in the activated HBC state, consistent with its 

downregulation upon injury (Supplementary Figure 4a-c,e). Similarly, Krt5 was most 

accessible in the activated HBC state, consistent with its upregulated expression in HBCs 

upon injury (Supplementary Figure 4a,d,f). Among the wound response genes, Krt6a and 

Ecm1 were most accessible in the activated state, and more accessible in the hybrid state 

compared with the resting state. Sprr1a and Emp1, which the bulk ATAC-seq data predicted 

to be accessible in uninjured HBCs, were approximately equally more accessible in both the 

activated and hybrid states than the resting state (Supplementary Figure 4a,d,f), 

suggesting that a subset of HBCs from uninjured OE (the “hybrid” HBCs) are poised to 

activate a subset of wound response genes prior to injury. 

 

To determine whether the three HBC clusters indeed represent distinct epigenetic states, we 

looked for regions of accessible chromatin that distinguished each cluster. Peak calling using 

MACS2 (Zhang et al. 2008) on the three HBC clusters resulted in a set of 183,712 peaks. We 

identified marker peaks for each of these clusters using ArchR (see Methods), uncovering 

12,146, 8,492, and 3,513 marker peaks for the activated, hybrid, and resting clusters, 

respectively (nominal FDR <= 0.01 and log2FC > 1.25). The cisbp database (Weirauch et al. 

2014) was used to derive TF binding site motifs, which were subsequently assessed for 

enrichment in these sets of marker peaks (Figure 5d). The results for the activated and resting 

clusters reflected TFs hypothesized to play a role in HBC activation or quiescence, 

respectively: motifs for the activity-responsive TFs Fosb and Junb were enriched in the 

activated state, and motifs for the canonical resting HBC TFs Trp63 and Trp73 were enriched 

in the resting state. Also enriched in activated HBCs were motifs for Smarcc1, the main 

regulatory component of the Brg1-associated factor (BAF) chromatin remodeling complex 

important for early stem cell differentiation, cell fate determination, and keratin gene 

expression (Lim et al. 2020; Schaniel et al. 2009). Remarkably, the top upregulated motifs for 

the hybrid cell state were all members of the Forkhead box (Fox) family of TFs. 
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Figure 5: scATAC-seq data uncover three HBC states. (A-B) UMAP dimensionality reduction of the 

scATAC-seq data; cells are colored according to origin (A) or according to state (B). (C) Barplot 

visualizing the number of (un)injured cells in each cluster. (D) Heatmap (unclustered) showing the 

Benjamini-Hochberg FDR adjusted p-values for testing the null hypothesis of no enrichment, of the top 

10 enriched TF motifs (rows) for each cell state (columns). The heatmap clearly illustrates that the 

three sets of TFs are high/insignificant (grey) in specific HBC groups and low/significant (black) in 

others. 

 

Integration of scRNA-seq and scATAC-seq data suggests a latent activated olfactory 

stem cell state 

 

In light of our discovery of multiple HBC epigenetic states, we were interested in linking these 

states as revealed by scATAC-seq with the transcriptomic states identified by scRNA-seq. Our 

two corresponding scRNA-seq sources for the two scATAC-seq HBC sources (injured and 

uninjured) were: 1) cells sampled at 24 HPI and clustered at the starting point of the trajectory 

(i.e., contained within the cluster that was assigned as the starting cluster) and 2) regenerated 

HBCs taken from the 14 days post-injury timepoint, which are indistinguishable from uninjured 

HBCs at the transcriptional level (Brann et al. 2020; GEO accession GSE173999) 

(Supplementary Figure 5a,b). When we examined these HBC transcriptomes by UMAP, we 

found that regenerated/resting HBCs formed a single cluster and HBCs at 24 HPI formed three 

clusters (a primary cluster and two smaller clusters) (Figure 6a). Next, to link epigenetic and 

transcriptomic states, we identified gene activity markers for each of the scATAC-seq clusters 

and mapped them onto the scRNA-seq clusters. Importantly, we first confirmed that both 
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injured and uninjured cells contributed to the gene activity markers of the hybrid cell state 

(Supplementary Figure 5b). We then visualized the gene activity markers for each HBC state 

in the scRNA-seq data, which revealed enrichment of marker gene expression in the 

analogous scRNA-seq cell clusters (activated markers in the main 24 HPI cluster and resting 

markers in the regenerated cluster) (Figure 6b,d), linking these cells in epigenetic and 

transcriptomic space. Interestingly, the hybrid marker genes were enriched in the two smaller 

24 HPI clusters, suggesting that hybrid genes, while accessible in both injured and uninjured 

cells, are activated upon injury in a small subset of HBCs (Figure 6c). 

 

Given this link between accessible chromatin and gene expression, we used the Seurat 

workflow (Stuart et al. 2019) to integrate the scRNA-seq and scATAC-seq datasets. After 

shared dimensionality reduction (Supplementary Figure 5c), we applied cell type label 

transfer analysis, where manual cell type annotations based on the scRNA-seq (regenerated, 

24 HPI, 24 HPI1, and 24 HPI2) clusters were transferred to scATAC-seq data, to predict a 

corresponding cell type in the latter. This revealed that the 24 HPI1 and 24 HPI2 sub-clusters 

were recovered within the scATAC-seq hybrid cluster, and they were tightly compacted within 

the reduced-dimensional space (Figure 6 e-g). 

 

We then searched for marker genes and TF motifs for each of the four new scATAC-seq 

clusters identified after label transfer using ArchR (see Methods) (Supplementary Figure 

6a,b). Marker genes appeared similar between the 24 HPI1 and 24 HPI2 clusters, while the 

24 HPI and regenerated/resting clusters were readily distinguishable. Moreover, the top 

enriched TF motifs were similar between 24 HPI1 and 24 HPI2 and corresponded to the 

motifs identified previously for the main hybrid state (shown in Figure 5d), suggesting that 

24 HPI1 and 24 HPI2 are subclusters of the main hybrid cluster. The enrichment results again 

pointed to a heavy involvement of Fox TFs for the two hybrid subclusters, which was 

supported by higher expression of the relevant Fox TFs (Foxa1, Foxb1, Foxb2, Foxc1, 

Foxc2, Foxd1, Foxl1, and Foxs1) in the 24 HPI1 and 24 HPI2 scRNA-seq clusters 

(Supplementary Figure 6c,d). 

 

 
Figure 6: Integration of scRNA-seq and scATAC-seq data. (A-D) scRNA-seq data of activated and 

regenerated HBCs visualized in UMAP space. (A) scRNA-seq data with cells colored according to cell 

type. (B-D) scRNA-seq data with cells colored according to expression of genes that were found to be 

markers for each of the three cell states identified using scATAC-seq gene activity scores. ‘Activated’ 

and ‘Resting’ genes identified using scATAC-seq are correspondingly upregulated in scRNA-seq data 
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for activated cells (B) and regenerated cells (D), while ‘Hybrid’ genes are upregulated in the two small 

activated subclusters (C). The expression values were first scaled within each gene to have zero 

mean and unit variance across all cells, upon which the scaled expression was summed across genes 

within each cell. (E) scRNA-seq data with cells colored according to cell state. (F) Workflow for cell 

label transfer from scRNA-seq to scATAC-seq data. First, Seurat was applied to integrate the scRNA-

seq and scATAC-seq data by shared dimensionality reduction using canonical correlation and to 

transfer the scRNA-seq cell labels to the scATAC-seq dataset. Next, the transferred labels are used to 

define marker peaks and genes in the scATAC-seq dataset. (G) scATAC-seq data with cells colored 

according to cell state predicted by transferring cell labels from scRNA-seq data. 

 

Hybrid-specific ATAC-seq peaks are associated with genes expressed in HBCs only 

after injury 

 

Transcription of lineage-specific genes has been shown to be primed in quiescent progenitor 

cells in several adult stem cell niches, including liver (Reizel et al. 2021; Iwafuchi-Doi et al. 

2016), bone marrow (Paul et al. 2015), skeletal muscle (Okafor et al. 2023), and naive CD4+ 

T cells (Rogers et al. 2021). Moreover, transcriptional priming is mediated by Foxa TFs in 

multiple endoderm-derived tissues (A. Wang et al. 2015; Iwafuchi-Doi et al. 2016; K. Lee et 

al. 2019; Geusz et al. 2021). Given the early expression of the pioneer TF Foxa1 in the 

neuronal lineage and the enrichment of Fox motifs in hybrid-specific ATAC-seq peaks, we 

investigated whether hybrid HBCs have accessible chromatin around lineage-specific genes. 

We ranked the marker genes for each ATAC-seq subcluster (identified using ArchR above) 

by FDR (Supplementary File 2) and visualized high-ranking known lineage-specific genes by 

UMAP and density plot. We found that the activity scores for known markers of Sus (Cd36, 

Aldh1a7), OSNs (Trim46, Erich3, Cap2), and regenerated HBCs (Adh7) were enriched in the 

hybrid cluster (Supplementary Figure 7a) and confirmed that the distribution of activity scores 

for each of these genes was approximately equal for injured and uninjured hybrid cells 

(Supplementary Figure 7b, Supplementary File 2). Moreover, we visualized lineage-

enriched expression of each of these genes using tradeSeq (Figure Supplementary Figure 

7c). These results reveal that a subset of silent lineage-specific genes occupy open chromatin 

in some uninjured HBCs. 

We were also interested in whether distal ATAC-seq peaks specific to the hybrid cluster 

were associated with genes whose priming would facilitate lineage specification and/or 

epithelial regeneration. While ArchR prioritizes local accessibility, Genome Region 

Enrichment of Annotations Tool (GREAT) assigns peaks to genes without assigning weight 

based on proximity to the gene body and searches for enriched biological functions (McLean 

et al. 2010). To expand our search for hybrid genes to include distal peak-gene associations, 

we used GREAT with default parameters. GREAT associated the 8,492 differentially 

accessible hybrid peaks, the majority of which were distal (>50 kb) to the transcription start 

site, with 6,426 genes. Of these, 424 were significantly enriched for hybrid peaks (Binomial 

test, FDR q-value < 0.05), including five of the six genes identified by ArchR and reported 

above (Adh7, Aldh1a7, Cap2, Cd36, and Trim46). Among the top 100 genes, we identified 

several candidates with reported roles in epithelial regeneration -- Foxa1, Klf5, Ets2, Ehf, 

and Sgk1 (full rankings and statistics available in Supplementary file 2) -- which we 

validated by FISH (Paranjapye et al. 2020; Bell et al. 2013; Naik et al. 2017; Ge et al. 2017; 

Fossum et al. 2017, 2014; Stephens et al. 2013). We found that Klf5, Ets2, Ehf, and Sgk1 

transcripts were absent in uninjured HBCs (Figure 7c, HBCs identified by Krt5 IHC in blue), 
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but visible in the OSN and Sus layers, which was consistent with our scRNA-seq data 

(Figure 7a). Moreover, all five transcripts were upregulated broadly in HBCs 24 and 48 

hours after injury (Figure 7c). In addition, despite their notable absence in uninjured HBCs 

and broad upregulation after injury, all five of these genes were most accessible in the hybrid 

scATAC-seq cluster, as demonstrated by the median of the distribution of their gene activity 

scores in the resting, hybrid, and activated scATAC-seq clusters (Figure 7b). 

Sets of genes associated with differentially accessible hybrid peaks appeared to be enriched 

for epithelial regenerative functions. Top GO biological processes identified using GREAT 

included the terms tissue remodeling and lung epithelium development (Supplementary file 

2). The most enriched molecular function was cytokine binding, which facilitates epithelial 

regeneration in OE and other systems (Ullah, Rowan, and Lane 2024; Guenin-Mace, 

Konieczny, and Naik 2023). By comparison, the top term for resting peaks was stem cell 

population maintenance and for activated peaks was cell junction organization. Together, 

these observations are consistent with the hypothesis that hybrid HBCs are poised for 

activation through accessible chromatin around injury response and lineage-associated 

genes that are rapidly upregulated early in the regeneration process. 

 

Figure 7: Genes proximal to regions of differentially accessible chromatin in hybrid cells are 

upregulated following injury. (A) Cells in 2D UMAP space, colored according to the expression 

of selected genes proximal to hybrid cell differentially accessible chromatin, gray denoting 

no/low expression and blue denoting high expression. The cells at the upper right of the UMAP 

represent the rHBC lineage, the extended arc of cells toward the left the neuronal lineage, and 
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the cells at the bottom the sustentacular lineage. (B) Density plots of normalized gene activity 

scores for lineage-specific genes in resting (blue), hybrid (green), and activated HBCs. (C) 

Fluorescent in-situ hybridization (FISH) for each gene in (top to bottom) uninjured OE, 24 

hours post injury and 48 hours post injury. FISH for each gene shown in red, Krt5 

immunohistochemistry shown in blue, and DAPI in grey. Scale bar = 20µM. 

 

Discussion 

 

An adult stem cell’s epigenetic landscape contributes to its ability to respond to injury and 

regenerate discrete lineages. In the case of the olfactory epithelium stem cell niche, the 

specific gene regulatory pathways involved in triggering olfactory stem cell activation and 

determining cell fate are still unclear. In the present study, we used single-cell transcriptomic 

and epigenetic profiling of HBCs and their descendants to determine the transcription factors 

that may contribute to cell fate specification and differentiation after injury. We identified TF 

binding motifs in accessible chromatin that reflect known and novel gene regulatory networks 

for resting and activated stem cell states. In the process, we further identified a subset of 

quiescent HBCs with an epigenetic profile similar to a subset of injury-activated HBCs. 

Collectively called “hybrid” cells, these HBCs represent a novel stem cell state characterized 

by open chromatin over a subset of wound response and regeneration genes that are only 

expressed later in the regeneration process. 

 

Transcriptional cascades define differentiation of multiple lineages in the regenerating 

olfactory epithelium 

 

We previously reported that HBCs expressing the TF Hopx 24 hours after injury are restricted 

to the mOSN or Sus lineages (but not the regenerating HBC lineage), suggesting that cell fate 

is chosen in this early heterogeneous activated state (Gadye et al. 2017). Here, we identified 

19 TFs that peak in expression in the activated state, some of which are mOSN or Sus lineage 

markers and define specific clusters or subsets of activated HBCs. In support of this 

computational analysis, transcripts for the mOSN or Sus marker genes Ebf2+Uncx or Pdlim4 

were detected by FISH in mutually exclusive activated HBCs 24-48 hours after injury but were 

not detected in uninjured HBCs. 

 

We hypothesize that this initial transcriptional heterogeneity in gene expression resolves 

activated HBCs into lineage-committed cells. Accordingly, our prediction of TF cascades 

should identify the TFs involved in each lineage and the point at which they peak -- and 

therefore act -- along the lineage. For the mOSN lineage in particular, this function is useful 

for understanding which TFs are important for regulating specific aspects of neuronal 

differentiation, from the initial HBC* stage through the final mOSN stage. Thus, we  further 

predicted which TFs are most active at each stage by grouping the expression of putative 

target genes into co-regulated sets, and then inferring which TFs were most likely to drive the 

expression of each set. This approach identified the TFs that are likely to be the most active 

at the HBC*, GBC, or OSN stage. Among the putative TFs most active at the HBC* stage, 

FoxA1 is notable for its role as a pioneer TF in other epithelia (reviewed in (Iwafuchi-Doi and 

Zaret 2016)) and directly links the FoxA motifs found to be enriched in open chromatin specific 

to hybrid HBCs with gene expression in activated HBCs. 

  

Epigenetic heterogeneity of quiescent olfactory stem cells 
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Recent studies have identified heterogeneity in various adult stem cell populations, including 

skeletal muscle stem cells (Der Vartanian et al. 2019; Scaramozza et al. 2019; Okafor et al. 

2023), thymus epithelial progenitor cells (Rogers et al. 2021; Kadouri et al. 2020; Nusser et 

al. 2022), hair follicle stem cells (Ma et al. 2020; Yang et al. 2017; Joost et al. 2020), and 

hematopoietic stem cells (Paul et al. 2015; Perié et al. 2015; Rodriguez-Fraticelli et al. 2018). 

The hybrid HBC state adds an epigenetic layer of heterogeneity to HBCs. Advances in 

detecting such heterogeneity owe in part to advances in single-cell epigenetic profiling. 

Indeed, it has been suggested that early in differentiation, chromatin state may be more 

effective than gene expression at predicting a progenitor cell’s fate (Ma et al. 2020). It therefore 

stands to reason that chromatin state may be a particularly good predictor of differences 

between seemingly homogeneous cells, and may explain why uninjured (quiescent) and 

injured (activated) HBC populations together were observed to occupy two discrete states 

transcriptionally, while a third hybrid state was only detected at the epigenetic level. 

 

A latent activated state may prime olfactory stem cells for regeneration 

 

Our discovery of a hybrid HBC population common to both quiescent and activated cells, 

which exhibits accessible chromatin around a subset of wound response genes like Emp1 and 

Sprr1a, suggests that a subset of quiescent HBCs exists in a latent activated state, poised for 

activation in response to injury. The enrichment of FoxA TF family motifs in hybrid ATAC-seq 

peaks is notable given that FoxA TFs are associated with enhancer priming (Geusz et al. 

2021) and FoxA TFs are established pioneer transcription factors in the regeneration of other 

epithelia (reviewed in (Iwafuchi-Doi and Zaret 2016)). The strong enrichment of FoxA motifs 

in accessible chromatin specific to hybrid HBCs could indicate epigenetic priming at a subset 

of hybrid-specific cis-regulatory elements in a manner analogous to the priming of genes in 

embryonic stem cells (ESCs) by the histone methylation function of Polycomb Repressive 

Complex 2 (PRC2).  

 

Indeed, throughout the genome of ESCs, regions that harbor both active and repressive 

histone marks, termed “bivalent domains,” are enriched for differentiation genes, many of 

which exhibit promoter co-occupancy by PRC2 and the ESC pioneer TFs Oct4, Sox2, and 

Nanog, keeping primed differentiation genes silent but poised for transcriptional activation (T. 

I. Lee et al. 2006; Azuara et al. 2006) (Bernstein et al. 2006). Additionally, RNA polymerase II 

(RNAPII) stalling at promoters of highly regulated genes provides a mechanism for maintaining 

a gene’s potential to be reactivated (reviewed in (Core and Adelman 2019)). It should be noted, 

however, that in mouse ESCs, promoter proximal pausing of RNAPII was found to be enriched 

at cell cycle and signal transduction genes, rather than differentiation genes, and pausing was 

found to be required for responsiveness to differentiation cues (Williams et al. 2015). A similar 

combination of FoxA1-mediated epigenetic priming of differentiation genes and RNAPII 

stalling at promoters of proliferation genes in HBCs could keep these genes silent but poised 

for activation upon injury. 

 

In the present study, we identified a discrete population or state of HBCs that may be similarly 

poised -- perhaps via pioneer TFs at a specific subset of genes -- for later activation of specific 

genes upon injury. This latent activated state may be a means of maintaining the ongoing 

balance of quiescence versus proliferation in olfactory epithelium stem cells. A “hybrid” state 

that is poised for activation in response to injury may therefore provide a strategy for allowing 
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a robust regenerative response in the niche while maintaining stem cell quiescence under 

homeostatic conditions. 
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Methods 

 

Animals 

 

All animal work was carried out in compliance with the University of California Institutional 

Animal Care and Use Committee (IACUC) and National Institute of Neurological Disorders 

and Stroke ACUC according to federal guidelines. Mice containing the Krt5-CreER(T2) driver 

(Indra et al. 1999) and Rosa26eYFP reporter (Srinivas et al. 2001) were kept on a mixed 

C57Bl/6J and 129 background. Wild-type C57BL/6J mice were purchased from the Jackson 

Laboratory. Both male and female mice were used in all studies.  

 

scRNA-seq with lineage tracing 

 

OE injury, dissociation, and Fluorescence Activated Cell Sorting (FACS) 

 

HBCs were labeled and their descendents post-injury were lineage traced using the Krt5-

CreER driver crossed with the Rosa26eYFP fluorescent reporter, as described previously 

((Fletcher et al. 2017); (Gadye et al. 2017)). Briefly, Krt5-CreER; Rosa26eYFP/eYFP mice (23 total; 

age 3–7 weeks; 15 F and 8 M) were injected intraperitoneally once with tamoxifen (0.25 mg 

tamoxifen/g body weight) after weaning, then injected with methimazole (50 μg/g body weight, 

IP) at least one day after tamoxifen administration, and sacrificed at 24 h, 48 h, 96 h, 7 d, or 

14 d after injury with methimazole. For each experimental time point, the dorsal olfactory 

epithelium (OE) was surgically removed and dissociated, as described in Fletcher et al. 2017 

and Gadye et al. 2017: OE from each animal was individually processed in approximately 1 

mL of pre-warmed (37°C) dissociation medium (150 units papain dissolved in 5 mL 

Neurobasal medium with 2.5 mM Cysteine and 2.5 mM ethylenediaminetetraacetic acid) with 

100 units DNAse I and incubated at 37°C for 25 mins. Samples were then washed three times 

with 10% fetal bovine serum in phosphate buffered saline (PBS-FBS) and strained through a 

35 μm nylon mesh filter cap into a 5 mL polypropylene tube to remove debris. Propidium iodide 

(PI) was added to cells at a final concentration of 2 μg/mL just before loading them onto a BD 

Influx cell sorter. After running negative controls (no YFP, no PI and no YFP, PI only), YFP-

positive/PI-negative cells were collected in a low-binding 1.5 mL tube containing 10% FBS in 

PBS on ice.  

 

Each FACS collection was considered a biological replicate. When possible, at least one male 

and one female mouse was used per biological replicate to aid doublet identification, and a 
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minimum of two biological replicates were collected per condition. For each replicate, age-

matched animals were given the same treatment. See Supplementary Table 1 for a summary 

of the experimental design for each sequencing modality in this study. 

 

Cell capture and single-cell RNA sequencing 

 

The 10x Genomics droplet-based transcriptome profiling system (Zheng et al Nat Comm 2017) 

was used to capture single cells, lyse them, and produce cDNA. Reverse transcription (RT) 

mix was added to the single-cell suspension and loaded onto the Single Cell B Chip. The 

Chromium Single Cell 3’ GEM, Library, and Gel Bead Kit, Chromium Chip B Single Cell Kit, 

and Chromium i7 Multiplex Kit were used for RT, cDNA amplification, and library preparation 

according to the manufacturer’s instructions (Chromium Single Cell 3’ Reagents Kits v2). 

Indexed single-cell libraries were sequenced in multiplex on Illumina HiSeq 4000 sequencers 

to produce 100bp paired-end reads. 

 

scRNA-seq data analysis 

 

Initial processing, normalization, and clustering 

 

Fastq files were generated from binary base call files, aligned to mm10, quantified, and 

aggregated using Cell Ranger v2.0.0 to produce a feature-barcode matrix containing the 

number of unique molecular identifiers (UMIs corresponding to cells) associated with a feature 

corresponding to a gene (row) and a barcode corresponding to a biological sample (column), 

and a molecule information file containing the number of reads assigned with high confidence 

to a gene for each UMI. Initial preprocessing of the molecule information file was performed 

as described in Brann et al. (2020). A total of 25,469 cells was initially assayed; after filtering 

doublets, microvillous cells (176 cells), respiratory epithelial cells (964 cells), and other 

manually selected cells that were asynchronous with respect to chronological time or separate 

from the main differentiation process of interest, e.g., mature neurons present at 24h and 48h 

post-injury, 20,426 cells remained (Brann et al. 2020). Afterwards, for each UMI (cell), the 

gene expression data were scaled by the median total counts across all cells. Dimensionality 

reduction was performed using principal component analysis (PCA) and the top 20 principal 

components were used as input to UMAP (McInnes, Healy, and Melville 2018). Clustering was 

performed using the SCANPY toolkit (Wolf, Angerer, and Theis 2018) using the Leiden 

algorithm with resolution parameter equal to 1.45, and a manual merging of clusters was 

performed using known marker genes. We identified 5,418 activated HBCs (HBC*), 7,782 

regenerated HBCs (rHBC), 755 globose basal cells (GBC), 2,683 sustentacular cells (Sus), 

2,859 immature olfactory sensory neurons (iOSN), and 929 mature olfactory sensory neurons 

(mOSN).  

 

 

Trajectory inference 

 

The 1,000 most variable genes were selected for dimensionality reduction prior to trajectory 

inference. PCA on log-transformed counts was performed, calculating the top 25 PCs using 

the R package irlba, which were subsequently reduced to three dimensions using UMAP with 

parameters min_dist=0.2, n_neighbors=15. Hierarchical clustering based on Euclidean 

distance in the 3D UMAP-space was performed. The hierarchical tree was cut to obtain nine 
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clusters, which were used as input to slingshot for trajectory inference, setting the starting 

cluster to correspond with HBC* cells. 

 

Differential gene expression analysis 

 

Negative binomial generalized additive models (NB-GAM) were fitted using tradeSeq. The 

number of knots for each lineage was set to 6 based on the Akaike Information Criterion (AIC). 

Top upregulated genes for each lineage, as shown in Figure 1, were identified using the 

associationTest implemented in tradeSeq, requiring a gene to be significant at a 5% nominal 

FDR level, as well as having a higher estimated average gene expression at the end of the 

lineage as compared to the lineage starting point based on the NB-GAM. 

 

Transcription factor cascade 

 

A list of transcription factors was obtained from the Animal Transcription Factor Database as 

described previously (Fletcher et al. 2017) and can be found at https://github.com/rufletch/p63-

HBC-diff. 

 

We implemented new functionality in tradeSeq to calculate first derivatives of the smooth fitted 

gene expression functions from the NB-GAM, using finite differencing. Letting  be the gene 

expression measure for gene  in cell , the tradeSeq model is defined as 

 
 

where the mean  of the negative binomial (NB) distribution is linked to the additive predictor 

 using a logarithmic link function. 

The gene-wise additive predictor consists of lineage-specific smoothing splines , that are 

functions of pseudotimes , for lineages . The binary matrix 

 assigns every cell to a particular lineage 

based on user-supplied weights. The  matrix  is a model matrix allowing the inclusion 

of  known cell-level covariates (e.g., batch, age, or gender), with  row  corresponding to 

the  cell;  is a regression parameter vector of dimension .  

Differences in sequencing depth or capture efficiency between cells are accounted for by cell-

specific offsets . 

 

The smoothing spline , for a given gene  and lineage , can be represented as a linear 

combination of  cubic basis functions, 

 

where the cubic basis functions  are enforced to be the same for all genes and lineages. 

Here, we use six knots, thus, for each gene and each lineage in the trajectory, we estimate 

 regression coefficients .  

 

Estimation of first derivatives 
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Derivatives of GAMs can be approximated using finite differencing (Wood, 2017). Specifically, 

assuming a vector of  pseudotime grid points  for each lineage , 

then the derivatives of the splines  at these grid points are approximated by 

  

 
where  corresponds to a small finite number, here taken to be . 

Standard errors  on  are similarly obtained (Ruppert et al. (2003), Wood (2017)), since 

the derivatives are a linear combination of the smoother coefficients . 

 

In our application, derivatives for each gene are calculated over a grid of  equally-

spaced points for each lineage and, for each grid point, we calculate a thresholded test statistic  

 
where we set the threshold  to be equal to 0.1. 

 

For each gene separately, we considered whether the first derivative of the NB-GAM fit was 

significantly different from zero for at least one of 100 grid points. Specifically, one-sided p-

values for the test of the null hypothesis that the derivative is greater than an arbitrary threshold 

of 0.1 were calculated at each grid point using a standard normal null distribution. Next, (Holm 

1979) adjusted p-values were computed across grid points and TFs with adjusted p-value 

below a 5% cut-off were declared involved in the cascade. The expression peak of each 

involved TF was defined as the point where the first derivative crosses zero after the grid point 

corresponding to the lowest adjusted p-value. Note that we merely view the p-values as useful 

numerical summary statistics, without attaching strong probabilistic interpretations to them.  

 

Identifying TFs most active in a particular lineage 

 

To identify TFs that are most active in one lineage as compared to other lineages, we start 

from the set of TFs found to be involved in each lineage from the procedure described in the 

previous paragraph. Once a TF is included in that set, we consider it to be  most active in a 

particular lineage if the maximum of the estimated lineage-specific smoother is at least 1.5 

times larger in that respective lineage as compared to the other two lineages. The 50% 

increase threshold was chosen to represent a biologically meaningful difference between 

lineages. 

 

Identifying shared TFs across lineages 

 

To identify TFs that are involved across all three lineages, we start from the set of TFs found 

to be involved in each lineage from the procedure described above. We consider a TF to be 

‘shared’, if its expression peak is at a similar pseudotime for all lineages. Out of 90 TFs that 

peak in all three lineages, we consider 19 TFs to be shared, as the pseudotime difference of 

their expression peak is lower than 1. 

 

Clustering activated HBCs by TF gene expression 
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Slingshot cluster 8 was used as a proxy for activated HBCs, since it corresponds to the starting 

point of the trajectory. Gene expression data (counts) for the 19 shared TFs for cluster 8 cells 

at 24 hpi were scaled, log-normalized, and dimensionally reduced using PCA. The jackstraw 

procedure within the Seurat toolkit was used to determine the statistical significance of the 

PCA scores and the elbow method was used to determine the dimensionality of the dataset. 

The top 15 principal components (PCs) were used as input to UMAP in Seurat for visualization. 

To cluster the cells, a k-nearest neighbor graph was constructed based on Euclidean distance 

in the PCA space using the first 7 PCs, and the Louvain algorithm was used to optimize this 

technique. 

 

Clustering and gene set enrichment analysis 

 

Log-transformed and scaled transcription factor expression measures for all TFs found to be 

involved in each lineage were clustered using hierarchical clustering based on Euclidean 

distance, and the hierarchical tree was cut at a predefined number of clusters. We somewhat 

arbitrarily chose 4 clusters for the mOSN lineage and 3 clusters for the sustentacular and 

rHBC lineages, as more TFs are involved in the nOSN lineage. Gene set enrichment analysis 

was performed using hypergeometric tests based on the TFs of each cluster using hallmark 

gene sets from the MSigDB database (Liberzon et al. 2015). For each group, we considered 

the top 10 enriched gene sets for interpretation. 

 

Deconvolution of gene expression to TF activity 

 

For transcription factor activity analysis we only focused on the cells that were assigned to the 

mOSN lineage, based on the cell assignment procedure from tradeSeq and the trajectory fitted 

using slingshot (Street et al. 2018, Van den Berge  et al. 2020). After subsetting, the dataset 

consist of 14,618 genes and 6,810 cells. The gene regulatory network (GRN) was estimated 

using grnboost2, implemented in SCENIC v0.10.2 (Aibar et al. 2017). The estimated GRN 

contains 7,863 genes, 262 transcription factors, and 25,896 edges. The median number of 

genes regulated by a TF is 27. Transcription factor activity was estimated using transfactor 

(manuscript in preparation), a statistical method which leverages a GRN to assign mRNA 

molecules to the transcription factors that produced them. The number of molecules produced 

by each TF in each single cell is then used as a proxy for its activity. Specifically, transfactor 

relies on a hierarchical Poisson model for the number of transcripts produced by each TF for 

a given gene. The EM algorithm is then used to fit the model and deconvolve TF-specific gene 

expression from overall gene expression for each gene. 

 

HBC dataset integration 

 

To determine whether regenerated HBCs are transcriptionally indistinguishable from resting 

HBCs, labels for single basal cells (respiratory basal cells, resting HBCs, and activated HBCs) 

from (Brann et al. 2020) (GSE173999) were transferred to lineage traced HBCs (activated and 

regenerated) using the IntegrateData function in Seurat. 

 

Bulk ATAC-seq 

 

OE injury, dissociation, and FACS 
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Injury, removal, and dissociation of the OE was performed as described above with the 

following changes: wild-type CD1 mice 6–8 weeks-old were used, and only two conditions 

were assessed -- UI and 24 HPI (3 biological replicates, each consisting of a mix of cells from 

2-3 mice, per condition). After papain incubation and 3 washes with 10% FBS in PBS (PBS-

FBS), anti-ICAM1-PE antibody was added to the cell suspension to a final concentration of 10 

μg/mL and incubated at 4°C for 20 minutes protected from light. Cells were then washed once 

with ice cold PBS-FBS, resuspended in cold PBS-FBS, and strained through a 35 μm nylon 

mesh filter cap into a 5 mL polypropylene tube to remove debris. Propidium iodide (PI) was 

added to cells at a final concentration of 2 μg/mL just before loading them onto a BD inFlux or 

BD FACSAria cell sorter. After running negative controls (no antibody, no PI and no antibody, 

PI only), ICAM1-PE-positive/PI-negative cells were collected in a low-binding 1.5 mL tube 

containing PBS-FBS on ice.  

 

Library construction and sequencing 

 

ATAC-seq libraries were generated from FACS-purified ICAM1-PE-positive cells as described 

in (Corces et al. 2017). Briefly, 10,000–15,000 cells were collected in 100 μl cold PBS-FBS, 

pelleted at 500 RCF for 5 min at 4°C, and lysed on ice for 3 mins in 50 μl cold lysis buffer (1% 

Digitonin, 10% Tween-20, 10% NP40 in 1M Tris-HCl pH 7.4, 5M NaCl, 1M MgCl2). Cold wash 

buffer (10% Tween-20 in 1M Tris-HCl pH 7.4, 5M NaCl, 1M MgCl2) was added, and tubes 

were inverted 3 times. Nuclei were then pelleted at 500 RCF for 10 mins at 4°C, supernatant 

was removed, and 20 μl transposition mix (1X Tagment Buffer, 0.01% Digitonin, 0.1% Tween-

20, 1 μl TDE1) was added to each sample. Nuclei in transposition mix were incubated at 37°C 

for 30 minutes in a thermomixer with 1000 RPM mixing. Immediately after transposition, 

samples were placed on ice and 5 volumes of DNA Binding Buffer (Zymo) were added to each. 

Reactions were cleaned up using a Zymo DNA Clean and Concentrator 5 kit, and samples 

were eluted in 20 μl Elution Buffer (Zymo).  

 

For library generation, 18 μl of each sample was used as template for 5 cycles of PCR, then 

qPCR was performed on 4 μl of PCR product  to assess the appropriate number of additional 

PCR cycles. The remaining 36 μl PCR reaction was run for the determined number of cycles. 

AMPure XP beads were used to select fragments between 180 and 1130bp, DNA 

concentration was measured using a Qubit dsDNA HS kit, and library quality was visualized 

using a Bioanalyzer. If fragments less than 100bp were observed, the library was further 

cleaned up using a Zymo DNA Clean and Concentrator 5 kit and eluted with 10 μl of 10 mM 

Tris-HCl, pH 8.0. Each replicate per condition was sequenced on a HiSeq 4000 (Illumina) in a 

different batch such that each sequencing batch contained one replicate from each condition. 

 

Bulk ATAC-seq data analysis 

 

Peak calling 

 

Adapters were trimmed using Trimmomatic (Bolger, Lohse, and Usadel 2014), and reads were 

aligned to mm10 with bowtie2 (Langmead and Salzberg 2012). After removing reads mapped 

to the mitochondrial genome, duplicated reads, and reads mapping to any region with fewer 

than 10 reads with SAMtools (Danecek et al. 2021), the remaining reads were used for peak 

calling with MACS2 (--shift -50 --extsize 100) (Zhang et al. 2008) and Genrich 
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(https://github.com/jsh58/Genrich), and the intersection of replicate peaks from the two tools 

were used for differential accessibility analysis (see below). 

 

Differential accessibility 

 

Within each condition, replicate peaks identified using a single tool (MACS2 or Genrich) were 

intersected using bedtools intersect (Quinlan and Hall 2010), then peaks identified using 

MACS2 were intersected with peaks identified using Genrich using bedtools intersect. 65,998 

total peaks in all samples were quantified using bedtools merge. Peaks were then annotated 

and ATAC-seq signals were quantified and normalized to library size, peak width, and GC-

content using cqn (Hansen, Irizarry, and Wu 2012). Differentially accessible (DA) peaks 

between UI HBCs and 24HPI HBCs were identified using edgeR (Robinson, McCarthy, and 

Smyth 2010) for a total of 15,815 DA peaks. 

 

Bulk RNA-seq 

 

OE injury, dissociation, and FACS 

 

Injury, removal, dissociation, and FACS were performed as for bulk ATAC-seq, for a total of 2 

biological replicates per condition. Each biological replicate consisted of a mix of cells from 2 

male and 2 female age-matched mice. 

 

Library construction and sequencing 

 

RNA-seq libraries were generated from 20,000–50,000 FACS-purified ICAM1-PE-positive 

cells collected in 100 μl cold PBS-FBS, pelleted at 500 RCF for 5 min at 4°C, and resuspended 

in 100 μl TRI Reagent (Zymo). Total RNA was extracted using a Zymo Direct-zol RNA 

MicroPrep kit, rRNA was depleted using a NEBNext rRNA Depletion Kit (New England 

BioLabs Cat# E6310), and libraries were made using a NEBNext Ultra II Directional RNA 

Library Prep Kit for Illumina (New England BioLabs Cat# E7760). All four samples (two 

biological replicates from two conditions) were sequenced together in one run on a HiSeq 

4000 (Illumina). 

 

Bulk RNA-seq data analysis 

 

Sequencing reads were mapped to mm10 using STAR v 2.7.1a (Dobin et al. 2013). After 

removal of duplicated and low-quality reads using SAMtools (Danecek et al. 2021), reads were 

quantified using HOMER (Heinz et al. 2010). Differential expression was determined using 

DESeq2 (Love, Huber, and Anders 2014). 

 

scATAC-seq with lineage tracing 

 

OE dissociation and FACS Purification 

 

Injury, removal, and dissociation of the OE were performed as described above with the 

following changes: Krt5-CreER; Rosa26eYFP/eYFP mice were injected intraperitoneally once with 

tamoxifen (0.25 mg tamoxifen/g body weight) at 68 weeks of age, injected with methimazole 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 13, 2025. ; https://doi.org/10.1101/2023.10.26.564041doi: bioRxiv preprint 

https://github.com/jsh58/Genrich
https://paperpile.com/c/4XplyH/G9M5X
https://paperpile.com/c/4XplyH/3NReC
https://paperpile.com/c/4XplyH/pr6jS
https://paperpile.com/c/4XplyH/pr6jS
https://paperpile.com/c/4XplyH/5lyM9
https://paperpile.com/c/4XplyH/jqxlx
https://paperpile.com/c/4XplyH/5M5EV
https://paperpile.com/c/4XplyH/lxFSt
https://doi.org/10.1101/2023.10.26.564041
http://creativecommons.org/licenses/by/4.0/


 

 

27 

(50 μg/g body weight, IP) or saline 3 days after tamoxifen administration, and sacrificed 24 h 

after injury (3 biological replicates per condition, and each replicate consisted of 2–3 mice. 

 

Nuclei Isolation 

 

Viable YFP+ cells (range: 900-3600) were sorted into 200 μl of PBS-FBS using a FACSAria 

(BD), centrifuged at 500g for 5 min at 4°C. After supernatant removal, cells were resuspended 

in 200 μl 0.04% BSA in PBS and centrifuged again at 500g for 5 min at 4°C. 195 μl supernatant 

was removed, and 45 μl cold lysis buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3 mM MgCl2, 

0.1% Tween-20, 0.1% NP40, 0.01% Digitonin, 1% BSA) was added and mixed with the pellet 

by gently pipetting up and down 3 times. Samples were incubated on ice for 3 min, and 50 μl 

cold wash buffer (10mM Tris-HCl pH 7.4, 10mM NaCl, 3mM MgCl2, 0.1% Tween-20, 1% BSA) 

was added to each without mixing. Samples were centrifuged at 500g for 5 min at 4°C. 95 ul 

supernatant was carefully removed, 45ul cold 1X Nuclei Buffer was added to each sample 

without mixing, and samples were centrifuged again at 500g for 5 min at 4°C. 48 μl supernatant 

was removed without disturbing the pellet, which was then resuspended in the remaining (~5 

μl ) buffer for use in single cell ATAC-seq. 

 

10x Genomics ATAC-seq library construction 

 

Nuclei isolated as described above were used for preparing single-cell ATAC-seq libraries 

using a Chromium Single Cell ATAC Library & Gel Bead Kit (PN-1000111) according to the 

manufacturer’s instructions (10x Chromium Single Cell ATAC Reagents Kits User Guide). 

Briefly, 5 μl of each sample resuspended in 1X Nuclei Buffer was added to 10 μl Transposition 

Mix, mixed by pipetting 6 times, and incubated in a thermal cycler at 37°C for 1 hour. After 

addition of barcoding master mix, the Chromium Chip E Single Cell Kit (PN-1000086) and 

Chromium i7 Multiplex Kit N, Set A (PN-1000084) were used for GEM generation and library 

construction. Indexed single-cell libraries were sequenced in multiplex on a NovaSeq 

(Illumina) to produce 150bp paired-end reads. 

 

scATAC-seq data analysis 

 

Raw data were processed using the Cell Ranger scATAC-seq processing pipeline. 

Downstream analysis was performed using ArchR (Granja et al. 2021) v0.9.5, discarding cells 

that had fewer than 1,000 fragments or a transcription start site (TSS) enrichment score less 

than 4. Doublets were removed by ArchR using default settings. Gene activity scores were 

calculated using default settings in ArchR. Latent semantic indexing was performed to obtain 

30 reduced dimensions, which were subsequently corrected for sample/batch effects using 

Harmony (Korsunsky et al. 2019). Clustering was performed on the Harmony embeddings 

using the ‘Seurat’ method implemented in ArchR, obtaining 10 clusters which were merged 

manually. For visualization purposes, the Harmony embeddings were used as input to UMAP 

(McInnes, Healy, and Melville 2018) to reduce it to two dimensions. Gene markers for the HBC 

cell states were obtained based on the estimated gene activity scores using the getMarkers 

implementation in ArchR, using a Wilcoxon test with a log-fold-change cut-off of 1.25 and 

Benjamini-Hochberg FDR  (Benjamini and Hochberg 1995) nominal level of 1% as thresholds. 

 

Pseudobulking, where counts are summed across cells that share the same cell state/type, 

was performed using the addGroupCoverages implementation in ArchR, creating a minimum 
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of 2 and maximum of 6 pseudobulks for each of the three HBC cell states. Peak calling was 

performed using MACS2 (Zhang et al. 2008) on the pseudobulks, resulting in 183,712 peaks. 

Peak markers for the HBC cell states were obtained as described in the previous paragraph, 

using a Wilcoxon test statistic with a log-fold-change cut-off of 1.25 and Benjamini-Hochberg 

FDR nominal level of 1% as thresholds. Motif enrichment as implemented in ArchR (Granja et 

al. 2021) for the marker peaks of each cell state was performed using the cisbp database 

(Weirauch et al. 2014). 

 

Integration of scRNA-seq and scATAC-seq data 

 

We used Seurat v3.1.5 for integration of the scRNA-seq and scATAC-seq datasets (Stuart et 

al. 2019). For the scATAC-seq data, we used the peak matrix and gene activity matrix obtained 

using ArchR (Granja et al. 2021) as described in the previous section. Integration was 

performed by identifying anchor cells across datasets using canonical correlation analysis on 

the scRNA-seq gene expression and scATAC-seq gene activity scores. Cell labels were 

transferred from the scRNA-seq to scATAC-seq data using these anchor cells, as 

implemented in Seurat’s TransferData function. Marker peaks/genes and motif enrichment 

was performed for each cell identity using ArchR as described in the previous section. 

 

Identification of genes associated with hybrid-specific ATAC-seq peaks 

To associate peaks with genes, hybrid-specific marker peaks were saved in a .bed file, which 

was then entered into GREAT version 4.0.4 using default basal + extension parameters 

(constitutive 5.0 kb upstream and 1.0 kb downstream, up to 1000.0 kb max extension) with 

curated regulatory domains (McLean et al. 2010). Genes were ordered by binomial rank and 

the top 100 significant by region-based binomial FDR Q-value (Q-val < 0.05) were considered 

for validation.  

 

Histology 

 

In-situ hybridization and immunohistochemistry 

 

Nasal tissue was prepared for RNAscope (ACDBio) multiplex fluorescent in-situ hybridization 

(FISH) from two C57Bl/6J mice at each post-injury time point and one mouse which was 

uninjured. Briefly, skin was removed from the skull and the bottom jaw and incisors were 

removed with a razor blade. Nasal cavities were flushed with 4% paraformaldehyde (PFA) via 

the palate. Heads were then drop-fixed in 4% PFA for 16-18 hours, decalcified in 10% 

ethylenediaminetetraacetic acid (EDTA) for 3 to 5 days and  equilibrated in 30% sucrose in 

PBS at 4°C before freezing in OCT medium (Fisher Scientific). Sections were sliced to 15µM 

in a cryostat (Leica Biosystems). Multiplex FISH was performed according to the 

manufacturer’s instructions  (multiplex V2 kit for fixed frozen tissue), with slight modifications: 

we limited antigen retrieval to 5 minutes and protease III treatment to 10 minutes, except in 

the case of Figure 2e (uninjured), where the protocol was followed entirely according to the 

manufacturer’s instructions.  

 

Following FISH, sections were blocked with PBS + 0.1% Tween-20 containing 10% Normal 

Goat Serum (NGS) for 2 hours and then incubated with an antibody to Keratin 5 (SAB4501651 

raised in rabbit from Sigma Aldrich) at 1:500 dilution in PBS + 0.1% Tween-20 containing 1% 
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NGS over the weekend. Sections were then washed in PBS and incubated for 2 hours with a 

goat anti-rabbit IgG (H+L) highly cross-adsorbed secondary antibody conjugated to Alexa 

Fluor Plus 647 (ThermoFisher Scientific) at 1:3000 dilution in PBS + 0.1% Tween-20 with 1% 

NGS. After washing, sections were mounted with glass coverslips using ProLong Gold 

Antifade Mountant (Invitrogen), and sealed with clear nail polish. Sections and z-stacks were 

imaged at 20x magnification on a Stellaris 8 confocal microscope (Leica Microsystems).  

 

Data and code availability 

 

scRNA-seq data have been deposited on the Gene Expression Omnibus (GEO) under the 

accession number GSE157068  (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc= 

GSE157068). scATAC-seq have been deposited on GEO under the accession number 

GSE246167 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE246167). 

 

Code to reproduce analyses and figures is available on GitHub at 

https://github.com/koenvandenberge/hbcRegenOE. The code for TF activity analysis will be 

released once the R package ‘transfactor’ implementing the statistical methodology has been 

made available. 
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