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Abstract

Current theories of bacterial growth physiology demonstrate impressive predictive power but are often
phenomenological, lacking mechanistic detail. Incorporating such details would significantly enhance
our ability to predict and control bacterial growth under varying environmental conditions. The ”Flux
Controlled Regulation” (FCR) model serves as a reference framework, linking ribosome allocation
to translation efficiency through a steady-state assumption. However, it neglects ppGpp-mediated
nutrient sensing and transcriptional regulation of ribosomal operons. Here, we propose a mechanistic
model that extends the FCR framework by incorporating three key components: (i) the amino acid
pool, (ii) ppGpp sensing of translation elongation rate, and (iii) transcriptional regulation of protein
allocation by ppGpp-sensitive promoters. Our model aligns with observed steady-state growth laws
and makes testable predictions for unobserved quantities. We show that during environmental changes,
the incoherent feedback between sensing and regulation generates oscillatory relaxation dynamics, a

behavior that we support by new and existing experimental data.
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I. INTRODUCTION

The regulation of growth is critical for all living cells [1H4]. On general grounds, it can be
seen on different levels as a global resource allocation problem whereby enzymes and proteins
that mediate the fluxes are produced [5], and the coordination of sensing of nutrients and other
environmental cues leading to the regulatory circuits [0, [7]. The resource allocation problem
determines the target levels of protein expression that results in the organism’s growth rate
(or more in general the fitness) in a given environment and also in possibly fluctuating growth
conditions [B, 8, ©]. For example, under carbon-limited growth, there is a trade-off between
the expression of ribosomes, which carry out protein biosynthesis, and the metabolic enzymes
providing the necessary amino acids and other precursors [5l, [0HI2]. The theories that originate
from this observation work are conceptually powerful and quantitatively predictive both during
exponential growth [I0] and out-of-steady-state scenarios [13].

On the other hand, the current frameworks miss an explicit description of the regulatory
circuits that coordinate the cellular response to perturbations by reading the environmental
signals. In bacteria, the circuit that implements this control is based on the small signaling
molecule (p)ppGpp (guanosine tetraphosphate or pentaphosphate) [6] [7]. This small molecule
can “read” the external environment by sensing changes in the uncharged tRNA caused by
changes in amino-acid abundances or other essential nutrients. Under scarcity of these com-
ponents, uncharged tRNA molecules accumulate in the ribosome, leading to the activation of
the ribosome-associated RelA protein, which synthesizes ppGpp by transferring a pyrophos-
phate group from ATP to GTP or GDP, resulting in the production of ppGpp and AMP or
ADP [14], 15]. The less-well-characterized SpoT protein can both degrade and catalyze the
synthesis of ppGpp, which provides a mechanism for fine-tuning the cellular response to stress.
Recent quantitative measurements of ppGpp levels during nutrient shifts lead to the hypothesis
that ppGpp amounts may sense translation elongation speed through the concerted action of
RelA and SpoT [16]. The sensing of amino acid levels by ppGpp results in the regulation of
ribosomal biosynthesis through its function as a signaling molecule that modulates the activity
of RNA polymerase on ribosomal and growth-related promoters. This process involves the DksA
protein and a GC-rich “discriminator region” present in the promoter sequences and affects the
relative amount of transcripts [7]. As ppGpp levels increase, the production of ribosomal tran-
scripts decreases, enabling bacteria to adjust to nutrient and stress conditions by redirecting
resources towards survival and growth [6] (17, [1§].

Being able to predict how cells will respond to new perturbations is crucial, and to this end

a mechanistic understanding of growth control is essential. It is important to note that the
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response to a change is specific to the environment or perturbation under investigation [12]
19], while the regulatory mechanism remains the same irrespective of the environment [7, 16],
albeit different perturbations can trigger the response of different regulatory circuits. However,
obtaining a detailed description of the key circuits controlling resource allocation and growth
is challenging as we still lack a comprehensive understanding of all the molecular players. A
crucial problem for gaining insight into the underlying sensing and regulation of growth is that
during steady-state (i.e., balanced exponential) growth all the relevant molecular players are
balanced [4, 20]. In such conditions, even if resource allocation is the result of the action of
sensing and regulatory circuits, the mechanistic principles and causal chains governing these
links remain hidden. Thus, to understand the regulatory aspects, it is necessary to study
the dynamic cellular response to perturbations and focus on the out-of-steady-state behavior.
From a modeling perspective, non-steady conditions offer the opportunity to describe jointly
growth laws, limiting components, and the role of the external nutrients and cues on cellular
growth [9, 13, 21, 22]. Here we focus on perturbations performed by changing the external
nutrient source [13], 23]. A number of modeling studies have focused on non-steady conditions,
and they can be divided into models that incorporate the growth law theory by using a top-down
approach [13],24) 25], and bottom-up models with a more detailed descriptions of the regulatory
mechanisms [9], 17, 21]. Each one of these models makes different modeling assumptions, which
we will discuss in more detail below. Recently, Wu and coworkers [16] have studied how the
ppGpp regulatory mechanism can sense the elongation rate. However, this study does not
include a description of the connection between the environment and the translational speed,

which is mediated by the pool of amino acids available for protein synthesis.

In this study, we propose an intermediate approach between a top-down framework and a
specific model of the circuits by introducing a comprehensive model that incorporates (I) an
explicit description of amino acid sensing, (II) a detailed account of the mechanistic regulation
of transcription via ppGpp, and (III) a framework for growth laws and global resource allocation.
Notably, our model manifests an emergent property whereby the system’s response to external
perturbations exhibits oscillatory behavior, which arises due to the incoherent mutual feedback
loop that emerges between amino acid pools and ribosome levels. The key ingredient for this
property to arise is the joint description of the amino acids and ribosomes pool in a dynamical

framework, which is not addressed in previous frameworks [5] [13].

3


https://doi.org/10.1101/2023.10.25.563923
http://creativecommons.org/licenses/by-nc-nd/4.0/

96

97

98

99

100

101

102

103

104

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.25.563923; this version posted January 31, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Sector size given by B _ Regulatory functiops
global allocation functions given by ppGpp mediated
transcripts dynamics

l T j ppGpp ‘&Y
- -.E_,, Q S9e —}Pribosomal transcript
3 E

L IJ"R MRNA.-= ¥~ Tm_
pool -‘/\.7\/)»&/
g . T fibdsomes
e — /\[XR _ ¢R]  TR(G) making ribomes
XR = Tt RNAP regulatory
A= €gr d _ function
xr 1
OR + dp + g =1 T:E[WR_(G)*XR]
C PpGpp dynamics given by D Amino alcids dynamics
translation elongation rate given by
BYe nutrient influx
T Fsyntn(Va, OR) — faeg(¥a, 9R) and biosynthesis outflux
metabolism S%Ct)ﬁee‘gig
faeg(¥a, OR) X Tdwell 3
L
fsynth(wA7 (/)R) X Ttrans de

\ —— = ¢pXiti — edr(l +Ya)
B || @

FIG. 1: Mechanistic model for bacteria response to external perturbations. Global
scheme of the regulatory model. The out-of-steady-state dynamics is governed by four main in-
gredients: (A) the allocation functions x;s, which set the target size for the proteome sectors ¢;s
(B) the ppGpp-mediated transcript dynamics (total transcript 7" and ribosomal transcripts Tr),
which determine the values of the allocation functions by setting the composition of the tran-
script pool (C) the ppGpp dynamics, which reads the translation elongation rate e-determined
by the dwelling and translocation time- and regulates the transcript production (D) the pro-
duction and consumption of amino acids, ¥4, which control ppGpp production by setting the
translation speed. The first module on the dynamics of the sector size is derived from ref. [13].
Each box contains the equation associated to the illustrated mechanism (described in the main

text).
II. RESULTS
A theoretical model to describe response to nutrient changes

To describe the out-of-steady-state dynamics of cell growth, we designed a model framework
that, starting from the framework defined in ref. [13] takes into account all the major mechanistic
players involved in the response to the internal amino acids concentration, translation rate,
nutrient sensing by ppGpp concentration, mRNA dynamics, and protein production. Fig. 1
shows the scheme of the proposed framework, which we describe in the following paragraphs
(see Methods and Supplementary Note 1 and 2 for details).

In the model, ribosomes are responsible for the synthesis of all proteins, divided into “sectors”

4
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representing groups of co-regulated proteins (which usually have similar functions) [13]. The
model focuses on three sectors: ribosomal (¢r), constitutive (¢p, assumed to be connected with
the flux of amino acids [10] and metabolism in general), and housekeeping (¢q, assumed to be
kept homeostatically constant [I0]). Note that the model is is a coarse-grained description of
key growth-related cellular processes [10], 12]; for example, the R sector includes ribosomes but
also translation-related proteins, and the P sector includes catabolism (e.g. carbon uptake) and
anabolism (e.g., amino acids synthesis). Out of steady state, the target size of each sector is
regulated by “regulatory functions” [13], denoted as xr, xp, and xq, representing the fraction
of ribosomes that actively translate proteins of the different sectors. From the definition of
dM;

sectors, ¢; = M;/M; and the repartition of the total biosynthesis flux, G = AMio i, one

obtains by chain rule the following dynamical equation for the sector size [13]

dey
dt

)‘[Xl - (bl]Jl € [Ra P7 Q] ’ (1)

where A is the growth rate (Fig. 1). This equation essentially states that (I) ribosomes translate
sector i with allocation function x;, and (II) that the equilibrium state of the sector is ¢; = x;.

In the absence of post-transcriptional control [6, 26], we assume that ribosomes randomly
attach to transcripts, initiate protein synthesis, and produce the proteins. Therefore, the compo-
sition of the mRNA pool determines the redistribution of the flux among the three sectors. We
hence define xg as the ratio of ribosomal transcripts (7g) to the total number of transcripts (7'),
and similarly for yp and xq.

The ribosomal mRNA pool composition is regulated by the alarmone ppGpp, which con-
trols the partitioning of the RNA polymerase (RNAP) [7]. ppGpp is primarily responsible
for the regulation of ribosomal rRNA, which usually represents the limiting step for ribosomal
formation [27]. However, previous studies have shown that ribosomal proteins are also under
the ppGpp-DksA regulation, in addition to the post-transcriptional control asserted by rRNA
concentration [28, 29]. The combined effect of translational and post-translational regulation
produces the well-known relation between ppGpp levels and ribosomal mass fraction. In this
model, since we do not include explicitly the ribosomal RNA, we describe the ppGpp regulation
as a transcriptional effect on just the ribosomal proteins. Consequently, the number of ribosomal
transcripts, Tr, depends on the concentration of ppGpp, denoted as G, via the partition of the
RNA polymerases, denoted by wgr. We can derive an equation describing the dynamical change
of xr after an environmental nutrient shift. This is achieved by integrating our definition of
Xr — as the ratio of ribosomal-protein transcripts— with the transcripts’ dynamics, assuming
they are generated by the available RNAP according to the RNAP partition wg and that they

degrade at a constant rate (see Supplementary Note 2 for the detailed equations). The resulting
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equation can be expressed as

dXR 1
“at = T—X[WR(G) - XR] ) (2)

where 7, is a time-scale parameter that represents the time needed for the transcript pool to
change after the shift. Assuming that the concentration of total transcripts remains constant
across the shift, this time scale coincides with the mRNA half-life, which we set to be around 1
min [26] (Fig. 1, Methods). This adaptation time scale is due to the fact that the production
of new transcripts is not instantaneous. In our model the partitioning function of the RNA
polymerases wr depends solely on the ppGpp pool, and its functional form derives from a fit
of the steady-state data (see Supplementary Fig. 1). This assumption is based on the recent
study by Balakrishnan and coworkers [26], who found that the mRNA pool composition across
conditions is mostly determined by the specific gene on-rates and only depends weakly on other
factors such as gene dosage or mRNA degradation. This is especially true for the proteins
belonging to the ribosomal sector, whose genes on-rates are governed by ppGpp. An extension
of our theory including other dependencies is straightforward. Note that the direct ppGpp
regulation of the ribosomal genes introduces also a passive ppGpp regulation of catabolic and
anabolic genes, exerted by the genes competition for transcriptional resources. In this context,
we can define wp(G) = ¢F* — wr(G). Previous studies [30} [31] show that the ppGpp effect on
transcription is more complicated than the simple ribosomal transcription inhibition and report
a direct up-regulation of amino acid promoters by the coordinated action of ppGpp and DksA.
However, this effect appears to be prominent when cells face amino acid starvation [30], a very
different condition from the nutrient upshift studied here.

As found in ref [16], ppGpp levels are directly connected to the translation elongation rate.
This quantity reflects the amount of charged tRNAs and other limiting factors that are available
for translation. Therefore, to close our model we need to address in a simplified way the
dynamics of the amino acids pool. ~ Amino acid levels are determined in our model by the
interplay of nutrient uptake, represented by the uptake flux v¢p, biosynthesis, represented by the
biosynthesis flux e¢r, and volume growth, which contributes with a dilution term Ay, (Fig. 1).
Specifically, the model describes the abundance of one compound amino acid species (related to
tRNA charging, see below) by the equation

% = Vdp — €PR — A\YPj . (3)

Eq. (3) introduces the normalized amino acid mass 15, which is the ratio of amino acid mass (A)
to total protein mass (Miq). The catabolic flux linking nutrients to amino acids is represented
by the term v¢p, where v denotes the nutrient quality (an average catabolic flux per employed

catabolic sector protein), and the biosynthesis flux is represented by e¢r. The last term accounts

6
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for the dilution effect caused by volume growth, which we chose to not neglect, as this term has

an impact on the time scales of the relaxation dynamics (see Supplementary Fig. 2).

Linking amino acid pool, ppGpp and global transcription

A key aspect of our model is the explicit representation of the amino acid pool (which
represents a significant departure from ref. [13]). This ingredient plays a vital role in the sensing
mechanism of ppGpp, which governs the cellular response to perturbations. Indeed, following a
shift in nutrient availability, the first change observed by the cell is in the metabolic flux v¢p,
due to alterations in nutrient quality (). Consequently, these changes in nutrient availability
lead to variations in the levels of amino acids, which have a direct influence on tRNA charging
and the translation rate. In turn, the altered translation rate induces changes in the level of
ppGpp (G), thereby triggering a transcriptional reconfiguration of the cell’s allocation strategy.

Let us further explain the relationship between the translation elongation rate € and a:
based on experimental findings (ref. [32]), we express the translation elongation rate (¢) as the

following function of the concentration of charged tRNAs

[tRNAC]

FRNACT+ o .

€= €

where (€) is the theoretical maximum value of the elongation rate and k¢ sets a sensitivity
scale. The concentration of charged tRNAs is, in turn, influenced by the pool of available amino
acids, which affects the dynamics of tRNA charging. We assume a simple relationship between
uncharged tRNAs and cognate amino acids: [tRNAC} X Y4, i.e. that the fast time-scale changes
of precursors are instantaneously mirrored by tRNA charging. For a detailed motivation of this

assumption please refer to the Supplementary Note 2. Following this assumption we write

_: Pa
A+ ka

where the scale ky is the analogue of k¢ for this pool. This explicit (albeit simplified) description

€

()

of charged tRNA sensing in our model allows us to make quantitative predictions regarding the
size of the amino acid pool and its relationships with other variables (Fig. 2).

Lastly, in order to connect ppGpp levels to the amino-acid pool, we use the model proposed
by Wu and coworkers [16], who established that ppGpp level (G) is related to charged tRNA
levels in a way that ppGpp is effectively a function of translation elongation rate (¢) through

the equation

Gx -1, (6)
€
which also means that G o< ka /s = kc/[tRNAY].

7
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It is important to note that so far € solely represents the translation elongation rate. In the
presence of stalled ribosomes (e.g., under chloramphenicol treatment [32, [33]) this is distinct
from the average ribosomal activity (called o in ref [13] and defined as A/¢r). The relationship
between GG and tRNA charging is explained in terms of the typical times elongating ribosomes
spend in elongation (Tians) and waiting for a charged tRNA (7qywen), both quantities that are
captured by the translation elongation rate €, see Fig. 1 and ref. [16]. Note that the data
gathered by Wu and coworkers is in contrast with previous models that assumed that ppGpp
concentration depends on both ribosomal sector size and amino acid levels [9, 17, 21]. Tt is
also worth mentioning that our model is not the sole framework that describes sensing. The
Flux Parity Model (FPM), presented by Chure and Cremer [25], also incorporates a (different)
relationship between tRNAs and ppGpp.

The model reproduces steady-state resource allocation data

Two aspects of our model are noteworthy. Firstly, the ability to reproduce the known steady-
state relationships between measured quantities is a crucial requirement, and our model satisfies
this criterion. Our model, with respect to the original FCR framework from which is derived,
incorporates additional observables, such as ppGpp and amino acid levels. ppGpp levels have
been measured and they have been incorporated in our model. Furthermore, the model’s ability
to predict the amino acid pool levels is an outcome that can be tested by new experiments,
making it a testable prediction.

Fig. 2 shows the steady state results of the simulations of the model, compared with experi-
mental data presented in various studies ref.s [16], 32] TOADD. The simulations in Fig. 2 start
from an arbitrary initial condition and collect the steady-state values of the main state variables
once the system has reached equilibrium. Panels B and D of the figure show the dependency
between the growth rate, the amino-acid pool ¥a, ppGpp concentration G, and are new pre-
dictions of our model. Panel C shows the dependence of the translation elongation rate e on
the amino-acid pool, which derives from our eq. [5] and panel D shows the relationship between
ribosomal allocation ¢r and ppGpp levels, fitted from the data (see Supplementary Fig. 1).
As we anticipated above Fig. 2 illustrates that the model can accurately reproduce available
steady-state data (from ref. [16]) for ppGpp.

In order to avoid unnecessary complications, we restricted this analysis to a “fast-growth”
regime, which we defined by the condition A > 0.5h7!. Indeed, it is well known that in slow-
growth conditions, other phenomena such as protein degradation and inactive ribosomes play a

significant role in the growth physiology [32] 33]. The model discussed in the main text of this

8
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FIG. 2: The proposed framework predicts steady-state relationships between the
amino acids pool, ppGpp levels and ribosomal allocation, and reproduces the avail-
able experimental data. A: Model prediction of the dependence of the ribosomal sector
fractional size (y-axis) on the exponential growth rate (x-axis). Simulations (red solid line) are
compared with experimental data from various studies (ref.s [16], 20, 24 B2, [52H54], blueish
points). B: The plot shows the simulated model prediction (red solid lines) for the relationship
between the steady-state exponential growth rate (z axis) and the size (mass fraction 14) of the
amino-acid pool (y axis). This quantity is proportional to the concentration of charged tRNA
([tRNAC]), as explained in the text and in Supplementary Notes 2. C: Model prediction (red
solid line) for the relationship between the size of the amino-acid pool (z axis) and the relative
translation rate €/€ (y axis) in steady-state growth. D: The model prediction (red solid line) for
the relationship between the steady-state exponential growth rate (x axis) and the ppGpp con-
centration (y axis) is in line with the experimental data from various studies (ref.s [16], 55-H60],
blueish points). E: The model prediction (red solid line) for the relationship between the ppGpp
concentration (z axis) and the size of the ribosomal sector (y axis) agrees with the available
experimental data (blue reverse triangles, data from ref. [16]). For this figure, we restricted
ourselves to the fast-growth regime (A > 0.5h27!). For the slow growth regime, where additional
phenomena such as degradation and inactive ribosomes also impact physiology, please refer to

Supplementary Fig. 3.
9


https://doi.org/10.1101/2023.10.25.563923
http://creativecommons.org/licenses/by-nc-nd/4.0/

231

232

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

256

257

258

259

261

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.25.563923; this version posted January 31, 2025. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

work does not account for these phenomena and therefore refers to the fast-growth regime. We
have also studied an extended version of our framework that includes the essential ingredients
to describe the slow-growth behavior. For a description of this version of the model and its
steady-state predictions please refer to Supplementary Note 3 and Supplementary Fig. 3.
Finally, a well-defined steady-state behavior requires the fixed point to be stable, which
we investigated by analyzing the eigenvalues of the linearized dynamics. Specifically, we have
studied in detail two versions of the fast-growth model, with instantaneous transcription and
with a transcriptional time scale set by the mRNA degradation rate (see Supplementary Fig.s 6
and 7 and Supplementary Note 8 and 9). In both cases, all eigenvalues have a negative real part
in the physiologically relevant parameter region, showing that the steady-growth fixed points
are always stable. More in general, we also show that in the absence of transcriptional delays,
a generic model for ribosome translation regulation will display stable fixed points, as long as
the regulatory function is monotonically decreasing in ¢r and increasing in 1 (details and

demonstration in Supplementary Note 9).

Relaxation towards new steady state shows damped oscillations

We next investigated the model behavior during a nutritional upshift. To realize such an
upshift, we varied suddenly (in a stepwise fashion) the nutrient quality v, which is the parameter
that characterizes the external environment.

Fig. 3A-D display the resulting relaxation pattern, characterized by damped oscillations ob-
served across all the main quantities described by our model. It is worth highlighting that
the ribosomal sector size ¢r also exhibits these oscillations, despite being the parameter that
changes at a slower pace, given the necessity to dilute the existing proteome composition for
any alteration. Fig. 3K visualizes the same oscillations by plotting the progression of the riboso-
mal sector proteome fraction against the amino acid (charged tRNA) pool and the translation
rate €. Conversely, ppGpp levels, amino acid (charged tRNA) pool, and translation rate change
coherently following a quasi-steady-state relationship (Fig. 3F). Hence, the oscillatory behavior
persists even when considering the relationship among the amino acid pool, elongation rate, and

ppGpp level observed during a steady state.

Damped oscillations are independent of transcription delays

Following this observation, we asked whether the presence of oscillations stemmed from the

fact that in our model, the regulatory functions y; are not a function of e derived from steady-
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FIG. 3: Damped oscillations characterize the relaxation dynamics towards the new
steady state. The figure presents simulation predictions of the post-upshift dynamics of various
state variables. Panels A, B, C, and D display the time-dependent behavior of the relative
translation elongation rate €/€, the mass fraction of the ribosomal sector ¢r, the growth rate A,
and the ppGpp concentration G, respectively. Panel E shows the post-shift dynamics of the
ribosomal sector ¢g in relation to the amino acids pool 15 and the relative translation elongation
rate €/€, with circles representing simulation results color-coded by time from the shift. The X-
shaped symbols denote the pre- and post-shift steady-state values and the dashed line represents
the steady-state relationship between the two plotted variables. Similarly, panel F shows the
post-shift dynamics of the ppGpp concentration G versus ¥ and €/e — 1, a factor which is
found proportional to ppGpp [16]. In this panel, we also show shift data from [16] (blue reverse
triangles). These plots show the presence of overshoots due to the damped oscillatory relaxation

dynamics predicted by the model.

state behavior: instead, these functions emerge due to transcript dynamics. Consequently, we
questioned whether the existence of oscillations was linked to the transcriptional delay 7,,, which
establishes the timescale for adjusting the mRNA pool composition after a change in the ppGpp
levels. To study this, we defined a new instantaneous-transcription model, where we set 7, = 0
(see Supplemetary Note 4 for more details). Figure 4A-B show that both the instantaneous-
transcription model and the complete model (7, > 0) exhibit damped oscillations during the
transition. This indicates that even if the transcript pool adjusts immediately following ppGpp
changes, damped oscillations persist, similar to the non-instantaneous case. Observe that in
Figure 4, in order to emphasize the quantitative difference between the behavior of the two

models, the value of 7, was set to 10min.
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FIG. 4: The incoherent feedback between amino acid pool and ribosome produc-
tion gives rise to damped oscillatory response regardless of delays due to ribosome
transcription. Simulations were performed with two different models: with instantaneous
transcription (A, C) and with gradual mRNA and rRNA pool production (B, D). In the in-
stantaneous transcription model, the regulatory functions y; follow ppGpp levels without delay
(as in ref. [I3]), while they are given by Eq. [2in the gradual transcription model, where here
we set 7,, = 30min to emphasize the effect of the delay. In all panels, circles indicate simulation
results color-coded by the time from the shift, and X-shaped symbols represent the pre- and
post-shift steady states. Panels A and B show the three phases of post-shift adaptation, which
are present in both models. The z axis displays the ribosomal sector mass fraction, and the
y axis shows the growth rate. The dashed line in both panels connects (0,0) and (pfiral \final)
and highlights the second phase (as in Fig. 9 of ref. [I3]). Panel C and D show the ribosome
allocation through the shift. The x axis displays the relative translation rate, and the y axis
shows the ribosomal regulatory function yg. The plots show that oscillations occur even when
the regulatory function instantaneously follows the translation elongation rate along the steady-
state relation. Panel E provides a sketch of the incoherent feedback loop between the amino
acid pool ¥, and the ribosomal fraction ¢gr, which is explicitly described in this study and is

responsible for the observed oscillatory behavior.
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However, the important point to realize is that overshoots are expected also for 7, = 0, and

since empirically 7, is small (order one minute [26]) we expect to be close to this situation.

The analysis of the eigenvalues of the two systems confirms this behavior. Indeed in both
cases, the eigenvalues are complex with a negative real part in all biologically accessible growth
regimes, a property linked to the oscillating relaxation to the new state. This theoretical analysis
was carried out spanning all growth regimes, from slow to very fast growth, and is presented in
detail in the Supplementary Note 9 and in Supplementary Fig.s 6-9. We find that the presence of
a damped oscillatory response is related to the specific set of parameter values used in the model,
but as these values change different regimes arise, giving rise to a typical dynamical systems
“phase diagram” [34]. Our analysis, reported in Supplementary Note 9, reveals indeed three
distinct regimes when the values of the parameters are changed. The first regime is characterized
by a shift without oscillations (overdamped), occurring at slow growth rates. The second regime
features a shift with damped oscillations, which occurs in mid-to-fast growth. Finally, the third
regime is a shift with sustained oscillations. The theoretical possibility of such “oscillatory
growth” has been predicted by a previous generic growth model [34]. The threshold between
these regimes varies depending on the parameters of the system. Interestingly, if we call v* the
nutrient quality after which the oscillations arise, by studying the parametric dependence of v*
we find that is not just determined by the details of the resource allocation strategy, but the
dynamics of the amino acid pool also plays a role (see Supplementary Note 9). Note that, when
the model is defined with the parameter values found for biological systems, the overdamped
and sustained oscillatory regimes disappear, and the only accessible regime remaining is the one

characterized by damped oscillations.

In our model, the oscillatory behavior arises because of the effective negative feedback loop
between the amino acid pool and the ribosomes. This mutual connection is sketched in panel
E of Fig. 4: on one hand, ribosomes deplete amino acids due to their consumption for protein
synthesis, and on the other hand the ppGpp regulatory circuit enhances ribosome levels in
presence of amino acids, since higher amino acids levels lead to higher translation rates, lowering
ppGpp production and therefore upregulating the ribosomal sector. On a more mathematical
level, this type of feedback is a necessary condition to obtain oscillations, whether they are
damped as in our case or sustained (in particular one needs a negative feedback loop with a
sufficient delay [35], or a negative autoregulation, see Supplementary Note 10). Our model
incudes this feedback as a double connection between amino acid pool and ribosome biogenesis,

which is a crucial ingredient to make the damped oscillatory behavior possible.

To interpret the different relaxation time scales involved in a nutrient shift within our model,
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Fig. 4A-B shows that the process of reaching a new steady state after a change in nutrient
quality can be divided into three phases. The first phase is defined by a sudden increase in the
translation elongation rate due to the increase in the amino acid pool size 1. This change in
the growth rate is detected by the sensory mechanism of the ppGpp, but the synthesis of mRNA
and new proteins has not yet changed, therefore, the growth increase of the first phase is driven
purely by the change in the translation elongation rate €. In the second phase, the synthesis
of new proteins starts to adjust to the new protein allocation strategy given by ygr(G). This
second phase is slower than the first one because the synthesis of new proteins is not immediate.
During this phase, the translation elongation rate remains almost constant while the sector sizes
change, and the relaxation proceeds along a straight line in the (¢r, A) plane. In the third
and last phase, all the relevant variables, including translational activity, regulatory functions,
and protein sectors, oscillate while relaxing around the new steady state. Our study provides a
detailed analysis of these three phases and their underlying mechanisms. The study by Erickson
and coworkers that introduced the FCR model (ref. [13]) already presented some of the different
relaxation phases we identified in our study. However, their model only included the first and

second phases and did not account for the oscillatory dynamics observed in our study.

A ribosome/precursors feedback enables oscillations

To better understand the behavior of our model upon nutrient shifts, we compared it with
two existing models (see also the Supplementary Note 7 for further details): the original FCR
model [I3] and the Flux Parity Model (FPM) proposed by Chure and Cremer [25]. Both
models were specifically developed to capture the dynamics of nutritional upshifts. The FCR
model operates on a quasi-steady-state assumption linking translational activity o directly to
the proteome sector functions y;, even during shifts. This approach simplifies the model by
avoiding a mechanistic description of the ppGpp regulatory circuits. In order to allow a direct
comparison with our model, we have extended the FCR model by incorporating the recently
reported relationship between o and ppGpp concentration G from ref. [16], which is described
by Eq.s S43-S47. This extension enables predictions of ppGpp concentration changes during
shifts, allowing direct comparison with our model. Notably, extending the FCR model requires
accounting for sequestered ribosomes, as done in ref. [16] for steady-state growth and making
assumptions about their behavior during shifts, a step not covered in the original study. This
integration, however, does not change the fundamental assumption of the model, which is that
protein synthesis is regulated by a direct sensing of the precursor fluxes through the the trans-

lational activity, and it follows them adiabatically via a quasi- steady-state relation. Further
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FIG. 5: Different theoretical frameworks lead to different predictions for the relax-
Panels A-B-C compare simulations of three different models for nutrient
shift dynamics: this work (red solid line), the FCR model (ref. [I3] - brown dashed line), and the
Flux-Parity Model (FPM) (ref. [25] - pink dash-dotted line). Panel A shows the dynamics of the

ation dynamics.

instantaneous growth rate. Our model is the only one that predicts an overshoot of the growth
rate. Panel B shows the size of the amount of charged tRNAs, which is not predicted by the
FCR model. For the prediction of our model, given that tRNA‘| oc 14 we have normalized 1,
to have the same pre-shift value as the FPM prediction. Panel C shows the ppGpp concentration
G across the shift. This can be predicted with all three models, combining the FCR framework
with Eq. [6] from ref. [16] (see Supplementary Note 6 for the upgraded FCR model definition).
The discrepancies between the steady-state predictions are due to the different values of the
parameters used. The figure shows that of all the models tested, just our framework predicts
the oscillatory response to the nutrient shift, and this is due to the presence of the incoherent

feedback between amino acids levels and the ribosomal sector.

details of this modified FCR model are provided in Supplementary Note 6.

Even considering the extended FCR model, a key difference between it and our framework lies
in the treatment of the amino acids pool. The FCR model focuses on catabolic and biosynthesis
fluxes to control shift dynamics, without explicitly describing the amino acids pool 1. Instead,
the translational activity o is defined as J,,/MRg, relying solely on flux-based sensing of external

conditions.

In contrast, the FPM model [25] takes a different approach, using a flux-matching principle
to set the biosynthesis rate, ensuring that uptake and biosynthesis fluxes are balanced. This
strategy aligns qualitatively with the ppGpp regulatory circuit and includes sensing of charged
tRNAs, a quantity indirectly linked to the amino acids pool, although not explicitly described
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by this model.

Fig. 5 shows that the predictions of our model, the extended FCR model, and the FPM model
differ during a nutrient shift. Trivially, the extended FCR model cannot predict the amino
tRNA by definition. We can instead compare the charged tRNA prediction by the FPM model
and our model, as these are explicitly described in both models (note that in our model we
assumed [tRNA®] o ). More interestingly only our model predicts the oscillatory relaxation
towards the new steady state, because among these three models it is the only one that explicitly
describes the feedback relation between amino acids pool and ribosomal allocation sketched in
Fig. 4E. To further support this point, in the Supplementary Note 5 we have also analyzed a
version of our model with a different ppGpp regulatory circuit (incorporating solely the RelA
production term, following refs. [9] 17, 21]) also shows damped oscillations (see Supplementary

Note 5 and Supplementary Fig. 4).

Damped oscillations are visible experimentally

So far, we have shown that the oscillatory relaxation behavior arises naturally from a theoretical
framework that incorporates biological knowledge on nutrient sensing and regulatory response.
It is natural to ask whether this predicted behavior has an experimental counterpart.
Considering published data, we observed clear oscillations in data from our reanalysis of nutri-
tional upshift experiments performed in a microfluidic device, as reported in ref. [23] (Fig. 6AB).
Our reanalysis involved examining the original data to identify patterns of overshoots and
damped oscillations in growth rate and ribosome allocation during nutrient upshifts.

To test the robustness of this result, and given the lack of coherence on this point looking at other
shifts performed in the literature, we also performed new shift experiments in different settings
(batch and microfluidics) to investigate the existence of overshoots and damped oscillations
during nutrient upshifts.

The new microfluidics experiments were conducted in a similar microfluidic “mother machine”
device as in ref. [23] but at a different temperature and with strains that did not carry the
ribosomal /constitutive fluorescent reporters. This allowed us to monitor the behavior of the
growth rate and ensure that these high-expression GFP reporters were not the cause of the
observed damped oscillations. These experiments also tested the robustness of the behavior in a
shift involving slower growth conditions. Figure 6C and Supplementary Fig. 17 show the results
of these new experiments, for different E. coli strains as explained in the methods. In some
cases, the observed overshoot is even larger than the one predicted by the model.

For both the reanalyzed and the new microfluidics data, overshoots (and damped oscillations)
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FIG. 6: Overshoots compatible with the predictions of our model are observed in in
nutrient-shift experiments. The figure shows relaxation to the new steady state for various
experiments, both for the growth rate and the ribosomal sector size. In all panels, continuous
red lines represent the results of a simulation of the model. A-B: Growth rate A and ribosomal
sector size ¢r dynamics following an upshift in a microfluidic device at 37°C, (reanalyzed data
from ref. [23]). The points are sliding averages with a window of 75min (see Methods and/or
Supplementary Note 11 for details on the definition of ¢r). C: Growth rate A dynamics following
an upshift across the same media as in ref. [23] in a microfluidic mother-machine device at 30°C.
The points are binned averages with a window of 40min. D-E-F: Growth rate A dynamics
following an upshift across the same media as in ref. [23] in a batch culture at 37°C, for the wild
type (D) and a reporter strain in ref. [23] (E-F). All the panels refer to a biological replicate
and show averages among technical replicates. The three panels refer to different experiments
and summarize the three typically observed outcomes: clear overshoots, found in 8 biological
replicates, shown in Supplementary Fig. 10 (D), lack of visible overshoots at odds with the model,
found in 9 replicates shown in Supplementary Fig. 11 (E), and lack of observed overshoots in

agreement with the model, found in 4 biological replicates shown in Supplementary Fig. 12 (F).

compatible with the model predictions are apparent in both the growth rate A and the proxied
ribosomal sector ¢r (where present). Note that to obtain data on the ribosomal sector, the
authors of ref. [23] have used the signal of a GFP expressed from a ribosomal RNA promoter.
Before using this signal as a proxy for ¢r, we conducted several tests on the signal to see if it was

compatible with the sector dynamics behavior (see Supplementary Note 11 and Supplementary
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Fig. 15 for details).

Additionally, the damped oscillatory behavior observed in mother machine devices is consistent
across biological replicates and strains (Fig. 6DE and Supplementary Fig. 14A-B). We also
note that a clear growth-rate overshoot on a minute time scale is observed consistently in the
microfluidic device experiments (Supplementary Fig. 16). A similar fast overshoot was also
previously reported in similar single-cell shifts providing amino acids [36], and connected by
direct observation of cell volume and mass to a dilution of the cell. Hence, we surmise that
cells entering an upshift effectively experience a hypo-osmotic shock, regardless of whether the
experiment was carried out in a microfluidic setting or in batch. Significant biological processes
may occur within this short time scale, and consequently, there could be additional physiological

adaptations not captured by our model.

The results from experiments in batch culture are more ambiguous, as we found clearly visible
overshoots in eight (roughly half) of the experimental replicates (Fig. 6D). Other biological
replicates (nine in total) did not show overshoots where the model predicted they would be
visible (Fig. 6E) or presented a very small effect in agreement with the model (four bological
replicates in total, Fig. 6F). All our batch experimental results are presented in Supplementary
Fig. 10, 11 and 12. To understand why model predictions vary across replicates, we need to
account for the fact that while the pre-shift and post-shift state were selected to be consistent
with steady growth, as the growth rates varied noticeably across replicates, and the model

predicts different behavior depending on the growth rate jump.

Despite of the variability across replciates, the overshoots that are visible in these experiments
occur consistently across replicates around two hours from the shift, as predicted by the model.
Additionally, the batch experiments were also performed with wild-type strains, confirming the
idea that growth-rate overshoots upon nutrient upshifts are not due to the presence of fluorescent
reporters. Finally, the quantitatively small overshoots predicted by the model and the inferior
quality of the batch data also explain why the phenomenon was not widely reported by previous
literature. Besides the inferior resolution of these experiments, a possible interpretation of the
difficulties encountered in batch-culture experiments could be that in batch population growth
can be driven primarily by fast-growing cells, whereas in a mother-machine microfluidic device,

a fixed distribution of mother cells is maintained.

To conclude, while we have provided new evidence supporting our model’s predictions, given
the limitations of the presented data, our main claims remain limited to the statement that a
realistic architecture (based on our current knowledge) linking nutrient sensing to ribosome allo-

cation would generally give rise to oscillations. Biologically, it is also possible that unaccounted
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elements in the architecture, which are not described by our model, could alter the prediction.

Further systematic experiments may clarify the situation.

III. DISCUSSION

This work presents a dynamical modeling framework that describes the out-of-steady-state
growth of F. coli cells through a global resource allocation dynamics. The model combines
the framework of ref. [I3] with a mechanistic description of nutrient sensing and global gene
regulation by the ppGpp circuit. This combination of ingredients leads to predict an oscillatory
relaxation after a shift in the nutrient conditions, for all shifts that lead to a moderate-to-fast
growth rate. While other models predict oscillatory behavior in this context [21], recent work on
growth laws in this area did not incorporate this aspect [I3], 16]. Crucially, we have shown that
removing any transcriptional delay in our model does not ablate the incoherent feedback loop,
nor the oscillations. Hence, we conclude that the transcriptional waiting time per se should
not be regarded as a cause for the oscillations. Our framework indeed connects the presence of
oscillations to the feedback interplay between global flux balance and resource allocation and the
mechanistic circuits that implement growth control. In other words, we show that the oscillatory
behavior is caused by the incoherent feedback between the size of the amino acid pool and the
expression of the ribosomal sector.

Importantly, we have shown that damped oscillations of growth rate, ribosome allocation and
ribosome proteome fraction have been observed across studies of experimental nutrient shifts in
E. coli. Interestingly, similar oscillations in response to perturbations have also been observed
in yeast [37], where the mechanistic architecture of nutrient sensing and growth regulation is
very different [2, 38-40]. This suggests that the global feedback described by our model may
be a general feature, or strategy, for growth regulation based on nutrient sensing. However,
there are still many unanswered questions regarding these experiments and their relationship
with our model. While the mechanism provided by our model provides a possible explanation,
the oscillations observed experimentally may be also influenced by other molecular players that
are not considered in our study, for example the transient mismatch between volume and mass
growth observed after a nutrient shift [36].

Our model builds upon and integrates previous findings in the literature [5l, 10, 13, [16], combining
established mechanisms into a unified framework. By analyzing these elements collectively, our
approach not only consolidates existing knowledge but also generates novel predictions, crucially
the intriguing emergence of damped oscillatory behavior—an aspect that has not been explicitly

addressed in prior models.
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We recognize that several other models have tackled related questions from various perspectives
(e.g., [9, M3 21], 25, 41H43]). Our model is intended to be complementary, emphasizing the
interplay between regulatory feedback and resource allocation dynamics to uncover new insights.
Specifically, our framework builds on the model proposed in ref. [I3], while introducing key
innovations. Most notably, we relax the steady-state assumption in defining regulatory functions,
allowing for new nontrivial dynamic behavior. Additionally, our model incorporates the latest
findings on the dependency of translation rates on ppGpp levels, as reported in ref. [16]. This
aspect was not included in previous models that examined the ppGpp regulatory circuit [9), 21

25

While our primary focus is the cellular response to nutrient shifts, other studies provide comple-
mentary insights into bacterial growth physiology. For example, ref. [42] explores rapid growth
rate changes at the onset of nutrient shifts, while ref. [43] investigates limiting factors of bacterial
growth. Together, these works enhance our broader understanding of bacterial adaptation and

growth dynamics.

Although it is now well-established that ppGpp effectively senses and responds to the trans-
lational elongation speed [16], the molecular mechanisms underlying its synthesis and degrada-
tion remain largely enigmatic—particularly regarding the role of SpoT. Once thought to function
solely as a ppGpp-degrading enzyme, this simplistic view is deemed inconsistent with recent data,
which suggests a more complex role for SpoT in stress response and nutrient adaptation [16],
further work is still needed to understand its precise role and regulatory fully mechanisms in
ppGpp metabolism. We also note that the mechanistic part of our model relies on a series
of measurements on ppGpp conducted in E. coli, and its predictions may not apply to other

bacteria.

In our model, the oscillations arise because the system works as a thermostat, with a built-in
feedback system involving a sensor and an effector. The origin of oscillations in our system
could be attributed to architectural constraints, evolution, or a combination of both. In order
to clarify this point, it will be crucial to study this system from a control-theory perspective,
and to discover the optimization goals that it follows over evolution. A previous study [41]
taking this approach, has concluded that oscillatory behavior may be due to optimal control
towards the adjustment of ribosome synthesis in a switch-like manner. The authors demonstrate
that a precursor-only control strategy, which alternates investment between gene expression and
metabolism producing an oscillatory time profile of precursor concentration performs much
better than a nutrient-only strategy in a dynamical upshift scenario, by avoiding the inefficient

transient accumulation of precursors.
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A growth regulation system can be seen as a decision-making process that detects the envi-
ronment. As nutrients in a natural environment tend to fluctuate over different time scales, we
can expect that the nutrient quality can vary by fluctuations and net trends. Our model shows
that sensing as a low-pass filter in response to time-varying input, preventing the system from
reacting to environmental nutrient quality changes above a certain frequency, but also carries
a characteristic oscillatory frequency that varies with the parameters. We speculate that these
features could facilitate growth control, allowing a cell to spare energy and resources by avoid-
ing reactions to changes that are too short-lived, but also “resonate” with specific frequencies.
In our framework, the model variant without delay represents the fastest-reacting version of
the network. Biologically, this fast-reacting architecture may be embodied by ribosome seques-
tration [44], at the cost of the extra proteome sector occupied by inactive ribosomes [32] [33].
We speculate that by studying the long-term fitness trade-offs of a system that can bypass the
transcriptional delay and comparing it to one that does not one could address the question of
whether E. coli hedges its bets on both architectures through regulated ribosome sequestration,

in order to set its threshold frequency in a plastic fashion, and optimize its fitness flexibly.

IV. METHODS

Model description

We report here the equations needed for the definition and simulation of our mechanistic
model. In these notes, we will distinguish the state variables from the parameters by expliciting
the time dependence of the first ones. We start with the differential equations that define the

dynamical system:

dw(%(t) = vop(t) — €(t)Pr(t) — A(t)Ya(t), 7)
ddet(t) _ %[XR(t) —wr(t), )
d¢£{t(t) = A(t)[xr(t) — or(t)]. (9)

Eq. [7] describes the dynamics of the amino-acid pool, given by the balance of the upcoming
nutrient flux (v¢p), the outgoing biosynthesis flux (e¢r), and a dilution term given by volume
growth (Aa). Eq.[8|is derived from the transcript dynamics, which is explained in detail in the
Supplementary Note 2 and 2. Eq. @ is derived from the sector definition as in ref. [13].
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Next, we show the other definitions needed to close the system. We need to define the
translation elongation rate, which depends on the amount of charged tRNAs, and therefore on

the amino acids level. Eq. [] connects these quantities:

. Yal(?)
e(t) = em . (10)

The ppGpp concentration is given by the following empirical relation from ref. [16]

G(t) = CG™ <% - 1> : (11)

The equation presented in ref. [16] gives the fold change of the ppGpp with respect to a reference
condition, therefore, in order to obtain the ppGpp concentration we add the parameter G*™f to
the original equation for the fold change. The value for G™! is 55.73 M and is given by ref. [17],
see Supplementary Note 1 and 2.

The RNAP allocation on ribosomal genes was assumed to follow the following relationship

Kg

= Ko+ GH) 12

wR(t)

where K¢ is given from a fit of the data presented in ref.s [16], 17], and its value is 8.07 uM.

The growth rate in our model corresponds to the biosynthesis rate:

A(t) = e(t)or(t). (13)

Lastly, the constitutive sector is defined as the remaining part of the proteome, which does

not belong to the ribosomal nor to the housekeeping one,

op(t) =1 — ¢q — dr(t) = PR max — Or(t) - (14)

Nutrient-shift experiments
Microfluidics experiments at 30° C

Strain and growth media. The strain used in this experiment is the wild-type FE. coli strain
BW25113, the parent strain of the Keio collection [45], in which promoter-reporter constructs
were inserted in the chromosome as described in ref. [23 46, [47]. The specific strains used
were the ones containing the promoters P5, P5-ter [23 [46] and PdnaALong [46], 47] In upshift
experiments, we used two growth media based on the M9 minimal medium as the base and

glucose as the carbon source, 0.4% glucose for the slow-medium, while thee fast-medium, in
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addition, has 0.4% casamino acids. Bacteria were grown overnight in the slow-growth media
at 30°C. Overnight cultures were diluted 500:1 in new growth medium and returned to the
incubator for 3 to 4 hours. This is important to guarantee bacteria to be in the exponential

phase when injected into the microfluidic device [46].

Mother machine experiments. We conducted experiments using a microfluidic “mother ma-
chine” device, which consists of 1-um-wide channels positioned between two larger feeding chan-
nels [48]. Bacteria were confined within the microfluidic channels by a narrow opening on one

side.

The microfluidic chips were prepared following ref. [46]. In brief, the polydimethylsiloxane
(PDMS) devices were fabricated from a mold using standard procedures and bonded to a mi-
croscope slide via plasma treatment. Prior to bacterial loading, each chip was passivated by
incubating it with 150 ul of a 2% bovine serum albumin (BSA) solution at 300C for 1 hour to
minimize bacterial adhesion to the glass or PDMS surfaces. After passivation, the chips were
rinsed with freshly filtered medium, and approximately 1 ml of bacterial culture was manually
injected into the device. Flow control within the microfluidic setup was achieved using flow sen-
sors integrated into each feeding channel. The Elveflow pressure-driven flow system was used to
ensure a continuous and stable flow of fresh growth medium through the microfluidic device at a
constant speed. The entire microfluidic setup comprises a pressure-driven flow controller (0 — 2
bar pressure range), two rotary valves (11-port/10-way Mux Distributor), and two flow sensors.
The two rotary valves were used to quickly change between growth medium in both the top and
bottom channels. In upshift experiments, the valves were programmed to alternate so that the
slow-growth medium fed the device first, while the fast-growth medium was delayed. In most
cases, a complete upshift experiment lasted between 12 and 20h, with roughly equal time spent
in each growth medium. These sensors provided real-time feedback to maintain precise flow
rates, ensuring stable and responsive air pressure-driven flow. The system allowed for robust
and long-term microfluidic experiments. Temperature regulation was maintained at 300C using

a custom-built temperature control system.

Image acquisition and data analysis. Imaging was performed using a Nikon Inverted Micro-
scope ECLIPSE Ti-E equipped with a 100X oil immersion objective lens (numerical aperture
1.4) and a Nikon Perfect Focus System to correct for focus drift. An xy motion plate was
employed to cycle through predefined regions of interest at specified time intervals. Images
were captured using a 16-bit camera at a resolution of 512 x 512 pixels, with each pixel cor-
responding to 0.1067 um. The motorized stage and camera were programmed to image up to

40 fields of view, each encompassing approximately eight microchannels, at 3-minute intervals.
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This pipeline is the same presented in ref. [46].

Microfluidics experiments at 37°C

Original data for this experiment was published in ref [23], please refer to this reference for
the details of the experiments. Supplementary figure 14 shows the reanalized data. All the
information on the additional analysis of the data are reported in the Supplementary Note 11

and Supplementary Fig. 14-16.

Batch experiments at 37 °

Strains and growth media.  The E. coli K12-derived strain BW25113 was used in all ex-
periments, together with the "P1 Long” mutant [23| 49], with an incorporated reporter cassette
in the chromosome, containing a Kanamycin resistance gene and the rRNA operon promoter
rrnBP1 followed by a GFP expressing gene (the same as in ref. [23]). Cells were grown in a M9
minimal growth medium complemented with 1% glucose (glu), until the shift to 1% glucose and
1% Casamino Acids (glu+cAA).

Culture growth protocol. — The strains were first plated from a -80°C glycerol stock to LB-
Agar plates. Then, a preculture was made, where a single colony was inoculated in LB medium.
After reached an OD of 0.3, the cells were washed of the LB medium by centrifugation (3 minutes
at 8000 g-force) and resuspended in the medium used for the growth experiment (M9-+glu). The
overnight was prepared by diluting the cells of the preculture such that growth was still in the
exponential phase at the start of the experiment.

The growth experiment was performed in the ChiBio chemostat [50], where each culture
was placed in a separate reactor and kept in the same conditions at 37°C. Each reactor is
composed of a glass tube filled with 20 mL medium and the instruments to measure OD. All
other ChiBio parameters (temperature, stirring, gain intensity, etc.) were kept to the default
settings presented in ref [50].

Growth shift protocol. Growth shifts were performed by adding a 20% solution of Casamino
acids to the reactor, such that the medium had 1% cAA concentration. To retain constant
growth conditions and to keep OD out of the saturation range (OD > 1), periodic dilutions
were realized to keep the OD between 0.4 and 0.8. While the ChiBio [50] provides pumps to
regulate OD, the pumping rate was not fast enough for the significant volume necessary for the
dilution. Instead, a manual dilution was chosen, using a 10 mL pipette to dilute the reactor

when OD was close to 0.8. One dilution was made before the shift, and another at the moment
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of the shift. After the shift, dilutions were continued for at least 2 hours of growth.

Data Analysis. The ChiBio outputs data files containing the precise OD every minute and
the associated time stamps. To synchronize this data with the shift dynamics, the shift time
was set as t = 0. OD outliers (e.g. measurements during dilutions) were removed, as well as
any data where OD was close to saturation (OD > 0.8). To mitigate measurement noise from
the OD, for every OD measurement OD; at time ¢;, we apply a sliding window average on the
logarithm of the OD (to average out deviations from exponential growth). Considering a window

size w; = 4min, we have

1+wq
log(OD;)
OD,ean.i = ) 15
7 j:izw 2wy +1 )

To have a continuous growth curve from start to finish of the experiment, we then consider a new
OD (OD,er) as the OD with dilutions (O D,eq, ) multiplied by the dilution ratio such that there
is no interruption in the growth curve due to dilutions. To measure the actual dilution ratio
at every dilution, we calculate the mean growth rate A\ at the dilution by fitting an exponential

growth function on a 20 minute time interval before the dilution. As such, we have
ODnew(t = ti+1) = ODmean(t = t,)exp ()\<tz+1 — t,L)) s (16)

with ¢; the last time point before dilution and ¢;,; the first time point after the dilution. The
dilution ratio is then OD e (t = t;11)/ODnean(t = tiv1). From the continuous growth curve,

we can measure the instant growth rate \; for each time ¢;. We set

OD ewy(t = t; 4 dt) — ODpe(t = t; — dt)
\ = : 1
20D e (t = t;)dt (17)

with dt = 3min. Further binning of the growth rate aws applied for comparison of different
experimental replicates. To obtain the average growth rate shown in Fig. 6 and Supplementary
Fig.s 10-12 we compared different technical replicates of the same experiment, excluding realiza-
tions according to two criteria: (I) to average only technical replicates that were consistent with
each other, we excluded the replicates for which the aligned OD (i.e. the OD curve normalized
such that OD(t=0)=0.5) has a normalized L1 distance from the other replicates exceeding 1.5,
and (II) to filter for steady-growing populations we excluded all the replicates that did not reach
the shift with a steady growth rate, quantifying the steadiness of the growth rate by calculating
the coefficient of variation of the growth rate CV = 0% /uy in the first hour prior to the shift,
where o3 is the variance and py is the average of the measured growth rate across time frames
before the shift. If the C'V of a replicate exceeded 0.05 the replicate was discarded. The curve for
the average growth rate across replicates was then calculated for all the experiments for which at

least two technical replicates had passed the screening. The results are shown in Supplementary
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Fig. 10-12, and an example of a technical triplet with a discarded technical replicate is shown

in Supplementary Fig. 13.
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