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Abstract18

Current theories of bacterial growth physiology demonstrate impressive predictive power but are often19

phenomenological, lacking mechanistic detail. Incorporating such details would significantly enhance20

our ability to predict and control bacterial growth under varying environmental conditions. The ”Flux21

Controlled Regulation” (FCR) model serves as a reference framework, linking ribosome allocation22

to translation efficiency through a steady-state assumption. However, it neglects ppGpp-mediated23

nutrient sensing and transcriptional regulation of ribosomal operons. Here, we propose a mechanistic24

model that extends the FCR framework by incorporating three key components: (i) the amino acid25

pool, (ii) ppGpp sensing of translation elongation rate, and (iii) transcriptional regulation of protein26

allocation by ppGpp-sensitive promoters. Our model aligns with observed steady-state growth laws27

and makes testable predictions for unobserved quantities. We show that during environmental changes,28

the incoherent feedback between sensing and regulation generates oscillatory relaxation dynamics, a29

behavior that we support by new and existing experimental data.30

∗ rossana.droghetti@ifom.eu
† marco.cosentino-lagomarsino@ifom.eu

1

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2025. ; https://doi.org/10.1101/2023.10.25.563923doi: bioRxiv preprint 

mailto:rossana.droghetti@ifom.eu
mailto:marco.cosentino-lagomarsino@ifom.eu
https://doi.org/10.1101/2023.10.25.563923
http://creativecommons.org/licenses/by-nc-nd/4.0/


I. INTRODUCTION31

The regulation of growth is critical for all living cells [1–4]. On general grounds, it can be32

seen on different levels as a global resource allocation problem whereby enzymes and proteins33

that mediate the fluxes are produced [5], and the coordination of sensing of nutrients and other34

environmental cues leading to the regulatory circuits [6, 7]. The resource allocation problem35

determines the target levels of protein expression that results in the organism’s growth rate36

(or more in general the fitness) in a given environment and also in possibly fluctuating growth37

conditions [5, 8, 9]. For example, under carbon-limited growth, there is a trade-off between38

the expression of ribosomes, which carry out protein biosynthesis, and the metabolic enzymes39

providing the necessary amino acids and other precursors [5, 10–12]. The theories that originate40

from this observation work are conceptually powerful and quantitatively predictive both during41

exponential growth [10] and out-of-steady-state scenarios [13].42

On the other hand, the current frameworks miss an explicit description of the regulatory43

circuits that coordinate the cellular response to perturbations by reading the environmental44

signals. In bacteria, the circuit that implements this control is based on the small signaling45

molecule (p)ppGpp (guanosine tetraphosphate or pentaphosphate) [6, 7]. This small molecule46

can “read” the external environment by sensing changes in the uncharged tRNA caused by47

changes in amino-acid abundances or other essential nutrients. Under scarcity of these com-48

ponents, uncharged tRNA molecules accumulate in the ribosome, leading to the activation of49

the ribosome-associated RelA protein, which synthesizes ppGpp by transferring a pyrophos-50

phate group from ATP to GTP or GDP, resulting in the production of ppGpp and AMP or51

ADP [14, 15]. The less-well-characterized SpoT protein can both degrade and catalyze the52

synthesis of ppGpp, which provides a mechanism for fine-tuning the cellular response to stress.53

Recent quantitative measurements of ppGpp levels during nutrient shifts lead to the hypothesis54

that ppGpp amounts may sense translation elongation speed through the concerted action of55

RelA and SpoT [16]. The sensing of amino acid levels by ppGpp results in the regulation of56

ribosomal biosynthesis through its function as a signaling molecule that modulates the activity57

of RNA polymerase on ribosomal and growth-related promoters. This process involves the DksA58

protein and a GC-rich “discriminator region” present in the promoter sequences and affects the59

relative amount of transcripts [7]. As ppGpp levels increase, the production of ribosomal tran-60

scripts decreases, enabling bacteria to adjust to nutrient and stress conditions by redirecting61

resources towards survival and growth [6, 17, 18].62

Being able to predict how cells will respond to new perturbations is crucial, and to this end63

a mechanistic understanding of growth control is essential. It is important to note that the64
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response to a change is specific to the environment or perturbation under investigation [12,65

19], while the regulatory mechanism remains the same irrespective of the environment [7, 16],66

albeit different perturbations can trigger the response of different regulatory circuits. However,67

obtaining a detailed description of the key circuits controlling resource allocation and growth68

is challenging as we still lack a comprehensive understanding of all the molecular players. A69

crucial problem for gaining insight into the underlying sensing and regulation of growth is that70

during steady-state (i.e., balanced exponential) growth all the relevant molecular players are71

balanced [4, 20]. In such conditions, even if resource allocation is the result of the action of72

sensing and regulatory circuits, the mechanistic principles and causal chains governing these73

links remain hidden. Thus, to understand the regulatory aspects, it is necessary to study74

the dynamic cellular response to perturbations and focus on the out-of-steady-state behavior.75

From a modeling perspective, non-steady conditions offer the opportunity to describe jointly76

growth laws, limiting components, and the role of the external nutrients and cues on cellular77

growth [9, 13, 21, 22]. Here we focus on perturbations performed by changing the external78

nutrient source [13, 23]. A number of modeling studies have focused on non-steady conditions,79

and they can be divided into models that incorporate the growth law theory by using a top-down80

approach [13, 24, 25], and bottom-up models with a more detailed descriptions of the regulatory81

mechanisms [9, 17, 21]. Each one of these models makes different modeling assumptions, which82

we will discuss in more detail below. Recently, Wu and coworkers [16] have studied how the83

ppGpp regulatory mechanism can sense the elongation rate. However, this study does not84

include a description of the connection between the environment and the translational speed,85

which is mediated by the pool of amino acids available for protein synthesis.86

In this study, we propose an intermediate approach between a top-down framework and a87

specific model of the circuits by introducing a comprehensive model that incorporates (I) an88

explicit description of amino acid sensing, (II) a detailed account of the mechanistic regulation89

of transcription via ppGpp, and (III) a framework for growth laws and global resource allocation.90

Notably, our model manifests an emergent property whereby the system’s response to external91

perturbations exhibits oscillatory behavior, which arises due to the incoherent mutual feedback92

loop that emerges between amino acid pools and ribosome levels. The key ingredient for this93

property to arise is the joint description of the amino acids and ribosomes pool in a dynamical94

framework, which is not addressed in previous frameworks [5, 13].95
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FIG. 1: Mechanistic model for bacteria response to external perturbations. Global

scheme of the regulatory model. The out-of-steady-state dynamics is governed by four main in-

gredients: (A) the allocation functions χis, which set the target size for the proteome sectors φis

(B) the ppGpp-mediated transcript dynamics (total transcript T and ribosomal transcripts TR),

which determine the values of the allocation functions by setting the composition of the tran-

script pool (C) the ppGpp dynamics, which reads the translation elongation rate ε-determined

by the dwelling and translocation time- and regulates the transcript production (D) the pro-

duction and consumption of amino acids, ψA, which control ppGpp production by setting the

translation speed. The first module on the dynamics of the sector size is derived from ref. [13].

Each box contains the equation associated to the illustrated mechanism (described in the main

text).

II. RESULTS96

A theoretical model to describe response to nutrient changes97

To describe the out-of-steady-state dynamics of cell growth, we designed a model framework98

that, starting from the framework defined in ref. [13] takes into account all the major mechanistic99

players involved in the response to the internal amino acids concentration, translation rate,100

nutrient sensing by ppGpp concentration, mRNA dynamics, and protein production. Fig. 1101

shows the scheme of the proposed framework, which we describe in the following paragraphs102

(see Methods and Supplementary Note 1 and 2 for details).103

In the model, ribosomes are responsible for the synthesis of all proteins, divided into “sectors”104
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representing groups of co-regulated proteins (which usually have similar functions) [13]. The105

model focuses on three sectors: ribosomal (φR), constitutive (φP, assumed to be connected with106

the flux of amino acids [10] and metabolism in general), and housekeeping (φQ, assumed to be107

kept homeostatically constant [10]). Note that the model is is a coarse-grained description of108

key growth-related cellular processes [10, 12]; for example, the R sector includes ribosomes but109

also translation-related proteins, and the P sector includes catabolism (e.g. carbon uptake) and110

anabolism (e.g., amino acids synthesis). Out of steady state, the target size of each sector is111

regulated by “regulatory functions” [13], denoted as χR, χP, and χQ, representing the fraction112

of ribosomes that actively translate proteins of the different sectors. From the definition of113

sectors, φi = Mi/Mtot and the repartition of the total biosynthesis flux, dMi

dt
= λMtotχi, one114

obtains by chain rule the following dynamical equation for the sector size [13]115

dφi

dt
= λ[χi − φi]; i ∈ [R,P,Q] , (1)

where λ is the growth rate (Fig. 1). This equation essentially states that (I) ribosomes translate116

sector i with allocation function χi, and (II) that the equilibrium state of the sector is φi = χi.117

In the absence of post-transcriptional control [6, 26], we assume that ribosomes randomly118

attach to transcripts, initiate protein synthesis, and produce the proteins. Therefore, the compo-119

sition of the mRNA pool determines the redistribution of the flux among the three sectors. We120

hence define χR as the ratio of ribosomal transcripts (TR) to the total number of transcripts (T ),121

and similarly for χP and χQ.122

The ribosomal mRNA pool composition is regulated by the alarmone ppGpp, which con-123

trols the partitioning of the RNA polymerase (RNAP) [7]. ppGpp is primarily responsible124

for the regulation of ribosomal rRNA, which usually represents the limiting step for ribosomal125

formation [27]. However, previous studies have shown that ribosomal proteins are also under126

the ppGpp-DksA regulation, in addition to the post-transcriptional control asserted by rRNA127

concentration [28, 29]. The combined effect of translational and post-translational regulation128

produces the well-known relation between ppGpp levels and ribosomal mass fraction. In this129

model, since we do not include explicitly the ribosomal RNA, we describe the ppGpp regulation130

as a transcriptional effect on just the ribosomal proteins. Consequently, the number of ribosomal131

transcripts, TR, depends on the concentration of ppGpp, denoted as G, via the partition of the132

RNA polymerases, denoted by ωR. We can derive an equation describing the dynamical change133

of χR after an environmental nutrient shift. This is achieved by integrating our definition of134

χR — as the ratio of ribosomal-protein transcripts— with the transcripts’ dynamics, assuming135

they are generated by the available RNAP according to the RNAP partition ωR and that they136

degrade at a constant rate (see Supplementary Note 2 for the detailed equations). The resulting137
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equation can be expressed as138

dχR

dt
=

1

τχ
[ωR(G)− χR] , (2)

where τχ is a time-scale parameter that represents the time needed for the transcript pool to139

change after the shift. Assuming that the concentration of total transcripts remains constant140

across the shift, this time scale coincides with the mRNA half-life, which we set to be around 1141

min [26] (Fig. 1, Methods). This adaptation time scale is due to the fact that the production142

of new transcripts is not instantaneous. In our model the partitioning function of the RNA143

polymerases ωR depends solely on the ppGpp pool, and its functional form derives from a fit144

of the steady-state data (see Supplementary Fig. 1). This assumption is based on the recent145

study by Balakrishnan and coworkers [26], who found that the mRNA pool composition across146

conditions is mostly determined by the specific gene on-rates and only depends weakly on other147

factors such as gene dosage or mRNA degradation. This is especially true for the proteins148

belonging to the ribosomal sector, whose genes on-rates are governed by ppGpp. An extension149

of our theory including other dependencies is straightforward. Note that the direct ppGpp150

regulation of the ribosomal genes introduces also a passive ppGpp regulation of catabolic and151

anabolic genes, exerted by the genes competition for transcriptional resources. In this context,152

we can define ωP(G) = φmax
R − ωR(G). Previous studies [30, 31] show that the ppGpp effect on153

transcription is more complicated than the simple ribosomal transcription inhibition and report154

a direct up-regulation of amino acid promoters by the coordinated action of ppGpp and DksA.155

However, this effect appears to be prominent when cells face amino acid starvation [30], a very156

different condition from the nutrient upshift studied here.157

As found in ref [16], ppGpp levels are directly connected to the translation elongation rate.158

This quantity reflects the amount of charged tRNAs and other limiting factors that are available159

for translation. Therefore, to close our model we need to address in a simplified way the160

dynamics of the amino acids pool. Amino acid levels are determined in our model by the161

interplay of nutrient uptake, represented by the uptake flux νφP, biosynthesis, represented by the162

biosynthesis flux εφR, and volume growth, which contributes with a dilution term λψA (Fig. 1).163

Specifically, the model describes the abundance of one compound amino acid species (related to164

tRNA charging, see below) by the equation165

dψA

dt
= νφP − εφR − λψA . (3)

Eq. (3) introduces the normalized amino acid mass ψA, which is the ratio of amino acid mass (A)166

to total protein mass (Mtot). The catabolic flux linking nutrients to amino acids is represented167

by the term νφP, where ν denotes the nutrient quality (an average catabolic flux per employed168

catabolic sector protein), and the biosynthesis flux is represented by εφR. The last term accounts169
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for the dilution effect caused by volume growth, which we chose to not neglect, as this term has170

an impact on the time scales of the relaxation dynamics (see Supplementary Fig. 2).171

Linking amino acid pool, ppGpp and global transcription172

A key aspect of our model is the explicit representation of the amino acid pool (which173

represents a significant departure from ref. [13]). This ingredient plays a vital role in the sensing174

mechanism of ppGpp, which governs the cellular response to perturbations. Indeed, following a175

shift in nutrient availability, the first change observed by the cell is in the metabolic flux νφP,176

due to alterations in nutrient quality (ν). Consequently, these changes in nutrient availability177

lead to variations in the levels of amino acids, which have a direct influence on tRNA charging178

and the translation rate. In turn, the altered translation rate induces changes in the level of179

ppGpp (G), thereby triggering a transcriptional reconfiguration of the cell’s allocation strategy.180

Let us further explain the relationship between the translation elongation rate ε and ψA:181

based on experimental findings (ref. [32]), we express the translation elongation rate (ε) as the182

following function of the concentration of charged tRNAs183

ε = ε̃
[tRNAC]

[tRNAC] + kC

, (4)

where (ε̃) is the theoretical maximum value of the elongation rate and kC sets a sensitivity184

scale. The concentration of charged tRNAs is, in turn, influenced by the pool of available amino185

acids, which affects the dynamics of tRNA charging. We assume a simple relationship between186

uncharged tRNAs and cognate amino acids: [tRNAC] ∝ ψA, i.e. that the fast time-scale changes187

of precursors are instantaneously mirrored by tRNA charging. For a detailed motivation of this188

assumption please refer to the Supplementary Note 2. Following this assumption we write189

ε = ε̃
ψA

ψA + kA

, (5)

where the scale kA is the analogue of kC for this pool. This explicit (albeit simplified) description190

of charged tRNA sensing in our model allows us to make quantitative predictions regarding the191

size of the amino acid pool and its relationships with other variables (Fig. 2).192

Lastly, in order to connect ppGpp levels to the amino-acid pool, we use the model proposed193

by Wu and coworkers [16], who established that ppGpp level (G) is related to charged tRNA194

levels in a way that ppGpp is effectively a function of translation elongation rate (ε) through195

the equation196

G ∝ ε̃

ε
− 1 , (6)

which also means that G ∝ kA/ψA = kC/[tRNAC].197
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It is important to note that so far ε solely represents the translation elongation rate. In the198

presence of stalled ribosomes (e.g., under chloramphenicol treatment [32, 33]) this is distinct199

from the average ribosomal activity (called σ in ref [13] and defined as λ/φR). The relationship200

between G and tRNA charging is explained in terms of the typical times elongating ribosomes201

spend in elongation (τtrans) and waiting for a charged tRNA (τdwell), both quantities that are202

captured by the translation elongation rate ε, see Fig. 1 and ref. [16]. Note that the data203

gathered by Wu and coworkers is in contrast with previous models that assumed that ppGpp204

concentration depends on both ribosomal sector size and amino acid levels [9, 17, 21]. It is205

also worth mentioning that our model is not the sole framework that describes sensing. The206

Flux Parity Model (FPM), presented by Chure and Cremer [25], also incorporates a (different)207

relationship between tRNAs and ppGpp.208

The model reproduces steady-state resource allocation data209

Two aspects of our model are noteworthy. Firstly, the ability to reproduce the known steady-210

state relationships between measured quantities is a crucial requirement, and our model satisfies211

this criterion. Our model, with respect to the original FCR framework from which is derived,212

incorporates additional observables, such as ppGpp and amino acid levels. ppGpp levels have213

been measured and they have been incorporated in our model. Furthermore, the model’s ability214

to predict the amino acid pool levels is an outcome that can be tested by new experiments,215

making it a testable prediction.216

Fig. 2 shows the steady state results of the simulations of the model, compared with experi-217

mental data presented in various studies ref.s [16, 32] TOADD. The simulations in Fig. 2 start218

from an arbitrary initial condition and collect the steady-state values of the main state variables219

once the system has reached equilibrium. Panels B and D of the figure show the dependency220

between the growth rate, the amino-acid pool ψA, ppGpp concentration G, and are new pre-221

dictions of our model. Panel C shows the dependence of the translation elongation rate ε on222

the amino-acid pool, which derives from our eq. 5, and panel D shows the relationship between223

ribosomal allocation φR and ppGpp levels, fitted from the data (see Supplementary Fig. 1).224

As we anticipated above Fig. 2 illustrates that the model can accurately reproduce available225

steady-state data (from ref. [16]) for ppGpp.226

In order to avoid unnecessary complications, we restricted this analysis to a “fast-growth”227

regime, which we defined by the condition λ > 0.5h−1. Indeed, it is well known that in slow-228

growth conditions, other phenomena such as protein degradation and inactive ribosomes play a229

significant role in the growth physiology [32, 33]. The model discussed in the main text of this230
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FIG. 2: The proposed framework predicts steady-state relationships between the

amino acids pool, ppGpp levels and ribosomal allocation, and reproduces the avail-

able experimental data. A: Model prediction of the dependence of the ribosomal sector

fractional size (y-axis) on the exponential growth rate (x-axis). Simulations (red solid line) are

compared with experimental data from various studies (ref.s [16, 20, 24, 32, 52–54], blueish

points). B: The plot shows the simulated model prediction (red solid lines) for the relationship

between the steady-state exponential growth rate (x axis) and the size (mass fraction ψA) of the

amino-acid pool (y axis). This quantity is proportional to the concentration of charged tRNA

([tRNAC]), as explained in the text and in Supplementary Notes 2. C: Model prediction (red

solid line) for the relationship between the size of the amino-acid pool (x axis) and the relative

translation rate ε/ε̃ (y axis) in steady-state growth. D: The model prediction (red solid line) for

the relationship between the steady-state exponential growth rate (x axis) and the ppGpp con-

centration (y axis) is in line with the experimental data from various studies (ref.s [16, 55–60],

blueish points). E: The model prediction (red solid line) for the relationship between the ppGpp

concentration (x axis) and the size of the ribosomal sector (y axis) agrees with the available

experimental data (blue reverse triangles, data from ref. [16]). For this figure, we restricted

ourselves to the fast-growth regime (λ > 0.5h−1). For the slow growth regime, where additional

phenomena such as degradation and inactive ribosomes also impact physiology, please refer to

Supplementary Fig. 3.
9
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work does not account for these phenomena and therefore refers to the fast-growth regime. We231

have also studied an extended version of our framework that includes the essential ingredients232

to describe the slow-growth behavior. For a description of this version of the model and its233

steady-state predictions please refer to Supplementary Note 3 and Supplementary Fig. 3.234

Finally, a well-defined steady-state behavior requires the fixed point to be stable, which235

we investigated by analyzing the eigenvalues of the linearized dynamics. Specifically, we have236

studied in detail two versions of the fast-growth model, with instantaneous transcription and237

with a transcriptional time scale set by the mRNA degradation rate (see Supplementary Fig.s 6238

and 7 and Supplementary Note 8 and 9). In both cases, all eigenvalues have a negative real part239

in the physiologically relevant parameter region, showing that the steady-growth fixed points240

are always stable. More in general, we also show that in the absence of transcriptional delays,241

a generic model for ribosome translation regulation will display stable fixed points, as long as242

the regulatory function is monotonically decreasing in φR and increasing in ψA (details and243

demonstration in Supplementary Note 9).244

Relaxation towards new steady state shows damped oscillations245

We next investigated the model behavior during a nutritional upshift. To realize such an246

upshift, we varied suddenly (in a stepwise fashion) the nutrient quality ν, which is the parameter247

that characterizes the external environment.248

Fig. 3A-D display the resulting relaxation pattern, characterized by damped oscillations ob-249

served across all the main quantities described by our model. It is worth highlighting that250

the ribosomal sector size φR also exhibits these oscillations, despite being the parameter that251

changes at a slower pace, given the necessity to dilute the existing proteome composition for252

any alteration. Fig. 3E visualizes the same oscillations by plotting the progression of the riboso-253

mal sector proteome fraction against the amino acid (charged tRNA) pool and the translation254

rate ε. Conversely, ppGpp levels, amino acid (charged tRNA) pool, and translation rate change255

coherently following a quasi-steady-state relationship (Fig. 3F). Hence, the oscillatory behavior256

persists even when considering the relationship among the amino acid pool, elongation rate, and257

ppGpp level observed during a steady state.258

Damped oscillations are independent of transcription delays259

Following this observation, we asked whether the presence of oscillations stemmed from the260

fact that in our model, the regulatory functions χi are not a function of ε derived from steady-261
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FIG. 3: Damped oscillations characterize the relaxation dynamics towards the new

steady state. The figure presents simulation predictions of the post-upshift dynamics of various

state variables. Panels A, B, C, and D display the time-dependent behavior of the relative

translation elongation rate ε/ε̃, the mass fraction of the ribosomal sector φR, the growth rate λ,

and the ppGpp concentration G, respectively. Panel E shows the post-shift dynamics of the

ribosomal sector φR in relation to the amino acids pool ψA and the relative translation elongation

rate ε/ε̃, with circles representing simulation results color-coded by time from the shift. The X-

shaped symbols denote the pre- and post-shift steady-state values and the dashed line represents

the steady-state relationship between the two plotted variables. Similarly, panel F shows the

post-shift dynamics of the ppGpp concentration G versus ψA and ε̃/ε − 1, a factor which is

found proportional to ppGpp [16]. In this panel, we also show shift data from [16] (blue reverse

triangles). These plots show the presence of overshoots due to the damped oscillatory relaxation

dynamics predicted by the model.

state behavior: instead, these functions emerge due to transcript dynamics. Consequently, we262

questioned whether the existence of oscillations was linked to the transcriptional delay τχ, which263

establishes the timescale for adjusting the mRNA pool composition after a change in the ppGpp264

levels. To study this, we defined a new instantaneous-transcription model, where we set τχ = 0265

(see Supplemetary Note 4 for more details). Figure 4A-B show that both the instantaneous-266

transcription model and the complete model (τχ > 0) exhibit damped oscillations during the267

transition. This indicates that even if the transcript pool adjusts immediately following ppGpp268

changes, damped oscillations persist, similar to the non-instantaneous case. Observe that in269

Figure 4, in order to emphasize the quantitative difference between the behavior of the two270

models, the value of τχ was set to 10min.271
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FIG. 4: The incoherent feedback between amino acid pool and ribosome produc-

tion gives rise to damped oscillatory response regardless of delays due to ribosome

transcription. Simulations were performed with two different models: with instantaneous

transcription (A, C) and with gradual mRNA and rRNA pool production (B, D). In the in-

stantaneous transcription model, the regulatory functions χi follow ppGpp levels without delay

(as in ref. [13]), while they are given by Eq. 2 in the gradual transcription model, where here

we set τχ = 30min to emphasize the effect of the delay. In all panels, circles indicate simulation

results color-coded by the time from the shift, and X-shaped symbols represent the pre- and

post-shift steady states. Panels A and B show the three phases of post-shift adaptation, which

are present in both models. The x axis displays the ribosomal sector mass fraction, and the

y axis shows the growth rate. The dashed line in both panels connects (0,0) and (φfinal
R ,λfinal),

and highlights the second phase (as in Fig. 9 of ref. [13]). Panel C and D show the ribosome

allocation through the shift. The x axis displays the relative translation rate, and the y axis

shows the ribosomal regulatory function χR. The plots show that oscillations occur even when

the regulatory function instantaneously follows the translation elongation rate along the steady-

state relation. Panel E provides a sketch of the incoherent feedback loop between the amino

acid pool ψA and the ribosomal fraction φR, which is explicitly described in this study and is

responsible for the observed oscillatory behavior.
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However, the important point to realize is that overshoots are expected also for τχ = 0, and272

since empirically τχ is small (order one minute [26]) we expect to be close to this situation.273

The analysis of the eigenvalues of the two systems confirms this behavior. Indeed in both274

cases, the eigenvalues are complex with a negative real part in all biologically accessible growth275

regimes, a property linked to the oscillating relaxation to the new state. This theoretical analysis276

was carried out spanning all growth regimes, from slow to very fast growth, and is presented in277

detail in the Supplementary Note 9 and in Supplementary Fig.s 6-9. We find that the presence of278

a damped oscillatory response is related to the specific set of parameter values used in the model,279

but as these values change different regimes arise, giving rise to a typical dynamical systems280

“phase diagram” [34]. Our analysis, reported in Supplementary Note 9, reveals indeed three281

distinct regimes when the values of the parameters are changed. The first regime is characterized282

by a shift without oscillations (overdamped), occurring at slow growth rates. The second regime283

features a shift with damped oscillations, which occurs in mid-to-fast growth. Finally, the third284

regime is a shift with sustained oscillations. The theoretical possibility of such “oscillatory285

growth” has been predicted by a previous generic growth model [34]. The threshold between286

these regimes varies depending on the parameters of the system. Interestingly, if we call ν∗ the287

nutrient quality after which the oscillations arise, by studying the parametric dependence of ν∗288

we find that is not just determined by the details of the resource allocation strategy, but the289

dynamics of the amino acid pool also plays a role (see Supplementary Note 9). Note that, when290

the model is defined with the parameter values found for biological systems, the overdamped291

and sustained oscillatory regimes disappear, and the only accessible regime remaining is the one292

characterized by damped oscillations.293

In our model, the oscillatory behavior arises because of the effective negative feedback loop294

between the amino acid pool and the ribosomes. This mutual connection is sketched in panel295

E of Fig. 4: on one hand, ribosomes deplete amino acids due to their consumption for protein296

synthesis, and on the other hand the ppGpp regulatory circuit enhances ribosome levels in297

presence of amino acids, since higher amino acids levels lead to higher translation rates, lowering298

ppGpp production and therefore upregulating the ribosomal sector. On a more mathematical299

level, this type of feedback is a necessary condition to obtain oscillations, whether they are300

damped as in our case or sustained (in particular one needs a negative feedback loop with a301

sufficient delay [35], or a negative autoregulation, see Supplementary Note 10). Our model302

incudes this feedback as a double connection between amino acid pool and ribosome biogenesis,303

which is a crucial ingredient to make the damped oscillatory behavior possible.304

To interpret the different relaxation time scales involved in a nutrient shift within our model,305
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Fig. 4A-B shows that the process of reaching a new steady state after a change in nutrient306

quality can be divided into three phases. The first phase is defined by a sudden increase in the307

translation elongation rate due to the increase in the amino acid pool size ψA. This change in308

the growth rate is detected by the sensory mechanism of the ppGpp, but the synthesis of mRNA309

and new proteins has not yet changed, therefore, the growth increase of the first phase is driven310

purely by the change in the translation elongation rate ε. In the second phase, the synthesis311

of new proteins starts to adjust to the new protein allocation strategy given by χR(G). This312

second phase is slower than the first one because the synthesis of new proteins is not immediate.313

During this phase, the translation elongation rate remains almost constant while the sector sizes314

change, and the relaxation proceeds along a straight line in the (φR, λ) plane. In the third315

and last phase, all the relevant variables, including translational activity, regulatory functions,316

and protein sectors, oscillate while relaxing around the new steady state. Our study provides a317

detailed analysis of these three phases and their underlying mechanisms. The study by Erickson318

and coworkers that introduced the FCR model (ref. [13]) already presented some of the different319

relaxation phases we identified in our study. However, their model only included the first and320

second phases and did not account for the oscillatory dynamics observed in our study.321

A ribosome/precursors feedback enables oscillations322

To better understand the behavior of our model upon nutrient shifts, we compared it with323

two existing models (see also the Supplementary Note 7 for further details): the original FCR324

model [13] and the Flux Parity Model (FPM) proposed by Chure and Cremer [25]. Both325

models were specifically developed to capture the dynamics of nutritional upshifts. The FCR326

model operates on a quasi-steady-state assumption linking translational activity σ directly to327

the proteome sector functions χi, even during shifts. This approach simplifies the model by328

avoiding a mechanistic description of the ppGpp regulatory circuits. In order to allow a direct329

comparison with our model, we have extended the FCR model by incorporating the recently330

reported relationship between σ and ppGpp concentration G from ref. [16], which is described331

by Eq.s S43-S47. This extension enables predictions of ppGpp concentration changes during332

shifts, allowing direct comparison with our model. Notably, extending the FCR model requires333

accounting for sequestered ribosomes, as done in ref. [16] for steady-state growth and making334

assumptions about their behavior during shifts, a step not covered in the original study. This335

integration, however, does not change the fundamental assumption of the model, which is that336

protein synthesis is regulated by a direct sensing of the precursor fluxes through the the trans-337

lational activity, and it follows them adiabatically via a quasi- steady-state relation. Further338
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FIG. 5: Different theoretical frameworks lead to different predictions for the relax-

ation dynamics. Panels A-B-C compare simulations of three different models for nutrient

shift dynamics: this work (red solid line), the FCR model (ref. [13] - brown dashed line), and the

Flux-Parity Model (FPM) (ref. [25] - pink dash-dotted line). Panel A shows the dynamics of the

instantaneous growth rate. Our model is the only one that predicts an overshoot of the growth

rate. Panel B shows the size of the amount of charged tRNAs, which is not predicted by the

FCR model. For the prediction of our model, given that [tRNAc] ∝ ψA we have normalized ψA

to have the same pre-shift value as the FPM prediction. Panel C shows the ppGpp concentration

G across the shift. This can be predicted with all three models, combining the FCR framework

with Eq. 6, from ref. [16] (see Supplementary Note 6 for the upgraded FCR model definition).

The discrepancies between the steady-state predictions are due to the different values of the

parameters used. The figure shows that of all the models tested, just our framework predicts

the oscillatory response to the nutrient shift, and this is due to the presence of the incoherent

feedback between amino acids levels and the ribosomal sector.

details of this modified FCR model are provided in Supplementary Note 6.339

Even considering the extended FCR model, a key difference between it and our framework lies340

in the treatment of the amino acids pool. The FCR model focuses on catabolic and biosynthesis341

fluxes to control shift dynamics, without explicitly describing the amino acids pool ψA. Instead,342

the translational activity σ is defined as Jb/MR, relying solely on flux-based sensing of external343

conditions.344

In contrast, the FPM model [25] takes a different approach, using a flux-matching principle345

to set the biosynthesis rate, ensuring that uptake and biosynthesis fluxes are balanced. This346

strategy aligns qualitatively with the ppGpp regulatory circuit and includes sensing of charged347

tRNAs, a quantity indirectly linked to the amino acids pool, although not explicitly described348
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by this model.349

Fig. 5 shows that the predictions of our model, the extended FCR model, and the FPM model350

differ during a nutrient shift. Trivially, the extended FCR model cannot predict the amino351

tRNA by definition. We can instead compare the charged tRNA prediction by the FPM model352

and our model, as these are explicitly described in both models (note that in our model we353

assumed [tRNAC] ∝ ψA). More interestingly only our model predicts the oscillatory relaxation354

towards the new steady state, because among these three models it is the only one that explicitly355

describes the feedback relation between amino acids pool and ribosomal allocation sketched in356

Fig. 4E. To further support this point, in the Supplementary Note 5 we have also analyzed a357

version of our model with a different ppGpp regulatory circuit (incorporating solely the RelA358

production term, following refs. [9, 17, 21]) also shows damped oscillations (see Supplementary359

Note 5 and Supplementary Fig. 4).360

Damped oscillations are visible experimentally361

So far, we have shown that the oscillatory relaxation behavior arises naturally from a theoretical362

framework that incorporates biological knowledge on nutrient sensing and regulatory response.363

It is natural to ask whether this predicted behavior has an experimental counterpart.364

Considering published data, we observed clear oscillations in data from our reanalysis of nutri-365

tional upshift experiments performed in a microfluidic device, as reported in ref. [23] (Fig. 6AB).366

Our reanalysis involved examining the original data to identify patterns of overshoots and367

damped oscillations in growth rate and ribosome allocation during nutrient upshifts.368

To test the robustness of this result, and given the lack of coherence on this point looking at other369

shifts performed in the literature, we also performed new shift experiments in different settings370

(batch and microfluidics) to investigate the existence of overshoots and damped oscillations371

during nutrient upshifts.372

The new microfluidics experiments were conducted in a similar microfluidic “mother machine”373

device as in ref. [23] but at a different temperature and with strains that did not carry the374

ribosomal/constitutive fluorescent reporters. This allowed us to monitor the behavior of the375

growth rate and ensure that these high-expression GFP reporters were not the cause of the376

observed damped oscillations. These experiments also tested the robustness of the behavior in a377

shift involving slower growth conditions. Figure 6C and Supplementary Fig. 17 show the results378

of these new experiments, for different E. coli strains as explained in the methods. In some379

cases, the observed overshoot is even larger than the one predicted by the model.380

For both the reanalyzed and the new microfluidics data, overshoots (and damped oscillations)381

16

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 31, 2025. ; https://doi.org/10.1101/2023.10.25.563923doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.25.563923
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIG. 6: Overshoots compatible with the predictions of our model are observed in in

nutrient-shift experiments. The figure shows relaxation to the new steady state for various

experiments, both for the growth rate and the ribosomal sector size. In all panels, continuous

red lines represent the results of a simulation of the model. A-B: Growth rate λ and ribosomal

sector size φR dynamics following an upshift in a microfluidic device at 37◦C, (reanalyzed data

from ref. [23]). The points are sliding averages with a window of 75min (see Methods and/or

Supplementary Note 11 for details on the definition of φR). C: Growth rate λ dynamics following

an upshift across the same media as in ref. [23] in a microfluidic mother-machine device at 30◦C.

The points are binned averages with a window of 40min. D-E-F: Growth rate λ dynamics

following an upshift across the same media as in ref. [23] in a batch culture at 37◦C, for the wild

type (D) and a reporter strain in ref. [23] (E-F). All the panels refer to a biological replicate

and show averages among technical replicates. The three panels refer to different experiments

and summarize the three typically observed outcomes: clear overshoots, found in 8 biological

replicates, shown in Supplementary Fig. 10 (D), lack of visible overshoots at odds with the model,

found in 9 replicates shown in Supplementary Fig. 11 (E), and lack of observed overshoots in

agreement with the model, found in 4 biological replicates shown in Supplementary Fig. 12 (F).

compatible with the model predictions are apparent in both the growth rate λ and the proxied382

ribosomal sector φR (where present). Note that to obtain data on the ribosomal sector, the383

authors of ref. [23] have used the signal of a GFP expressed from a ribosomal RNA promoter.384

Before using this signal as a proxy for φR, we conducted several tests on the signal to see if it was385

compatible with the sector dynamics behavior (see Supplementary Note 11 and Supplementary386
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Fig. 15 for details).387

Additionally, the damped oscillatory behavior observed in mother machine devices is consistent388

across biological replicates and strains (Fig. 6DE and Supplementary Fig. 14A-B). We also389

note that a clear growth-rate overshoot on a minute time scale is observed consistently in the390

microfluidic device experiments (Supplementary Fig. 16). A similar fast overshoot was also391

previously reported in similar single-cell shifts providing amino acids [36], and connected by392

direct observation of cell volume and mass to a dilution of the cell. Hence, we surmise that393

cells entering an upshift effectively experience a hypo-osmotic shock, regardless of whether the394

experiment was carried out in a microfluidic setting or in batch. Significant biological processes395

may occur within this short time scale, and consequently, there could be additional physiological396

adaptations not captured by our model.397

The results from experiments in batch culture are more ambiguous, as we found clearly visible398

overshoots in eight (roughly half) of the experimental replicates (Fig. 6D). Other biological399

replicates (nine in total) did not show overshoots where the model predicted they would be400

visible (Fig. 6E) or presented a very small effect in agreement with the model (four bological401

replicates in total, Fig. 6F). All our batch experimental results are presented in Supplementary402

Fig. 10, 11 and 12. To understand why model predictions vary across replicates, we need to403

account for the fact that while the pre-shift and post-shift state were selected to be consistent404

with steady growth, as the growth rates varied noticeably across replicates, and the model405

predicts different behavior depending on the growth rate jump.406

Despite of the variability across replciates, the overshoots that are visible in these experiments407

occur consistently across replicates around two hours from the shift, as predicted by the model.408

Additionally, the batch experiments were also performed with wild-type strains, confirming the409

idea that growth-rate overshoots upon nutrient upshifts are not due to the presence of fluorescent410

reporters. Finally, the quantitatively small overshoots predicted by the model and the inferior411

quality of the batch data also explain why the phenomenon was not widely reported by previous412

literature. Besides the inferior resolution of these experiments, a possible interpretation of the413

difficulties encountered in batch-culture experiments could be that in batch population growth414

can be driven primarily by fast-growing cells, whereas in a mother-machine microfluidic device,415

a fixed distribution of mother cells is maintained.416

To conclude, while we have provided new evidence supporting our model’s predictions, given417

the limitations of the presented data, our main claims remain limited to the statement that a418

realistic architecture (based on our current knowledge) linking nutrient sensing to ribosome allo-419

cation would generally give rise to oscillations. Biologically, it is also possible that unaccounted420
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elements in the architecture, which are not described by our model, could alter the prediction.421

Further systematic experiments may clarify the situation.422

III. DISCUSSION423

This work presents a dynamical modeling framework that describes the out-of-steady-state424

growth of E. coli cells through a global resource allocation dynamics. The model combines425

the framework of ref. [13] with a mechanistic description of nutrient sensing and global gene426

regulation by the ppGpp circuit. This combination of ingredients leads to predict an oscillatory427

relaxation after a shift in the nutrient conditions, for all shifts that lead to a moderate-to-fast428

growth rate. While other models predict oscillatory behavior in this context [21], recent work on429

growth laws in this area did not incorporate this aspect [13, 16]. Crucially, we have shown that430

removing any transcriptional delay in our model does not ablate the incoherent feedback loop,431

nor the oscillations. Hence, we conclude that the transcriptional waiting time per se should432

not be regarded as a cause for the oscillations. Our framework indeed connects the presence of433

oscillations to the feedback interplay between global flux balance and resource allocation and the434

mechanistic circuits that implement growth control. In other words, we show that the oscillatory435

behavior is caused by the incoherent feedback between the size of the amino acid pool and the436

expression of the ribosomal sector.437

Importantly, we have shown that damped oscillations of growth rate, ribosome allocation and438

ribosome proteome fraction have been observed across studies of experimental nutrient shifts in439

E. coli. Interestingly, similar oscillations in response to perturbations have also been observed440

in yeast [37], where the mechanistic architecture of nutrient sensing and growth regulation is441

very different [2, 38–40]. This suggests that the global feedback described by our model may442

be a general feature, or strategy, for growth regulation based on nutrient sensing. However,443

there are still many unanswered questions regarding these experiments and their relationship444

with our model. While the mechanism provided by our model provides a possible explanation,445

the oscillations observed experimentally may be also influenced by other molecular players that446

are not considered in our study, for example the transient mismatch between volume and mass447

growth observed after a nutrient shift [36].448

Our model builds upon and integrates previous findings in the literature [5, 10, 13, 16], combining449

established mechanisms into a unified framework. By analyzing these elements collectively, our450

approach not only consolidates existing knowledge but also generates novel predictions, crucially451

the intriguing emergence of damped oscillatory behavior—an aspect that has not been explicitly452

addressed in prior models.453
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We recognize that several other models have tackled related questions from various perspectives454

(e.g., [9, 13, 21, 25, 41–43]). Our model is intended to be complementary, emphasizing the455

interplay between regulatory feedback and resource allocation dynamics to uncover new insights.456

Specifically, our framework builds on the model proposed in ref. [13], while introducing key457

innovations. Most notably, we relax the steady-state assumption in defining regulatory functions,458

allowing for new nontrivial dynamic behavior. Additionally, our model incorporates the latest459

findings on the dependency of translation rates on ppGpp levels, as reported in ref. [16]. This460

aspect was not included in previous models that examined the ppGpp regulatory circuit [9, 21,461

25].462

While our primary focus is the cellular response to nutrient shifts, other studies provide comple-463

mentary insights into bacterial growth physiology. For example, ref. [42] explores rapid growth464

rate changes at the onset of nutrient shifts, while ref. [43] investigates limiting factors of bacterial465

growth. Together, these works enhance our broader understanding of bacterial adaptation and466

growth dynamics.467

Although it is now well-established that ppGpp effectively senses and responds to the trans-468

lational elongation speed [16], the molecular mechanisms underlying its synthesis and degrada-469

tion remain largely enigmatic—particularly regarding the role of SpoT. Once thought to function470

solely as a ppGpp-degrading enzyme, this simplistic view is deemed inconsistent with recent data,471

which suggests a more complex role for SpoT in stress response and nutrient adaptation [16],472

further work is still needed to understand its precise role and regulatory fully mechanisms in473

ppGpp metabolism. We also note that the mechanistic part of our model relies on a series474

of measurements on ppGpp conducted in E. coli, and its predictions may not apply to other475

bacteria.476

In our model, the oscillations arise because the system works as a thermostat, with a built-in477

feedback system involving a sensor and an effector. The origin of oscillations in our system478

could be attributed to architectural constraints, evolution, or a combination of both. In order479

to clarify this point, it will be crucial to study this system from a control-theory perspective,480

and to discover the optimization goals that it follows over evolution. A previous study [41]481

taking this approach, has concluded that oscillatory behavior may be due to optimal control482

towards the adjustment of ribosome synthesis in a switch-like manner. The authors demonstrate483

that a precursor-only control strategy, which alternates investment between gene expression and484

metabolism producing an oscillatory time profile of precursor concentration performs much485

better than a nutrient-only strategy in a dynamical upshift scenario, by avoiding the inefficient486

transient accumulation of precursors.487
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A growth regulation system can be seen as a decision-making process that detects the envi-488

ronment. As nutrients in a natural environment tend to fluctuate over different time scales, we489

can expect that the nutrient quality can vary by fluctuations and net trends. Our model shows490

that sensing as a low-pass filter in response to time-varying input, preventing the system from491

reacting to environmental nutrient quality changes above a certain frequency, but also carries492

a characteristic oscillatory frequency that varies with the parameters. We speculate that these493

features could facilitate growth control, allowing a cell to spare energy and resources by avoid-494

ing reactions to changes that are too short-lived, but also “resonate” with specific frequencies.495

In our framework, the model variant without delay represents the fastest-reacting version of496

the network. Biologically, this fast-reacting architecture may be embodied by ribosome seques-497

tration [44], at the cost of the extra proteome sector occupied by inactive ribosomes [32, 33].498

We speculate that by studying the long-term fitness trade-offs of a system that can bypass the499

transcriptional delay and comparing it to one that does not one could address the question of500

whether E. coli hedges its bets on both architectures through regulated ribosome sequestration,501

in order to set its threshold frequency in a plastic fashion, and optimize its fitness flexibly.502

IV. METHODS503

Model description504

We report here the equations needed for the definition and simulation of our mechanistic505

model. In these notes, we will distinguish the state variables from the parameters by expliciting506

the time dependence of the first ones. We start with the differential equations that define the507

dynamical system:508

dψA(t)

dt
= νφP(t)− ε(t)φR(t)− λ(t)ψA(t), (7)

509

dχR(t)

dt
=

1

τχ
[χR(t)− ωR(t)], (8)

510

dφR(t)

dt
= λ(t)[χR(t)− φR(t)]. (9)

Eq. 7 describes the dynamics of the amino-acid pool, given by the balance of the upcoming511

nutrient flux (νφP), the outgoing biosynthesis flux (εφR), and a dilution term given by volume512

growth (λψA). Eq. 8 is derived from the transcript dynamics, which is explained in detail in the513

Supplementary Note 2 and 2. Eq. 9 is derived from the sector definition as in ref. [13].514
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Next, we show the other definitions needed to close the system. We need to define the515

translation elongation rate, which depends on the amount of charged tRNAs, and therefore on516

the amino acids level. Eq. 4 connects these quantities:517

ε(t) = ε̃
ψA(t)

ψA(t) + kA

. (10)

The ppGpp concentration is given by the following empirical relation from ref. [16]518

G(t) = CGref

(
ε̃

ε(t)
− 1

)
. (11)

The equation presented in ref. [16] gives the fold change of the ppGpp with respect to a reference519

condition, therefore, in order to obtain the ppGpp concentration we add the parameter Gref to520

the original equation for the fold change. The value for Gref is 55.73 µM and is given by ref. [17],521

see Supplementary Note 1 and 2.522

The RNAP allocation on ribosomal genes was assumed to follow the following relationship523

ωR(t) =
KG

KG +G(t)
, (12)

where KG is given from a fit of the data presented in ref.s [16, 17], and its value is 8.07 µM .524

The growth rate in our model corresponds to the biosynthesis rate:525

λ(t) = ε(t)φR(t). (13)

Lastly, the constitutive sector is defined as the remaining part of the proteome, which does526

not belong to the ribosomal nor to the housekeeping one,527

φP(t) = 1− φQ − φR(t) = φR,max − φR(t) . (14)

528

Nutrient-shift experiments529

Microfluidics experiments at 30◦C530

Strain and growth media. The strain used in this experiment is the wild-type E. coli strain531

BW25113, the parent strain of the Keio collection [45], in which promoter-reporter constructs532

were inserted in the chromosome as described in ref. [23, 46, 47]. The specific strains used533

were the ones containing the promoters P5, P5-ter [23, 46] and PdnaALong [46, 47] In upshift534

experiments, we used two growth media based on the M9 minimal medium as the base and535

glucose as the carbon source, 0.4% glucose for the slow-medium, while thee fast-medium, in536
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addition, has 0.4% casamino acids. Bacteria were grown overnight in the slow-growth media537

at 30◦C. Overnight cultures were diluted 500:1 in new growth medium and returned to the538

incubator for 3 to 4 hours. This is important to guarantee bacteria to be in the exponential539

phase when injected into the microfluidic device [46].540

Mother machine experiments. We conducted experiments using a microfluidic “mother ma-541

chine” device, which consists of 1-µm-wide channels positioned between two larger feeding chan-542

nels [48]. Bacteria were confined within the microfluidic channels by a narrow opening on one543

side.544

The microfluidic chips were prepared following ref. [46]. In brief, the polydimethylsiloxane545

(PDMS) devices were fabricated from a mold using standard procedures and bonded to a mi-546

croscope slide via plasma treatment. Prior to bacterial loading, each chip was passivated by547

incubating it with 150 µl of a 2% bovine serum albumin (BSA) solution at 30◦C for 1 hour to548

minimize bacterial adhesion to the glass or PDMS surfaces. After passivation, the chips were549

rinsed with freshly filtered medium, and approximately 1 ml of bacterial culture was manually550

injected into the device. Flow control within the microfluidic setup was achieved using flow sen-551

sors integrated into each feeding channel. The Elveflow pressure-driven flow system was used to552

ensure a continuous and stable flow of fresh growth medium through the microfluidic device at a553

constant speed. The entire microfluidic setup comprises a pressure-driven flow controller (0 – 2554

bar pressure range), two rotary valves (11-port/10-way Mux Distributor), and two flow sensors.555

The two rotary valves were used to quickly change between growth medium in both the top and556

bottom channels. In upshift experiments, the valves were programmed to alternate so that the557

slow-growth medium fed the device first, while the fast-growth medium was delayed. In most558

cases, a complete upshift experiment lasted between 12 and 20h, with roughly equal time spent559

in each growth medium. These sensors provided real-time feedback to maintain precise flow560

rates, ensuring stable and responsive air pressure-driven flow. The system allowed for robust561

and long-term microfluidic experiments. Temperature regulation was maintained at 30◦C using562

a custom-built temperature control system.563

Image acquisition and data analysis. Imaging was performed using a Nikon Inverted Micro-564

scope ECLIPSE Ti-E equipped with a 100X oil immersion objective lens (numerical aperture565

1.4) and a Nikon Perfect Focus System to correct for focus drift. An xy motion plate was566

employed to cycle through predefined regions of interest at specified time intervals. Images567

were captured using a 16-bit camera at a resolution of 512 x 512 pixels, with each pixel cor-568

responding to 0.1067 µm. The motorized stage and camera were programmed to image up to569

40 fields of view, each encompassing approximately eight microchannels, at 3-minute intervals.570
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This pipeline is the same presented in ref. [46].571

Microfluidics experiments at 37◦C572

Original data for this experiment was published in ref [23], please refer to this reference for573

the details of the experiments. Supplementary figure 14 shows the reanalized data. All the574

information on the additional analysis of the data are reported in the Supplementary Note 11575

and Supplementary Fig. 14-16.576

Batch experiments at 37 ◦577

Strains and growth media. The E. coli K12-derived strain BW25113 was used in all ex-578

periments, together with the ”P1 Long” mutant [23, 49], with an incorporated reporter cassette579

in the chromosome, containing a Kanamycin resistance gene and the rRNA operon promoter580

rrnBP1 followed by a GFP expressing gene (the same as in ref. [23]). Cells were grown in a M9581

minimal growth medium complemented with 1% glucose (glu), until the shift to 1% glucose and582

1% Casamino Acids (glu+cAA).583

Culture growth protocol. The strains were first plated from a -80◦C glycerol stock to LB-584

Agar plates. Then, a preculture was made, where a single colony was inoculated in LB medium.585

After reached an OD of 0.3, the cells were washed of the LB medium by centrifugation (3 minutes586

at 8000 g-force) and resuspended in the medium used for the growth experiment (M9+glu). The587

overnight was prepared by diluting the cells of the preculture such that growth was still in the588

exponential phase at the start of the experiment.589

The growth experiment was performed in the ChiBio chemostat [50], where each culture590

was placed in a separate reactor and kept in the same conditions at 37◦C. Each reactor is591

composed of a glass tube filled with 20mL medium and the instruments to measure OD. All592

other ChiBio parameters (temperature, stirring, gain intensity, etc.) were kept to the default593

settings presented in ref [50].594

Growth shift protocol. Growth shifts were performed by adding a 20% solution of Casamino595

acids to the reactor, such that the medium had 1% cAA concentration. To retain constant596

growth conditions and to keep OD out of the saturation range (OD > 1), periodic dilutions597

were realized to keep the OD between 0.4 and 0.8. While the ChiBio [50] provides pumps to598

regulate OD, the pumping rate was not fast enough for the significant volume necessary for the599

dilution. Instead, a manual dilution was chosen, using a 10mL pipette to dilute the reactor600

when OD was close to 0.8. One dilution was made before the shift, and another at the moment601
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of the shift. After the shift, dilutions were continued for at least 2 hours of growth.602

Data Analysis. The ChiBio outputs data files containing the precise OD every minute and603

the associated time stamps. To synchronize this data with the shift dynamics, the shift time604

was set as t = 0. OD outliers (e.g. measurements during dilutions) were removed, as well as605

any data where OD was close to saturation (OD > 0.8). To mitigate measurement noise from606

the OD, for every OD measurement ODi at time ti, we apply a sliding window average on the607

logarithm of the OD (to average out deviations from exponential growth). Considering a window608

size w1 = 4min, we have609

ODmean,i =

i+w1∑
j=i−w1

log(ODj)

2w1 + 1
. (15)

To have a continuous growth curve from start to finish of the experiment, we then consider a new610

OD (ODnew) as the OD with dilutions (ODmean) multiplied by the dilution ratio such that there611

is no interruption in the growth curve due to dilutions. To measure the actual dilution ratio612

at every dilution, we calculate the mean growth rate λ at the dilution by fitting an exponential613

growth function on a 20 minute time interval before the dilution. As such, we have614

ODnew(t = ti+1) = ODmean(t = ti)exp (λ(ti+1 − ti)) , (16)

with ti the last time point before dilution and ti+1 the first time point after the dilution. The615

dilution ratio is then ODnew(t = ti+1)/ODmean(t = ti+1). From the continuous growth curve,616

we can measure the instant growth rate λi for each time ti. We set617

λi =
ODnew(t = ti + dt)−ODnew(t = ti − dt)

2ODnew(t = ti)dt
, (17)

with dt = 3min. Further binning of the growth rate aws applied for comparison of different618

experimental replicates. To obtain the average growth rate shown in Fig. 6 and Supplementary619

Fig.s 10-12 we compared different technical replicates of the same experiment, excluding realiza-620

tions according to two criteria: (I) to average only technical replicates that were consistent with621

each other, we excluded the replicates for which the aligned OD (i.e. the OD curve normalized622

such that OD(t=0)=0.5) has a normalized L1 distance from the other replicates exceeding 1.5,623

and (II) to filter for steady-growing populations we excluded all the replicates that did not reach624

the shift with a steady growth rate, quantifying the steadiness of the growth rate by calculating625

the coefficient of variation of the growth rate CV = σ2
λ/µλ in the first hour prior to the shift,626

where σ2
λ is the variance and µλ is the average of the measured growth rate across time frames627

before the shift. If the CV of a replicate exceeded 0.05 the replicate was discarded. The curve for628

the average growth rate across replicates was then calculated for all the experiments for which at629

least two technical replicates had passed the screening. The results are shown in Supplementary630
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Fig. 10-12, and an example of a technical triplet with a discarded technical replicate is shown631

in Supplementary Fig. 13.632
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