

Incoherent feedback from coupled amino acids and ribosome pools generates damped oscillations in growing *E. coli*

Rossana Droghetti,^{1,*} Philippe Fuchs,² Ilaria Iuliani,^{3,4} Valerio Firmano,⁵ Giorgio Tallarico,¹ Ludovico Calabrese,¹ Jacopo Grilli,⁶ Bianca Sclavi,³ Luca Ciandrini,^{2,7} and Marco Cosentino Lagomarsino^{1,5,8,†}

¹*IFOM - Istituto Fondazione di Oncologia Molecolare, Milan, Italy*

²*Centre de Biologie Structurale (CBS),*

Université de Montpellier, CNRS, INSERM, Montpellier, France

³*Laboratory of Computational and Quantitative Biology (LCQB),*

Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France

⁴*Dept. of Computational Biology, University of Lausanne, Lausanne, Switzerland*

⁵*Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy*

⁶*Quantitative Life Science, The Abdus Salam*

International Center for Theoretical Physics, Trieste, Italy

⁷*Institut Universitaire de France*

⁸*INFN - Istituto Nazionale Fisica Nucleare sezione di Milano, Milan, Italy*

(Dated: January 31, 2025)

Abstract

Current theories of bacterial growth physiology demonstrate impressive predictive power but are often phenomenological, lacking mechanistic detail. Incorporating such details would significantly enhance our ability to predict and control bacterial growth under varying environmental conditions. The "Flux Controlled Regulation" (FCR) model serves as a reference framework, linking ribosome allocation to translation efficiency through a steady-state assumption. However, it neglects ppGpp-mediated nutrient sensing and transcriptional regulation of ribosomal operons. Here, we propose a mechanistic model that extends the FCR framework by incorporating three key components: (i) the amino acid pool, (ii) ppGpp sensing of translation elongation rate, and (iii) transcriptional regulation of protein allocation by ppGpp-sensitive promoters. Our model aligns with observed steady-state growth laws and makes testable predictions for unobserved quantities. We show that during environmental changes, the incoherent feedback between sensing and regulation generates oscillatory relaxation dynamics, a behavior that we support by new and existing experimental data.

* rossana.droghetti@ifom.eu

† marco.cosentino-lagomarsino@ifom.eu

31 **I. INTRODUCTION**

32 The regulation of growth is critical for all living cells [1–4]. On general grounds, it can be
33 seen on different levels as a global resource allocation problem whereby enzymes and proteins
34 that mediate the fluxes are produced [5], and the coordination of sensing of nutrients and other
35 environmental cues leading to the regulatory circuits [6, 7]. The resource allocation problem
36 determines the target levels of protein expression that results in the organism’s growth rate
37 (or more in general the fitness) in a given environment and also in possibly fluctuating growth
38 conditions [5, 8, 9]. For example, under carbon-limited growth, there is a trade-off between
39 the expression of ribosomes, which carry out protein biosynthesis, and the metabolic enzymes
40 providing the necessary amino acids and other precursors [5, 10–12]. The theories that originate
41 from this observation work are conceptually powerful and quantitatively predictive both during
42 exponential growth [10] and out-of-steady-state scenarios [13].

43 On the other hand, the current frameworks miss an explicit description of the regulatory
44 circuits that coordinate the cellular response to perturbations by reading the environmental
45 signals. In bacteria, the circuit that implements this control is based on the small signaling
46 molecule (p)ppGpp (guanosine tetraphosphate or pentaphosphate) [6, 7]. This small molecule
47 can “read” the external environment by sensing changes in the uncharged tRNA caused by
48 changes in amino-acid abundances or other essential nutrients. Under scarcity of these com-
49 ponents, uncharged tRNA molecules accumulate in the ribosome, leading to the activation of
50 the ribosome-associated RelA protein, which synthesizes ppGpp by transferring a pyrophos-
51 phate group from ATP to GTP or GDP, resulting in the production of ppGpp and AMP or
52 ADP [14, 15]. The less-well-characterized SpoT protein can both degrade and catalyze the
53 synthesis of ppGpp, which provides a mechanism for fine-tuning the cellular response to stress.
54 Recent quantitative measurements of ppGpp levels during nutrient shifts lead to the hypothesis
55 that ppGpp amounts may sense translation elongation speed through the concerted action of
56 RelA and SpoT [16]. The sensing of amino acid levels by ppGpp results in the regulation of
57 ribosomal biosynthesis through its function as a signaling molecule that modulates the activity
58 of RNA polymerase on ribosomal and growth-related promoters. This process involves the DksA
59 protein and a GC-rich “discriminator region” present in the promoter sequences and affects the
60 relative amount of transcripts [7]. As ppGpp levels increase, the production of ribosomal tran-
61 scripts decreases, enabling bacteria to adjust to nutrient and stress conditions by redirecting
62 resources towards survival and growth [6, 17, 18].

63 Being able to predict how cells will respond to new perturbations is crucial, and to this end
64 a mechanistic understanding of growth control is essential. It is important to note that the

65 response to a change is specific to the environment or perturbation under investigation [12, 66 19], while the regulatory mechanism remains the same irrespective of the environment [7, 16], 67 albeit different perturbations can trigger the response of different regulatory circuits. However, 68 obtaining a detailed description of the key circuits controlling resource allocation and growth 69 is challenging as we still lack a comprehensive understanding of all the molecular players. A 70 crucial problem for gaining insight into the underlying sensing and regulation of growth is that 71 during steady-state (i.e., balanced exponential) growth all the relevant molecular players are 72 balanced [4, 20]. In such conditions, even if resource allocation is the result of the action of 73 sensing and regulatory circuits, the mechanistic principles and causal chains governing these 74 links remain hidden. Thus, to understand the regulatory aspects, it is necessary to study 75 the dynamic cellular response to perturbations and focus on the out-of-steady-state behavior. 76 From a modeling perspective, non-steady conditions offer the opportunity to describe jointly 77 growth laws, limiting components, and the role of the external nutrients and cues on cellular 78 growth [9, 13, 21, 22]. Here we focus on perturbations performed by changing the external 79 nutrient source [13, 23]. A number of modeling studies have focused on non-steady conditions, 80 and they can be divided into models that incorporate the growth law theory by using a top-down 81 approach [13, 24, 25], and bottom-up models with a more detailed descriptions of the regulatory 82 mechanisms [9, 17, 21]. Each one of these models makes different modeling assumptions, which 83 we will discuss in more detail below. Recently, Wu and coworkers [16] have studied how the 84 ppGpp regulatory mechanism can sense the elongation rate. However, this study does not 85 include a description of the connection between the environment and the translational speed, 86 which is mediated by the pool of amino acids available for protein synthesis.

87 In this study, we propose an intermediate approach between a top-down framework and a 88 specific model of the circuits by introducing a comprehensive model that incorporates (I) an 89 explicit description of amino acid sensing, (II) a detailed account of the mechanistic regulation 90 of transcription via ppGpp, and (III) a framework for growth laws and global resource allocation. 91 Notably, our model manifests an emergent property whereby the system's response to external 92 perturbations exhibits oscillatory behavior, which arises due to the incoherent mutual feedback 93 loop that emerges between amino acid pools and ribosome levels. The key ingredient for this 94 property to arise is the joint description of the amino acids and ribosomes pool in a dynamical 95 framework, which is not addressed in previous frameworks [5, 13].

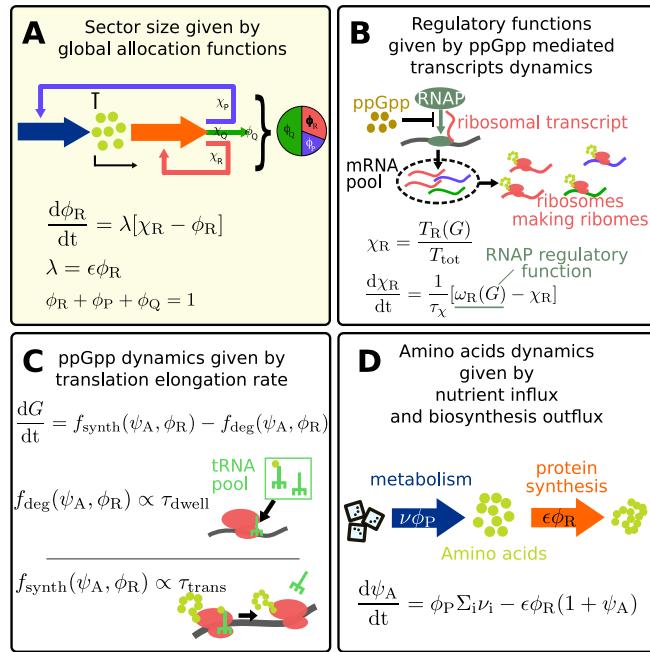


FIG. 1: **Mechanistic model for bacteria response to external perturbations.** Global scheme of the regulatory model. The out-of-steady-state dynamics is governed by four main ingredients: (A) the allocation functions χ_i s, which set the target size for the proteome sectors ϕ_i s (B) the ppGpp-mediated transcript dynamics (total transcript T and ribosomal transcripts T_R), which determine the values of the allocation functions by setting the composition of the transcript pool (C) the ppGpp dynamics, which reads the translation elongation rate ϵ -determined by the dwelling and translocation time- and regulates the transcript production (D) the production and consumption of amino acids, ψ_A , which control ppGpp production by setting the translation speed. The first module on the dynamics of the sector size is derived from ref. [13]. Each box contains the equation associated to the illustrated mechanism (described in the main text).

96 II. RESULTS

97 A theoretical model to describe response to nutrient changes

98 To describe the out-of-steady-state dynamics of cell growth, we designed a model framework
 99 that, starting from the framework defined in ref. [13] takes into account all the major mechanistic
 100 players involved in the response to the internal amino acids concentration, translation rate,
 101 nutrient sensing by ppGpp concentration, mRNA dynamics, and protein production. Fig. 1
 102 shows the scheme of the proposed framework, which we describe in the following paragraphs
 103 (see Methods and Supplementary Note 1 and 2 for details).

104 In the model, ribosomes are responsible for the synthesis of all proteins, divided into “sectors”

representing groups of co-regulated proteins (which usually have similar functions) [13]. The model focuses on three sectors: ribosomal (ϕ_R), constitutive (ϕ_P , assumed to be connected with the flux of amino acids [10] and metabolism in general), and housekeeping (ϕ_Q , assumed to be kept homeostatically constant [10]). Note that the model is a coarse-grained description of key growth-related cellular processes [10, 12]; for example, the R sector includes ribosomes but also translation-related proteins, and the P sector includes catabolism (e.g. carbon uptake) and anabolism (e.g., amino acids synthesis). Out of steady state, the target size of each sector is regulated by “regulatory functions” [13], denoted as χ_R , χ_P , and χ_Q , representing the fraction of ribosomes that actively translate proteins of the different sectors. From the definition of sectors, $\phi_i = M_i/M_{\text{tot}}$ and the repartition of the total biosynthesis flux, $\frac{dM_i}{dt} = \lambda M_{\text{tot}} \chi_i$, one obtains by chain rule the following dynamical equation for the sector size [13]

$$\frac{d\phi_i}{dt} = \lambda[\chi_i - \phi_i]; i \in [R, P, Q], \quad (1)$$

where λ is the growth rate (Fig. 1). This equation essentially states that (I) ribosomes translate sector i with allocation function χ_i , and (II) that the equilibrium state of the sector is $\phi_i = \chi_i$.

In the absence of post-transcriptional control [6, 26], we assume that ribosomes randomly attach to transcripts, initiate protein synthesis, and produce the proteins. Therefore, the composition of the mRNA pool determines the redistribution of the flux among the three sectors. We hence define χ_R as the ratio of ribosomal transcripts (T_R) to the total number of transcripts (T), and similarly for χ_P and χ_Q .

The ribosomal mRNA pool composition is regulated by the alarmone ppGpp, which controls the partitioning of the RNA polymerase (RNAP) [7]. ppGpp is primarily responsible for the regulation of ribosomal rRNA, which usually represents the limiting step for ribosomal formation [27]. However, previous studies have shown that ribosomal proteins are also under the ppGpp-DksA regulation, in addition to the post-transcriptional control asserted by rRNA concentration [28, 29]. The combined effect of translational and post-translational regulation produces the well-known relation between ppGpp levels and ribosomal mass fraction. In this model, since we do not include explicitly the ribosomal RNA, we describe the ppGpp regulation as a transcriptional effect on just the ribosomal proteins. Consequently, the number of ribosomal transcripts, T_R , depends on the concentration of ppGpp, denoted as G , via the partition of the RNA polymerases, denoted by ω_R . We can derive an equation describing the dynamical change of χ_R after an environmental nutrient shift. This is achieved by integrating our definition of χ_R — as the ratio of ribosomal-protein transcripts — with the transcripts’ dynamics, assuming they are generated by the available RNAP according to the RNAP partition ω_R and that they degrade at a constant rate (see Supplementary Note 2 for the detailed equations). The resulting

138 equation can be expressed as

$$\frac{d\chi_R}{dt} = \frac{1}{\tau_\chi} [\omega_R(G) - \chi_R] , \quad (2)$$

139 where τ_χ is a time-scale parameter that represents the time needed for the transcript pool to
 140 change after the shift. Assuming that the concentration of total transcripts remains constant
 141 across the shift, this time scale coincides with the mRNA half-life, which we set to be around 1
 142 min [26] (Fig. 1, Methods). This adaptation time scale is due to the fact that the production
 143 of new transcripts is not instantaneous. In our model the partitioning function of the RNA
 144 polymerases ω_R depends solely on the ppGpp pool, and its functional form derives from a fit
 145 of the steady-state data (see Supplementary Fig. 1). This assumption is based on the recent
 146 study by Balakrishnan and coworkers [26], who found that the mRNA pool composition across
 147 conditions is mostly determined by the specific gene on-rates and only depends weakly on other
 148 factors such as gene dosage or mRNA degradation. This is especially true for the proteins
 149 belonging to the ribosomal sector, whose genes on-rates are governed by ppGpp. An extension
 150 of our theory including other dependencies is straightforward. Note that the direct ppGpp
 151 regulation of the ribosomal genes introduces also a passive ppGpp regulation of catabolic and
 152 anabolic genes, exerted by the genes competition for transcriptional resources. In this context,
 153 we can define $\omega_P(G) = \phi_R^{\max} - \omega_R(G)$. Previous studies [30, 31] show that the ppGpp effect on
 154 transcription is more complicated than the simple ribosomal transcription inhibition and report
 155 a direct up-regulation of amino acid promoters by the coordinated action of ppGpp and DksA.
 156 However, this effect appears to be prominent when cells face amino acid starvation [30], a very
 157 different condition from the nutrient upshift studied here.

158 As found in ref [16], ppGpp levels are directly connected to the translation elongation rate.
 159 This quantity reflects the amount of charged tRNAs and other limiting factors that are available
 160 for translation. Therefore, to close our model we need to address in a simplified way the
 161 dynamics of the amino acids pool. Amino acid levels are determined in our model by the
 162 interplay of nutrient uptake, represented by the uptake flux $\nu\phi_P$, biosynthesis, represented by the
 163 biosynthesis flux $\epsilon\phi_R$, and volume growth, which contributes with a dilution term $\lambda\psi_A$ (Fig. 1).
 164 Specifically, the model describes the abundance of one compound amino acid species (related to
 165 tRNA charging, see below) by the equation

$$\frac{d\psi_A}{dt} = \nu\phi_P - \epsilon\phi_R - \lambda\psi_A . \quad (3)$$

166 Eq. (3) introduces the normalized amino acid mass ψ_A , which is the ratio of amino acid mass (A)
 167 to total protein mass (M_{tot}). The catabolic flux linking nutrients to amino acids is represented
 168 by the term $\nu\phi_P$, where ν denotes the nutrient quality (an average catabolic flux per employed
 169 catabolic sector protein), and the biosynthesis flux is represented by $\epsilon\phi_R$. The last term accounts

170 for the dilution effect caused by volume growth, which we chose to not neglect, as this term has
171 an impact on the time scales of the relaxation dynamics (see Supplementary Fig. 2).

172 **Linking amino acid pool, ppGpp and global transcription**

173 A key aspect of our model is the explicit representation of the amino acid pool (which
174 represents a significant departure from ref. [13]). This ingredient plays a vital role in the sensing
175 mechanism of ppGpp, which governs the cellular response to perturbations. Indeed, following a
176 shift in nutrient availability, the first change observed by the cell is in the metabolic flux $\nu\phi_P$,
177 due to alterations in nutrient quality (ν). Consequently, these changes in nutrient availability
178 lead to variations in the levels of amino acids, which have a direct influence on tRNA charging
179 and the translation rate. In turn, the altered translation rate induces changes in the level of
180 ppGpp (G), thereby triggering a transcriptional reconfiguration of the cell's allocation strategy.

181 Let us further explain the relationship between the translation elongation rate ϵ and ψ_A :
182 based on experimental findings (ref. [32]), we express the translation elongation rate (ϵ) as the
183 following function of the concentration of charged tRNAs

$$\epsilon = \tilde{\epsilon} \frac{[\text{tRNA}^C]}{[\text{tRNA}^C] + k_C} , \quad (4)$$

184 where ($\tilde{\epsilon}$) is the theoretical maximum value of the elongation rate and k_C sets a sensitivity
185 scale. The concentration of charged tRNAs is, in turn, influenced by the pool of available amino
186 acids, which affects the dynamics of tRNA charging. We assume a simple relationship between
187 uncharged tRNAs and cognate amino acids: $[\text{tRNA}^C] \propto \psi_A$, i.e. that the fast time-scale changes
188 of precursors are instantaneously mirrored by tRNA charging. For a detailed motivation of this
189 assumption please refer to the Supplementary Note 2. Following this assumption we write

$$\epsilon = \tilde{\epsilon} \frac{\psi_A}{\psi_A + k_A} , \quad (5)$$

190 where the scale k_A is the analogue of k_C for this pool. This explicit (albeit simplified) description
191 of charged tRNA sensing in our model allows us to make quantitative predictions regarding the
192 size of the amino acid pool and its relationships with other variables (Fig. 2).

193 Lastly, in order to connect ppGpp levels to the amino-acid pool, we use the model proposed
194 by Wu and coworkers [16], who established that ppGpp level (G) is related to charged tRNA
195 levels in a way that ppGpp is effectively a function of translation elongation rate (ϵ) through
196 the equation

$$G \propto \frac{\tilde{\epsilon}}{\epsilon} - 1 , \quad (6)$$

197 which also means that $G \propto k_A/\psi_A = k_C/[\text{tRNA}^C]$.

198 It is important to note that so far ϵ solely represents the translation elongation rate. In the
199 presence of stalled ribosomes (e.g., under chloramphenicol treatment [32, 33]) this is distinct
200 from the average ribosomal activity (called σ in ref [13] and defined as λ/ϕ_R). The relationship
201 between G and tRNA charging is explained in terms of the typical times elongating ribosomes
202 spend in elongation (τ_{trans}) and waiting for a charged tRNA (τ_{dwell}), both quantities that are
203 captured by the translation elongation rate ϵ , see Fig. 1 and ref. [16]. Note that the data
204 gathered by Wu and coworkers is in contrast with previous models that assumed that ppGpp
205 concentration depends on both ribosomal sector size and amino acid levels [9, 17, 21]. It is
206 also worth mentioning that our model is not the sole framework that describes sensing. The
207 Flux Parity Model (FPM), presented by Chure and Cremer [25], also incorporates a (different)
208 relationship between tRNAs and ppGpp.

209 **The model reproduces steady-state resource allocation data**

210 Two aspects of our model are noteworthy. Firstly, the ability to reproduce the known steady-
211 state relationships between measured quantities is a crucial requirement, and our model satisfies
212 this criterion. Our model, with respect to the original FCR framework from which is derived,
213 incorporates additional observables, such as ppGpp and amino acid levels. ppGpp levels have
214 been measured and they have been incorporated in our model. Furthermore, the model's ability
215 to predict the amino acid pool levels is an outcome that can be tested by new experiments,
216 making it a testable prediction.

217 Fig. 2 shows the steady state results of the simulations of the model, compared with experi-
218 mental data presented in various studies ref.s [16, 32] TOADD. The simulations in Fig. 2 start
219 from an arbitrary initial condition and collect the steady-state values of the main state variables
220 once the system has reached equilibrium. Panels B and D of the figure show the dependency
221 between the growth rate, the amino-acid pool ψ_A , ppGpp concentration G , and are new pre-
222 dictions of our model. Panel C shows the dependence of the translation elongation rate ϵ on
223 the amino-acid pool, which derives from our eq. 5, and panel D shows the relationship between
224 ribosomal allocation ϕ_R and ppGpp levels, fitted from the data (see Supplementary Fig. 1).
225 As we anticipated above Fig. 2 illustrates that the model can accurately reproduce available
226 steady-state data (from ref. [16]) for ppGpp.

227 In order to avoid unnecessary complications, we restricted this analysis to a “fast-growth”
228 regime, which we defined by the condition $\lambda > 0.5h^{-1}$. Indeed, it is well known that in slow-
229 growth conditions, other phenomena such as protein degradation and inactive ribosomes play a
230 significant role in the growth physiology [32, 33]. The model discussed in the main text of this

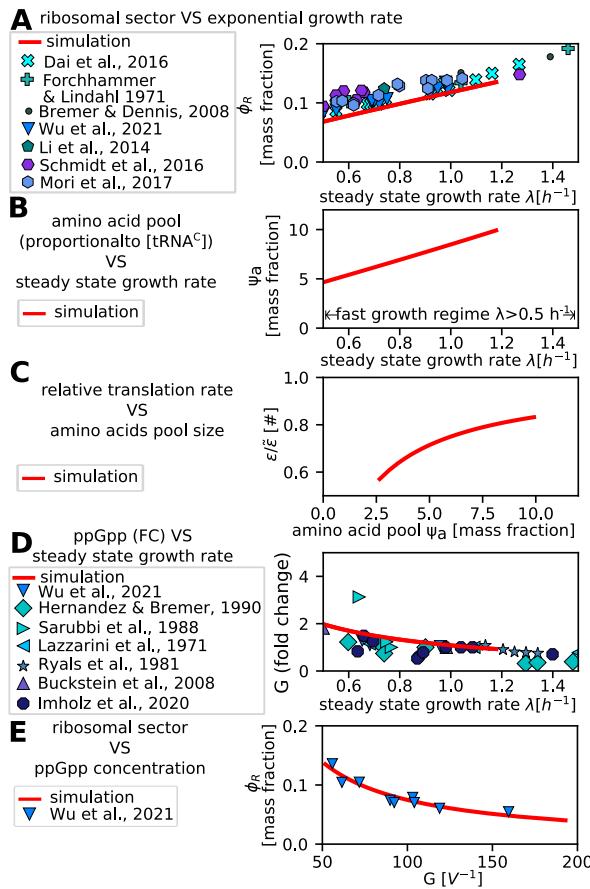


FIG. 2: The proposed framework predicts steady-state relationships between the amino acids pool, ppGpp levels and ribosomal allocation, and reproduces the available experimental data. **A:** Model prediction of the dependence of the ribosomal sector fractional size (y-axis) on the exponential growth rate (x-axis). Simulations (red solid line) are compared with experimental data from various studies (ref.s [16, 20, 24, 32, 52–54], blueish points). **B:** The plot shows the simulated model prediction (red solid lines) for the relationship between the steady-state exponential growth rate (x axis) and the size (mass fraction ψ_A) of the amino-acid pool (y axis). This quantity is proportional to the concentration of charged tRNA ($[tRNA^C]$), as explained in the text and in Supplementary Notes 2. **C:** Model prediction (red solid line) for the relationship between the size of the amino-acid pool (x axis) and the relative translation rate $\epsilon/\tilde{\epsilon}$ (y axis) in steady-state growth. **D:** The model prediction (red solid line) for the relationship between the steady-state exponential growth rate (x axis) and the ppGpp concentration (y axis) is in line with the experimental data from various studies (ref.s [16, 55–60], blueish points). **E:** The model prediction (red solid line) for the relationship between the ppGpp concentration (x axis) and the size of the ribosomal sector (y axis) agrees with the available experimental data (blue reverse triangles, data from ref. [16]). For this figure, we restricted ourselves to the fast-growth regime ($\lambda > 0.5 h^{-1}$). For the slow growth regime, where additional phenomena such as degradation and inactive ribosomes also impact physiology, please refer to

Supplementary Fig. 3.

231 work does not account for these phenomena and therefore refers to the fast-growth regime. We
232 have also studied an extended version of our framework that includes the essential ingredients
233 to describe the slow-growth behavior. For a description of this version of the model and its
234 steady-state predictions please refer to Supplementary Note 3 and Supplementary Fig. 3.

235 Finally, a well-defined steady-state behavior requires the fixed point to be stable, which
236 we investigated by analyzing the eigenvalues of the linearized dynamics. Specifically, we have
237 studied in detail two versions of the fast-growth model, with instantaneous transcription and
238 with a transcriptional time scale set by the mRNA degradation rate (see Supplementary Fig.s 6
239 and 7 and Supplementary Note 8 and 9). In both cases, all eigenvalues have a negative real part
240 in the physiologically relevant parameter region, showing that the steady-growth fixed points
241 are always stable. More in general, we also show that in the absence of transcriptional delays,
242 a generic model for ribosome translation regulation will display stable fixed points, as long as
243 the regulatory function is monotonically decreasing in ϕ_R and increasing in ψ_A (details and
244 demonstration in Supplementary Note 9).

245 **Relaxation towards new steady state shows damped oscillations**

246 We next investigated the model behavior during a nutritional upshift. To realize such an
247 upshift, we varied suddenly (in a stepwise fashion) the nutrient quality ν , which is the parameter
248 that characterizes the external environment.

249 Fig. 3A-D display the resulting relaxation pattern, characterized by damped oscillations ob-
250 served across all the main quantities described by our model. It is worth highlighting that
251 the ribosomal sector size ϕ_R also exhibits these oscillations, despite being the parameter that
252 changes at a slower pace, given the necessity to dilute the existing proteome composition for
253 any alteration. Fig. 3E visualizes the same oscillations by plotting the progression of the riboso-
254 mal sector proteome fraction against the amino acid (charged tRNA) pool and the translation
255 rate ϵ . Conversely, ppGpp levels, amino acid (charged tRNA) pool, and translation rate change
256 coherently following a quasi-steady-state relationship (Fig. 3F). Hence, the oscillatory behavior
257 persists even when considering the relationship among the amino acid pool, elongation rate, and
258 ppGpp level observed during a steady state.

259 **Damped oscillations are independent of transcription delays**

260 Following this observation, we asked whether the presence of oscillations stemmed from the
261 fact that in our model, the regulatory functions χ_i are not a function of ϵ derived from steady-

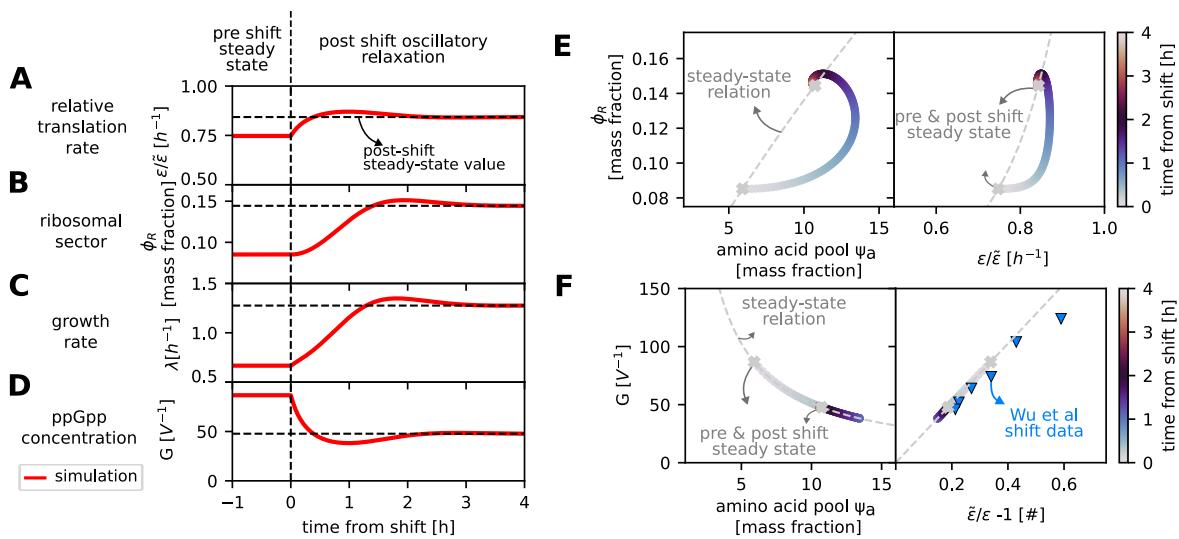


FIG. 3: Damped oscillations characterize the relaxation dynamics towards the new steady state. The figure presents simulation predictions of the post-upshift dynamics of various state variables. Panels **A**, **B**, **C**, and **D** display the time-dependent behavior of the relative translation elongation rate $\epsilon/\tilde{\epsilon}$, the mass fraction of the ribosomal sector ϕ_R , the growth rate λ , and the ppGpp concentration G , respectively. Panel **E** shows the post-shift dynamics of the ribosomal sector ϕ_R in relation to the amino acids pool ψ_A and the relative translation elongation rate $\epsilon/\tilde{\epsilon}$, with circles representing simulation results color-coded by time from the shift. The X-shaped symbols denote the pre- and post-shift steady-state values and the dashed line represents the steady-state relationship between the two plotted variables. Similarly, panel **F** shows the post-shift dynamics of the ppGpp concentration G versus ψ_A and $\tilde{\epsilon}/\epsilon - 1$, a factor which is found proportional to ppGpp [16]. In this panel, we also show shift data from [16] (blue reverse triangles). These plots show the presence of overshoots due to the damped oscillatory relaxation dynamics predicted by the model.

262 state behavior: instead, these functions emerge due to transcript dynamics. Consequently, we
 263 questioned whether the existence of oscillations was linked to the transcriptional delay τ_χ , which
 264 establishes the timescale for adjusting the mRNA pool composition after a change in the ppGpp
 265 levels. To study this, we defined a new instantaneous-transcription model, where we set $\tau_\chi = 0$
 266 (see Supplementary Note 4 for more details). Figure 4A-B show that both the instantaneous-
 267 transcription model and the complete model ($\tau_\chi > 0$) exhibit damped oscillations during the
 268 transition. This indicates that even if the transcript pool adjusts immediately following ppGpp
 269 changes, damped oscillations persist, similar to the non-instantaneous case. Observe that in
 270 Figure 4, in order to emphasize the quantitative difference between the behavior of the two
 271 models, the value of τ_χ was set to 10min.

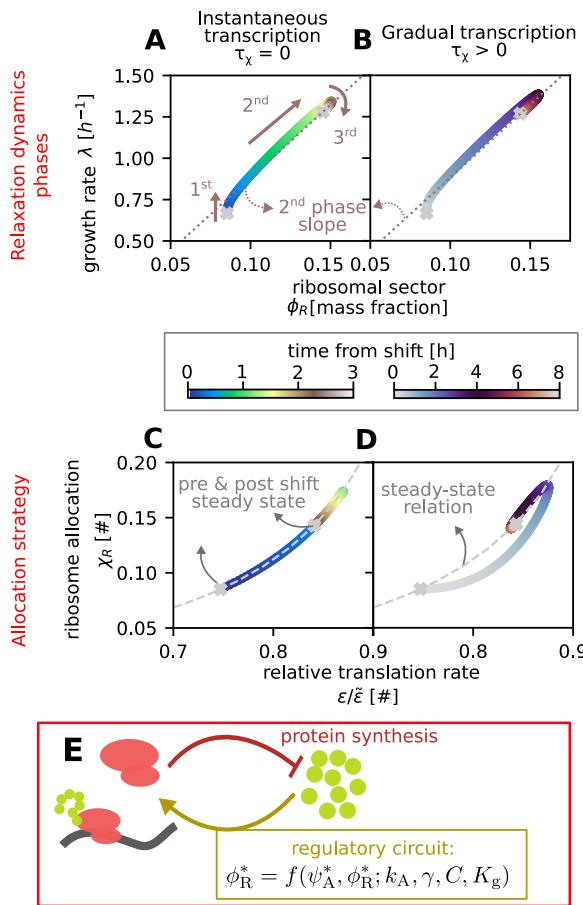


FIG. 4: The incoherent feedback between amino acid pool and ribosome production gives rise to damped oscillatory response regardless of delays due to ribosome transcription. Simulations were performed with two different models: with instantaneous transcription (**A, C**) and with gradual mRNA and rRNA pool production (**B, D**). In the instantaneous transcription model, the regulatory functions χ_i follow ppGpp levels without delay (as in ref. [13]), while they are given by Eq. 2 in the gradual transcription model, where here we set $\tau_x = 30\text{min}$ to emphasize the effect of the delay. In all panels, circles indicate simulation results color-coded by the time from the shift, and X-shaped symbols represent the pre- and post-shift steady states. Panels **A** and **B** show the three phases of post-shift adaptation, which are present in both models. The x axis displays the ribosomal sector mass fraction, and the y axis shows the growth rate. The dashed line in both panels connects $(0,0)$ and $(\phi_R^{\text{final}}, \lambda^{\text{final}})$, and highlights the second phase (as in Fig. 9 of ref. [13]). Panel **C** and **D** show the ribosome allocation through the shift. The x axis displays the relative translation rate, and the y axis shows the ribosomal regulatory function χ_R . The plots show that oscillations occur even when the regulatory function instantaneously follows the translation elongation rate along the steady-state relation. Panel **E** provides a sketch of the incoherent feedback loop between the amino acid pool ψ_A and the ribosomal fraction ϕ_R , which is explicitly described in this study and is responsible for the observed oscillatory behavior.

272 However, the important point to realize is that overshoots are expected also for $\tau_\chi = 0$, and
273 since empirically τ_χ is small (order one minute [26]) we expect to be close to this situation.

274 The analysis of the eigenvalues of the two systems confirms this behavior. Indeed in both
275 cases, the eigenvalues are complex with a negative real part in all biologically accessible growth
276 regimes, a property linked to the oscillating relaxation to the new state. This theoretical analysis
277 was carried out spanning all growth regimes, from slow to very fast growth, and is presented in
278 detail in the Supplementary Note 9 and in Supplementary Fig.s 6-9. We find that the presence of
279 a damped oscillatory response is related to the specific set of parameter values used in the model,
280 but as these values change different regimes arise, giving rise to a typical dynamical systems
281 “phase diagram” [34]. Our analysis, reported in Supplementary Note 9, reveals indeed three
282 distinct regimes when the values of the parameters are changed. The first regime is characterized
283 by a shift without oscillations (overdamped), occurring at slow growth rates. The second regime
284 features a shift with damped oscillations, which occurs in mid-to-fast growth. Finally, the third
285 regime is a shift with sustained oscillations. The theoretical possibility of such “oscillatory
286 growth” has been predicted by a previous generic growth model [34]. The threshold between
287 these regimes varies depending on the parameters of the system. Interestingly, if we call ν^* the
288 nutrient quality after which the oscillations arise, by studying the parametric dependence of ν^*
289 we find that is not just determined by the details of the resource allocation strategy, but the
290 dynamics of the amino acid pool also plays a role (see Supplementary Note 9). Note that, when
291 the model is defined with the parameter values found for biological systems, the overdamped
292 and sustained oscillatory regimes disappear, and the only accessible regime remaining is the one
293 characterized by damped oscillations.

294 In our model, the oscillatory behavior arises because of the effective negative feedback loop
295 between the amino acid pool and the ribosomes. This mutual connection is sketched in panel
296 E of Fig. 4: on one hand, ribosomes deplete amino acids due to their consumption for protein
297 synthesis, and on the other hand the ppGpp regulatory circuit enhances ribosome levels in
298 presence of amino acids, since higher amino acids levels lead to higher translation rates, lowering
299 ppGpp production and therefore upregulating the ribosomal sector. On a more mathematical
300 level, this type of feedback is a necessary condition to obtain oscillations, whether they are
301 damped as in our case or sustained (in particular one needs a negative feedback loop with a
302 sufficient delay [35], or a negative autoregulation, see Supplementary Note 10). Our model
303 includes this feedback as a double connection between amino acid pool and ribosome biogenesis,
304 which is a crucial ingredient to make the damped oscillatory behavior possible.

305 To interpret the different relaxation time scales involved in a nutrient shift within our model,

306 Fig. 4A-B shows that the process of reaching a new steady state after a change in nutrient
307 quality can be divided into three phases. The first phase is defined by a sudden increase in the
308 translation elongation rate due to the increase in the amino acid pool size ψ_A . This change in
309 the growth rate is detected by the sensory mechanism of the ppGpp, but the synthesis of mRNA
310 and new proteins has not yet changed, therefore, the growth increase of the first phase is driven
311 purely by the change in the translation elongation rate ϵ . In the second phase, the synthesis
312 of new proteins starts to adjust to the new protein allocation strategy given by $\chi_R(G)$. This
313 second phase is slower than the first one because the synthesis of new proteins is not immediate.
314 During this phase, the translation elongation rate remains almost constant while the sector sizes
315 change, and the relaxation proceeds along a straight line in the (ϕ_R, λ) plane. In the third
316 and last phase, all the relevant variables, including translational activity, regulatory functions,
317 and protein sectors, oscillate while relaxing around the new steady state. Our study provides a
318 detailed analysis of these three phases and their underlying mechanisms. The study by Erickson
319 and coworkers that introduced the FCR model (ref. [13]) already presented some of the different
320 relaxation phases we identified in our study. However, their model only included the first and
321 second phases and did not account for the oscillatory dynamics observed in our study.

322 **A ribosome/precursors feedback enables oscillations**

323 To better understand the behavior of our model upon nutrient shifts, we compared it with
324 two existing models (see also the Supplementary Note 7 for further details): the original FCR
325 model [13] and the Flux Parity Model (FPM) proposed by Chure and Cremer [25]. Both
326 models were specifically developed to capture the dynamics of nutritional upshifts. The FCR
327 model operates on a quasi-steady-state assumption linking translational activity σ directly to
328 the proteome sector functions χ_i , even during shifts. This approach simplifies the model by
329 avoiding a mechanistic description of the ppGpp regulatory circuits. In order to allow a direct
330 comparison with our model, we have extended the FCR model by incorporating the recently
331 reported relationship between σ and ppGpp concentration G from ref. [16], which is described
332 by Eq.s S43-S47. This extension enables predictions of ppGpp concentration changes during
333 shifts, allowing direct comparison with our model. Notably, extending the FCR model requires
334 accounting for sequestered ribosomes, as done in ref. [16] for steady-state growth and making
335 assumptions about their behavior during shifts, a step not covered in the original study. This
336 integration, however, does not change the fundamental assumption of the model, which is that
337 protein synthesis is regulated by a direct sensing of the precursor fluxes through the the trans-
338 lational activity, and it follows them adiabatically via a quasi- steady-state relation. Further

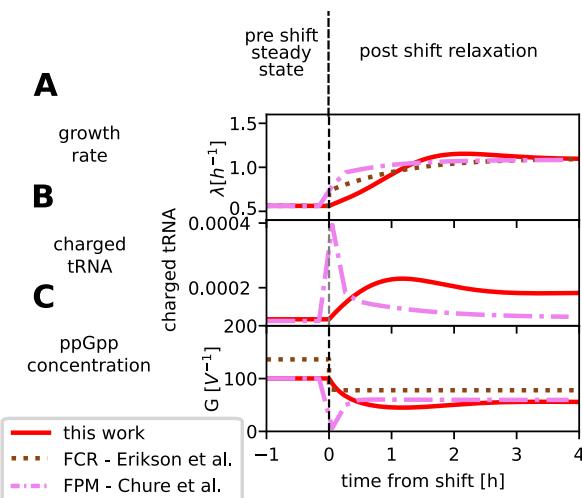


FIG. 5: Different theoretical frameworks lead to different predictions for the relaxation dynamics. Panels A-B-C compare simulations of three different models for nutrient shift dynamics: this work (red solid line), the FCR model (ref. [13] - brown dashed line), and the Flux-Parity Model (FPM) (ref. [25] - pink dash-dotted line). Panel **A** shows the dynamics of the instantaneous growth rate. Our model is the only one that predicts an overshoot of the growth rate. Panel **B** shows the size of the amount of charged tRNAs, which is not predicted by the FCR model. For the prediction of our model, given that $[tRNA^c] \propto \psi_A$ we have normalized ψ_A to have the same pre-shift value as the FPM prediction. Panel **C** shows the ppGpp concentration G across the shift. This can be predicted with all three models, combining the FCR framework with Eq. 6, from ref. [16] (see Supplementary Note 6 for the upgraded FCR model definition). The discrepancies between the steady-state predictions are due to the different values of the parameters used. The figure shows that of all the models tested, just our framework predicts the oscillatory response to the nutrient shift, and this is due to the presence of the incoherent feedback between amino acids levels and the ribosomal sector.

339 details of this modified FCR model are provided in Supplementary Note 6.

340 Even considering the extended FCR model, a key difference between it and our framework lies
 341 in the treatment of the amino acids pool. The FCR model focuses on catabolic and biosynthesis
 342 fluxes to control shift dynamics, without explicitly describing the amino acids pool ψ_A . Instead,
 343 the translational activity σ is defined as J_b/M_R , relying solely on flux-based sensing of external
 344 conditions.

345 In contrast, the FPM model [25] takes a different approach, using a flux-matching principle
 346 to set the biosynthesis rate, ensuring that uptake and biosynthesis fluxes are balanced. This
 347 strategy aligns qualitatively with the ppGpp regulatory circuit and includes sensing of charged
 348 tRNAs, a quantity indirectly linked to the amino acids pool, although not explicitly described

349 by this model.

350 Fig. 5 shows that the predictions of our model, the extended FCR model, and the FPM model
351 differ during a nutrient shift. Trivially, the extended FCR model cannot predict the amino
352 tRNA by definition. We can instead compare the charged tRNA prediction by the FPM model
353 and our model, as these are explicitly described in both models (note that in our model we
354 assumed $[tRNA^C] \propto \psi_A$). More interestingly only our model predicts the oscillatory relaxation
355 towards the new steady state, because among these three models it is the only one that explicitly
356 describes the feedback relation between amino acids pool and ribosomal allocation sketched in
357 Fig. 4E. To further support this point, in the Supplementary Note 5 we have also analyzed a
358 version of our model with a different ppGpp regulatory circuit (incorporating solely the RelA
359 production term, following refs. [9, 17, 21]) also shows damped oscillations (see Supplementary
360 Note 5 and Supplementary Fig. 4).

361 Damped oscillations are visible experimentally

362 So far, we have shown that the oscillatory relaxation behavior arises naturally from a theoretical
363 framework that incorporates biological knowledge on nutrient sensing and regulatory response.
364 It is natural to ask whether this predicted behavior has an experimental counterpart.

365 Considering published data, we observed clear oscillations in data from our reanalysis of nutri-
366 tional upshift experiments performed in a microfluidic device, as reported in ref. [23] (Fig. 6AB).
367 Our reanalysis involved examining the original data to identify patterns of overshoots and
368 damped oscillations in growth rate and ribosome allocation during nutrient upshifts.

369 To test the robustness of this result, and given the lack of coherence on this point looking at other
370 shifts performed in the literature, we also performed new shift experiments in different settings
371 (batch and microfluidics) to investigate the existence of overshoots and damped oscillations
372 during nutrient upshifts.

373 The new microfluidics experiments were conducted in a similar microfluidic “mother machine”
374 device as in ref. [23] but at a different temperature and with strains that did not carry the
375 ribosomal/constitutive fluorescent reporters. This allowed us to monitor the behavior of the
376 growth rate and ensure that these high-expression GFP reporters were not the cause of the
377 observed damped oscillations. These experiments also tested the robustness of the behavior in a
378 shift involving slower growth conditions. Figure 6C and Supplementary Fig. 17 show the results
379 of these new experiments, for different *E. coli* strains as explained in the methods. In some
380 cases, the observed overshoot is even larger than the one predicted by the model.

381 For both the reanalyzed and the new microfluidics data, overshoots (and damped oscillations)

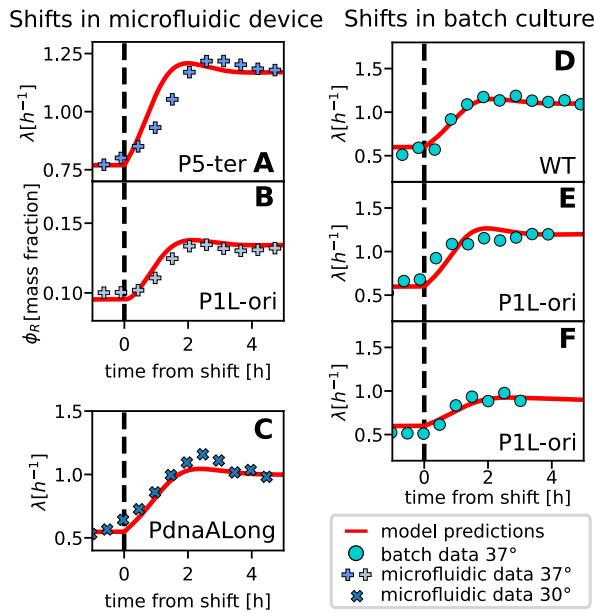


FIG. 6: Overshoots compatible with the predictions of our model are observed in in nutrient-shift experiments. The figure shows relaxation to the new steady state for various experiments, both for the growth rate and the ribosomal sector size. In all panels, continuous red lines represent the results of a simulation of the model. **A-B:** Growth rate λ and ribosomal sector size ϕ_R dynamics following an upshift in a microfluidic device at 37°C, (reanalyzed data from ref. [23]). The points are sliding averages with a window of 75min (see Methods and/or Supplementary Note 11 for details on the definition of ϕ_R). **C:** Growth rate λ dynamics following an upshift across the same media as in ref. [23] in a microfluidic mother-machine device at 30°C. The points are binned averages with a window of 40min. **D-E-F:** Growth rate λ dynamics following an upshift across the same media as in ref. [23] in a batch culture at 37°C, for the wild type (D) and a reporter strain in ref. [23] (E-F). All the panels refer to a biological replicate and show averages among technical replicates. The three panels refer to different experiments and summarize the three typically observed outcomes: clear overshoots, found in 8 biological replicates, shown in Supplementary Fig. 10 (D), lack of visible overshoots at odds with the model, found in 9 replicates shown in Supplementary Fig. 11 (E), and lack of observed overshoots in agreement with the model, found in 4 biological replicates shown in Supplementary Fig. 12 (F).

382 compatible with the model predictions are apparent in both the growth rate λ and the proxied
 383 ribosomal sector ϕ_R (where present). Note that to obtain data on the ribosomal sector, the
 384 authors of ref. [23] have used the signal of a GFP expressed from a ribosomal RNA promoter.
 385 Before using this signal as a proxy for ϕ_R , we conducted several tests on the signal to see if it was
 386 compatible with the sector dynamics behavior (see Supplementary Note 11 and Supplementary

387 Fig. 15 for details).

388 Additionally, the damped oscillatory behavior observed in mother machine devices is consistent
389 across biological replicates and strains (Fig. 6DE and Supplementary Fig. 14A-B). We also
390 note that a clear growth-rate overshoot on a minute time scale is observed consistently in the
391 microfluidic device experiments (Supplementary Fig. 16). A similar fast overshoot was also
392 previously reported in similar single-cell shifts providing amino acids [36], and connected by
393 direct observation of cell volume and mass to a dilution of the cell. Hence, we surmise that
394 cells entering an upshift effectively experience a hypo-osmotic shock, regardless of whether the
395 experiment was carried out in a microfluidic setting or in batch. Significant biological processes
396 may occur within this short time scale, and consequently, there could be additional physiological
397 adaptations not captured by our model.

398 The results from experiments in batch culture are more ambiguous, as we found clearly visible
399 overshoots in eight (roughly half) of the experimental replicates (Fig. 6D). Other biological
400 replicates (nine in total) did not show overshoots where the model predicted they would be
401 visible (Fig. 6E) or presented a very small effect in agreement with the model (four biological
402 replicates in total, Fig. 6F). All our batch experimental results are presented in Supplementary
403 Fig. 10, 11 and 12. To understand why model predictions vary across replicates, we need to
404 account for the fact that while the pre-shift and post-shift state were selected to be consistent
405 with steady growth, as the growth rates varied noticeably across replicates, and the model
406 predicts different behavior depending on the growth rate jump.

407 Despite of the variability across replicates, the overshoots that are visible in these experiments
408 occur consistently across replicates around two hours from the shift, as predicted by the model.
409 Additionally, the batch experiments were also performed with wild-type strains, confirming the
410 idea that growth-rate overshoots upon nutrient upshifts are not due to the presence of fluorescent
411 reporters. Finally, the quantitatively small overshoots predicted by the model and the inferior
412 quality of the batch data also explain why the phenomenon was not widely reported by previous
413 literature. Besides the inferior resolution of these experiments, a possible interpretation of the
414 difficulties encountered in batch-culture experiments could be that in batch population growth
415 can be driven primarily by fast-growing cells, whereas in a mother-machine microfluidic device,
416 a fixed distribution of mother cells is maintained.

417 To conclude, while we have provided new evidence supporting our model's predictions, given
418 the limitations of the presented data, our main claims remain limited to the statement that a
419 realistic architecture (based on our current knowledge) linking nutrient sensing to ribosome allo-
420 cation would generally give rise to oscillations. Biologically, it is also possible that unaccounted

421 elements in the architecture, which are not described by our model, could alter the prediction.
422 Further systematic experiments may clarify the situation.

423 III. DISCUSSION

424 This work presents a dynamical modeling framework that describes the out-of-steady-state
425 growth of *E. coli* cells through a global resource allocation dynamics. The model combines
426 the framework of ref. [13] with a mechanistic description of nutrient sensing and global gene
427 regulation by the ppGpp circuit. This combination of ingredients leads to predict an oscillatory
428 relaxation after a shift in the nutrient conditions, for all shifts that lead to a moderate-to-fast
429 growth rate. While other models predict oscillatory behavior in this context [21], recent work on
430 growth laws in this area did not incorporate this aspect [13, 16]. Crucially, we have shown that
431 removing any transcriptional delay in our model does not ablate the incoherent feedback loop,
432 nor the oscillations. Hence, we conclude that the transcriptional waiting time *per se* should
433 not be regarded as a cause for the oscillations. Our framework indeed connects the presence of
434 oscillations to the feedback interplay between global flux balance and resource allocation and the
435 mechanistic circuits that implement growth control. In other words, we show that the oscillatory
436 behavior is caused by the incoherent feedback between the size of the amino acid pool and the
437 expression of the ribosomal sector.

438 Importantly, we have shown that damped oscillations of growth rate, ribosome allocation and
439 ribosome proteome fraction have been observed across studies of experimental nutrient shifts in
440 *E. coli*. Interestingly, similar oscillations in response to perturbations have also been observed
441 in yeast [37], where the mechanistic architecture of nutrient sensing and growth regulation is
442 very different [2, 38–40]. This suggests that the global feedback described by our model may
443 be a general feature, or strategy, for growth regulation based on nutrient sensing. However,
444 there are still many unanswered questions regarding these experiments and their relationship
445 with our model. While the mechanism provided by our model provides a possible explanation,
446 the oscillations observed experimentally may be also influenced by other molecular players that
447 are not considered in our study, for example the transient mismatch between volume and mass
448 growth observed after a nutrient shift [36].

449 Our model builds upon and integrates previous findings in the literature [5, 10, 13, 16], combining
450 established mechanisms into a unified framework. By analyzing these elements collectively, our
451 approach not only consolidates existing knowledge but also generates novel predictions, crucially
452 the intriguing emergence of damped oscillatory behavior—an aspect that has not been explicitly
453 addressed in prior models.

454 We recognize that several other models have tackled related questions from various perspectives
455 (e.g., [9, 13, 21, 25, 41–43]). Our model is intended to be complementary, emphasizing the
456 interplay between regulatory feedback and resource allocation dynamics to uncover new insights.
457 Specifically, our framework builds on the model proposed in ref. [13], while introducing key
458 innovations. Most notably, we relax the steady-state assumption in defining regulatory functions,
459 allowing for new nontrivial dynamic behavior. Additionally, our model incorporates the latest
460 findings on the dependency of translation rates on ppGpp levels, as reported in ref. [16]. This
461 aspect was not included in previous models that examined the ppGpp regulatory circuit [9, 21,
462 25].

463 While our primary focus is the cellular response to nutrient shifts, other studies provide comple-
464 mentary insights into bacterial growth physiology. For example, ref. [42] explores rapid growth
465 rate changes at the onset of nutrient shifts, while ref. [43] investigates limiting factors of bacterial
466 growth. Together, these works enhance our broader understanding of bacterial adaptation and
467 growth dynamics.

468 Although it is now well-established that ppGpp effectively senses and responds to the trans-
469 lational elongation speed [16], the molecular mechanisms underlying its synthesis and degrada-
470 tion remain largely enigmatic—particularly regarding the role of SpoT. Once thought to function
471 solely as a ppGpp-degrading enzyme, this simplistic view is deemed inconsistent with recent data,
472 which suggests a more complex role for SpoT in stress response and nutrient adaptation [16],
473 further work is still needed to understand its precise role and regulatory fully mechanisms in
474 ppGpp metabolism. We also note that the mechanistic part of our model relies on a series
475 of measurements on ppGpp conducted in *E. coli*, and its predictions may not apply to other
476 bacteria.

477 In our model, the oscillations arise because the system works as a thermostat, with a built-in
478 feedback system involving a sensor and an effector. The origin of oscillations in our system
479 could be attributed to architectural constraints, evolution, or a combination of both. In order
480 to clarify this point, it will be crucial to study this system from a control-theory perspective,
481 and to discover the optimization goals that it follows over evolution. A previous study [41]
482 taking this approach, has concluded that oscillatory behavior may be due to optimal control
483 towards the adjustment of ribosome synthesis in a switch-like manner. The authors demonstrate
484 that a precursor-only control strategy, which alternates investment between gene expression and
485 metabolism producing an oscillatory time profile of precursor concentration performs much
486 better than a nutrient-only strategy in a dynamical upshift scenario, by avoiding the inefficient
487 transient accumulation of precursors.

488 A growth regulation system can be seen as a decision-making process that detects the envi-
489 ronment. As nutrients in a natural environment tend to fluctuate over different time scales, we
490 can expect that the nutrient quality can vary by fluctuations and net trends. Our model shows
491 that sensing as a low-pass filter in response to time-varying input, preventing the system from
492 reacting to environmental nutrient quality changes above a certain frequency, but also carries
493 a characteristic oscillatory frequency that varies with the parameters. We speculate that these
494 features could facilitate growth control, allowing a cell to spare energy and resources by avoid-
495 ing reactions to changes that are too short-lived, but also “resonate” with specific frequencies.
496 In our framework, the model variant without delay represents the fastest-reacting version of
497 the network. Biologically, this fast-reacting architecture may be embodied by ribosome seque-
498 stration [44], at the cost of the extra proteome sector occupied by inactive ribosomes [32, 33].
499 We speculate that by studying the long-term fitness trade-offs of a system that can bypass the
500 transcriptional delay and comparing it to one that does not one could address the question of
501 whether *E. coli* hedges its bets on both architectures through regulated ribosome sequestration,
502 in order to set its threshold frequency in a plastic fashion, and optimize its fitness flexibly.

503 **IV. METHODS**

504 **Model description**

505 We report here the equations needed for the definition and simulation of our mechanistic
506 model. In these notes, we will distinguish the state variables from the parameters by expliciting
507 the time dependence of the first ones. We start with the differential equations that define the
508 dynamical system:

$$\frac{d\psi_A(t)}{dt} = \nu\phi_P(t) - \epsilon(t)\phi_R(t) - \lambda(t)\psi_A(t), \quad (7)$$

$$\frac{d\chi_R(t)}{dt} = \frac{1}{\tau_\chi} [\chi_R(t) - \omega_R(t)], \quad (8)$$

$$\frac{d\phi_R(t)}{dt} = \lambda(t)[\chi_R(t) - \phi_R(t)]. \quad (9)$$

511 Eq. 7 describes the dynamics of the amino-acid pool, given by the balance of the upcoming
512 nutrient flux ($\nu\phi_P$), the outgoing biosynthesis flux ($\epsilon\phi_R$), and a dilution term given by volume
513 growth ($\lambda\psi_A$). Eq. 8 is derived from the transcript dynamics, which is explained in detail in the
514 Supplementary Note 2 and 2. Eq. 9 is derived from the sector definition as in ref. [13].

515 Next, we show the other definitions needed to close the system. We need to define the
 516 translation elongation rate, which depends on the amount of charged tRNAs, and therefore on
 517 the amino acids level. Eq. 4 connects these quantities:

$$\epsilon(t) = \tilde{\epsilon} \frac{\psi_A(t)}{\psi_A(t) + k_A} . \quad (10)$$

518 The ppGpp concentration is given by the following empirical relation from ref. [16]

$$G(t) = C G^{\text{ref}} \left(\frac{\tilde{\epsilon}}{\epsilon(t)} - 1 \right) . \quad (11)$$

519 The equation presented in ref. [16] gives the fold change of the ppGpp with respect to a reference
 520 condition, therefore, in order to obtain the ppGpp concentration we add the parameter G^{ref} to
 521 the original equation for the fold change. The value for G^{ref} is $55.73 \mu M$ and is given by ref. [17],
 522 see Supplementary Note 1 and 2.

523 The RNAP allocation on ribosomal genes was assumed to follow the following relationship

$$\omega_R(t) = \frac{K_G}{K_G + G(t)} , \quad (12)$$

524 where K_G is given from a fit of the data presented in ref.s [16, 17], and its value is $8.07 \mu M$.

525 The growth rate in our model corresponds to the biosynthesis rate:

$$\lambda(t) = \epsilon(t) \phi_R(t) . \quad (13)$$

526 Lastly, the constitutive sector is defined as the remaining part of the proteome, which does
 527 not belong to the ribosomal nor to the housekeeping one,

$$\phi_P(t) = 1 - \phi_Q - \phi_R(t) = \phi_{R,\text{max}} - \phi_R(t) . \quad (14)$$

528

529 Nutrient-shift experiments

530 *Microfluidics experiments at 30° C*

531 *Strain and growth media.* The strain used in this experiment is the wild-type *E. coli* strain
 532 BW25113, the parent strain of the Keio collection [45], in which promoter-reporter constructs
 533 were inserted in the chromosome as described in ref. [23, 46, 47]. The specific strains used
 534 were the ones containing the promoters P5, P5-ter [23, 46] and PdnAALong [46, 47]. In upshift
 535 experiments, we used two growth media based on the M9 minimal medium as the base and
 536 glucose as the carbon source, 0.4% glucose for the slow-medium, while the fast-medium, in

537 addition, has 0.4% casamino acids. Bacteria were grown overnight in the slow-growth media
538 at 30°C. Overnight cultures were diluted 500:1 in new growth medium and returned to the
539 incubator for 3 to 4 hours. This is important to guarantee bacteria to be in the exponential
540 phase when injected into the microfluidic device [46].

541 *Mother machine experiments.* We conducted experiments using a microfluidic “mother ma-
542 chine” device, which consists of 1- μ m-wide channels positioned between two larger feeding chan-
543 nels [48]. Bacteria were confined within the microfluidic channels by a narrow opening on one
544 side.

545 The microfluidic chips were prepared following ref. [46]. In brief, the polydimethylsiloxane
546 (PDMS) devices were fabricated from a mold using standard procedures and bonded to a mi-
547 croscope slide via plasma treatment. Prior to bacterial loading, each chip was passivated by
548 incubating it with 150 μ l of a 2% bovine serum albumin (BSA) solution at 30°C for 1 hour to
549 minimize bacterial adhesion to the glass or PDMS surfaces. After passivation, the chips were
550 rinsed with freshly filtered medium, and approximately 1 ml of bacterial culture was manually
551 injected into the device. Flow control within the microfluidic setup was achieved using flow sen-
552 sors integrated into each feeding channel. The Elveflow pressure-driven flow system was used to
553 ensure a continuous and stable flow of fresh growth medium through the microfluidic device at a
554 constant speed. The entire microfluidic setup comprises a pressure-driven flow controller (0 – 2
555 bar pressure range), two rotary valves (11-port/10-way Mux Distributor), and two flow sensors.
556 The two rotary valves were used to quickly change between growth medium in both the top and
557 bottom channels. In upshift experiments, the valves were programmed to alternate so that the
558 slow-growth medium fed the device first, while the fast-growth medium was delayed. In most
559 cases, a complete upshift experiment lasted between 12 and 20h, with roughly equal time spent
560 in each growth medium. These sensors provided real-time feedback to maintain precise flow
561 rates, ensuring stable and responsive air pressure-driven flow. The system allowed for robust
562 and long-term microfluidic experiments. Temperature regulation was maintained at 30°C using
563 a custom-built temperature control system.

564 *Image acquisition and data analysis.* Imaging was performed using a Nikon Inverted Micro-
565 scope ECLIPSE Ti-E equipped with a 100X oil immersion objective lens (numerical aperture
566 1.4) and a Nikon Perfect Focus System to correct for focus drift. An xy motion plate was
567 employed to cycle through predefined regions of interest at specified time intervals. Images
568 were captured using a 16-bit camera at a resolution of 512 x 512 pixels, with each pixel cor-
569 responding to 0.1067 μ m. The motorized stage and camera were programmed to image up to
570 40 fields of view, each encompassing approximately eight microchannels, at 3-minute intervals.

571 This pipeline is the same presented in ref. [46].

572 *Microfluidics experiments at 37°C*

573 Original data for this experiment was published in ref [23], please refer to this reference for
574 the details of the experiments. Supplementary figure 14 shows the reanalyzed data. All the
575 information on the additional analysis of the data are reported in the Supplementary Note 11
576 and Supplementary Fig. 14-16.

577 *Batch experiments at 37 °*

578 *Strains and growth media.* The *E. coli* K12-derived strain BW25113 was used in all ex-
579 periments, together with the "P1 Long" mutant [23, 49], with an incorporated reporter cassette
580 in the chromosome, containing a Kanamycin resistance gene and the rRNA operon promoter
581 *rrnBP1* followed by a GFP expressing gene (the same as in ref. [23]). Cells were grown in a M9
582 minimal growth medium complemented with 1% glucose (glu), until the shift to 1% glucose and
583 1% Casamino Acids (glu+cAA).

584 *Culture growth protocol.* The strains were first plated from a -80°C glycerol stock to LB-
585 Agar plates. Then, a preculture was made, where a single colony was inoculated in LB medium.
586 After reached an OD of 0.3, the cells were washed of the LB medium by centrifugation (3 minutes
587 at 8000 g-force) and resuspended in the medium used for the growth experiment (M9+glu). The
588 overnight was prepared by diluting the cells of the preculture such that growth was still in the
589 exponential phase at the start of the experiment.

590 The growth experiment was performed in the ChiBio chemostat [50], where each culture
591 was placed in a separate reactor and kept in the same conditions at 37°C. Each reactor is
592 composed of a glass tube filled with 20 mL medium and the instruments to measure OD. All
593 other ChiBio parameters (temperature, stirring, gain intensity, etc.) were kept to the default
594 settings presented in ref [50].

595 *Growth shift protocol.* Growth shifts were performed by adding a 20% solution of Casamino
596 acids to the reactor, such that the medium had 1% cAA concentration. To retain constant
597 growth conditions and to keep OD out of the saturation range ($OD > 1$), periodic dilutions
598 were realized to keep the OD between 0.4 and 0.8. While the ChiBio [50] provides pumps to
599 regulate OD, the pumping rate was not fast enough for the significant volume necessary for the
600 dilution. Instead, a manual dilution was chosen, using a 10 mL pipette to dilute the reactor
601 when OD was close to 0.8. One dilution was made before the shift, and another at the moment

602 of the shift. After the shift, dilutions were continued for at least 2 hours of growth.

603 *Data Analysis.* The ChiBio outputs data files containing the precise OD every minute and
 604 the associated time stamps. To synchronize this data with the shift dynamics, the shift time
 605 was set as $t = 0$. OD outliers (*e.g.* measurements during dilutions) were removed, as well as
 606 any data where OD was close to saturation ($OD > 0.8$). To mitigate measurement noise from
 607 the OD, for every OD measurement OD_i at time t_i , we apply a sliding window average on the
 608 logarithm of the OD (to average out deviations from exponential growth). Considering a window
 609 size $w_1 = 4\text{min}$, we have

$$OD_{mean,i} = \sum_{j=i-w_1}^{i+w_1} \frac{\log(OD_j)}{2w_1 + 1}. \quad (15)$$

610 To have a continuous growth curve from start to finish of the experiment, we then consider a new
 611 OD (OD_{new}) as the OD with dilutions (OD_{mean}) multiplied by the dilution ratio such that there
 612 is no interruption in the growth curve due to dilutions. To measure the actual dilution ratio
 613 at every dilution, we calculate the mean growth rate λ at the dilution by fitting an exponential
 614 growth function on a 20 minute time interval before the dilution. As such, we have

$$OD_{new}(t = t_{i+1}) = OD_{mean}(t = t_i) \exp(\lambda(t_{i+1} - t_i)), \quad (16)$$

615 with t_i the last time point before dilution and t_{i+1} the first time point after the dilution. The
 616 dilution ratio is then $OD_{new}(t = t_{i+1})/OD_{mean}(t = t_i)$. From the continuous growth curve,
 617 we can measure the instant growth rate λ_i for each time t_i . We set

$$\lambda_i = \frac{OD_{new}(t = t_i + dt) - OD_{new}(t = t_i - dt)}{2OD_{new}(t = t_i)dt}, \quad (17)$$

618 with $dt = 3\text{ min}$. Further binning of the growth rate was applied for comparison of different
 619 experimental replicates. To obtain the average growth rate shown in Fig. 6 and Supplementary
 620 Fig.s 10-12 we compared different technical replicates of the same experiment, excluding realiza-
 621 tions according to two criteria: (I) to average only technical replicates that were consistent with
 622 each other, we excluded the replicates for which the aligned OD (*i.e.* the OD curve normalized
 623 such that $OD(t=0)=0.5$) has a normalized L1 distance from the other replicates exceeding 1.5,
 624 and (II) to filter for steady-growing populations we excluded all the replicates that did not reach
 625 the shift with a steady growth rate, quantifying the steadiness of the growth rate by calculating
 626 the coefficient of variation of the growth rate $CV = \sigma_\lambda^2/\mu_\lambda$ in the first hour prior to the shift,
 627 where σ_λ^2 is the variance and μ_λ is the average of the measured growth rate across time frames
 628 before the shift. If the CV of a replicate exceeded 0.05 the replicate was discarded. The curve for
 629 the average growth rate across replicates was then calculated for all the experiments for which at
 630 least two technical replicates had passed the screening. The results are shown in Supplementary

631 Fig. 10-12, and an example of a technical triplet with a discarded technical replicate is shown
632 in Supplementary Fig. 13.

633 DATA AVAILABILITY

634 The data generated in this study have been deposited in a Mendeley repository at DOI:
635 10.17632/w294vd3pgh.2, ref [51].

636 CODE AVAILABILITY

637 The code generated in this study have been deposited in a Mendeley repository at DOI:
638 10.17632/w294vd3pgh.2, ref [51].

639 ACKNOWLEDGMENTS

640 We are very grateful to all the members of the Cosentino Lagomarsino lab for the useful
641 discussions. We would like to thank our experimental collaborators Pietro Cicuta and Aske
642 Petersen for the feedback on the data. We are grateful to Severin J. Schink, Gregory Bokinsky,
643 Frank Bruggeman, Ulrich Gerland, Gabriele Micali, Sander Tans, and Terence Hwa for the
644 feedback on this work.

645 This work was supported by AIRC - Associazione Italiana per la Ricerca sul Cancro AIRC IG
646 grant no. 23258 (MCL and RD). RD was supported by the AIRC fellowship Italy Pre-Doc 2022
647 (ID 28176). PF was supported by a grant from the French National Research Agency (REF:
648 ANR-21-CE45-0009). JG was supported by a grant Fondo Italiano per la Scienza (FIS_00002903
649 CUP J53C23002290001).

650 AUTHOR CONTRIBUTIONS

651 MCL conceived the study. RD performed all the simulations with assistance from L Calabrese.
652 RD, JG, and MCL designed the models. RD took care of the model simulations. RD handled
653 the data analysis with GT, VF, II and PF assistance. RD, PF and II performed the experiments,
654 with L Ciandrini and BS assistance. MCL, JG, and RD wrote the paper.

655 **CONFLICT OF INTEREST STATEMENT**

656 The authors declare that the research was conducted in the absence of any commercial or
657 financial relationships that could be construed as a potential conflict of interest.

658 [1] J. Zhu and C. B. Thompson, "Metabolic regulation of cell growth and proliferation," *Nature*
659 *Reviews Molecular Cell Biology*, vol. 20, pp. 436–450, Apr. 2019.

660 [2] L. Galdieri, S. Mehrotra, S. Yu, and A. Vancura, "Transcriptional regulation in yeast during
661 diauxic shift and stationary phase," *OMICS: A Journal of Integrative Biology*, vol. 14, pp. 629–
662 638, Dec. 2010.

663 [3] P. C. Marijuán, J. Navarro, and R. del Moral, "On prokaryotic intelligence: Strategies for sensing
664 the environment," *Biosystems*, vol. 99, pp. 94–103, Feb. 2010.

665 [4] M. Scott and T. Hwa, "Bacterial growth laws and their applications," *Current Opinion in Biotech-
666 nology*, vol. 22, pp. 559–565, Aug. 2011.

667 [5] M. Scott, S. Klumpp, E. M. Mateescu, and T. Hwa, "Emergence of robust growth laws from
668 optimal regulation of ribosome synthesis," *Molecular Systems Biology*, vol. 10, p. 747, aug 2014.

669 [6] L. U. Magnusson, A. Farewell, and T. Nyström, "ppGpp: a global regulator in *Escherichia coli*,"
670 *Trends in Microbiology*, vol. 13, pp. 236–242, may 2005.

671 [7] K. Potrykus, H. Murphy, N. Philippe, and M. Cashel, "ppGpp is the major source of growth rate
672 control in *E. coli*," *Environmental Microbiology*, vol. 13, pp. 563–575, oct 2010.

673 [8] B. D. Towbin, Y. Korem, A. Bren, S. Doron, R. Sorek, and U. Alon, "Optimality and sub-
674 optimality in a bacterial growth law," *Nature Communications*, vol. 8, Jan. 2017.

675 [9] E. Bosdriesz, D. Molenaar, B. Teusink, and F. J. Bruggeman, "How fast-growing bacteria robustly
676 tune their ribosome concentration to approximate growth-rate maximization," *The FEBS Journal*,
677 vol. 282, pp. 2029–2044, mar 2015.

678 [10] M. Scott, C. W. Gunderson, E. M. Mateescu, Z. Zhang, and T. Hwa, "Interdependence of cell
679 growth and gene expression: Origins and consequences," *Science*, vol. 330, pp. 1099–1102, nov
680 2010.

681 [11] R. Hermsen, H. Okano, C. You, N. Werner, and T. Hwa, "A growth-rate composition formula for
682 the growth of *e. coli* on co-utilized carbon substrates," *Molecular Systems Biology*, vol. 11, p. 801,
683 apr 2015.

684 [12] S. Hui, J. M. Silverman, S. S. Chen, D. W. Erickson, M. Basan, J. Wang, T. Hwa, and J. R.
685 Williamson, "Quantitative proteomic analysis reveals a simple strategy of global resource alloca-

686 tion in bacteria,” *Molecular Systems Biology*, vol. 11, p. 784, feb 2015.

687 [13] D. W. Erickson, S. J. Schink, V. Patsalo, J. R. Williamson, U. Gerland, and T. Hwa, “A global re-
688 source allocation strategy governs growth transition kinetics of *Escherichia coli*,” *Nature*, vol. 551,
689 pp. 119–123, oct 2017.

690 [14] M. V. Rojiani, H. Jakubowski, and E. Goldman, “Relationship between protein synthesis and con-
691 centrations of charged and uncharged tRNATrp in *Escherichia coli*,” *Proceedings of the National
692 Academy of Sciences*, vol. 87, pp. 1511–1515, feb 1990.

693 [15] E. Goldman and H. Jakubowski, “Uncharged tRNA, protein synthesis, and the bacterial stringent
694 response,” *Molecular Microbiology*, vol. 4, pp. 2035–2040, dec 1990.

695 [16] C. Wu, R. Balakrishnan, N. Braniff, M. Mori, G. Manzanarez, Z. Zhang, and T. Hwa, “Cellular
696 perception of growth rate and the mechanistic origin of bacterial growth law,” *Proceedings of the
697 National Academy of Sciences*, vol. 119, may 2022.

698 [17] A. G. Marr, “Growth rate of *Escherichia coli*,” *Microbiological Reviews*, vol. 55, pp. 316–333, jun
699 1991.

700 [18] T. M. Wendrich, G. Blaha, D. N. Wilson, M. A. Marahiel, and K. H. Nierhaus, “Dissection of the
701 mechanism for the stringent factor RelA,” *Molecular Cell*, vol. 10, pp. 779–788, oct 2002.

702 [19] M. Mori, Z. Zhang, A. Banaei-Esfahani, J. Lalanne, H. Okano, B. C. Collins, A. Schmidt, O. T.
703 Schubert, D. Lee, G. Li, R. Aebersold, T. Hwa, and C. Ludwig, “From coarse to fine: the absolute
704 *Escherichia coli* proteome under diverse growth conditions,” *Molecular Systems Biology*, vol. 17,
705 May 2021.

706 [20] H. Bremer and P. P. Dennis, “Modulation of chemical composition and other parameters of the
707 cell at different exponential growth rates,” *EcoSal Plus*, vol. 3, feb 2008.

708 [21] I. Shachrai, A. Zaslaver, U. Alon, and E. Dekel, “Cost of unneeded proteins in *E. coli* is reduced
709 after several generations in exponential growth,” *Molecular Cell*, vol. 38, pp. 758–767, jun 2010.

710 [22] A. Bren, Y. Hart, E. Dekel, D. Koster, and U. Alon, “The last generation of bacterial growth in
711 limiting nutrient,” *BMC Systems Biology*, vol. 7, mar 2013.

712 [23] M. Panlilio, J. Grilli, G. Tallarico, I. Iuliani, B. Sclavi, P. Cicuta, and M. C. Lagomarsino, “Thresh-
713 old accumulation of a constitutive protein explains *E. coli* cell-division behavior in nutrient up-
714 shifts,” *Proceedings of the National Academy of Sciences*, vol. 118, apr 2021.

715 [24] M. Mori, S. Schink, D. W. Erickson, U. Gerland, and T. Hwa, “Quantifying the benefit of a
716 proteome reserve in fluctuating environments,” *Nature Communications*, vol. 8, Oct. 2017.

717 [25] G. Chure and J. Cremer, “An optimal regulation of fluxes dictates microbial growth in and out of
718 steady-state,” *eLife*, vol. 12, mar 2023.

719 [26] R. Balakrishnan, M. Mori, I. Segota, Z. Zhang, R. Aebersold, C. Ludwig, and T. Hwa, “Principles
720 of gene regulation quantitatively connect DNA to RNA and proteins in bacteria,” *Science*, vol. 378,
721 Dec. 2022.

722 [27] M. Nomura, R. Gourse, and G. Baughman, “Regulation of the synthesis of ribosomes and riboso-
723 mal components,” *Annual Review of Biochemistry*, vol. 53, pp. 75–117, June 1984.

724 [28] J. J. Lemke, P. Sanchez-Vazquez, H. L. Burgos, G. Hedberg, W. Ross, and R. L. Gourse, “Direct
725 regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and
726 DksA,” *Proceedings of the National Academy of Sciences*, vol. 108, pp. 5712–5717, mar 2011.

727 [29] L. V. Aseev, L. S. Koledinskaya, and I. V. Boni, “Regulation of ribosomal protein operons rplm-
728 rpsi , rpmb-rpmg , and rplu-rpma at the transcriptional and translational levels,” *Journal of*
729 *Bacteriology*, vol. 198, pp. 2494–2502, Sept. 2016.

730 [30] B. J. Paul, M. B. Berkmen, and R. L. Gourse, “Dksa potentiates direct activation of amino acid
731 promoters by ppgpp,” *Proceedings of the National Academy of Sciences*, vol. 102, pp. 7823–7828,
732 May 2005.

733 [31] P. Sanchez-Vazquez, C. N. Dewey, N. Kitten, W. Ross, and R. L. Gourse, “Genome-wide effects on
734 Escherichia coli transcription from ppgpp binding to its two sites on rna polymerase,” *Proceedings*
735 *of the National Academy of Sciences*, vol. 116, pp. 8310–8319, Apr. 2019.

736 [32] X. Dai, M. Zhu, M. Warren, R. Balakrishnan, V. Patsalo, H. Okano, J. R. Williamson, K. Fredrick,
737 Y.-P. Wang, and T. Hwa, “Reduction of translating ribosomes enables Escherichia coli to maintain
738 elongation rates during slow growth,” *Nature Microbiology*, vol. 2, dec 2016.

739 [33] L. Calabrese, J. Grilli, M. Osella, C. P. Kempes, M. C. Lagomarsino, and L. Ciandrini, “Protein
740 degradation sets the fraction of active ribosomes at vanishing growth,” *PLOS Computational*
741 *Biology*, vol. 18, p. e1010059, may 2022.

742 [34] W.-H. Lin, E. Kussell, L.-S. Young, and C. Jacobs-Wagner, “Origin of exponential growth in non-
743 linear reaction networks,” *Proceedings of the National Academy of Sciences*, vol. 117, pp. 27795–
744 27804, Oct. 2020.

745 [35] U. Alon, *An Introduction To Systems Biology : Design Principles Of Biological Circuits*. CRC
746 Press, 2019.

747 [36] E. R. Oldewurtel, Y. Kitahara, and S. van Teeffelen, “Robust surface-to-mass coupling and turgor-
748 dependent cell width determine bacterial dry-mass density,” *Proceedings of the National Academy*
749 *of Sciences*, vol. 118, Aug. 2021.

750 [37] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-Harel, M. B. Eisen, G. Storz, D. Botstein,
751 and P. O. Brown, “Genomic expression programs in the response of yeast cells to environmental

752 changes,” *Molecular Biology of the Cell*, vol. 11, pp. 4241–4257, dec 2000.

753 [38] T. Schmelzle and M. N. Hall, “TOR, a central controller of cell growth,” *Cell*, vol. 103, pp. 253–262,
754 Oct. 2000.

755 [39] A. G. Hinnebusch, “Translational regulation of gcn4 and the general amino acid control of yeast,”
756 *Annual Review of Microbiology*, vol. 59, pp. 407–450, Oct. 2005.

757 [40] Y. J. Joo, J.-H. Kim, U.-B. Kang, M.-H. Yu, and J. Kim, “Gcn4p-mediated transcriptional re-
758 pression of ribosomal protein genes under amino-acid starvation,” *The EMBO Journal*, vol. 30,
759 pp. 859–872, dec 2010.

760 [41] N. Giordano, F. Mairet, J.-L. Gouzé, J. Geiselmann, and H. de Jong, “Dynamical allocation of
761 cellular resources as an optimal control problem: Novel insights into microbial growth strategies,”
762 *PLOS Computational Biology*, vol. 12, p. e1004802, Mar. 2016.

763 [42] Y. Korem Kohanim, D. Levi, G. Jona, B. D. Towbin, A. Bren, and U. Alon, “A bacterial growth
764 law out of steady state,” *Cell Reports*, vol. 23, pp. 2891–2900, June 2018.

765 [43] N. M. Belliveau, G. Chure, C. L. Hueschen, H. G. Garcia, J. Kondev, D. S. Fisher, J. A. The-
766 riot, and R. Phillips, “Fundamental limits on the rate of bacterial growth and their influence on
767 proteomic composition,” *Cell Systems*, vol. 12, pp. 924–944.e2, sep 2021.

768 [44] X. Dai and M. Zhu, “Coupling of ribosome synthesis and translational capacity with cell growth,”
769 *Trends in Biochemical Sciences*, vol. 45, pp. 681–692, Aug. 2020.

770 [45] T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura, M. Baba, K. A. Datsenko, M. Tomita,
771 B. L. Wanner, and H. Mori, “Construction of Escherichia coli k-12 in-frame, single-gene knockout
772 mutants: the keio collection,” *Molecular Systems Biology*, vol. 2, Jan. 2006.

773 [46] I. Iuliani, G. Mbemba, M. C. Lagomarsino, and B. Sclavi, “Direct single-cell observation of a key
774 Escherichia coli cell-cycle oscillator,” *Science Advances*, vol. 10, July 2024.

775 [47] C. Saggioro, A. Olliver, and B. Sclavi, “Temperature-dependence of the dnaa–dna interaction and
776 its effect on the autoregulation of dnaa expression,” *Biochemical Journal*, vol. 449, pp. 333–341,
777 Dec. 2012.

778 [48] Z. Long, E. Nugent, A. Javer, P. Cicuta, B. Sclavi, M. Cosentino Lagomarsino, and K. D. Dorfman,
779 “Microfluidic chemostat for measuring single cell dynamics in bacteria,” *Lab on a Chip*, vol. 13,
780 no. 5, p. 947, 2013.

781 [49] Q. Zhang, E. Brambilla, R. Li, H. Shi, M. Cosentino Lagomarsino, and B. Sclavi, “A Decrease
782 in Transcription Capacity Limits Growth Rate upon Translation Inhibition,” *mSystems*, vol. 5,
783 pp. 10.1128/msystems.00575–20, Sept. 2020. Publisher: American Society for Microbiology.

784 [50] H. Steel, R. Habgood, C. L. Kelly, and A. Papachristodoulou, “In situ characterisation and ma-
785 nipulation of biological systems with chi.bio,” *PLOS Biology*, vol. 18, pp. 1–12, 07 2020.

786 [51] R. Droghetti and M. Cosentino-Lagomarsino, “Code and data for ”incoherent feedback from cou-
787 pled amino acids and ribosome pools generates damped oscillations in growing bacteria, mendeley
788 repository, doi: 10.17632/w294vd3pgh.2,” 2024.

789 [52] J. Forchhammer and L. Lindahl, “Growth rate of polypeptide chains as a function of the cell growth
790 rate in a mutant of *Escherichia coli* 15,” *Journal of Molecular Biology*, vol. 55, pp. 563–568, Feb.
791 1971.

792 [53] A. Schmidt, K. Kochanowski, S. Vedelaar, E. Ahrn , B. Volkmer, L. Callipo, K. Knoops, M. Bauer,
793 R. Aebersold, and M. Heinemann, “The quantitative and condition-dependent *Escherichia coli*
794 proteome,” *Nature Biotechnology*, vol. 34, pp. 104–110, jan 2016.

795 [54] S. H.-J. Li, Z. Li, J. O. Park, C. G. King, J. D. Rabinowitz, N. S. Wingreen, and Z. Gitai,
796 “*Escherichia coli* translation strategies differ across carbon, nitrogen and phosphorus limitation
797 conditions,” *Nature Microbiology*, vol. 3, pp. 939–947, July 2018.

798 [55] R. A. Lazzarini, M. Cashel, and J. Gallant, “On the regulation of guanosine tetraphosphate levels
799 in stringent and relaxed strains of *Escherichia coli*,” *The Journal of biological chemistry*, vol. 246,
800 pp. 4381–4385, July 1971.

801 [56] J. Ryals, R. Little, and H. Bremer, “Control of rRNA and tRNA syntheses in *Escherichia coli* by
802 guanosine tetraphosphate,” *Journal of Bacteriology*, vol. 151, pp. 1261–1268, Sept. 1982.

803 [57] E. Sarubbi, K. E. Rudd, and M. Cashel, “Basal pppGp level adjustment shown by new spot
804 mutants affect steady state growth rates and rRNA ribosomal promoter regulation in *Escherichia*
805 *coli*,” *Molecular and General Genetics MGG*, vol. 213, pp. 214–222, Aug. 1988.

806 [58] V. J. Hernandez and H. Bremer, “Guanosine tetraphosphate (pppGp) dependence of the growth
807 rate control of rrnb p1 promoter activity in *Escherichia coli*,” *The Journal of biological chemistry*,
808 vol. 265, pp. 11605–11614, July 1990.

809 [59] M. H. Buckstein, J. He, and H. Rubin, “Characterization of nucleotide pools as a function of
810 physiological state in *Escherichia coli*,” *Journal of Bacteriology*, vol. 190, pp. 718–726, Jan. 2008.

811 [60] N. C. E. Imholz, M. J. Noga, N. J. F. van den Broek, and G. Bokinsky, “Calibrating the bacterial
812 growth rate speedometer: A re-evaluation of the relationship between basal pppGp, growth, and
813 rRNA synthesis in *Escherichia coli*,” *Frontiers in Microbiology*, vol. 11, Sept. 2020.