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Abstract

To address the rapid growth of scientific publications and datain biomedical research, knowledge graphs
(KGs) have become acritical tool for integrating large volumes of heterogeneous data to enable efficient
information retrieval and automated knowledge discovery (AKD). However, transforming unstructured
scientific literature into KGs remains a significant challenge, with previous methods unable to achieve
human-level accuracy. In this study, we utilized an information extraction pipeline that won first placein
the LitCoin NLP Challenge (2022) to construct alarge-scale KG named iKraph using all PubMed
abstracts. The extracted information matches human expert annotations and significantly exceeds the
content of manually curated public databases. To enhance the KG's comprehensiveness, we integrated
relation datafrom 40 public databases and relation information inferred from high-throughput genomics
data. This KG facilitates rigorous performance evaluation of AKD, which wasinfeasible in previous
studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal
relations and applied it to real-time COV1D-19 drug repurposing from March 2020 to May 2023. Our
method identified 600-1400 candidate drugs per month, with one-third of those discovered in the first two
months later supported by clinical trials or PubMed publications. These outcomes are very challenging to
attain through alternative approaches that lack a thorough understanding of the existing literature. A
cloud-based platform (https://biokde.insilicom.com) was developed for academic users to access thisrich
structured data and associated tools.
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I ntroduction

The sheer volume of information produced daily in scientific literature, expressed in natural languages,
makes it impractical to manually read all publications, even within relatively narrow research areas.
Additionally, advances in high-throughput technol ogies have led to the creation of enormous quantities of
research data, much of which remains underutilized in various databases. Thisinformation explosion
poses amajor challenge for researchersto identify and devel op innovative ideas using all the available
data. Automated knowledge discovery (AKD, a.k.a. automated hypothesis generation) can help mitigate
this problem by automating the process of data analysis, identifying patterns, and generating innovative
insights and hypotheses. In recent years, knowledge graphs (K Gs) have been proposed as a powerful data
structure for integrating heterogeneous data and for AKD?®. KGs, with entities as nodes and their
relationships as edges, represent human knowledge in a structured form, facilitating efficient and accurate
information retrieval. Graph a gorithms can be employed on KGsto infer potential relationships as
plausible hypotheses between known entities.

Computational construction of KGs from unstructured text entails two steps: named entity recognition
(NER) to identify key biological entities and relation extraction (RE) to extract rel ationships among
entities. Historically, NER and RE have been collectively referred to asinformation retrieval tasks. Early
automated methods mainly fell into two categories: rule-based and machine learning-based. The rule-
based approach systematically extracted specific data based on predefined rules™™*, while the machine
learning-based approaches inferred rules from annotated data usually with increased recall and overall
performance™®°. The advent of machine learning led to more sophisticated methods that leveraged
semantic information and sentence structure, resulting in significant improvements in information
extraction effectiveness™?*. However, a gap remained compared to human proficiency.

The emergence of deep learning models has alowed for a more nuanced utilization of information,
such as semantic content and grammatical structures. By expanding the use of features and enhancing
expressive capabilities, deep models have significantly improved the overall effectiveness of information
extraction®*, Recently, the technique of pretraining and large language models (LLMs) have garnered
considerable attention, expanding both model complexity and the amount of training data and achieving
remarkable progressin information retrieval tasks®>*. Thiswas evidenced by the significant resultsin the
BioCreative VII Challenge in 2021, where finetuning BERT-based models was widely used, and the top
performance in some tasks closely matched human annotator performance. Subsequently, a highly
advanced series of pre-trained models, like GPT-4, emerged™ >’. These models have been proven to
perform comparably or better to humans in multiple tasks, marking a significant breakthrough in the field.

Recently, LLMslike GPT-4 have been explored for their integration with KGs, aiming to enhance
tasks such as named entity recognition (NER), relation extraction, and event detection through techniques
like zero-shot prompting, in-context learning, and multi-turn question answering®® . While these models
excel in generalization and large-scale data processing, they still struggle with domain-specific challenges,
including handling long-tail entities®, directional entailments®?, and inconsistenciesiin retrieving
knowledge from paraphrased or |ow-frequency phenomena®®. Experiments™ on datasets like DulE2.0%,
Re-TACRED®, and SciERC®” highlight that fine-tuned small models continue to outperform GPT-like
LLMsin KG-related tasks. Despite these limitations, LLMs have shown significant adaptability in
augmentisrgg K Gs, particularly when structured datais limited, positioning them as a complementary tool
for AKD™.

To facilitate the methodol ogy devel opment and identification of the most effective methods for KG
construction, the National Center for Advancing Trang ational Sciences (NCATYS) of the National
Institutes of Health (NIH) organized the LitCoin natural language processing (NLP) challenge between
Nov 2021 and Feb 2022. In the LitCoin NLP Challenge dataset, six common biological entity types were
annotated: diseases, genes/proteins, chemical compounds, species, genetic variants, and cell lines. Eight
relation types were a so annotated for the entities: association, binding, comparison, conversion,
cotreatment, drug interaction, positive correlation, and negative correlation. These entity types and
relations are highly relevant in translationa research and drug discoveries. Our team, JZhangLab@FSU,
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participated in the challenge and won first place (https://ncats.nih.gov/funding/challenges/winnerg/litcoin-
nip).

In this study, we applied our LitCoin NLP Challenge-winning information retrieval pipelineto all
PubMed abstracts (cutoff date: May 2023) to construct alarge-scale Biomedical Knowledge Graph
(iKraph, the abbreviation for Insilicom's Knowledge Graph). Manual verification confirmed the pipeline's
accuracy at a human annotator level. By annotating the directions for the relationsin the LitCoin dataset
and training amodel to predict the direction of relations, we constructed a causal knowledge graph (CKG)
capable of making indirect causal inferences. To further enhance the coverage of iKraph, we integrated
relation data from public databases and high-throughput genomics datasets, making it the most
comprehensive, high-quality biomedical knowledge graph to date. To make causal inferences among the
entitiesthat are not directly connected in the KG, we designed a probabilistic-based approach,
probabilistic semantic reasoning (PSR). PSR is highly interpretable asit directly infersindirect relations
using direct relations through straightforward reasoning principles.

Navigating the modern drug devel opment terrain is intricate and resource-intensive®®. The ascent in
costs largely stems from prior research exhausting more straightforward drug targets, necessitating a shift
towards more complex ones®®. In this setting, knowledge graphs play a pivotal role in automated
knowledge discovery (AKD)*"*"? particularly in the domain of drug target identification and drug
repurposing”>"’. A significant challenge in devel oping methods for such applications has been to
comprehensively assess the effectiveness of these studies. For example, in the case of drug repurposing,
collecting all the known therapeutic associations of a particular disease or drug requires athorough search
of the literature. Without such knowledge, it isimpossible to rigorously evaluate drug repurposing
methods. In our investigation, for each repurposing objective, we extracted al therapeutic associations
documented in PubMed abstracts. This enabled us to measure recall and observed positive rate (OPR),
whichisinfeasible in prior drug repurposing research.

We demonstrate the power of our approach by conducting several drug repurposing studies: drug
repurposing for COVID-19, cystic fibrosis, ten diseases without satisfactory treatment, and ten commonly
prescribed drugs. For COVID-19 and cystic fibrosis, we performed retrospective, rea -time drug
repurposing exercises. Our method identified numerous viable candidates, supported by substantial
literature evidence connecting the drug and disease entities. Thislevel of interpretability isinvaluable
when determining the necessity of subsequent research endeavors.

Results
Building a L arge-Scale Biomedical Knowledge Graph (iKraph)

To facilitate the methodology devel opment and identification of the most effective methods for KG
construction, NIH organized the LitCoin natural language processing (NLP) challenge between Nov 2021
and Feb 2022 (https://ncats.nih.gov/funding/challenges/litcoin). Our team, JZhanglLab@FSU, participated
in the challenge and won first place (Table 1). In the summer of 2023, we also participated in the BioRED
track of the BioCreative Challenge V1I1. In the end-to-end KG construction task, our team also achieved
the highest score (Table 1)®. The LitCoin NLP Challenge dataset comprises 500 PubMed abstracts, each
annotated with six distinct entity types and eight types of relations at the abstract level. We used the
pipelineinitially developed for the LitCoin challenge to process all PubMed abstracts available before
May 2023, creating a large-scale Knowledge Graph, iKraph. In constructing iKraph, we processed over
34 million PubMed abstracts, resulting in 10,686,927 unigue entities and 30,758,640 unique relations. We
incorporated entity normalization into our pipeline, as this was not a component of the LitCoin NLP
challenge (see Supplementary Materials Section 1.2, 1.3 for more details).

We evaluated the accuracy of our large-scale relation extraction (RE) and our novelty prediction results
using a sample of 50 randomly selected PubMed abstracts, including 1583 entity pairs. The results shown
in Supplementary Table 3 indicate that our information extraction performance rivals that of human
annotations. A more in-depth analysisis available in the Supplementary Materials Section 2.
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Fig. 1A shows the number of PubMed abstracts containing one or more of the four major types of
entities. diseases, genes, chemicals, and sequence variants. It is evident that diseases are the most
common topic, with over 20 million articles referencing at least one disease entity, and nearly half of
these articles focus exclusively on diseases. In contrast, gene mentions often coexist with other entities,
such as chemicals and diseases. Fig. 1B depicts the number of PubMed abstracts containing one or more
of the five major types of relations, offering insight into the distribution of topicsin biomedical research.

Fig. 1C compares the relations extracted from PubMed with those from databases and the LitCoin
dataset. There is a clear difference between the LitCoin dataset and general PubMed abstracts, as the
former contains more relations in each abstract, especially those involving sequence variant entities’™.
This explains the performance difference of our pipeline on these two datasets. Rel ations from PubMed
and public databases are also quite complimentary.

Fig. 1D shows the number of novel discoveriesfor different entity pairs over the year. We have
observed a remarkable upswing in disease-gene relations since 2005, which underscores the tangible
outcomes of trandlational initiatives promoted by federal agencies. Furthermore, the increasing number of
disease-gene relations signifies an improved understanding of disease mechanisms at the molecular level,
thereby bolstering efforts in drug discovery. Of particular noteis the rapid escalation of chemical-disease
relationsin recent years, particularly around 2020, which is anticipated to continue in the foreseeable
future.

We plotted p(K) vs k, where k is the degree of an entity in iKraph, and p(K) is the probability of an entity
having degree k (Fig. 1E). We found that iKraph exhibits a scale-free topology with an apha parameter
value of around 3.0 (more details in Supplementary Materials Section 3).

Supplementary Table 4 compares the numbers of relations for five types of entity pairs from al the
public databases integrated into iKraph, those extracted from PubMed, and the numbers extracted if we
use a simple co-occurrence rule, which considers two entities having arelation if they co-occur in an
abstract. On the one hand, iKraph has significantly more numbers of relations than those from public
databases. On the other hand, the numbers of co-occurrences are much larger than relations extracted
from PubMed, indicating a substantial noise reduction by explicitly extracting relations from literature
compared to retrieval using keywords.

Constructing a causal knowledge graph

We devel oped amodel to predict the direction of correlation relationsin the LitCoin dataset,
identifying whether the relation flows from entityl to entity2 or entity2 to entityl. Adding this directional
information transformed correlations into potential causal relationships, allowing usto construct a
directed knowledge graph for knowledge discovery applications.

PSR for inferring indir ect r elationships

With directional information, we can infer relations between indirectly connected entities using
straightforward reasoning. To this end, we designed the probabilistic semantic reasoning (PSR) agorithm,
which is both efficient and interpretable. PSR enables all-against-all drug repurposing for all drugs and
diseases with limited computational resources and allows efficient updates of newly inferred relations.
For instance, freshly published PubMed articles can be processed daily to extract discoveries and generate
hypotheses for timely dissemination. In contrast, most machine learning methods struggle to achieve this
level of efficiency and interpretability.

Drug repurposing for Covid-19 using iKraph.

Using the PSR a gorithm, we conducted a retrospective, rea-time drug repurposing study for COVID-
19 spanning from March 2020 to May 2023 (Fig. 2). During this period, we consistently discovered
repurposed drugs based on the drug targets reported for COV1D-19 between March and June 2020. A
candidate drug has at least one directed path to COVID-19 through an intermediate gene. We checked
whether any repurposed drugs were later validated by either PubMed literature or clinical trialsthrough a
monthly assessment. The validation involved scrutinizing whether these repurposed drugs had been
subsequently tested in clinical trials documented on Clinical Trials.gov or had published therapeutic
efficacy in COVID-19 patients in PubMed abstracts. Notably, drugs identified in clinical trials may not
always trandlate into effective treatments for COV ID-19. Nevertheless, they serve as valuable hypotheses,
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aligning with the primary objective of our drug repurposing approach. Asshown in Error! Reference
source not found.A, we were able to identify nearly 600 to 1,400 candidate drugs from iKraph using
PSR. Remarkably, one-third of the repurposed drugs identified during the initial two months were later
validated as effective treatments or plausible potential treatments worthy of clinical trials. Importantly,
even drugs that did not achieve validation status remain viable hypotheses, warranting further
investigation, particularly when existing treatments prove less than optimal.

Fig. 2B shows atimeline of repurposed drug validation. Notably, thereis a surge in validated drugs
during the first year, which subsequently shows a month-to-month decline. This trend suggests most
repurposed drugs align with practitioners’ early assessments. Some drugs were validated only in the
second or third year, indicating they were lessimmediately evident. The number of drugs validated
through publications matches those validated via clinical trias. While numerous drug repurposing studies
for COVID-19 exist®®, as per our understanding, no prior research has as thoroughly validated such a
vast quantity of repurposed drugs as we have in this research. These results highlight iKraph's ability to
identify promising drug candidates for specific diseasesin real-time.

We then conducted drug repurposing for COVID-19 in the current timeframe (Fig. 2C). We did not
exclude drugs aready reported as treatments for COV1D-19 (direct relations). This was to observeif our
repurposing efforts agree with existing treatment choices for COVID-19. Fig. 2C displays the top 50
repurposed drugs. Notably, most of these drugs (36 out of 50) have published studies mentioning either
their potential therapeutic efficacy or demonstrated therapeutic efficacy for phenotypes associated with
COVID-19. Among the remaining 14, 11 have been proposed as potential treatments for COVID-19
(citations provided in Supplementary Table 3). For each drug, numerous genes that link COVID-19 with
the drug were identified (y-axis of Fig. 2C). Additionally, each of these relations, whether drug-gene or
gene-COVID-19, is supported by one or multiple articles. To our knowledge, none of the previous
literature-based COV ID-19 repurposing studies has yielded such comprehensive findings.

Drug repurposing for cystic fibrosisusing iKraph.

We applied PSR to uncover indirect rel ationships between drugs and cystic fibrosis (CF) from 1985 to
2022 (Fig. 3). Since the early 1990s, at least 50 potential repurposed drugs have been identified annually.
A drug was considered validated if later reported as directly therapeutic for CF. Historically, estimating
these metrics was challenging due to reliance on manual literature searches. We cal culated recall
(percentage of known direct relations successfully repurposed) and observed positive rate (OPR,
percentage of repurposed cases with reported direct relations). Unlike precision, OPR accounts for
potential candidates awaiting validation. From 1990 to 2022, the average recall is 0.635 (Fig. 3B), and the
average OPR from 1985 to 2011 is 0.159. Different time interval s were used because OPR requires earlier
predictions, while recent predictions need time for validation.

We calculated the typical duration for these repurposed drugs to be validated. Remarkably, our
proposed drugs typically appeared in literature 2 to 33 years later, with a median validation time of 9.4
years (Fig. 3A). Assuming experimental validation takes 2 years on average, iKraph could hypothetically
reduce thistime from 9 to 2 yearsif predictions were acted on immediately. With over 63% recall and a
9-year median lag, our findings highlight iKraph's potential to accel erate drug repurposing and validation
for cystic fibrosis treatment.

Drug repurposing for 10 diseases and 10 drugs

To evaluate our method’ s versatility, we extended drug repurposing to ten diseases lacking satisfactory
treatments and ten commonly prescribed drugs (Supplementary Figure 3). Our PSR algorithm identified a
vast array of candidates for these drugs and indications. For each drug (or disease) assessed, we calculated
both the recall and the observed positive rate (OPR). Impressively, our findings revea ed average recall
values of 0.76 for disease repurposing and 0.86 for drug repurposing. This exceptional recall rate
emphasi zes the potency of iKraph coupled with our PSR algorithm in spotlighting viable drug
repurposing candidates. Notably, these el evated recall rates were achieved without an excessive number
of predictions. The observed OPRs remained commendable at 0.197 for diseases and 0.07147 for drugs.
Importantly, asignificant proportion of indications repurposed for these drugs are not associated with any
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treatments in PubMed abstracts. This suggests that certain ailments might still be without treatments, and
these widely used drugs could potentially fill those therapeutic gaps.

We extended our analysis by using relations from a database, alongside those extracted from PubMed
abstracts, to make drug repurposing predictions. Fig. 4 illustrates the F1 scores for these comparisons
based on the top 50 predicted repurposed drugs and the top 250 predicted indications. In each panel, blue
bars represent PubM ed-based predictions, while orange bars represent database-based predictions. Most
repurposed drugs or diseases showed higher F1 scores using PubMed-derived predictions, likely due to
the greater amount of information available in PubMed, which databases cannot match.

Discussion

Converting unstructured scientific literature into structured data has been along-standing challenge in
natural language processing (NLP). Successfully addressing this issue can potentially revolutionize the
pace of scientific discoveries. Although numerous studies have been conducted over the years,
computational methods have yet to achieve the precision of manual annotation in relation to extraction,
posing a significant hurdle. The emergence of LLMs in recent years has ushered in noteworthy
advancements in information extraction through LLM fine-tuning. In this paper, we report the first
utilization of a human-level information extraction pipeline to construct alarge-scale biomedical
knowledge graph by processing all the abstractsin PubMed. By further integrating relation data from 40
public databases and those analyzed from publicly available genomics data, the resulting knowledge
graph, dubbed iKraph, stands out as perhaps the most all-encompassing biomedical knowledge graph
constructed so far. The coverage of iKraph is much larger than public databases for the relations we have
extracted. The construction of a causal knowledge graph and the design of an interpretable PSR algorithm
allows us to perform automated knowledge discovery very effectively. The exhaustive nature of iKraph
allows us to perform research that was infeasible previoudly. For thefirst time, we were able to evaluate
the performance of automated knowledge discoveries systematically and rigorously by calculating recalls
and observed positive rates (OPRs). Without the knowledge of all PubMed abstracts in a structured form,
one must perform a manual search of the literature, which would not be feasible for arelatively large
number of predictions. We summarize the notable advances in this study, including some unique iKraph-
enabled capabilities in Supplementary Material Box S1, and discuss some of them below.

The biomedical research community has traditionally invested significant resources and human effort
in knowledge curation through manual annotations. Our research suggests a paradigm shift, leveraging
the capabilities of modern LLMs. By initially producing alimited set of high-caliber labeled data, it is
feasible to train an information extraction model that operates at human-level precision on much larger
text datasets. This methodology could notably expand the reach of public databases without
compromising data quality.

Utilizing iKraph for knowledge discovery tasks, such as drug repurposing, has yielded a vast array of
credible candidates supported by an unparalleled volume of literature evidence. This underscores the
potential of structured knowledge in hastening scientific breakthroughs. In our drug repurposing
endeavors for COVID-19, we highlighted iKraph's proficiency in identifying treatments for pandemics,
marking it as an indispensable asset for potential future outbreaks.

Many users might inquire about how iKraph handles noisy information from low-quality papers. Our
approach involves aggregating the probabilities of relations (e.g., between A and B) across multiple
papers. Each paper assigns a probability to a specific relation, and these probabilities are combined to
form an overall score. The more papers that mention the relation, the higher the final probability, making
it less susceptible to noise. Relations with low-quality evidence tend to appear in fewer papers, resulting
in lower scores. However, while this method provides a strong foundation for handling noisy data, future
improvements could involve weighting papers based on factors like journal impact factor, citation count,
and publication date. Integrating such metrics aligns with approaches demonstrated in prior work, where
features like author diversity, institutiona independence, and publication density were found to predict
the robustness and reproducibility of scientific claims®. Integrating these metrics would allow us to refine
the score further by giving more weight to higher-quality sources. For example, papers published in high-
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impact journals or those widely cited in the scientific community may provide stronger evidence for a
relation than those from less reputabl e sources. Additionally, the publication date can be factored in to
balance the relevance of older versus newer findings, ensuring that the most current and impactful
research plays a more prominent role in shaping the final probability. This reflects insights from robust
scientific literature, where combining high-throughput experimental data with features predictive of
reliability has shown promise in assessing the reproducibility of claims™. This holistic approach would
help iKraph remain robust against misinformation while continuously improving the accuracy of its
predictions through adaptive weighting.

Finally, we would like to put our study in the context of the LLMs popular in the current NLP research
community. While LLMs have showcased exceptional capabilities in understanding and generating
natural language, they aren't without shortcomings. A notable limitation is their fixed knowledge cut-off
date, which restricts their awareness of the very latest devel opments. Furthermore, in biomedical research,
where precision is crucial, relying solely on LLMs to answer specific questions risks inaccuracies due to
their limited knowledge base. Additionally, LLMs possess a propensity to generate text that, while
convincingly articulated, may lack factual accuracy. This propensity raises concerns regarding the
veracity of answers generated by LLMs, necessitating mechanisms for verification and the production of
more substantiated results, possibly with appropriate citations. We believe that integrating knowledge
graphs like iKraph with LLMs can effectively mitigate these limitations. To thisend, we are actively
devel oping a comprehensive question-answering system, combining iKraph with an open-source LLM.

In the Supplementary Materials Section 6, we delve into future research avenues and the challenges
we've faced. In summary, iKraph serves as a powerful enabler for more effective and efficient
information retrieval and automated knowledge discovery.

M ethods
1. Information extraction pipeline
We utilized the pipeline crafted during the LitCoin NLP Challenge
(https://ncats.nih.gov/funding/challenges/litcoin) to process al PubMed abstracts available until 2022,
along with data from several renowned biomedical databases, |eading to the creation of the Knowledge
Graph, iKraph. The construction of iKraph involves three primary stages: named entity recognition
(NER), relation extraction (RE), and novelty classification. The details of the methods can be found in the
Method section in the Support Information. When devel oping the pipeline for LitCoin Challenge, we
tested alarge set of pre-trained language models including BERT*®, BioBERT*®, PubMedBERT® abstract
only, PubMedBERT fulltext, sentence BERT®®, RoBERT&®, T5%, BlueBERT®®, SciBERT**, and
Clinica BERT®. We tested many ideas, such as different loss functions, data augmentations, different
settings of 1abel smoothing, different ways of ensemble learning, etc. Our final pipelines contain the
following components: (1) Improved in-house script for data processing, including sentence split,
tokenization, and entity tagging; (2) RoBERTalarge and PubMedBERT models as baseline models for
NER task; (3) Ensemble modeling strategy that combines models trained with different parameter settings,
different random seeds and at different epochs for both NER and RE; (4) Label smoothing for both NER
and RE; (5) Using Ab3P™ for handling abbreviations for NER; (6) Modified classification rule tailored
for LitCoin scoring method; and (7) Training a multi-sentence model for predicting relations at document
level, which gave avery competitive baseline for relation extraction.

We used the pipeline developed in the LitCoin challenge to process all the abstracts in the PubMed
database, which contains over 34 million abstracts, resulting in 10,686,927 unique entities and 30,758,640
unigue relations.
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2. Constructing a causal knowledge graph

Toinfer causal relations, we first annotated causal direction for 4,572 relations in the LitCoin dataset.
Among them, 2,009 cases have direction from the first entity to the second; 1,611 cases have direction
from the second entity to the first; and 952 cases have no direction. This annotation allowed usto train a
model for predicting the directions for relations, which achieved an F1 score of 0.924 in a5-fold cross-
validation test on the LitCoin dataset. Using a causal knowledge graph, we can infer indirect causal
relations more effectively for entities not directly connected in the knowledge graph — an essential task in
automated knowledge discovery.

To make inferences using the causal knowledge graph, we designed a probabilistic semantic reasoning
(PSR) algorithm, which cal culates the probability of atrue relation between two entities connected
directly or indirectly. For two entities with adirect edge (arelation mentioned in the literature), there can
be multiple mentionsin different articles. It is necessary to estimate an overall probability for this pair,
which will be used for estimating probabilities for indirectly connected entity pairs. PSR is highly
interpretable, which is key for the validation of predictions.

The overall drug repurposing strategy and validation approach are depicted in Fig. 5, with some details
provided in the figure legend.

2.1 Praobabilistic Semantic Reasoning (PSR)

To make inferences using the causal knowledge graph, we designed a probabilistic framework,
probabilistic semantic reasoning (PSR), for inferring indirect causal relations. PSR is highly interpretable,
which is critical for the validation of predictions. There can be multiple mentions in different articles of
two entities with a direct edge (a relation mentioned in the literature). It is necessary to estimate an overall
probability for this pair, which will be used for estimating probabilities for indirectly connected entity
pairs.

To simplify the discussion, let’s assume we want to infer the indirect relation from A to C using direct
relations from A to B and therelation from B to C. To infer the indirect relation, we first extract the two
direct relations. As mentioned earlier, relation A to B and B to C will likely occur many timesin different
PubMed abstracts. We calculate the overall probability of whether two entities have a particular relation
using the formula:

Paop =1—TIL1(1 = Phop) , 1)

In Equation (1), P,_,5 isthe overall probability of A-B entity pair having a particular relation, p,,_,z is
the probability of being true for thei-th occurrence of these two entitiesin a PubMed abstract, 1 — p_ 5
is the probability of this occurrence being false, and [T, (1 — p),_, 5 )is the probability that all the
occurrences being fal se (assuming the predictions for these occurrences are independent). The probability
of all occurrences being false, when subtracted by 1, gives the probability that at |east one of them istrue,
which isthe desired probability. It is also possible that several different relation types will be inferred for
asingle pair of entities. Often, only one relation type is true, and others may be wrong predictions. To
simplify the inference, we selected the relation type with the highest prabability as the true relation type
for any pair of entities. In redlity, there can be multiple entities linking A to C. We denote one of them as
B;. Then, the probability of A to C through B; can be calculated as:

PA,B,-,C = PA,B]- : PB]-,C 2

Equation (2) is straightforward since for the indirect relation between A and C (direction from A to C)
to be true, both the direct relations must be true. Again, we assume the predictions for the two direct
relations are independent. The probability between A to C through m intermediate nodes can then be
calculated as

Ppc=1- iz1(1— Papic) ©)

In Equation (3), we use P, . - to denote the probability that the indirect relation between A and C
through any intermediate entity and there is m such intermediate entities that link A and C. The argument
for thisformulais similar to equation (1). Putting equations 1-3 together, we get
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Pyc=1— 11'7;1[1 —-[1- ;1:1(1 - Pil,Bi)] [1- H;c:1(1 - Pgi,c)]] (4)

In Equation (4), mentitiesarel A and C, n instances of A-B; relationsin literature, and | instances of
Bi-C relationsin literature. Extending this to multiple intermediate nodes between A and C isrelatively
straightforward. The above probabilistic framework will allow usto rank all the indirect relations that can
beinferred. To infer the relation type (positive correlated or negative correlated) between two entities,
which multiple intermediate entities could link, we use 1 to represent positive correlations, -1 to represent
negative correlations, and 0 to represent unknown correlation type between any two entities connected by
adirect edge and multiply all the correlations together. The resulting value, 1, -1, or O will give usthe
correl ation type between the two entities. If thereis at least one unknown correlation type (0) between the
two entities, the overall correlation typeis unknown. If thereisno 0 and an even number of negative
correlations, then the overall correlation type will be a positive correlation; otherwise, it is a negative one.
For A-C entity pair to have a non-zero probability, there must be a path from A to C with al the
directions going from A to C, such as A->B->D->C, while A->B<-D->C ishot avalid path from A to C.

In this manuscript, we show one application of PSR using our iKraph that cal cul ates the indirect
relationship between two entities: discover the repurposed drug. We present two study cases for
identifying repurposed drugs for COVID-19 and cystic fibrosis, along with an additional study that
involves predicting both repurposed drug candidates for 10 common diseases and potential additional
uses for 10 common drugs. The details can be found in the Section 1.7 in Sl. Fig. 5E illustrates
Genistein's repurposing for COVID-19 treatment, interacting with 25 human genes. It negatively affects 3
genes that have a positive impact on COVID-19 while positively influencing the remaining 22 genes,
which are negatively associated with the disease. This evidence supports Genistein's potential asa
COVID-19 treatment candidate.

3. Integrating relations from public databases

To integrate the relations in the public databases, we downloaded the relations from two databases that
have integrated data from a large number of databases recently, Hetionet” and primeK G*, where
Hetionet has integrated data from 29 databases and primeK G has integrated datafrom 20 databases. The
total number of unique databases from both sourcesis 38. In addition, we extracted drug-target relations
from the Therapeutic Target Database (TTD)* and GO annotation® . In total, we integrated relation data
from 40 public databases. The KG covers twelve common entity types: diseases, chemical compounds,
species, genes/proteins, mutations, cell lines, anatomy, biological processes, cellular components,
molecular function, pathway, and pharmacologic class. It covers fifty-three different relation types.
Among them, eight were annotated in the LitCoin dataset: association, positive correlation, negative
correlation, bind, cotreatment, comparison, drug interaction, and conversion. Other relation types came
from public databases. When incorporating rel ations from public databases to maintain the quality of the
resulting KG, we excluded relations generated by high-throughput experiments, which are well-known to
have a high proportion of false positives, and those predicted by previous machine learning models.

4. Incor porating relations from analyzing RNASeq data

We downloaded more than 300,000 human RNASeq profiles from the recount3 database™. We
performed two types of analysis: differential gene expression analysis (DGEA) and gene regulatory
network inference (GRNI). DGEA gave 92,628 differentially expressed genes for 36 different diseases,
which correspond to 92,628 disease-gene relations, either positive or negative correlation, depending on
whether the genes are up or downregulated in the corresponding diseases. GRNI gave 101,392 gene
regulatory relations overall. We added close to 200,000 additional relations by analyzing this RNASeq
dataset.

Data Availability
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The datasets used in this study are available on the GitHub repository at
https://github.com/myinsilicom/iKraph®’. Dueto size limitations, additional large datasets can be accessed
viaZenodo at https://zenodo.org/records/14851275%. We used BioRED dataset to train our NER and RE
models, and the BioRED dataset can be accessed through https://ftp.nchi.nlm.nih.gov/pub/Iu/BioRED/.
The compl ete knowledge graph is hosted on the cloud-based platform: https.//www.biokde.com. The
downloadable version of the complete iKraph can be accessed via Zenodo at
https://zenodo.org/records/14851275%,

Code Availability
The code and datasets generated during this study can be found via the GitHub repository at:
https://github.com/myinsilicom/iKraph®’.
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Table 1: The Performance of the top teams in the LitCoin NLP challenge and BioCreative challenge VIII (BC8)
BioRED track subtask 2(End-to-End KG construction). The LitCoin NLP Challenge results include NER and RE
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scores, reported as Jaccard scores, and the overall score. Our team, JZhangLab@FSU, achieved the highest overall
score. The BioCreative VIII BioRED track Subtask 2 results present F1 scores for various evaluation metrics. Our
team, Insilicom, ranked first. ‘+* indicates additional task-specific scores. Bold values indicate the highest-
performing scores within each column in each competition.

Competition Team NER RE Overall +ID +Entity +Relation +Novelty
pair type

JZhangLab@FSU 09177 06332  0.7186 - - - -

LitCoin UTHealth SBMI 09309 05941  0.6951 - - - -
UIUCBioNLP 0.9068  0.5681 0.5681 - - - -
156 (Insilicom) 0.8926 - - 0.8407  0.5584 0.4303 0.3275
129 0.7858 - - 0.7635 0.4127 0.3103 0.2334

BCS 127 0.7830 - - 0.7598  0.3945 0.2976 0.2280
118 0.7831 - - 0.7561 0.3903 0.2859 0.2248
GPT-35+ 0.8652 - - 0.8565 0.3021 0.1081 0.0714
PubTator3
GPT-4+PubTator3 0.8652 - - 0.8565 0.3449 0.1704 0.1277
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Figure Legends

Fig. 1. A. Venn diagram for the number of PubMed articles containing certain types of entities; B. Venn diagram for
the number of PubMed articles containing certain types of relations; C. The composition of relationsin iKraph,
PubMed abstracts, public databases, and LitCoin dataset; D. The numbers of novel discoveries by entity pair type
from 1980 to 2020. E. Degree distribution of iKraph, where the x-axis represents the degree k of an individual
entity, and the y-axis p(k) denotes the corresponding probability of any entity exhibiting that degree.

Fig. 2. Drug repurposing for COVID-19. A. The number of repurposed drugs, number of verified drugs, and number
of COVID-19-related genes for the first four months of the COVID-19 pandemic (March to June 2020); B. The
number of verified drugs each month for those repurposed for Apr. 2020; C. The number of genesinvolved in the
drugs repurposed at present time (March 2023). The figure shows the top 50 repurposed drugs sorted from left to
right, with those on the left having higher scores. Almost all the repurposed drugs interact with many genes (height
of the bar) related to COVID-19. The mgjority of the drugs were reported as treatment for COVID-19 (36 out of 50).
Among those that were not reported as treatments for COVID-19, 11 out of 14 were hypothesized as potential
treatments.

Fig. 3. Drugrepurposing for cystic fibrosis. A. The number of repurposed drugs from 1985 to 2022. The dark
yellow bar shows the number of validated drugs. The blue line shows the time it takes to validate the targets for the
corresponding years. B. The number of drugs reported in PubMed from 1985 to 2022. The dark yellow bar shows
the drugs that have been predicted previously.

Fig. 4. F1 scoresfor drug repurposing prediction for 10 diseases and 10 common drugs. The calculation is
based on the top 50 repurposed drugs and the top 250 repurposed indications. The blue bars represent predictions
made using relations extracted from PubMed abstracts, and the orange bars represent predictions made using
relations from the database. Panels A and C are validated using therapeutic relations reported in the database, while
panels B and D are validated using therapeutic relations extracted from PubMed abstracts.

Fig. 5. The overview of our drug repurposing strategy and validation approach. A. Our method infers drug-
disease therapeutic relations through identifying an intermediate entity, the drug target of the disease, with causal
relations from the drug to a drug target, and from the drug target to the disease. B. Two scenarios correspond to a
drug-disease therapeutic relation: drug activates atarget, and the target represses the disease, or drug inhibits the
target, and the target promotes the disease. C. To infer an indirect relation from A (i.e. adrug) to C (i.e. adisease),
there can be many intermediate potential targets between them. For each relation formed by two entities, there could
be many scientific articles mentioning it. The probabilistic semantic reasoning (PSR) algorithm aggregates all the
information to make the inference, while identifying polypharmacological candidates. D. To validate adrug
repurposing study, we use atime-sensitive approach. We select many cutoff time points (lightbulb with a question
mark) and use the knowledge published before the cutoff time (indicated by an orange arrow) to generate predictions
and use the knowledge published after the cutoff time (lightbulbs on the green arrow) to validate our predictions.
The figure shows three sets of discoveries (blue, red, and yellow bulbs) using three different cutoff times. E.
Genistein's repurposing for COVID-19 treatment. Connected via 25 human genes represented by yellow ovals. The
diagram shows drug-gene and gene-disease correlations, with red lines indicating negative correlations and green
lines positive ones. Each connecting line is supported by multiple articles from which the correlation probabilities
are derived.
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