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Abstract 
To address the rapid growth of scientific publications and data in biomedical research, knowledge graphs 
(KGs) have become a critical tool for integrating large volumes of heterogeneous data to enable efficient 
information retrieval and automated knowledge discovery (AKD). However, transforming unstructured 
scientific literature into KGs remains a significant challenge, with previous methods unable to achieve 
human-level accuracy. In this study, we utilized an information extraction pipeline that won first place in 
the LitCoin NLP Challenge (2022) to construct a large-scale KG named iKraph using all PubMed 
abstracts. The extracted information matches human expert annotations and significantly exceeds the 
content of manually curated public databases. To enhance the KG’s comprehensiveness, we integrated 
relation data from 40 public databases and relation information inferred from high-throughput genomics 
data. This KG facilitates rigorous performance evaluation of AKD, which was infeasible in previous 
studies. We designed an interpretable, probabilistic-based inference method to identify indirect causal 
relations and applied it to real-time COVID-19 drug repurposing from March 2020 to May 2023. Our 
method identified 600-1400 candidate drugs per month, with one-third of those discovered in the first two 
months later supported by clinical trials or PubMed publications. These outcomes are very challenging to 
attain through alternative approaches that lack a thorough understanding of the existing literature. A 
cloud-based platform (https://biokde.insilicom.com) was developed for academic users to access this rich 
structured data and associated tools.  
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Introduction 
The sheer volume of information produced daily in scientific literature, expressed in natural languages, 
makes it impractical to manually read all publications, even within relatively narrow research areas. 
Additionally, advances in high-throughput technologies have led to the creation of enormous quantities of 
research data, much of which remains underutilized in various databases. This information explosion 
poses a major challenge for researchers to identify and develop innovative ideas using all the available 
data. Automated knowledge discovery (AKD, a.k.a. automated hypothesis generation) can help mitigate 
this problem by automating the process of data analysis, identifying patterns, and generating innovative 
insights and hypotheses1. In recent years, knowledge graphs (KGs) have been proposed as a powerful data 
structure for integrating heterogeneous data and for AKD2–8. KGs, with entities as nodes and their 
relationships as edges, represent human knowledge in a structured form, facilitating efficient and accurate 
information retrieval. Graph algorithms can be employed on KGs to infer potential relationships as 
plausible hypotheses between known entities.  
    Computational construction of KGs from unstructured text entails two steps: named entity recognition 
(NER) to identify key biological entities and relation extraction (RE) to extract relationships among 
entities.  Historically, NER and RE have been collectively referred to as information retrieval tasks. Early 
automated methods mainly fell into two categories: rule-based and machine learning-based. The rule-
based approach systematically extracted specific data based on predefined rules9–14, while the machine 
learning-based approaches inferred rules from annotated data usually with increased recall and overall 
performance15–30. The advent of machine learning led to more sophisticated methods that leveraged 
semantic information and sentence structure, resulting in significant improvements in information 
extraction effectiveness21,24. However, a gap remained compared to human proficiency.      

The emergence of deep learning models has allowed for a more nuanced utilization of information, 
such as semantic content and grammatical structures. By expanding the use of features and enhancing 
expressive capabilities, deep models have significantly improved the overall effectiveness of information 
extraction31–43. Recently, the technique of pretraining and large language models (LLMs) have garnered 
considerable attention, expanding both model complexity and the amount of training data and achieving 
remarkable progress in information retrieval tasks43–54. This was evidenced by the significant results in the 
BioCreative VII Challenge in 2021, where finetuning BERT-based models was widely used, and the top 
performance in some tasks closely matched human annotator performance. Subsequently, a highly 
advanced series of pre-trained models, like GPT-4, emerged55–57. These models have been proven to 
perform comparably or better to humans in multiple tasks, marking a significant breakthrough in the field.  

Recently, LLMs like GPT-4 have been explored for their integration with KGs, aiming to enhance 
tasks such as named entity recognition (NER), relation extraction, and event detection through techniques 
like zero-shot prompting, in-context learning, and multi-turn question answering58–60. While these models 
excel in generalization and large-scale data processing, they still struggle with domain-specific challenges, 
including handling long-tail entities61, directional entailments62, and inconsistencies in retrieving 
knowledge from paraphrased or low-frequency phenomena63,64. Experiments60 on datasets like DuIE2.065, 
Re-TACRED66, and SciERC67 highlight that fine-tuned small models continue to outperform GPT-like 
LLMs in KG-related tasks. Despite these limitations, LLMs have shown significant adaptability in 
augmenting KGs, particularly when structured data is limited, positioning them as a complementary tool 
for AKD58. 
    To facilitate the methodology development and identification of the most effective methods for KG 
construction, the National Center for Advancing Translational Sciences (NCATS) of the National 
Institutes of Health (NIH) organized the LitCoin natural language processing (NLP) challenge between 
Nov 2021 and Feb 2022. In the LitCoin NLP Challenge dataset, six common biological entity types were 
annotated: diseases, genes/proteins, chemical compounds, species, genetic variants, and cell lines. Eight 
relation types were also annotated for the entities: association, binding, comparison, conversion, 
cotreatment, drug interaction, positive correlation, and negative correlation. These entity types and 
relations are highly relevant in translational research and drug discoveries. Our team, JZhangLab@FSU, 
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participated in the challenge and won first place (https://ncats.nih.gov/funding/challenges/winners/litcoin-
nlp).  
    In this study, we applied our LitCoin NLP Challenge-winning information retrieval pipeline to all 
PubMed abstracts (cutoff date: May 2023) to construct a large-scale Biomedical Knowledge Graph 
(iKraph, the abbreviation for Insilicom's Knowledge Graph). Manual verification confirmed the pipeline’s 
accuracy at a human annotator level. By annotating the directions for the relations in the LitCoin dataset 
and training a model to predict the direction of relations, we constructed a causal knowledge graph (CKG) 
capable of making indirect causal inferences. To further enhance the coverage of iKraph, we integrated 
relation data from public databases and high-throughput genomics datasets, making it the most 
comprehensive, high-quality biomedical knowledge graph to date. To make causal inferences among the 
entities that are not directly connected in the KG, we designed a probabilistic-based approach, 
probabilistic semantic reasoning (PSR). PSR is highly interpretable as it directly infers indirect relations 
using direct relations through straightforward reasoning principles.  
    Navigating the modern drug development terrain is intricate and resource-intensive68. The ascent in 
costs largely stems from prior research exhausting more straightforward drug targets, necessitating a shift 
towards more complex ones69. In this setting, knowledge graphs play a pivotal role in automated 
knowledge discovery (AKD)2,70–72, particularly in the domain of drug target identification and drug 
repurposing73–77. A significant challenge in developing methods for such applications has been to 
comprehensively assess the effectiveness of these studies. For example, in the case of drug repurposing, 
collecting all the known therapeutic associations of a particular disease or drug requires a thorough search 
of the literature. Without such knowledge, it is impossible to rigorously evaluate drug repurposing 
methods. In our investigation, for each repurposing objective, we extracted all therapeutic associations 
documented in PubMed abstracts. This enabled us to measure recall and observed positive rate (OPR), 
which is infeasible in prior drug repurposing research.  

We demonstrate the power of our approach by conducting several drug repurposing studies: drug 
repurposing for COVID-19, cystic fibrosis, ten diseases without satisfactory treatment, and ten commonly 
prescribed drugs. For COVID-19 and cystic fibrosis, we performed retrospective, real-time drug 
repurposing exercises. Our method identified numerous viable candidates, supported by substantial 
literature evidence connecting the drug and disease entities. This level of interpretability is invaluable 
when determining the necessity of subsequent research endeavors. 
 
Results 
Building a Large-Scale Biomedical Knowledge Graph (iKraph) 

To facilitate the methodology development and identification of the most effective methods for KG 
construction, NIH organized the LitCoin natural language processing (NLP) challenge between Nov 2021 
and Feb 2022 (https://ncats.nih.gov/funding/challenges/litcoin). Our team, JZhangLab@FSU, participated 
in the challenge and won first place (Table 1). In the summer of 2023, we also participated in the BioRED 
track of the BioCreative Challenge VIII. In the end-to-end KG construction task, our team also achieved 
the highest score (Table 1)78. The LitCoin NLP Challenge dataset comprises 500 PubMed abstracts, each 
annotated with six distinct entity types and eight types of relations at the abstract level. We used the 
pipeline initially developed for the LitCoin challenge to process all PubMed abstracts available before 
May 2023, creating a large-scale Knowledge Graph, iKraph. In constructing iKraph, we processed over 
34 million PubMed abstracts, resulting in 10,686,927 unique entities and 30,758,640 unique relations. We 
incorporated entity normalization into our pipeline, as this was not a component of the LitCoin NLP 
challenge (see Supplementary Materials Section 1.2, 1.3 for more details).  

We evaluated the accuracy of our large-scale relation extraction (RE) and our novelty prediction results 
using a sample of 50 randomly selected PubMed abstracts, including 1583 entity pairs. The results shown 
in Supplementary Table 3 indicate that our information extraction performance rivals that of human 
annotations. A more in-depth analysis is available in the Supplementary Materials Section 2. 
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    Fig. 1A shows the number of PubMed abstracts containing one or more of the four major types of 
entities: diseases, genes, chemicals, and sequence variants. It is evident that diseases are the most 
common topic, with over 20 million articles referencing at least one disease entity, and nearly half of 
these articles focus exclusively on diseases. In contrast, gene mentions often coexist with other entities, 
such as chemicals and diseases. Fig. 1B depicts the number of PubMed abstracts containing one or more 
of the five major types of relations, offering insight into the distribution of topics in biomedical research. 
    Fig. 1C compares the relations extracted from PubMed with those from databases and the LitCoin 
dataset. There is a clear difference between the LitCoin dataset and general PubMed abstracts, as the 
former contains more relations in each abstract, especially those involving sequence variant entities79. 
This explains the performance difference of our pipeline on these two datasets. Relations from PubMed 
and public databases are also quite complimentary.  
    Fig. 1D shows the number of novel discoveries for different entity pairs over the year. We have 
observed a remarkable upswing in disease-gene relations since 2005, which underscores the tangible 
outcomes of translational initiatives promoted by federal agencies. Furthermore, the increasing number of 
disease-gene relations signifies an improved understanding of disease mechanisms at the molecular level, 
thereby bolstering efforts in drug discovery. Of particular note is the rapid escalation of chemical-disease 
relations in recent years, particularly around 2020, which is anticipated to continue in the foreseeable 
future. 
    We plotted p(k) vs k, where k is the degree of an entity in iKraph, and p(k) is the probability of an entity 
having degree k (Fig. 1E). We found that iKraph exhibits a scale-free topology with an alpha parameter 
value of around 3.0 (more details in Supplementary Materials Section 3).  

Supplementary Table 4 compares the numbers of relations for five types of entity pairs from all the 
public databases integrated into iKraph, those extracted from PubMed, and the numbers extracted if we 
use a simple co-occurrence rule, which considers two entities having a relation if they co-occur in an 
abstract. On the one hand, iKraph has significantly more numbers of relations than those from public 
databases. On the other hand, the numbers of co-occurrences are much larger than relations extracted 
from PubMed, indicating a substantial noise reduction by explicitly extracting relations from literature 
compared to retrieval using keywords.   
Constructing a causal knowledge graph  

We developed a model to predict the direction of correlation relations in the LitCoin dataset, 
identifying whether the relation flows from entity1 to entity2 or entity2 to entity1. Adding this directional 
information transformed correlations into potential causal relationships, allowing us to construct a 
directed knowledge graph for knowledge discovery applications. 
PSR for inferring indirect relationships 
    With directional information, we can infer relations between indirectly connected entities using 
straightforward reasoning. To this end, we designed the probabilistic semantic reasoning (PSR) algorithm, 
which is both efficient and interpretable. PSR enables all-against-all drug repurposing for all drugs and 
diseases with limited computational resources and allows efficient updates of newly inferred relations. 
For instance, freshly published PubMed articles can be processed daily to extract discoveries and generate 
hypotheses for timely dissemination. In contrast, most machine learning methods struggle to achieve this 
level of efficiency and interpretability. 
Drug repurposing for Covid-19 using iKraph. 
    Using the PSR algorithm, we conducted a retrospective, real-time drug repurposing study for COVID-
19 spanning from March 2020 to May 2023 (Fig. 2). During this period, we consistently discovered 
repurposed drugs based on the drug targets reported for COVID-19 between March and June 2020. A 
candidate drug has at least one directed path to COVID-19 through an intermediate gene. We checked 
whether any repurposed drugs were later validated by either PubMed literature or clinical trials through a 
monthly assessment. The validation involved scrutinizing whether these repurposed drugs had been 
subsequently tested in clinical trials documented on ClinicalTrials.gov or had published therapeutic 
efficacy in COVID-19 patients in PubMed abstracts. Notably, drugs identified in clinical trials may not 
always translate into effective treatments for COVID-19. Nevertheless, they serve as valuable hypotheses, 
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aligning with the primary objective of our drug repurposing approach. As shown in Error! Reference 
source not found.A, we were able to identify nearly 600 to 1,400 candidate drugs from iKraph using 
PSR. Remarkably, one-third of the repurposed drugs identified during the initial two months were later 
validated as effective treatments or plausible potential treatments worthy of clinical trials. Importantly, 
even drugs that did not achieve validation status remain viable hypotheses, warranting further 
investigation, particularly when existing treatments prove less than optimal. 
    Fig. 2B shows a timeline of repurposed drug validation. Notably, there is a surge in validated drugs 
during the first year, which subsequently shows a month-to-month decline. This trend suggests most 
repurposed drugs align with practitioners’ early assessments. Some drugs were validated only in the 
second or third year, indicating they were less immediately evident. The number of drugs validated 
through publications matches those validated via clinical trials. While numerous drug repurposing studies 
for COVID-19 exist80–83, as per our understanding, no prior research has as thoroughly validated such a 
vast quantity of repurposed drugs as we have in this research. These results highlight iKraph’s ability to 
identify promising drug candidates for specific diseases in real-time. 
    We then conducted drug repurposing for COVID-19 in the current timeframe (Fig. 2C). We did not 
exclude drugs already reported as treatments for COVID-19 (direct relations). This was to observe if our 
repurposing efforts agree with existing treatment choices for COVID-19. Fig. 2C displays the top 50 
repurposed drugs. Notably, most of these drugs (36 out of 50) have published studies mentioning either 
their potential therapeutic efficacy or demonstrated therapeutic efficacy for phenotypes associated with 
COVID-19. Among the remaining 14, 11 have been proposed as potential treatments for COVID-19 
(citations provided in Supplementary Table 3). For each drug, numerous genes that link COVID-19 with 
the drug were identified (y-axis of Fig. 2C). Additionally, each of these relations, whether drug-gene or 
gene-COVID-19, is supported by one or multiple articles. To our knowledge, none of the previous 
literature-based COVID-19 repurposing studies has yielded such comprehensive findings.   
Drug repurposing for cystic fibrosis using iKraph. 

We applied PSR to uncover indirect relationships between drugs and cystic fibrosis (CF) from 1985 to 
2022 (Fig. 3). Since the early 1990s, at least 50 potential repurposed drugs have been identified annually. 
A drug was considered validated if later reported as directly therapeutic for CF. Historically, estimating 
these metrics was challenging due to reliance on manual literature searches. We calculated recall 
(percentage of known direct relations successfully repurposed) and observed positive rate (OPR, 
percentage of repurposed cases with reported direct relations). Unlike precision, OPR accounts for 
potential candidates awaiting validation. From 1990 to 2022, the average recall is 0.635 (Fig. 3B), and the 
average OPR from 1985 to 2011 is 0.159. Different time intervals were used because OPR requires earlier 
predictions, while recent predictions need time for validation. 

We calculated the typical duration for these repurposed drugs to be validated. Remarkably, our 
proposed drugs typically appeared in literature 2 to 33 years later, with a median validation time of 9.4 
years (Fig. 3A). Assuming experimental validation takes 2 years on average, iKraph could hypothetically 
reduce this time from 9 to 2 years if predictions were acted on immediately. With over 63% recall and a 
9-year median lag, our findings highlight iKraph’s potential to accelerate drug repurposing and validation 
for cystic fibrosis treatment. 
Drug repurposing for 10 diseases and 10 drugs 
    To evaluate our method’s versatility, we extended drug repurposing to ten diseases lacking satisfactory 
treatments and ten commonly prescribed drugs (Supplementary Figure 3). Our PSR algorithm identified a 
vast array of candidates for these drugs and indications. For each drug (or disease) assessed, we calculated 
both the recall and the observed positive rate (OPR). Impressively, our findings revealed average recall 
values of 0.76 for disease repurposing and 0.86 for drug repurposing. This exceptional recall rate 
emphasizes the potency of iKraph coupled with our PSR algorithm in spotlighting viable drug 
repurposing candidates. Notably, these elevated recall rates were achieved without an excessive number 
of predictions. The observed OPRs remained commendable at 0.197 for diseases and 0.07147 for drugs. 
Importantly, a significant proportion of indications repurposed for these drugs are not associated with any 
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treatments in PubMed abstracts. This suggests that certain ailments might still be without treatments, and 
these widely used drugs could potentially fill those therapeutic gaps. 
    We extended our analysis by using relations from a database, alongside those extracted from PubMed 
abstracts, to make drug repurposing predictions. Fig. 4 illustrates the F1 scores for these comparisons 
based on the top 50 predicted repurposed drugs and the top 250 predicted indications. In each panel, blue 
bars represent PubMed-based predictions, while orange bars represent database-based predictions. Most 
repurposed drugs or diseases showed higher F1 scores using PubMed-derived predictions, likely due to 
the greater amount of information available in PubMed, which databases cannot match. 
 
Discussion  
    Converting unstructured scientific literature into structured data has been a long-standing challenge in 
natural language processing (NLP). Successfully addressing this issue can potentially revolutionize the 
pace of scientific discoveries. Although numerous studies have been conducted over the years, 
computational methods have yet to achieve the precision of manual annotation in relation to extraction, 
posing a significant hurdle. The emergence of LLMs in recent years has ushered in noteworthy 
advancements in information extraction through LLM fine-tuning. In this paper, we report the first 
utilization of a human-level information extraction pipeline to construct a large-scale biomedical 
knowledge graph by processing all the abstracts in PubMed. By further integrating relation data from 40 
public databases and those analyzed from publicly available genomics data, the resulting knowledge 
graph, dubbed iKraph, stands out as perhaps the most all-encompassing biomedical knowledge graph 
constructed so far. The coverage of iKraph is much larger than public databases for the relations we have 
extracted. The construction of a causal knowledge graph and the design of an interpretable PSR algorithm 
allows us to perform automated knowledge discovery very effectively. The exhaustive nature of iKraph 
allows us to perform research that was infeasible previously. For the first time, we were able to evaluate 
the performance of automated knowledge discoveries systematically and rigorously by calculating recalls 
and observed positive rates (OPRs). Without the knowledge of all PubMed abstracts in a structured form, 
one must perform a manual search of the literature, which would not be feasible for a relatively large 
number of predictions. We summarize the notable advances in this study, including some unique iKraph-
enabled capabilities in Supplementary Material Box S1, and discuss some of them below. 
    The biomedical research community has traditionally invested significant resources and human effort 
in knowledge curation through manual annotations. Our research suggests a paradigm shift, leveraging 
the capabilities of modern LLMs. By initially producing a limited set of high-caliber labeled data, it is 
feasible to train an information extraction model that operates at human-level precision on much larger 
text datasets. This methodology could notably expand the reach of public databases without 
compromising data quality.  

Utilizing iKraph for knowledge discovery tasks, such as drug repurposing, has yielded a vast array of 
credible candidates supported by an unparalleled volume of literature evidence. This underscores the 
potential of structured knowledge in hastening scientific breakthroughs. In our drug repurposing 
endeavors for COVID-19, we highlighted iKraph's proficiency in identifying treatments for pandemics, 
marking it as an indispensable asset for potential future outbreaks.  

Many users might inquire about how iKraph handles noisy information from low-quality papers. Our 
approach involves aggregating the probabilities of relations (e.g., between A and B) across multiple 
papers. Each paper assigns a probability to a specific relation, and these probabilities are combined to 
form an overall score. The more papers that mention the relation, the higher the final probability, making 
it less susceptible to noise. Relations with low-quality evidence tend to appear in fewer papers, resulting 
in lower scores. However, while this method provides a strong foundation for handling noisy data, future 
improvements could involve weighting papers based on factors like journal impact factor, citation count, 
and publication date. Integrating such metrics aligns with approaches demonstrated in prior work, where 
features like author diversity, institutional independence, and publication density were found to predict 
the robustness and reproducibility of scientific claims84. Integrating these metrics would allow us to refine 
the score further by giving more weight to higher-quality sources. For example, papers published in high-
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impact journals or those widely cited in the scientific community may provide stronger evidence for a 
relation than those from less reputable sources. Additionally, the publication date can be factored in to 
balance the relevance of older versus newer findings, ensuring that the most current and impactful 
research plays a more prominent role in shaping the final probability. This reflects insights from robust 
scientific literature, where combining high-throughput experimental data with features predictive of 
reliability has shown promise in assessing the reproducibility of claims84. This holistic approach would 
help iKraph remain robust against misinformation while continuously improving the accuracy of its 
predictions through adaptive weighting. 

Finally, we would like to put our study in the context of the LLMs popular in the current NLP research 
community. While LLMs have showcased exceptional capabilities in understanding and generating 
natural language, they aren't without shortcomings. A notable limitation is their fixed knowledge cut-off 
date, which restricts their awareness of the very latest developments. Furthermore, in biomedical research, 
where precision is crucial, relying solely on LLMs to answer specific questions risks inaccuracies due to 
their limited knowledge base. Additionally, LLMs possess a propensity to generate text that, while 
convincingly articulated, may lack factual accuracy. This propensity raises concerns regarding the 
veracity of answers generated by LLMs, necessitating mechanisms for verification and the production of 
more substantiated results, possibly with appropriate citations. We believe that integrating knowledge 
graphs like iKraph with LLMs can effectively mitigate these limitations. To this end, we are actively 
developing a comprehensive question-answering system, combining iKraph with an open-source LLM. 

In the Supplementary Materials Section 6, we delve into future research avenues and the challenges 
we've faced. In summary, iKraph serves as a powerful enabler for more effective and efficient 
information retrieval and automated knowledge discovery.  
 
Methods 
1. Information extraction pipeline 
We utilized the pipeline crafted during the LitCoin NLP Challenge 
(https://ncats.nih.gov/funding/challenges/litcoin) to process all PubMed abstracts available until 2022, 
along with data from several renowned biomedical databases, leading to the creation of the Knowledge 
Graph, iKraph. The construction of iKraph involves three primary stages: named entity recognition 
(NER), relation extraction (RE), and novelty classification. The details of the methods can be found in the 
Method section in the Support Information. When developing the pipeline for LitCoin Challenge, we 
tested a large set of pre-trained language models including BERT46, BioBERT48, PubMedBERT85 abstract 
only, PubMedBERT fulltext, sentence BERT86, RoBERTa87, T588, BlueBERT89, SciBERT54, and 
ClinicalBERT90. We tested many ideas, such as different loss functions, data augmentations, different 
settings of label smoothing, different ways of ensemble learning, etc. Our final pipelines contain the 
following components: (1) Improved in-house script for data processing, including sentence split, 
tokenization, and entity tagging; (2) RoBERTa large and PubMedBERT models as baseline models for 
NER task; (3) Ensemble modeling strategy that combines models trained with different parameter settings, 
different random seeds and at different epochs for both NER and RE; (4) Label smoothing for both NER 
and RE; (5) Using Ab3P91 for handling abbreviations for NER; (6) Modified classification rule tailored 
for LitCoin scoring method; and (7) Training a multi-sentence model for predicting relations at document 
level, which gave a very competitive baseline for relation extraction.  

We used the pipeline developed in the LitCoin challenge to process all the abstracts in the PubMed 
database, which contains over 34 million abstracts, resulting in 10,686,927 unique entities and 30,758,640 
unique relations.  
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2. Constructing a causal knowledge graph 

    To infer causal relations, we first annotated causal direction for 4,572 relations in the LitCoin dataset. 
Among them, 2,009 cases have direction from the first entity to the second; 1,611 cases have direction 
from the second entity to the first; and 952 cases have no direction. This annotation allowed us to train a 
model for predicting the directions for relations, which achieved an F1 score of 0.924 in a 5-fold cross-
validation test on the LitCoin dataset. Using a causal knowledge graph, we can infer indirect causal 
relations more effectively for entities not directly connected in the knowledge graph – an essential task in 
automated knowledge discovery.  

   To make inferences using the causal knowledge graph, we designed a probabilistic semantic reasoning 
(PSR) algorithm, which calculates the probability of a true relation between two entities connected 
directly or indirectly. For two entities with a direct edge (a relation mentioned in the literature), there can 
be multiple mentions in different articles. It is necessary to estimate an overall probability for this pair, 
which will be used for estimating probabilities for indirectly connected entity pairs. PSR is highly 
interpretable, which is key for the validation of predictions. 

The overall drug repurposing strategy and validation approach are depicted in Fig. 5, with some details 
provided in the figure legend. 
2.1 Probabilistic Semantic Reasoning (PSR) 
    To make inferences using the causal knowledge graph, we designed a probabilistic framework, 
probabilistic semantic reasoning (PSR), for inferring indirect causal relations. PSR is highly interpretable, 
which is critical for the validation of predictions. There can be multiple mentions in different articles of 
two entities with a direct edge (a relation mentioned in the literature). It is necessary to estimate an overall 
probability for this pair, which will be used for estimating probabilities for indirectly connected entity 
pairs.  
  To simplify the discussion, let’s assume we want to infer the indirect relation from A to C using direct 
relations from A to B and the relation from B to C. To infer the indirect relation, we first extract the two 
direct relations. As mentioned earlier, relation A to B and B to C will likely occur many times in different 
PubMed abstracts. We calculate the overall probability of whether two entities have a particular relation 
using the formula:  

���� � 1 � ∏ �1 � ����
� ��

���                   (1) 
    In Equation (1), ���� is the overall probability of A-B entity pair having a particular relation, ����

�  is 
the probability of being true for the i-th occurrence of these two entities in a PubMed abstract, 1 � ����

�  
is the probability of this occurrence being false, and ∏ �1 � ����

� ��
��� is the probability that all the 

occurrences being false (assuming the predictions for these occurrences are independent). The probability 
of all occurrences being false, when subtracted by 1, gives the probability that at least one of them is true, 
which is the desired probability. It is also possible that several different relation types will be inferred for 
a single pair of entities. Often, only one relation type is true, and others may be wrong predictions. To 
simplify the inference, we selected the relation type with the highest probability as the true relation type 
for any pair of entities. In reality, there can be multiple entities linking A to C. We denote one of them as 
Bj. Then, the probability of A to C through Bj can be calculated as: 

  ��,��,	
� ��,��

· ���,	
                        (2) 

    Equation (2) is straightforward since for the indirect relation between A and C (direction from A to C) 
to be true, both the direct relations must be true. Again, we assume the predictions for the two direct 
relations are independent. The probability between A to C through m intermediate nodes can then be 
calculated as 

��,·,	 � 1 � ∏ �1 � ��,��,	
��

���                                    (3) 
    In Equation (3), we use ��,·,	  to denote the probability that the indirect relation between A and C 
through any intermediate entity and there is m such intermediate entities that link A and C. The argument 
for this formula is similar to equation (1). Putting equations 1-3 together, we get   
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��,·,	 � 1 � ∏ �1 � �1 � ∏ �1 � ��,��

�
��


��� · �1 � ∏ �1 � ���,	
� ����

���
�
���              (4) 

In Equation (4), m entities are l A and C, n instances of A-Bi relations in literature, and l instances of 
Bi-C relations in literature. Extending this to multiple intermediate nodes between A and C is relatively 
straightforward. The above probabilistic framework will allow us to rank all the indirect relations that can 
be inferred. To infer the relation type (positive correlated or negative correlated) between two entities, 
which multiple intermediate entities could link, we use 1 to represent positive correlations, -1 to represent 
negative correlations, and 0 to represent unknown correlation type between any two entities connected by 
a direct edge and multiply all the correlations together. The resulting value, 1, -1, or 0 will give us the 
correlation type between the two entities. If there is at least one unknown correlation type (0) between the 
two entities, the overall correlation type is unknown. If there is no 0 and an even number of negative 
correlations, then the overall correlation type will be a positive correlation; otherwise, it is a negative one. 
For A-C entity pair to have a non-zero probability, there must be a path from A to C with all the 
directions going from A to C, such as A->B->D->C, while A->B<-D->C is not a valid path from A to C.         

In this manuscript, we show one application of PSR using our iKraph that calculates the indirect 
relationship between two entities: discover the repurposed drug. We present two study cases for 
identifying repurposed drugs for COVID-19 and cystic fibrosis, along with an additional study that 
involves predicting both repurposed drug candidates for 10 common diseases and potential additional 
uses for 10 common drugs. The details can be found in the Section 1.7 in SI. Fig. 5E illustrates 
Genistein's repurposing for COVID-19 treatment, interacting with 25 human genes. It negatively affects 3 
genes that have a positive impact on COVID-19 while positively influencing the remaining 22 genes, 
which are negatively associated with the disease. This evidence supports Genistein's potential as a 
COVID-19 treatment candidate.  

  
3. Integrating relations from public databases 
    To integrate the relations in the public databases, we downloaded the relations from two databases that 
have integrated data from a large number of databases recently, Hetionet73 and primeKG92, where 
Hetionet has integrated data from 29 databases and primeKG has integrated data from 20 databases. The 
total number of unique databases from both sources is 38. In addition, we extracted drug-target relations 
from the Therapeutic Target Database (TTD)93 and GO annotation94,95. In total, we integrated relation data 
from 40 public databases. The KG covers twelve common entity types: diseases, chemical compounds, 
species, genes/proteins, mutations, cell lines, anatomy, biological processes, cellular components, 
molecular function, pathway, and pharmacologic class. It covers fifty-three different relation types. 
Among them, eight were annotated in the LitCoin dataset: association, positive correlation, negative 
correlation, bind, cotreatment, comparison, drug interaction, and conversion. Other relation types came 
from public databases. When incorporating relations from public databases to maintain the quality of the 
resulting KG, we excluded relations generated by high-throughput experiments, which are well-known to 
have a high proportion of false positives, and those predicted by previous machine learning models. 

4. Incorporating relations from analyzing RNASeq data  

We downloaded more than 300,000 human RNASeq profiles from the recount3 database96. We 
performed two types of analysis: differential gene expression analysis (DGEA) and gene regulatory 
network inference (GRNI). DGEA gave 92,628 differentially expressed genes for 36 different diseases, 
which correspond to 92,628 disease-gene relations, either positive or negative correlation, depending on 
whether the genes are up or downregulated in the corresponding diseases. GRNI gave 101,392 gene 
regulatory relations overall. We added close to 200,000 additional relations by analyzing this RNASeq 
dataset. 
 

Data Availability 
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The datasets used in this study are available on the GitHub repository at 
https://github.com/myinsilicom/iKraph97. Due to size limitations, additional large datasets can be accessed 
via Zenodo at https://zenodo.org/records/1485127598. We used BioRED dataset to train our NER and RE 
models, and the BioRED dataset can be accessed through https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/. 
The complete knowledge graph is hosted on the cloud-based platform: https://www.biokde.com. The 
downloadable version of the complete iKraph can be accessed via Zenodo at 
https://zenodo.org/records/1485127598. 

 
Code Availability 
The code and datasets generated during this study can be found via the GitHub repository at: 
https://github.com/myinsilicom/iKraph97.  
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Table 1: The Performance of the top teams in the LitCoin NLP challenge and BioCreative challenge VIII (BC8) 
BioRED track subtask 2(End-to-End KG construction). The LitCoin NLP Challenge results include NER and RE 
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scores, reported as Jaccard scores, and the overall score. Our team, JZhangLab@FSU, achieved the highest overall 
score. The BioCreative VIII BioRED track Subtask 2 results present F1 scores for various evaluation metrics. Our 
team, Insilicom, ranked first. ‘+’ indicates additional task-specific scores. Bold values indicate the highest-
performing scores within each column in each competition.  
Competition Team NER RE Overall +ID +Entity 

pair 
+Relation 

type 
+Novelty 

LitCoin 

JZhangLab@FSU 0.9177 0.6332 0.7186 - - - - 

UTHealth SBMI 0.9309 0.5941 0.6951 - - - - 

UIUCBioNLP 0.9068 0.5681 0.5681 - - - - 

BC8 

 

156 (Insilicom) 0.8926 - - 0.8407 0.5584 0.4303 0.3275 

129 0.7858 - - 0.7635 0.4127 0.3103 0.2334 

127 0.7830 - - 0.7598 0.3945 0.2976 0.2280 

118 0.7831 - - 0.7561 0.3903 0.2859 0.2248 

GPT-3.5 + 
PubTator3 

0.8652 - - 0.8565 0.3021 0.1081 0.0714 

GPT-4+PubTator3 0.8652 - - 0.8565 0.3449 0.1704 0.1277 
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Figure Legends 

Fig. 1. A. Venn diagram for the number of PubMed articles containing certain types of entities; B. Venn diagram for 
the number of PubMed articles containing certain types of relations; C. The composition of relations in iKraph, 
PubMed abstracts, public databases, and LitCoin dataset; D. The numbers of novel discoveries by entity pair type 
from 1980 to 2020. E. Degree distribution of iKraph, where the x-axis represents the degree k of an individual 
entity, and the y-axis p(k) denotes the corresponding probability of any entity exhibiting that degree.  
 

Fig. 2. Drug repurposing for COVID-19. A. The number of repurposed drugs, number of verified drugs, and number 
of COVID-19-related genes for the first four months of the COVID-19 pandemic (March to June 2020); B. The 
number of verified drugs each month for those repurposed for Apr. 2020; C. The number of genes involved in the 
drugs repurposed at present time (March 2023). The figure shows the top 50 repurposed drugs sorted from left to 
right, with those on the left having higher scores. Almost all the repurposed drugs interact with many genes (height 
of the bar) related to COVID-19. The majority of the drugs were reported as treatment for COVID-19 (36 out of 50). 
Among those that were not reported as treatments for COVID-19, 11 out of 14 were hypothesized as potential 
treatments.  
 

Fig. 3. Drug repurposing for cystic fibrosis. A. The number of repurposed drugs from 1985 to 2022. The dark 
yellow bar shows the number of validated drugs. The blue line shows the time it takes to validate the targets for the 
corresponding years. B. The number of drugs reported in PubMed from 1985 to 2022. The dark yellow bar shows 
the drugs that have been predicted previously. 

 

Fig. 4. F1 scores for drug repurposing prediction for 10 diseases and 10 common drugs. The calculation is 
based on the top 50 repurposed drugs and the top 250 repurposed indications. The blue bars represent predictions 
made using relations extracted from PubMed abstracts, and the orange bars represent predictions made using 
relations from the database. Panels A and C are validated using therapeutic relations reported in the database, while 
panels B and D are validated using therapeutic relations extracted from PubMed abstracts. 
 

Fig. 5. The overview of our drug repurposing strategy and validation approach. A. Our method infers drug-
disease therapeutic relations through identifying an intermediate entity, the drug target of the disease, with causal 
relations from the drug to a drug target, and from the drug target to the disease. B. Two scenarios correspond to a 
drug-disease therapeutic relation: drug activates a target, and the target represses the disease, or drug inhibits the 
target, and the target promotes the disease. C. To infer an indirect relation from A (i.e. a drug) to C (i.e. a disease), 
there can be many intermediate potential targets between them. For each relation formed by two entities, there could 
be many scientific articles mentioning it. The probabilistic semantic reasoning (PSR) algorithm aggregates all the 
information to make the inference, while identifying polypharmacological candidates. D. To validate a drug 
repurposing study, we use a time-sensitive approach. We select many cutoff time points (lightbulb with a question 
mark) and use the knowledge published before the cutoff time (indicated by an orange arrow) to generate predictions 
and use the knowledge published after the cutoff time (lightbulbs on the green arrow) to validate our predictions. 
The figure shows three sets of discoveries (blue, red, and yellow bulbs) using three different cutoff times. E. 
Genistein's repurposing for COVID-19 treatment. Connected via 25 human genes represented by yellow ovals. The 
diagram shows drug-gene and gene-disease correlations, with red lines indicating negative correlations and green 
lines positive ones. Each connecting line is supported by multiple articles from which the correlation probabilities 
are derived.  
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