bioRxiv preprint doi: https://doi.org/10.1101/2023.10.06.561165; this version posted March 27, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

O 0 3 N D W N

A PA D D W W W W W W W W W WK N DN DNDNDDNDNDNDNDN = o e e e e e e
W — OO0 02NNk W — O VOO WUVM PP~ WO WLWOWIONWM P WIDNDRRO

N
=

made available under aCC-BY-NC-ND 4.0 International license.

The spatiotemporal distribution of human pathogens in
ancient Eurasia and the emergence of zoonotic diseases

Martin Sikora"", Elisabetta Canteri®, Antonio Fernandez-Guerra', Nikolay Oskolkov®, Rasmus
Agren4, Lena Hansson’, Evan K. Irving—Peasez, Barbara Mithlemann®’, Sofie Holtsmark Nielsen®,
Gabriele Scorrano'’, Morten E. Allentoft"!°, Frederik Valeur Seersholm', Hannes Schroeder?,
Charleen Gaunitz', Jesper Stenderup', Lasse Vinner', Terry C. Jones>*’, Bjérn Nystedt'?, Karl-Goran
Sjogren'?, Julian Parkhill'®, Lars Fugger'>'®!”, Fernando Racimo?, Kristian Kristiansen"", Astrid K.
N. Iversen® """, Eske Willerslev!!®!*"

'Centre for Ancient Environmental Genomics & The Lundbeck Foundation GeoGenetics Centre,
Globe Institute, University of Copenhagen, Copenhagen, Denmark

?Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen,
Copenhagen, Denmark

*Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory,
Lund University, Lund, Sweden

“Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden,
Science for Life Laboratory, Chalmers University of Technology, Goéteborg, Sweden

*Definitive Healthcare, Gothenburg, Sweden.

SInstitute of Virology, Charité — Universititsmedizin Berlin, corporate member of Freie Universitit
Berlin, Humboldt-Universitit zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
’German Centre for Infection Research (DZIF), partner site Charité, 10117 Berlin, Germany
8Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark

’Center for Molecular Anthropology for the study of ancient DNA, Department of Biology,
University of Rome "Tor Vergata", 00173 Rome, Italy.

'"Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin
University, Perth, Australia

"'Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge, UK
“Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science
for Life Laboratory, Uppsala University, Uppsala, Sweden

“Department of Historical Studies, University of Gothenburg, Gothenburg, Sweden.

"“Department of Veterinary Medicine, University of Cambridge, Cambridge, UK

>Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, John
Radcliffe Hospital, University of Oxford, Oxford, UK

'MRC Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
""Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine,
University of Oxford, Oxford, UK

18Department of Genetics, University of Cambridge, Cambridge, UK

"MARUM Center for Marine Environmental Sciences and Faculty of Geosciences, University of
Bremen, Bremen, Germany

* Corresponding authors; email: martin.sikora@sund.ku.dk;

astrid.iversen@ndcn.ox.ac.uk;ewillerslev@sund.ku.dk



https://doi.org/10.1101/2023.10.06.561165
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.06.561165; this version posted March 27, 2025. The copyright holder for this preprint

45

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
&3
84
85
86
87
88
&9
90

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

made available under aCC-BY-NC-ND 4.0 International license.

Summary

Infectious diseases have had devastating impacts on human populations throughout history, but
important questions about their origins and past dynamics remain'. To create the first archacogenetic-
based spatiotemporal map of human pathogens, we screened shotgun sequencing data from 1,313
ancient humans covering 37,000 years of Eurasian history. We demonstrate the widespread presence
of ancient bacterial, viral and parasite DNA, identifying 5,486 individual hits against 492 species
from 136 genera. Among those hits, 3,384 involve known human pathogens®, many of which were
detected for the first time in ancient human remains. Grouping the ancient microbial species
according to their likely reservoir and type of transmission, we find that most groups are identified
throughout the entire sampling period. Intriguingly, zoonotic pathogens are only detected ~6,500
years ago, peaking ~5,000 years ago, coinciding with the widespread domestication of livestock®. Our
findings provide the first direct evidence that this lifestyle change resulted in an increased infectious
disease burden. Importantly, they also suggest that the spread of these pathogens increased
substantially during subsequent millenia, coinciding with the pastoralist migrations from the Eurasian
Steppe*”.

Introduction

Pathogens have been a constant threat to human health throughout our evolutionary history. Until
approximately 1850, at least a quarter of all children died before age one, and around another quarter
before turning 15. Infectious diseases are estimated to have been responsible for over half of these
deaths®. Larger disease outbreaks have profoundly impacted human societies, sometimes
devastatingly affecting entire civilizations’. Infectious diseases have left lasting impressions on
human genomes, as selective pressures from pathogens have continuously shaped human genetic
variation® '°. Where and when different human pathogens first emerged, how and why they spread,
and how they affected human populations are important but largely unresolved questions.

During the Holocene (beginning ~12,000 years ago), the agricultural transition created larger and
more sedentary communities, facilitating pathogen transmission and persistence within populations'".
Simultaneously, the rise of animal husbandry and pastoralism are thought to have increased the risk of
zoonoses”. Technological advances, such as horses and carts, increased both mobility and the risk of
disease transmission between populations'?. It has been hypothesised that these changes led to the so-
called “first epidemiological transition” characterised by increased infectious disease mortality’.
However, direct evidence remains scarce and the idea is debated'®. Paleopathological examinations of
ancient skeletons offer insights into past infectious disease burden'?, but are limited to few diseases
identifiable from the available tissue. Recent advances in ancient DNA (aDNA) techniques allow for
the retrieval of direct genomic evidence of past microbial infections, which can enable the
reconstruction of complete ancient pathogen genomes. These studies have typically concentrated on
specific pathogens and have provided surprising insights into the evolutionary history of the causative
agents of some of the most historically important infectious diseases affecting humans, including
plague (Yersinia pestis)'>'"> "%, tuberculosis (Mycobacterium tuberculosis)***, smallpox (Variola
virus)***?, Hepatitis B (Hepatitis B virus)*™* and others®'*°. However, there is an unmet need to
investigate the combined landscape of ancient bacteria, viruses, and parasites that impacted our
ancestors across various regions and time periods. Here we use a new high-throughput computational
workflow to screen for ancient microbial DNA and use our data to investigate long-standing questi no
ons in paleoepidemiology: When and where did important human pathogens arise? And what factors
influenced their spatiotemporal distribution?
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91  Ancient microbial DNA in remains of 1,313 Eurasians

92  To understand the distribution of ancient pathogenic challenges, we developed an accurate and

93  scalable workflow to identify ancient microbial DNA in shotgun-sequenced aDNA data (Extended

94  Data Figs. 1-4; Supplementary information 1). The data (~405 billion sequencing reads) derived from

95 1,313 ancient individuals from Western Eurasia (n=1,015; 77%), Central and North Asia (n=265;

96  20%) and Southeast Asia (n=33; 3%), spanning a ~37,000 year period, from the Upper Paleolithic to

97  historical times (Fig. 1b; Supplementary table S1; Supplementary information 2). As burial practices

98  varied across cultures and time, these samples represent a subset of groups within past societies.

99  Nevertheless, the identified pathogens likely affected the broader population, as diseases spread easily
100 in communities with poor sanitation and hygiene?’. Initial metagenomic classification showed a large
101  fraction of reads classified as soil-dwelling taxa including genera such as Streptomyces or
102 Pseudomonas, reflecting a predominantly environmental source of microbial DNA. Further
103 characterization using topic-model however suggested that microbial DNA in ancient tooth samples
104  often derives from genera commonly associated with the human oral microbiome such Actinomyces
105  or Streptococcus (Extended Data Fig. 1d-g).

106
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108 Fig. 1. Dataset overview. Spatiotemporal distribution and site contexts of the study samples. White squares in the

109 geographic maps indicate locations of the full set of 1,313 study samples, whereas coloured circles highlight location and
110 age of samples from the time period and region indicated in the respective panel. Bar plots show numbers of samples for
111 different site type contexts in each region (nd - not determined).

112

113 We selected a set of 136 bacterial and protozoan genera (11,553 species total) containing human

114 pathogenic species® as well as 1,356 viral genera (259,979 species total) for further authentication and
115  detection of ancient taxa. We found that ancient microbial DNA was widely detected, with 5,486

116  authenticated individual hits identified across 1,005 samples (Z-score for aDNA damage rate from
117  metaDMG > 1.5; Fig. 2a; Supplementary table S2; Extended Data Fig. 4). Of those, 3,384 hits were
118 found among 214 known human pathogen species?, with the remaining 2,104 hits involving 278 other
119 species. The highest numbers were observed in bacterial genera associated with the human oral
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microbiome, such as Actinomyces (380; 28.5% of samples) and Streptococcus (242; 18.1% of
samples) or those commonly found in soil environments, such as Clostridium (252; 18.9% of
samples) and Pseudomonas (111; 8.3% of samples).

We observed marked differences in the distributions of the genetic similarity of the ancient microbial
sequences to their reference assemblies, both among genera and between species within a genus (Fig.
2b; Extended Data Fig. 5).. High average nucleotide identity (ANI) indicates that ancient microbial
sequences are closely related to a reference assembly in the modern database, and was observed in
hits across all species from some genera (e.g. Yersinia, Fig. 2b). In other genera, only a few hits had a
closely related database reference assembly match. An example is the genus Mycobacterium, where
only hits of the leprosy-causing bacterium Mycobacterium leprae were highly similar to their
reference assembly (ANI > 99%; Fig. 2b). Low ANI indicates that the ancient microbial DNA is only
distantly related to the reference assembly, for example, due to aDNA damage, poor representation of
the diversity of the genus in the database or false-positive classification of ancient microbial reads
deriving from a related genus (Extended Data Fig. 3). Alternatively, ANI can also be reduced when
reads mapped to a particular reference assembly originate from multiple closely related strains or
species in a sample. To test for such mixtures, we quantified the rate of observing different alleles at
two randomly sampled reads at nucleotide positions across the genomes of hits with read depth >1X.
We found a high rate of multiple alleles in many species associated with the human oral microbiome,
such as Streptococcus sanguinis or Treponema denticola. Hits for these species also showed lower
ANI, consistent with the expectation for mixtures of ancient microbial DNA (Extended Data Fig. 6b,

c).
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Fig. 2. Overview and characteristics of detected ancient microbial DNA. a, Barplot showing total number of putative
ancient microbial hits (overall detection rate in brackets) for bacterial, eukaryotic and viral (n > 4) genera. Bar colour and
shading distinguishes counts in the different aBDNA damage categories. b, ¢ Distributions of ANI (b) and log10-fold change
of mapped reads over median of reads classified at taxonomic rank of genus per sample (¢) for individual species hits in
selected example genera. Symbol colour indicates aDNA damage category.

The rate of read mapping varied by orders of magnitude between species, from hits in species with
high read recruitment, such as Mycobacterium leprae (> 100-fold enrichment over the median number
of classified reads across target genera) to hits at the lower limits of detection, e.g., for the louse-
borne pathogen Borrelia recurrentis (lowest read recruitment ~100-fold less than the median number
of classified reads across target genera; Fig. 2¢; Extended Data Fig. 5b). Ancient microbial DNA from
species commonly found in soil, such as Clostridium botulinum, was detected at similar rates in tooth
and bone samples. Conversely, species associated with the human oral microbiome (e.g.,
Fusobacterium nucleatum, Streptococcus mutans and Porphyromonas gingivalis) or pathogenic
infections (e.g., Yersinia pestis and Hepatitis B virus) were significantly more frequently identified in
tooth samples (Extended Data Fig. 6a). To further verify hits with low read numbers, we performed a
BLASTn search for all reads of each hit with N < 100 final reads (n=712 hits total; Supplementary
table S3). Most hits showed a high proportion (> 80%) of reads assigned to the same species using
BLASTRn, and the species with the most top-ranked BLASTn hits generally matched the inferred hit
species (Extended Data Fig. 7a, b).

Our results show that ancient microbial DNA isolated from human remains originates from complex
mixtures of distinct endogenous and exogenous sources. The high detection rate, high read
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recruitment, lower ANI, and evidence of mixtures in genera such as Clostridium or Pseudomonas (Fig
2.; Extended Data Fig. 5, 6) suggest that a substantial fraction of this ancient microbial metagenome
derives from environmental sources, possibly associated with the “necrobiome” involved in post-
mortem putrefaction processes (Supplementary information 3)***. By contrast, species from other
frequently observed genera, including Actinomyces or Streptococcus, were predominantly identified
from teeth and likely originated from the endogenous oral microbiome®. Species representing likely
cases of pathogenic infections (e.g., Yersinia pestis and Mycobacterium leprae) were often
characterised by higher ANI and/or low multi-allele rate, consistent with pathogen load
predominantly originating from a single dominant strain.

The landscape of ancient pathogens across Eurasia

Our dataset provides a unique opportunity to investigate the origins and spatiotemporal distribution of
major human pathogens in Eurasia, expanding the known range of some ancient pathogenic species
and identifying others for the first time using paleogenomic data (Supplementary tables S3, S5).

Considering bacterial pathogens, we found widespread distribution of the plague-causing bacterium
Yersinia pestis, consistent with previous studies'>'®!"1*224142 e identified 42 putative cases of Y.
pestis (35 newly reported; Extended Data Fig. 6¢), corresponding to a detection rate of ~3% in our
samples. These newly identified cases expand the spatial and temporal extent of ancient plague over
previous results (Fig. 3). The earliest three cases were dated between approximately 5,700-5,300
calibrated years before present (cal. BP), across a broad geographic area ranging from Western Russia
(NEOL168, 5,583-5,322 cal. BP), to Central Asia (BOT2016, 5,582-5,318 cal. BP), and to Lake Baikal
in Siberia® (DA342, 5,745-5,474 cal. BP). This broad range of detection among individuals pre-
dating 5,000 cal. BP challenges previous interpretations that early plague strains represent only
isolated zoonotic spillovers®’. We replicated previously identified cases of plague in Late Neolithic
and Bronze Age (LNBA) contexts across the Eurasian Steppe'® and identified many instances where
multiple individuals from the same burial context were infected (Afanasievo Gora, Russia;
Kytmanovo, Russia; Kapan, Armenia; Arban 1, Russia) (Supplementary table S2). These results

indicate that the transmissibility and potential for local epidemic outbreaks for strains at those sites
were likely higher than previously assumed®. Finally, 11 out of 42 cases were identified in late
mediaeval and early modern period individuals (800-200 BP) from two cemeteries in Denmark
(Aalborg, Randers), highlighting the high burden of plague during this time in Europe. All but one hit
(NEO627, n=84 reads total) showed expected coverage for the virulence plasmids pCD1 and pMT]1,
with hits before 2,500 years BP characterized by the previously reported absence of a 19 kilobase
region on pMT1 containing the ymt gene'® (Extended Data Fig. 7c; Supplementary information 4).
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205 distributions of all 1,313 study samples are shown in each panel using white squares. The panel for Plasmodium combines
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207

208  Another bacterial pathogen frequently detected was the spirochaete bacterium Borrelia recurrentis,

209  causative agent of louse-borne relapsing fever (LBRF), a disease with a mortality of 10-40%

210  (Supplementary information 5)*. While previous paleogenomic evidence for LBRF is limited to a
211  few cases from Scandinavia and Britain®'**, we report 34 new putative cases (2.5% detection rate;
212 Extended Data Fig. 6e), with wide geographic distribution across Europe, Central Asia, and Siberia
213 (Fig. 3). We detected the earliest case in a Neolithic farmer individual from Scandinavia (NEO29,
214 Lohals, 5,647-5,471 cal. BP), suggesting that human body lice were already vectors for infectious
215  disease during the Neolithic period, supported by phylogenetic analyses of B. recurrentis in a recent
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216  preprint”. The highest detection rates were found during the Iron and Viking Ages. LBRF outbreaks
217  were historically associated with crowded living conditions, poor personal hygiene, and wet and cold
218  seasons, but are rare today in most regions (Supplementary information 5)*’. Our results suggest that
219  B. recurrentis infections exerted a substantial disease burden on past populations.

220

221  We also report novel cases of other bacterial pathogens previously detected in paleogenomic data.
222 The leprosy-causing bacterium Mycobacterium leprae was identified in seven individuals (0.5%

223 detection rate) from Scandinavia and only appeared from the Late Iron Age onwards (earliest case
224  RISE174, 1,523-1,339 cal. BP). Because M. [eprae can infect both red squirrels and humans*’, and
225  archaeological evidence demonstrates that fur trade from Scandinavia, including squirrel fur,

226  increased substantially during the late Iron and Viking Ages*, our results support the suggestion that
227  squirrel fur trade could have facilitated transmission®’. Our findings are also consistent with the

228  widespread distribution of leprosy in mediaeval Europe™. We further detected three putative cases of
229  Treponema pallidum - subspecies of which are the causative agents of treponematoses such as yaws,
230  and endemic and venereal syphilis - in three individuals from recent time periods (earliest case

231 101809T, Denmark, 600-500 BP; Fig. 3). Two cases were identified in individuals from Borneo in
232 Southeast Asia (approximately 500-300 years BP); to our knowledge the first paleogenomic evidence
233 for treponemal disease from this region.

234

235  Among the species reported for the first time using paleogenomic data, we identified twelve putative
236  cases of Yersinia enterocolitica, the causative agent of yersiniosis, commonly contracted through
237  consuming contaminated raw or undercooked meat (Fig. 3). The animal reservoirs for Y.

238 enterocolitica include boars, deer, horses, cattle, and sheep. As Y. enferocolitica rarely enters the
239  Dbloodstream, our results likely underestimate the disease burden. Interestingly, this species includes
240  some of the only identified putative zoonotic infections in individuals from Mesolithic hunter-gatherer
241 contexts (NEO941, Denmark, 6,446-6,302 cal. BP). We also detected other members of the order
242 Enterobacterales, transmitted via the fecal-oral route, including members of the genera Shigella,

243 Salmonella, and Escherichia (Supplementary table S2). We report the first evidence for ancient

244 leptospirosis (genus Leptospira) dating back to the Neolithic, 5,650-5,477 cal. BP (NEO46, Sweden;
245  Leptospira borgpetersenii). While earlier cases predominantly involved Leptospira borgpetersenii
246  (n=5, 0.4% detection rate), the majority of hits were Leptospira interrogans (n=20, 1.5% detection

247  rate), almost exclusively in Scandinavian contexts from the Viking Age onwards (Fig. 3). Leptospira
248  borgpetersenii is today primarily found in cattle, while Leptospira interrogans is detected more

249  broadly in both domestic and wild animals. Although the clinical manifestations are similar, with an
250  untreated fatality rate of 1% today, transmission routes vary”'. While host-to-host transmission

251  predominates for Leptospira borgpetersenii, transmission via urine-contaminated environments

252  dominates for Leptospira interrogans transmission. We also report two putative cases of

253 Corynebacterium diphtheriae, the causative agent of diphtheria; the oldest of which dates back to the
254 Mesolithic (Sidelkino, 11,336-11,181 cal. BP) (Supplementary table S2).

255

256  Other diseases associated with animals and livestock, such as listeriosis (Listeria monocytogenes) and

257  brucellosis (genus Brucella), could not be reliably identified. Another major human pathogen not
258  identified in our dataset is Mycobacterium tuberculosis, which causes tuberculosis (TB). However, as
259  the Mycobacterium tuberculosis load in blood is typically low in immunocompetent patients without
260  advanced disease®® and latent TB develops in 60% of cases and can persist for decades, it is, based on
261 current knowledge, unlikely to be readily identified using aDNA data from tooth and bone remains
262  sampled for ancient human DNA.

263
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Identifying eukaryotic pathogens is challenging as sequence contamination from other organisms
frequently occurs in their large and often fragmented reference genomes™. An illustrative example in
our dataset is the protozoan parasite Toxoplasma gondii, which we readily identified in hits with high
ANI and aDNA damage but low support from coverage evenness statistics, due to reads mapping to
short contigs representing human contamination (Extended Data Fig. 4a,b; Supplementary Data 1).
Despite these challenges, we identified nine putative malaria infections across three different human-
infecting species (P. vivax n=5; P. malariae n=3; P. falciparum n=1; Fig. 3; Supplementary table S2).
The most widely detected parasite species was P. vivax, with the earliest evidence in a Bronze Age
individual from Central Europe (RISE564, 4,750-3,750 BP based on archaeological context). Other
cases include a mediaeval individual from Central Asia (DA204, Kazakhstan; 1,053-1,025 cal. BP)
and two Viking Age individuals from Eastern Europe (VK224, 950-750 BP and VK253, 950-850 BP;
Russia). The P. vivax malaria vector Anopheles atroparvus is currently widespread in Europe and
nearby regions, including the Pontic Steppe, and our cases suggest this was also true in the past**™.

The single case of P. falciparum malaria was found in a sample from Armenia (NEO111; 463-0 cal.
BP), where malaria was eliminated in the 1960s°.

Among DNA viral species, we found widespread infections with Hepatitis B virus (HBV; 28 cases,
2.1% detection rate), consistent with previous studies®® *° (Extended Data Fig. 6¢). Our newly
reported HBV cases include individuals from Mesolithic (Kolyma River, n=1) and Neolithic (Lake
Baikal, n=3) contexts in Siberia dating back to 9,906-9,665 cal. BP, providing the first evidence for
ancient HBV from those regions (Fig. 3). We also report the first putative ancient case (n=1) of
Torque teno virus (TTV) dating back ~7,000 years (NEO498, Ukraine; 7,161-6,950 cal. BP). TTV
infects approximately 80% of the human population today, and while it is not associated with any
particular disease, it replicates rapidly in immunocompromised individuals®’. Other ancient virus hits
included viruses not known to infect humans, such as ancient phage DNA (e.g,. Escherichia phage
T4, Proteus virus Isfahan; Supplementary table S2) and one putative case of an ancient insect virus

(Invertebrate iridescent virus 31 (IIV-31)) in a tooth sample of a Viking Age individual from Sweden
(VK30, Varnhem; 950-650 BP)*®. The virus source is likely exogenous, potentially originating from
aDNA of food sources in the tooth remains.

Co-infections with multiple pathogens can worsen disease progression and outcomes™ and they were
likely an important morbidity factor in ancient human populations. Searching for individuals showing
co-occurrence of distinct ancient microbial species, we identified 15 cases of putative co-infections in
our dataset (Supplementary table S2). A striking case was a Viking Age individual from Norway

(VK388), where we replicated previous results of infection with a likely smallpox-causing variola
virus®’ and additionally found evidence of infection with the leprosy-causing bacterium
Mycobacterium leprae. Another case of possible co-infection with Mycobacterium leprae was found
in VK366, a Viking Age individual from Denmark, who also showed evidence for leptospirosis
(Leptospira interrogans). Interestingly, among the 15 cases, six involved co-infections of HBV with
non-viral pathogens (Yersinia pestis n=3; Borrelia recurrentis n=2; Plasmodium malariae n=1;
Supplementary table S2). This suggests that some of these cases involved chronic hepatitis, possibly

reflecting HBV infection during infancy, when hepatitis becomes chronic in 90-95% of modern cases,
compared to only 2-6% in adult infections. An intriguing early case of a possible co-infection was
found in a Mesolithic hunter-gatherer from Russia (Sidelkino, 11,336-11,181 cal. BP). This individual
showed evidence of the respiratory pathogen Corynebacterium diphtheriae, and Helicobacter pylori,
usually restricted to gastric infections; however, rare contemporary examples of bacteremia have been
reported for both®®®!. Overall, our results show that co-infections can be detected using ancient
metagenomic screening, but are likely underestimated given methodological limitations such as
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differences in pathogen load, tissue availability, and other factors impacting detectability of ancient
microbial DNA.

Temporal dynamics and drivers of epidemic pathogens

Understanding the factors affecting the dynamics of past epidemics is a major aim of
paleoepidemiology. Our dataset allows us to address this question using direct molecular evidence for
ancient pathogens across prehistory. To investigate changes in pathogen incidence over time, we
performed Bayesian change-point detection and time series decomposition®® on two pathogens with
high detection rates, Yersinia pestis (plague) and Borrelia recurrentis (LBRF), using the detection
rate of the respective pathogen as a proxy for its incidence (Methods). For plague, we inferred a
gradual rise in detection rate starting from ~6,000 BP, about 1,000 years after the estimated time to
the most recent common ancestor of currently known ancient strains (7,100 cal. BP)ZO. It reached a
first peak around ~5,000 BP across Europe and the Eurasian Steppe, coinciding with the emergence
and early spread of the LNBA- strains, believed to have had limited flea-borne transmissibility'®'7?
(Fig. 4). Detection remained high with additional peaks for a ~3,000 year period, until an abrupt
change ~2,800 BP led to a ~800 year period where plague was only detected in one sample (VK522,
Oland, Sweden 2,343-2,154 cal. BP). Starting at ~2,000 BP, plague reappeared in three samples from
Central Asia (DA92, DA101, DA104, Kazakhstan and Kyrgyzstan; Fig. 3; Supplementary table S2),
just before the first historically documented plague pandemic (Fig. 4). Another hiatus of ~600 years
led to a rise and peak associated with the second plague pandemic ~600 BP (European late mediaeval

cases, Denmark and previously published cases®’; Fig. 4). This pattern of change coincides with the
extinction of the LNBA- strains ~2,700 BP** and the second Yersinia pestis diversification event
starting ~3,700 BP, which gave rise to an extinct Bronze Age lineage (RT5, LNBA+)'® and present-
day lineages; these had increased flea-mediated transmission adaptations favouring bubonic plague
and led to all known later plague pandemics®. The adaptations included acquiring two plasmids: one
with the ymt gene for survival in the flea midgut and another with the p/a gene for invasiveness after
transmission®. The lack of detection during both periods is also seen in publicly available ancient
Yersinia pestis genomes from other Eurasian sites®, suggesting that sampling bias is unlikely to
significantly influence the observed dynamics.
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Fig. 4. Bayesian time series decomposition of major epidemic pathogens. Panels show estimated trendlines and 95%
credible interval for detection rates (top), probability distributions and locations (dotted lines) for change points (middle) and
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348  The inferred temporal dynamics of LBRF show a first peak in detection around 5,500 BP, slightly
349  more recent than for plague, but with more sporadic occurrences and sharper peaks during the first
350  ~2,000 years (Fig. 4). The geographic extent during the early period ranges from Scandinavia

351 (NEO29, Denmark, 5,647-5,471 cal. BP) to the Altai mountains (RISE503, Russia, 3,677-3,461 cal.
352  BP) (Fig. 3; Supplementary table S2). From ~2,800 BP, LBRF was detected more consistently,

353  peaking approximately 2,000 years ago, predominantly in the Eurasian Steppe region (Fig. 3). This

354  change from epidemic outbreaks to endemicity overlaps in time with the estimated emergence of a
355  distinct Borrelia recurrentis Iron Age clade*® (Supplementary information 5). The period of high

356  LBREF detection coincided with a time without detectable plague activity (Fig. 4), reinforcing that the
357  absence of plague is not due to sample size limitations or poor DNA preservation. This opposing

358  pattern is unlikely to result from any cross-immunity between Yersinia pestis and Borrelia recurrentis
359  but could plausibly, in part, be caused by population size decreases and behavioural and societal

360  adjustments during plague epidemics. LBRF remained detectable until the end of the time series,

361  particularly in Europe; the continued presence might have facilitated the emergence of a Medieval B.
362 recurrentis clade ~600 years BP** (Supplementary information 5) (Fig. 3, 4).

363

364 A striking feature shared in the temporal dynamics of plague and LBRF was the absence of detectable
365  cases before ~6,000 BP, coinciding with a transition of individuals in predominantly hunter-gatherer
366  contexts to those in farming or pastoralist cultural contexts. It has been hypothesized that this

367  transition led to a higher risk of zoonotic disease transmission, and facilitated the spread of both old
368  and new pathogens®. Our dataset allows us to test this hypothesis using molecular evidence for

369 infectious disease burden. To increase power to detect changes in the load of different pathogen types,
370  we focused on grouped ancient microbial hit categories (Supplementary table S4).

371

372 We found that species associated with the ancient oral microbiome showed the highest relative

373 detection rate, accounting for up to 50% of ancient hits across various periods (Fig. Sa; Extended Data
374  Fig. 8). Species in the “environmental” classes of likely exogenous origins were also detected at

375  consistent rates throughout time. Species in the “infection” classes occurred at low detection rates

376  throughout (mostly <10%). Strikingly, we found that species in the “zoonotic” reservoir classes were
377  not detected until approximately 6,500 BP (Fig. 5a). Using Bayesian time series decomposition®?, we
378  inferred an overall increase in the detection rates of the “zoonotic” reservoir classes from ~6,000 BP,
379  thereafter remaining at elevated levels until the mediaeval period (Fig. 5b; Extended Data Fig. 8, 9a).
380  While species in the “anthroponotic” reservoir classes also occur earlier (predominantly species with
381  human-to-human transmission, Extended Data Fig. 9a), we observe increased detection rates from
382  ~2,500 BP onwards (Fig 5b, Extended Data Fig. 8). Our results provide the first direct evidence for an
383  epidemiological transition of increased infectious disease burden after the onset of agriculture through

384 to historical times.
385
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Fig. 5. Time series of ancient microbes by microbial source. a, Timeline of relative detection rates in sliding windows of
21 temporally consecutive samples, for different ancient microbial species classes. Coloured horizontal lines indicate the
expected rates if species in all classes would be detected at equal rates, based on the total number of distinct species in each
class. b, Trendlines for detection rates inferred using Bayesian change-point detection and time series decomposition, for
ancient microbial species in the “zoonotic” (top) and “anthroponotic” (bottom) reservoir class.

We used Bayesian spatiotemporal modelling®’ to investigate possible drivers of the observed ancient
microbial incidences. We modelled the presence/absence of either individual microbial species or
combined species groups using sets of putative covariates, including spatiotemporal variables
(longitude, latitude, and sample age), paleoclimatic variables (mean annual temperature and
precipitation), human mobility and ancestry, sample material (tooth or other), and a proxy for
“detectability” (number of human-classified reads). In the models for the “zoonotic” or
“anthroponotic” infection species classes, sample age was an important predictor (Fig. 6; Extended
Data Fig.10; Supplementary table S6), consistently negatively associated with incidence, and high
effect sizes in the individual species models for Borrelia recurrentis and Leptospira interrogans (Fig.
6, Extended Data Fig. 10). Longitude was another important factor in the “infection” classes; it was
positively associated with incidence rates for the combined “anthroponotic” class, and in individual
models for Yersinia pestis and Borrelia recurrentis. The positive effect of longitude suggests a higher
incidence in the eastern part of our spatiotemporal range, where samples from the Eurasian Steppe

predominate.

The increased infection incidence in Steppe populations could reflect an increased genetic
susceptibility or a higher risk of acquiring diseases associated with the pastoralist lifestyle. The latter
suggestion seems more plausible as continued exposure to selective pressures from certain infectious
diseases likely would reduce susceptibility in these populations. Human ancestry showed small but
consistent positive effects in some models, particularly the infection classes, for the Caucasus hunter-
gatherers (CHG). Across all models, the incidence of ancient microbes was positively associated with
teeth as sample material; the highest effect sizes were found in the "oral microbiome" and "infection"
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415  classes (Fig. 6, Extended Data Fig. 10). Teeth preserved ancient oral microbiome and pathogen DNA
416  Dbetter than petrous bones (the source of 86% of our samples), likely due to oral cavity exposure and
417  better access to microbial DNA in the bloodstream®. These results support the notion that species
418  detected in those classes are predominantly of endogenous origin.
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421 Fig. 6. Predictors of ancient microbial species incidence. Matrix showing effect sizes and of 12 potential predictors
422 (columns) for presence of selected combined ancient microbial species groups inferred from spatiotemporal modelling. For
423 each class, the model with lowest Watanabe—Akaike information criterion is shown. Symbols indicate the predictors
424 included in the respective model. Predictors with positive effect (2.5% and 97.5% posterior quantiles both positive) are
425 shown as red triangles, whereas predictors with negative effect (2.5% and 97.5% posterior quantiles both negative) are
426 shown as blue inverted triangles. Predictors included in the best-fitting model but without effect (posterior quantile range
427 spanning zero) are indicated using white circles. Posterior standard error of effect sizes is indicated by error bars.

428  Conclusions

429  During the Holocene, human lifestyles changed significantly as agriculture, animal husbandry, and
430  pastoralism became key practices but the impact on infectious disease incidence is debated. Our study
431  represents the first large-scale characterization of ancient pathogens across Eurasia, providing clear
432 evidence that identifiable zoonotic pathogens emerged around 6,500 years ago and were consistently
433  detected after 6,000 years ago. While zoonotic cases likely existed before 6,500 years ago, the risk
434 and extent of zoonotic transmission probably increased with the widespread adoption of husbandry
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practices and pastoralism. Today, zoonoses account for over 60% of newly emerging infectious
diseases’’.

Strikingly, we observed some of the highest detection rates at ~5,000 BP, a time of significant
demographic changes in Europe due to the migration of Steppe pastoralists and the displacement of
earlier populations*. Steppe pastoralists, through their long-term continuous exposure to animals,
likely developed some immunity to certain zoonoses and their dispersals may have carried these
diseases westward and eastwards. Consequently, the genetic upheaval in Europe could have been
facilitated by epidemic waves of zoonotic diseases causing population declines, with depopulated
areas subsequently being repopulated by opportunistic settlers who intermixed with the remaining
original population. This scenario would mirror the population decline of Indigenous people in the
Americas following their exposure to diseases introduced by European colonists’'’2. Our findings
support the interpretation of increased pathogen pressure as a likely driver of positive selection on
immune genes associated with the risk of multiple sclerosis in Steppe populations ~5,000 years ago”,
and immune gene adaptations having occurred predominantly after the onset of the Bronze Age in
Europe'’.

Expanding our analyses to the broader pathogen landscape allowed us to infer and contrast incidence
patterns between different species and types of pathogens to a greater extent than previously possible.
If ancient pathogen DNA of a single species is not detected in a particular region or period, asserting
whether this is due to low disease incidence or confounding factors such as differential DNA
preservation between different periods and environments is challenging. Our analyses counter these
limitations; we demonstrate that pathogens with known epidemic potential and high detection rates,
such as Yersinia pestis (plague) and Borrelia recurrentis (LBRF), show striking differences in their
detection rate over time, suggesting that low detection rate in these cases represent an actual reduction
in incidence. During the early period (~5,700-2,700 years ago), the continuous detection of Yersinia
pestis is suggestive of endemic disease. The succeeding pattern of distinct waves and periods without
detection indicate epidemic outbreaks; these detection peaks match the historically described plague
pandemics. This shift from endemic to epidemic is concurrent with significant changes in the Yersinia
pestis genome, particularly increased flea-transmissibility and pathogenicity'®'®. The pattern for
Borrelia recurrentis is almost entirely the opposite, with narrow peaks and long periods without
detection, suggesting local epidemics before ~2,700 years ago and consistent detection afterwards.
This later endemicity of LBRF could be driven by changes in the bacterial genome and by human and
environmental factors known to increase the risk of louse infestation*’*%, Experimental studies have
demonstrated that Yersinia pestis, like Borrelia recurrentis, can infect body lice in the midgut, and
sometimes, also the Pawlowsky glands (PG), a putative salivary gland®®. Body lice infected in the PG
can transmit Yersinia pestis in concentrations sufficient to initiate disease in humans, possibly
contributing to transmission during plague outbreaks. Infected body lice have higher mortality than
uninfected lice, and it remains unknown whether co-infection of body lice with Yersinia pestis and
Borrelia recurrentis is possible.

Our study has some important limitations. While ancient shotgun metagenomic data offers direct
evidence of past infections, its usefulness depends on having a high pathogen load and the right tissue
samples. Our ancient tooth and bone samples are well suited to detect high-load bloodstream
infections like Yersinia pestis and Borrelia recurrentis, but pathogens with lower loads or different
tissue preferences are underrepresented. Moreover, differentiating ancient infections from those
arising from environmental sources, like the "necrobiome," is challenging. Finally, our dataset lacks
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483 information on RNA viruses, therefore underestimating the zoonotic disease burden. However, the
484  timing is probably accurate as the conditions favouring zoonotic transmission of RNA viruses are
485  similar to those of other zoonotic pathogens®.

486

487  Our findings represent the first example of how the nascent field of genomic paleoepidemiology can
488  create a map of the spatial and temporal distribution of diverse human pathogens over millennia. This
489  map will develop as more ancient specimens are investigated, as will our abilities to match their
490  distribution with genetic, archaeological, and environmental data. Our current map shows clear

491  evidence that lifestyle changes in the Holocene led to an epidemiological transition, resulting in a
492  greater burden of zoonotic infectious diseases. This transition profoundly affected human health and
493  history throughout the millennia and continues to do so today.

494
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Methods

Dataset

We compiled a dataset of aDNA shotgun-sequencing data from 1,313 ancient individuals previously
sequenced for studies of human population history (references for previous publications describing
laboratory procedures and sample/site descriptions in Supplementary table S1). To facilitate ancient

microbial DNA authentication, we excluded sequencing libraries subjected to UDG treatment which
removes characteristic aDNA damage patterns from further analyses. Samples sequenced across
multiple libraries were combined into single analysis units to maximise sensitivity for detection of
ancient microbial DNA present in low abundance.

Ancient microbial DNA screening

We carried out screening for ancient microbial DNA using a computational workflow combining .-
mer-based taxonomic classification, read mapping and aDNA authentication. We first performed
taxonomic classification of the sequencing reads (minimum read length 30 bp) using KrakenUniq”,
against a comprehensive database of complete bacterial, archaeal, viral, protozoan genomes in the
RefSeq database (built with default parameters of k-mer size 31 and low-complexity sequences
masked). To increase sensitivity for ancient viral DNA, we re-ran the classification on a viral-specific
database of complete viral genomes and neighbour assemblies from RefSeq
(https://www.ncbi.nlm.nih.gov/genome/viruses/about/assemblies/), using all reads classified as non-
human from the previous run.

Following this initial metagenomic classification, a subset of genera was further processed in the
genus-level read mapping and authentication stages. For bacterial pathogens, we selected genera with
two or more established species of human pathogens from a recent survey of human bacterial
pathogens® (n=125 genera). Genera with a single pathogenic species were not included in order to
balance between including genera responsible for substantial human pathogenic burden and
computational feasibility. We further included genera including human protozoan pathogens (n=11
genera), as well as all viral genera (n=1,356).

For each genus of interest showing > 50 unique k-mers assigned, all sequencing reads classified were
collected and aligned in parallel against a representative reference assembly for each individual
species within the genus. We selected the assembly with the most unique k-mers assigned as the
representative reference genome for each species in a particular sample. If no reads were assigned to
any assembly of the species in KrakenUniq, we selected the first assembly for mapping. Read
mapping against the selected assembly was carried out using bowtie2’%, using the ‘very sensitive’
preset and allowing one mismatch in the seed (-N 1’ option). Mapped BAM files were subjected to
duplicate marking using ‘samtools markdup”” , and filtered for mapping quality MAPQ>20. aDNA
damage rates were estimated using metaDMG’®.

Authentication of ancient microbial DNA

To authenticate ancient microbial DNA, we calculated sets of summary statistics quantifying expected
molecular characteristics of true positive ancient microbial DNA hits™:
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Similarity to the reference assembly

Summary statistics in this category measure how similar sequencing reads are to a particular reference
assembly, with true positive hits expected to show higher similarity than false positive hits. Summary
statistics used include:

Average edit distance
The average number of mismatches in sequencing reads mapped to a particular reference (lower -

more similar to reference).

Average nuclear identity (ANI)

The average number of bases in a mapped sequencing read matching the reference assembly,
normalised by the read length (higher - more similar to reference).

Number of unique k-mers assigned
The number of unique k-mers assigned to a particular reference assembly from KrakenUniq

classification (higher - more similar to reference).

Ancient DNA characteristics

Summary statistics in this category measure the evidence for sequencing reads deriving from an
aDNA source. Summary statistics used include:

Average read length
The average length in base pairs of sequencing reads mapped to a particular reference (shorter - more

likely ancient).

Terminal aDNA substitution rates

The frequency of C>T (G>A) substitutions observed at the 5’ (3°) terminal base across all sequencing
reads mapped to a particular reference (higher - more likely ancient).

Bayesian Dmax
Bayesian estimator of aDNA damage rate from metaDMG (higher - more likely ancient).

Bayesian 7
Bayesian estimator of significance of evidence for aDNA damage rate from metaDMG (higher - more

likely ancient).

Evenness of genomic coverage

Summary statistics in this category measure how evenly mapped sequencing reads are distributed
across a reference assembly. Summary statistics used include:

Average read depth

The average number of reads covering a base in the reference assembly.

Breadth of coverage

The fraction of the reference assembly that is covered by one or more sequencing reads.

Expected breadth of coverage
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Breadth of coverage expected for a particular average read depth, calculated® as

1- e-(average read depth)

Ratio of observed over expected breadth of coverage

The ratio of breadth of coverage observed in mapping over breadth of coverage expected given
observed average read depth (higher - more even coverage).

Relative entropy of read start positions
A measure for the information content of the genomic positions of mapped reads. To obtain this

statistic, we calculate the frequency of read alignments with their start positions falling within
windows along the reference assembly, using two different window sizes (100bp and 1000bp). The
obtained frequency vector is converted into Shannon information entropy, and normalised using the
maximum entropy attainable if the same total number of reads were evenly distributed across the
windows (higher - more even coverage).

Filtering of putative ancient microbial hits

From this initial screening, we then selected a subset of putative microbial “hits” (sample/species
combinations) for further downstream analysis based on a set of aDNA authentication summary
statistics:

- Number of mapped reads > 20

- 5° C>T deamination rate > 0.01

- 3’ G>A deamination rate > 0.01

- Ratio of observed/expected breadth of coverage > 0.8
- Relative entropy of read start positions > 0.9

- ANI > 0.965

- Rank of number of unique k-mers assigned < 2

For this initial filtered list of putative microbial hits, we ran metaDMG using the full Bayesian
inference method to obtain Z-scores measuring the strength of evidence for observing aDNA damage
(Supplementary Data 2).

The final list of putative individual ancient microbial hits was then obtained using the filtering cutoffs

- metaDMG Bayesian Dmax > 0.05
- metaDMG Bayesian Z > 1.5
- Rank of number of unique k-mers assigned ==

For authentication of viral species, we used the same filtering cutoffs described above, except for a
lower ANI cutoff (> 0.95), as well as a lower cutoff for relative entropy of read start positions (>0.7)
for short viral genomes (< 10kb).

The result of this filtering is a single best-matching species hit for each sample and genus of interest
Supplementary table S2. We note that this approach will miss potential cases where aDNA from

multiple species of the same genus are present in the sample. However, due to the considerable
challenges involved in distinguishing this scenario from false positives due to cross-mapping of
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ancient reads from a single source of DNA to reference assemblies of a closely related species (e.g.,
Yersinia pestis / Yersinia pseudotuberculosis), we opted for the conservative option of retaining only
the best hit for each genus.

To further authenticate putative hits with low read counts (N < 100 final reads), we carried out a
BLASTRn analysis. We extracted the reads for a species hit from the final filtered BAM files, and
queried them against the ‘nt’ database (downloaded 20240828) using "blastn -task blastn -max_hsps
1". For the reads of each putative ancient microbial hit, we then tabulated the number of times and
proportion of the highest scoring BLAST hits matched either the genus or species inferred from our
workflow Supplementary table S3).

Simulations of ancient microbial DNA

We simulated aDNA fragments from microbial reference genomes in silico using gargammel®’. We
chose nine species representing pathogens of interest, and for each selected an assembly not present in
the pathogen screening workflow database:

- Brucella melitensis (GCF_027625455.1)

- Helicobacter pylori (NZ_CP134396.1)

- Mycobacterium tuberculosis (NZ_CP097110.1)
- Salmonella enterica (NZ_CP103966.1)

- Yersinia pestis (NZ_CP064125.2)

- Yersinia pseudotuberculosis (NZ_CP130901.1)
- Plasmodium vivax (GCA_900093555.2)

- Variola virus (GCA_037113635.1)

- Human betaherpesvirus 5 (GCA_027927465.1)

For each reference genome, we simulated 5 million single-end sequencing reads (100 bp read length)
with adapter sequences, with read length distribution and damage patterns from a mapDamage?2
results of a previously published ancient pathogen genome (RISE509, Yersinia pestis'®). The full-
length simulated reads were then adapter-trimmed using AdapterRemoval®. To investigate the ability
of the workflow to detect low abundance ancient microbes, we randomly down-sampled the full read
set for each reference genome using seqgtk (https://github.com/lh3/seqtk) (50, 100, 200, 500 reads; 10
replicates each).

Topic model analysis

We carried out topic model analysis on taxonomic classification profiles for each sample using the R
package fastT opic583 (https://github.com/stephenslab/fastTopics). We used the number of unique -
mers assigned to non-human genera from KrakenUniq as the observed count data for each sample,
excluding genera with less than 50 unique k-mers assigned. The analysis was carried out for L=2 and
L=3 topics, to capture broad structure in the classification profiles.

Ancient microbial groups

For combined analyses, we grouped the ancient microbial hits into three categories, based on the
likely source of the microbial DNA (Supplementary table S4):
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1) Environmental, to capture all hits derived from environmental sources including the necrobiome
(labelled environment background, environment pathogen, to distinguish potential pathogenic
species from non-pathogenic ones);

2) Oral microbiome, including both commensal and pathogenic species (microbiome oral)

3) likely pathogenic infections, further distinguished into different modes of transmission
(infection_anthroponotic; infection_vector_borne; infection_zoonotic).

We define zoonotic pathogens here as those transmitted from animals to humans or which made such
a host jump in our sampling time frame*’.

Time series

To infer temporal dynamics of ancient microbial species, we calculated detection rates in a sliding
window of k=21 temporally consecutive samples across the entire timeline of the 1,266 samples with
dating information. For individual species, the detection rate for each window corresponds to the
proportion of the 21 samples in each window that were positive for the species of interest. For
analyses of species combined in classes, we calculated the detection rate as the ratio of the total
number of hits within a class in the window over the total number of possible hits across all species in
a window (21 samples x 258 species across all classes). For individual species with n > 20 hits or
combined species classes, we further performed Bayesian change-point detection and time series
decomposition (BEAST) *? implemented in the R package Rbeast (https://github.com/zhaokg/Rbeast),
using the detection frequencies described above as response variables.

Spatiotemporal models of species incidence

To identify possible drivers of the observed spatiotemporal ancient microbial incidence, we combined
the individual microbial species and the combined species groups with palacoclimatic variables,
human mobility estimates and kriged estimates of ancestry composition for Holocene West Eurasia.
Palaeoclimatic reconstructions were accessed using the CHELSA-Trace2 1k data, which provides
global monthly climatologies for temperature and precipitation at 30 arcsec spatial resolution in 100-
year time steps for the last 21,000 years®*. To pair the microbial species/groups to the palacoclimatic
reconstructions, we took the average climatic value across all the time steps that fall within the
microbial species/group age + sd at each of the sampling locations. Palaeoclimatic variables
considered were annual mean temperature (BIOO1) and annual precipitation (BIO12). Human
mobility values were accessed from Schmid & Schiffels®® and approximately represent the distance in
kilometres between the burial location of the ancient human individual and its putative ancestral
origin, based on patterns of genetic similarity derived from a MDS analysis. Microbial species/groups
were paired to the mobility estimate of the ancient human individual that occurs closest in space and

time. Kriged ancestry estimates were extracted from Allentoft et al.*’

1.87

, using the spatiotemporal
ancestry kriging method from Racimo et al.®’, and paired to the closest spatiotemporal location of the
ancient human remain where the corresponding microbial species/groups were sampled.

To determine the influence of the covariates on the microbial incidence, we used a hierarchical
Bayesian model implemented in the inlabru R package®’*®, where ancient microbial presence/absence
follows a binomial distribution and the spatiotemporal variables (latitude, longitude and sample age),
number of human-classified reads, sample material, palacoclimatic variables, human mobility and
human ancestry constitute the linear predictors. The sample material is a categorical variable
indicating whether the material used for sequencing was a tooth or not (bone), which inlabru treats as
a random effect variable. We followed the default inlabru priors, where distributions are distributed as
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a Gaussian variable with mean p and precision . The prior on the precision T is a Gamma with
parameters 1 and 0.00005. The mean is a linear combination of the covariates. By default, the prior on
the intercept of the linear combination is a uniform distribution, while the priors on the coefficients
are Gaussian with zero mean and precision 0.001. All covariates were normalised before the analyses.
For each microbial species and group, we tested multiple models with different sets of covariates: 1)
palaeoclimate + mobility + ancestry, 2) palacoclimate + mobility, 3) palacoclimate + ancestry, 4) only
climate, 5) mobility + ancestry, 6) only mobility, 7) only ancestry, 8) no climate, nor mobility, nor
ancestry. Spatiotemporal variables, number of human-classified reads, and sample material were
included in all models. Because covariates were normalised, results indicate deviations from the
mean. The effect size is interpreted in units of standard deviation. We used the deviance information
criterion (DIC) to assess the model fit to each set of covariates, and prevent overfitting. The results
shown in the main text are for the best-performing models (i.e., models with the lowest DIC score for
each microbial species or combined species group). DIC scores as well as Watanabe—Akaike
information criterion (WAIC) for each model, and results for all the other models we tested can be
found in the Supplementary table S6.

Data availability

All sequencing data used in this study is available as trimmed read files (FASTQ) at the European
Nucleotide Archive under accession PRJEB65256. Processed analysis files including KrakenUnig
database file and metagenomic profiling results, microbial species read alignments (BAM format) as
well as per-sample summary tables and plots from screening pipeline are available at Zenodo under
accession XX.

Code availability

A Snakemake workflow implementing the computational screening pipeline is available at
https://github.com/martinsikora/pathopipe.
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Extended Data Fig. 1. Workflow overview and metagenome composition. b, Distribution of total number of sequencing
reads screened across the 1,313 study samples. ¢, Violin plots showing distributions of proportions of reads classified as
human, non-human or not classified for the study samples. Median values for each genus are indicated by horizontal lines. d,
Violin plots showing fraction of reads classified on the taxonomic level of genus, for the top 20 most abundant genera. e,
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960 Barplots showing inferred proportions for L=3 topics (indicated by fill colour) from topic model analysis for 1,272 study

961 samples with sample material information. f, Factor loadings for the 10 highest loading genera for each of the L=3 topics
962 from the topic model analysis. g, Boxplots showing distributions of proportions for topic K3 (associated with oral
963  microbiome taxa) in different sample materials.
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965 Extended Data Fig. 2. Reference genome similarity in simulated ancient microbial data. a, [llustration showing
966 phylogenetic context and expected average nucleotide identity (ANI) for a hypothetical sampled microbial species X and
967 four genomes (A1, A2; B1, B2) of two genera (A, B) present in the reference database. b, Number of unique k-mers
968 classified at the level of genus using KrakenUniq for replicates of different read numbers across all simulated species.
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969 Dashed line indicates cutoff used in analysis of real data (150 unique k-mers). ¢, Number of unique k-mers classified at the

970 level of species as a function of average nucleotide identity for mappings against all individual species reference genomes in
971 the genus of reads simulated for a particular species. Blue diamonds indicate results for the mapping against a reference
972 genome from the same species as the simulated read data, whereas grey circles indicate reference genomes of other species.
973 Selected individual species results are highlighted by species name. Dashed line indicates ANI > 0.97 cutoff value. d,

974 Barplots showing number of replicates where the true positive species reference genome was highest ranking in numbers of

975 unique k-mers classified at level of species.
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978 Extended Data Fig. 3. Read mappings across genera in simulated ancient microbial data. a, Observed breadth of

979 genomic coverage as a function of average read depth for distinct species hits (i.e., mappings with highest number of unique
980  k-mers at species level for a genus; n > 20 reads mapped). Each panel shows results for reads simulated from species

981 indicated. Results for mappings against the simulated species are indicated by diamond shape, whereas mappings against
982 species from other genera are indicated with circles. Symbol fill colour indicates average nucleotide identity for mapped
983 reads (grey symbols ANI < 0.97). Solid black line shows theoretical expected breadth of coverage for a given average read
984 depth®. Vertical dashed line indicates 1X average read depth. b, Relative entropy statistic (1000 bp window size) as a

985 function of average nucleotide identity. Blue diamonds indicate results for the mapping against reference genome from the
986 same species as the simulated read data, whereas grey circles indicate reference genomes for species hits in other genera.
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Dashed lines indicate cutoffs used in analyses of real data (ANI > 0.97, entropy > 0.9). False positive hits of reads mapped to
a reference genome from a different genome passing cutoffs and their final number of mapped reads (out of 5 million total
simulated reads) are labelled. ¢, Illustration showing potential sources of false positive hits and expected results for
authentication summary statistics. d, Matrix plot showing all microbial hits with n > 20 reads mapped and their
authentication statistics, for all simulated species and read numbers. Symbol colour and size indicates the number of
replicates passing the cutoff for each of three summary statistics shown (ANI > 0.97, ratio of observed / expected coverage
breadth > 0.8, entropy > 0.9). Hits passing cutoffs for all three statistics are indicated with coloured outline and background
lines (black - true positives; grey - cross-genus false positive mappings).
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Extended Data Fig. 4. Examples of authentication for microbial hits. a, Observed breadth of genomic coverage as a
function of average read depth. Coloured symbols indicate hits in species Toxoplasma gondii (left panel) and Yersinia pestis
(right panel), with symbol colour indicating relative entropy of read start positions. Solid black line shows theoretical
expected breadth of coverage for a given average read depth®. b, Lengths of contigs in the reference genome of Toxoplasma
gondii and number of samples showing n > 20 reads mapped. Symbol colour indicates the average number of reads mapped
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1001 to a specific contig across samples. ¢, Bayesian estimator of aDNA damage (D max) and significance (Z-score) obtained
1002 from metaDMG, for hits in species Clostridium botulinum (left) and Yersinia pestis (right). Error bars indicate + 1 standard
1003 deviation, and symbol fill colour indicates average read depth for mapped reads. Samples used as examples in aDNA
1004 damage curves (d) are labelled and indicated with black circles. d, aDNA damage patterns for four example hits in species
1005 Clostridium botulinum and Yersinia pestis. Plots show observed nucleotide misincorporation frequencies (red symbols and
1006 line) and metaDMG fit (black line) and 68% credible intervals (shaded region) for C>T transitions as a function of distance
1007  from the 5° read end.
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1022 groups of likely infections (e). Novel and previously reported ancient pathogen hits are distinguished by bar colour, with
1023 total number in each category labelled.
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1050 Prcitr

1051 Extended Data Fig. 10. Predictors of ancient microbial species incidence. a, Watanabe—Akaike information criterion
1052 values for each model and response variable. b, Matrix showing effect sizes and of 12 potential predictors (columns) for
1053 presence of selected combined ancient microbial species and combined groups inferred from spatiotemporal modelling. For
1054 each class, the model with lowest Watanabe—Akaike information criterion is shown. Symbols indicate the predictors

1055 included in the respective model. Predictors with positive effect (2.5% and 97.5% posterior quantiles both positive) are
1056 shown as red triangles, whereas predictors with negative effect (2.5% and 97.5% posterior quantiles both negative) are
1057 shown as blue inverted triangles. Predictors included in the best-fitting model but without effect (posterior quantile range
1058 spanning zero) are indicated using white circles. Posterior standard error of effect sizes is indicated by error bars.
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