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Summary 45 

Infectious diseases have had devastating impacts on human populations throughout history, but 46 
important questions about their origins and past dynamics remain1. To create the first archaeogenetic-47 
based spatiotemporal map of human pathogens, we screened shotgun sequencing data from 1,313 48 
ancient humans covering 37,000 years of Eurasian history. We demonstrate the widespread presence 49 
of ancient bacterial, viral and parasite DNA, identifying 5,486 individual hits against 492 species 50 
from 136 genera. Among those hits, 3,384 involve known human pathogens2, many of which were 51 
detected for the first time in ancient human remains. Grouping the ancient microbial species 52 
according to their likely reservoir and type of transmission, we find that most groups are identified 53 
throughout the entire sampling period. Intriguingly, zoonotic pathogens are only detected ~6,500 54 
years ago, peaking ~5,000 years ago, coinciding with the widespread domestication of livestock3. Our 55 
findings provide the first direct evidence that this lifestyle change resulted in an increased infectious 56 
disease burden. Importantly, they also suggest that the spread of these pathogens increased 57 
substantially during subsequent millenia, coinciding with the pastoralist migrations from the Eurasian 58 
Steppe4,5.  59 
 60 

Introduction 61 

Pathogens have been a constant threat to human health throughout our evolutionary history. Until 62 
approximately 1850, at least a quarter of all children died before age one, and around another quarter 63 
before turning 15. Infectious diseases are estimated to have been responsible for over half of these 64 
deaths6. Larger disease outbreaks have profoundly impacted human societies, sometimes 65 
devastatingly affecting entire civilizations7. Infectious diseases have left lasting impressions on 66 
human genomes, as selective pressures from pathogens have continuously shaped human genetic 67 
variation8–10. Where and when different human pathogens first emerged, how and why they spread, 68 
and how they affected human populations are important but largely unresolved questions. 69 
 70 
During the Holocene (beginning ~12,000 years ago), the agricultural transition created larger and 71 
more sedentary communities, facilitating pathogen transmission and persistence within populations11. 72 
Simultaneously, the rise of animal husbandry and pastoralism are thought to have increased the risk of 73 
zoonoses3. Technological advances, such as horses and carts, increased both mobility and the risk of 74 
disease transmission between populations12. It has been hypothesised that these changes led to the so-75 
called “first epidemiological transition” characterised by increased infectious disease mortality3. 76 
However, direct evidence remains scarce and the idea is debated13. Paleopathological examinations of 77 
ancient skeletons offer insights into past infectious disease burden14, but are limited to few diseases 78 
identifiable from the available tissue. Recent advances in ancient DNA (aDNA) techniques allow for 79 
the retrieval of direct genomic evidence of past microbial infections, which can enable the 80 
reconstruction of complete ancient pathogen genomes. These studies have typically concentrated on 81 
specific pathogens and have provided surprising insights into the evolutionary history of the causative 82 
agents of some of the most historically important infectious diseases affecting humans, including 83 
plague (Yersinia pestis)12,15–23, tuberculosis (Mycobacterium tuberculosis)24,25, smallpox (Variola 84 
virus)26,27, Hepatitis B (Hepatitis B virus)28–30 and others31–36. However, there is an unmet need to 85 
investigate the combined landscape of ancient bacteria, viruses, and parasites that impacted our 86 
ancestors across various regions and time periods. Here we use a new high-throughput computational 87 
workflow to screen for ancient microbial DNA and use our data to investigate long-standing questi no 88 
ons in paleoepidemiology: When and where did important human pathogens arise? And what factors 89 
influenced their spatiotemporal distribution? 90 
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Ancient microbial DNA in remains of 1,313 Eurasians  91 

To understand the distribution of ancient pathogenic challenges, we developed an accurate and 92 
scalable workflow to identify ancient microbial DNA in shotgun-sequenced aDNA data (Extended 93 
Data Figs. 1-4; Supplementary information 1). The data (~405 billion sequencing reads) derived from 94 
1,313 ancient individuals from Western Eurasia (n=1,015; 77%), Central and North Asia (n=265; 95 
20%) and Southeast Asia (n=33; 3%), spanning a ~37,000 year period, from the Upper Paleolithic to 96 
historical times (Fig. 1b; Supplementary table S1; Supplementary information 2). As burial practices 97 
varied across cultures and time, these samples represent a subset of groups within past societies. 98 
Nevertheless, the identified pathogens likely affected the broader population, as diseases spread easily 99 
in communities with poor sanitation and hygiene37. Initial metagenomic classification showed a large 100 
fraction of reads classified as soil-dwelling taxa including genera such as Streptomyces or 101 
Pseudomonas, reflecting a predominantly environmental source of microbial DNA. Further 102 
characterization using topic-model however suggested that microbial DNA in ancient tooth samples 103 
often derives from genera commonly associated with the human oral microbiome such Actinomyces 104 
or Streptococcus (Extended Data Fig. 1d-g).  105 
 106 

 107 
Fig. 1. Dataset overview. Spatiotemporal distribution and site contexts of the study samples. White squares in the 108 
geographic maps indicate locations of the full set of 1,313 study samples, whereas coloured circles highlight location and 109 
age of samples from the time period and region indicated in the respective panel. Bar plots show numbers of samples for 110 
different site type contexts in each region (nd - not determined). 111 
 112 
We selected a set of 136 bacterial and protozoan genera (11,553 species total) containing human 113 
pathogenic species2 as well as 1,356 viral genera (259,979 species total) for further authentication and 114 
detection of ancient taxa. We found that ancient microbial DNA was widely detected, with 5,486 115 
authenticated individual hits identified across 1,005 samples (Z-score for aDNA damage rate from 116 
metaDMG ≥ 1.5; Fig. 2a; Supplementary table S2; Extended Data Fig. 4). Of those, 3,384 hits were 117 
found among 214 known human pathogen species2, with the remaining 2,104 hits involving 278 other 118 
species. The highest numbers were observed in bacterial genera associated with the human oral 119 
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microbiome, such as Actinomyces (380; 28.5% of samples) and Streptococcus (242; 18.1% of 120 
samples) or those commonly found in soil environments, such as Clostridium (252; 18.9% of 121 
samples) and Pseudomonas (111; 8.3% of samples).  122 
 123 
We observed marked differences in the distributions of the genetic similarity of the ancient microbial 124 
sequences to their reference assemblies, both among genera and between species within a genus (Fig. 125 
2b; Extended Data Fig. 5).. High average nucleotide identity (ANI) indicates that ancient microbial 126 
sequences are closely related to a reference assembly in the modern database, and was observed in 127 
hits across all species from some genera (e.g. Yersinia, Fig. 2b). In other genera, only a few hits had a 128 
closely related database reference assembly match. An example is the genus Mycobacterium, where 129 
only hits of the leprosy-causing bacterium Mycobacterium leprae were highly similar to their 130 
reference assembly (ANI > 99%; Fig. 2b). Low ANI indicates that the ancient microbial DNA is only 131 
distantly related to the reference assembly, for example, due to aDNA damage, poor representation of 132 
the diversity of the genus in the database or false-positive classification of ancient microbial reads 133 
deriving from a related genus (Extended Data Fig. 3). Alternatively, ANI can also be reduced when 134 
reads mapped to a particular reference assembly originate from multiple closely related strains or 135 
species in a sample. To test for such mixtures, we quantified the rate of observing different alleles at 136 
two randomly sampled reads at nucleotide positions across the genomes of hits with read depth ≥1X. 137 
We found a high rate of multiple alleles in many species associated with the human oral microbiome, 138 
such as Streptococcus sanguinis or Treponema denticola. Hits for these species also showed lower 139 
ANI, consistent with the expectation for mixtures of ancient microbial DNA (Extended Data Fig. 6b, 140 
c). 141 
 142 
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 143 
Fig. 2. Overview and characteristics of detected ancient microbial DNA. a, Barplot showing total number of putative 144 
ancient microbial hits (overall detection rate in brackets) for bacterial, eukaryotic and viral (n ≥ 4) genera. Bar colour and 145 
shading distinguishes counts in the different aDNA damage categories. b, c Distributions of ANI (b) and log10-fold change 146 
of mapped reads over median of reads classified at taxonomic rank of genus per sample (c) for individual species hits in 147 
selected example genera. Symbol colour indicates aDNA damage category. 148 
 149 
The rate of read mapping varied by orders of magnitude between species, from hits in species with 150 
high read recruitment, such as Mycobacterium leprae (> 100-fold enrichment over the median number 151 
of classified reads across target genera) to hits at the lower limits of detection, e.g., for the louse-152 
borne pathogen Borrelia recurrentis (lowest read recruitment ~100-fold less than the median number 153 
of classified reads across target genera; Fig. 2c; Extended Data Fig. 5b). Ancient microbial DNA from 154 
species commonly found in soil, such as Clostridium botulinum, was detected at similar rates in tooth 155 
and bone samples. Conversely, species associated with the human oral microbiome (e.g., 156 
Fusobacterium nucleatum, Streptococcus mutans and Porphyromonas gingivalis) or pathogenic 157 
infections (e.g., Yersinia pestis and Hepatitis B virus) were significantly more frequently identified in 158 
tooth samples (Extended Data Fig. 6a). To further verify hits with low read numbers, we performed a 159 
BLASTn search for all reads of each hit with N ≤ 100 final reads (n=712 hits total; Supplementary 160 
table S3). Most hits showed a high proportion (≥ 80%) of reads assigned to the same species using 161 
BLASTn, and the species with the most top-ranked BLASTn hits generally matched the inferred hit 162 
species (Extended Data Fig. 7a, b). 163 
 164 
Our results show that ancient microbial DNA isolated from human remains originates from complex 165 
mixtures of distinct endogenous and exogenous sources. The high detection rate, high read 166 
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recruitment, lower ANI, and evidence of mixtures in genera such as Clostridium or Pseudomonas (Fig 167 
2.; Extended Data Fig. 5, 6) suggest that a substantial fraction of this ancient microbial metagenome 168 
derives from environmental sources, possibly associated with the “necrobiome” involved in post-169 
mortem putrefaction processes (Supplementary information 3)38,39. By contrast, species from other 170 
frequently observed genera, including Actinomyces or Streptococcus, were predominantly identified 171 
from teeth and likely originated from the endogenous oral microbiome38. Species representing likely 172 
cases of pathogenic infections (e.g., Yersinia pestis and Mycobacterium leprae) were often 173 
characterised by higher ANI and/or low multi-allele rate, consistent with pathogen load 174 
predominantly originating from a single dominant strain.  175 

The landscape of ancient pathogens across Eurasia 176 

Our dataset provides a unique opportunity to investigate the origins and spatiotemporal distribution of 177 
major human pathogens in Eurasia, expanding the known range of some ancient pathogenic species 178 
and identifying others for the first time using paleogenomic data (Supplementary tables S3, S5).  179 
 180 
Considering bacterial pathogens, we found widespread distribution of the plague-causing bacterium 181 
Yersinia pestis, consistent with previous studies12,16,17,19,22,41,42. We identified 42 putative cases of Y. 182 
pestis (35 newly reported; Extended Data Fig. 6e), corresponding to a detection rate of ~3% in our 183 
samples. These newly identified cases expand the spatial and temporal extent of ancient plague over 184 
previous results (Fig. 3). The earliest three cases were dated between approximately 5,700-5,300 185 
calibrated years before present (cal. BP), across a broad geographic area ranging from Western Russia 186 
(NEO168, 5,583-5,322 cal. BP), to Central Asia (BOT2016, 5,582-5,318 cal. BP), and to Lake Baikal 187 
in Siberia43 (DA342, 5,745-5,474 cal. BP). This broad range of detection among individuals pre-188 
dating 5,000 cal. BP challenges previous interpretations that early plague strains represent only 189 
isolated zoonotic spillovers20. We replicated previously identified cases of plague in Late Neolithic 190 
and Bronze Age (LNBA) contexts across the Eurasian Steppe16 and identified many instances where 191 
multiple individuals from the same burial context were infected (Afanasievo Gora, Russia; 192 
Kytmanovo, Russia; Kapan, Armenia; Arban 1, Russia) (Supplementary table S2). These results 193 
indicate that the transmissibility and potential for local epidemic outbreaks for strains at those sites 194 
were likely higher than previously assumed20. Finally, 11 out of 42 cases were identified in late 195 
mediaeval and early modern period individuals (800-200 BP) from two cemeteries in Denmark 196 
(Aalborg, Randers), highlighting the high burden of plague during this time in Europe. All but one hit 197 
(NEO627, n=84 reads total) showed expected coverage for the virulence plasmids pCD1 and pMT1, 198 
with hits before 2,500 years BP characterized by the previously reported absence of a 19 kilobase 199 
region on pMT1 containing the ymt gene16 (Extended Data Fig. 7c; Supplementary information 4). 200 
 201 
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 202 
Fig. 3. Spatiotemporal distribution of selected ancient pathogens. Each panel shows geographic distribution (top) and 203 
timeline (bottom) for identified cases of the respective pathogen (indicated by coloured circle). Geographic locations and age 204 
distributions of all 1,313 study samples are shown in each panel using white squares. The panel for Plasmodium combines 205 
the three species detected (P. vivax n=5; P. malariae n=3; P. falciparum n=1).  206 
 207 
Another bacterial pathogen frequently detected was the spirochaete bacterium Borrelia recurrentis, 208 
causative agent of louse-borne relapsing fever (LBRF), a disease with a mortality of 10-40% 209 
(Supplementary information 5)44. While previous paleogenomic evidence for LBRF is limited to a 210 
few cases from Scandinavia and Britain31,45, we report 34 new putative cases (2.5% detection rate; 211 
Extended Data Fig. 6e), with wide geographic distribution across Europe, Central Asia, and Siberia 212 
(Fig. 3). We detected the earliest case in a Neolithic farmer individual from Scandinavia (NEO29, 213 
Lohals, 5,647-5,471 cal. BP), suggesting that human body lice were already vectors for infectious 214 
disease during the Neolithic period, supported by phylogenetic analyses of B. recurrentis in a recent 215 
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preprint45. The highest detection rates were found during the Iron and Viking Ages. LBRF outbreaks 216 
were historically associated with crowded living conditions, poor personal hygiene, and wet and cold 217 
seasons, but are rare today in most regions (Supplementary information 5)46. Our results suggest that 218 
B. recurrentis infections exerted a substantial disease burden on past populations.  219 
 220 
We also report novel cases of other bacterial pathogens previously detected in paleogenomic data. 221 
The leprosy-causing bacterium Mycobacterium leprae was identified in seven individuals (0.5% 222 
detection rate) from Scandinavia and only appeared from the Late Iron Age onwards (earliest case 223 
RISE174, 1,523-1,339 cal. BP). Because M. leprae can infect both red squirrels and humans47, and 224 
archaeological evidence demonstrates that fur trade from Scandinavia, including squirrel fur, 225 
increased substantially during the late Iron and Viking Ages48, our results support the suggestion that 226 
squirrel fur trade could have facilitated transmission49. Our findings are also consistent with the 227 
widespread distribution of leprosy in mediaeval Europe50. We further detected three putative cases of 228 
Treponema pallidum - subspecies of which are the causative agents of treponematoses such as yaws, 229 
and endemic and venereal syphilis - in three individuals from recent time periods (earliest case 230 
101809T, Denmark, 600-500 BP; Fig. 3). Two cases were identified in individuals from Borneo in 231 
Southeast Asia (approximately 500-300 years BP); to our knowledge the first paleogenomic evidence 232 
for treponemal disease from this region.  233 
 234 
Among the species reported for the first time using paleogenomic data, we identified twelve putative 235 
cases of Yersinia enterocolitica, the causative agent of yersiniosis, commonly contracted through 236 
consuming contaminated raw or undercooked meat (Fig. 3). The animal reservoirs for Y. 237 
enterocolitica include boars, deer, horses, cattle, and sheep. As Y. enterocolitica rarely enters the 238 
bloodstream, our results likely underestimate the disease burden. Interestingly, this species includes 239 
some of the only identified putative zoonotic infections in individuals from Mesolithic hunter-gatherer 240 
contexts (NEO941, Denmark, 6,446-6,302 cal. BP). We also detected other members of the order 241 
Enterobacterales, transmitted via the fecal-oral route, including members of the genera Shigella, 242 
Salmonella, and Escherichia (Supplementary table S2). We report the first evidence for ancient 243 
leptospirosis (genus Leptospira) dating back to the Neolithic, 5,650-5,477 cal. BP (NEO46, Sweden; 244 
Leptospira borgpetersenii). While earlier cases predominantly involved Leptospira borgpetersenii 245 
(n=5, 0.4% detection rate), the majority of hits were Leptospira interrogans (n=20, 1.5% detection 246 
rate), almost exclusively in Scandinavian contexts from the Viking Age onwards (Fig. 3). Leptospira 247 
borgpetersenii is today primarily found in cattle, while Leptospira interrogans is detected more 248 
broadly in both domestic and wild animals. Although the clinical manifestations are similar, with an 249 
untreated fatality rate of 1% today, transmission routes vary51. While host-to-host transmission 250 
predominates for Leptospira borgpetersenii, transmission via urine-contaminated environments 251 
dominates for Leptospira interrogans transmission. We also report two putative cases of 252 
Corynebacterium diphtheriae, the causative agent of diphtheria; the oldest of which dates back to the 253 
Mesolithic (Sidelkino, 11,336-11,181 cal. BP) (Supplementary table S2).  254 
 255 
Other diseases associated with animals and livestock, such as listeriosis (Listeria monocytogenes) and 256 
brucellosis (genus Brucella), could not be reliably identified. Another major human pathogen not 257 
identified in our dataset is Mycobacterium tuberculosis, which causes tuberculosis (TB). However, as 258 
the Mycobacterium tuberculosis load in blood is typically low in immunocompetent patients without 259 
advanced disease52 and latent TB develops in 60% of cases and can persist for decades, it is, based on 260 
current knowledge, unlikely to be readily identified using aDNA data from tooth and bone remains 261 
sampled for ancient human DNA. 262 
 263 
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Identifying eukaryotic pathogens is challenging as sequence contamination from other organisms 264 
frequently occurs in their large and often fragmented reference genomes53. An illustrative example in 265 
our dataset is the protozoan parasite Toxoplasma gondii, which we readily identified in hits with high 266 
ANI and aDNA damage but low support from coverage evenness statistics, due to reads mapping to 267 
short contigs representing human contamination (Extended Data Fig. 4a,b; Supplementary Data 1). 268 
Despite these challenges, we identified nine putative malaria infections across three different human-269 
infecting species (P. vivax n=5; P. malariae n=3; P. falciparum n=1; Fig. 3; Supplementary table S2). 270 
The most widely detected parasite species was P. vivax, with the earliest evidence in a Bronze Age 271 
individual from Central Europe (RISE564, 4,750-3,750 BP based on archaeological context). Other 272 
cases include a mediaeval individual from Central Asia (DA204, Kazakhstan; 1,053-1,025 cal. BP) 273 
and two Viking Age individuals from Eastern Europe (VK224, 950-750 BP and VK253, 950-850 BP; 274 
Russia). The P. vivax malaria vector Anopheles atroparvus is currently widespread in Europe and 275 
nearby regions, including the Pontic Steppe, and our cases suggest this was also true in the past54,55. 276 
The single case of P. falciparum malaria was found in a sample from Armenia (NEO111; 463-0 cal. 277 
BP), where malaria was eliminated in the 1960s56. 278 
 279 
Among DNA viral species, we found widespread infections with Hepatitis B virus (HBV; 28 cases, 280 
2.1% detection rate), consistent with previous studies28–30 (Extended Data Fig. 6e). Our newly 281 
reported HBV cases include individuals from Mesolithic (Kolyma River, n=1) and Neolithic (Lake 282 
Baikal, n=3) contexts in Siberia dating back to 9,906-9,665 cal. BP, providing the first evidence for 283 
ancient HBV from those regions (Fig. 3). We also report the first putative ancient case (n=1) of 284 
Torque teno virus (TTV) dating back ~7,000 years (NEO498, Ukraine; 7,161-6,950 cal. BP). TTV 285 
infects approximately 80% of the human population today, and while it is not associated with any 286 
particular disease, it replicates rapidly in immunocompromised individuals57. Other ancient virus hits 287 
included viruses not known to infect humans, such as ancient phage DNA (e.g,. Escherichia phage 288 
T4, Proteus virus Isfahan; Supplementary table S2) and one putative case of an ancient insect virus 289 
(Invertebrate iridescent virus 31 (IIV-31)) in a tooth sample of a Viking Age individual from Sweden 290 
(VK30, Varnhem; 950-650 BP)58. The virus source is likely exogenous, potentially originating from 291 
aDNA of food sources in the tooth remains.  292 
 293 
Co-infections with multiple pathogens can worsen disease progression and outcomes59 and they were 294 
likely an important morbidity factor in ancient human populations. Searching for individuals showing 295 
co-occurrence of distinct ancient microbial species, we identified 15 cases of putative co-infections in 296 
our dataset (Supplementary table S2). A striking case was a Viking Age individual from Norway 297 
(VK388), where we replicated previous results of infection with a likely smallpox-causing variola 298 
virus27 and additionally found evidence of infection with the leprosy-causing bacterium 299 
Mycobacterium leprae. Another case of possible co-infection with Mycobacterium leprae was found 300 
in VK366, a Viking Age individual from Denmark, who also showed evidence for leptospirosis 301 
(Leptospira interrogans). Interestingly, among the 15 cases, six involved co-infections of HBV with 302 
non-viral pathogens (Yersinia pestis n=3; Borrelia recurrentis n=2; Plasmodium malariae n=1; 303 
Supplementary table S2). This suggests that some of these cases involved chronic hepatitis, possibly 304 
reflecting HBV infection during infancy, when hepatitis becomes chronic in 90-95% of modern cases, 305 
compared to only 2-6% in adult infections. An intriguing early case of a possible co-infection was 306 
found in a Mesolithic hunter-gatherer from Russia (Sidelkino, 11,336-11,181 cal. BP). This individual 307 
showed evidence of the respiratory pathogen Corynebacterium diphtheriae, and Helicobacter pylori, 308 
usually restricted to gastric infections; however, rare contemporary examples of bacteremia have been 309 
reported for both60,61. Overall, our results show that co-infections can be detected using ancient 310 
metagenomic screening, but are likely underestimated given methodological limitations such as 311 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.10.06.561165doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561165
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

differences in pathogen load, tissue availability, and other factors impacting detectability of ancient 312 
microbial DNA. 313 

Temporal dynamics and drivers of epidemic pathogens 314 

Understanding the factors affecting the dynamics of past epidemics is a major aim of 315 
paleoepidemiology. Our dataset allows us to address this question using direct molecular evidence for 316 
ancient pathogens across prehistory. To investigate changes in pathogen incidence over time, we 317 
performed Bayesian change-point detection and time series decomposition62 on two pathogens with 318 
high detection rates, Yersinia pestis (plague) and Borrelia recurrentis (LBRF), using the detection 319 
rate of the respective pathogen as a proxy for its incidence (Methods). For plague, we inferred a 320 
gradual rise in detection rate starting from ~6,000 BP, about 1,000 years after the estimated time to 321 
the most recent common ancestor of currently known ancient strains (7,100 cal. BP)20. It reached a 322 
first peak around ~5,000 BP across Europe and the Eurasian Steppe, coinciding with the emergence 323 
and early spread of the LNBA- strains, believed to have had limited flea-borne transmissibility16,17,22 324 
(Fig. 4). Detection remained high with additional peaks for a ~3,000 year period, until an abrupt 325 
change ~2,800 BP led to a ~800 year period where plague was only detected in one sample (VK522, 326 
Oland, Sweden 2,343-2,154 cal. BP). Starting at ~2,000 BP, plague reappeared in three samples from 327 
Central Asia (DA92, DA101, DA104, Kazakhstan and Kyrgyzstan; Fig. 3; Supplementary table S2), 328 
just before the first historically documented plague pandemic (Fig. 4). Another hiatus of ~600 years 329 
led to a rise and peak associated with the second plague pandemic ~600 BP (European late mediaeval 330 
cases, Denmark and previously published cases63; Fig. 4). This pattern of change coincides with the 331 
extinction of the LNBA- strains ~2,700 BP22 and the second Yersinia pestis diversification event 332 
starting ~3,700 BP, which gave rise to an extinct Bronze Age lineage (RT5, LNBA+)18 and present-333 
day lineages; these had increased flea-mediated transmission adaptations favouring bubonic plague 334 
and led to all known later plague pandemics64. The adaptations included acquiring two plasmids: one 335 
with the ymt gene for survival in the flea midgut and another with the pla gene for invasiveness after 336 
transmission65. The lack of detection during both periods is also seen in publicly available ancient 337 
Yersinia pestis genomes from other Eurasian sites63, suggesting that sampling bias is unlikely to 338 
significantly influence the observed dynamics.  339 
 340 

 341 
Fig. 4. Bayesian time series decomposition of major epidemic pathogens. Panels show estimated trendlines and 95% 342 
credible interval for detection rates (top), probability distributions and locations (dotted lines) for change points (middle) and 343 
probability of trend slope (bottom) being positive (red), negative (blue) or zero (white), inferred using Bayesian change-344 
point detection and time series decomposition. Top of panels show temporal distributions of newly reported pathogen hits 345 
(blue circles) as well as previously published ancient pathogens (grey circles) from the respective species. 346 
 347 
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The inferred temporal dynamics of LBRF show a first peak in detection around 5,500 BP, slightly 348 
more recent than for plague, but with more sporadic occurrences and sharper peaks during the first 349 
~2,000 years (Fig. 4). The geographic extent during the early period ranges from Scandinavia 350 
(NEO29, Denmark, 5,647-5,471 cal. BP) to the Altai mountains (RISE503, Russia, 3,677-3,461 cal. 351 
BP) (Fig. 3; Supplementary table S2). From ~2,800 BP, LBRF was detected more consistently, 352 
peaking approximately 2,000 years ago, predominantly in the Eurasian Steppe region (Fig. 3). This 353 
change from epidemic outbreaks to endemicity overlaps in time with the estimated emergence of a 354 
distinct Borrelia recurrentis Iron Age clade45 (Supplementary information 5). The period of high 355 
LBRF detection coincided with a time without detectable plague activity (Fig. 4), reinforcing that the 356 
absence of plague is not due to sample size limitations or poor DNA preservation. This opposing 357 
pattern is unlikely to result from any cross-immunity between Yersinia pestis and Borrelia recurrentis 358 
but could plausibly, in part, be caused by population size decreases and behavioural and societal 359 
adjustments during plague epidemics. LBRF remained detectable until the end of the time series, 360 
particularly in Europe; the continued presence might have facilitated the emergence of a Medieval B. 361 
recurrentis clade ~600 years BP45 (Supplementary information 5) (Fig. 3, 4).  362 
 363 
A striking feature shared in the temporal dynamics of plague and LBRF was the absence of detectable 364 
cases before ~6,000 BP, coinciding with a transition of individuals in predominantly hunter-gatherer 365 
contexts to those in farming or pastoralist cultural contexts. It has been hypothesized that this 366 
transition led to a higher risk of zoonotic disease transmission, and facilitated the spread of both old 367 
and new pathogens3. Our dataset allows us to test this hypothesis using molecular evidence for 368 
infectious disease burden. To increase power to detect changes in the load of different pathogen types, 369 
we focused on grouped ancient microbial hit categories (Supplementary table S4).  370 
 371 
We found that species associated with the ancient oral microbiome showed the highest relative 372 
detection rate, accounting for up to 50% of ancient hits across various periods (Fig. 5a; Extended Data 373 
Fig. 8). Species in the “environmental” classes of likely exogenous origins were also detected at 374 
consistent rates throughout time. Species in the “infection” classes occurred at low detection rates 375 
throughout (mostly <10%). Strikingly, we found that species in the “zoonotic” reservoir classes were 376 
not detected until approximately 6,500 BP (Fig. 5a). Using Bayesian time series decomposition62, we 377 
inferred an overall increase in the detection rates of the “zoonotic” reservoir classes from ~6,000 BP, 378 
thereafter remaining at elevated levels until the mediaeval period (Fig. 5b; Extended Data Fig. 8, 9a). 379 
While species in the “anthroponotic” reservoir classes also occur earlier (predominantly species with 380 
human-to-human transmission, Extended Data Fig. 9a), we observe increased detection rates from 381 
~2,500 BP onwards (Fig 5b, Extended Data Fig. 8). Our results provide the first direct evidence for an 382 
epidemiological transition of increased infectious disease burden after the onset of agriculture through 383 
to historical times. 384 
 385 
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 386 
Fig. 5. Time series of ancient microbes by microbial source. a, Timeline of relative detection rates in sliding windows of 387 
21 temporally consecutive samples, for different ancient microbial species classes. Coloured horizontal lines indicate the 388 
expected rates if species in all classes would be detected at equal rates, based on the total number of distinct species in each 389 
class.  b, Trendlines for detection rates inferred using Bayesian change-point detection and time series decomposition, for 390 
ancient microbial species in the “zoonotic” (top) and “anthroponotic” (bottom) reservoir class.  391 
 392 
We used Bayesian spatiotemporal modelling67 to investigate possible drivers of the observed ancient 393 
microbial incidences. We modelled the presence/absence of either individual microbial species or 394 
combined species groups using sets of putative covariates, including spatiotemporal variables 395 
(longitude, latitude, and sample age), paleoclimatic variables (mean annual temperature and 396 
precipitation), human mobility and ancestry, sample material (tooth or other), and a proxy for 397 
“detectability” (number of human-classified reads). In the models for the “zoonotic” or 398 
“anthroponotic” infection species classes, sample age was an important predictor (Fig. 6; Extended 399 
Data Fig.10; Supplementary table S6), consistently negatively associated with incidence, and high 400 
effect sizes in the individual species models for Borrelia recurrentis and Leptospira interrogans (Fig. 401 
6, Extended Data Fig. 10). Longitude was another important factor in the “infection” classes; it was 402 
positively associated with incidence rates for the combined “anthroponotic” class, and in individual 403 
models for Yersinia pestis and Borrelia recurrentis. The positive effect of longitude suggests a higher 404 
incidence in the eastern part of our spatiotemporal range, where samples from the Eurasian Steppe 405 
predominate. 406 
 407 
The increased infection incidence in Steppe populations could reflect an increased genetic 408 
susceptibility or a higher risk of acquiring diseases associated with the pastoralist lifestyle. The latter 409 
suggestion seems more plausible as continued exposure to selective pressures from certain infectious 410 
diseases likely would reduce susceptibility in these populations. Human ancestry showed small but 411 
consistent positive effects in some models, particularly the infection classes, for the Caucasus hunter-412 
gatherers (CHG). Across all models, the incidence of ancient microbes was positively associated with 413 
teeth as sample material; the highest effect sizes were found in the "oral microbiome" and "infection" 414 
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classes (Fig. 6, Extended Data Fig. 10). Teeth preserved ancient oral microbiome and pathogen DNA 415 
better than petrous bones (the source of 86% of our samples), likely due to oral cavity exposure and 416 
better access to microbial DNA in the bloodstream68. These results support the notion that species 417 
detected in those classes are predominantly of endogenous origin.  418 
 419 

 420 
Fig. 6. Predictors of ancient microbial species incidence. Matrix showing effect sizes and of 12 potential predictors 421 
(columns) for presence of selected combined ancient microbial species groups inferred from spatiotemporal modelling. For 422 
each class, the model with lowest Watanabe–Akaike information criterion is shown. Symbols indicate the predictors 423 
included in the respective model. Predictors with positive effect (2.5% and 97.5% posterior quantiles both positive) are 424 
shown as red triangles, whereas predictors with negative effect (2.5% and 97.5% posterior quantiles both negative) are 425 
shown as blue inverted triangles. Predictors included in the best-fitting model but without effect (posterior quantile range 426 
spanning zero) are indicated using white circles. Posterior standard error of effect sizes is indicated by error bars. 427 

Conclusions 428 

During the Holocene, human lifestyles changed significantly as agriculture, animal husbandry, and 429 
pastoralism became key practices but the impact on infectious disease incidence is debated. Our study 430 
represents the first large-scale characterization of ancient pathogens across Eurasia, providing clear 431 
evidence that identifiable zoonotic pathogens emerged around 6,500 years ago and were consistently 432 
detected after 6,000 years ago. While zoonotic cases likely existed before 6,500 years ago, the risk 433 
and extent of zoonotic transmission probably increased with the widespread adoption of husbandry 434 
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practices and pastoralism. Today, zoonoses account for over 60% of newly emerging infectious 435 
diseases70. 436 
 437 
 438 
Strikingly, we observed some of the highest detection rates at ~5,000 BP, a time of significant 439 
demographic changes in Europe due to the migration of Steppe pastoralists and the displacement of 440 
earlier populations4,5. Steppe pastoralists, through their long-term continuous exposure to animals, 441 
likely developed some immunity to certain zoonoses and their dispersals may have carried these 442 
diseases westward and eastwards. Consequently, the genetic upheaval in Europe could have been 443 
facilitated by epidemic waves of zoonotic diseases causing population declines, with depopulated 444 
areas subsequently being repopulated by opportunistic settlers who intermixed with the remaining 445 
original population. This scenario would mirror the population decline of Indigenous people in the 446 
Americas following their exposure to diseases introduced by European colonists71,72. Our findings 447 
support the interpretation of increased pathogen pressure as a likely driver of positive selection on 448 
immune genes associated with the risk of multiple sclerosis in Steppe populations ~5,000 years ago73, 449 
and immune gene adaptations having occurred predominantly after the onset of the Bronze Age in 450 
Europe10. 451 
 452 
Expanding our analyses to the broader pathogen landscape allowed us to infer and contrast incidence 453 
patterns between different species and types of pathogens to a greater extent than previously possible. 454 
If ancient pathogen DNA of a single species is not detected in a particular region or period, asserting 455 
whether this is due to low disease incidence or confounding factors such as differential DNA 456 
preservation between different periods and environments is challenging. Our analyses counter these 457 
limitations; we demonstrate that pathogens with known epidemic potential and high detection rates, 458 
such as Yersinia pestis (plague) and Borrelia recurrentis (LBRF), show striking differences in their 459 
detection rate over time, suggesting that low detection rate in these cases represent an actual reduction 460 
in incidence. During the early period (~5,700-2,700 years ago), the continuous detection of Yersinia 461 
pestis is suggestive of endemic disease. The succeeding pattern of distinct waves and periods without 462 
detection indicate epidemic outbreaks; these detection peaks match the historically described plague 463 
pandemics. This shift from endemic to epidemic is concurrent with significant changes in the Yersinia 464 
pestis genome, particularly increased flea-transmissibility and pathogenicity16,18. The pattern for 465 
Borrelia recurrentis is almost entirely the opposite, with narrow peaks and long periods without 466 
detection, suggesting local epidemics before ~2,700 years ago and consistent detection afterwards. 467 
This later endemicity of LBRF could be driven by changes in the bacterial genome and by human and 468 
environmental factors known to increase the risk of louse infestation45,74,66. Experimental studies have 469 
demonstrated that Yersinia pestis, like Borrelia recurrentis, can infect body lice in the midgut, and 470 
sometimes, also the Pawlowsky glands (PG), a putative salivary gland66. Body lice infected in the PG 471 
can transmit Yersinia pestis in concentrations sufficient to initiate disease in humans, possibly 472 
contributing to transmission during plague outbreaks. Infected body lice have higher mortality than 473 
uninfected lice, and it remains unknown whether co-infection of body lice with Yersinia pestis and 474 
Borrelia recurrentis is possible. 475 
 476 
Our study has some important limitations. While ancient shotgun metagenomic data offers direct 477 
evidence of past infections, its usefulness depends on having a high pathogen load and the right tissue 478 
samples. Our ancient tooth and bone samples are well suited to detect high-load bloodstream 479 
infections like Yersinia pestis and Borrelia recurrentis, but pathogens with lower loads or different 480 
tissue preferences are underrepresented. Moreover, differentiating ancient infections from those 481 
arising from environmental sources, like the "necrobiome," is challenging. Finally, our dataset lacks 482 
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information on RNA viruses, therefore underestimating the zoonotic disease burden. However, the 483 
timing is probably accurate as the conditions favouring zoonotic transmission of RNA viruses are 484 
similar to those of other zoonotic pathogens69.  485 
 486 
Our findings represent the first example of how the nascent field of genomic paleoepidemiology can 487 
create a map of the spatial and temporal distribution of diverse human pathogens over millennia. This 488 
map will develop as more ancient specimens are investigated, as will our abilities to match their 489 
distribution with genetic, archaeological, and environmental data. Our current map shows clear 490 
evidence that lifestyle changes in the Holocene led to an epidemiological transition, resulting in a 491 
greater burden of zoonotic infectious diseases. This transition profoundly affected human health and 492 
history throughout the millennia and continues to do so today. 493 
  494 
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Methods 495 

Dataset 496 

We compiled a dataset of aDNA shotgun-sequencing data from 1,313 ancient individuals previously 497 
sequenced for studies of human population history (references for previous publications describing 498 
laboratory procedures and sample/site descriptions in Supplementary table S1). To facilitate ancient 499 
microbial DNA authentication, we excluded sequencing libraries subjected to UDG treatment which 500 
removes characteristic aDNA damage patterns from further analyses. Samples sequenced across 501 
multiple libraries were combined into single analysis units to maximise sensitivity for detection of 502 
ancient microbial DNA present in low abundance.  503 

Ancient microbial DNA screening  504 

We carried out screening for ancient microbial DNA using a computational workflow combining k-505 
mer-based taxonomic classification, read mapping and aDNA authentication. We first performed 506 
taxonomic classification of the sequencing reads (minimum read length 30 bp) using KrakenUniq75, 507 
against a comprehensive database of complete bacterial, archaeal, viral, protozoan genomes in the 508 
RefSeq database (built with default parameters of k-mer size 31 and low-complexity sequences 509 
masked). To increase sensitivity for ancient viral DNA, we re-ran the classification on a viral-specific 510 
database of complete viral genomes and neighbour assemblies from RefSeq 511 
(https://www.ncbi.nlm.nih.gov/genome/viruses/about/assemblies/), using all reads classified as non-512 
human from the previous run. 513 
 514 
Following this initial metagenomic classification, a subset of genera was further processed in the 515 
genus-level read mapping and authentication stages. For bacterial pathogens, we selected genera with 516 
two or more established species of human pathogens from a recent survey of human bacterial 517 
pathogens2 (n=125 genera). Genera with a single pathogenic species were not included in order to 518 
balance between including genera responsible for substantial human pathogenic burden and 519 
computational feasibility. We further included genera including human protozoan pathogens (n=11 520 
genera), as well as all viral genera (n=1,356). 521 
 522 
For each genus of interest showing ≥ 50 unique k-mers assigned, all sequencing reads classified were 523 
collected and aligned in parallel against a representative reference assembly for each individual 524 
species within the genus. We selected the assembly with the most unique k-mers assigned as the 525 
representative reference genome for each species in a particular sample. If no reads were assigned to 526 
any assembly of the species in KrakenUniq, we selected the first assembly for mapping. Read 527 
mapping against the selected assembly was carried out using bowtie276, using the ‘very sensitive’ 528 
preset and allowing one mismatch in the seed (’-N 1’ option). Mapped BAM files were subjected to 529 
duplicate marking using ‘samtools markdup’77 , and filtered for mapping quality MAPQ≥20. aDNA 530 
damage rates were estimated using metaDMG78.  531 

Authentication of ancient microbial DNA  532 

To authenticate ancient microbial DNA, we calculated sets of summary statistics quantifying expected 533 
molecular characteristics of true positive ancient microbial DNA hits79: 534 
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Similarity to the reference assembly 535 

Summary statistics in this category measure how similar sequencing reads are to a particular reference 536 
assembly, with true positive hits expected to show higher similarity than false positive hits. Summary 537 
statistics used include: 538 
 539 
Average edit distance 540 
The average number of mismatches in sequencing reads mapped to a particular reference (lower - 541 
more similar to reference). 542 
 543 
Average nuclear identity (ANI) 544 
The average number of bases in a mapped sequencing read matching the reference assembly, 545 
normalised by the read length (higher - more similar to reference).  546 
 547 
Number of unique k-mers assigned 548 
The number of unique k-mers assigned to a particular reference assembly from KrakenUniq 549 
classification (higher - more similar to reference).  550 

Ancient DNA characteristics 551 

Summary statistics in this category measure the evidence for sequencing reads deriving from an 552 
aDNA source. Summary statistics used include: 553 
 554 
Average read length 555 
The average length in base pairs of sequencing reads mapped to a particular reference (shorter - more 556 
likely ancient). 557 
 558 
Terminal aDNA substitution rates 559 
The frequency of C>T (G>A) substitutions observed at the 5’ (3’) terminal base across all sequencing 560 
reads mapped to a particular reference (higher - more likely ancient). 561 
 562 
Bayesian Dmax 563 
Bayesian estimator of aDNA damage rate from metaDMG (higher - more likely ancient). 564 
 565 
Bayesian Zx 566 
Bayesian estimator of significance of evidence for aDNA damage rate from metaDMG (higher - more 567 
likely ancient). 568 

Evenness of genomic coverage 569 

Summary statistics in this category measure how evenly mapped sequencing reads are distributed 570 
across a reference assembly. Summary statistics used include: 571 
 572 
Average read depth 573 
The average number of reads covering a base in the reference assembly. 574 
 575 
Breadth of coverage 576 
The fraction of the reference assembly that is covered by one or more sequencing reads. 577 
 578 
Expected breadth of coverage 579 
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Breadth of coverage expected for a particular average read depth, calculated80 as 580 
 581 
1 - e-(average read depth) 582 
 583 
Ratio of observed over expected breadth of coverage 584 
The ratio of breadth of coverage observed in mapping over breadth of coverage expected given 585 
observed average read depth (higher - more even coverage). 586 
 587 
Relative entropy of read start positions 588 
A measure for the information content of the genomic positions of mapped reads. To obtain this 589 
statistic, we calculate the frequency of read alignments with their start positions falling within 590 
windows along the reference assembly, using two different window sizes (100bp and 1000bp). The 591 
obtained frequency vector is converted into Shannon information entropy, and normalised using the 592 
maximum entropy attainable if the same total number of reads were evenly distributed across the 593 
windows (higher - more even coverage).  594 

Filtering of putative ancient microbial hits 595 

From this initial screening, we then selected a subset of putative microbial “hits” (sample/species 596 
combinations) for further downstream analysis based on a set of aDNA authentication summary 597 
statistics: 598 
 599 

- Number of mapped reads ≥ 20 600 
- 5’ C>T deamination rate ≥ 0.01 601 
- 3’ G>A deamination rate ≥ 0.01 602 
- Ratio of observed/expected breadth of coverage  ≥ 0.8 603 
- Relative entropy of read start positions ≥ 0.9 604 
- ANI > 0.965 605 
- Rank of number of unique k-mers assigned ≤ 2 606 

 607 
For this initial filtered list of putative microbial hits, we ran metaDMG using the full Bayesian 608 
inference method to obtain Z-scores measuring the strength of evidence for observing aDNA damage 609 
(Supplementary Data 2). 610 
 611 
The final list of putative individual ancient microbial hits was then obtained using the filtering cutoffs 612 
 613 

- metaDMG Bayesian Dmax ≥ 0.05 614 
- metaDMG Bayesian Z ≥ 1.5 615 
- Rank of number of unique k-mers assigned == 1 616 

 617 
For authentication of viral species, we used the same filtering cutoffs described above, except for a 618 
lower ANI cutoff (> 0.95), as well as a lower cutoff for relative entropy of read start positions (>0.7) 619 
for short viral genomes (< 10kb). 620 
 621 
The result of this filtering is a single best-matching species hit for each sample and genus of interest  622 
Supplementary table S2. We note that this approach will miss potential cases where aDNA from 623 
multiple species of the same genus are present in the sample. However, due to the considerable 624 
challenges involved in distinguishing this scenario from false positives due to cross-mapping of 625 
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ancient reads from a single source of DNA to reference assemblies of a closely related species (e.g., 626 
Yersinia pestis / Yersinia pseudotuberculosis), we opted for the conservative option of retaining only 627 
the best hit for each genus. 628 
 629 
To further authenticate putative hits with low read counts (N ≤ 100 final reads), we carried out a 630 
BLASTn analysis. We extracted the reads for a species hit from the final filtered BAM files, and 631 
queried them against the ‘nt’ database (downloaded 20240828) using `blastn -task blastn -max_hsps 632 
1`. For the reads of each putative ancient microbial hit, we then tabulated the number of times and 633 
proportion of the highest scoring BLAST hits matched either the genus or species inferred from our 634 
workflow Supplementary table S3). 635 

Simulations of ancient microbial DNA 636 

We simulated aDNA fragments from microbial reference genomes in silico using gargammel81. We 637 
chose nine species representing pathogens of interest, and for each selected an assembly not present in 638 
the pathogen screening workflow database: 639 
 640 

- Brucella melitensis (GCF_027625455.1) 641 
- Helicobacter pylori (NZ_CP134396.1) 642 
- Mycobacterium tuberculosis (NZ_CP097110.1) 643 
- Salmonella enterica (NZ_CP103966.1) 644 
- Yersinia pestis (NZ_CP064125.2) 645 
- Yersinia pseudotuberculosis (NZ_CP130901.1) 646 
- Plasmodium vivax (GCA_900093555.2) 647 
- Variola virus (GCA_037113635.1) 648 
- Human betaherpesvirus 5 (GCA_027927465.1) 649 

 650 
For each reference genome, we simulated 5 million single-end sequencing reads (100 bp read length) 651 
with adapter sequences, with read length distribution and damage patterns from a mapDamage2 652 
results of a previously published ancient pathogen genome (RISE509, Yersinia pestis16). The full-653 
length simulated reads were then adapter-trimmed using AdapterRemoval82. To investigate the ability 654 
of the workflow to detect low abundance ancient microbes, we randomly down-sampled the full read 655 
set for each reference genome using seqtk (https://github.com/lh3/seqtk) (50, 100, 200, 500 reads; 10 656 
replicates each). 657 

Topic model analysis 658 

We carried out topic model analysis on taxonomic classification profiles for each sample using the R 659 
package fastTopics83 (https://github.com/stephenslab/fastTopics). We used the number of unique k-660 
mers assigned to non-human genera from KrakenUniq as the observed count data for each sample, 661 
excluding genera with less than 50 unique k-mers assigned. The analysis was carried out for L=2 and 662 
L=3 topics, to capture broad structure in the classification profiles. 663 
 664 

Ancient microbial groups  665 

For combined analyses, we grouped the ancient microbial hits into three categories, based on the 666 
likely source of the microbial DNA (Supplementary table S4): 667 
  668 
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1) Environmental, to capture all hits derived from environmental sources including the necrobiome 669 
(labelled environment_background, environment_pathogen, to distinguish potential pathogenic 670 
species from non-pathogenic ones);  671 
2) Oral microbiome, including both commensal and pathogenic species (microbiome_oral) 672 
3) likely pathogenic infections, further distinguished into different modes of transmission 673 
(infection_anthroponotic; infection_vector_borne; infection_zoonotic). 674 
 675 
We define zoonotic pathogens here as those transmitted from animals to humans or which made such 676 
a host jump in our sampling time frame40.  677 

Time series  678 

To infer temporal dynamics of ancient microbial species, we calculated detection rates in a sliding 679 
window of k=21 temporally consecutive samples across the entire timeline of the 1,266 samples with 680 
dating information. For individual species, the detection rate for each window corresponds to the 681 
proportion of the 21 samples in each window that were positive for the species of interest. For 682 
analyses of species combined in classes, we calculated the detection rate as the ratio of the total 683 
number of hits within a class in the window over the total number of possible hits across all species in 684 
a window (21 samples x 258 species across all classes). For individual species with n ≥ 20 hits or 685 
combined species classes, we further performed Bayesian change-point detection and time series 686 
decomposition (BEAST) 62 implemented in the R package Rbeast (https://github.com/zhaokg/Rbeast), 687 
using the detection frequencies described above as response variables.  688 

Spatiotemporal models of species incidence 689 

To identify possible drivers of the observed spatiotemporal ancient microbial incidence, we combined 690 
the individual microbial species and the combined species groups with palaeoclimatic variables, 691 
human mobility estimates and kriged estimates of ancestry composition for Holocene West Eurasia. 692 
Palaeoclimatic reconstructions were accessed using the CHELSA-Trace21k data, which provides 693 
global monthly climatologies for temperature and precipitation at 30 arcsec spatial resolution in 100-694 
year time steps for the last 21,000 years84. To pair the microbial species/groups to the palaeoclimatic 695 
reconstructions, we took the average climatic value across all the time steps that fall within the 696 
microbial species/group age ± sd at each of the sampling locations. Palaeoclimatic variables 697 
considered were annual mean temperature (BIO01) and annual precipitation (BIO12). Human 698 
mobility values were accessed from Schmid & Schiffels85 and approximately represent the distance in 699 
kilometres between the burial location of the ancient human individual and its putative ancestral 700 
origin, based on patterns of genetic similarity derived from a MDS analysis. Microbial species/groups 701 
were paired to the mobility estimate of the ancient human individual that occurs closest in space and 702 
time. Kriged ancestry estimates were extracted from Allentoft et al.86, using the spatiotemporal 703 
ancestry kriging method from Racimo et al.87, and paired to the closest spatiotemporal location of the 704 
ancient human remain where the corresponding microbial species/groups were sampled. 705 
 706 
To determine the influence of the covariates on the microbial incidence, we used a hierarchical 707 
Bayesian model implemented in the inlabru R package67,88, where ancient microbial presence/absence 708 
follows a binomial distribution and the spatiotemporal variables (latitude, longitude and sample age), 709 
number of human-classified reads, sample material, palaeoclimatic variables, human mobility and 710 
human ancestry constitute the linear predictors. The sample material is a categorical variable 711 
indicating whether the material used for sequencing was a tooth or not (bone), which inlabru treats as 712 
a random effect variable. We followed the default inlabru priors, where distributions are distributed as 713 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.10.06.561165doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561165
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

a Gaussian variable with mean µ and precision τ. The prior on the precision τ is a Gamma with 714 
parameters 1 and 0.00005. The mean is a linear combination of the covariates. By default, the prior on 715 
the intercept of the linear combination is a uniform distribution, while the priors on the coefficients 716 
are Gaussian with zero mean and precision 0.001. All covariates were normalised before the analyses. 717 
For each microbial species and group, we tested multiple models with different sets of covariates: 1) 718 
palaeoclimate + mobility + ancestry, 2) palaeoclimate + mobility, 3) palaeoclimate + ancestry, 4) only 719 
climate, 5) mobility + ancestry, 6) only mobility, 7) only ancestry, 8) no climate, nor mobility, nor 720 
ancestry. Spatiotemporal variables, number of human-classified reads, and sample material were 721 
included in all models. Because covariates were normalised, results indicate deviations from the 722 
mean. The effect size is interpreted in units of standard deviation. We used the deviance information 723 
criterion (DIC) to assess the model fit to each set of covariates, and prevent overfitting. The results 724 
shown in the main text are for the best-performing models (i.e., models with the lowest DIC score for 725 
each microbial species or combined species group). DIC scores as well as Watanabe–Akaike 726 
information criterion (WAIC) for each model, and results for all the other models we tested can be 727 
found in the Supplementary table S6. 728 

Data availability 729 

All sequencing data used in this study is available as trimmed read files (FASTQ) at the European 730 
Nucleotide Archive under accession PRJEB65256. Processed analysis files including KrakenUniq 731 
database file and metagenomic profiling results, microbial species read alignments (BAM format) as 732 
well as per-sample summary tables and plots from screening pipeline are available at Zenodo under 733 
accession XX. 734 

Code availability 735 

A Snakemake workflow implementing the computational screening pipeline is available at 736 
https://github.com/martinsikora/pathopipe. 737 
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Extended Data Figures 954 

 955 
Extended Data Fig. 1. Workflow overview and metagenome composition. b, Distribution of total number of sequencing 956 
reads screened across the 1,313 study samples. c, Violin plots showing distributions of proportions of reads classified as 957 
human, non-human or not classified for the study samples. Median values for each genus are indicated by horizontal lines. d, 958 
Violin plots showing fraction of reads classified on the taxonomic level of genus, for the top 20 most abundant genera. e, 959 
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Barplots showing inferred proportions for L=3 topics (indicated by fill colour) from topic model analysis for 1,272 study 960 
samples with sample material information. f, Factor loadings for the 10 highest loading genera for each of the L=3 topics 961 
from the topic model analysis. g, Boxplots showing distributions of proportions for topic K3 (associated with oral 962 
microbiome taxa) in different sample materials.  963 

 964 
Extended Data Fig. 2. Reference genome similarity in simulated ancient microbial data. a, Illustration showing 965 
phylogenetic context and expected average nucleotide identity (ANI) for a hypothetical sampled microbial species X and 966 
four genomes (A1, A2; B1, B2) of two genera (A, B) present in the reference database. b, Number of unique k-mers 967 
classified at the level of genus using KrakenUniq for replicates of different read numbers across all simulated species. 968 
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Dashed line indicates cutoff used in analysis of real data (150 unique k-mers). c, Number of unique k-mers classified at the 969 
level of species as a function of average nucleotide identity for mappings against all individual species reference genomes in 970 
the genus of reads simulated for a particular species. Blue diamonds indicate results for the mapping against a reference 971 
genome from the same species as the simulated read data, whereas grey circles indicate reference genomes of other species. 972 
Selected individual species results are highlighted by species name. Dashed line indicates ANI ≥ 0.97 cutoff value. d, 973 
Barplots showing number of replicates where the true positive species reference genome was highest ranking in numbers of 974 
unique k-mers classified at level of species.  975 
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 977 
Extended Data Fig. 3. Read mappings across genera in simulated ancient microbial data. a, Observed breadth of 978 
genomic coverage as a function of average read depth for distinct species hits (i.e., mappings with highest number of unique 979 
k-mers at species level for a genus; n ≥ 20 reads mapped). Each panel shows results for reads simulated from species 980 
indicated. Results for mappings against the simulated species are indicated by diamond shape, whereas mappings against 981 
species from other genera are indicated with circles. Symbol fill colour indicates average nucleotide identity for mapped 982 
reads (grey symbols ANI < 0.97). Solid black line shows theoretical expected breadth of coverage for a given average read 983 
depth80. Vertical dashed line indicates 1X average read depth. b, Relative entropy statistic (1000 bp window size) as a 984 
function of average nucleotide identity. Blue diamonds indicate results for the mapping against reference genome from the 985 
same species as the simulated read data, whereas grey circles indicate reference genomes for species hits in other genera. 986 
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Dashed lines indicate cutoffs used in analyses of real data (ANI ≥ 0.97, entropy ≥ 0.9). False positive hits of reads mapped to 987 
a reference genome from a different genome passing cutoffs and their final number of mapped reads (out of 5 million total 988 
simulated reads) are labelled. c, Illustration showing potential sources of false positive hits and expected results for 989 
authentication summary statistics. d, Matrix plot showing all microbial hits with n ≥ 20 reads mapped and their 990 
authentication statistics, for all simulated species and read numbers. Symbol colour and size indicates the number of 991 
replicates passing the cutoff for each of three summary statistics shown (ANI ≥ 0.97, ratio of observed / expected coverage 992 
breadth ≥ 0.8, entropy ≥ 0.9). Hits passing cutoffs for all three statistics are indicated with coloured outline  and background 993 
lines (black - true positives; grey - cross-genus false positive mappings). 994 

 995 
Extended Data Fig. 4. Examples of authentication for microbial hits. a, Observed breadth of genomic coverage as a 996 
function of average read depth. Coloured symbols indicate hits in species Toxoplasma gondii (left panel) and Yersinia pestis 997 
(right panel), with symbol colour indicating relative entropy of read start positions. Solid black line shows theoretical 998 
expected breadth of coverage for a given average read depth80. b, Lengths of contigs in the reference genome of Toxoplasma 999 
gondii and number of samples showing n ≥ 20 reads mapped. Symbol colour indicates the average number of reads mapped 1000 
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to a specific contig across samples. c, Bayesian estimator of aDNA damage (D max) and significance (Z-score) obtained 1001 
from metaDMG, for hits in species Clostridium botulinum (left) and Yersinia pestis (right). Error bars indicate ± 1 standard 1002 
deviation, and symbol fill colour indicates average read depth for mapped reads. Samples used as examples in aDNA 1003 
damage curves (d) are labelled and indicated with black circles. d, aDNA damage patterns for four example hits in species 1004 
Clostridium botulinum and Yersinia pestis. Plots show observed nucleotide misincorporation frequencies (red symbols and 1005 
line) and metaDMG fit (black line) and 68% credible intervals (shaded region) for C>T transitions as a function of distance 1006 
from the 5’ read end.   1007 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.10.06.561165doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561165
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

 1008 

 1009 
Extended Data Fig. 5. Ancient microbial hit ANI and read recruitment. a, b, Distributions of ANI (a) and log10-fold 1010 
change of mapped reads over median of reads classified at taxonomic rank of genus per sample (b) for individual species 1011 
hits detected in n ≥ 5 samples. Symbol colour indicates species hit category.   1012 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 27, 2025. ; https://doi.org/10.1101/2023.10.06.561165doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.06.561165
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

 

 1013 

 1014 
Extended Data Fig. 6. Ancient microbial hit characteristics. a, Odds ratios for association of ancient hits with sample 1015 
material (tooth or bone) across 61 species with ≥ 20 ancient hits. Symbols indicate significance of association (p ≤ 0.01, 1016 
Fisher’s exact test; white triangles - more frequently identified in tooth; grey circles - no significant association). Error bars 1017 
indicate 95% confidence interval of odds ratio b, c, Rates of observing multiple alleles in 2 randomly sampled sequencing 1018 
reads at genomic sites in 190 ancient hits (average read depth ≥ 1X) across 120 samples. b, Multi-allele rate as a function of 1019 
ANI. Symbol colour indicates average read depth. c, Distribution of multi-allele rate across species hits. Symbol colour 1020 
indicates ANI. d, e Barplots showing number of hits identified in each microbial species group (d) or each species within 1021 
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groups of likely infections (e). Novel and previously reported ancient pathogen hits are distinguished by bar colour, with 1022 
total number in each category labelled.  1023 
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 1025 
Extended Data Fig. 7. Additional ancient microbial hit authentication. a, Bar plots showing proportion of reads assigned 1026 
to same species (dark blue) or genus (light blue) using BLASTn for all hits with N ≤ 100 final reads (N=712), stratified by 1027 
genus and microbial source groups b, Bar plots showing the proportion of ancient microbial hits with N ≤ 100 final reads 1028 
matching the species with most reads assigned using BLASTn, stratified by microbial source group. c, Heatmap showing 1029 
number of reads mapped to Yersinia pestis CO92 chromosome and plasmids, for N=42 Yersinia pestis hits. Cell color 1030 
indicates ratio of observed over expected breadth of coverage. Results for plasmid pMT1 are shown for full plasmid, as well 1031 
as separately for the 19 kb region contaiinng the ymt gene absent in the LNBA- strains. Samples are ordered by decreasing 1032 
age from top to bottom.   1033 
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 1034 
Extended Data Fig. 8. Time series of detection rates for ancient microbial groups. a-h, Panels show estimated trendlines 1035 
and 95% credible interval for detection rates (top), probability distributions and locations (dotted lines) for change points 1036 
(middle) and probability of trend slope (bottom) being positive (red), negative (blue) or zero (white), inferred using Bayesian 1037 
change-point detection and time series decomposition. 1038 
 1039 
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 1041 
Extended Data Fig. 9. Spatiotemporal distribution and host genetic structure for ancient microbial groups. a, Panels 1042 
showing geographic distributions (top) and timelines (bottom) for identified cases of ancient microbial hits in the oral 1043 
microbiome and infection groups classes (indicated by coloured circle). Geographic locations and age distributions of all 1044 
1,313 study samples are shown in each panel using white squares. b, Principal component analyses showing ancient and 1045 
modern human genetic population structure in non-African (left panels) and west Eurasian (right panels) individuals. Grey 1046 
crosses indicate present-day individuals, whereas coloured symbols indicate ancient individuals (coloured by sample age). 1047 
Diamonds with black outlines indicate position in PCA space for samples with hits in combined infection groups. Major 1048 
clines of known ancient and modern human ancestry groups are indicated with labels.   1049 
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 1050 
Extended Data Fig. 10.  Predictors of ancient microbial species incidence. a, Watanabe–Akaike information criterion 1051 
values for each model and response variable. b, Matrix showing effect sizes and of 12 potential predictors (columns) for 1052 
presence of selected combined ancient microbial species and combined groups inferred from spatiotemporal modelling. For 1053 
each class, the model with lowest Watanabe–Akaike information criterion is shown. Symbols indicate the predictors 1054 
included in the respective model. Predictors with positive effect (2.5% and 97.5% posterior quantiles both positive) are 1055 
shown as red triangles, whereas predictors with negative effect (2.5% and 97.5% posterior quantiles both negative) are 1056 
shown as blue inverted triangles. Predictors included in the best-fitting model but without effect (posterior quantile range 1057 
spanning zero) are indicated using white circles. Posterior standard error of effect sizes is indicated by error bars. 1058 
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