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Abstract

Anatomic tracing is the gold standard tool for delineating brain connections and

for validating more recently developed imaging approaches such as diffusion MRI

tractography. A key step in the analysis of data from tracer experiments is the

careful, manual charting of fiber trajectories on histological sections. This is a very

time-consuming process, which limits the amount of annotated tracer data that are

available for validation studies. Thus, there is a need to accelerate this process by

developing a method for computer-assisted segmentation. Such a method must be

robust to the common artifacts in tracer data, including variations in the intensity of

stained axons and background, as well as spatial distortions introduced by sectioning

and mounting the tissue. The method should also achieve satisfactory performance

using limited manually charted data for training. Here we propose the first deep-

learning method, with a self-supervised loss function, for segmentation of fiber bundles

on histological sections from macaque brains that have received tracer injections.

We address the limited availability of manual labels with a semi-supervised training

technique that takes advantage of unlabeled data to improve performance. We also

introduce anatomic and across-section continuity constraints to improve accuracy.

We show that our method can be trained on manually charted sections from a single

case and segment unseen sections from different cases, with a true positive rate of
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∼0.80. We further demonstrate the utility of our method by quantifying the density of

fiber bundles as they travel through different white-matter pathways. We show that

fiber bundles originating in the same injection site have different levels of density

when they travel through different pathways, a finding that can have implications for

microstructure-informed tractography methods. The code for our method is available

at https://github.com/v-sundaresan/fiberbundle_seg_tracing.

Keywords: Anatomic tracing, fiber bundle detection, self-supervised, contrastive

loss, temporal ensembling, fiber density

1. Introduction

Higher cortical function emerges from a combination of functional specialization at

each cortical location and connectivity between locations, which, together, comprise

complex anatomic networks (Haber et al., 2022; Geschwind, 1965). Understanding

those network connections is crucial for detecting abnormalities in disease. Anatomic

tracing methods allow us to visualize brain connections by identifying the trajectories

of individual axons from their origin to their termination. This includes the routes

that axons follow to reach each of the major white matter bundles, their position

as they travel within these bundles, and their exit points from the bundles to their

terminal fields. An example is shown in Figure 1, which illustrates trajectories of

fiber bundles from four different cortical injection sites, as they travel to and through

the internal capsule (IC). Combining data from multiple injections, as in the figure,

is invaluable for investigating the topographic organization of fibers from different

cortical areas within large white-matter pathways such as the IC.

As these methods are not applicable to human subjects, we typically rely on

tracer studies in nonhuman primates (NHPs) for accurate identification of cortical

connections (Haber et al., 2022; Lehman et al., 2011; Öngür & Price, 2000). These

studies provide the foundation for understanding the organization of white-matter
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Figure 1: Organization of fibers in the internal capsule, as revealed by tracer injection
studies. Sagittal view of nonhuman primate brain illustrates the trajectories of fibers from four
cortical injection sites, as they travel to and through the internal capsule. Orange: anterior cingulate
fibers; yellow: dorsal prefrontal fibers; green: premotor fibers; blue: motor fibers.

pathways and for assessing the accuracy of pathways reconstructed by non-invasive

neuroimaging in humans (Haber et al., 2023; Safadi et al., 2018; Jbabdi et al., 2013;

Haber et al., 2022). In particular, the comparison of tracer injections to diffusion

MRI (dMRI) tractography in the same NHP brain has generated important insights,

e.g., on the fiber configurations that confound dMRI and on how dMRI data should

be acquired and analyzed to maximize the accuracy of pathways reconstructed by

tractography (Grisot et al., 2021; Maffei et al., 2022; Schilling et al., 2019; Yendiki

et al., 2022).

Public databases of tracer injection data (e.g., Stephan et al. (2001); Kötter (2004);

Bakker et al. (2012)) provide information on which cortical or subcortical regions are

connected to each other (i.e., a “connectivity matrix”), but not on the trajectories

that axon bundles follow to get from one region to the other. The full trajectories

are needed, e.g., to map the topographic organization of white-matter bundles as

in Figure 1, or to determine the exact locations in white matter where errors of

tractography occur. The main challenge in building a database that contains the

full trajectories of axon bundles from tracer experiments is that this would require

extensive manual annotation. Figure 2 shows examples of manual chartings of fiber

bundles from a tracer injection in the frontopolar cortex of a macaque monkey. This

manual annotation is labor intensive and time consuming. The development of a
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Figure 2: Manually annotated fiber bundles from a tracer injection study. Photomicro-
graphs show coronal sections (1-3) from a macaque brain that received a tracer injection in the
frontopolar cortex, with terminal fields at different cortical locations (1a, 2a, 3a). In the rostro-
caudal direction, a fiber bundle stalk (1b) branches into two fiber bundles in prefrontal white matter
(2b) and travels laterally in the external capsule (3b) and medially in the corpus callosum (3c). The
bright orange streak close to the stalk in 1b indicates the injection site (IS). Manual chartings of
dense and moderately dense bundles are shown as green and orange outlines, respectively.

computer-assisted tool for segmenting fiber bundles in tracer data is thus critical for

accelerating this process and facilitating the work of anatomists.

There are two types of challenges in the development of a computer-assisted

method for segmenting fiber bundles in anatomic tracer data: artifacts in the his-

tological sections, and limitations in the available ground-truth annotations of the

bundles. First, the staining and digitization of histological sections introduces sub-

stantial variation in the intensity of both the stained axons and the background,

between different sections and cases. Second, spatial distortions introduced by stain-

ing and mounting make it difficult to ensure the consistency of segmentation labels

between consecutive sections. Third, the fiber bundles that we aim to segment may

have similar texture characteristics to, e.g., terminal fields or background staining,

leading to false positives (FPs) in the segmentation. Finally, the manually drawn

outlines of fiber bundles that can be used for training are only available on a limited

number of sections, and may not include all fiber bundles in a section.

We seek to overcome the above challenges with the use of semi-/self-supervised

segmentation approaches that can extract maximal information from limited training

data, while being sufficiently generalizable in the presence of typical variation across
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datasets from different brains and injection sites. Semi-/self-supervised methods have

been shown to work well on generic noisy data and limited labels with uncertainties

(Dinsdale et al., 2022; Chen et al., 2020; Feyjie et al., 2020; Perone et al., 2019;

Sundaresan et al., 2022; Fischer et al., 2023; Du et al., 2023). In particular, contrastive

learning, which aims to learn image features that are similar or different between

segmentation classes (Chen et al., 2020; Zhao et al., 2023), has been used to segment

histopathological images (Wu et al., 2022; Lai et al., 2021). Similarly, perturbation-

based self-ensembling and temporal ensembling, where average predictions from prior

epochs are used as pseudo-labels for training the current epoch (Li et al., 2020; Perone

et al., 2019), have been shown to perform well in segmentation tasks with minimal

manual annotations for training.

Prior work on segmentation of axons in microscopy data has been focused mainly

on segmenting individual axons in nm-scale images with typical fields of view in the

order of 1 mm or less (Zaimi et al., 2016; Mesbah et al., 2016; Naito et al., 2017;

Zaimi et al., 2018; Wei et al., 2021). These methods are not directly applicable to

our task. The relevant prior work on segmenting fiber bundles in whole-brain, µm-

scale, histological sections from tracer experiments is quite scarce and has only been

applied to marmoset brains (Skibbe et al., 2019; Woodward et al., 2020). These

methods used the U-Net model (Ronneberger et al., 2015), showing the reliability

and robustness of this architecture in tracer data segmentation. However, the U-Net

model in these methods was trained in a fully supervised manner, which would be

suboptimal for our case due to limited manual chartings. Hence, our goal is to use the

U-Net architecture as a backbone within a more flexible, multi-tasking framework,

trained in a semi-supervised manner to address the variability in the data and the

shortage of manual chartings.

We propose the first deep learning-based method for computer-assisted fiber bun-

dle detection on anatomic tracer data from macaque brains, using only a few manually

labeled sections. We use an anatomy-constrained, self-supervised loss for contrastive

learning within a multi-tasking model with a U-Net backbone, and a semi-supervised
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temporal ensembling training technique for efficient improvement of predictive per-

formance. In particular, we use contrastive learning to learn the contextual features

of manually charted fiber bundles, given that these chartings consist of fiber-dense ar-

eas on a relatively homogeneous background. We use temporal ensembling to further

enhance this contextual learning and improve robustness to noise via the averaging of

predictions. We also reduce FPs with the use of continuity priors across predictions

from consecutive sections. In addition to segmenting fiber bundles, our tool estimates

the density of fibers within each bundle. We evaluate our method on sections from

different brains and tracer injection sites, and we quantify the density of fiber bundles

in various white-matter pathways. The tool is publicly available and can be deployed,

e.g., for quantitative analyses of tracer data or for validation of tractography.

2. Method

2.1. Data

Ethics statement: All tracer experiments were performed in accordance with the

Institute of Laboratory Animal Resources Guide for the Care and Use of Labora-

tory Animals and approved by the University of Rochester Committee on Animal

Resources. See Lehman et al. (2011); Haynes & Haber (2013); Haber et al. (2006) for

more details on tracer injection, immunocytochemistry and histological processing.

We use digitized, coronal histological sections from 13 macaques (M1 – M13), with

a slice thickness of 50µm and in-plane resolution of 0.4µm. All histological processing

and manual annotation of fiber bundle areas on these sections was done previously in

the laboratory of an expert neuroanatomist (SNH). Every 24th section was processed

to visualize a specific tracer, and used to annotate the fiber bundles traveling from the

tracer injection site, resulting in a distance of 1.2mm between consecutive annotated

sections for a given tracer. Manual charting of fiber bundles was done under dark-

field illumination with a 4.0 or 6.4x objective, using Neurolucida software (MBF

Bioscience). Fiber bundle areas, i.e., areas in a histological section where fibers from

the injection site were seen traveling closely to each other, were outlined. Examples

are shown in Figure 2. Fiber bundle orientations were marked by charting some
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of the individual fibers within the bundles. These orientations were used as visual

markers for identifying fiber bundles in the consecutive sections. The 2D outlines

were combined across slices using IMOD software (Boulder Laboratory; Kremer et al.

(1996)) to create 3D renderings of pathways (examples shown in Figure 1). These

renderings were used to further refine bundle contours and ensure spatial consistency

across sections. The density of fibers within each bundle were assessed visually and

the bundle was categorized as dense or moderate (shown in green and orange outlines,

respectively, in Figure 2). For more information on manual annotation, see Grisot

et al. (2021).

Digital images of the histological sections were acquired with the Axio Scan.Z1 by

Carl Zeiss Microscopy, LLC (White Plain, NY) with an EC Plan-Neofluar 10x/0.30

M27 objective and a Hitachi HV F202SCL camera, resulting in a resolution of 0.44

µm/pixel. A Z-stack of 8 images, 2.0 mm apart, was acquired per slide and then

compressed into one image using the extended depth of focus (EDF) feature. Images

in the native Zeiss format were converted to JPEG2000 using MicroJP2 software

(MBF Bioscience) using a 20:1 compression in size. The digitization of slices took

around 4-8 hours per slice depending on the size. The resulting images had varying

dimensions but were generally very large due to the high resolution (e.g., ∼20K pixels

wide in larger sections). Due to memory constraints, we downsampled the images in-

plane by a factor of 4 for all analyses described in this work. After the histological

samples were digitized, manually charted region masks were registered to the digitized

sections by realigning manually charted contours with brain structure contours using

an affine transform with 6 degrees of freedom.

Manual chartings were available for a total of 88 sections from 3 macaques (M1 –

M3). The manually charted sections were from a tracer injection in the ventrolateral

prefrontal cortex (vlPFC) for macaques M1 and M2, and a tracer injection in the

frontal pole for macaque M3. In addition to these labeled sections, we used 440 un-

labeled sections from various injections in 10 other macaques (M4-M13). We divided

the sections into two datasets as described below:

1. Dataset 1 (DS1) was used for training and consists of 465 sections (25 labeled
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sections from M1; 440 unlabeled sections from M4-M13).

2. Dataset 2 (DS2) was used for testing and consists of 63 labeled sections (27

from M2; 36 from M3). Macaques M2 and M3 allow us to evaluate our method

in a case with an injection in a similar area as the labeled sections in DS1

(vlPFC, slightly ventral to the injection in M1) and a case with an injection in

a different area (frontal pole).

2.2. Computer-assisted segmentation and characterization of fiber bundles

The aim of this work is to provide an end-to-end solution for segmentation and

characterization of fiber bundles similar to the manually annotated examples shown

in Figure 2.

The workflow of the proposed method is illustrated in Figure 3. The first step

is the detection of bundles using an anatomy-constrained, self-supervised learning

technique. The second step is the characterization of fibers within individual bundles

by estimating their fiber density (FD) as they travel through different white-matter

pathways.

Figure 3: Proposed method workflow. The first step involves automated detection of fiber
bundles, and the second step the estimation of the fiber densities within bundles. The ROIs on
photomicrographs of coronal sections are magnified at each step to show the individual bundles and
fibers within them.
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2.2.1. Step 1: Automated detection of fiber bundles

We train our detection method by using (1) an encoder-decoder architecture for

segmenting fiber bundles, while simultaneously discriminating fiber bundles from

background with a self-supervised contrastive loss, and (2) a temporal ensembling

framework to efficiently use sections without manual charting from different brains.

Anatomy-constrained, self-supervised learning: We build a multi-tasking

model as shown in Figure 4 by using a 2D U-Net (Ronneberger et al., 2015), which

is one of the most successful architectures for medical image segmentation tasks

(Panayides et al., 2020). The multi-tasking model consists of a U-Net backbone

(FSeg) for segmenting the fiber bundles and an auxiliary classification arm (FClass)

for discriminating fiber patches from background patches. We provide randomly sam-

pled RGB patches of size 256 × 256 × 3 as input. FClass is connected to the bottleneck

of the encoder of FSeg, where the feature maps are passed through a downsampling

module followed by two fully connected layers (fc1024, fc256) and an output layer

with two nodes (fiber bundle vs background). The downsampling module consists

of two max-pooling layers, each followed by two 3 × 3 convolution layers to extract

high-level global features in the patches. We used focal loss (eqn. 1) for training FSeg,

because it handles class imbalance well (Lin et al., 2017). The focal loss is given by:

FL(pt) = −αt(1− pt)
γlog(pt), pt =

p, if y = 1

(1− p), otherwise

(1)

where α and γ are weighing and focusing parameters, respectively, and p ∈ [0,1] is

the predicted probability for the fiber bundle class.

The sparse nature of the anatomic tracing data makes it hard to draw exact bound-

aries. As described earlier, the main goal of the manual charting is to circumscribe

areas that contain fibers traveling close to each other, which is a much harder task

than annotating a contiguous structure with clear boundaries (e.g., caudate nucleus).

Hence, the manual labels may sometimes not include all fiber regions. In addition,

there may be significant texture variations and noise in the background. Therefore,

to learn intrinsic texture/intensity variations in addition to the fiber features from the
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Figure 4: Fiber bundle detection. Network architecture used for segmentation, and the use of
continuity priors from previous sections for false positive reduction.

manual charting alone, we use a self-supervised technique for training FClass. Specifi-

cally, we use a contrastive loss function based on SimCLR (Chen et al., 2020), where

augmented data from each sample constitute the positive example to the sample while

the rest are treated as negatives for the loss calculation. In SimCLR, augmentation

by random cropping and color distortions of the image patches were shown to perform

well. In our case, we adapt this approach by choosing augmentations better suited

to our problem: (i) random cropping of patches closer to the input patch (< 20µm),

anatomically constrained within the white matter (by iterative sampling of patches

until a mean intensity criterion is satisfied), and (ii) noise injection followed by Gaus-

sian blurring (with a randomly chosen σ ∈ [0.05, 0.3]). The self-supervised loss with

the above augmentations has two advantages: (1) effective separation between fiber

and non-fiber background patches, and (2) identification of fiber patches even in the

presence of artifacts, aided by the shared weights in the encoder of FSeg. We used the

contrastive loss (Chen et al., 2020) (eqn. 2) between positive pairs of patches (i, j) of
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FClass, given by:

CL(i, j) =
exp(sim(fi, fj)/τ)∑2N

k=1 Ik ̸=i exp(sim(fi, fk)/τ)
, sim(x, y) =

xTy

||x|| ||y||
(2)

where f is the output of FClass, sim(.) is the cosine similarity function, I is an

indicator function such that Ik ̸=i = 1 if k ̸= i, else 0, and τ is the temperature

parameter.

Temporal ensembling (TE) training: Data comes from 13 macaque brains,

M1– M13, where only ∼6% of sections were manually charted. This would be insuf-

ficient for this challenging detection problem. Hence, after pretraining the model for

Np epochs using the manually charted sections alone, we use the additional unlabeled

sections for training both FSeg and FClass, with temporal ensembling (Perone et al.,

2019). In this technique, predictions from the previous r epochs ([PN−r, ..., PN−1])

are averaged and thresholded to obtain the target label for the current epoch N

(we empirically set r = 3). We use focal loss for pretraining the encoder-decoder

of FSeg, because contrastive loss is determined in a self-supervised manner in FClass,

and mainly used for learning inherent texture variations. For the first 3 epochs after

pretraining, predictions from the pretrained model PNp are used for label generation.

Averaging predictions reduces segmentation noise and aid in adapting the model to

data from different brains.

Inference on test brain sections: We obtain predictions of fiber bundle labels

by applying the segmentation part FSeg of the model on the whole coronal sections

(or patches of size 1024 × 1024 in the case of sections with dimensions larger than

1024 voxels).

Continuity prior for false positive removal: We take advantage of the spatial

continuity of fiber bundles across consecutive sections to remove obvious FPs. Hence,

we use the bundle segmentation from adjacent sections to inform the segmentation

in the current section as follows: We downsample the sections by a factor of 10 and

align the sections approximately along the center of ventricles (or along the lateral

edges of the brain for sections without ventricles) to roughly form 3D histological
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volumes. We align their low-resolution versions, since we only need to determine

the approximate high-level continuity of the fiber bundle at region-level. During the

creation of 3D volumes, the sections with lower dimensions (e.g., coronal sections

from the frontal pole) were padded with zeros along the edges wherever necessary

to match the dimensions of the section with maximum dimensions (e.g., coronal

sections consisting of the temporal pole). We apply a triplanar U-Net architecture

used in Sundaresan et al. (2021) to obtain a 3D low-res segmentation of main dense

fiber bundles, which we then upsample to the original dimensions. For each section,

we compute the average of the segmented fiber bundle masks from the two nearest

neighboring sections (e.g., in rostral and/or caudal directions, if available) from the

3D segmentation. We remove any detected fiber bundle region in the current section

if its distance from the averaged bundles of neighboring sections is >0.5mm.

In an additional post-processing step to reduce FPs due to noise, we reject pre-

dicted regions with area <2mm2 and those near the brain outline (<0.5mm).

Implementation details: For training, we used the Adam optimizer (Kingma

& Ba, 2014) (ϵ = 10−3), batch size = 8, pretraining epochs (Np) = 100 and train with

TE for 100 epochs. The convergence occurred at ∼90 epochs with early stopping

using a patience value of 25 epochs. For focal loss, we use α = 0.25; γ = 2. For

contrastive loss, we used τ = 0.5. The hyperparameters are chosen empirically. For

FSeg, we augment data using translation (offset ∈ [-50, 50] voxels), rotation (θ ∈ [-20o,

20o]), horizontal/vertical flipping and scaling (s ∈ [0.9, 1.2]). The model is imple-

mented using PyTorch 1.10.0 on Nvidia GeForce RTX 3090, taking ∼10 mins/epoch

for ∼22,000 samples, with training:validation = 90:10.

2.2.2. Step 2: Automated characterization of fibers within bundles

We further characterize the segmented fiber bundles by estimating the density

of fibers in each bundle. We binarize the image intensities within the boundaries of

each segmented fiber bundle by enhancing the contrast with contrast-limited adaptive

histogram equalization (Zuiderveld, 1994) and thresholding at the 95th percentile of

intensity values. Example binary fiber maps are shown in Figure 3. We then calculate

11

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 1, 2025. ; https://doi.org/10.1101/2023.09.30.560310doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.30.560310
http://creativecommons.org/licenses/by/4.0/


the fiber density (FD) as the number of voxels above the threshold over the total

number of voxels in the bundle area.

2.3. Experiments

2.3.1. Experimental setup

We perform 5-fold cross-validation on 465 sections (440 unlabeled + 25 labeled)

from DS1 with a training-validation-testing split ratio of 80-13-5 sections. Each fold

includes the 25 labeled sections from M1 (with a 7-13-5 split), and 73 of the unlabeled

sections from M4-M13 (used only for training). We then train the model on DS1 and

test it on the unseen dataset DS2 (sections from macaques different from the training

one).

We also perform an ablation study of the method on DS2. This allows us to

show the impact of different components of our architecture on bundle detection

performance: (i) FSeg with cross-entropy loss (CE loss), (ii) FSeg with focal loss, (iii)

FSeg with addition of FClass with contrastive loss (focal loss + ss con loss), (iv) FSeg

and FClass with TE (focal loss + ss con loss + TE). We use the same postprocessing

for all cases (i-iv), to isolate the effect of the above components.

The fiber bundles from each injection site reach their destinations by travelling

through the large white-matter pathways such as internal capsule (IC), corpus callo-

sum (CC) and uncinate fasciculus (UF). In certain pathways, fibers from the same

injection site travel closely bundled with each other. In other pathways, fibers from

different injection sites are intermingled. Thus, how tightly packed fibers from the

same injection site remain as they travel through the white matter depends more on

the pathway that they are traveling through than the injection site that they came

from. We quantify this empirical observation by determining the density of fibers

within each of our segmented fiber bundle areas and comparing that density among

areas that lie in three different WM pathways: IC, CC, UF.

For this analysis, the IC, CC, and UF are identified by an expert neuroanatomist.

The predicted fiber bundle areas that overlap with one of these pathways by more
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than 40% are determined and fiber densities are obtained for these bundles using the

method described in section 2.2.2.

2.3.2. Performance evaluation metrics

We define true positive (TP) bundles as the manually charted fiber bundles that

are correctly predicted by the proposed method, and false positive (FP) bundles as

the regions that are predicted as fiber bundles by our method but are not included

in the manual chartings. We evaluate the performance of our method based on the

following metrics:

1. True positive rate (TPR): number of TP bundles / total number of true bundles

charted manually.

2. Average number of FPs (FPavg): number of FP bundles / number of test sec-

tions.

3. Difference between the estimated fiber density of the manually charted and

automatically detected bundles (∆FD).

3. Results

3.1. Cross-validation on DS1

Figure 5(a) shows free-response receiver operating characteristic (FROC) curves

for fiber bundle detection using 5-fold cross-validation on DS1 (consisting of sections

from the manually labelled brain M1 and 10 unlabeled brains M4 – M13). We obtain

a TPR of 0.85 at 3.7 FPs/section at the elbow point (shown in dotted lines) for a

threshold value of 0.4.

Figure 5(b) shows the boxplots of TPR and ∆FD values after postprocessing, with

corresponding performance values reported in Table 1. We observe a significant reduc-

tion of FPavg (p < 0.05) after postprocessing, mainly due to continuity constraints,

for much lower changes in TPR values. Typically, FD ranged between ∼2-20%, and

we obtained mean ∆FD = -1.9%. The negative difference indicates slightly higher FD
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Figure 5: Cross-validation on DS1. (a) FROC curves for fiber bundle detection. (b) Boxplots of
TPR and ∆FD at FPavg=2 FPs/section, after postprocessing.

Table 1: Cross-validation on DS1 and ablation study on DS2. Mean and standard error values
are reported. CE loss - Cross-entropy loss, Focal loss - FSeg with focal loss, ss con loss - FClass with
self-supervised contrastive loss, TE - temporal ensembling. (*) indicates significant improvements
in the results compared to the previous row, determined using paired two-tailed T-tests. The best
performance in the ablation study is highlighted in bold. ↑/↓ indicate that higher/lower values lead
to better results.

TPR ↑ |∆FD| (%) ↓ FPavg ↓
M1(injection site:

vlPFC)
M1(injection site:

vlPFC)
M1(injection site:

vlPFC)

5-fold cross-
validation

0.83 ± 0.05 1.9 ± 0.09 2.0

Ablation study

M2(injection
site:

vlPFC)

M3(injection
site:

frontal
pole)

M2(injection
site:

vlPFC)

M3(injection
site:

frontal
pole)

M2(injection
site:

vlPFC)

M3(injection
site:

frontal
pole)

CE loss 0.68±0.04 0.69±0.05 4.8±0.12 5.2±0.18 5.5 7.5

Focal loss *0.75±0.05 *0.76±0.04 *3.5±0.11 *4.0±0.17 *4.5 *4.0

Focal loss +
ss con loss

0.79±0.04 *0.81±0.03 *2.8±0.09 *3.3±0.14 *3.9 3.5

Focal loss +
ss con loss +
TE

*0.81±0.04 0.82±0.03 *2.2±0.09 *3.0±0.13 *3.5 *2.5

in the automatically segmented bundles than the manually charted ones, potentially

due to a tighter fit of the area boundaries around the fibers in the former.

Figures 6 and 7 show, respectively, a few examples of true positives (TPs; outlined

in yellow) and false positives (FPs; outlined in red) for fiber bundle segmentation.

As seen in Figure 6, the proposed method detects both high- and medium-density

fiber bundles in all regions found in the manual chartings (e.g., prefrontal white

matter, cingulum bundle, corpus callosum, internal and external capsules). While
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applying continuity priors in the post-processing contributed to these TPs, it may

have also contributed to some of the FPs. For example, the FPs shown in Figure 7

are mainly due to oversegmentation of bundles, which extend to additional (adjacent)

sections compared to the manual chartings. Figure 7 shows three consecutive sections

(from left to right: rostral to caudal). The FP region outlined in the section of

Figure 7(a) is a fiber bundle that was manually annotated on the following section

(Figure 7(b)). Similarly the FP bundle shown in the section of Figure 7(b) is due

to the oversegmentation of a bundle that was manually annotated on the following

section (Figure 7(c)).

Figure 6: Examples of TP fiber bundles in DS1. Yellow outlines show TP fiber bundles in
(a) prefrontal white matter (high density); (b) uncinate fasciculus (high density), corpus callosum
(medium density) and cingulum bundle (medium density); (c) internal capsule (high density), ex-
ternal capsule (medium density), and cingulum bundle (medium density).

3.2. Ablation study on DS2

We train the method on dataset DS1 for ablation study cases (i-iv), test on DS2

(consisting of brains M2 and M3, different from those used for training) and use a

threshold of 0.4 to obtain binary maps. We use the same postprocessing for all cases

(i-iv) of the study.

Table 1 reports numeric results and Figures 8 and 9 show example images from

the ablation study. Figure 8 shows fiber bundles in the CC and cingulum (a) and

in the prefrontal white matter (b). The bundles in Figure 8(a) and 8(b) had been

annotated, respectively, as dense and moderately dense. Figure 9 shows bundles in

the prefrontal white matter (a) and in the IC (b).
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Figure 7: Examples of FP fiber bundles in DS1. Red outlines show FP fiber bundles in
prefrontal white matter, in three consecutive sections (from left to right: rostral to caudal). These
FPs occur as a result of oversegmentation of TP fiber bundles (indicated by yellow outlines) from
adjacent sections.

Figure 8: Ablation study on brain M2 (injection site in vlPFC). (a, b) Sections with ROIs
enlarged (white dotted box), show examples of bundles that had been manually annotated as dense
(a) and moderately dense (b); (i – iv) Ablation study results on the ROIs with true positive, false
positive and false negative bundles shown in yellow, red and blue outlines respectively (the proposed
method highlighted in green box (iv)). Further enlarged ROIs (orange dotted box) containing fibers
in the original RGB, grayscale and fiber binary maps.
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Figure 9: Ablation study on brain M3 (injection site in frontal pole). (a, b) Sections with
ROIs enlarged (white dotted box); (i – iv) Ablation study results on the ROIs with true positive, false
positive and false negative bundles shown in yellow, red and blue outlines respectively (the proposed
method highlighted in green box (iv)). Further enlarged ROIs (orange dotted box) containing fibers
in the original RGB, grayscale and fiber binary maps.

As observed in the table, we obtain consistent performance trends in the ablation

study between the M2 and M3 brains, which had different injection sites and hence

different fiber trajectories. In both cases, CE loss (i) shows the worst performance.

From both Figures 6 and 7, among all the methods, experiments using focal loss (ii

- iv) yield significantly better performance than CE loss (i), suggesting that focal

loss is better at handling the heavy class imbalance. The self-supervised contrastive

loss (ss con loss) significantly increases TPR for M3 (injection site in frontal pole)

and reduces FPavg in M2 (injection site in vlPFC) due to the better discrimination

between subtle variations in the background intensity and texture. We also observe a

significant reduction in ∆FD for focal loss + ss con loss (iii) in both M2 and M3 brains,

indicating more refined, tighter boundaries of fiber bundles. Hence, the contrastive

loss not only reduces FPs, but also improves the segmentation of predicted regions.

Using TE (iv) further improves detection, especially increasing the TPR of dense

bundles and reducing FPavg. The value of r (number of prior epochs to predict the
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target labels) in TE plays a crucial role in the reduction of prediction noise. We set r

= 3 because it significantly reduces FPavg over r = 1 (p < 0.01) but provides FPavg

values that are not significantly different from those with higher r = 5 (p = 0.52).

Figure 10 illustrates some examples of TPs, FPs, and over-segmented fiber bundles

in DS2. As seen in Figure 10(b), oversegmentation may occur due to areas with

high background near fiber bundles. As shown in Figure 10(c), terminal fields are a

common source of FPs, especially when they appear quite close to highly dense fiber

bundles of similar shape (e.g., in the internal capsule).

Figure 10: Examples of TP and FP fiber bundles in DS2. Manual chartings overlaid with
predictions of fiber bundles in four different sections (with the corresponding photomicrographs
shown separately). (a) Magenta: fiber bundle area in corpus callosum (filled contour: manual;
outline: prediction). (b) Green: fiber bundle area in the middle longitudinal fasciculus (filled
contour: manual; outline: prediction). (c) Blue: fiber bundle area in internal capsule (filled contour:
manual; outline: prediction). Magenta: terminal fields that are falsely detected as fiber bundles.
(d) Blue: fiber bundle area in anterior limb of the internal capsule, which is oversegmented (filled
contour: manual; outline: prediction).

Figures 11 and 12 show 3D renderings of manually charted and predicted fiber

bundles in brains M2 and M3, respectively. We observe that the predicted bundles

show good continuity, even though their outlines differ slightly from the manually

charted bundles. These predictions could be inspected easily by anatomists for further
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refinement, which would be much less time-consuming than charting the fiber bundles

manually from scratch.

Figure 11: 3D rendering of manually charted vs. predicted fiber bundles in brain M2.
Manually charted (left) and predicted (right) fiber bundles in brain M2 (injection in vlPFC) are
shown in medial, dorsal and caudal views. Yellow: caudal extreme capsule, pink: CC, teal: ALIC,
green: UF/rostral extreme capsule, red: external capsule.

3.3. Fiber densities in different WM pathways

Figure 13 shows examples of predicted fiber bundles in the CC, IC, and UF, for

brains M2 (injection in vlPFC) and M3 (injection in frontal pole), along with boxplots

of FD for the predicted and manually labelled bundles. Table 2 reports the mean and

standard error of FD in these pathways for M2 and M3.

The comparison of FD between three white matter pathways (IC, CC, UF) shows

that fibers from both the vlPFC injection (M2) and frontal pole injection (M3) are

more densely packed in IC than in CC and UF. Also, from the boxplots in Figure 13,

the interquartile range of FD is greater in CC and UF when compared to IC. We

observe that FD is higher for predicted than manually labelled bundles, in almost
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Figure 12: 3D rendering of manually charted vs. predicted fiber bundles in brain M3.
Manually charted (left) and predicted (right) fiber bundles in brain M2 (injection in frontal pole)
are shown in medial, dorsal and caudal views. Orange: SLF, pink: CC, teal: ALIC, green: UF/EC,
blue: MdLF.

Table 2: Fiber density (FD) by pathway. Mean and standard errors of FD in corpus callosum
(CC), internal capsule (IC) and uncinate fasciculus (UF) for sections from brain M2 (injection in
vlPFC) and brain M3 (injection in frontal pole).

Pathways FD (%)

M2 M3

CC 11.3 ± 0.15 11.1 ± 0.15

UF 11.1 ± 0.13 11.6 ± 0.17

IC 13.1 ± 0.12 13.1 ± 0.07

all pathways. This may be due to predicted bundle areas having a tighter boundary

around fibers than manually charted areas. Figure 14 illustrates this trend, with

examples of fiber bundles segmented by the proposed automated method (outlined

in yellow) and manually annotated fiber bundles (outlined in green) from brains M2

and M3. As seen in the figure, the predicted bundles tend to have tighter boundaries
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Figure 13: Fiber bundle characterization. Top panel: examples of predicted fiber bundles from
brain M2 (injection in vlPFC) and brain M3 (injection in frontal pole), in three different pathways:
corpus callosum (CC), internal capsule (IC) and uncinate fasciculus (UF). Middle and bottom
panel: Boxplots of fiber density (FD) for predicted and manually charted bundles in the IC, CC
and UF, for brains M2 (injection in vlPFC – blue) and M3 (injection in frontal pole – orange).

than the manually annotated bundles. We observe that the fiber regions predicted by

the proposed method are centered around clusters of densely packed fibers, with the

boundaries of the regions encapsulating the majority of fibers within those clusters.

We also observe that the proposed method segments a tighter boundary regardless of

the density of the bundle, as the trend is consistent across high- and medium-density
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bundles. Furthermore, the trend in FD across pathways is consistent between the

predicted and manually charted areas, suggesting that they circumscribe a consistent

amount of fibers. A one-way ANOVA, with FD of predicted bundles as the dependent

variable and white-matter pathway (IC, CC, UF) as the independent variable, shows

that the differences in FD are significant between pathways (F = 26.1, p < 0.001).

Figure 14: Predicted vs. manually charted fiber bundles in brains M2 and M3. Predicted
fiber bundles (yellow) are shown along with manually charted fiber bundles (green). Top: (a-d)
prefrontal white matter regions, (e) internal and external capsules. Bottom: (a) prefrontal white
matter, (b, c) corpus callosum, (d, e) uncinate fasciculus, (f) anterior limb of internal capsule.

4. Discussion

We propose a method for computer-assisted segmentation and characterization of

fiber bundles in histological sections from macaque brains that have received tracer in-

jections. Our method does not require a large number of manually labeled sections (<

10% of training data). We use a self-supervised, contrastive-learning technique with
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temporal ensembling that enables our model to leverage information from unlabeled

sections during training, and to overcome intensity variations in histological sections

and inconsistency in manually labeled boundaries. Our method achieves TPR > 0.80

on test sections from different macaque brains, one with a similar injection site as the

manually labeled case used for training (vlPFC) and one with a different injection

site (frontal pole) and hence different fiber trajectories. Given that we expect the

segmentation to always be inspected by an expert anatomist as a final step, a TPR of

0.8 represents an excellent starting point that will reduce the amount of manual in-

tervention needed and thus accelerate the work of anatomists substantially. As more

labeled cases become available with the use of our computer-assisted method, it will

be possible to retrain our model and further improve its performance.

This is the first work on segmentation of fiber bundles in tracer data from macaque

brains. The performance of our method compares favorably to prior work in marmoset

brains, which reported a voxel-wise TPR of 0.7 (Woodward et al. 2020). The main

sources of FPs in our method are terminal fields (shown in Figure 2) and artifacts such

as glare or dust particles. In addition, FPs may occur along the white/gray matter

interface, due to intensity variations. Figures 8-13 illustrate the typical variability in

the intensity and contrast characteristics across sections from different brains. The

use of continuity priors and ss con loss was highly useful in reducing FPs and making

our method more robust to this variability. The inclusion of the continuity priors

in the training framework was not possible due to the lack of a sufficient number of

manual chartings from consecutive sections. Hence, a future direction of this work, as

more labeled cases become available, could explore integrating the priors within the

training framework for further reduction of FPs. This may also reduce performance

variation (indicated by standard deviation). Furthermore, with the availability of

more labeled cases, it may be possible to train a model to detect fiber bundles and

terminal fields as separate classes.

Typically, the detection improves and encloses more fibers, even without ss con

loss and TE, for densely packed fiber bundles as shown in Figure 8, because greater
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fiber density leads to greater texture differences between the fiber bundle and the

background. These variations in the individual fiber bundle densities may impact

performance differently between cases. For instance, in the case of M3 (tracer injected

in the frontal pole), the fiber bundles in IC have relatively higher densities and less

variations when compared to M2 (tracer injected at vlPFC) as shown in Figures 8

and 9. Sections in M2 especially show heavy contrast and texture variations in fibers

in the IC. Therefore, in our ablation study, we observe a greater improvement in M2

compared to M3 (Table 1, showing significant improvement in TPR in M2 using focal

loss, ss con loss and TE). This is because the initial predictive performance of the

method just with focal loss is better for M3 compared to M2, due to the higher fiber

density of the former. The proposed method with contrastive loss and TE equalizes

performance across cases.

Our method lays the groundwork for accelerating the annotation of tracer data

and building databases that contain not just the end points but the full trajectory of

axon bundles. This will enable larger-scale studies of the topographic organization of

axons within white-matter pathways (like the example of Figure 1), as well as more

comprehensive validation of pathways reconstructed by dMRI or other, novel imaging

modalities. It will also enable quantitative studies on the geometric properties of axon

bundles (e.g., density, curvature, orientation dispersion) and how these properties vary

among brain regions.

As an example of such a quantification, we compared the density of fibers project-

ing from two different injection sites (vlPFC, frontal pole) as they traveled through

three white-matter pathways (IC, CC, UF). This allowed us to provide quantitative

evidence for the empirical observation that fibers from the same injection site stay

more tightly bundled when they travel through some pathways than others. In our

results, fibers from the same injection site stayed close to each other as they traveled

through the IC, but were more spread out (and presumably intermingled with fibers

from other cortical areas) as they traveled through the CC and UF. The anterior

limb of the IC is a narrow structure where fibers from the prefrontal cortex (PFC)
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are topologically organized based on their cortical origin (e.g., ventromedial, dorsome-

dial, or dorsolateral PFC) (Safadi et al., 2018; Lehman et al., 2011). The UF contains

intertwined fibers running between the vlPFC and several destinations; some of these

fibers follow the UF all the way to the temporal lobe, and others use the UF as a

conduit to reach other white-matter pathways (Lehman et al., 2011). Our finding

is particularly relevant for microstructure-informed tractography methods (Daducci

et al., 2016). Such methods assume that differences in microstructural properties be-

tween white-matter bundles can help disentangle the long-range trajectories of these

bundles. This, however, may be less effective in areas where fibers from multiple

origins are intermingled, rather than neatly organized in spatially separable bundles.

Extending the quantitative analyses that we performed here to more injection sites

and pathways will be important for shedding light on this issue.

Finally, the current implementation of our model takes 2D histological sections as

its input. Future work will involve extending the model to handle the 3D volumetric

imaging of tracer injections that is now being made possible by novel methods for

fluorescence microscopy (Xu et al., 2021; Yan et al., 2022).

5. Conclusion

We have developed a method for segmentation of fiber bundles that can greatly

reduce the time needed for anatomists to annotate histological sections from anatomic

tracing experiments. Facilitating the annotation of more cases in a semi-automated

fashion will allow us to generate larger training datasets that can be used to further

improve the performance of our method in the future. It will also enable larger-scale

studies to validate tractography algorithms, or to extract quantitative information

from tracing data and analyze the precise route and geometric properties of axon

bundles across multiple seed regions. The code for our method is available at https:

//github.com/v-sundaresan/fiberbundle_seg_tracing.
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Data and code availability

The python implementation of our proposed method is available at https://

github.com/v-sundaresan/fiberbundle_seg_tracing.
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